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Abstract

We describe an algorithm for the 0-1 knapsack problem (KP), which
relies mainly on threc new ideas. ‘Ihe first onc is to focus on what we
call the core of the problem, namely a knapsack problem equivalent to (KP),
defined on a particular subset of the variables. The size of this core is
usually asmall fraction of the full problem size, and does not seem to
increase with the latter. While the core cannot be identified without solving
(KP), a satisfactory approximation can be found by solving (LKP), the associated
linear program. The second new ingredient is a binary-search-type procedure
for solving (LKP) which, unlike earlier methods, does not require any ordering
of the variables. The computational effort involved in this procedure is
linear in the number of variables. Finally, the third new feature is a simple-
minded heuristic whose accuracy under certain conditions ¢rows exponentially
with the problem size. Computational experience wit’ .gorithm based on the ;
above ideas, on 200 randomly generated test problems with 1,000-10,000 variables
and with coefficients ranging from between 10-100 to between 10-10,000, indicates
that for such problems the computational effort grows linearly with the 3
number of variables and logarithmically with the range of coefficients.
Total time for the 200 problems was 160 UNIVAC 1108 seconds, and the

maximum time for any single problem was 3 seconds.
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SOLVING LARGE ZERO-ONE KNAPSACK PROBLEMS
by

Egon Balas and Iitan Zemel

1. Introduction

We consider the 0-1 knapsack problem

(KP) max {cx|ax < a

T 0Oor 1, jeN} ,

where ¢ = (cj) and a = (aj) are positive n-vectors with integer components,
a is a positive integer, and N = {l,...,n} . We will also refer to the

linear program associated with (KP),

(LKP) max {cx|ax <a,, 0 <x <e} ,

0’
where e = (1,...,1) has n components. Our approach can be extended in a
straightforward manner to the general bounded-variables (as opposed to 0-1)
knapsack problem.

Several fast algorithms are available for the solution of (KP) (see,
for instance, [4], [10], [13]), based on first solving (LKP) and generating
an integer solution to define upper and lower bounds, then using these bounds
with some logical tests to fix as many variables as possible, and finally
solving the knapsack problem in the remaining variables by some specialized
version of implicit enumeration,

The starting point of each of these algorithms is the ordering of the
variables according to decreasing cost-to-weight (ci/ai) ratios, which is the
basis of the method used for solving (LKP). This preprocessing of the
variables, though often done by a separate sorting routine and therefore (?)
not included in the total times reported, usually constitutes the lion's

share of the computational effort required to solve (KP).
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We propose an approach to the 0-1 knapsack problem which, while using
in its final stage some of the above mentioned techniques, relies mainly on
three new ideas. The first one is to focus on what we call the core problem,
i.e., the subproblem in those variables, whose cost/weight ratio falls between
the maximum and the minimum ci/a1 ratio for which Xy has a different value
in an optimal solution to (KP) from that in an optimal solution to (LKP) (see
section 2). The size of this core is wusually a surprisingly small fraction
of the full problem size, and does not increase with the latter. While
precise identification of the core would require the solving of (KP),

a satisfactory approximation can be found by solving (LKP).

The second new ingredient is a binary-search-type methed for solving
(LKP) without ordering the variables (see section 3). As a byproduct,
this procedure also yields a convenient approximation (IP) to the core
problem. The classical procedure for solving (LKP) is based on ordering
the variables according to their cost/weight ratios, an operation which
by itself is of complexity O(nlogzn). The computational complexity of
our procedure is O(n).

The third idea is to make use of the fact that, if the cost-to-weight
ratios of the approximate core problem are close enough to each other (a
condition that (IP) tends to satisfy by construction), there exists a simple
heuristic which finds an optimal solution to (IP) with a probability
that grows exponentially with the size of (IP) (see section 4).

Procedures based on the above three ideas usually produce an integer
solution which is either optimal, or provides a sufficiently good lower bound
to make it possible to fix the bulk of the variables outside the approximate
core problem. This is done by a slightly improved version of some logical
tests from the literature, and is followed by implicit enumeration on the

remaining variables (see section 5).
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Computationél e#perience on 200 randomly generated test problems with
1000 - 10000 variables, and with coefficients ranging from 10 - 10000, discussed in
section 6, indicates that for such problems the computational effort (about 160
UNIVAC 1108 scconds for the 200 problems, the maximum time for any single problem
being 3 seconds ) grows linearly with the number of variables, and logarithmically
with the range of coefficients. 'This makes it possible to solve randomly
generated 0-1 knapsack problems of virtually any size, by a computational
effort which (for large enough problems) is smaller than the effort required
to order the variables. Problems whose cost-to-weight ratios are all within
a small interval (or are all equal), which have been found difficult for
most other methods, are easily handled by our approach.

On the other hand, there is a class of 0-1 knapsack problems that is
hard for this method (as well as for others). 1In section 7 we identify this
class of problems, and outline a cutting plane method which, while unable
to compete with the above approach on randomly generated problems, is often

superior on problems in the 'hard' category.

2. The Core Problem and Its Approximations

In order to define the core problem mentioned in section 1, we will

assume N to be ordered so that

c c c
-—l 2 '_2- iy eoe > —E .
L . =8y

For an optimal solution to (KP), define
j, = min [jeNIxj=0}
Jge = max {jeN Iﬁj =1} ,

and

3 = min {§,,0,,) 3, = max {i,,3,,) .
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Note that j1 = j, except for the case when X, with its components ordered
as specified above, is of the form (lyee4,1,0,.04,0).
If (KP) has more than one optimal solution, let X be one which

minimizes the size of the interval C = [jl,jzl. We will call C the core of N,

and the knapsack problem

jl-l
(cp) mex {£ ex. | B ax. <a, -~ E a,, x, =0or 1, 1£¢}
jeC A | jeC 13 0 j=1 1 ]

the core of (KP), or the core problem associated with (KP).

The core problem is easily seen to be equivalent to (KP) in the following

sense.

Proposition 1. X eRICl is optimal for (CP) if and only if X is optimal

for (KP), where

P jeC
xJ hj
Xj = 1 j<j1
0 j>j2 .

Proof. 1If x is a solution to (CP) better than x, then ;', defined
relative to X in the same way as x is defined relative to x, 18 a solution
to (KP) better than X, a contradiction. Conversely, if (KP) has a solution

better than ﬁ, its projection on the subspace corresponding to C is a solution

Another essential property of the core is the following.

to (CP) better than x, again a contradiction,

Proposition 2. (LKP) has an optimal solution x such that ;j =0, Vj < jl’

and ;'(j =1, ¥j > §,.

Proof. Let X be the solution to (KP) used to define j; and j,. With N

ordered according to decreasing clla1 ratios, (LKP) has an optimal solution

x of the form x, = t, § - €, 0« X « 1, x

‘ : \ =0, 1 €, tor some feN., 1




§f = 0, then X is also an optimal solution to (LKP) and the

proposition holds., Now let 0 < ;f < 1. If f <}, then ¢X - ex, which

contradicts the optimality of x for (LKP)., If f > § , then X defined by

;3 SR ge= 1,...,j2, ;j =0, j> j2 is a feasible solution to (KP), with
cXx > c®, which contradicts the optimality of X for (KP). ||

For randomly generated 0-1 knapsack problems the size of the core is

usually a small fraction of the size of the full problem, and does not seem to

depend on the latter (25 is as typical a core size for 100-variable problems

as it is for problems with 10,000 variables). Since the core, as defined above,
cannot be identified without knowing the optimal solutions of (KP), an idea

which suggests itself in a natural way is to try to approximate the core. Any
interval 1CN (where N is ordered as above) containing the index of the frac-
tional component of an optimal solution to (LKP) can be viewed as an approximation
to the core. We will denote by (IP) the approximate core problem defined by

1= [11,12], i.e.,

11-

(1P) wax [ £ ex | ¥ a,x, <a- Ela

4 =0orl, ieI} .
iel iel i

i* X
The choice of I involves a tradeoff between the probability that I1=C (i.e.,
that the resulting (IP) is equivalent to (KP)), and the degree of difficulty
of solving (IP).

At first glance, it would seem that approximating the core requires that
we solve (LKP) by ordering N according to decreasing ci/ai ratios. In the
next section we give a procedure which finds an optimal solution X to (LKP)
without ordering N, and as a byproduct yields a reasonably sized (for randomly
generated problems) interval I = [11,12], ICN, containing the index of the

fractional component of Xe
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3. Solving (LKP) Without Sorting

It i{s well known that if N is ordered according to decreasing cilai

ratios, then an optimal basic solution x to (LKP) is of the form

1 j<f£
§j= 0 j>f
f-1

a, - I a j=f

0 ol b

]
where f is the smallest j €N such that X a, ~a,. 'The classical method /
i=1

of solving (LKP) is based on this observation. Since sorting n elements
requires by itself at least cnlogzn comparisons (c a constant) (see [1],
Corollar: heorem 3.4), solving (LKP) by the classical procedure requires
at le n) operations.

he ordering of N is not unique, neither is the index f.
However, the ratio cf/af is unique, and will henceforth be called the

critical ratio. For any positive scalar A, denote

s () = £ 8, , S, = S0+ z "
! i[(c;/ap>n 1 : : i|(c,/a) =2

*
Then the critical ratio A = cf/af is obviously the unique solution to the

pair of inequalities

*

and solving (LKP) essentially amounts to finding the critical ratio A .
The algorithm below (Procedure 1) accomplishes this without sorting

the variables. 1In its statement, the ordering of N is arbitrary. At each

iteration, Ngs N and N, denote the index sets of the variables fixed at 0,

1 F




fixed at 1, and free, respectively. The sums SI(A) and SZ(A) are always

defined on the current set of free variables.

Procedure 1.
0. 1Initialize: set N, = 9, N, = 9, NF = N, and go to 1.

1. Choose A\ c{ci/ai} » partition N into

ieNF

%/

{ten | (c;/a;) > 1)

=z
|

{i eN, I(ci/ai) <)

=
]

{i e Ny |(c1/ai) =2} >
and calculate Sl(K), Sz(k). Go to 2.

% i
2, T£ Sl(X) <a, < SZ(K), stop: A = A. An optimal solution x to (LKP) is

0
obtained by setting

1 chlUN>

<
0 jeNOUN

and then "filling the knapsack' with variables xj, i eN (any, possibly

including one at a fractional value).

If S;(\) = ay, i.e., if A 1is too small, set Ny« N UN UN, and N, ~ N .

If SZ(A) < a, i.e., if A is too large, set N, - NltJN>LJN=, and N, « N .

Then go to 3.
Je Ik NF > 0 (where 6 is a fixed threshold value), go to 1. Otherwise
solve the linear program defined on NF by the usual method (i.e., by

ordering NF) and extend the solution to (LKP) by setting x, = 1, j ch,

3

xj =0, j cNO. This solution is optimal.




The threshold value 6 in step 3 is meant to identify the problem size

under which the usual solution method (based on sorting the variables)
becomes preferable to the one consisting of steps 1-2. We have found 6 = 25
an adequate value.
As for the value of )\ in step 1, the ideal choice would of course be
the median of the ratios ci/ai, it eNF. Calculating the median involves,
however, a certain computational effort. Instead, we have tried the following
c L

1 ik
closest to %7 (max — + min — ;
2 a,/

two rules: (a) choose A to be the ratio ci/a =
ieNF i ieNF 1!

1

(b) choose )\ to be the median of the first k ratios ci/ai encountered. Rule (b)
with k = 3 turned out to be preferable to (a).
As a byproduct of solving (LKP), Procedure 1 yields a natural candidate

for the approximate core problem (IP), namely the one defined by setting

N if N | <o

Ns otherwise ,

where NF is the last set of free variables, ordered according to decreasing
8 . : o

Li/ai ratios, while NF is an (ordered) subset of NF such that INFI = @ and
f, the index of the fractional component of x, is contained in the middle

e
third of NF'

The size of I is thus controlled by the parameter 6, which can be

chosen equal to, or slightly greater than, the desired core size. However,
the actual size of the last set NF may be considerably smaller than 6. Also,
while NF is guaranteed to contain the fractional component of x, this compo-
nent may happen to be closer to one of the endpoints of the interval defined
by NF

approximation to the core problem. When one of these situations arises,

than to its center, a configuration which does not make for a good




Procedure 1 "enlarges' the interval defined by NF in the desired direction,

by adding to it the last set N>lJN= included into N, in step 2 (if the enlarge-

1
ment is to be made "to the left'"), or the last set N<UN= included into N

0
in step 2 (if one wants an enlargement "to the right'"). These sets are again
natural candidates for the enlargement of I, since their ci/ai ratios are
closest to those in NF.

Finally, Prccedure 1 also produces a first integer soluiion X. Namely,
if the optimal sclution found for (LKP) is x, Procedure 1 sets §5 =1 if
;j =1, EE = 0, then examines each remaining variable in turn and, if
possible, sets it to 1.

Next we show that the computational effort involved in Procedure 1 is
linear in n, the number of variables. To analyze the worst-case bcuavior
of this algorithm, we specify the choice of A in step 1 as that of the
median of the ratios ci/ai’ i eNF. Calculating the median of p numbers
requires a computational effort linear in p; more precisely, it requires at
most 3p compariscns [11].

The computational effort involved in Procedure 1 can then be described
as follows.

Preprocessing: n divisions, to calculate the ratios ci/ai.
Step 1: at most 3|NF| comparisons to calculate the median of the

ratios ci/a i eNF, plus INF| comparisons and \NF\ additions to partition NF

i’
and calculate Sltk), SZ(X), i.e., a total of 5|NF| operations.

Step 2: twc comparisons, plus the transfer of 3 subsets (which involves
changing 6 pointers), i.e., 8 operations.

If t is the number of iterations, steps 1 and 2 are executed t times.

If the algorithm ends at step 2, there are an additional INFl comparisons

and ‘NFI additions to be performed in order to assign values to the variables

X0 ie NF'
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Step 3: this requires a number of at most ¢ = 0(910329) operations

(sorting at most 6 elements, plus' assigning values to the corresponding

variables). This number is independent of n.

Since INFl = n at the start, and Np 1s reduced by at least % at each

iteration, at the end of the procedure ,NF' S-J% n.
2
Let vy denote the time needed to perform a division, and vy the time
needed for a comparison, addition or change of pointers. Then if W(n)

denotes the maximum time needed to solve a problem in n variables by

Procedure 1, we have

i/ \ -
W(n) <wn+w‘5n.(1+l+...+—1-}+8t+2‘in+c1
- 1 207\ 2 2t:/ 2t 5
< wn+w [5n<1 + l.+ soe T L) + 8t + cj
5 Mgty e " e J
< (w1 + 10w2)n + 8w210g2n + w,yC.
Hence W(n) = 0(n).
i A similar analysis of the expected time T(n) needed to solve a problem

in n variables by Procedure 1, with A chosen randomly in step 1, shows that
T(n) is given by an expression of the same form as the above bound for W(n),
with the coefficient of n slightly smaller than v, + 10w2. Computational
experience with Procedure 1 is to be found in section 6, where we compare
its performance to that of two sorting routines from the literature. The

comparison is unequivocally favorable to Procedure 1.

4, A Heuristic Whose Accuracy Improves

Exponentially With Problem Size

Once the approximate core problem (IP) has been defined, we use a

[} heuristic (Procedure 2 below) to find a '"good'" integer solution to (IP).




Step 3: this requires a number of at most c = 0(610329) operations
(sorting at most O elements, plus assigning values to the corresponding
variables). This number is independent of n.

Since INFI = n at the start, and NF is reduced by at least % at each
iteration, at the end of the procedure INFI < ;% n.

Let Wy denote the time needed to perform a division, and v, the time

needed for a comparison, addition or change of pointers. Then if W(mn)

denotes the maximum time needed to solve a problem in n variables by

Procedure 1, we have /
r 1 1 1 : r
[ = = . o= i
Wm) = w1n+w?_L5n<1+2+ ...+2t>+8t+2 2tn+ c|
o 1 _L-\\ -
S wnt+ wz{Sn(l tot et 2t+1/ + 8t + c
=

(w1 + 10w2)n + 8w210g?n + w)c.

Hence W(n) = 0(n).
A similar analysis of the expected time T(n) needed to solve a problem

in n variables by Procedure 1, with A chosen randomly in step 1, shows that
T(n) is given by an expression of the same form as the above bound for W(n),

with the coefficient of n slightly smaller than w. + 10w,. Computational

1 2
cxperience with Procedure 1 is to be found in section 6, where we compare

its performance to that of two sorting routines from the literature. The

comparison is unequivocally favorable to Procedure 1.

4., A Heuristic Whose Accuracy Improves

|';uvg_u‘p‘u'l'l__n_l-l y With _I’—l'_n_lLl em Hi 70

Once the approximate core problem (IP) has been defined, we use a

heuristic (Procedure 2 below) to find a 'good" integer solution to (IP).




If I, was exhausted, stop; otherwise set i « i+ 1 and go to the Iterative Step.

1

The reason for not setting to 1 in the first instance those x, such

3

that ug =3, < MIN, is that doing so would produce an integer solution which
does not satisfy the knapsack constraint with equality. But the main rationale
behind this simple-minded heuristic is that, by construction, (IP) has all of
its ratios ci/ai within a small range around the ratio cf/af; and thus an

integer solution to (IP) which satisfies the knapsack constraint with equality

is likely to be close to the optimum, and so is the associated solution to (KP),.

c c
To make this statement more precise, let I = max oL s, I =min X , and
a = a
iel 1 iel 1
u, = max u,. Also, let v(KP) and v(LKP) be, as before, the value of (an
iel
1

optimal solution to) KP and LKP respectively, and let Yy be the value of the

solution obtained by the above heuristic. 7Then, on the one hand,

Yy < v(KP) < v(LKP)

but on the other,

YH

v

v (LKP) - (r =,

since u, is an upper bound on the sum of coefficients a, such that ii =1,

ﬁi = 0, and r -r is an upper bound on the change in the objective function

value caused by a unit change in that sum. From the last inequality,

v(Ll(P)--vH 5 (®=2u, ;
hence 1if
r-r < L |
Yy

then v(LKP) “Vy <1, i.e., any integer solution that satisfies the knapsack

constraint with equality, is optimal.
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Let x be the optimal solution to (LKP) found by Procedure 1, let if be

its fractional component, and let the approximate core problem be

(IP) max {.E c %Xy | = a;x; < 50 . Bor i, 1¢1) ,
iel iel
where 11-1
a. = a.- T a, ,
0 i
g i=1

while I = [11,...,it} is the ordered set obtained at the end of Procedure 1,

which contains the index f of the fractional variable. Let MAX = max a,,
iel
MIN = min a;, partition the ordered set I into
iel

Il = {11"..’f-1} and IO - {f’ooo,it} ’

4 = ai + afxf.

Since the knapsack inequality holds with equality for x, uy is the

and for each i eIl, define u

"unfilled capacity’ created by setting x. and x, to 0.

f

Procedure 2. Set ﬁf =0, i« 1, and go to the

Iterative Step. Set X, = 0 and try to match the "unfilled capacity" u; with

coefficients as k eIOT To do this, consider in turn each k eIO and set
;k =1, u ~u -a , if u, =&, or u -a >MIN
:’Ek=0,ui«—ui s if u -a <MIN .
1f as a result u, = 0 is obtained, complete the solution X by setting
§i = §1 for all components whose value has not yet been assigned, compare X

with the best integer solution at hand, and store the better of the two.

If u, = 0 is not obtained, set ﬁk = 1 for the first k cIO such that

i

u, -a, <MIN; then complete X and proceed as above.

'... . . - —_ " ,
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1f I, was exhausted, stop; otherwise set i « i+ 1 and go to the Iterative Step.

! 1
§ The reason for not setting to 1 in the first inscance those xj such
that u, -a, < MIN, is that doing so would produce an integer solution which

i 'k

does not satisfy the knapsack constraint with equality. But the main rationale

behind this simple-minded heuristic is that, by construction, (IP) has all of
its ratios ci/ai within a small range around the ratio cf/af; and thus an
integer solution to (IP) which satisfies the knapsack constraint with equality

is likely to be close to the optimum, and so is the associated solution to (KP).

c c
To make this statement more precise, let r = max — , r = min = , and
a = a
iel 1 iel i
u, = max u,. Also, let v(KP) and v(LKP) be, as before, the value of (an
iel
1

optimal solution to) KP and LKP respectively, and let Yy be the value of the

solution obtained by the above heuristic. Then, on the one hand,

v, < v(KP) < v(LKP)

but on the other,

Vu > v(LKp) - (r~x)u,
since u, is an upper bound on the sum of coefficients a, such that ;1 sl
ﬁi = 0, and ;"E is an upper bound on the change in the objective function
value caused by a unit change in that sam, KFrom the last inequality,

V\Lk'\"\w‘ : (r -g)u* s
hence )

r-r "
—_— U* ’

then v(LKP) "y <1, i.e., any integer solution that satisfies the knapsack

constraint with equality, is optimal,
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Suppose now that this condition is satisfied, i.e., the difference between
the best and worst ci/ai ratio in the approximate core problem is less than
l/u* . We wish to examine the probability that Procedure 2 fails to find an
optimal solution to (IP), i.e., to find an integer solution which "fills the
knapsack".

Procedure 2 systematically tries to match the coefficients a s ke 10,

If the coefficients keI, are

against the values u, =a, 7 acxe, i eIl. 0

uniformly distributed over the set of integers between MIN and MAX, and are
independent of each other, the number of possible distinct values for them

is V., = MAX - MIN + 1. Let V. denote the number of distinct values u iel

0 1 , 4
such that MIN < ug < MAX. (By definition of the u;, some of them may be

1)

outside this interval.) Thus we have a set of V1 distinct values uy from

[MIN, MAX], and a set of IIOI (not necessarily distinct) values a,, uniformly

distributed over that same interval. The probability that any particular

v
value a,, keI,, does not match any of the V, distinct values u, is 1 - i .
k 0 1 i Vo
The probability that none of the IIOI values a ke IO’ matches any of the
g, ol
values u; is then kl v > . This is actually an overestimate of the
0

probability of the failure of Procedure 2 to '"fill the knapsack,'" since it

ignores the possibility of each u,, i €I,, being matched by the sum of several

1? 1’

a0 k eIO, rather than by a single a,.
The remarkable fact about this simple-minded heuristic is that, if the

ci/a1 ratios of (IP) are sufficiently close to each other, the probability

that it fails to find an optimal solution to (IP) decreases exponentially

with II which is more or less the same as exponentially with the size of

o

(IP). Values of the above expression for certain values of its parameters

are given in Table 1.
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v
Table 1., Values of (1 - — -
v
0
Vg =50 Vv, = 500
|1, |1,
g 5 10 15 20 " 10 30 50 70
1 1
5 .59 .35 o2 .12 10 .82 .54 .36 24
10 32 .11 .03 .01 30 .54 .15 .04 .01
15 .16 .03 .004 ,0008 50 .35 .042  ,005 .0006
Vv, = 100 Vo = 1,000
[T, 1]
Y 10 20 30 = 25 50 75 100
1 1
10 35 12 .04 25 .53 .28 .15 .08
15 .20 .03 .007 50 .28 .08 .02 . 006
20 11 .01 .001 75 14 .02 .003 .0004

Thus, if the above heuristic is applied to a knapsack problem with,

say, 200 variables, and with coefficients randomly drawn from the interval

[10,1000], the probability of finding an optimal solution is about .9996;

and the larger the problem (for the given coefficient iuterval), the higher

this probability.
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A slightly improved version of the heuristic described above makes

use of the following dominance relation. If i,j ¢ N are such that

we say that X, dominates x If at least one of the two inequalities holds

I

strictly, we say that X, strictly dominates x Clearly, if x, dominates

| ¥ i
Xj’ then (KP) has an optimal solution in which Xy > xj. As a result, 1f Xy
is set to 0, then x, can also be set to 0. Incorporating this feature in

]
Procedure 2 improves the quality of the solutions generated, though for

problems with a large coefficient range the effect is not significant. On

the other hand, for problems with many equal ci/ai ratios, using the dominance
relation in the above fashion may render the heuristic ineffective, by
drastically reducing the number of coefficients a, k.eIO, that one tries to
i ie 11. This effect can be avoided by fixing variables
only on the basis of strict (rather than simple) dominance.

match against each u

5. Logical Tests and Implicit Enumeration

The sequence of Procedures 1 and 2 produces an integer solution X
whose quality for randomly generated problems is usually very good. 1If
the renge of the problem coefficients is small (say, below 100), then the
value Yy of the integer solution X found by the heuristic of section 4 often

differs by less than 1 from v(LPK) = c§, in which case of course X is optimal.

If v(LPK) - v, > 1, we apply slightly modified versions of some earlier pro-

H
cedures from the literature.

First, we use some simple logical tests (Procedure 3) to fix as many of
the out-of-core variables as possible (for the in-core variables, these tests

are applied simultaneously with the heuristic of section 4). The first of

these tests (proposed by Dembo and Hammer [6]) sets permanently x, = x, if

3 ]
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the reduced cost of x, matches (or exceeds) the above gap; i.e., if

j

|cj - aj(cf/af)‘ > v(LKP) = Vy

(where ;f is, as before, the fractional component of x). The second test

(proposed by Ingargiola and Korsh [7]) sets tentatively, for each j in turn,

X, = 1-§j, then solves the linear program in the remaining variables, and

i

if the value of the solution equals or exceeds Vi sets permanently x, = X,.

] 3

"Solving'" the linear programs involved in this test amounts to the
following. Let I = [11,12] be the interval defining the approximate core
problem (IP), and for i < il’ denote by (LKP)x =0 the linear program

obtained from (LKP) by tentatively setting X, = 1-§1 = 0. Then we set

X ¥j<f, j#i,and ¥ j>1i,, and then "fill the knapsack" by

Wik

assigning maximal values to the variables x.,, f < j < i,, taken in order

j’
of increasing j. Whenever this is possible, the resulting solution is

obviously optimal for (LKP)x o When the knapsack cannot be '"filled" in
=
this way, we approximate from above the optimum of (LKP)x &
i

a fictitious variable X, whose weight-coefficient a, "fills the knapsack"

0.
by introducing

and whose cost coefficient satisfies ¢ /a_ = c, /a (where 1, is the
o o 12 12 2

last index of I). Such an overestimate of the optimum of (LKP)x o Clearly
i

0
preserves the validity of the above described logical test. A perfectly
analogous procedure is used when one tentatively sets X, = 1 -ii =1 for

some i > 12.

The reason for applying the above two tests in this particular order is
that the second test is more powerful, but also considerably more expensive
computationally, than the first one. It makes therefore sense to apply the

second test to the reduced problem remaining after the first test has been

used to fix an (often significant) number of variables.
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The power of the second test can be enhanced at a low cost by using
the dominance concept defined in section 4. Thus, whenever x, fails the test

and Iy therefore (permanently) set to | -;l’ we also set to | —;1 all the

variables dominated by x, (Af 1 -ii = 0), or all the variables dominating X,

(if 1 -;i = 1). The reason why this strengthens the procedure is that,

contrary to intuition, it is possible for a variable X, to fail the test,

and for a variable xj dominating x; or dominated by X

Procedure 3 consisting of the above tests terminates by introducing all

to pass it,.

the variables that were not fixed into the approximate core problem (IP).

If this redefined problem (IP) has more than s variables (s a parameter, say
s = 50), then the heuristic (Procedure 2) is again applied to it, followed
by the logical tests (Procedure 3). Otherwise we apply the final part of the
algorithm, which is Procedure 4.

Procedure 4 is a virtually unchanged version of Zoltners' implicit
enumeration procedure [13], called by its author a direct descent algorithm.
(Another name, coined by Bradley [5], is fixed order enumeration.) The
variables are ordered according to decreasing ci/a:l ratios. At each node
of the search tree, the free variables are scanned in the above order, and
all those that "fit into the knapsack' are set to 1, while the others are
set to 0, As a result, both forward steps and backtracks usually involve
long chains of variables, i.e., many levels of the tree (a sequence of vari-
ables fixed at 0 can only be '"freed" by freeing the variable fixed at 1
which precedes the sequence). For details, sce [13].

The entire algorithm described in the last three sections is summarized
in the flowchart of Fig. 1.

The algorithm discussed here is highly efficient on randomly generated
problems (we discuss our computational experience in the next section). An

interesting feature of our approach, however, lies in the fact that it is equally
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well (if not better) suited for problems whose Cl/al ratios are very close

to cach other. A recent survey of the 0-1 knapsack problem by S. Martello and
P. Toth [9] has found that such problems tend to be very hard even for the most
efficient implicit enumeration procedures. In particular, these procedures
tend to break down in the case of the value-independent knapsack problem

(i.e., the problem with ci/a1 = const., Vi ¢N), mainly because, all the

reduced costs being equal to 0, no variable can be fixed by the logical tests.

As to our algorithm, Procedures 1 and 2 are considerably more efficient
on (randomly generated) value-independent knapsack problems, than on problems
with randomly distributed ci/wi ratios. Procedure 1 solves (LKP) in one step,
since the first A chosen is critical. Procedure 2, if it "fills the knapsack',
finds an optimal solution which is also instantly proved optimal, since
y = v(LPK).

On the other hand, if the heuristic does not '"fill the knapsack', then
applying the logical tests of Procedure 3 is useless, since in view of the 0
reduced costs these tests must fail. However, since all the ci/a1 ratios
are equal, the probability of Procedure 2 failing to find an optimal solution
decreases exponentially with the size of (IP). Therefore, rather than applying
Procedures 3 and 4, the thing to do in this case is to increase (say, double)
the size of (IP) and apply again Procedure 2, This can be repeated, if
necessary, but the data of Table 1 show how low the probability is of a need

for repetition.

6. Computational Experience

The algorithm described in the previous sections was coded in
FORTRAN IV. Efficient handling of the subsets of N and easy access to each

of those subsets was accomplished by using a linked list (circular 1list)

i it A N S St B A.;;..-J
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data structure of the kind used by Barr and Ross [4] (and also Zoltners[13]).
The code was tested on 200 problems with randomly generated objective function

and constraint coefficients, and with a, = : Y a To examine the behavior

9 2 ieN

of the algorithm as a function of both problem size (number of variables) and

ia

coefficient range, we generated 20 classes of problems (10 in each class),
with 1000, 2500, 5000, 7500 and 10000 variables respectively, and with coef-
ficients randomly drawn from the intervals [10,50], [10,100], [10,1000] and
[10,10000] respectively. The results are summarized in Table 2, each of
whose entries gives the average computing time for 10 problems of the size and
characteristics shown by the respective row and column heading, with the
exception of the last two columns, where each entry gives the maximum and
minimum time, respectively, used for any one problem with the number of vari-
ables indicated by the row heading, irrespective of the coefficient range.
Times are reported in UNIVAC 1108 milliseconds, and include everything except

the time used to generate the data and print out the results.

The times reported in Table 1 were obtained with a version of the code
which conserves memory space (a scarce commodity on C-MU's UNIVAC 1108) by
assigning only 4 integer memory units to each variable xi (ci, a s plus
forward and backward pointers). In particular, the ci/ai ratios are not stored
in this version, but recalculated each time they are needed. For some smaller
problems (1000 and 5000 variables) we have also tested a version of the code in
which these ratios are calculated and stored when the data are generated, and
retrieved as they are needed. The execution time for Procedure 1 (which is

between 40-607 of the total time) is then reduced to about 35% of the time

needed in the version reported in Table 2 (see last column of Table 3).
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Table 2. UNIVAC 1108 milliseconds used for solving (KP)

(each entry is the average time for 10 problems)

Range of Coef-
No. of ficients 10-50 10-100 10-1000 10-10000 MAX  MIN
variables
1000 149 170 234 250 403 49
2500 256 317 490 507 831 190
5000 561 567 1007 944 1968 407
7500 991 918 1424 1531 2179 604
10000 1153 992 2032 2078 3066 8104J

A striking feature of the results reported in Table 2 is the fact that
the computational effort seems to grow linearly with the number of variables,
and logarithmically (less than linearly) with the range of the problem coef-
ficients. Even more impressive is the small difference between the average and

the maximum times required to solve the 40 problems with 10000 variables shown in

the last row of the tableau. While the average time for the two sets of 10
problems with coefficients in the 10-1000 and in the 10-10000 range respec-
tively, and with 10000 variables each, is about 2 seconds, the maximum time
for any of the 40 problems is about 3 seconds.

To assess the efficiency of the various components of our algorithm
separately, we generated some additional data. Table 3 below compares the
time needed by Procedure 1 to solve (LKP), generate a first integer solution
and define the approximate core problem (IP), with the time needed by two
sorting routines just to order the variables according to decreasing ci/ai
ratios,

The first of these sorting routines, SORT, is Singleton's improved
version of Quicksort [12]. It orders an array of integers according to

decreasing values. The time used by SORT to accomplish this is in fact an
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underestimate of the time needed for preprocessing the data in order to
solve (LKP) in the traditional way, since SORT handles at each step only one
entry for each i €N, whereas in the case of an (LKP) one needs to handle at

least 4 entries for each ieN: Cis a5 cila as well as some indication of

i?
the variable's original identity. If the ratios Ci/ai are calculated at
each comparison, the time needed for sorting is even larger.

The second sorting routine, SORT 6, is the one used by Nauss in his
algorithm for the 0-1 knapsack problem [10], and which performs all the
necessary preprocessing of the data (it calculates and stores the cilai ratios,
retrieving them as needed). Both sorting routines were used as originally
coded by their authors.

Since Procedure 1 accomplishes more than SORT and is therefore, strictly
speaking, only comparable to SORT 6, we also ran the problems with 1000 and
5000 variables respectively,with a version of Procedure 1 (called l*) which
solves (LKP) by retrieving the pre-stored ci/ai ratios as needed.

Each entry in Table 3 represents the average UNIVAC 1108 time for 10
problems with coefficients randomly drawn from the interval [10,10000],

Times are in milliseconds and include everything except the time used to
generate the data and print out the results.

Table 3 speaks for itself. Furthermore, comparing its data with those
of lable ? shows that the algorithm discussed {n this paper solves randomly
penerated large 0-1 knapsack problems in less time than it takes to order the
variables according to decreasing ci/ai ratios.

The central idea of our approach is to concentrate on the core of the
knapsack problem, approximated by (IP). The effectiveness of this is revealed
dramatically by Table 4, which shows the results of constructing the approximate

core problem (IP) by Procedure 1 and applying to it the (heuristic) Procedure 2,




Table 3. UNIVAC 1108 milliseconds used for sorting the variables

(col. 1 and 2) versus solving (ILKP) (col. 3 and 4)

(each entry is the average time for 10 problems)

Code
No. 1 2 3 4
of SORT SORT 6 Procedure 1 Procedur= [*
variables
9 R
1000 148 536 114 37
2500 418 1751 270 —
5000 878 4163 473 166
7500 1377 6206 859 —
10000 1855 9645 928 —

as measured by the quality of the integer solution found and the number of
variables left. This table refers to the same set of 200 randomly generated
problems as Table 2. Again, each entry gives the average for 10 problems.

The first three columns refer to the gap between v(LKP), the value of the linear
programming optimum, on the one hand, and the value of the first integer solution,
produced by Procedure | (col. 1), the value vy of the integer solution constructed
by the (heuristic) Procedure 2 (col. 2), and the value of the integer optimum
(col. 3), on the other. Column 4 gives the relative error of the integer

solution found by Procedure 2, expressed as the ratio (v” - v(KP)/v(KP). Column 5
shows the number of variables left in the core after one application of Proce-
dure 2, which combines the heuristic for "solving" (IP) with some logical tests
for fixing variables of (IP). Finally, column 6 shows the number of out-of-core
variables left after Procedure 3, which uses logical tests based on the rela-
tively narrow gap established by Procedures 1 and 2, to fix as many variables

as possible.
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Table 4 shows that, given a large (KP), solving (LKP) (without sorting the
variables) and then applying the heuristic to the small approximate core problem
(20-50 variables) generated {n the process, produces an Integer solution within
10-5—— 10—7 of the optimum, and makes it possible to fix over 997 of the
variables. The problem whose variables have to be sorted in order to apply to

it the implicit enumeration algorithm of Procedure 4 thus has typically 30-70

variables.

It is instructive to observe the effect of problem size and coefficient

range on the gaps listed in columns 1-3. FEach of the 3 gaps seems to grow linearly

with the coefficient range. However, while the first gap is almost unaffected
by problem size (number of variables), the other two gaps tend to decrease
with problem size. For the third gap, i.e., that between v(LPK) and the value
of the integer optimum, this is due to the fact that for a given coefficient
range, an imcrease in the number of variables tends to Increase the number of
Ci/ai ratios which are close to the critical ratio, and thereby to increase
the chances for the existence of an integer solution whose value is ''close"

to v(LKP). 1In other words, the combinatorial nature of the problem is miti-
gated by an increase in the number of variables. Similarly, in the case of
the second gap, i.e., the one between v(LKP) and Vs an increase in the number
»f variables (for a given coefficient range) tends to reduce the range of the
ratios ci/ul spanncd by the approximate core problem (IP), which in turn tends

to increase the accuracy of the heuristic applied to (IP).

7. Hard Problems

The ease with which very large randomly generated 0-1 knapsack problems
(including value-independent problems) can be solved, even when their coef-

ficients span a sizeable range, is somewhat surprising in view of the fact,
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established by Karp [8], that a polynomially bounded algorithm for this
problem can only exist if one exists for the general integer program. This
underscores the fact, already illuminated by the similar contrast between
worst-case theoretical bounds and statistical behavior in the case of the
simplex method, that often there exists little if any correlation between
the worst case behavior and the expected behavior of algorithms. 1In partic-
ular, in the case of the O-1 knapsack problem, the worst case behavior seems
to be determined by a certain special structure which, in randomly generated
problems, arises with a very low probability.

Since we have found that those O-1 knapsack problems usually considered
hard (and hard they are, for methods based on logical tests and implicit
enumeration), i.e., problems whose ci/a1 ratios are close to each other, are
not hard at all for our approach, we set out to explore what problems are hard
to handle by our method. The best measure of the degree of difficulty of a
0-1 problem that we could find was the relative size of the gap between the
value of the linear programming optimum and that of the integer optimum, more
precisely the ratio between this gap, v(LKP) -v(KP), and the average size of
the reduced costs Ici -ajkk , j eN (here, as before, k* = cf/a{ is the critical
cost/weight ratio). 1If we approximate the average reduced cost by 1/2 times the

largest reduced cost, then this measure of the degree ot difficulty becomes

v(LKP) - v(KP)
*
-aik |

1 .
& max |C

9
ieN .

knapsack problems tend to have a larpe A {1 there are relatively few
integer solutions which satisfy the constraint with equality, and the optimum

is not among them. We generated a set of 48 problems with this property, and

found that only about 1/4 of them could be solved easily by our algorithm.
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On the other hand, we have tried on this set of problems a cutting
plane approach, whose efficiency on randomly generated problems comes nowhere
near that of enumerative procedures, not to mention the algorithm discussed
in this paper. Not entirely unexpectedly, the cutting plane approach turned
out to be relatively efficient on the "hard" problems with large A .

The cutting planes used were those proposed in Theorem 2 of [2]. ‘These
inequalities are computationally cheap and in most cases (statistically, in more
than 3/4 of the cases) are facets of the knapsack polytope, i.e., of the
convex hull of feasible 0-1 points. When they are not facets, their coeffi-
cients are known [3] to differ by at most 1 from the corresponding coefficient
of a facet (with the same right hand side).

The algorithm we used is as follows. First, Procedures 1, 2 and 3 of
the previous sections are used to solve (LKP), find a good integer solution
to (IP), and fix as many variables of (KP) as possible. 1f the problem in
the remaining variables is sufficiently small, we solve it by Procedure 4
above., Otherwise, we generate an inequality which cuts off X, the linear
programming optimum, and solve the 2-constraint linear program (with the
knapsack-inequality and the cut). The knapsack inequality is then replaced
by a combination of the two constraints (with the optimal dual multipliers
vsed as weights), which produces a new knapsack problem, with a smaller value
of the linear program and hence with a smaller gap. We then apply Procedures 2
and 3 to this new knapsack problem, in which the smaller gap often leads to
the fixing of new variables. The above sequence could be iterated for as long
as a decrease in the gap can be ob*ained; but we stopped after the first cut,
since the purpose of this preliminary experiment was to get a feel for the

merits of the cutting plane approach in general.
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We have tested this approach on 48 problems of the type described above,
with 1000 variables cach, and with coefficients in the range 1-100. Seven of
the 48 problems were solved (optimality was proved) by Procedures 1 and 2.
Another 5 problems were reduced by Procedures 1-2-3 to a sufficiently small
size to be easily solved by Procedure 4, This makes for a total of 12 problems
solved by the algorithm of sections 3-5. Of the remaining 36 problems, whose
average A was .076, 18 were solved by the cut (optimality was established due
to the tighter bound obtained by solving the 2-constraint linear program),
while 7 were reduced to a size which made it easy to solve them by Procedure 4.
In all these 25 problems the optimal solution was generated by the heuristic
(Procedure 2), and the role of the cut was to make it possible to prove

optimality. For the remaining 11 problems, the cut had practically no effect.

i
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