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Abstract

We describo an algorithm for tlic’ 0-1 knapsack problem ( K P ) ,  whi ch

rel ies mainl y on t hro new Ideas  . ‘I l ,t I I rs ( ~~i~~’ i ~i t o  I o c i i ~ on wlin L wo

c a l l  the core of the  p rob lem , n a m e ly  a knapsack  prob l em e qu i v a l e n t  to ( K P )

defined on a p a r t i c u l a r  subset of the a v a r i a b l e s . The size of t h i s  core is

usually a small fraction of the full problem size , and does not seeni to

increase with the latter. While the core cannot be identified without solvi ng

(KP), a satisfactory approximation can he found b y solving (LKP) , the associa ted

linear program. The second new in~ rodi ent is a binary-search-type procedure

for solving (LKP) which , unlike earUer methods , does not require any ordering

of the variables . The co~nputa~ i~~iiri l ~~fo~ t involved in this procedure is

linear in the number of vari~ hles . Fina lly , the third new feature is a simple-

minded heuristic wh ose a c c u r a cy  ~i n d v r  certain conditIon’~ grow s exponentiall y

wi th the prob le m size . Computationa l experience w i t ~ gor ithm based on the

above idea s, on 200 randomly generated test problems with 1 ,000-l0,~)of~ vari able s

and with coefficients ranging from between 10-100 to between 10-10,000, indica tes

that for such problems the computationa l effort grows linearly wi th the

ntnnber of variab les and logarithmically with the range of coefficients .

Total time for the 200 problems was 160 UNIVAC 1108 seconds , and the

maxinu.un time for any single problem was 3 seconds.
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SOLVING LARGE ZERO-ONE KNAPSACK PROBLEMS

b y

Egon Rn las a~u l I 1  tan Zone 1

1. I n t r o d u c t i o n

We consider the 0-1 knapsack prob lem

(KP ) max (cx ax < a 0, x .. = 0 or 1, j  £ N)

where c = (c .) and a = (a ..) are positive n-vectors with integer components ,

a is a positive integer , and N = [1,... ,n} . We w i l l  also re fer  to the

linear program associated with (KP),

(LKP ) max (cx ax < a0, 0 < x < e)

where e = (1,... ,l) has n components. Our approach can be extended in a

straightforward manner to the general bounded-variables (as opposed to 0-1)

knapsack problem.

Several fast algorithms are available for the solution of (KP~ (see ,

for instance , 141 , [101, [131), based on first solving (LKI’) and generating

an integer so lu tion to de f ine upper and lower bounds , then using these bounds

with some logical tests to fix as many variables as possible , and f i na l l y

solving the knapsack problem in the remaining variables by some specialized

version of implicit enumeration .

The starting point of each of these algorithms is the ordering of the

variables according to decreasing cost-to-weight (c
1
/a . ’ ratios , which is the

basis of the method used for solving (LKP). This preprocessing j f the

variables , though often done by a separate sorting routine and therefore (?)

not included in the total times reported , usua l l y constitutes the lion ’s

share of the computational effort required to solve (1(1’).
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We propose an approach to the 0-1 knapsack prob lem which , wh i le ua thg

in its final stage some of the above mentioned techniques, relieB mainly on

three new ideas. The first one is to focus on what we call the core problem ,

i.e., the subproblem in those variables,whose cost/wei ght ratio falls between

the maximum and the minimum c1/a
~ 

ratio for which x~ has a different value

in an optimal solution to (K?) from that in an optimal solution to (LKP) (see

section 2). The size of this core is usually a surprisingly small frac tion

of the full problem size, and does not increase with the latter. While

precise identification of the core would require the solving of (KP),

a satisfactory approximation can be found by solving (LKP).

The second new ingredient is a binary-search-type method for solving

(LKP) without ordering the variables (see section 3). As a byproduct ,

this procedure also yields a convenient approximation (IP) to the core

problem. The classical pr ocedure f or so lving (LKP ) is based on ordering

the variables according to their cost/weight ratios, an operation which

by itself is of complexity 0(nlog2n). The computa tional complexity of

our procedure is 0(n).

The third idea is to make use of the fact that, if the cost-to-weight

ratios of the approximate core problem are close enough to each other (a

condition that (IP) tends to satisfy by construction), there exists a simple

heuristic which finds an optimal solution to (IP) with a probability

that grows exponentially with the size of (I?) (see section 4).

Procedure s bas ed on the above thre e ideas us ually produce an integer

solution which is either optimal , or provides a sufficiently good lower bound

to make it possib le to fix the bulk of the variables outside the approximate

core problem. This is done by a slightly improved version of some logical

tests from the literature , and is followed by implicit enumeration on the

remaining variables (see section 5). 

—~~ -~ .-~~~ 
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Computational experience on 200 randomly generated test problems with

1000- 10000 variables , and with coefficients ranging from 10- 10000, discussed in

sectIon 6, indIcates that for such problems the computational effort (about 160

UNIVAC 1.108 seconds for tue 200 problems , the maximum time for any single problem

being 3 seconds) grows linearly wi th the number of variahiet;, and logari thmicall y

with the range of coefficients . this makes it possib le to solve randomly

generated 0-1 knapsack prob lems of virtually any size, by a computationa l

effort which (for large enough problems) is smaller than the effort required

to order the variab les. Problems whose cost-to-weight ratios are all within

a small interval (or are all equal), which have been found difficult for

most other methods , are easily handled by our approach.

On the other hand , there is a class of 0-I knapsack problems that is

hard for this method (as well as for others). In section 7 we identify this

class of prob lems, and outline a cutting plane method which , while unable

to compete wi th the above approach on randomly generated problems, is often

superior on prob lems in the “hard” category.

2. The Core Problem and Its Approximations

In order to define the core problem mentioned in section 1, we will

assume N to be ordered so that

c C c

a — a — — a1 2 n

For an optima l solution to (K!’), define

mm (j ~ N j = 0)

max [J € N I ~~~~
..l]

and

mm 
~~~~~~~ 

— max
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Note that j1 
= j

~ 
except for the case when ~ , with its components ordered

as specified above , is of the form (1.,...,l,O,...,0).

If (KP) has more than one optimal solution , let. ~ be one wh ich

minimizes the size of the interval C = [j1,j2
]. We will call C the core of N,

and the knapsack problem

1

(CI’) max [ L c x E a 1x 4 ~ a0 
- E a . X

j  
= 0 or 1, ~cc)j€C ~ jeC ~ j=l -~

the core of (1(P), or the core problem associated with (1(P).

The core problem is easily seen to be equivalent to (KP) in the following

sense.

Proposition 1. X € R k’ is opt1i~al for (CP) if and only if ~ is optimal

for (KP), where

jcC

1 j< j 1

0 j > j2

Proof. If ~ is a solution to (CP) better than ~ , then “, defined
relative to ~~

‘ in the same way as is defined relative to x , is a solution

to (KP) better than ~ , a contradiction. Conversely, If (1(P) has a solution

better than ,~, its projection on the subspace correspond ing to C is a solution

to (CP) better than x, again a contradiction. II
Another essential property of the core is the following.

Proposition 2. (LKP) has an optimal solution x such that 0, Vj <

and = 1, Vj > j2.

Proof. Let ~ be the solution to (1(P) used to define j1 and j2. Wi th N

ordered accord ing to decreasing c
1
/a

1 
ratios , (LKP ) has ~n optima l solution

‘. of t t ; ,~ L o i n ;  — I , . t , 0~ I , — 0 , j f , tor some fiN. If

- --- - - —
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= 0, then ~ is also an optimal solution to (LKP) and the

proposition holds. Now let 0 < x1 
- - 1. If I - - j , then c~ cx , which;

contradicts the optimality of ~ for (LKP). If £ > j , then ~ defined by

1, j = l~~ ••~ j2~ 
~~~~ 

= 0, 
~ 
> is a feasible solution to (KP), with

c > c~ , which contradicts the optiinality of ~ for (K?).

For randomly generated 0-]. knapsack problems the size of the core is

usually a small fraction of the size of the full problem, and does not seem to

depend on the latter (25 is as typical a core size for 100-variable problems

as it is for problems with 10,000 variables). Since the core, as defined above,
/

cannot be identified wi thout knowing the optima l solutions of (1(P), an idea

which suggests itself In a natura l way Is to try to approximate the core. Any

interva l lCN (where N is ordered as above) containing the index of the frac-

tional component of an optimal solution to (LKP) can be viewed as an approximation

to the core. We will denote by (IP) the approximate core problem defined by

I = ~j 1, j 2~~, i.e.,

il— i

(IP) max ( ~ c 1 x . ~ a~x1 < a0 
- E a

1 
, x

1 
0 or 1, i c I)

1 1€]. 1=1

The choice of I involves a tradeoff between the probability that I ~2 C (i.e.,

that the resulting (IP) is equivalent to (KP)), and the degree of difficulty

of solving (IP).

At first glance, it would seem that approximating the core requires that

we solve (LKP) by ordering N according to decreasing ci
/a~ ratios. In the

next section we give a procedure which finds an optimal solution x to (LKP)

without ordering N, and as a byproduct yields a reasonably sized (for randomly

generated problems) interval I = [11, 12], ICN , containing the index of the

fractional component of x. 

. ,-~~~~~~~- ,  ~~~~~~~~~~~~~~~~~ - --- ,.-~ -- —---- ~~~~~~~~~ - .
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3. Solving (LKP) Without Sorting

It is we ll known tha t if N is ordered according to decreasing c
1/a~

ratios , then an optimal basic solution x to (LKP ) is of the form

1 j< f

0 j > f
J f—l

a0 - E a
j j — f

j l

j
where f is the smallest j eN such that ~ a

1 > a0. The classica l method
1=1

of solving (LKP) is based on this observation. Since sorting n elements

requires by itself at least cnlog
7n comparisons (c a constant) (see [lj ,

Corollat- ieorem 3.4), solving (LKP ) by the classical procedure requires

at le ~~~ opera tions .

~he ordering of N is not unique , neither is the index f.

However, the ra tio c
f/a f 

is uni q.’e , and will henceforth be called the

critical ratio. For any positive scalar X , denote

S (X) = E a
1 , S2 (X )  = S

1(X) + E a11 
if (c1/a .)>x

Then the critical ratio = cf/af is obviously the unique solution to the

pair of inequalities

S1(X) < a0 < S2 (X )

*and solving (LKP) essentially amounts to finding the critical ratio X

The algorithm below (Procedure 1) accomplishes this without sorting

the variables. In its statement , the ordering of N is arbitrary. At each

iteration, N0, N1 
and N

F denote the index sets of the variables fixed at 0, 

-.- —--—-_- --~~~~-~~~ --~~~-.-----~~~- . - ~~~~- - -.- - - -~~~~~~~~- ~~~~ - - -—-~~~~“--
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fixed at 1, and free, respective ly. The sums S1(X) and S2(X) are always

defined on the current set of free variables.

Procedure 1.

0. Initialize: set N
0 

= 0, N
1 

= 0, N~, = N, and go to I.

I. Choose Xi [c ./a.).~~~ , partition N~ into

N> = [1 LNF I (cia. )  > xJ

= (i eN~, (c1./a1 ) < x )

N = 
~i e N ~ (c

1
/a
1) x)

and calculate S
1(X ) ,  S2(X). Co to 2.

2. If S
1

( X )  < a0 < S2 ( X ) ,  s top : X~ = X. An optimal solution x to (LKP) is

obtained by setting

1 j N1UN>

x~ =

J I <
0 jeN 0UN

and then “filling the knapsack” with -~ariables .1 cN (any, possibly

including one at a fractiona l value).

If S1 ( X )  a0, i .e. ,  if X is too small , set N 0 N0UN~ UN , and NF N .

If S2(x) < a0, i.e., If X is too large, set N1 
.— N1 UN UN , and N

F 
— N

Then go to 3.

3. If N.~ > e (where e is a fixed threshold value), go to 1. Otherwise

solve the linear program defined on N
F 

by the usual method (i.e., by

ordering N
F
) and extend the solution to (LKP) by setting X

j  
= I, j iN 1,

X
j  

= 0, j e N 0. This solution is optimal.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , --.- --- -- .~—..— —~--- —-------- - 
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The thresho ld value 0 in step 3 is meant to identify the prob lem size

under which the usua l solut ion method (based on sorting the variab les )

becomes preferable to the one consist ing of s teps 1-2 . We have found 0 = 25

an adequate value .

As for the value of X in s tep 1, the ideal choice would of course be

the median of the ratios c ./a ., I e N ~,. Calculating the median involves ,

however, a certain computational effort. Instead , we have tried the following

two rules : (a)  choose X to be the rat io c ía closest to ~ çmax —
~~ + mm _!~~;2 i€ N F

5i i€ N F 
a1i 

/ ,

(b) choose X to be the median of the first k ratios c
1
/a

1 encountered . Rule (b)

with k = 3 turned out to be preferable to (a ) .

As a byproduct of solving (LKP), Procedure 1 yields a natural candidate

for the approximate core prob lem ( IF) ,  namely the one defined by setting

INF if IN~I < e
1 =

~ 
N otherwise

where N 1, is the las t  set of free variab les , ordered accord ing to decreas ing

c ./a ~ ra t ios , wh i le N~ is an (ordered ) subset  of N
F such that I N ~~ = B and

f , the index of the f r ac t iona l  component of x , is contained in the middle

third of N .

The size of I is thus controlled by the parameter B , which can be

chosen equal to, or slightly greater than, the desired core size. However,

the actual size of the last set N
F 
may be considerably smaller than B . Als o,

while NF is guaranteed to contain the fractional component of x, this compo-

cent may happen to be closer to one of the endpoints of the interval defined

by NF 
than to its center , a configuration which does not make for a good

approximation to the cor e problem . When one of these situations arises ,

L . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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Procedure 1 “enlarges” the interval defined by NE. in the desired direction ,

by adding to i t  the  last  set N > U N= included Into N
1 

in step 2 (if the enlarge-

ment is to be made “to the lef t”), or the last set N<UN included into N0

in step 2 (if one wants an enlargement “to the right”). These sets are again

natural candidate s for the enlargement of I.. since their c~ ía~ ratios are

closes t to those in

Finally, Pr cedure 1 also produces a first integer sol~ ion ~~~ . Namely,

if the optima l s lution found for (LKP ) is x , Procedure 1 sets = 1 if

X
3 

1, X~ = 0, the n examines each remaining variable in turn and , if

possible , sets ii to 1.

Next  we sho~ that the computationa l effort involved in Procedu~~ 1 is

linear in n, the number of variables . To analyze the worst-case b..i~avior

of this algorithm , we specify the choice of X in step I as that of the

median of the ratios cja., i eN ~,. Calculating the median of p numbers

requires a computational effort linear in p; more precisely, it requires at

most 3p coniparisc ns [ l ii .

The computationa l effort Involved in Procedure 1 can then be described

as follows.

Preprocessirtg : n divisions , to calculate the ratios c./a 1
.

S tep 1: at most 31NF 1 comparisons to calculate the median of the

ratios c
1
/a1, i €N~, plus INF I comparisons and ~~~~ a d d i t i o n s  to p a r t i ti o n  N F

and ca lcu la te  S
1 X ) ,  S2 (X ) ,  i .e . ,  a tota l of 5 1N F I operations .

S tep 2: tw comparisons , plus the transfer of 3 subsets (which involves

changing 6 pointers), i.e., 8 operations .

If t is the number of iterations, steps 1 and 2 are executed t times.

If the algorithm ends at step 2, there are an additiona l INF I comparisons

and INF I additions to be performed in order to assign values to the var iables

x1, I e NF .



Step 3: this requires a number of at most c = o($log2
$) operations

(sorting at most 6 elements , p lus assigning values to the corresponding

variables). This number is independent of n.

Since IN F.t n at the start, and N
F 

is reduced by at least .~~ at each

iteration, at the end of the procedure fN~ <- ~~~ n.
2

Let w1 denote the time needed to perform a division, and w2 the time

needed for a comparison, addition or change of pointers. Then if W(n)

denotes the maximum time needed to solve a problem in n variables by

Procedure I , we have
/~

W(n) <
— 1 2t. ~ 2 t, t

< win + w2[5n(1 + + ... + + 8t + c]

< (w~ + 1~~2
)it + 8w2log2

n + w2c.

Hence W(n) = 0(n).

A similar analysis of the expected time T(n) needed to solve a problem

in n variables by Procedure 1, with X chosen randomly in step 1, shows that

T(n) is given by an expression of the same form as the above bound for W(n),

with the coefficient of n slightly smaller than w1 + lOw 2 . Computational

experience with Procedure I is to be found in section 6, where we compare

its performance to that of two sorting routines from the literature. The

comparison is unequivocally favorable to Procedure 1.

4. A Heuristic Whose Accuracy Improves

Exponentially With Problem Size

Once the appr oximate core pr oblem (IF ) has been def ined , we use a

heuristic (Procedure 2 below) to find a “good” integer solution to (I?).
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Step 3: this requires a number of at most c = O(elog2e) operations

(sorting at most B elements, plus assigning values to the corresponding

variables). This number is independent of n.

Since INF I = n at the start, and NF 
is reduced by at least at each

iteration, at the end of the procedure (NFl <-~~~ 11.

Let w1 
denote the time needed to perform a division, and w2 the time

needed for a comparison, addition or change of pointers. Then if W ( n )

denotes the maximum time needed to solve a problem in n variables by

Procedure 1, we have

W(n) < wjn + w 2L5n(l +~~~
+ ...+_

~
)+ 8 t + 2 * n + c J

< win + w2[Sn(
’
l + + •..  + —b) + 8t + c~

< (w~ + 10w2)n + 8w2log2
n + w2

c.

Hence W(n) 0(n).

A similar analysis of the expected time T(n) needed to solve a problem

in n variables by Procedure 1, with X chosen randomly in step 1, shows that

T(n)  is given by an expression of the same form as the above bound for W(n) ,

wi th the coefficient of n sl i ghtl y smaller than w
1 

+ low2 .  Computational

experience with Procedure 1 is to be found in section 6, where we compare

It s  performance to t h a t  of two sor t ing routines from the literature. The

comparison is unequivocally favorable to Procedure 1.

4. A Heuristic Whose Accuracy Improves

).I!.!)~ .L1.I.IY ~~~ I .II .‘~~‘ J ’ ~Ji.E!!

Once the approximate core problem (IP) has been defined , we use a

heuristic (Procedure 2 below) to fin d  a “good” integer solution to (I?).

~

—_ ._

~ 

. - ._..- ~~~~~._. _ . . ~~~~~~~~. _~~~~_ _ - _ . -~_ .- _ --“



—12-

If I~ was exhausted, stop; otherwise set I ‘— i+ I and go to the Iterative Step.

The reason for not setting to I in the first instance those xj  such

that U
i 

- a~ < MIN ,, is that  doing so would produce an integer solution which

does not satisfy the knapsack constraint with equality. But the main rationale

behind this simple-minded heuristic is that, by construction , (I?) has all of

its ratios c1/a1 within a small range around the ratio cf/af; and thus an

integer solution to (IF) which satisfies the knapsack constraint with equality

is likely, to be close to the optimum, and so is the associated solution to (KP).

- 
c1To make this statement more precise , let r = max — , r = mm — , and

id i id a1
= max u~. Also, let v(KP) and v (LKP) be , as before , the value of (an

id 1
optimal solution to) KP and LKP respectively, and let V

11 
be the value of the

solution obtained by the above heuristic. Then, on the one hand,

V
11 

< v(KP) < v(LKP)

but on the other,

V
11 

> v(LKP) - ( - r)u~

since u~ is an upper bound on the sum of coefficients a~ such that x1 1,

= 0, and ~ -r is an upper bound on the change in the objective function

~.‘alue caused by a unit change in that sum. From the last inequality,

v(LKP) V
11 

< (
~ -r)u~

hence if

< .1
—

then v (LKP) -V
11 

< 1, i.e. any integer solution that satisfies the knapsack

constraint with equality, is optimal. 

—-.~~...— 
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Let x be the optimal solution to (LKP) found by Procedure I, let Xf 
be

its fractional component, and let the approximate core problem be

(IP) max jE c~x~ I E ai
xj ~ 

x
1 

0 or 1, iei )
idI

where 
~. —~~.1

a0 = a0 - E a1
i= I

while I = [i1,...,i
~
) is the ordered set obtained at the end of Procedure I,

which contains the index f of the fractional variable. Let MAX = max a1,
idI

MIN = mm a~. partition the ordered set I into
me I

= f11,...,f—iJ and 10 
= 

~~~~~~~~~~~~~~~ ~

and for each I eI~ , define u~ = a1 + afxf.

Since the knapsack inequali ty holds with equality for ~, u1 is the
“unfilled capacity” created by setting X

f 
and x~ to 0.

Procedure 2. Set = 0, 1 ‘- i1 and go to the

Iterative Step. Set = 0 and try to match the “unfilled capacity” u1 with

coefficients ak, ke1 0. To do this, consider in turn each ke1 0 and set

= 1, U
1 

‘- u
1 
_ a

k , if U
1 

— ak, or u
1 
_ a

k MIN

xk = 0, u~ U
1 

, if u
1 

- ak < MIN

If as a result u
1 

= 0 is obtained , complete the solution ~ by setting

= for all components whose value has not yet been assigned , compare

with the best integer solution at hand , and store the better of the two.

If u~ = 0 is not obtained , set = 1 for the first ku 0 such that

U
1 
_ a

k < ~~N; then complete ~ and proceed as above.

~ 

,,
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If I~ was exhausted , stop; otherwise set i ‘- 1+1 and go to the Iterative Step.

The reason for not setting to 1 in the first instance those xj 
such

that u1 ~
°k 

s MIN, is that doing so would produce an integer solution which

does not satisfy the knapsack constraint with equality. But the main rationale

behind this simple-minded heuristic is that, by construction , (IP)  has a l l  of

its ratios c
1
/a
1 
within a small range around the ratio cf/af; and thua an

integer solution to (IP) which satisfies the knapsack constraint with equality

Is likely to be close to the optimum, and so is the associated solution to (KP).

— 
c
i 

c
i

To make this statement more precise, let r = max — , r — miii — , and
~~~ 

a~ ~~~ 
a~

= max u~. Also, let v(KP) and v(LKP) be, as before, the value of (an

optimal solution to) KP and LKP respectively, and let vH 
be the value of the

solution obtained by the above heuristic. Then, on the one hand ,

v
11 < v (KP) < v(LKP)

but on the other,

v
11 ~ 

v(LKP) - (~ -r)u~

since u~ is an upper bound on the sum of coefficients a1 such that x~ 
=

= 0, and ~ -r is an upper bound on the change in the objective function

vt~ tue ~attsod by a nu ll ~h~u~e n th at sinu. I roni the 1 a~ I I nequa lit y

- — rht~

lIt’))C,’ I I
— 1r - r  —

— U
* 

‘

then v(LKP) -v
11 

< 1, i.e., any integer solution that satisfies the knapsack

constraint with equality, is optimal.
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Suppose now that this condition is satisfied , i.e., the difference between

the best and worst ci/aj 
ratio in the approximate core problem is less than

l/u
~~
. We wish to examine the probability that Procedure 2 fails to find an

optimal solution to (IF), i.e., to find an integer solution which “fills the

knapsack”.

Procedure 2 systematically tries to match the coefficients ak, k € 1
~
.

against the values u. = a~ + a
f~f~ 

i € I~. If the coefficients k € are

uniformly distributed over the set of integers between MIN and MAX, and are

independent of each other:, the number of possible distinct values for them

is V0 
= MAX - MIN + 1. Let V1 denote the number of distinct values u~ , i € ‘I’

such that MIN < U. < MAX. (By definition of the Uj, some of them may be

outside this interval.) Thus we have a set of V
1 distinct values u1 from

[MIN, MAX I , and a set oi 
~
1
~ ( (not necessarily distinct) values ak, uniformly

distributed over that same interval. The probability that any particular
V

value ak, k € i~ , does not match any of the V1 distinct values u1 is 1 
-

0
The probability that none of the (IØ~ values ak , ke 10, matches any of the

V ~II O I
1values u1 is then (~I - 

~~

— ) . This is actually an overestimate of the
0

probability of the failure of Procedure 2 to “fill the knapsack,” since it

ignores the possibility of each u1, i ~ I~ , being matched by the sum of several

k e 10, rather than by a single ak.

The remarkable fact about this simple-minded heuristic is that , if the

ci/ai ratios of (IF) are sufficiently close to each other, the probability

that it fails to find an optimal solution to (IF) decreases exponentially

with 1101, which is more or less the same as exponentially with the size of

(IP). Values of the above expression for certain values of its parameters

are given in Table 1. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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v lIol
Table 1. Values of (I - —

~~ 
)V0

~
Jo

=50 V
0 — 500

5 10 15 20 10 30 50 70

5 .59 .35 .2 .12 10 .8’2 .54 .36 .24

10 .32 .11 .03 .01 30 .54 .15 .04 .01

15 .16 .03 .004 .0008 50 .35 .042 .005 .0006

V0 
= 100 v0 — 1,000

10 20 30 25 50 75 100

10 .35 .12 .04 25 .53 .28 .15 .08

15 .20 .03 .007 50 .28 .08 .02 .006

20 .11 .01 .001 75 .14 .02 .003 .0004

Thus, if the above heuristic is applied to a knapsack problem with ,

say, 200 variables , and with coefficients randomly drawn from the interval

[10,1000], the probability of finding an optimal solution is about .9996;

and the larger the problem (for the given coefficient thterval), the higher

this probability.
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A slightly improved version of the heuristic described above makes

use of the following dominance relation. If i,j s N are such that

we say that x
1 
dominates X

j
• If at least one of the two inequalities holds

strictly, we say that x1 strictly dominates xj
. Clearly, if x1 

dominates

then (KP) has an optimal solution in which x~ x~ . As a result , If x1

is set to 0, then X
j 
can also be set to 0. Incorporating this feature in

Procedure 2 improves the quality of the solutions generated , though for

problems with a large coefficient range the effect is not signi ficant. On

the other hand , for problems with many equal c1
/a
i 
ratios , using the dominance

relation in the above fashion may render the heuristic ineffective , by

drastically reducing the number of coefficients ak ,  k u I~ , that one tries to

match against each ~~ I € I~ . This effect can be avoided by fixing variables

only on the basis of strict (rather than simple) dominance.

5. LogicaJ. Tests and Implici t  Enumeration

The sequence of Procedures 1 and 2 produces an integer solution ~

whose quality for randomly generated problems is usually very good . If

the rrnge of the problem coefficients is small ( say ,  below 100), then the

value v
11 

of the integer solution ~~ found by the heuristic of section 4 often

differs by less than I from v(LPK) = cx, in which case of course ~ is optimal.

If v(LPK) - v
11 

> I, we apply slightly modified versions of some earlier pro-

cedures from the literature.

First , we use some simple logical tests (Procedure 3) to £ ix as many of

the out—of—core variables as possible (for the in-core variables, these tests

are applied simultaneously with the heuristic of section 4). The first of

these tests (proposed by Deinbo and Hammer [61) sets permanently xj X j if 

~~~~~- - -“  
_
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the reduced cost of xj 
matches (or exceeds) the above gap ; i.e., if

Ic. - a .(cf
/a

f)t 2: v(LKP )
~~

v
H

(where X
f 
is, as before, the fractional component of ~~

). The second test

(proposed by Ingargiola and Korsh [7]) sets tentatively, for each j in turn,

x
j 

= l_ x ~. then solves the linear program in the remaining variables, and

if the value of the solution equals or exceeds v
11, sets permanently x 1 

=

“Solving” the linear programs involved In this test amounts to the

following. Let I = [11,i2J be the interval defining the approximate core

problem (IP), and for i < i1, denote by (LKP) 0 the linear program

obtained from (LKP) by tentatively setting x
1 

= 1 - x1 = 0. Then we set

x
j 

= V j < f , j ~ 1, and ~ ~ > j2 , and then “fill the knapsack” by

assigning maximal values to the variables X
j
~ f 

~~ ~~ 
I
~2’ taken in order

of increasing j. Whenever this is possible, the resulting solution is

obviously optimal for (LKP) 
~~
. When the knapsack cannot be “filled” inx1

this way, we approximate from above the optimum of (LKP) 
~~ 

by introducing
xi

a fictitious variable x whose weight-coefficient a~ “fills the knapsack”

and whose cost cqefficient satisfies c /a = c
1 

/a~ (where i2 is the2 2
last index of I). Such an overestimate of the optimum of (LKP) 0 clearlyi
preserves the validity of the above described logical test. A perfectly

analogous procedure is used when one tentatively sets x
1 — 

1 - = I for

some I > i2~

The reason for applying the above two tests in this particular order Is

that the second test is more powerful, but also considerably more expensive

computationally, than the first one. It makes therefore sense to apply the

second test to the reduced problem remaining after the first test has been

used to fix an (often significant) number of variables. 
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The power of the second test can be enhanced at a low cost by using

t h e  dominance conc ept defined in section 4. Thus, whenever x
1 

fai ls the~ tes t

and In th erefore (permanentl y )  s et  to I — x
1 , 

we a iso He t to I — a l l  t 1w

variables dominated by x.~ (if l -x 1 
= 0), or all the variab les dominating x~

(if 1 -x
1 

= 1). The reason why this strengthens the procedure is that ,

contrary to intuition , it is possible for a variable x
1 to fail the test ,

and for a variab le X
j 
dominating x

1 or dominated by x1, to pass it.

Procedure 3 consisting of the above tests terminates by introducing all

the variables that were not fixed into the approximate core problem (IF).

If this redefined problem (IP) has more than s variables (s a parameter, say

s = 50), then the heuristic (Procedure 2) is again applied to it , followed

by the logical tests (Procedure 3). Otherwise we apply the final part of the

algorithm , which is Procedure 4.

Procedure 4 is a virtually unchanged version of Zoltners ’ implicit

enumeration procedure [131 , called by its author a direct descent algorithm.

(Another name, coined by Bradley [5] , is fixed order enumeration.) The

variables are ordered according to decreasing c
~

/a1 ratios. At each node

of the search tree, the free variables are scanned in the above order, and

all those that “fit into the knapsack” are set to 1, while the others are

set to 0. As a result, both forward steps and backtracks usually involve

long chains of variables, i.e., many levels of the tree (a sequence of vari-

ables fixed at 0 can only be “freed” by freeing the variable fixed at 1

which preeedes th e sequence). For details , see [131.

The entire algorithm described in the last three sections Is summarized

in the flowchart of Fig. 1.

The algorithm discussed here is high ly efficient on randomly generated

problems (we discuss our computational experience in the next section). An

interesting feature of our approach , however , lies in the fact that it is equally 

- --~~~~- . -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ --~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~

-18—
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Set up (iP)
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7
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too large

7
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enumeration
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w.~ll (If not better) stil ted for prob lems whose c
1
/a

1 
ratios are very close

to ea’~Ii tither. A roeent survey oh thi~ 0— 1 knapsack problem by S • Marte I lo anti

P. Toth [91 has found that such problems tend to be very hard even for the most

efficient implicit enumeration procedures. In particular , these procedures

tend to break down in the case of the value-independent knapsack problem

(i.e., the problem with c~ /a1 = const., Vi eN), mainly because, all the

reduced costs being equal to 0, no variable can be fixed by the logical tests.

As to our algorithm, Procedures 1 and 2 are considerably more efficient

on (randomly generated) value-independent knapsack problems , than on problems

with randomly distributed c~/w~ ratios. Procedure 1 solves (LKP) in one step,

since the first A chosen is critical. Procedure 2, if it “fills the knapsack”,

finds an optimal solution which is also instantly proved optimal, since

V
H 

= v(LPK).

On the other hand, if the heuristic does not “fill the knapsack”, then

applying the logical tests of Procedure 3 is useless, since in view of the 0

reduced costs these tests must fail. However, since all the c./a1 ratios

are equal, the probability of Procedure 2 failing to find an optimal solution

decreases exponentially with the size of (IP). Therefore, rather than applying

Procedures 3 and 4, the thing to do in this case is to increase (say, double)

the size of (IP) and apply again Procedure 2. This can be repeated , if

necessary, but the data of Table 1 show how low the probability is of a need

for repetition.

6. Computational Experience

The algorithm described in the previous sections was coded in

FORTRAN IV. Efficient handling of the subsets of N and easy access to each

of those subsets was accomplished by using a linked list (circular list)

___  _ _ _ _ _ _
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data structure of the kind used by Barr and Ross [4] (and also Zoltners[l3]).

The code was tested on 200 problems with randomly generated objective function

and constraint coefficients , and wi th a
0 E a

~
. ‘l’o examine the behavior

leN
of the algori thm as a function of both problem size (number of variables) and

coefficient range , we generated 20 classes of problems (10 in each c lass ) ,

with 1000, 2500, 5000, 7500 and 10000 variables respectively, and with coef-

ficients randomly drawn from the intervals [10,50], [10,100], [10,1000] and

[10,10000] respectively. The results are summarized in Table 2, each of

whose entries gives the average computing time for 10 problems of the size and

characteristics shown by the respective row and column heading, with the

exception of the last two columns , where each entry gives the maximum and

minimum time , respectively,  used for any one problem with the number of vari-

ables indicated by the row heading, irrespective of the coefficient range.

Times are reported in UNIVAC 1108 milliseconds , and include everything except

the time used to generate the data and print out the results.

The times reported in Table 1 were obtained with a version of the code

which conserves memory space (a scarce commodity on C-MU ’s UNIVAC 1108) by

assigning only 4 integer memory units to each variable x1 
(ci, a~

, plus

forward and backward pointers). In particular , the c
1/a~ ratios are not s tored

in this version, but recalculated each time they are needed. For some smaller

problems (1000 and 5000 variables) we have also tested a version of the code in

which these ratios are calculated and stored when the data are generated , and

retrieved as they are needed. The execution time for Procedure I (which is

between 40-607. of the total t ime ) is then reduced to about 357. of the time

needed in the version reported in Table 2 (see last column of Table 3). 

-.~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ .-.~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table 2. UNIVAC 1108 millisecond s used for solving (1(P)

(each entry is the average time for 10 problems)

Range of Coef-

variables 
ficients 10-50 10-100 10-1000 10-10000 IIAX MIN

1000 149 170 234 250 403 49
2500 256 317 490 507 831 190
5000 561 567 1007 944 1968 407
7500 991 918 1424 1531 2179 604

10000 1153 992 2032 2078 3066 810

/

A striking feature of the results reported in Table 2 is the fact that

the computational effort seems to grow linearly with the number of variab les ,

and logarithmically (less than linear ly) with the range of the problem coef-

ficients. Even more impressive is the small difference between the average and

the maximum times required to solve the 40 problems with 10000 variables shown in

the last row of the tableau. While the average time for the two sets of 10

problems with coefficients in the 10—1000 and in the 10-10000 range respec-

tively, and with 10000 variables each , is about 2 seconds , the maximum time

for any of the 40 problems is about 3 seconds

To assess the efficiency of the various components of our algorithm

separately, we generated some additional data. Table 3 below compares the

time needed by Procedure 1 to solve (LKP), generate a first integer solution

and define the approximate core problem (IF), with the time needed by two

sorting routines just to order the variables according to decreasing cia ,

ratios.

The first of these sorting routines , SORT , is Sing leton ’s improved

version of Quicksort [121. It orders an array of integers according to

decreasing values. The time used by SORT to accomplish this is in fact an 

.~~~~~~~~~~~~~~----~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ., . . .
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underestimate of the time needed for preprocessing the data in order to

solve (LKP) in the traditional way, since SORT handles at each step only one

entry for each leN , whereas in the case of an (LKP) one needs to handle at

least 4 entries for each leN: c1, a ,, c
i
/a1, as well as some indication of

the variable ’s original identity. If the ratios c~/a1 
are calculated at

each comparison, the time needed for sorting is even larger.

The second sorting routine, SORT 6, is the one used by Nauss in his

algorithm for the 0-1 knapsack problem [101, and which performs all the

necessary preprocessing of the data (it calculates and stores the ci
/a
~ 

ratios ,

retrieving them as needed). Both sorting routines were used as originally

coded by their authors.

Since Procedur e 1 accomp lishes more than SORT and is therefo re , st r ic t ly

speaking, only comparable to SORT 6, we also ran the problems with 1000 and

5000 variables respectively,with a version of Procedure 1 (called 1*) which

solves (LKP ) by retrieving the pre-stored c1/a 1 ratios as needed .

Each entry in Table 3 represents the average UNIVAC 1108 time for 10

problems with coefficients randomly drawn from the interval 110 ,100001.

Times are in milliseconds and include everything except the time used to

generate the data and print out the results.

Table 3 speaks for itself. Furthermore , comparing Its data wi th those

~it tat’ 1 •  .‘ ii l i i i w n L hat t i i t .  aIh . , t l I~ I t h u t  dl ~ctu~~ e~d In It l it paper so lvi’s ran domly

generated l arge (h- I knapsack prob l ems In less time than it takes to order th e

variables according to decreasing cj/ai ratios.

The central idea of our approach is to concentrate on the core of the

knapsack problem , approximated by (IP). The effectiveness of this is revealed

drematically by Tabl e 4 , which shows the results of constructing the approximate

core problem (IF) by Procedure 1 and applying to it the (heuristic) Procedure 2,
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Table 3. UNIVAC 1108 mil li second s used for sortin~~Uw var iah1e~

(cal. 1 and 2) versus so1vin~ (LKP) (eo l . 3 and ~~

(each entry is the average time for l() problems )

Code
No .~~~N. 1 2 3 4
of SORT SORT 6 Procedure 1 Proced,ur~ 1*
variables

b O o  148 536 114 37

2500 418 1751 270

5000 878 4163 473 166

7500 1377 6206 859 —

10000 1855 9645 928 —

as measured by the quality of the integer solution found and the number i)f

variab les l e f t .  This table refers  to the same set of 200 randomly generated

problems as Table 2. Again , each en t ry  gives the aver a~~’ for  10 prob lems .

The f i r s t three co lumns refer  to the gap between v(LKP ’i , t~ ie value of the linear

programmi ng optimum , on the one hand , and the value  o O  t h e ’  H r s t  nt eger  :el t ion .

produced by Proced ure I (col.  1) , the value v
11 

of the In teger  solut  i o n  cou5~truct ed

b y the ( h e u r ist i c )  Procedure 2 (col.  2 ) ,  and the va lue of t h e  In t e ger  op t imum

( e o ~~. Vt , on the  other. Co lumn 4 gIves  the r e l a t i v e  error  of the in teger

solutio n found by Procedure 2, expressed as the rat io (v
11 
-v(KP)/v(KP). Column 5

shows t. 1i number of variab les l e f t  in the core after one app iir~ tion of Proce-

dure 1~~ which combines the heuris t ic for “solving” (IP) with some logical, tests

~ ‘r fixing variables of (IP). Finally, column 6 shows the number o~ out-of-core

variables left after Procedure 3 , which uses logical tests based on the rela-

t ivelv narrow gap estab l i shed  b y Procedures 1. and 2 , to fi~ as many variables

as possible.
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C Table 4 shows tha t , given a large ( K P ) ,  so lv i n g (LKP) (without sorting the

variables) and i lIen app l y i n g  t h e  he l lr i st  ic  to t h e  -,~nti l I approximate core problem

(20— ’~o) variable s) gener ated  in ti l l ’ pro (‘ ( ‘ ‘4 , p r l l ( l ( I c t ’ s  1144 1 ntvger ~o l u t I o I I  wi t,l~l n

l0~~~— 10
_ i  

of the opt IIUUI I , and ICCJ1 k I ” It poss I t )  li L I -  i x  over 9~ X. of t i t e

var iables .  The problem whose v a r i a b l e s  have t o  be s o r t s - i l  In order  t o  appl y to

it the imp licit enumeration algorithm of Procedure 4 thus has t yp i ca l ly 30-70

variables.

It is instructiv’~ to observe the effect of prob l em size and coefficient

range on the gaps listed ‘in columns 1-3. Each of the 3 gaps seems to grow linearly
I

with the coefficient range. However , while the first, gap is almost unaffected

by problem size (number of va r i ab le s ) ,  the o ther  two gaps tend to decrease

wi th pri b tern size. For the  t h i r d  gap, i .e., that between v(LPK) and th e value

of the Integer opt imum , t hi s C C  d l i , ’ to t i l e  fact that for a given coeffi d ent’

range, an in~,,rcase in t h e number o h  variable s tends to Increase t h e  number of

c 1/a 1 r a t i os  wh ic h  are chose to 1140 cr111 cal rat to , and thereb y to Increase

the chances for the existence of an integer solution whose value is “close

to v ( L K P ) •  In other words , the combinatorial nature of the prob lem is miti-

gated by an increase in the number of variables . Simi larly, in the case of

the second gap, i.e., the one between v(LKP) and “H’ an increase in the number

f van -tb les (~ 1r  a given c o e f f i c i e n t  range ) tends to reduce the range of the

h o C ;  c
~ 

Ia ~pnnnt’d by h it’ ~i prox ima t i’ (‘or e prob 1 t n t  ( I I ’  ‘I , wh icil in turn tend s

to increase LIII .’ accuracy (41 tile ileurist Ic app i i~ d t o HP).

7 . l lLi rd  Proh1 em~

Th e ease w ith wh it ’ll very large r ando m ly  C~~I ’I1 (’ ra Led  0—I knapsack prob 1 ems

(Including va Ill—Independent prob [ems ) can he solved , ev eTn when thief r cot- f— -

ficients span a s i z ea b l e  range , is somewhat surprising in view of the fact , 

——-- “~~~~~~~~~ -— 
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es ta b l i s h ed b y Karp I M I ,  tha t a pol ynomia l ly  bounded al gorithm for tills

problem can on ly  ox St I I one e x t  for  t h e  gen or CI  1 integer program . Tb I s

underscores the fac  1, a I read y i l l u m i n a t e d  b y the  s i m i l a r  con ti-as between

worst—case theoret ica l  bound s and s t a t i s t i c a l  behav ior  in the case of the

simp lex method , t h a t  o f t e n  there exists little if any correlation between

the worst case behavior and the  expected beh avior of algorithms . In partic-

ular , in the case of t h e 0-I knapsack problem , the wor st case behavior seems

to he determined b y a ce r ta in  special s t r u c t u r e  which , in randomly genera ted

problems , arises with a very low probability.

Since we have found that  those 0-1 knapsack prob lems u s u a l l y considered

hard (and hard they are , fo r  methods based on logica l tests and imp licit

enumeration), i.e., prob l ems whose c
1
/a

1 
ratios are close to each other , are

not hard at all for our approach , we set out to explore what, problems are hard

to hand le  by our method . The best measure ot ’ the degree of difficulty of a

0—1 prob 1cm thaI we cou Id finch was the  re hat ’ i vt  s i z e  of t h e gap between th e

value of the l inear programming o p t i m u m  and t h a t  of t i l e  i n t e g e r  optimum , more

precisely the ratio between this gap , v( I~KP) -v(KP), and the average size of

the reduced costs Ic . — a .X I ,  j € N  (here , as before , = c~~/a~ i s  t i C ( ’  c r j t j c a h

cost/weigh t ratio) . I t  we approximate the average re(Iul,- L -d cost l ’v 1/2 time s the

l a r g e s t  reduced cost , then t h i s  m e a s u r e  of the degree ‘i t  d L f l l c I I l t v  become s

v(LKP) - v(KP)
1 *-~~max Ic 1 

-.a
1 X- i~~N

I~i i a h i s a ’k  pi oh hem s I I”fl (i to iI , I\I - a har~’ - ,\ I I  there ’ are i - c l a r i v e ’  lv  few

I n t e ger  so l u t i o n s  W h i c h  s a t is f y  t h e  cons t r a i n t  wi th e qu a l i t y ,  and the  o p t i m u m

is  not among them . We gen era ted  .i set  of 48 prob l ems wi th t h i s  p roper ty ,  and

found that only about 1/4 of them coul’i ho so l ved easily by our algorithm.
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On the o ther hand , we have tried on this set of prob lems a cutting

plane approach , whose eff iciency on randomly genera ted problems comes nowhere

near that of enumerative procedures , not to mention the al gor i thm discussed

In  th u s paper . Not en t i re l y unexpected l y ,  the cutt ing plane approach turned

out  Ut) be re I at  I ye’ I y ~ f ftc lent on tile ‘‘hard’’ pr l ih .  h ems wI Lii large ~

T h e  cu t t i ng  p lanes used were those proposed in  Theorem 2 of [2 1.  These

inequali ties are computationally cheap and in most cases ( s t a t i s t i c a l ly ,  in more

than 3/4 of the cases) are facets of the knapsack poly tope , i.e., of the

convex hull of feasible 0-1 points . When they are not face ts , thei r  coelf i -

cients are known [31 to differ by at mos t I from the correspond ing coefficient

of a facet (with the same righ t hand side).

The algorithm we used is as follows. First , Procedures 1, 2 and 3 of

the previous sections are used to solve (LKP), f ind a good in teger  so lu t ion

to (IP ) , and f i x  as many var iables  of (KP) as possib le. If the prob lem in

the remaining variables Is sufficientl y small , we solve it by Procedure 4

above . Otherwise , we genera te an inequa lit y wh ich c u t s  of f  x , the linear

programi ng optimum, and solve the 2-constraint linear program (with the

knapsack-inequality and the cut). The knapsack inequality is t ; len replaced

by a combination of the two cons t ra in t s  (wi th  the  opt ima l dua l m u l t i p l iers

~‘sed as weights) ,  which produces a new knapsack problem , w i t h  a smaller va l ue

of the linear program and hence with a s m a l l e r  gap.  We then app ly Procedures 2

and 3 to this new knapsack problem , in which the smaller gap often leads to

the f ixing of new variables. The above sequence could be Iterated for as long

as a decrease in the gap can be oh ’ained ; but we stopped after the first cut ,

since the purpose of this preliminary experiment was to get a fee l for the

merits of the cutting plane approach in general.
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We have tested this approach on 48 problems of the type described above,

with 1000 variables each , and with coefficients in the range 1-100. Seven of

the 48 problems were solved (op t imal i ty  was proved ) by Procedures 1 and 2.

Another 5 problems were reduced by I’rocedures 1-2-3 to a sufficiently small

size to be easily solved by Procedure 4. This makes for a total of 12 problems

solved by the algorithm of sections 3-5. Of the remaining 36 problems , whose

average t,. was .076, 18 were solved by the cut (optimality was established due

to the tighter  bound obtained by solving the 2-constraint linear program),

while 7 were reduced to a size which made it easy to solve them by Procedure 4.

In all these 25 problems the optimal solution was generated by the heuristic

(Procedure 2), and the role of the cut was to make it possible to prove

optimality. For the remaining 11 problems , the cut had practically no effect.
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We describe an algorithm for the 0-1 knapsack problem (KP),.~which relies

• mainly  on th ree  new Ideas . The f i rs t  one Is to  focus  on fi -t ~c the
core of the  problem , namely  a knapsack pr ob l em equ ivn  l e n t  I i  (KI ’~ , d e l  I m d
on a p a r t i c u l a r  subset  of the v a r i a b l e s .  The’ size of tiiI ~. core Is u sua lly
a smal l  f r a c t i o n  of the f u l l  p rob lem s ize , and d. es not se~~ ’i~ to i n c r ea s e
w i t h  the l a t t e r .  While the core cannot he i d e n t i f i e d  w i t h o u t  s o l v i n g  ( K P ~
a s a t i s f a c t o r y  a p p r o x i m a t i o n  can be foun d by s o l v i n g  ( I , K I ’l , t h e as soc i a t e d  
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E tnen r program . The second new ing red t t .n t  1~; 
~ blnary-Rearch-type 1p rocedure for solving (LKP) which , un l ike  ea r l ie r  me thod s , does not

require any ordering of the variables .  l.j)~ computat iona l e f f o r t  Involved
• in this procedure is linear in the nuniber f art~ble s . ) Fi n a l l y ,  the

third new feature is a simp le-mi nded heur is t ic  whose accuracy under
certain conditions grow s exponentially with the problem size.

• Compu t ationa l experience with an a lgor i thm based on the above ideas ,
on 200 randomly generated test problems wi th  1,000- 10,000 variables
and with coeff ic ients  ranging from between 10-100 to be between
10-10 ,000 , indicates that  for such problems the computational effort
grows linearly with the number of variables and logarithmically with
the range of coefficients. Total time for the 200 problems was 160
UNIVAC 1108 seconds , and the maximum time for any single prob lem was
3 seconds.
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