
— 

N .AO AOfl 812 JOttIS HOPICINS W h y  LALMEL Pt APPLICO PHYSICS La F/S $O/ijAN ALSORITI* FOR A HYPERSOUC FREE SOLWCARY PROBLEM. (U)
MAT 77 .i C ROSIRS N00017e72.C_44O1UNCLASSIFIED AFVJSJ/TS4IIS pa_

1Fflril _ 
_

B PUN_ I, _ _
_ _

__  

_  
_ N’- --

I 
_ 

-~n-~ 
--I

~~~~~ 

_ 

E N D
DATE_____________________________________________________________ FILsED

II I r . ~. F

- - - 
p



APL/JHU I
TG 1309
MAY 1977
Copf.No. 33 1

Technical Memorandum

AN ALGORITHM FOR
A HYPERBOLIC FREE
BOUNDARY PROBLEM

- J. C. W. ROGERS

>1~~~

0-

THE JOHNS HOPK$NS UNIVERSITY . APPLIED PHYSICS LABORATORY

*pcvOvsd o, public vsIs.mp; dictvlbutlcn u~l$mI~~d



Unclassified PLEASE FOLD BACK IF NOT NEEDED
FOR BIBLIOGRAPHIC PUR POSESSECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER 2 GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER

APL/J Bu/~G.13I~
’l 

.. — I _________________________________

L TYPE OF R &PE4 TITLE (and Subriti.) _________________

Technical 

AIOD COVERED

i
~~~~~~

o
~~~~~~~~~~~~~~~~~~~~~~E .  ~~~~~-1 ~~~~~~~~~ • PEAFOAMING ORG. REPORT NUMBER

_______ 8. CONTRACT OR GRANT UMBER(s)7 AUTHOR(s) ______

tZ j T
~~~~~~~~~ gers ~~~~~~~~~ t7~ 72.C.44~~~/ ~/

9. PERFORMING ORGANIZATION NAME & ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
-
. 

- AREA St WORK UNIT NUMBERS
The Johns Hopkins University Applied Physics Laboratory
Johns Hopkins Road 

T~~~~Zi~5OLaurel , MD 20810

12. REPO
Off ice of Naval Research, Fluid Dynamics Branch ~~~ // May~~~~~~~~ ~~~~

ll. CONTROLLING OFFICE NAME at ADDRESS 
_________

Department of the Na~~ 

~15 SECURITY CLASS. (of this ~~ ort)
O (3. NUMBER OF PAGES

Arlington, VA 22217
________________________________________________________________________ 

92
14. MONITORING AGENCY NAME & ADDRESS

)nclessified
Johns Hopkins Road ‘2.. 

________________________________

Naval Plant Representative Office

15.. DECLASSI FICATION/DOWNGRADINGLaurel, MD 20810
-SCHEDULE

16. DISTRIBUTION STATEMENT (of this R~~ort)

Approved for public release; distribution unlimited .

4

17. DISTRIBUTION STATEMENT (of lAs abstract .nr.,,d in 8lcck 20.11 dlff.ront f rom Riport)

I
Is SUPPLEMENTARY NOTES

IS, KEY WORDS ( Continu. on r.vac sl* if n essury and I~~ntify by block numbsr(

Error estimates
Free boundaries
Burgers ’ equation
Shock waves ~ ¶~__~

.
~
-

20. ASST RACT (CansI~~~o.~ i~rstj aids ilnacawy and i*nttfy by block numb.r~
—-

~

7 In this r~port which is the first part of a more comprehensive work, -w.-p.s.-~--mid-.-gi~e a solu-
tion algoritha ’for/a hyperbolic conservation law. Tb. algorithm is of an embedding type in that the

‘ 
solution is bu~1t up from Green ’s functions for simple processes tak ing place without reference to
boundaries, and the locations of shocks are not explicitly followed. There is a discussion of bound-
ary conditions and treatment of the Burgers and Korteweg—de Vries equations. Cursory mention is made
of th. extension to systems . Appropri ate function space, for solutions ar. introduced. The effects
of perturbation . in the init ial conditions and of the velocity of propagation of disturbances are
analyssd . For a .onotonic velocity profile , in the one—dimensional case without boundaries , a con-
vergence proof and error estimate are given

Unclassified 4,8D D ~~ 1 473 
~ 3’ ./ c�~5’t~ SECURITY CLASSIFICATION OF THIS PAGEL..~ - .



(

APL/JHU
TG 1309
MAY 1977

Technical Memorandum

AN ALGORITHM FOR
A HYPERBOLIC FR~BOUNDARY PROBLEM
J. C. W. ROGERS

i i
I :

THE JOHNS HOPKINS UNIVER8~TY S APPUED PHYSICS LABORATORY
Johns Hopkins Road, Laur•I, Maryland 20810

I - 
~~ .rMim,isn ~~r.OsuS N000t7.12.C4401 ,~‘Nh ma ~~~~rbn5~tSI th. Many

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



THE JOHP4S HOPIcIP4S UNt... RSITV

F APPLIED PHYSICS LABORATORY
1*0011 M * k , t & ~.~

ABSTRACT

In this report , which is the first part of a more compre-
hensive work, we pose , and give a solution algorithm for, a hyper-
bolic conservation law. The algorithm is of an embedding type , in
that the solution is built up from Green’s functions for simple
processes taking place without reference to boundaries , and the
locations of shocks are not explicitly followed. There is a dis-
cussion of boundary conditions and treatment of the Burgers and
Korteweg-de Vries equations. Cursory mention is made of the

-j extension to systems. Appropriate function spaces for solutions
are introduced. The effects of perturbations in the initial con-
ditions and of the velocity of propagation of disturbances are
analyzed. For a monotonic velocity profile, in the one—dimensional
case without boundaries, a convergence proof and error estimate
are given.
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FOREWORD

This report and the ones to follow will comprise the bulk
of a work entitled “Algorithms for Hyperbolic and Hydrodynamic
Free Boundary Problems”. I gratefully acknowledge the support
for this work prov ided by the Off ice of Nava l Research under Task
No~~~~~~~~-OO~~~ ,This task, with the title “Ship-Wave Interactions”,
has as its purpose the computation, in an efficient and reliable
manner, of the phenomena attendant to the interaction of a rigid
body with water possessing a free surface. It is also a pleasure
for me to indicate the time I spent at the Applied Mathematics
Research Institute, sponsored by the Office of Naval Research under
Contract No. N00014-75-C-092l with the Applied Institute of Mathe-
niatics, Inc., at Dartmouth College during the stmuners of 1975 and
1976, when parts of this work were done. It is my intention to
have the whole work published separately under one cover once
the various parts have been assembled.

The algorithms presented here are all semi-analytical , in
that time, but not space, is discretized. Solutions to free bound-
ary problems are built up out of solutions to simple linear partial
differential equations. The particular type of quadrature scheme
used to solve these simple equations approximately, and thereby
effect the final nunerical implementation of the algorithms on a
computer, is left to the discretion of the reader. All proofs of
convergence refer to the semi-analytical algorithms presented .

In the work to follow , there will be some unevenness of
rigor and completeness, for which we offer no apology. In the

J first part of the work we present some algorithms for the solution
of free boundary problems. The hyperbolic problems are not moti-
vated so much physically as they are mathematically, to illustrate

J 
the ideas that we bring to bear on the hydrodynamic problem. There
is more physical motivation for the algorithm for hydrodynamic flows,
and we present the motivation with the algorithm. More recondite
fea tures of the algor ithm, however, are trea ted more f ully only at
the end of this work.

In analyzing the well-posing of the hydrodynamic initial

J value problem in the sense of its unique and stable solvability by
the computational procedure to be presented , we will need to clari-
fy the various types of instabilities which can occur. Among the
flows which can evolve in this way from the initial conditions are
those which may conventionally be regarded as “turbulent”. We will
show the relationship between stability, energy conservation , and
turbulence. Accordingly , a considerable portion of the work will
contribute toward the outline of a rational theory of inviscid in-
compressible flow , especially the free boundary problem, and the
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development of a preliminary theory of hydrodynamic turbulence.
The essential physical ideas for achieving these objectives will
be clarified , and the outstanding mathematical questions will be
put into sharper focus.

I plan to follow this with a later work, which will contain
a complete proof of the convergence of the algorithms presented here,
the development of a full theory of turbulence for inviscid incom-
pressibl e flows , and the proof of regularity results for general
turbulent and non-turbulent flows.
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CHAPTER ONE

A HYPERBOLIC FREE BOUNDARY PROBLEM

1. Statement of the Problem and Presentation of a Solution Algorithm

We start by considering the initial value problem

u
~~

+v(u)u
~~~~

O , -~~ < x < , t > 0 , (l.l.la)

I u(x,O) = ~~(x) , -~~~ < x < 
~ (1 1 ib)

I s is a model hyperbolic initial value problem, and we will presenta semi-analytical algorithm for its solution. The proof of conver-
gence of the algorithm , for important classes of functions v(.), willbe presented in Chapter Two.

As is well known, there is generally no guarantee that problem

3 (1.1.1) possesses a unique solution, globally in time. Even if aunique solution exists for an initial time interval , there will be atendency for internal discontinuities (“shocks”) to develop. Afterthe appearance of a “shock”, equation (1.1.1) can be solved only in aI generalized sense, and must be supplemented by various physically moti-vated “shock conditions” which are prescribed at each such disconti-nuity. Thus, the problem becomes a free boundary problem, since theI equation (1.1.1) will at best possess classical solutions only through-out domains which do not contain shocks, but which have shocks asboundaries , and the locations of the shocks must be determined as

I part of the solution of the problem.

Since problem (1.1.1) is not in itself physically motivated,we will artificially provide an underlying “physical” principle by re-I casting it in “conserva tion” form :

I U~ + (FI uJ ) — 0 ,

I F(u) — j u  v(~)d~ .

I Asstm~e that J’~ uodx and L 4(x)dx are defined, and tha t u(x)

I 
-9-
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as lx i ~~. We get

j’
~ 

u(x,t)dx = L u0(x)dx . (1.1.3)

In developing an algorithm to solve (1.1.1), we will take care to
conserve U1 in (1.1.3). Moreover , we shall supplement the p-oblem
by the condition that

I
1J2(t) � 0 , (l.l.4a)

where

U2 n
,~
’ u2(x,t)dx . (l.l.4b)

(It should be pointed out that the conditions (1.1.3) and
(1.1.4) serve only as mathematical motivation, so that we may illus-
trate, for the simple problem (1.1.1), ideas which will be developed
more fully later. In fact, we will see in a later report that an
equation like (l.l.la) , with v(u) u, arises in a very simple flow
problem, but that the equation by itself is in the most general case
devoid of meaning unless it is coupled to an equation 

~t 
+ (pu) = 0.

In this case, the underlying physics of the problem shows that the
correct generalized solution of (l.l.la) depends critically on the
function p(x ,O) po(x).)

The algorithm we use to solve (1.1.1), supplemented by (1.1.3)
and (1,1.4), is of an “embedding” type , in which the shocks are not
followed explicitly. Such a method is very efficient to treat cases
where there are many shocks , or when there are several independent
“space” var iables x , as we shall see in the following. The technique
has something in coemon with other embedding techniques like the
method of artificial viscosity (Reference 11), except that here no
extraneous parameter is introduced , beyund the time step ¶ in terms
of which the evolutionary problem is solved. The method we use is
built on the basic conservation “law” (1.1.3), which we regard as
more fundamental than the differential equation (l.l.la). Similar
embedding methods based on conserv ation laws have been successf ully
used for other free boundary problems (References 2 and 3).

Before proceeding with an algorithm to solve (1.1.1), let
us consider a slightly generalized version of the problem, where the
solution of

u + (F(u)) — 0, xo < x < Xt ,  t > 0, (l.1.5a)t x

—10—
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u(x,0) u~,(x) , X~ � X � X1 , ( 1.l .5b)

supp lemented by boundary conditions at x0 and x1, is sought. (It
turns out that some natural boundary conditions for the problem are

— expressed simp ly in terms of a distribution function which appears
in the execution of the solution algorithm. Therefore, an explicit
statement of the boundary conditions is deferred until we describe
the solution algorithm in detail , below.) We thus have an initial-
boundary value problem.

Generalizations of equations (1.1.3) and (1.1.4) are

d b

~~ J u(x ,t )dx = -F(u(b,t)) + F(u(a,t)), x~ � a < b ~

(1.1.6)
and

I t~~(x,t)dx � -~~(u(b ,t)) + F2(u(a ,t)), ,~ �a<b

~ I where

F2( u) = 2 ~ v(~ )d~ . (1.1.7b)

Before we proceed wi th a precise description of our solution
algorithm for the initial and boundary value problem associated with
(1.1.5), let us give a schematic description. To facilitate this
description, we shall assume that u(x ,t) � 0 for all x E [x0,x1]. We
may assume we have a graph of the function u(.,t), for t fixed , as
shown in Figure 1.

I
• I

I 
XO a

I Figure 1. Schematic Solution u (., t), for t Fixed.

I —11—
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Since in our conservation law (1.1.6) changes in the quan-
b

tity ,
~ 

u(x,t)dx are brought about through terms which are functions

only of u at the end points a and b , it is suggestive for us to think

of u dx as the total amount of some “fluid” which is conserved ,

except for the amount “flowing” across the vertical lines x a and
x = b. In order to avoid confusion of notation , we think of the
plane in Figure 1 as the xe-, instead of xu-, plane. The quantity

rb u(x,t)dx is just the area in the xa-plane contained between the I
curves a = 0 and a = u(x,t) and the vertical lines = a and x = b.
Thus , we may think of the flow as area-preserving, except for amounts
crossing x = a and x = b. One of the princ ipal fe tures of our al- -

gorithm is that this area is conserved , except for such flow across
the boundary.

In addition , we may think of the “fluid” as comprised of
“streams”, each moving along at constant a. The portion of fluid
contained betveen a and a + dcy and the vertical lines x = a and
x = b has the “area”

da ~
.b f(x ,t,a)dx

where

1 O s a ~~~u(x , t)
f ( x ,t,o’) . (1.1.8)

0 a > u(x,t)

The whole fluid area between x = a and x = b is I
f (x ,t ,a)dx da . I

At each point I
u(x ,t) — j ’ f(x ,t,a)da . (1.1.9)

0 1
Hence the fluid flow may be envisaged as the flow of an in-

finite number of “streams”, labeled by the parameter a, each with
its own area. The area of each stream wilt change due to the f low

-12- 1I
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of fluid in the stream across the spatial boundaries, and also
due to transfer of fluid from one stream to another. The flow
of fluid in a stream across the spatial boundaries will be
governed by the boundary conditions. The transfer of fluid from
one stream to another will take place in such a way that the total
area in the streams is conserved. The rules governing the manner

- in which fluid is transferred from one stream to another inter-} nally will constitute an expression of the shock conditions which
are imposed. The various streams are indicated in Figure 1 by
the horizontal lines.

To implement our solution algorithm we first convect each
stream independently according to the linear equation

I
+ v(a) f ( x,t,a) = 0 (1.1.10)

for a small time interval , called a time step; Equation (1.1.10)

I can be solved exactly. We sweep through the streams in the order
of increasing a.

I When v(a) > 0 (v(~) < 0) the stream between ~ and a + do’
enters (exits) the flow domain at x0 and exits (enters) at x1. As
is well known, for equations like (1.1.10) we should thus specify

I 
f(x ,t,o’) at x0 when v(o’) > 0 and at x1 when v(cr ) < 0. This informa-
tion will be provided by the boundary conditions. When the range
of values of u in the problem is such that we will have v(u) > 0
in one region and v(u) < 0 in another, we may generally expect that

I it will be necessary to prescribe some sort of boundary data at
both x,~ and x1, but in such a way as not to overdetermine the prob-
lem.

I Figure 2 shows schematically the domain in the xo’-plane
occupied by the fluid in Figure 1 after convection. The arrows

I 
point to the right for v(o’) > 0, to the left for v(o’) < 0.

If , after convection, the stream corresponding to a a0
has flowed into a spatial domain which has not been filled with
all the streams for o’ < o’0, we let the “fluid” in the stream o’ —

• ao “fall” or “cascade” down to occupy the smallest unfilled values
of o’ < o’0 a t each point in the domain, in such a way that the
total area of the streams remains unchanged. The result is shownI in Figure 3.

A more mathematical description of our method for obtain-

I ing an approximate solution to the problem (1.1.5), subject to

I 
-13-
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I
u,a

I ,_ I I

— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

X () a b X 1 X

Figure 2. Streams in Figure 1 after Convection.

I

-i
u,a

• _
a b X 1 X I

Figurs 3. Streams in Figure 2 after Cascading.

—14—
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boundary conditions to be specified , follows. We shall eliminate
the restriction u(x,t) � 0 made in our heuristic description above.
In addition to the initial function u0(x), we require functions
Z~(x0,t) and ~i(x1,t) to be prescribed. These functions will be
used to supply the boundary data required to solve Equation (1.1.10)
uniquely , as described above. We assume that u0(x), ii(x0, t), and
ii(x1 ,t) are bounded from below:

~
(xi,t) � u<, i = 0, 1, t E (0,T]

(1.1.11)

u,,(x) � u<, x E [xo,x1]

for some real number u< Let ‘r > 0 be given We start with

iF (x) uo (x) , xE [x0,x1] , (1.1.12)

and the algorithm will be complete when we specify how to get from
un(x) to un+1(x). Consider the solution of the linear problem

nf~ (x ,t,o’) + v(cr) £ (x ,t,o’) = 0 (1.l.l3a)

-- I subject to the initial condit ion

0

& I fn(x O o’) — I u< �o’  u5(x), x E  [x0, x~]

and the boundary conditions

0

f
n(,

~~~~~

) — 1 u< � o’�~(,q,,t+n1), v(~) > 0, 0 < t , (1 1, l3c)

0 ~ > ~i(x0, t+n’r), v(o’) > 0

j  

0 o ’> u~(x)

I

-15-
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f~ (x1, t ,a) I u< � a � ~(x1, t-fni), v(a) < 0, 0 <  t. (l.l.l3d)

0 a >  ~(x1,t+n’r), v(a) < 0

Finally , let

un
~~(x) = u< +j ’ fn(%T~~)do , x E  [xo , x1]  . (1.1.14)

It is our hope that in some sense u~(x) will approximate the exact
solution u(x,nT) of problem (1.1.5) , supplemented by suitable bound-
ary conditions. We call the parameter ‘r the time step. In the next
chapter we will prove the convergence of U’~(X) to u(x,t), as ~ =

t/n ~ 0, or n ~~ , for important classes of problems of the sort
(1.1.5), and we will obtain a bound on the error involved in approxi-
mating u(x,t) by u~’(x).

Note that the equation (1.1.13) for f
n may be solved explicitly.

The solution is, for 0 � t, J

n 

f~ (x ,0,a) ,  x E Cxo,xj), c r E C0, (1.1.15)

f (x ,t,a) — f (max(xo , x-v(cx)t), max(0 ,t- —
~~~~~

a), x E [ x0, x1 ], o’E C+

fn(min(xi,x_v(o’)t), max(0 ,t- ~~~~~cr),xE[xo.x1]~ ~ E

where

C0 (~Iv(a =0), C
÷
= (orjv( cr)>0) , C_ = (c4v(a)<0) . (1.1.16)

Thus, at no step in the implementation of the algorithm need we take
finite differences. The expression (1.1.15) may be thought of as
giving the solut ion in terms of the initial and boundary data by
means of Green’s function for equation (I . l . 13a ) , and Green ’s func-
tion for this problem is everywhere non-negative . The entire algo-
ritha is executed as a series of integrations of non-negative quan-
tities.

At this point let us state the boundary conditions we are
imposing on the problem (1.1.5). We let the “density” u(x ,t) be

-16-
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related to a “distribution function” f(x,t,a) by

u(x,t) I f ( x ,t ,~ ) u< +~[:f ( x ,t ,a)d~, x E  [x0,x~], t E [O ,T]

(l.l.lla)

0 o’< u <
f(x ,t ,o’) 3 D(u(x t) ;a) 1 u< � a ~ u(x ,t), x E  [x0, x1], t E [O,T1

o a > u(x,t) (l.l.17b)

For any (x,t) € [xo , t1] x [0,T] we can decompose u(x,t) as follows:

u(x,t) = ~(x ,t) + u
+(x ,t) + u ( x ,t) (1.1.18)

where

ii(x,t) — u< +Lx o(a) f(x,t,~r) da

u+(x ,t) = L x+(o’) f(x ,t,a)do’ , (1.1.19)

I u ( x ,t) =
~~:X_ (o’)

• I 
and -

1 v(a)= 0
I
• 0 v(o’)~~~O

I v ( a ) > 0
— , (1.1.20)

0 v(a)�O

I
1 v (o’)<0

I X ( a~-
0 v(~)� 0

I Then the boundary conditions , which appear in the algorithm as
(I.I.13c,d), in terms of the specified functions ~ (xE,,t), ~i(x1 ,t),

1 
-17- 
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when taken in conjunction with the initial conditions and the e~ua-
tion of evolution , amount to specifying ll.m u+(x,t) and u r n  u (x,t).

x 1 x o x tx ~Only in special cases, such as when v(a) > 0 for all a, so that
1, do we find that this corresponds to prescribing u at one

or the other of the end points.

A relation like (1.l.Jla) may be used in conjunction with
the expression (1.1.15) for f°(x ,t,a) to define a function u~(x,t):

I
u~’(x,t) — I (f n(X ,t flT ,.)) . (1.1.21)

¶
Note that, according to (1.1.15),(1.1.13), and (1.1.14),

u’~(x ,nT) = U~ (X) , x E [xo, xil
(1. 1.22)

un(x ,(n+l)~ ) — u~+1 (x) , x E [x0, x~]

With un(x ,t) defined in this manner, we can show that
results similar to (1.1.6) and (1.1.7) ~re obtained , for t-nr
sufficiently small and suitable requirements of regularity on the
initia l function u0(x) and the boundary functions Zi(x~.t). To
show this , we first note, from equation (1.1.15), that

I
S
b f3(x ,t,a~dx — ,~

b 
f
n
(XO~~)dX + v(a) ~~ ffl(a,tI ,a)d tl

(1.1.23)

— v(a) 
Rc

~
t f~ (b,t ’,a)dt ’ .

Integrate this over ~ and use (1.1.21), (1.1.l3b) , and (l.l.2b):

rb uL
~(x ,t+nr)dx_ ,f~

b u’~(x)dx + t F(ur
~(.)) - t F(un(b))

(1.1.24) ]
÷ ,c~trI v(~) Ef

n(a ,t 1 ,a)_f
n(a ,O,~ )_f n(b ,t 1

,a)+f~ (b ,O,a))dor d t ’

I
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Differentiating (1.1.24) with respect to t, we get

,~
“ u

5(x ,t+nr)dx — F(u°(a) ) - F(u
n(b) )

(1. 1.25)

+ v(a) [f
n(a ,t,o’)_fn(a,O,a)_fn(b ,t,a).~~

n(b,O,a)]~~

In order to bound the last expression on the right of
(1.1.25), we will find it convenient to introduce some more nota-
tion. Let

u a max( sup u0(x), sup i(x0,t), sup i(x1,t)\ (1.1.26)
tE(O,T] tE(0,T] /

From equations (1.1.12) - (1.1.14) and (1.1.21), we see that

un(x ,t) ~ U and f~
’(x ,t,a) 0 for a > U . (1.1.27)

Further, define

V sup Iv(a)I . (1.1.28)
aE[u<,U]

Consider a representative contribution to the right hand side of
(1.1.25) :

v(~ ) Cf
n(a t a) - f~(aOa))da

—~~~

• If x o~~~a - v ( a r ) t � x 1, write

1 - -
— f”(a ,O ,~v) — f~ (a—v(cr)t ,0,or) - f

r
~(a ,0,or) (1.1.29)

—19— - -
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by (1.1.15), and note, from (l.l.13b) that the right hand side
of (1.1.29) vTtnishes unless a lies between un(a) and u~(a-v(a)t).Thus , suppose ,ç, + Vt � a � xt - Vt. It follows from (1.1.27)
and (1.1.28) that x~ � a - v(a)t � x~ for all a such that the
difference in (1.1.29) is non-zero. We find

‘~ If
n(a ,t ,o’)~~f

n(a ,O,o’)td~ � (u~ (~~~)-u~’(~~~))
-

~~~ ~1,~~E[a-Vt,a+Vt]

(1.1.30) .1

in this case. If a < x0 + v(a)t, write

f
n
(ata) - fn(a O a) — f n(,k, O~~) - f n(a O a )

(1.1.31) -~~

+ fn(X0,~
_ 

~~ ‘a) - f n(,ç, Qo’) 

i
By the same reasoning that led to (1.1.30), we get, for a < x0+Vt
and a � x1 - Vt,

!~ If
n(a ,t ,o’)_fn(a ,0,alda sup (u

fl
(~~~ )_ u E

~(~~~ ) )  4
—

~~~ ~1,~~E[x0,a+Vt] (1.1.32)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ 

~~~~~~~~ 
((u5 (~~ )-i~i~(x.,,,~ +n.r)) ,

where (un)
+ and are obtained in terms of u~ and ~i through rela-

tions like (1.1.17)—(l.l.20). The remaining contributions to the
right hand side of (1.1.25) are bounded simi larly, and we get

d b• J’ u(x ,t+n’r)dx - F(u (a) ) + F(u (b) ) � Va (t)

(l. l.33a) 1
I?
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where

D
n(t) 

= 

~ ,~~EEmax(xo,a~~~),rnin(x1 ,a+Vt)] 
(u~~~i

_u
~~~s)

+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(u
n
(~~)_u

n
(~2)) 

(l.1 .33b)

+ 

~~~~~~~~ 
(~~~‘~~~~~~~~

) +

+ 
t](

u (X1,T
~
+11.T)_ (L1)o

~)) 
+ 
~€t~~ti

((u )(x1 )-~~ (x~ ,‘fl+n’r))

An integrated version of this equation becomes, on use of
(1.1.22) ,

,b 
un(x)dx - ,~

b
~~(x)dx - Z [F(u~(a)) - F(u

i
(b))]I � V L

0
c~j(T)

(1.1.34)

The right hand side of (1.1.33) will go to zero as 1r 
~ 0f or 0 < t � i, if we have

(i) the u
n 
are continuous in some neighborhoods of a and b;

(ii) the boundary functions 
~~~x0,’) and ~~(x1 , )  are contin-

uous in a neighborhood of nr + t;

(iii) (u”) ( x 0) — l Lin ~
+(~~~~t) and (u5 (x1) — 1IaiZi (x~,t) •

t
~
n1 t4nr

Those regularity properties which relate to the calculated functions
u~ will often follow from an a ~~Lori or a posteriori analysis of
the problem. For example, in the important special case v(a) > 0,
a € EU< UJ, we have (iii) above for n > 0. In the case a = x0 -.
-

~~ and b — Xt +c ~~, for most types of asymptotic conditions of
interest, (i) holds. There will be mention of generalized ver-
sions of (1.1.33) , for different classes of initial and boundary
data, in Chapter Two.

I
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A result similar to (1.1.7) follows if we multip ly (1.1.23) J
by a and integrate over a. Note that

a f
n
(x 0 a)~~ =~~~ [(u

1
~(x))2 _u~~

J 
(1.l.35a)

and

£:a f~ (x,t ,a)da � ~~. [(n
’J(x ,t+nT))2_u~] 

. (1.l.35b)

Thus

j~b 
(u’~(x ,t+n~r))

2dx - 
~~~~~ (u’~(x))2 cix - tF2(u

C
(a)) + ~F2(U

n
(b)) G

(1. l.36a)

where

t n nG 2 j 5 a  v(ct ) ~f (a ,t’,cv) - f (a,O,a)
0 - 

(l.1.36b)

— fn(b t ’ a) + f n(b O )i~~~dt ?

Proceeding as above, we get

Id � 2t(IUI + Iu<I) Va (t) . (1.1.37)

The analogue to (1.1.34) is obtained by using (1.1.22) and
(1.1.37):

r~ (U
n
(X))9 dX - f’ (uo(x ))3~ix - ~ti~ [p~ (u~(a)) - F2 (ut(b))] � H

(l.l.38a)
where

I H I ~ 2.r(IUI + tu<I) V 
n-l 

oi(T) . (l.l.38b) I
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The right hand side of (1.1.37) will be 0(t) as t ~ 0,
under conditions (i) - (iii) given above.

In view of the relations (1.1.33), (1.1.34), (1.1.36),

I (1.1.37), and (1.1.38), we may think of the algorithm (1.1.12)—
(1.1.14) as “conserving” the quantity U~ given in (1.1.3) , and
“diminishing” U2 given in (l.1.4b), when those quantities are

I defined. It is natural, then, since U1 and 1.12 are given as
integrals , to introduce the following set functions for Lebesgue-
measurable se ts ~ in m space:

I
U~ (f;~2) 

a f(x,cv) da dx , (l.1.39a)

I
a 2 ,~~af (x ,a)da dx , (l.l.39b)

I
(Note that these definitions depend on the value of the number u<

I given in (1.1.11).)

We should point out that, if

I (i) u0(x) is continuous for x e [xo,x)]

(ii) ~i(x0,t) is continuous for t E (0,~~] and u r n  ~(x0, t) =I u0(x0), t40

(iii) ~i(x1, t) is continuous for t E (O ,~~] and lim ~i(x1,t) =I u0(x~) ,
(1.1.40)(iv) x + v(u0(x))~ is nondecreasing in

I x 1xo,x~] for O~~~ �

(v) max(v(~i(x0,t)) (~ -t),0] is nonincreasing in t € [0 ,~~]

i f o r t �~~~~~~~,

(vi) min[v(~(x1,t))(~-t),0] is nondecreasing in t E [0,~~]for t � �

then for 0 � ni~ � ~~ the quantity un(x) computed by (1.1.12)-

I (1.1.14) will be the exact solution at time t — n~ of (1.1.5) with
the boundary conditions u+(xo, t) — ~j+(~~ ,t) and u(x ~ ,t)
The quantity u’~(x ,t) given in (1.1.21) viii be the exact solution
at time t if t ~

I -23-
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To satisfy oureelves as to the validity of this assertion ,
we shall outline a proof for the case when t — ~~ and x0 - -

~~~,

x1 — +~~, so that we only need conditions (i) and (iv) above .

The exact solution of (1.1.1) at time t = r is given by

u(x , ’r) = a( x) a su p [ala—uo(x -v (a)T)  � 0). (1.1.41)

To show that u1(x) given by (l.l.l2)-(l.l. l4) is a(x), we will make
use of the following lenina.

Lenina 1.1.1: If a � u
<, 

f° (y1,0,cx) = 0, and f°(y2 ,0,cr) = 1,
then there exists y* E [min(y1 ,y2),max (y1 ,y2)] such that a = uo(y*).
Also , ~~~~ y1.

Proof: The result follows from (1.1.12), (l.l.l3b), and the
continuity of u0, since a > u0(y1) and a � u0(y2).

To show that u’(x) is a(x) , we show first that f°(x-v(a)i,O,a)
— 1 for u< � a < a(x). We do this by contradiction. Suppose there
is a0, u< � a~ < 3(x), with f°(x-v(a0)’r ,0,a0) = 0. Then a0>
u0(x-v(a0)r). By the definition of a(x), equation (1.1.41), there is
a~ , a0 <3 j  < a(x) , with a

~ 
- u0(x-v(a1)T) � 0. We have the follow-

ing relations ianediately:

f°(x-v(a0)T,O,a1) = 0 , .

(1.1.42)

— f°(x_v(a,)Ar ,O,ao) — 1 .

We cannot have v(3~ v(a3) without violating the continuity of U(~ .
Consider the case v(a0) > v(a1). Then by the lemma and (l.i.42)~~y~such that

x-v(ao)’r < y~~� x-v(a1)r (1.1.43)

and

u0(y~) — 
~~i 

. (1.1.44)

-24—
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Since u0(y~) — a1,  f° (y~ ,0,a1) = 1 and

( f°(y~ ,0,cr0) = 1 . (1.1.45)

By the lenina, (1.1.42), and (1.1.45), ~ y with

x - v(a0)T < y~ � y~ (1.1.46)

I and
*Uo(Yo ) . (1.1.47)

I 
By (1.1.43), (1.1.44), (1.1.46), and (1.1.47),

y + v(~~~(y~ ))1 > x � y~’~ +

which , with y � y~~, violates condition (iv) of (1.1.40). The

I 
case v(a0) < v(a1) is treated similarly. Thus, f°(x-v(a)’r ,O,a) = 1
for u< � a < a(x). Finally , suppose f°(x-v(a)’r ,O,a) = I for some
a > a(x). Then u< � a � uo(x-v(a)r) and by the definition of

a � a(x) , givin~ a contradiction. Putting these results to-

I gether, we see that u (x) a(x) follows from (1.1.14).

One may think of (l.l.l3a) as a “Boltzmann equation”,

I because of the analogy to the familiar transport equation of
kinetic theory. The equation we consider is especially simp le,
and does not contain the nonlinear “collision terms” which gener-

I 
ally appear in the Boltzmann equation. To say that our algorithm
thus represents the motion of a “collisionless” fluid , however,
would be inaccurate. Indeed , the transformation which takes place
at each time step~ when the “distribution function” f

r
~(x ,r ,a) is

I converted into f~11(x,0,a) by the processes of equations (1.1.14)and (1.l.l3b) , represents co llisions of a rather extreme form.
If we are to regard the transport equation (l.l.l3a) as express-

— a ing the flow of independent “streams” at different “density levels”
J a, we see that at each time step, by some undefined internal

“interaction” mechanism , the various streams interact in such a

I 
way that they are forced into the lowes t “unfilled” density levels
(above u<). Accordingly , the algorithm (l.l.l2)-(1.l.l4) gives
the evolution of the system in terms of a sequence of propagations
of non-interacting streams , and intense interactions of these

I streams .

I -25-
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The fact that equation (1.1.5) for the density u may be
related to an underlying transport equation for the distribution
function f is not surprising, if one recalls that the equations
of fluid mechanics may in some sense be derived from the Boltzmann
equation (Reference 5).

2. Higher-Dimensional CaseS

A higher-dimensional analogue of (1.1.5) is

u~ + V (F( u)) 0, x E ~~~, t > 0, (l.2.la)

u(x,0) = u0(x), x E  ~ , (1.2 .lb)

with boundary conditions to be specified. By ~D we mean the closure
of ~~~. Here F(u) is a vector. Its derivative with respec t to u is
another vector:

v(u) = F(u) . (1.2.2)

As to boundary conditions , let functions i~(x,t) be givenfor x ~ ~ D and t E (0,T], with

ii(x,t) � u<, x E ~~~~ , t E (0,T]

(1.2.3)

x E~~

If we write

u(x,t) a I f ( x ,t ,~ ) u< +~~:
f(x ,t,a)da , X E  ~~~, tE [0,T], (1.2.4)

0 a < u<
f (x ,t,a)ED(u(x,t);cy) a 1 u< ~ a � u(x ,t), xE~~, tE[0,T], (1.2.5)

0 a ~ u(x,t)

-26—
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and define

C(x ,t) a [aL x-v(a)~ E ~ for all ~ E 
[o ,tfl, x E ~

(1.2.6)

C’(x,t) (c4a ~ C(x ,t)}, x E ~

we can decompose u(x,t) as

u(x,t) ~1(x , t ,~~) + u’(x ,t ,~ ) (1.2.7)

where

~1(x , t ,~~) = u< +Lx (x ,
~
,a) f (x ,t ,a)da

(1.2.8)

u’(x ,t ,~ ) = 
~~: x’(x ,~~,a) f(x ,t ,a)da

and

1 1
=

I 
0 a ~ C(x ,~) (1.2.9)

x’(x,~ ,a) — 1 - X(x ,~~,a)

I For t € (0 ,T~, x E ~~~~ , and a E C’(x ,~ ) for all ~ > 0, we set

I f(x,t,a) — D(u(x,t);a) . (1.2.10)

I The boundary conditions (1.2.10), when combined with (1.2.1), amount
to specifying

I inf ur n u’(y,t,~ ) ,  x E ~~~, t E (0,T1 . (1.2.11)

~>Q yE~
)-x

I To solve (l.2.l) subject to the boundary conditions (1.2.11) ,

i 
we set

1 -27-
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y

u°(x) = u0(x), x E ~ , (1.2.12)

and show how to get from u~(x) to u~~
1
(X). Given u~(x), construc t

f
n(x O a) — D( un(X);a), x E  ~ (l.2.l 3a)

and solve

+ v(a) V f”(x ,t,a) = 0 (l.2.l3b) I
subject to the initial condition (l.2.13a) and the boundary condi-
t ion

f
n
(x t a )  = f(x,t+n’r,a), x E ~~~~ , t > 0, a E C’(x ,~) for all ~ > 0,

(1.2.l3c)

where f(x,t+n’r,a) is given by (1.2.10). Finally, set

U 

u~~~ (x) — 1f0(x ,T ,•), x E ~ . (1.2.14)

The problem (1.2 .13) for f may be solved explicitly :

fn(x t a) = f’
~(x-v(a)[t-max(0,inf(~ IaE C(x,t-~))fl, I

U 
- (1.2.15)U 

max (0,inf(~ IaE C(x,
t_
~)}),a) ,

x E ~~~, t � 0. As in the one-dimensional case, the exact solution
(1.2.15) may be approximated numerically by means of quadratures
involving only non-negative quantities.

3. Burgers and Korteweg-de Vrias Equations I
The method described may be used to solve more general

equations , and we indicate how one would proceed with some repre-
senta tive examples. The extension to atill other types of equa-
tions will then be obvious.

~ I
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Let us consider “Burgers ’ equation” (Reference 4)

+ V . (F(u) ) = v A u, x E ~~~, t > 0 (l.3.la)

with

u(x,0) — uo(x) , x E ~ , (l.3.lb)

and

u(x ,t) = ~i(x ,t), x E  
~~~j, t € (0 ,T] . (l.3.lc)

(A more physically motivated generalization of Burgets ’ equation
to a system of equations for a higher-dimension~*l flow, with theflow driven by the requirements of conservati on of mass and ~omen-turn, will be treated in a later report on this work.)

- ‘

~ 

As above, let u< satisfy

x E~~
(1.3.2)

u< 
� ~(x ,t), x € ~~~~ , t E (0,T]

U 

iF(x) is given by (1.2.12). Let fnl(x ,t,a) satisfy the equation (v
given by (1.2.2))

+ v(a) . V f Z~ — v A f”, x € 
~~~, t > 0 (1.3.3*)

with fn( x 0 ,a) given by (1.2.13.) and the boundary cond ition

f~(x ,t,a) — D(ii(x,ni+t) ;a), x E ~~~~ , t > 0. (l.3.3b)

D(u;a) is given by (1.2.5) . U
n
~~ (X) is given in terms of f”(x ,r ,a)

by (1.2.14) .

Note that we may combine (1.2.14) with the solution of
equation (1.3.3.) subject to the initial condition (1.2.13*) and
boundary condition (l.3.3b) approximately as follows :

—29-
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u (x) —~ h(x ,r ) (1.3.4)

where

~~~~A h , x E~~D, t > 0 ,

h(x ,0) = Ig(x ,T ,) ,  x E  ~ , (1.3.5)

h(x ,t) — ~(x ,nr+t), x E ~~~~ , t > 0 , I
and 

A

g~~+ v(a)~~~V g = 0 , x E ~~ , t Y O ,

g(x ,0,a) — fn( 0 )  , (1.3.6)

!t(x ,t ,a) = D(~i(x ,nT+t);a), xE ~~~, a E C ’ (x ,~ ) for all ~ > 0, t > 0

The device of approximately solving the initial-boundary value
problem for f0 and integrating to get un44 by solving (1.3.6) and
(1.3.5) is analogous to the method of “fractional time steps”. If
~ is all space, this method becomes exact, because of the coninuta-
tivity of the operators vA and v(a). V . (Solution of either
initial value problem (1.3.6) or (1.3.5) is then equivalent to
multiplying the spatial Fourier transform of the dependent func-
tion by an algebraic factor.) Thus, if we replace , in the algo-
rithm (1.2.12), (1.3.3.), (l.2.13a), (l.3.3b), and (1.2.14), equa—
tionei (1.3.3a), (l.3.3b), and (1.2.14) by (1.3.6), (1.3.5), and
(1.3.4), 80 that the modified algorithm is described by (1.2.12),
(l.2.13a), (1.3.6), (1.3.5), and (1.3.4), the solution of (1.3.1)
is seen to be effected through a sequence of convections of non-
interacting streams, in terac tions of these streams , and diffusions.
This is similar to the description given at the end of section 1.1
of the algorithm (1.l.l2)-(l.1.14), except that now a diffusive
process is interspersed with the others.

Consider the “Korteweg-de Vries equation” (Reference 1)

u
~ 

+ V • (F(u) ) + ~ ~ 
— 0, ~ > 0, x E ~~, t > 0 , (1.3.la)

with 
- 

-

u(x ,O) — li ~(X) , ~-~~x E ~ , (1.3.7b) fl

1 ? - :A
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and

u(x ,t) - 
~ (x , t ),  x E 

~~~~~
, t E (O ,~ ] , (l .3.7c)

u ( x ,t) iri
~(X ,~), x E 

~~~ t E (0,~fl , (l.3 .7d)
where

a [~ E~~ jfl(~) 
~~
> 0) (1.3.8)and n(~) ía the unit Outward normal to 

~~ ~~Proceeding as above , we will genera~~ functjo~5 u~ (x) , x E
n � 0, which are intended to approximate U(X,flT) We Start with

given by (1.2.12). With u~ calculated we find a n
~~ber u~ Such that

U~~ ~~U~(x), x E~~

(1.3.9)u 
~ ~(x,t), x E 

~~~, t E (O,rJ
We IOlv~ the equa~j~~

n 
a+ v(a) . 

~ f + B A E,~ — 0 
(1.3.10.)

and
With initiai Condition (1.2.13.) and boundary cdndjtj0~5 (1.3.3b)

Ux~~~,t~~ T) ô (a=~ (x , flT+~)) xE ~~~+ 
~ > 0 . (l.3.lob)v(~) is given by (1.2.2). In the operators D and I given bycalcuitted from (1.2.14)

(1.2.5) and (1.2.4), u
< is replaced by u~. Finally ~~~~ jg

Just as we could replace (1.3.3) and (1.2.14) in the algo=
rit1~ for Bulgers ’ equatj0~ by (1.3.4)(136) as in a method of
fracet~~1 time steps, we may replace (1.3.10) and (1.2.14) in this

aZ gorLt~~ by ~~~~~~~ bOU~di~~ value probime. one involving Convectjo~

only, and the other dLaper.j0~ Only :
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- ‘u (x) h(x ,i) (1.3.11)

where

h + B A h = 0, x E 
~~, t > 0 , (l.3.l2a)

t x

n(x ,0) = Ig(x ,i ) ,  x E (l.3.12b)

h(x ,t) — ~(x,nr +t) ,  x E ~~ , t > 0 , (l.3.12c)

h ( x ,t) = ~~(x ,t+nT), x € ~~~~~ t > 0, (l.3.12d)

and g satisfies (1.3.6) . In this case the solution of (1.3.7)
takes place through a sequence of convective, interactive, and dis-
persive processes.

The number u~ is generally dependent on a in (1.3.9), since
a priori bounds on un are not obtainable as easily as for the
problems previously considered. In general solutions of (1.3.7)
obey neither a maximum nor a minimum principle (References 9 and 12).
This is related to the fact that, whereas each of the components
(1.3.5) and (1.3.6) of the algorithm for Burgers ’ equation possesses
a maximum and minimum principle, the same is not true for (1.3.12).
In the one-dimensional case with ~ — R1 , we get maximum and minimum
principles in one direction only , in the sense that if h(x,O) 0
for x > x0, then h(x ,t) lies in the range of h(x,0) for x > x0 and
t>0.

• 4. Equations with Non-Constant Coefficients and Systems of Equations I
Let us restrict ourselves to the case where the governing

par tial di fferen tial equation holds over all space, so that we can
focus attention on solution of the initial value problem, and not
on satisfaction of the boundary conditions. Taking u< — 0 in
(1.1.11) without any essential loss of generality, we note that
the algorithm (1.1 l2)-(l.l.l4) ii nothing more nor l ess than an
approximate solution of (1.1.2), with initial condition (1.l tb), €-
recast in the following form:

-32-
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u(x,t) him u(x,t,a), x € R1, t > 0, (1 4 la)
Q l t

~~~~

u,(x,t)aO , x E R ’, t > 0 , ( l4 lb)

u(x,O,a) = min(u0(x),a), x € R1 , 0 � a , (1.4.lc)

(~~) 
+ (v~u~a~~ 

~
-)
~ 

= 0, x E  R1 , t > 0, 0 � 1<

(1.4.ld)

- 
In particular, (1.4.ld) is obtained by differentiating (l.l.2a)
with respect to a, and the intermediate solutions u(a) are chosen

I in such a way that either the characteristics

I — v(u(a)) (1.4.2)

I of (l.4.ld) are s traight lines , because u(a) and v(u(a)) are con-
stant on them (u(a) — a), or else = 0 on them. Thus, we

I may view the algorithm (l.l.12)-(l.l.14) as a way of building up
the solution u(x ,t), starting with the trivial solution tb (x,t),
by means of a continuum of perturbations, dependent on the param-

I eter a.

• Similarly, the algorithms of sections 1.2 and 1.3 may be

I 
considered to be obtained by format differentiation of the equa-
tions (l.2.la), (l.3.la), and (l.3.7a), respectively, with respec t
to a. The algorithm (1.2.12), (1.3.9), (l.2.13a), (1.3.6),(l.3.l2),
and (1.3.11) thus appears as an approximate solution to (1.3.7) by
means of a continuum of per turba tions on the solu tion u(x ,t) 0,
but it should be emphasized that this is not the same as a solu-
tion buil t up out of a forma l expansion of the solu tion u(x ,t,e)
of

I ut(~
,t,.) + c V F(u( ,t,e)) + B A u (~ ,t,t) — 0 (1.4.3)

I
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in powers of € , a procedure which has been shown to fail to yield
solitary waves (Reference 10).

In this vein we migh t approach the problem of solving

G(u,ut,
Vu ,x,t) — 0 , (1.4.4)

subject to given initial conditions , as a problem of determining
a family of functions u(x,t;a), each satisfying (1.4.4), with
initial conditions dependent on a. By differentiating (1.4.4)
with respect to a, we get the linear equation

+ ~ ~~~~ + G ~ ~
u(a)

u(a) ~a u
~
(a) \ ~a ‘t Vu (cr)

(l.~~.5)

The characteristics of this equation are

dt dx
— G~~~yy ~~ 

= (l.4.6a)

and on them satisfies 1
d ~u(a) + G ~u(a) 

= 0 1 4 6bds ~~ u(a) ~a

n •1
If x E R , we have n + 2 equations (1.4.6), and the coef-

f icients of these equations generally depend on the 2n + 3 quanti-
ties x, t, u(a) , u

~
(a) , and vu(a). If we desire these equations

to have constant coefficients, for each a, we can satisfy that
requirement if we pick a as a measure on the Borel sets in Rm
where m — n + 2, and think of u(~v) as a corre8ponding signed mea-
sure , where ~ u(a) is now to be thought of as a Radon-Nikodym I
derivative (Referenc e 7). As a practical means of solving (1.4.4) ,
this procedure does not seem to be generally promising; we m di-
cate acme more useful approaches below.

R I

_ _ _  - - - -~- -~ 

—
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Higher-order equations than (1.4.4) can be solved. As an
example , one might solve

u = uu , u(x,0) > 0 , (l.4.7a)t xx

by solving at each time

f~ u(cr) \ 
/
~~u(cr)” + ~

u(a) (u(a) ) (l.4.7b)
~a j

= u(a)~~ 
~a ) 

~a xxxx

and choosing u(a) so that either = 0 or u(a) = a = constant.

For the equation

u + xu = 0 , (1.4.8a)t x

we get

f~~u\ 
/
~ u\ 

0 , (l .4 .8b)
~~

—
,j 

+ x ~~~—) —

and we want to choose u(a) so that either — 0 or x = a = constant.

Note that this equation is not in conservation form. A conservative
equation is obtained by writing u’ — u and

x

u’ + (xu’) — 0 , (l.4.9a)t x

~u
’ 

~u’— ; + ,~ (v— ~l + — — 0 . (l.4.9b)- i \ o o I ~at x

For the equation

u + xuu — 0 , (1.4.10.)t x

—33—
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we obtain

(~
u(a)
) + xu(a) (~

u(a)) + xu (a) ~u(a) 
= 0 . (1.4.lob)

To solve this , we take a as a two-dimensional measure , and choose
u(a) so that ~.! = 0 or x = constant and u(ct) = c onstant.

It may be that an equation

u
~ ~ 01 + V . 02 (1.4.11)

can be solved more efficiently by means of a method of “fractional
time steps ”, by solving a~. each time the equations

= V . (l.4.12a)

and

u
~ 

= V 02 (l.4.l2b)

successively. The individual equations (1.4.12a ,b) may be solved
more easily by the methods described here, than can the original
equation (1.4.11). For example, the solution of

- 0 (l.4.13a)

may be reduced to the successive solution of

U
t 
+ (xu) — 0 (1.4.13b)

and

U
t 
+ uu,~ — 0 . (t.4.13c) - •

-36- 
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Since quite general nonlinear systems of equations may be
reduced to first order quasilinear systems which are homogeneous

-: in the derivatives and do not involve the independent variables
explicitly (Reference 6), we may think of the equations above in
which the independent variables appear explicitly as special cases
of homogeneous quasilinear first order systems of equations. As
as example of a system of the latter genre, consider the equations

(1) (2) (i) (2) (1) (2)G~(u ,u ,u
~ 

,u~ ,Vu ,Vu ) 0, i1,2

( (1.4.14)

where the Gi depend linearly on ~~~~~~ ~~~~~ Vu~~~~, and Vu~~~~. If
the system (1.4.14) is hyperbolic , we may pick a as a two-dimen-

_____ ~u
(2)

- - sional measure such that we either have = 0 and —
~~~~— = 0

or u~
’
~(a) = constant and u

(2)
(a) = constant.

It should be emphasized that such a formal scheme to ob-
tain solutions says nothing about the well-posedness of the origi-

I nai problem, unless we know something about the well-posedness of

____ ~u(2)
all the linear problems which are solved for and . For
example , the system

i u~~
1) 

+~~~ ( (1) 
e~~
2)) 

— 0

(1.4.15)
I (2) ~ / (2) u(1)~J U~ -

~~~~~~~ u e

is only hyperbol ic if

I a’ u~’~ u(2)\2 (t\  (2) (i).~~(2)
• ~e + e / - 4  u’ ‘ u e >0. (1.4.16)

1
I

II
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CHAPTER TWO

CONVERGENCE OF THE ALGORITHM FOR A SPECIAL CASE

The principal result of this chapter will be a proof of
convergence of the algorithm (l.1.l2)-(1.1.14) in the case when

— -
~~~, x1 — +~~~~. To carry out the proof , we will have to suita-

bly restrict the initia l function u0(x) in (1.l.lb). In the first
Section of this chapter we discuss suitable function spaces for
the study of convergence and introduce some operators which ex-
pedite the analysis of the algebraic structure of the algorithm
(1.1.12)-(1.1.14). We will be able to reduce the study of con-
vergence to the case when the initial function u0(x) is of a
special type. In the second section we present an error esti- j
mate, and in order to get a particularly sharp result we will
require that the “velocity” v(u) in (l.1 .la) be a monotonic func-
tion of u. Other cases may be treated , and we will show what
sorts of error estimates may be expected for the algorithm
(l.1.12)—(1.1.14) in those cases.

1. Function Spaces and Monotonjc Operators

It is clear that we will need some property of continuity
for the function u.,(x), and cannot require , for example , that u0(x)
just be bounded measurable. For instance, if we had

1 -
2 2n 

~o ~ 
x < (2n+l)~r0

urj(x) , n 0 ,±1 ,±2 ,”• ,

0 (2n+1)r 0� x < 2(n+l)T0 (2.1.1)

the algorithm (l.l.12)-(1.1.14) will yield markedly different re-
sults according to whether we pick ~ ~~ 

or ~ 1~~I2.

We shall require u0(x) to be almost uniformly continuous
according to the fo llowing definition.

Definition: A function g: - R1 is called almost uni-
formly continuous (a.u.c.) if for every a and b such that -~~~ < a<
b < ~ and e > 0, ~ 6 a 6(c a,b) with

1
b 

Ig(x+Th (x)6) - g(x41~~(x )6)~ dx < € (2.l.2a)

-38- i 1~I
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for all T~1 (x), fl2(x) such that

� I, ~T~ (x)~ � 1 . (2.l .2b)

A more general class of u0(x) will be mentioned later .

At this point , let us recall the operators D and I intro-
duced in (1.1.17):

0

= 1 u< a � u(.) (2.l.3a)

0 a >u (~)

and

IF(.,.) - u
< +f f(.,a) da , (2.l.3b)

where 
-

~~~

u
< 

� u0(x), x € R’ . (2.l.3c)

I Als o, recall the definition of V in (1.1.26) and (1.1.28) .

— Lemma 2.1.1: Let un(x) be given by (l.l.12)-(1.1.14).

I If

I rb 
~u0(x+~~(x) 6) - u~(xl~fl3(x)6)jdx < € (2.1.4)

I for all 
~~~

, and T~ satisfying (2.1.2b), then

1 b-mV1 .1’ lu~’(x+Th, (x)6) - u
~(x+fls(x)6)ldx < (2.1.5)

a+ni V

I for all  such lh’ 1~~. In other words , u0 a.u.c. ~ u~ a.u.c.

I 
39
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Proof: It is obviously sufficient to prove (2.1.5) for
the case a = 1. From (1.1.14) and (1.1.15),

(u ’(x+Tk (x)8)-u~(x-i-TIa(x)5)k j’ L f.~ (x4 l (x)6,.r ,a)_f0(x+1~2(x)6,.r ,a)lda

(2.1.6)

Then, by ( 1 . 1 . 1 3 b )  and (1.1.12),

b-VT
$ ~

u1 (x~fli (x)~ )-tè (x-fJfl2 (x)u)ldxa+VT

~‘ b-Vr
� j’ If ° (x+Th (x)6-7v(a) ,0,a)_ f ° (x+~~(x) 5_Tv(a) ,O ,a) Idx dcr
-~~ a+Vi

~ b-Vi~—rv(a)I If0 ( x+T~ (x+rv(a) ) ,0,a)_f0(x+;(x+iv(a)),o,a)f dx cia
-~~ a+VT-1 v(a)

b~~~�J’ j’ lf ° (x+Th (x4 .Tv(a)) , Q,a)_ f ° (x+~2(x+1v(a)),O ,a) jd~ dx

� J. ( sup u0 (y)  - inf u0(y) ’
~ dx

a yE~x-6,x+8] yE[x-6,x+6] /

~! Iuo (x9~fla (x)6)-uo(x+i~ (x)6)I dx + 2 8(b-a) , (2.1.7)

where we pick Tb (x) and fl4 (x) to satisfy the same requirement (2.l.2b)
as ~ and T~ , and

u0(x4’~~(x)6) � sup u0(y) - B
yE{x-6,x+6]

(2 .1.8)
uo(x91’4 (x)6) � 

Ex~~~~x+~~ 
u0(y) + B ,
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with 8 > 0. Letting B ~ 0 and using (2.1.4), we obtain (2.1.5)
for n =  1.

a +1 Before proceeding further , let us introduce operators E1,,,where TI is a function of a: ‘I

(E~ f) (x ,.) = sup f(y,.) , (2.l.9a)
yEI(x,fl)

• (~ 
f) (x ,.) = inf f (y , .) , (2.l.9b)

yEI(x ,11)

where

I(x ,fl) = [rain(x ,x+j1(.)), max(x,x+TI(.))3 . (2.1.9c)

The~following properties can readily be verified for the
Operators E

- I  TI

j  112 
E
~f+.r1~ 

E~.. .. (2 • 1. l0a)

I E .. - , (2 .1.lOb)
fl~~ TIi’+TIt Th +lla

I where

I fl+( )  max(fl(.),0)

(2.1.11.)

I 11 (.) min(fl(.),0)

J In particular , it follows tram (2.1.10) that

I ,

I 
-41—
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E E — , (2 .l l2b)111 ~TIa 11~ 111

and if 111112 0,

— 
c.+Jn_2 (2 .l.13a)

= (2 l.J3b)

Also

and 

, (2 .1.14)

� 1 , (2 .l.lsb)

E~ E:~11 
� I . (2 .1.l5b)

If hit 1 6 1 ,  we get

4 

— ç (2 .1.16.)

and

— ( 2 l l 6b)

In terms of the E’s we can defineK -

- . (2 .1.17)

F

I -42-
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Given a function g(x) and a n~~ber 6 > 0 independent of a, we canalBo define

(S~ g) (x) - (IS~ Dg) (x) . (2 .1.18)

In other words

+(S6 g) (x) — sup g(y) , (2.l.l 9a)
yE[x—6,x+8]

(S~ g) (x) — inf g(y) . (2 .l.l9b)I yE~ x-6 ,x+6)

I Finally, let us introduce the shift operator

I (T11f ) (x ,.) - f(x-fl(.),.) . (2.1.20)

The following relations among these operators can easily be estab-
- 

I 
lished:

E
_11 

E
:11 ~ T11 � , (2 .l.21a)

- 

I ~fl S~ /2 — 

~~ 
s~,2 , (2 .l.21b)

K ~I 
and

I ~~~ 
~~/2 

— 

~~~ 
E:11 ~‘fl/2

We get conunutativity between the E’ s and T:

JL~~~~~~~~
T
~~~

(2I22I
~
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and we note

— T~ Z~ , (2.1.23)

so that

— T11 E 11 — T 11 E 211 
. (2.1.24)

All the operators introduc ed are monotonic. That is,

� g~ 081 � 0gm , 0 D, S , or S~ (2.l.25a)

and

f1 � f~ Of1 � Of2, 0 — I, T11, S~ , S~ , Z~ , or

(2. 1.25b)

From the definitions it follows that

IS~ > S~ I , (2.1 26a)

DS~ S~ D , (2.l.26b)

T
11 

S~ — 

~ T11 (2.1.26c)

IS6 
� S6 I , (2.l.27a)

K

D6~ S D , (2.1.27b)

11 - , - -

T11 S6 — S~ T11 . (2.l.27c)

- -
~ - - ..44..
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Also,

S11 
� T11 � S (2.1.28a)

and

S~ D � T
11 

D � S~ D (2.l.28b)

where hl(a) t � 6 for all a.

In terms of these operators , with the help of (1.1.15), we
can state the algorithm (l.1.12)—(1.1.l4) as

= IT J~ n 
(2.1.29)VI.

Thus, the algorithm proceeds entirely through the app lication of
monotonic operators. If

Urj(x) � ii~ (x) , (2.1.30a)

and we denote the respective approximate solutions by u
r
~(x) and- - i~~(x) (with the same u< f or u0(x) and i~~(x)) we get

I

I u~
’(x) ..n( )  •

I This sort of monotonicity result also holds for the problem (1.1.5)
posed on a finite domain, provided we have the appropriate monoto-
nicity required of the corresponding boundary data. The resultI also holds for the algorithm (l.2.12)-(1.2.14) used to solve the

I problem (1.2.1), and for the algorithm used in the solution of
(1.3.1). Assi ing convergence of the algorithms for these prob-
lems , ~e conclude that the monotonicity carries over to the exact

K sol ut ions -‘
~~
‘ (1.1.5), (1.2.1), and (1.3.1) generated by the algo-

rithms . A ! thi. juncture we should reemphasize the point made in

I 
sec tion 1.1, that the solution to (1.1.1.) computed by our proce-
dure is not nec.surily the desired one in terms of any underlying
physical rational.. For example , the one-dimensiona l flow of an
inviscid pressureless fluid is governed by an equation of type

I (1.1.1) with u the velocity and v(u) — u. However , the underly-
ing physical laws are conserva tion of mass and momenttm~, and u is

1 —45—
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really coup led to a density field p. For general initial density
fields , we do not have monotonic dependence of u(x,t) on u(x,0).
Hence any algorithm with that property will have to be in error,
in general. In a later part of this work we will present a phy-
sically correct algorithm to solve

IIu + uu 0t

when u is the velocity of a one-dimensional flow.

Returning to the operators S~ , we see that

S~~S~ � l  ,

S~~S~ � l  ,
(2.1.31)

+ - + +_ s6 s6 S6 = s 6
S~~S S ~ = S~ ,

The operator S~ S~ “flattens out ” all peaks of _ a $unction g(x) by ii
removing portióu~ of width < 26. Similarly , S,~ S 6 “flattens out”
th, troughs by filling in the portions of width < 26.

Upon application of equations (2.1.26), (2.1.27), and
(2.1.31), we see that the following inequalities can be estab-
lished by induction in n : f

9~ (IT D)~ S u0 ~ ( S S~6S~ IT D)~ S~ S~6 S~ u0

+ (2.1.32)
~ ~6 (IT~~D) ’t S~ U0

The significance of (2.1.32) is tha t it gives bound. on the quan-
tities v1~ computed by the algorithm

— ~“ S~ ~~~, , (2.l.33a) 
,_ 1

- I  —46—
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w
n+l 

= S~ S~ 6 
S~ IT D wn . (2.l.33b)

When u0 is a.u.c., we can use these bounds to show that is
close to ~

n, as we shall do below. Assuming that this is the
case, we see then that we may equally well use the algorithm
(2 .1.33), as use the original algorithm (l.l.l2)-(l.l.l4) (or
(2.1.29)~ to solve the problem. Furthermore , each of the quan-
tities w , n � 0, has the property that all peaks and troughs are
of width � 26. This fact will permit us, in the convergence proof
given in the next section, to restrict our attention to portions
of the profile w°(x) which are monotonically non—increasing or non-
decreasing. That is, if f~r example (~o’~1) 

is the interval be-
tween a flattened peak and trough of u0, then for 0 � flT � 26/V
the function w’~(x) , xE 

~~~~~~~~~~~~ 
will be either non-increasing

or non-decreasing, according as wP is. It is clear that if we
can establish convergence and error estimates as ¶ ~ 0 for such
intervals (x,t) E 

~~~~~~~~~~~ 
x [0, 26/V], then we can do so for all

(x ,t) E 
~~~~~~~~~ 

X [0,~ ).

To show that wn is close to u if 6 is sufficiently small,
we use (2.1.32) in the form

� w
n 

~ , (2 .1.34)

where
4~~ +S6 

ti
~ 

, (2.l.35a)

— IT~~ D 9n , (2.l.35b)

and

— U~ (2 .l.36a)

K 4
n+1 

— IT
~,. 

D . (2.l.36b)

Because of the monotonicity result (2.1.30 ), we see from (2.1.35)
and (2.1.36) that

9
fl ~ a ~ (2.1.37)

I
p —47—
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and hence

lw °~u’i ~ 9n 
- ~ n (2.1.38)

Because of the monotonic dependence of and on the
initial data ~ and $

0 , and the fact, which follows from the de-
finition of V, that all non-zero contributions to B~ and $fl in
[a+ni’V,b-n’rV] have originated as contributions to ~ and $° some-
where in [a,b~ , we get

b-mV b
i (8~-$5dx � $ (~~-$°)dx . (2.1.39)

a+n’rV a

From (2.1.38), (2.1.39), and the initial conditions (2.l.35a) and
(2 .l.36a), we get the followLng result.

Leema 2.1.2: If U0(x) is a.u.c. and satisfies (2.1.2) and
~~ ~

,n is given by the algorithm (2.1.33) and u~ is given by (1.1.12)-
(1.1.14), then

b-nt V
I Iw

n(x)_u n(x)I dx � e(6) , (2.1.40)
a+n’i V

where we denote the right hand side of (2.1.2a) by e(6 ,a,b).

Wit h the aid of the operator. in~rc4uced , we can also find
the effect on the approximate solution u (x) of (1.1.1) due to a
perturbation of the “veloc ity” v( u) ,  when U0(x) is a.u.c. On the
assLunption that the approximate solution converges to an exact so-
lution, the same error estimate will carry over to the exact solu-
tion (with n.r replaced by t and u~(x) replaced by u(x,t)).

L~~~a 2.l.3t In the case x0 -
~ - ~, x1 — + ~, let u~ (x)

K be generated from U0 (x) by equations (l.1.12)-(l.l.l4), and let
be generated from U0 (x) by the same equations with v(cx) re-

placed by ~(a). Suppose U0 (x) is a.u.c. and satisfies (2.1.2).
Use th. notation c(6) in (2.1.40). Suppose tv(a)l ~ V and

� V for all a € [u<,U), where U is given in (1.1.26) . Then,
with $v(cr)4(a)I ~ V’ for all a E [u<,U), we have

-
-

~~~~~~ 
- I I
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b-nT V
I I~~(x)-u°(x)I dx ~ c(n’rV’) . (2 .1.41)

a+nTV

Proof :  Us ing (2 .1.29), we can write

— (TT ,~.~D) r
~ u0 , (2.l42a)

— (XT ~~ D)n 
U0 . (2.l.42b)

Now, we can establish inductively that

—n 
~ (IT~~D) n S

~~v
l ~ (2 1 43)

The case a — 0 ii obvious. To get from a to a + 1, we note that

~jfl+1 
— IT~~ D � 1Si ,. Tv,. D ~

n 
~ ~~~ D S , (IT,~,.1D) n S

~~ V l 
Uo

I- I
n-fl +� (IT~~D) S

(~~1)Tv
l Uo

upon repeated application of (2,1.26). Similarly, we can show that

� (IT~~D)~ S~~~i 
~~ . (2.1.44)

Let 
+
~nTV’ ~~~ $~ 

— S
~~v

i LIO , (2.l.45a)

- (IT D)~ 0° , $~) 
- (IT~~D)’~ $~~ 

. (2.1.45b)

-,- That is , B~ and are the functions g.n.ra ed at the nth time
step f”r tR. unpePturbed velocity v(s), from the initial functions

1

: : 

~~

‘I
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9~ and $° , respectively. By reasoning similar to that which led
to (2.1.~ 9),

b-nTV b
,f’ (9~-$~)dx � f (9°~-$~)dx . (2.1.46)

a+nTV a

The monotonic dependence on the initial data also implies

~ ~
n ~ 8n (2.1.47)n n

From (2.1.47), (2.1.43), (2.1.44) , (2.1.45) , and (2.1.46), we get

b-nii/ b 
-r Iii

X
~(x)_u

fl(x)I dx � I (S~~~, u
~~

S flTV l u0)dx ,
a+m V a 

(2.1.48)

and this leads directly to (2.1.41), upon use of the almost uniform
continuity of U0 and (2.1.2).

Thus if v(a) is piecewise continuous, we can replace it by
a piecewise cons tant function ~ with Iv-~ I as small as we desire,
and for a.u.c. initial data get as small a change in the solution
un(x) as we desire (in the L1 sense).

By an argtm~ent similar to that used to establish lema
2.1.3, we can prove the continuous dependence, in the L1 sense ,
of the functions generated by (1.l.12)-(l.l.l4) on the “time”.
We again use monotonicity and note that

~ u
rn 

~ TV • (2.1.49)

K

There follows

b-~yV
~ Iu~(x) =u~

’
~ (x)~ dx ~ e(m’rV) . (2.1.50)

a+nrV

-50-
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A s omewhat broader notion of continuity is that of “almost
continuity” (a.c.)* of a function g, by which we mean that, for
any e > 0, we can find a set S~ of Lebesgue measure < € such
that g is uniformly continuous on [a ,b] - S~ . We will find this
type of continuity, suitably generalized to flows with other meas-
ures , to be especially important in the treatment of actual physi-
cal flows. Accordingly, there will be a more complete discussion
of. almost continuity in a later report in this work. Essentially ,
instead of removing a set of Lebesgue measure < € from the domain,
we will want to remove sets of small mass or action , depending on
the precise type of continuity considered , from various domains of
independent variables. Further on, when we treat the flows in a
stochastic framework, ettil further enlargement of the notion of
almost continuity will be in order. For the present, let us
merely note that if g is a.c., then g is measurable , but the
reverse implication does not hold. In addition, it follows from
the definitions that if g is aAu .c ., then it is a.c. The converse
is not necessarily true, unless the set S~ is dense on a set in
[a,b] whose measure 4 0 as € 4 0. For example , the converse is
not true if g is I at all rational numbers in [a,b] and 0 else-
where. Then g is a.c. but not a.u.c. With a little reflection,

I we see that an analogue of leema 2.1.1 can be proven when u0 is
a.c.: U0a.c. ~ una.c. Similarly, the conLinuous dependence of

I the functions u°(x) generated by the algorithm (l.l.l2)-(l.l.14)
on the “velocity” v(a) , stated by lenina 2.1.3 for a.u.c. initial
data w,(x), can be proven for a.c. initial data , and the suita-

I 
bility of replacing the algorithm (l.l.l2)-(l.l.l4) by the algo-
rithm (2.1.33), stated in lenina 2.1.2 for a.u.c. initial data ,
holds for a.c. initial data.

I The type. of continuity we have been considering in this
section are weaker than that required in section 1.1 to show that
the right hand sides of (1.1.33) and (1.1.37), f or 0 < t � r , are

I o(l) and 0(T), respectively , as r 4 0. It would be tempting to
conclude that u0(x) a.u.c. or a.c. implies that u(x0,t) is a.u.c.

• or a.c. in time for each x~. This is not the case, however, as
we can see from the following example. In the limit By 4 0, and

I with v(a) — a, choose the initial profile near x — 0 to satisfy

K

I 
*Terminology suggested by Avron Douglis.

I
I -5’-
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U - a x  O > x > -Uy

-U 0 < x <U y
uo(x) = . (2.1.51)

U(l+Øy) -Uy > x > -21jy

-U - B(x-Uy) Uy < x < 211y

Initially there is a jump 2U at x — 0, and it is easy to see that ,
if s(t) is the location at time t of the discontinuity in u(x,t),

-
~~~~~ (0) — 0. After a t ime 2y, we get s(2y) = .

~~~~
— U, u(s(2y) ,2y) =

U(l-f~y), u(s(2y)~2y) — -U(l+ey), and (2y) — 0. We can now ad-
just U0(x) so that s(t) moves back when 2y < t < 4y, forward again 

. -when 4y < t < 6y,Atnd so on. After a time t , in the Limit 4 0, I 
-

we get a jimip- 2Ue~~ at a position s(t) which oscillates between

and 
ç (l+~~~)u . 

I

I

Points in the interval [0, ~~~~~~~
. U] are included in all the oscilla-

tions. In particular, we cannot make any statement about the a.c.
or a.u.c. of u(0,t) which will be valid independent of the choice
of y, although the initial profile u0(x) will be a.u.c., accord-
ing to the definition (2.1.2), with e(6) independent of y. The
values of x for which we get uniformly large variations in u(x,t)
when t changes by an amount y independent of x will , of course ,
have Lebesgue measure which goes to 0 as y 4 0, by the result
(2.1.50).

(me fact that we cannot get a p~~ori that u(x0,t) isa.u.c. or ac. for each xo is related to our ability to control
the free boundary problem In particular , for the case v(a) = a,
if we are given quantities J( t) , s( t) for 0 � t � T with the follow-
ing properties :

J(0) � 0 , (2.l.52a)

(t) bounded , non-negative , 0 ~ t � T , (2.l.52b)

—52—
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(t)~ ~~~ , 0 � t � T , (2.1.52c)

then there is an initia l profile u0(x), which is uniqut id differ-
entiable in the intervals

s(T) - T J(T) + ~~~~ (T)J � x < 0 (2.1.53a)

and

- 0 < x � 8(T) + 
T[+ J(T) - ~~~~ (T)] , (2 .1.53b)

and which satisfies

I
x + uo(x)T < 8(T) for x < s(T) - T[+ J(T) + ~~ (T)]I (2.l.54a)

I x + u3(x)T > s(T) f or x > s(T) + J(T) - ~~~~~ (T)]

(2.l.54b)

~ such that the solution of (1.1.2), (1.l.lb) has the following prop-

i erty :

- u(s~ ( t) , t) = J(t), 0 t T . (2.1.55))

It foll ows from the preceding discussion that we shouldI only expect equations (1.1.6) and (1.1.7) to be satisfied by the
function u(x,t) — lint [(un (x) ) 

— , ) ,  when it exists , in someT t1fl
integrated sense (in time).

If we average equation (1.1.23) over an interval of valuesof a and b , so that the left hand side becomes

I
h b-s’11 nI I f (x ,t,a)dx d~I -h ap~

I

~~~~~~~~~ 

i 
53
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then we will obtain averaged ver8ions of (1.1.6) and (1.1.7) which
will hold in the limit ¶ 4 0, by two app lications of the continuity
result (2.1.50), with a + nTV , b - nTV rep laced by a-h , a+h and
b-h , b+h, respectively.

Although we have not discussed the case of the boundary
value problem on the finite interval [x0,x1] in this section , we
may expect , from the discussion following (1.1.33), that the ap-
p~opriate data to specify at the boundary points x0 and x1 are

~i (x0,t) and ~i(x1,t) a.u.c. or a.c. in L. I
2. Convergence and Error Estimate I

The principal result of this section is that , when the veloc-
ity v(u) is a monotonically non-increasing or non—decreasing func—
tion of u, then the thickness of “t~hocks” generated by the algo-
rithm (l .1.12)-(1.l.l4) is never more than 2VT , where V is given
by (1.1.26) and (1.1.28). Furthermore , the shocks so generated
are within the distance 2VT of their position in the exact solu-
tion. In order , however , to indicate how one may obtain other
types of error estimates which might be more useful in certain
situations , and to show why we will want to restrict outselves to
r,’q’)tone v if we are to get particularly sharp error bounds , we
st4ll proceed initialiv in a somewhat more general vein. Our de-
liberations will be expedited by the results we obtained in the
last section.

So far we have not stated what assumptions we make on the
function v(.). But it is clear from (2.1.29) that , if the operator
“I” in the algorithm is to be meaningful , then we should at least
require v to be measurable . When v is piecewise continuous and
u0(x) is a.u.c., we hive already seen, in lenina 2.1.3 and the dis-
cussion following it , that we may replace v by a piecewise cons tant
function ~~. The study of convergence of the algorithm (1.1.12)-
(1.1.14) for piecewise constant v should be a relatively simple
~iatter , since we may imagine that we are dealing with the propaga-
tion of a finite nimtber of individua l “streams”, each moving with a
constant velocity , with a specified law of interaction, and we know
from Chapter One that the algorithm gives the exact solution when

K 
w .h of these streams propagates independently.

In fact, when u0(x) is a.u.c. it should be possible to
prove convergence when all we require is that v be bounded measura-
ble. For, by the monotonicity properties shown in the last section,

—54..
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we may bound u~ above and below by and 4
n
, respectively, where

8°(x) = sup u0 (y) , x E [m6,(m+l)6) , (2.2.la)
yE[m6, (m+~)6)

‘4
‘I,0 = IT~ . D e , (2.2.lb)

and

= inf u0(y), x E [m8 ,(m+l)6) , (2.2.2a)
yE[m8,(m+1)&)

= IT T D 
~ n 

(2.2.2b)

In (2 ,,2.l) and (2.2.2), mi s  an integer , - m < 
~~. Clearly

tic, � � S t4~ and ~~ � t~~~ S u3. Accordingly, the argument
used to prove lennna 2.1.2 can ~e used, and we find

I
b-nT Vr I6~(X)-U~(X)kX ~ €(6)a+irrV

(2.2.3)
b-n’rV

I I ’~
t”(x) U~(x) I dx � e(8) .

a+nT V

Note that the initial data 0° and j
~ in (2.2.la) and (2.2.2a) are“histograms”. Hence when v is bounded measurable we need only

prove convergence for such initial profiles. The exact solution~for such profiles can be given for such v. We know that a”jtnnp ’
at x — 5(t) from u0 to u1 moves with velocity

ds F(Uj) F(Urj)• — — , (2.2.4)
• 

dt

where F i. given by (1.l.2b). In fact, when the initial profile
is such a histogram involving only a finite number of values of u,

II
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say, [ui , i—l ,~~~ ,N}, it is clear that the exact solution is un-
changed by changes in the velocity field v which leave differences
of values of F at these values [uji invariant. What sort of con-
vergence result we may expect for our algorithm for v bounded mea-
surable when the initial profile is a jump, will be indicated in
the sequel.

By lemma 2.1.2, we may deal with functions w’~ whose peaks
and troughs are all of width � 26. As we pointed out in the dis-
cussion accompanying the lemma, this permits us to restrict our-
-selves to a portion of a profile w°(x) which is monotonically non-
decreasing or non-increasing. Without loss of generality, we take
the latter case. Given such a portion of a profile , say , for

� x � ~~ we may let

U inf IP (x), U’1’ 
= sup tP(x) . (2.2.5)

Then

lint tI’(x) ~~~~~~ lint ~P(x) = U , (2.2.6)
x 4~ c, x ,~~

and we may imagine the initial prof ile ~P(x) extended so that

tP(x) = U~
’, x < 

~~ 
, (2 .2.7a)

w° (x) U , x > ~ . (2.2.7b)

With this profile, we find that

— IT
~ 

D 
n , (2.2.8)

so tha t effec tively we are cons idering again the func t ions gene-
rated by the origina l algorithm (1.l.12)-~1.l.l4), or (2.1.29).Thus, we shall now write tP , u~ for ~P , w”.



T HE JOHNS HOPITINS UNIVERSITY
APPL IED PHYS ICS LABORATORY

LA UREL MAIL U A N C-

Before we proceed with a discussion of convergence, let us
write down the exact solution of (1.1.2) with initial data u(x,O) =
tP(x). The proof of convergence and error estimate will then be ob-
tam ed by comparing the approximate solutions u~(x) with the exactsolution u(x,nr).

With a monotonically non—increasing profile g(x), iim g(x)—It,

~~~~~~ 
g(x) = U , we associate a function X(g;a) with range the ex-

- +tended real line for a E [U ,U ], as follows:

1 x � X(g;a)
(Dg)(x,a)= . (2.2.9)

0 x>X (g;a)

For the solution of (1.1.2) with u(x,0) = u°(x) , we use the notation

-: X
~
(a) X(u(.,t);a) . (2.2.10)

I Note that

X
~

(a) � X
~

(ai) if a � °‘i . (2 .2.11)

I 
We will have given u(x ,t) if we know X

~
(a).

Roughly speaking , the exact solution at t will have degene-
rated into a aequence of shocks. In fact we may regard it as a

I continuum of shocks if we regard a continuous profile g(x) as hav-
ing a jump da at X(g;a). Still speaking roughly , we first search
for the position of the “leftmost” shock , by finding

I 
1~~~~ a’)da ’ F(U~)-F(a)

+ 
a 

+ + t . (2 .2.12)I oE[u ,u ] U -~~~~ U+~~~a

- 

I Note that , from (2.2.11),

it

~ 
Xc,(a’) dcr ’

I

II
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is non-increasing in ~~. Let the infemum in (2.2.12) be achieved
for a0. We then proceed to find the next shock in the continuum
of shocks. (Those who object to the “rigor” of the argument may
prefer that we start with an initial u(x,0) given as a non-increas-
ing histogram. Then the shocks will be denuinerable.) The “next”
shock will be located at

a0

4, X~ (a ’) da’ F(ao)-F(a)
inf + t

aE[if,a0] ac, - a a0 -

In this way we proceed until we have located all the shocks.

More precisely, given € > 0 and ~ E (U ,U
+
], let

- ~~ X0(a ’)da ’ F(B)-F(v)
A~(B,t) aIoE [U .8), a - inf I~ - + t,/< €

yE[if,~ )\ ~ ~
‘ 

~‘

(2.2.13a)

A5 (8, t) — closure of A~(B, t) . (2.2.l3b)

Define

ao(B,t) inf [crIaEA
5
(8, t) Y~ > 0) . (2.2.14)

I
It is clear that ao (B ,t) is non-increasing in 8. Further , set

I
a+(Ø,t) sup [a~BE[a0(a,t),a]) (2.2.l5a)

-i
and

a (B ,t) ao(a~(8,t),t) . (2.2.15b)

Then the exact solution of (1.1.2) with u(x ,0) u°(x) is given ,

—I - 
for ~ E (U ,U”], by

I A 1
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4 a1’(8,t)

- I Xo(a ’)da ’
N X

~
(8) u r n  a (~ ,t)-s 

+ + -€40 a (8 ,t)-a (B,t)+€ a (8,t)—a (8,t)+c

( 2 2 1 6)

I_

Returning to the approximate solutions , we see that, if
g(x) h(x+6), then

- (IT Dg)(x) = (IT~,~, Dh)(x+8) . (2 .2.17)

Accordingly , if g is monotonically non—increasing and 6 .~~ 0, so
that g(x) .~~. h(x) , we get from the monotonicity of the operators

I 
I, T~,1, D that

(IT ,~,,.Dg)(x) ~ (IT Dh)(x) — (IA r
VT
D8)(x_ó) , (2.2.18)

r

and ~hus the functions u
n
(x) will be monotonically non—increasin,-’I if u is. Given u~ (x) , using the notation (2.2.9), we define

I X~ (a) a X(u
1’

(A ) ;a )  . (2.2.19)

I In addition , we define x*(a), a E [U ,U~1, by

1 I  
*1 x � x ~ (a)

(T Dt?)(x ,a) — . (2 .2.20)

I VI’ 0 x > x *(a)

No te that

x*(cw) — X*(Q) + rv(a) (2.2.21)

I

II
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and 
- .

X*(a) � X*(ai) if a � a1 . (2.2.22)

It might seem that, if for some n and a > a1 we have
x*(cr) > x*(aj) (thereby implying by (2.2.21) and (2.2.22) that
v~a~ > v(~1)), we would have lx~(a)-4(a1) l  � 2V’r f or m ~ n.
Such a result could then be used to bound the width of a numeri-
cal “shock”, or rapid change in u including [cr1,a],and lead to
a convergence result and error estimate. Our expectation is
wrong, however , as we may see by considering the examp le

1 x < O
u°(x) (2.2.23a)

0 x > 0

with the velocity profile

0

v(a) — - 1 - s a , € > 0 . 
- 

(2.2.23b)

1 1 < c x < l

1
The exact solution of (1.1.2) with initial condition (2.2.23a) and
velocity profile (2.2.23b) is

1 x < — ~~’ € t

u(x ,t) — 
~~ 

- ~
. s t < x < 0 . (2.2.24)

0 x > 0  
-

~ I
We have not shown that the approximation to (2.2.24) does not have
numerical shocks whose width is bounded by a multiple of i , but
only that a conjecture which would readily lead to a bou~d of tha t
typ. is invalid . The violation of the conjecture seems ~o have
scmathing to do with the non-monotonicity of v (a) in (2.~L23b). ] —

-60-
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A more graphic demonstration that we cannot hope to have
numerical shocks of thickness 0(T) as T 4 0 when v is merely re-
quired to be measurable is given by the following example. Sup-
pose that v(a) is measurable and takes on the values 0 and I,
such that the measure of the subset of any interva l in which v is
I is one half the Lebesgue measure of the interval , and the measure
of the subset in which v is 0 is also one half the Lebesgue measure
of the interval. Consider the initial profile given in (2.2.23a).
We know that the exact solution to the problem is

1x <~~•t

u(x ,t) = . (2~2.25)
(o x >~~~t

On the other hand, we compute

x < 0

u’(x) — 0 < x < ¶ , (2.2.26a)

X > T

I 
~~

l x < 0

I 0 < X < T
P t?(x) 

~ 1 , (2.2.26b)

1 ‘0

1 1 x < O

0 < x < r8

K U 
i?(x) ¶ < x < 2i , (2.2.26c)

- 
I I 2r < x < 3r

1 
0 x > 3 r

I 
—61—
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(1 x < O

115
0 < x < T

r < x < 2 ’ r
u4 (x) — / , (2.2.26d)

2 r < x < 3 r

1
3 T < x < 4 r

0 x>4i

and so on. It is apparent that we get a binomial distribution for
the “front”, which becomes a Gaussian distribution in u’~’(x) as n t~’
Accordingly , the width of the front is 0 (~/nV’r ) = O(Y/~ V) where
t — flT. In this case the time step T gives an effective “viscosity”
O(V~i’).

A natur~
1. conjecture to make is that when v(”) is bounded

measurable the width of shocks is O(.JtTV). We do nothing further
in this report to establish the conjecture, but it would appear to
be susceptible to proof by probabilistic methods.

For the remainder of this section we focus on the case where
v is monotonic. Since we have already required the initial profile
tP(x) to be non-increasing and we know from section 1.1 that the
algorithm (l.l.l2)-(l.,l.l4) gives the exact solution to the problem
in this case when v is monotonically non—increasing, we shall
consider the other case, where v is monotonically non—decreasing.
That is, we require

v(a) � v(a1) if a � a1 . (2.2.27)

With the assumption (2.2.27) and the various simplifica-
tions of the general initial va lue problem which have been made ,

K 
we could plunge directly into a proof of our central result. We
will do this shor t ly, but firs t we will consider some simpler re-
sul ts which illustrate the ideas we use in carrying out the proof .
There will be some fur ther discussion of the types of situations
which may arise in implementing the algorithm (l.l.12)-(l.l.l4) ,
in order to better motivate the language in which our central
result is cast.

-62—
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We begin by ver ify ing, for the case (2.2.27), the conjec-
ture tentatively put forth after equation (2.2.22), and shown to
be invalid for general velocity profiles v(a).

Leama 2.2.1: If the velocity profile satisfies (2.2. 27)
and for some n � 0, a1 � a3,

x*(cvi) � x~(a3) , (2.2.28)

then f o r m � n ,

� 2vr . (2.2.29)

Proof : We shall show that

x:cas) - 2VT � X*(cri) ~ X*(aa) ,  in � n. (2.2.30)

From this we get, by (2.2.21) and (1.1.28),

- 2Vr � x*(al) � x~(a3) + 2V’r

which is the same as (2.2.29) . Equation (2.2.30) can be established
for in — n, since

- I
X ( a3) - x:(a~) 

— x (a9) - x (a1) + I(v(at)-v(as)) � 2W

(2.2.31)

j  by (2.2.28) and (1.1.28). We suppose that (2 .2.30) is true for m,
and prove it for in + 1.

One half of (2.2.30) is obvious :

X

~~
,1(a1) X~~1(a5)
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IFor the other half , recall from the algorithm (l.l.l2)-(1.l.l4)
that

I
X~~1(a2) � sup x*(a) , (2 .2.32a)

o~[an,U
+] 

m

t
X~~1(a1) � inf x*(a) . (2.2.32b)

St

So 1
X~~~ (a3) - X~~~(a1) � sup x*(a) - inf x*(a)

oE [a3, U’~] 
Dl ctE[if,a1] 

m 

1
max ( sup x*(a) - inf x*(a) , sup x*(a) IoE[a1 ,it] ~~ oE[U ,a1] IS 

aE[a3 ,a1] ~

11- inf x*(a) , SUp x*(a) - inf x*(cY)
)

in

~E [U;a3] ctE [a3 , a1] “~ aE [a3 , a1] 
IS

~ max (2w, sUp x*(a) - inf x
in oE[a3,a1] 1

(2.2.33)

since I
- x (B) � 2W for a � . (2.2.34) 

~1
Given c~ > 0, e~ > 0, we f ind a3 and a4, such that I

cr3 € (a~ ,a1), x (as) � sup x*(ct) - 
~t 

, Iin

(2.2.35)

a~ E [ors,crt), x ( a~) � inf x*(cv) + s, . Iin

I—64 -
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If a3 � ~~, by (2 .2.34) and (2.2.33) we get

X~~~ (cr 3)  - ~~~~ (a1) � 2Vi’ + + e
~ . (2.2 .36)

So suppose a3 < at, . By (2.2.30) ,

X*(a3) - ~
.. X (cr3) - 2V’r � X~ (cr1) ~ X~ (a4) � X~ (a3)

(2.2.37)

Using (2.2.21) and (2.2.27), we find that this leads to

I 
X*(cra) - 2Vr �

and once again we get (2 .2.36). Since e~ > 0 and £~ > 0 arearbitrary, we get

- X*
+j (al) � 2V’r . (2.2.38)

This establishes (2.2 .30) by induction, and the lenua is proven.I The leama shows that~ if X
*(at) and X*(aa)  are “close”,then so will be X*(cat ) and X (ar3) ~for in � n~ We may think of

I this as giving a Lund on the width of numerical shocks. The re-sult is still not as strong as we desire, since we have no ideahow many such shocks there may be. One may envisage the algorithm

I 
(1.1.l2)-(1.1.14) as unfolding through the “interweaving” of van -otis streams. It then appears that, once two such streams are inter-woven , they cannot subsequently become unwoven . Thus , we willnatura l ly want to study famiLie8 of such interwoven streams , in thehope that they will be approximations to the shocks of the exact

K solution. To see what sorts of families of streams we should con-sider, we may return to our initial heuristic discussion of the

‘ 
exact solu tion, where , we recall , we searched for the location ofshocks from “lef t” to “right” , ainimizjn expressions like (2.2.12),and proceeding downward from the “top” U” of the velocity profileto the “bottom”, at U .

I
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Accordingly, we might consider sets of the form

B [ala E [u ,uh , ~ B E [U ,cr] such that x*(B) - x*(lt) o

for some n � m - I) . 
(2.2.39) 1

If we let

inf[v(c~)~~E B J  (2.2.40a)

and

sup[X*(a)IcxEB J , (2.2.40b) I
we can prove, by induction in in, that 

1
- X ( U 4) � ¶(v( 1i~)-q) ) . (2.2.41)

However , it may be that a stream becomes interwoven with a -

second s tream which has itself become interwoven directly with the
stream Uê . Such streams would not appear directly in the set
introduced in (2.2.39). A natural extension of the result given
in the las t paragraph ~hei involves , given a set DC [U ,U~1, intro-ducing a set 

-

Bx*(D) jaicrE [U ,U~], ~ ~E [if ,a] and ~ 6E D such that x~(~)-x (6) ~ O}. 1
(2.2 .42)

We observe that

By~*(D) D D (2.2.43a) 

~1

B~~(D) - ~~~(D) (2.2.43b)

1
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where by § we mean the convex hull of a 8et S:

— (a’a ~ 
E S and a y E S such that 

~ 
� a ~ . (2.2.44)

Then, we can prove the following : If

sup [X (a)laE D~ - infjx (a)IaE DJ � d , (2.2.45a)

then

sup [x~ (a)IaE B
x*(D) ) - inf(X*(cr)laE B

x:(Dfl

� max[d+.r[sup[v(a)~cyE B~0
*(D)-~ J - inf[v(a)laE Bx

*(D)_f
~
fl,

7[SUP [v (cY)lo’ E B.~:(D) ) - inf[v(a’)lo’E B
~
:(D) )] ) . (2.2.45b)

We are getting progressively larger sets of interwoven
streams , but we still have not achieved “closure” of these fami-
lies . The next natural step is , with B

~*(D) defined by (2.2.42),
to generate the sequence of sets 0

B~
1) 

— Rx* (D)

~~~ - 
~~~ * (B~’~) , 

A . .  , (2.2.46)

B(
~~~

1) 
(B(m)) , A..

Since B~
’
~~

1
~ ~ B

(m) and B(Dl) c ~u ,itj V m � 1, we get conver-
gence , and can define

L~* (D) 
~ 

B~
’
~ • (2.2.47 )

4 
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I
Then

B
~~
(
~x*(

D)) = ~~~(D) . (2.2.48)

With this much as background , let us finally define the
sets which will appear in the statement of our principa l result.
We have partitions fl

~ 
of the interval [u ,U4J. By this , we mean

that there are ordered sets An C [tr ,u+] of point s , labeled by
the parameter a, such that with each a E A~ there is associateda set D5(a) with the following properties :

� a if B E D (a) , (2.2.49a)

a1 E A , a2E A , a1 >a2 , B1 E D(~), B2E D (a2) B1 >B2 .

(2.2.49b)

We further require that

U’~~E A Y n � 0  (2.2.50a)

and

~~~~ 

Dn(a) 
= [U ,U+] V n � 0 . (2.2.5Gb) 1

We may restate (2.2.49b) as

a1 E ~~ a~ E A , a1 a2 D ( a 1) fl D (a2) — ~ .

(2.2.51)

The sets A
5 will have the property that

An 
C A~ _ 1 C . . .  C A0 — [if,u’~] . ( 2 . 2 . 5 2 )

I
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Thus ,

D~ (a) = [a}, a € [U , U~~1 . (2.2.53)

(2.2.53) describes the partition fl0. We will have described all
the partitions if we can show how to get from U to U

fl 5+1

To get from U to U we do the following : We form the
n

function X~(a) in accordance with the algorithm 
(1.l.12)-(1.l.l4)

a.-ad the definition (2.2.19). Suppose we have a set DC [U ,u+].
Given D, we define a number a5

(D) :

a5(D) sup[a~a € ~~ a ~ 
E D such that B E D (cr) )

(2.2 . 54)

Now we define another set by

C
x*(D) [a~aE [U ,an(D)], 

a yE A , S BE [u~~fl, and S 6€ D such

(2 .2.55)

that a € D (v) and x~(5) 
- x*(6) � 0J

Note that

C
x*(D) D

and

‘
~~~~D)= Cx*(D) 

,

where we use the notation (2.2.44). Also, if

D
~
(Cr) fl C~* (D) , (2 .2.57a)

then

D5
(a) C ~~ (D) , (2.2.57b)
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and , if

C , (2.2.58a)

then

C~* (D1) 
C ~~~ (D2) . (2.2.58b) I

S fl

Next we generate the sequence

r(1)(D) = C~* (D) 1
r~~~(D) = CX* 

(r~~~(D)), ~~
A .  

, (2.2.59) 1
r(

~~
1)

(D) = C~* (t’~~~(D)), 
... . I

Since r(m)(D) C [U
_
,U+] and r(m~~ ~ r

(
~
’) v in � ~~, we can define

(D) U r(m)(D) . (2.2.60) 1
For each a E A we findn

~~~~~* (D (a) ) . (2.2.61)

Clearly,

C~* (D~~ 1 (a))  — D~~ (a) . (2.2.62) 1
It follows from (2.2~54), (2.2A55), (2.2.59), and (2.2.60) that

E D
~+1 

(U4) and U 4 D +1(a) for a € A - [u+). Now we take a
subset of points a E A5 such that the associated sets D5+ (a) are
a disjoint collection of sets covering [ir ,U”i. From the above , we Imust have u+ in this subset. Tentatively, we call this subset of

I
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points Afl+l . Since we shall see in the next paragraph that A~~1
thus defined is determined uniquely, we have also defined the

partition U
n+1

To see that A +j is defined uniquely, we proceed by induc-

tion. It is clear from (2.2.52) that A0 is uniquely determined.

Assume that A
n is. Now, suppose that An+l is not defined uniquely ,

so that there are two sets , An+1 
and A

~+ 
, satisfying the condi-

tions of the definition. Let a E A
+ , a 4 A ’÷ . Since

A C A , a € A . Also , it is clear from the preceding results

t~a~ a # U4. l’~en ~~~~~ E A such that a(1) > a, a €
and a

(1) E A~~~. Since A~~ 1 
C A , a~

’
~ 

€ An~ If a~1) E

and a E D
n+1 (a~

’
~) ,  we get a 4 An+i~ by the requirement that the

I sets [D +1(a)LaEA 5÷ } 
be disjoint. Since this is a contradiction ,

we find a(1) 4 A . So 
~ a

(2) 
> a~~~~ with a

(2) E A C A and

i a(1) E D~~1 
(a(2)). Since c~~

1) 
E D

÷
(a(2)) Cx* (D~~~1(a (2) ))  by

I (2.2.62), it follows from (2.2.57) that D5(a~ 
)
) C D~~~1

(a(2~5.
From (2.2.58) we get C,~ (D

5
(a~’~~) C D5+1(a(9)) ,  and in general

I r(m)(D (a(1)) C D
n+1

(a(
~
)). Hence, f rom (2 .2.60) and (2.2.61),

D~~1 
(a(’)) C D

+ 
(a 4 2 ) ). Since a E D +l(a

(1) ), we get a E

I D +1
(a(

~
)) for a € A

5÷ 
and e A

+
. This gives us a contra-

diction with the required disjointness of the sets (D5+1(a)la 
E

I A~~1). Accordingly, A~~ as defined must be unique.

The sets D (a), a € A , have the f ollowing proper ty : If
- I ~~ replace u°(x) by 

-

I U?
),
(X) in min(tP(x),y), � a , (2.2.63)

~ I 
then for 0 � in ~ n X (B) for B E D5(a) is unchanged.
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I
Let us now prove the following lemma.

Leimna 2.2.2: Let the sets A~ and the sets D~ (B), B E A5, -

be constructed according to the prescription above. Then for
n � 0 ,

sup(x*(a)IaE D (B)J - inf (X*(a)IaE D (B)) � T[sup[v(a)~ aE D (B)}

(2 .2.64)

- infjv (cr)IaE D (B)J] . I
Proof: The case n — 0 is trivial , since, by (2.2 .53), 1
supjX (a)IaE fl~(~)) — inf[X (a)IaE D

~, (B )J  = X (B) , (2.2.65a) I
sup[v(a)IaE fl~(B)~ inf{v(a) ~cy 

€ D0(B)J = v(B) . (2.2.65b)

We proceed by induction. Thus assume (2.2.64) true for n. We prove 1it f orn+l . -

As in the proof of letmna 2.2.1, we have

X~ (a) � sup x*(8) , (2.2.66a)
BECa ,U4] n

� inf x (B) . (2.2.66b)
BEEU ,cr]

By the cons truction of D
~~~(B) with ~ 

E A~~1, if a ~ 
and a 4 D~~1(B),

then x*(ci) > x~(y) for all ‘q E D~~1(e). Likewise, if a � B and

cr 4 ~~~~ (a), then x*(cr ) < x*(y) for all y € D
5+1(~

). Hence the
induction will follow for (2.2.64) if we can show that 

- 

-

~I? ~
r
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sup (x*(a)Ia E D~~~(~)) - inf[x (a)Ja E D5~ 1(8)J

(2 .2.67)
� T[5up(v(a)~a E D~~~~~ ($)J  - inf[v(a)Ia E

First, we try to bound

sup [X*(~)~~ E C
~* 

(D5(B))) 
- inf[x*(a)Icx € C~* ( D ( ~ ))~ . (2.2.68)

As in the proof of lenina 2.2.1, this can be approximated arbi-
trarily well by x~($1) - x~($2) for some B~ E C.~* (D5(B)) and

I 82 E c~~ D5t8~~ . If 81 ~ 82,

I x*(81) - x*(82) X~(81 ) - X~(82) +

(2 .2.69)J �

I and we get the desired bound.

Suppohe 8~ < 82. We can write 8~ € D (y1), 8~ 
E

such that 2 
~ y1 

and 8~ � y2 with x~($~) ~ x~(61), x~(B~ ) ~I x ( 6 ~) and 61 E D (8), 6~ E D5($),  Clearly, 8 E C~* (D (B))L y and $~ € C * (D (8)). Since B1 < 83, B1 E D (B) $~ 
€ D ($).& I In that case,

- - I x*($i) - x*(Bg ) � X~(~1) - X
*(h) � sup(X*(a)la E D ($))

(2 .2.70)
- infCX (a)lcwED5($)) ~ 1[sup(v(a)IaED5(B)) - inf [v(a)I aED~ ($) ) ]  ,

on use of (2.2.64).

I So consider the case $~ 
E D5($), BI 4 D ($). Suppose

~~, where $~ 
is given above. ‘Then

I
i
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x*(Bj) - x*(8~) � T(v(~~ )-v(B~ )) 1~
- (2 .2.71)

� ¶[sup(v (a) EC
X*(D (B))D (B)J ~~~~~[v(a)~~ Ec *(D($))..D (ByI] I

Otherwise B~ > B~ . Since B~ E D (y1), we ~have B~ 
€ D (y1 ).

x*(Bi) _x*(B~) � suP(x (a)IaED~(y1)J_ inf(x*(a)laE\D (y1)), y1 < B. I
(2 .2.72) 1

As we have done bef ore , we approximate the right h~nd side of(2 .2.72) by

x*(ai) - x*(a3) - X*(a~ - X(a2) 
(2.2.73) 1

+ ¶[v(a1)-v(a5)], a1E D (y1), a2E D (y1) .

When a1 � a2, an upper bound is j
X~ (a1)-  X ( or2) � r[supjv(a)faED (Yi)) - inf(v(a)Ic~ED~~.y1 )fl, (2.2.74)

by (2.2.64) . When a1 > a3, we get the same bound dir otly from(2.2.73). In either case, we get

x ( a 1) - x (cr~) I
~ 
T[sUpjv(cr)IQIECX*(D (B))..D ($)J - inf(v(a)IcrEC

~*(Dn(~
))_D

n($))], -i
since D~(~~) C 

~~~ (Dn(B) ) and D (y1 ) fl D ($) —0 . Th~s las t
bound is the same5as the right hand side of (2.2.71), Which holds,therefor e , whether ~~ ~ 

or > B~.
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Since Ba E Dn(B)~ we get, with 61 given as above,

X*($j ) - x*(Ba ) = x*(Bi)_x *($15+ x*(~~
1
) - x*(61)+ x*(6i) -x~(B2)

� ¶[sup(v(a)tcrEc *(D (8))-D (8)1- inf[v(a)IoEC
~*(D 

(B))’ 1’5(B))]n n

+ T[Sup[v(a)IaED (8)) - infjv (a)IOED ($))]

� ¶[sup[v(cY)IQEC
X*(D (8))} - inf[v(a)IaEC~*(D5(B))}] . (2.2.75)
n 5

Here we have bounded x~ (61) - x~(Ba) in the same way we bounded
x*(cri) - x*(aa) in (2.2.73).

We have treated the cases .1 ~ Ba and 81 < 82, 82 E D (B).

Suppose now B1 < 83, 82 4 D5(8). Consider the case 82 � y1, with

y1 defined above. Then since B~ 
< B2 and 81 € D (y1), we have

B~ 
€ D (y1). As above,

i 
n -

x*(Bt)_ x*(82)� T[sup (v(cy)IckED (VI))- - inftv (a)IOED (y1))-] . (2.2.76)

Otherwise 8~ > V1 and 82 € D~(v~)~ V1 < < 8. Choose

I a E D5(B) such that v(a) approximates inf[v(a)IaED (8)). Then

a>82 . So

I
x*(or)_x*(Ba)_ X (a)— X~(82)+’r [v(a)-v(B2)]�r[v(a)-v (B2)]

(2.2.77)

1 
- With 

~ 
given above , we have , for 8~ �

- x~(B~) �
I 

~ T(sup (v(a)IQED (Vt ) )  - inf(v(cr)joEC
~*(D5(8))fl 

. (2.2.78)

I -75-
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For $ > 8~
, x~(81 ) - x~ ( 8 )  can be bounded just as we

did in (2.2.72)-(2.2.74). A suitable bound was given by the
right hand side of (2.2.74), which in turn can be bounded by
the right hand side of (2.2.78). Thus (2.2 .78) holds whether
8 ‘ 81  or B~ > B~ .

Choosing a E D (B) appropriately , we can bound x~(a) -

x (8a) above as closely as we desire by T[inf[v(a)IOED (B)) -

v(Ba)]. Finally, write

x*(8i)~ x*(Ba) = x*(81 ) ~x*(~~ )+x (B~ 
) -x~ (6~ )+x*(6i ) -x (a)+x~(a) X~(B2)

� T[sup[v(a)IQED (y1)1 - inf[v(a)toEC
~*(D

(8)))]

+ ¶[Suptv(a)IOED (8)) - inf[v(a)IQED (5))]

+ r[inf(v(a)IQED (8)) - V(89)]

~~
T[sup[v(a)IaEC

~*(D
(8))) - inf [v(cr)IQEC

~*(D (8) ))1

Here we have used the fact that $~ > y1, and we have bounded
x ( 6 1) - x*(a) in a now familiar way.

Thus, we obtain

- inf [x*(cy) I O E C
X*(D ( 8) ) )

S n (2.2 .79)
� r[sup(v(or)IoEc

~
*(D ($))J - inf(v(a)IoEC

~*(D(B)))J .

Now we turn to

suPcx:(cr)Io~r
(2)(D (B))) - in f ( x (cr)IoEr~

5
~ (D ($))) , (2.2.80 ) 

A
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where r(2)(D5(8)) was given in (2 .2.59). As before , this can be

approximated by

- inf(x (a)IaEI”~~(D5(B))), 81E r (2) (D~(B))

For a E r~~~(D (B)) 
- I’~

’
~(D (B)) x~ (cv) > x~(6) for all 6 E D (B).

Thus,

inf(x*(a)IaEr
(2)

(D (B)))-_ inf(x*(a)Ic,Er(1)(D (B))J. (2.2.81)

Suppose B1 € r~
’
~~
Dn $~~

. Then 8up[x (a)IcxEr(2)(D~(8))} can be
approximated by sup(x~(a)IaEr~

’
~ (D~(B))).

Consider the other case, B~ 4 r~’~ ( D ( B )) .  81 E D (V1).
Then ~ B~

’ 
‘ V1 such that x*(B~() ~ x ( 6 1) for some 6~ E r (1S~( D ( B )) .

8~ E r (
~

) (D5($)) . If v1 ~ r (t ) ( D ( B ) ) ,  we get 81 E
It which is a contradiction. Thus v1 4 F(1I(D (8)) On the other

hand,
- - 

L $1E r~~~(D ($)), etE D5(V1) ~ V1E r
(2)(D (B)). So

• I V1E r~~~(D5(B)) — r(1)(D (B)) Similarly , 8 �

I y1E r~~~( D ( B)) - r(1)(D (B)), and the connectedness of

i 
r~’~~(D5(s)) imply that B~ E r~~

’(D5(B)) -

Consider the case ~

I
I 

x ( B ~ ) - x ( B ) — x:(81) - X ( 8~ ) + ¶ (v(Bj ) -v($~ )) � r [v ($ t) -v(B~ )]

~ r~suptv(cr)IoEF~~~(D5(B)) - r~~~(Dn(B)) ) 
(2.2.82)

I — inf(v (or)IoEr~~
> (D5($)) - r (t) (D5(B)) fl
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In the other case, $~ 
< Br

’. Since 81 E D (V1 ) we have B~” E D~(V~).
As before, we get in this case

x*(Bt ) - x*(8,~) ~ ¶[sup iv(a)IOED (V 1)) - inf[v(a)IOED5(V1)J]

which in turn is bounded by the right hand side of (2.2.82) since

V1 € r~~~( D ( B )) —

Thus,

x
*
(8t ) - inf (x*(a)ta r

(1)
(D (8))) = x*(Bi ) - x*(8~) + x*($~) - x~ (6~ )

+ X*(ôI) - infjx*(a)I~~r
(1)(D (B)))

~ ¶[sup(v(a)IaEr (D (B))~r
(t)(D(B)))=inf[v(cr)IoEr(2~D (B))~r

(1)(D ($))fl

+ Tlsup [v(a)IaEr(t)(D (8))) - inf[v(a)la~r~
’
~(D (B)))]

~ T[sup(v(a)~oEr~
2
~(D (B))} - inf(v(a)I~~r~

3
~(D (8)))] . (2.2.83)

We may continue in this way, getting

sup(x (cr)IoEr(m)(D (8))} - inf(x~(a)jaEr
(m)(D ($)))

(2.2.84)

‘ ~~~~~~~~~~~~~~~~~~~ - inf(v(o!)IaEr$m)(D5(8)))]

and

- inftx*(cr)lcr E~~*(D (B))) 
,,
. - -

n - (2 .2.85)

~ v[suP(v(o!)~arE ç*(D5(B))) 
- inftv(or ~c r E~~.4D~(S))fl

}
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This establishes (2.2.67) by induction , and hence (2.2.64)
and the lemma.

Thus, for v monotone , the total width of all shocks as werun down from a peak at U~ to a minimum at U is no more than
TIv(U+)_v(tr)I. A natural conjecture to make is the following :
The total width of all shocks as we run down from a maximum 1J~ toa minimum If is bounded by

T var(v;[If,u~J) , (2.2.86a)
-h

where the variation in the interva l is defined by (Reference 8)

~~ var(v;[If,lf~]) = T~ ~ ~
v(cY.)-v(a~~~)I (2.2.86b)

and ITis a partition of [u
_
.u+] as follows :

If — a0 < a1 < < a = U~ . (2.2 .86c)I
We leave the proof (or disproof) of this conjecture to the reader.
Since a function of bounded ‘- - .-iation is differentiable almosteverywhere, it is clear anyway that v of bounded variation in[u ,u~) can be approximated as closely as we desire (in the maxi-
mum norm) by a piecewise constant v. And for a.u.c. initial data ,we have bounded the error induced by such an approximation in
lemma 2.1.3.

I’. The situation is this, then: After a time steps we have aprofile X*(cv) and , for B E A5, shocks spanning the range of veloci-ties in tile D5($). To complete our analysis , we should compare our
• approximate solutions with the exact solution X ,(B) given in(2.2.16).

Because of the way the sets D~(8) for B E A5 were con-
struct.d , we see that in the first n steps the algorithm (1.1.12)-(1.1.14) produces no “cascading” of the quantity U~ (cf (1.1.3))into the sets D,,~(B) from above, nor out of these sets b low. Amore ptecis . statement of this property, in terms of the set fuse-tion U1 introduced in equation (1.1.39a) and the operator D, is
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U~ (Dum
;c2) = U1(Du°;~)) + m’r 

j’ v(a) da, 0 ~ in ~ n , (2.2.87a)
D (B)

where i

C) [(x ,a)~~x� X~ (U+) - irrV, cxED (8), B E A )  . (2.2.87b)

Defining, for 8 E An~

D< (8) inf(a(aED (B) } (2.2.88)

we find from (1.1.24) that

B
ni j v(a)da = ~

< 
(X*~(a)_X (a))da. (2.2.89)

Using the result in lmmna 22 .2 that, for a E D~(8)~ B E A ,

suptx*(a)Ic,ED (8)) - ‘r[sup[v(a)IcYED (B))- - inf[v(a)IOED (8))]

� X (a) � inf[X
~
(a)IoE D

n(8))+i[sup(v(a)IaEDn
(8))_ inf[v(a)IQED (B)J] ,

we see that (2.2 .88) leads to

____ ____ 

I
1X (a) - X (a)da - 

B-D< ~

‘

1 
(cr)dal

(2.2.90) -

� rEsup (v (a)IOED (8)) - inf[v(cw)IOED (8)fl ,

f or all ~ € A5 such that D< (B) ~ B. In this paragraph and the fol— 1lowing ones, one may, if he desires, consider that the monotonically
non-increasing function 1P (it) has been replaced by a histogram, as
described in (2.2.l)-(2.2 4). In that case , the sets A5 already
introduced and th. sets B

~ to be introduced are all finite and fl<($) -

-

~ for B E A5. Our fina l error estimate will be independent -
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of the numbers of points in the sets An and Bt, and hence inde-pendent of how closely we approximate tP(x) by a histogram, andwi ll hold quite genera lly. Alternatively, we may use the follow-ing simple bound for the error induced in the fronta l locationsX~ and X~ by replacing u
0 (x) by the histogram (2.2.la), for P(x)monotonicalj.y non—increasing and satisfying the conditions (2.2.5)—(2 .2.7). For, it is clear in this case that

8°(x) = u0(mó) � urj (x-ô), mó ~ x < (m+1)6 . (2 .2.91)

Since re~ lacing u0(x) b~ u0(x-6) will have the effec t of replacingXt and X,, by Xt+6 and X~+6 , respectively, and since the fronts X~and X~ depend monotonically on the initial data, as described
in the last section , we see that

Xt(u°) � X~(8°) � Xt(u°) + 6 , (2.2.92a)

X*(u0) � X~(8°) � X~(u~) + 6 , (2.2.92b)
and

l X ~ (uu )~ xt (u0 ) j  � IX (8o)~
x
~(~o)I + 6 . (2.2.92c))

Given the exact solution Xt(B) in (2 .2.16), we can effecta partition $
~ 

of [U ,U~] as follows : For each ‘y € [U
_ ,u+1 wedefine a set

E
~
(V) (afaE [U ,V], X

~
(a) = X

~~
(v)} . (2.2.93)

i - I 
+Then we find a set Bt C [U ,U ] such that for y € 

~~ 
the setsjEt(V)J are a disjoint covering of [~~~~~~~~1 We let ~~ = [U ,if~]and E,~(v) — LV). Just as we proved that the sets A5 and the parti-tions fl~ were defined uniquely , we can show that the Bt and 8~ areuniquely determined . As we definal D<(B) in (2.2.88), we can define ,for y E Bt ,

E<(V) inf (aIaE 1 (y)) . (2.2.94)
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The analogue of (2.2.87) in this case is

U1(Du(.,t’);C)) = U1 (Du(~ ,0);Q) +t~ J~ 
v(a)da, 0�t ’� t ,

Et (V)

(2 .2 .95a)
where

[(x ,a)jx ~~ Xo(U~ ) - tV , a E E
~

(V) , y E B
~

) . (2.2.95b)

Lemma 2 .2.3: If u0 (x) — u(x,0),

A C B . (2.2.96)n nT

Proof : It follows from (2.2.10) and (2.2.19) that X (a) =

X0(cx). The lemma is trivia lly true for n = 0. We will prove the
lemma for n � I by contradiction. So suppose ~ E A~ and B E E (V).
V > 8. V E Bni. First, consider the case E< (V) < B. Over the~~et

((x,cir )fx � Xo (IJ+) - n’rV , E<(V) 
<a <B ) , (2.2.97)

we can have no gain of U,(C)) in the approximate solution , and we
can have no loss of U1(~

) in the exact solution, beyond that which
flows across the boundary at x — X0(Tft ) - niV. Thus,

(B-E<(V)X 
~~ [X0(a)+ nTv(a)]da , (2.2.98a)

E<(V)

B B
,~
‘ 

X*(cr)dc, � ,
‘ 

1Xo (ct)+niv(a)~~da , (2.2.98b)
E<(y) E< (V)

and

� X5 (y) . (2.2.98c) -1
Similarly, over the set
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C)> f (x ,cr)~ x � Xo(U+) - nTV , B < a < y) , (2.2.99)

we can have no loss of 1J1 (C)) in the approximate solution nor gain
of U1 (C)) in the exact solution , except for the flows across x =

X0(Ir~) - n’rV. This gives

f~ X~(c~)da � [X~ (a)+ n’rv(a)]da ,

(V
~
B)XflT(Y) �~~~~ [X0(a)+nTv(a)]da , (2.2 .lOOb)

- - and

X
*
U~
+

) � X (y)  . (2.2.lOOc)

Since monotonicity of X~ requires X~ (B
+
) � X~(B), the inequalitiesin (2.2.98) and (2.2.100) mus t be equalities and X

~(B) = X~~(V) .In particular , from (2.2.lOOa ,b) and the monotonicity of we con-
clude that

X~ ( V )  = X (y) X~(8)

But this violates the definition of B E A5, and we get a contra-diction.

Next, consider the case 
~
<(y) = B. The results (2.2.100)

still hold. On the other hand , from (2.2.16) and our construc-
tion (l.l.12)-(l.l.14), we still must have

X (V) = X~~(B) � X~ (~ ) + niv(B) X (B) + niv(B) ~ X~ (B)

(2.2.101)

if 
~ 
E A~, the inequalities in (2.2.100) must become equalities ,

and we get a contradiction as before.

Thus, if 
~ 

E A5, we also have B E B5~. Two cases may
arise: (i) D5(B) — En.r(B); or (ii) S y E D~(B) with y < B and
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y E 8ni’ In the first case, the same considerations as above show
tha t

B 
-j’ X~(a)da = (B-D<(B)) X~~

(B) if D<($) < B , (2..2.102a)
D<(B)

X (B) = X5~
(B) if D,<(B) = B . (2.2.102b)

Either way,

inf(X*(a)IaE D (B)) � X~~(B) � sup [X*(a)~~~E D~(B))
(2 .2.103)

In the second case, if Ik(B) < y < ~, our arguments basedon the flow of U1 indicate that

? X*(a) da rB X5~(a) da (2 .2.104a)

and
V V
S X*(a)da � 5 X (a)da . (2.2 .104b)

D,<(B) D<(B)

From (2.2.lO4a) and the monotonicity of both X~ and X , we concluden n i

infCx*(a)tcrE D (8)) � X5,.(y) . (2.2 .105a)

Likewise, (2.2.104b) leads to

Xm.(V) � sup tX*(a)IaE D (B)) . (2.2.105),)

Finally , suppose V — D.~(B) < B. The result (2.2.105a) still holds.
On the other hand, a direct cheek of (2.2.16) and the ‘~onstruction(l.l.12)— (l.l.14) shows that

II

- 
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- - X
~~

(y) — 
~~ (y) + nhlv(y) = ~~~(y) + nhlv(y) ~ X (y)

(2.2.1.06)

In all cases considered, we have shown that, for y E

- 

L 

infCx*(a)laE m~(B)1 � X~~(y) �

- 
- 

(2.2.107)

Combining (2.2.107) with (2.2.64) , v- -.’ see that we have proven the
following theorem.

Theorem : For V E

� ‘r[sup (v(a)IcrE D (B)) - inf[v(cy)~aE D (B))]

(2 .2.108)
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