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ABSTRACT

% In this report, which is the first part of a more compre-
;Q hensive work, we pose, and give a solution algorithm for, a hyper-
= bolic conservation law. The algorithm is of an embedding type, in
that the solution is built up from Green's functions for simple
processes taking place without reference to boundaries, and the
locations of shocks are not explicitly followed, There is a dis-
cussion of boundary conditions and treatment of the Burgers and
Korteweg-de Vries equations. Cursory mention is made of the
extension to systems. Appropriate function spaces for solutions
are introduced. The effects of perturbations in the initial con-
ditions and of the velocity of propagation of disturbances are
analyzed. For a monotonic velocity profile, in the one-dimensiomnal
case without boundaries, a convergence proof and error estimate
are given,
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FOREWORD

1
This report and the ones to follow will comprise the bulk |
of a work entitled "Algorithms for Hyperbolic and Hydrodynamic i
\ Free Boundary Problems". I gratefully acknowledge the support 1
for this work provided by the Office of Naval Research under Task }
NoL_gg_ggé:Qgg&__This task, with the title '"Ship-Wave Interactions'",
has as its purpose the computation, in an efficient and reliable
manner, of the phenomena attendant to the interaction of a rigid
3 body with water possessing a free surface. It is also a pleasure
for me to indicate the time I spent at the Applied Mathematics
Research Institute, sponsored by the Office of Naval Research under
Contract No. N00014-75-C-0921 with the Applied Institute of Mathe-
matics, Inc., at Dartmouth College during the summers of 1975 and
1976, when parts of this work were done. It is my intention to
have the whole work published separately under one cover once
the various parts have been assembled.

YT A R A R
-

The algorithms presented here are all semi~analytical, in
that time, but not space, is discretized, Solutions to free bound-
ary problems are built up out of solutions to simple linear partial
differential equations. The particular type of quadrature scheme
used to solve these simple equations approximately, and thereby
effect the final numerical implementation of the algorithms on a
computer, is left to the discretion of the reader. All proofs of
convergence refer to the semi-analytical algorithms presented.

In the work to follow, there will be some unevenness of
rigor and completeness, for which we offer no apology. 1In the
first part of the work we present some algorithms for the solution
of free boundary problems. The hyperbolic problems are not moti-
vated so much physically as they are mathematically, to illustrate
the ideas that we bring to bear on the hydrodynamic problem. There
is more physical motivation for the algorithm for hydrodynamic flows,
and we present the motivation with the algorithm. More recondite
features of the algorithm, however, are treated more fully only at
the end of this work. J

In analyzing the well-posing of the hydrodynamic initial
value problem in the sense of its unique and stable solvability by
the computational procedure to be presented, we will need to clari- ‘
fy the various types of instabilities which can occur. Among the
flows which can evolve in this way from the initial conditions are
those which may conventionally be regarded as "turbulent". We will
show the relationship between stability, energy conservation, and
turbulence. Accordingly, a considerable portion of the work will
contribute toward the outline of a rational theory of iunviscid in-
compressible flow, especially the free boundary problem, and the
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development of a preliminary theory of hydrodynamic turbulence.
The essential physical ideas for achieving these objectives will
be clarified, and the outstanding mathematical questions will be
put into sharper focus.

I plan to follow this with a later work, which will contain
a complete proof of the convergence of the algorithms presented here,
the development of a full theory of turbulence for inviscid incom-

pressible flows, and the proof of regularity results for general
turbulent and non-turbulent flows.
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CHAPTER ONE

A HYPERBOLIC FREE BOUNDARY PROBLEM

1. Statement of the Problem and Presentation of a Solution Algorithm

We start by considering the initial value problem

ut+v(u)ux=0 3o e g Sl € >0, (1.1.1a)

u(x,0) = uy(x) , =*< x< o , (1.1.1b)

s is a model hyperbolic initial value problem, and we will present
. semi-analytical algorithm for its solution. The proof of conver-

gence of the algorithm, for important classes of functions v(.), will
be presented in Chapter Two.

As is well known, there is generally no guarantee that problem
(1.1.1) possesses a unique solution, globally in time, Even if a
unique solution exists for an initial time interval, there will be a
tendency for internal discontinuities (""shocks") to develop. After
the appearance of a "shock", equation (1.1.1) can be solved only in a
generalized sense, and must be supplemented by various physically moti~
vated "shock conditions" which are prescribed at each such disconti-
nuity. Thus, the problem becomes a free boundary problem, since the
equation (1l.1.1) will at best possess classical solutions only through-
out domains which do not contain shocks, but which have shocks as

boundaries, and the locations of the shocks must be determined as
part of the solution of the problem.

Since problem (l.1.1) is not in itself physically motivated,
we will artificially provide an underlying "physical" principle by re-
casting it in "conservation" form:

u, + (F(u))x =0 , (1.1.2a)
F(u) = [Y v(@)de . (1.1.2b)

-] ©
Assume that f_,, uodx and L” W (x)dx are defined, and that u(x) = 0
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as |x| - ®, We get

b .ar.mw u(x, t)dx = 25 U (x)dx . (1.1.3)

thee O

s

WPy

In developing an algorithm to solve (l.l1.1), we will take care to
conserve U; in (1.1.3). Moreover, we shall supplement the problem
by the condition that

d
3 be(t) <0, (1.1.4a)
where
Up =) P(x,t)dx . (1.1.4b)

(It should be pointed out that the conditions (1.1.3) and
(1.1.4) serve only as mathematical motivation, so that we may illus-
trate, for the simple problem (1.1.1), ideas which will be developed
more fully later., In fact, we will see in a later report that an
equation like (l.1.la), with v(u) = u, arises in a very simple flow
problem, but that the equation by itself is in the most general case
devoid of meaning unless it is coupled to an equation pe + (puw)_ = 0.
In this case, the underlying physics of the problem shows that “the
correct generalized solution of (1l.1.la) depends critically on the
function p(x,0) = po(x).)

The algorithm we use to solve (l.1.1), supplemented by (1l.1.3)
and (1.1.4), is of an "embedding" type, in which the shocks are not
followed explicitly. Such a method is very efficient to treat cases
where there are many shocks, or when there are several independent
"space'" variables x, as we shall see in the following. The technique
has something in common with other embedding techniques like the
method of artificial viscosity (Reference 11), except that here no
extraneous parameter is introduced, beyund the time step T in terms
of which the evolutionary problem is solved. The method we use is
built on the basic conservation "law'" (1.1.3), which we regard as
more fundamental than the differential equation (1l.l.la). Similar
embedding methods based on conservation laws have been successfully
used for other free boundary problems (References 2 and 3).

Before proceeding with an algorithm to solve (1.1l.1), let

us consider a slightly generalized version of the problem, where the
solution of

u #(FW) =0, % <x<x, t>0, (1.1.5a)
X

-10-

1




THE JOHNS HOPKINS UNIVERSITY

._ APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

U(x,0)= uO(x)’ Xo S x< X (1'1°5b)

supplemented by boundary conditions at x, and X, , is sought., (It
: turns out that some natural boundary conditions for the problem are
: expressed simply in terms of a distribution function which appears
in the execution of the solution algorithm. Therefore, an explicit
statement of the boundary conditions is deferred until we describe
the solution algorithm in detail, below.) We thus have an initial-
boundary value problem.

Generalizations of equations (1.1.3) and (1.1.4) are

4 Ib d b <b <
at Y u(x,t)dx = =F(u(b,t)) + F(u(a,t)), Xo < a < x

(1.1.6)
and
& o
qTd, P Out)dxs - Bub,£)) + B (u(a,t)), msa<b sx ,
(1.1.7a)
where
u
Fa(u) =2 [ g v(g)de . (1.1.7b)

Before we proceed with a precise description of our solution
algorithm for the initial and boundary value problem associated with
(1.1.5), let us give a schematic description. To facilitate this
description, we shall assume that u(x,t) 2 0 for all x € [%0,% 7. We
may assume we have a graph of the function u(-,t), for t fixed, as
shown in Figure 1,

* u,

Xg a b X1 .

Figure 1.  Schematic Solution u (-, t), for t Fixed.
-11-
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Since in our conservation law (l1.1.6) changes in the quan-
tity LF u(x,t)dx are brought about through terms which are functions
only of u at the end points a and b, it is suggestive for us to think
of f: u dx as the total amount of some '"fluid'" which is conserved,

except for the amount "flowing'" across the vertical lines x = a and
x = b, In order to avoid confusion of notation, we think of the
plane in Figure 1 as the xo-, instead of xu-, plane. The quantity

LF u(x,t)dx is just the area in the xw-plane contained between the

curves ¢ = 0 and o = u(x,t) and the vertical lines x = a and x = b.
Thus, we may think of the flow as area-preserving, except for amounts
crossing x = a and x = b. One of the principal festures of our al-
gorithm is that this area is conserved, except for such flow across
the boundary.

In addition, we may think of the '"fluid'" as comprised of
"'streams', each moving along at constant «. The portion of fluid

contained between o and o + do and the vertical lines x = a and
x = b has the "area"

dor fb £(x,t,a)dx
a

where
1 0 £ a < u(x,t)

f(x,t,a) = . (1.1.8)
0 a > u(x,t)

The whole fluid area between x = a and x = b is

¢ P
% “a f(x,t,a)dx do .
At each point
u(x,t) = [ f£(x,t,@)da . (1.1.9)
0

Hence the fluid flow may be envisaged as the flow of arn in-
finite number of "streams', labeled by the parameter o, each with
its own area. The area of each stream will change due to the flow

a]2=

e
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of fluid in the stream across the spatial boundaries, and also
due to transfer of fluid from one stream to another. The flow
of fluid in a stream across the spatial boundaries will be
governed by the boundary conditions. The transfer of fluid from
one stream to another will take place in such a way that the total
area in the streams is conserved. The rules governing the manner
in which fluid is transferred from one stream to another inter-

| nally will constitute an expression of the shock conditions which
are imposed. The various streams are indicated in Figure 1 by
the horizontal lines.

To implement our solution algorithm we first convect each
stream independently according to the linear equation

£,(x,£,0) +v(@) £ (x,t,0) =0 (1.1.10)

for a small time interval, called a time step; Equation (1.1.10)
can be solved exactly. We sweep through the streams in the order
of increasing c.

&

%
£
%
&

When v(a) > 0 (v(@) < 0) the stream between o and o + do
enters (exits) the flow domain at x, and exits (enters) at x,. As
is well known, for equations like (1.1.10) we should thus specify
f(x,t,x) at x, when v(e) > 0 and at x, when v(@) < 0. This informa-
tion will be provided by the boundary conditions. When the range
of values of u in the problem is such that we will have v(u) > 0
in one region and v(u) < 0 in another, we may generally expect that
it will be necessary to prescribe some sort of boundary data at
both x, and x,, but in such a way as not to overdetermine the prob-
lem.

Figure 2 shows schematically the domain in the xuo-plane
occupied by the fluid in Figure 1 after convection. The arrows
point to the right for v(a) > 0, to the left for v(x) < 0.

1f, after convection, the stream corresponding to a = qa
has flowed into a spatial dcmain which has not been filled with
all the streams for o < oy, we let the "fluid" in the stream o =
o '"fall" or '"cascade" down to occupy the smallest unfilled values
of o < ap at each point in the domain, in such a way that the
total area of the streams remains unchanged. The result is shown
in Figure 3.

A more mathematical description of our method for obtain-
ing an approximate solution to the problem (1.1.5), subject to

-13-
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X0 a b X1

Figure 2. Streams in Figure 1 after Convection.
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| | Figure 3. Streams in Figure 2 after Cascading.
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boundary conditions to be specified, follows. We shall eliminate
the restriction u(x,t) 2 0 made in our heuristic description above.
In addition to the initial function uy(x), we require functions
u(xe,t) and u(x, ,t) to be prescribed. These functions will be

used to supply the boundary data required to solve Equation (1.1.10)
uniquely, as described above. We assume that uy(x), uU(xy,t), and
u(x, ,t) are bounded from below:

G(xi,t) R, £ =0, X, tE 0,7},

(1.1.11)
uo(x) 2 U<, X € [xOsxl] ’
for some real number u.. Let T > 0 be given. We start with
wW(x) = u(x), x€ [x%,5] , (1.1.12)

and the algorithm will be complete when we specify how to get from
u?(x) to u™1l(x)., Consider the solution of the linear problem

f: (x,t,0) + v(a) f: (x,t,@) =0 (1,1.13a)
subject to the initial condition

0 a < u,

£(x,0,0) = | 1 u, sa<u®x), x€ [x,5] (1.1.13b)

0 o> u'(x)
and the boundary conditions

0 a < u,
£'(%,t,0) = | 1 u_sasiGot+a), v@) >0, 0<t, (l.1.13c)

0 a > U(x,t+nr), v(a) >0

B ) N T Uh S TE G B e ..
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0 <
a@<u,

£7(x, ,t,a) = 1 u sosU(x,tnr), v <0, 0<ct. (1.1.13d)

0 a > u(x,t+nr), v(x) <0

Finally, let

W) = u + v £7(x,7,0)do x€ [%,%] . (1.1.14)

It is our hope that in some sense un(x) will approximate the exact
solution u(x,nT) of problem (1.1.5), supplemented by suitable bound-
ary conditions. We call the parameter 1 the time step. In the next
chapter we will prove the convergence of u?(x) to u(x,t), as 71 =

t/n 4 0, or n t ®», for important classes of problems of the sort
(1.1.5), and we will obtain a bound on the error involved in approxi~-
mating u(x,t) by un(x).

Note that the equation (1.1.13) for £ may be solved explicitly.

The solution is, for 0 < t,

£7(x,0,0), x€ [%,%], «€ C, (1.1.15)

fn(x,t,a) = fn(max(xo,x-v(a)t), max(0, t=- %),a), x€[%,x ], @€ C+ .

fn(min(xl,x-v(a)t), max(0, t- §%§§)o),x€[xo,xl], x € C_

where

Co= falv@) =0}, c .= {olv@)>0}, c_= {alv@)<0}. (1.1.16)

Thus, at no step in the implementation of the algorithm need we take
finite differences. The expression (1.1.15) may be thought of as
giving the solution in terms of the initial and boundary data by
means of Green's function for equation (l.1.13a), and Green's func-
tion for this problem is everywhere non-negative. The entire algo-
rithm is executed as a series of integrations of non-negative quan-
tities.

At this point let us state the boundary conditions we are
imposing on the problem (1.1.5). We let the "density" u(x,t) be

-16-
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related to a "distribution function" f(x,t,x) by

[; u(x,t) = If(x,t,*) = u. +~[m f(x,t,0)do, x € [xO,x;]s t € [O’T] ’
i
(1.1.17a)
0 o< u
£(x,t,@) = D(u(x,t);a) ={1 u. Sasu(x,t), x€ (e 1, e €70,7) .
0 o> u(x,t) (1.1.17b)

For any (x,t) € [x5,t;] x [0,T] we can decompose u(x,t) as follows:

Then the boundary conditions, which appear in the algorithm as
(1.1.13c,d), in terms of the specified functions U(x%,t), U(x ,t),

u(x,t) = A(x,t) + ut(x,t) + u (x,t) (1.1.18)
| where
(%, 8) = ug+ [ xo(@) £(x,t,2)da
‘ ut(x,e) = [ X, (@) £(x,t,a)de (1.1.19)
' u(x,t) -I_: x_(@) £(x,t,a)de ,
' and
1 v@) =0
' Xo (@) = ;
0 wv() #0
' 1 v() >0
X, @) = 3 : (1.1,20)
' 0 v()s0
1 v(@) <0
. X_(a) = 3 .
0 v() 20
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when taken in conjunction with the initial conditions and the equa-
tion of evolution, amount to specifying 1}m u+(x,t) and }}2 u (x,t).
X

Only in special cases, such as when v(a) > 0 for all ¢, so that
x+(a) = 1, do we find that this corresponds to prescribing u at one
or the other of the end points.

A relation like (l.1.17a) may be used in conjunction with
the expression (1.1.15) for f"(x,t,¥) to define a function u™(x,t):

u(x,t) = I (£7(x,t-nt,*)) . (1.1.21)

Note that, according to (1.1.15),(1.1.13), and (1.1.14),

un(x"") - “n(x) > x € ["0:311 s
(1.1.22)

u(x, (n#l)7) = TH(x), x € [x%0,% ]

With un(x,t) defined in this manner, we can show that
results similar to (1.1.6) and (1.1.7) ure obtained, for t-nt
sufficiently small and suitable requirements of regularity on the
initial function ug(x) and the boundary functions G(xi,t). To
show this, we first note, from equation (l.1.15), that

xf £'(x,t,0)dx = [ £(x,0,a)dx + v(a) &; £(a,t’ ,a)dt’

(1.1.23)
- v(@) {: £b,t’ ,a)de’ .

Integrate this over o and use (1.1.21), (1.1.13b), and {(1.1.2b):

I uPx, trnmydx= [P WP(x)dx + £ Fu"(@) - ¢ Fu"())

(1.1.24)
4-{f [5ovie) (£, t’ ,0)-£"(a,0,0)-£"(b,t' ,0)+€"(b,0,0) Jdo dt’ .

-
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Differentiating (1.1.24) with respect to t, we get

%E’ Ib u"(x,t+n7)dx = F(u"(a)) - F(u™(b))
. (1.1.25)
+ % v(@) [£%a,t,a)-£"(a,0,a)-£"(b, t,a)+£7(b,0,a) Jdo

-00

In order to bound the last expression on the right of |
(1.1.25), we will find it convenient to introduce some more nota- |
tion. Let

U = max ( sup uo (%), ‘sup u(x,t), sup ﬁ(xl,t§_ (1.1.26)
xe[xo;xxj CG(O,T] te(o:TJ

From equations (1.1.12) - (1.1.14) and (1.1.21), we see that

u(x,t) S U and £%(x,t,0) =0 for a>U . (1.1.27)

Further, define

P lve)| . (1.1.28)
, U]

V= su
o€lu,

Consider a representative contribution to the right hand side of
(1.1.25):

I% v@) [£%a,t,0) - £%a,0,0) Jdo .

If % s a - v(@)t < %, write

£"(a,t,0) - £7(a,0,0) = £%(a-v(a)t,0,a) - £"(a,0,a) (1.1.29)

~19-
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by (1.1.15), and note, from (1.1.13b) that the right hand side
of (1.1.29) vanishes unless o lies between u"(a) and u"(a-v(a)t).
Thus, suppose %, + Vt < a < x,- Vt, It follows from (1.1.27)

and (1.1.28) that x, < a - v(a)t < x, for all @ such that the
difference in (1.1.29) is non-zero. We find

Im | £"(a,t,a)-£"(a,0,0) |da < sup (un(§1)-un(§z))
-co €, ,Ea€la-vt,a+vt]

(1.1.30)

in this case. If a < x, + v(a)t, write

£"(a,t,0) - £°(a,0,0) = £"(x,0,0) - £%(a,0,a)
(1.1.31)

a
+ fn(xo,t- ;Es% @) = fn(xb’o’a)

By the same reasoning that led to (1.1.30), we get, for a < Xo + Vt
and a < x, - Vt,

drm Ifn(a: t.d)'fn(a,o,al do <

n n
o §1,§3€E:g,a+Vt] (u(§y)-u (82))

(1.1.32)

18P (T o Trm) = (o) (x0)) + . ((Un)l+(xo)'ﬁ+(xo:n+“‘7)),

where (un)+ and §+ are obtained in terms of u" and 4 through rela-
tions like (1.1.17)=(1.1.20). The remaining contributions to the
right hand side of (1.1.25) are bounded similarly, and we get

b
:—t .l'. u(x, t+nr)dx - F(un(a)) +F"(b)) | s vo_(t)

(1.1.33a)

-20~
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where

n n
On(t) 3 §1,§a€[max(xo,aggg),min(xl,a+Vt)] (u (82)-u (53))

n n
- & ’gae[mx(xo,bggg),min(xl ,b+vt) ] (u (§1)-u (ga))
(1.1.33b)

+ 8 o (%0,Mr)-(uMHt + 8 (%) - T (%, )
ﬂEES,t] (u Xo ,N40T) = (u (xo)) ne[g?t]((ds X9 = u (X, THnT )
* refBP ey (F 0w man-(h )+ ST e () m ) )

An integrated version of this equation becomes, on use of
(1.1.22),

L P L afose - o) [F(u'(a)) - F (p))]l svfnilcm
Ya a i=0 i=0 1 g
(1.1.34)

The right hand side of (1.1.33) will go to zero as 7 ¢ 0
for 0 < t < 71, if we have

(1) the u" are continuous in some neighborhoods of a and b;

(ii) the boundary functions G+(x°,') and U (x, ,*) are contin-
uous in a neighborhood of nr + t;

+
(111) (") (%) = 1im T(xo,t) and (™) (x) = lim 3 (% ,t) .
ténT tinr

Those regularity properties which relate to the calculated functions
u" will often follow from an 8 priori or a posteriori analysis of
the problem. For example, in the important special case v(a) > 0,

o € [q<,U], we have (iii) above for n > 0. In the case a = x, -

-2 and b = x - +®, for most types of asymptotic conditions of
interest, (i) holds., There will be mention of generalized ver-
sions of (1.1.33), for different classes of initial and boundary
data, in Chapter Two.

~21-
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A result similar to (1.1.7) follows if we multiply (1.1.23)
by ¢ and integrate over a. Note that

(-]

[ o £%(x,0,a)da =% [(un(x))z-ui] (1.1.35a)
and
Lo x,t,00da 2 1 [(n“(x,mn))z-ui] ; (1.1.35b)
Thus
j'ab (un(x,t+nT))2dx “ j': (un(x))zdx - tF;(u"(a)) + th (u"(®) = ¢

(1.1.36a)
where

c=2 It {:;u vie) [£7(a,t’,0) - £'(a,0,q)

0 (1.1.36b)

- £%b,t’,a) + £7(b,0,a)] dadt’ .

Proceeding as above, we get
lel < 2¢(fvl + Jul) vo_co) . (1.1.37)

The analogue to (1.1.34) is obtained by using (1.1.22) and
(1.1.37):

'l
Ib (un(,))zdx 2 ‘:" (uo("))ad" -1 :2:)0 [r, (ui(.)) - Py (ui(b))] <H

(1.1.38a)
where

n=-1
lal < 2e(lul + ul) v Z 94(M (1.1.38b)

-22~
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The right hand side of (1.1.37) will be o(t) as t ¢ 0,
under conditions (i) - (iii) giver above.

In view of the relations (1.1.33), (1.1.34), (1.1.36),
(1.1.37), and (1.1.38), we may think of the algorithm (1.1.12)-
(1.1.14) as "conserving' the quantity U, given in (1.1.3), and
"diminishing'" U; given in (l1.1.4b), when those quantities are
defined. It is natural, then, since U, and U, are given as
integrals, to introduce the following set functions for Lebesgue-
measurable sets 1 in xx space:

U (£3Q) = j;] f(x,a) do dx (1.1.39a)
Ua (£30) = 2 _[_)af(x,or)dor dx , (1.1.39b)

(Note that these definitions depend on the value of the number u_
given in (1.1.11).)

We should point out that, if

(1) uo(x) is continuous for x € [x0,% ] ,

(ii) U(x%o,t) is continuous for t € (0,€0] and lim U(x%y,t) =
U (%), ti0

(iii) u(x, ,t) is continuous for t € (0,8,] and lim u(x, ,t) =

U (%), ti0
(iv) x + v(uy(x))E is nondecreasing in (13.49)
x € [x,x,] for 0<€ < g, ,

(v) max[v(u(x,t)) (£-t),0] is nonincreasing in t € [0,&,]
for t < € < &5,

(vi) min[v(U(x, ,t))(E-t),0] is nondecreasing in t € [0,8& ]
for t s € < €y,

then for 0 < nr < €, the quantity u (x) computed by (1.1.12)-
(1.1.14) will be the exact solution at time t = nT of (l.1. 5) with
the boundary conditionl uT(%,t) = ut(xe,t) and u (% ,t) = UT(x,t).
The quantity u™(x,t) given in (1.1.21) will be the exact solution
at time t if t s €,

-23-
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To satisfy ourselves as to the validity of this assertion,
we shall outline a proof for the case when t = T < €, and x, — -*,
X - +, so that we only need conditions (i) and (iv) above.

The exact solution of (l.1.1) at time t = v is given by
u(x,t) = a(x) = sui:{ot|a-t:°(x—v(a)'r) < 0}, (1.1.41)

To show that ul(x) given by (1.1.12)-(1.1.14) is a(x), we will make
use of the following lemma.

Lemma 1.1.1: If o 2 u, £ (y,,0,a) = 0, and £2(yz,0,0) =1,
then there exists y* € [min(y, ,ys),max(y,,y2)] such that a = uo(y*).
Also, y*# y, .

Proof: The result follows from (1.1.12), (1l.1.13b), and the
continuity of uy, since o > uy(y;) and @ < uy(yz2).

To show that u'(x) is a(x), we show first that ° (x-v(a)T,0,a)
=1 for u_ < o < a(x). We do this by contradiction. Suppose there
is @p, u < o < o(x), with £2(x-v(a)7,0,0) = 0. Then o>
Uo (x-v(ap)T). By the definition of w(x), equation (1.l.41), there is
@, 0 <oy < a(x), with &y - us(x-v(;)T) < 0. We have the follow-
ing relations immediately:

£2 (x=v(ap)T,0,00) = £0(x-v(2p)T,0,00) =0 ,
(1.1.42)
£ (x=v(o )71,0,0,) = £O(x-v(y)T,0,00) =1 .

We cannot have v(ap = v(wy ) without violating the continuity of u,.
Consider the case v(ap) > v(®,). Then by the lemma and (1.1.42)d y¥

such that
x = v(@)T < ¥ < x = v(oy )T (1.1.43)
and
r wn) =o . (1.1.44)

-

g - | P | il P —_— — 4

—

i
B




THE JOMNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

LAUREL MARYLAND

since uy(yy) =y, £ (y5,0,04) = 1 and
Pyl oo =1 (1.1.45)
By the lemma, (1.1.42), and (1.1.45), 3 y& with

x = v(@)T < yo < y¥ (1.1.46)
and

u (¥o) = o - (1.1.47)

By (1.1.43), (1.1.44), (1.1.46), and (1.1.47),

*
Yo + V(U (YENT > x 2 y¥ + v(uw ()T ,

which, with yo < y¥, violates condition (iv) of (1.1.40). The

case v(ap) < v(o,;) is treated similarly. Thus, f°(x-v(a)7,0,2) =1
for u_ < o < a(x). Finally, suppose f°(x-v(@)T,0,0) = 1 for some
a > a(x). Then u, =« < u(x-v(a)7) and by the definition of

a(x), o < a(x), giving a contradiction. Putting these results to-
gether, we see that u (x) = o(x) follows from (1l.1l.14).

One may think of (1.1.13a) as a '"Boltzmann equation',
because of the analogy to the familiar transport equation of
kinetic theory. The equation we consider is especially simple,
and does not contain the nonlinear '"collision terms'" which gener-
ally appear in the Boltzmann equation. To say that our algorithm
thus represents the motion of a '"collisionless'" fluid, however,
would be inaccurate. Indeed, the transformation which takes place
at each time step, when the "distribution function'" f™(x,7,a) is
converted into f“41(x,0,a) by the processes of equations (1.1.14)
and (1.1.13b), represents collisions of a rather extreme form.

If we are to regard the transport equation (l.1.13a) as express-
ing the flow of independent '"streams' at different 'density levels'
@, we see that at each time step, by some undefined internal
"interaction" mechanism, the various streams interact in such a

way that they are forced into the lowest "unfilled'" density levels
(above q<). Accordingly, the algorithm (1.1.12)-(1l.1.14) gives

the evolution of the system in terms of a sequence of propagations
of non-interacting streams, and intense interactions of these
streams,

-25-
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The fact that equation (1.1.5) for the density u may be
related to an underlying transport equation for the distribution
function f is not surprising, if one recalls that the equations
of fluid mechanics may in some sense be derived from the Boltzmann
equation (Reference 5).

2. Higher-Dimensional Cases

A higher-dimensional analogue of (1.1.5) is
e & Vv + (F(u)) =0, x €D, t>0, (1.2.1a)
u(x,0) = up(x), x€I, (1.2.1b)

with boundary conditions to be specified. By D we mean the closure
of ®. Here F(u) is a vector. 1Its derivative with respect to u is
another vector:

v(u) = %; F(u) . (1.2.2)

As to boundary conditions, let functions u(x,t) be given
for x € 3 and t € (0,T], with

u(x,t) 2 u_, x € 3D, t € (0,T] ,
.55

u (x) 2 u, x€D .
1f we write

u(x,t) = IE(x,t,) = u, + [_E(x,t,0)da, x €D, t€[0,T], (1.2.4)

0 o< u,

£(x,€,0)=D(u(x,t);0) = {1 u_ = a s u(x,t), x€D, t€[0,T]), (1.2.5)

0 o> u(x,t)

=26~
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and define

c(x,t) = {a|x-v(@) € D for all £ ¢ [0,t]}, x €D,

(1.2.6)
c'(x,t) = {alo £ c(x,t)}, x€D,
we can decompose u(x,t) as 1
7 u(x,t) = a(x,t,8) + u’(x,t,E) A.2.0 |
where
! @
u(x,t,€) = u_ + [ X(x,€,0) £(x,t,a)da ,
(1.2.8)
| ul(x’tng) -~ I: X'(x,g,d) f(x,t,a)da ’
and
1 « € C(x,8)
X(x)gya) 5 ’
0 o ¢ c(x,E) (1.2.9)

X'(X:Q,d) = 1~ X(x,§:°l) .
For t € (0,T), x € 3D, and o € C'(x,g) for all € > 0, we set
f(x,t,a) = D(u(x,t);a) . (1.2.10)

The boundary conditions (1.2.10), when combined with (1.2.1), amount
to specifying

inf lim u'(y,t,£), €3, t€ (0,T] . (1.2.11)
£>0 yeB-x 4

To solve (1.2.1) subject to the boundary conditions (1.2.11),
we set

-27=
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WC(x) = u(x), x€D, (1.2.12)

and show how to get from un(x) to un+1(x). Given un(x), construct

£"(x,0,0) = D(u™(x);0), x €D (1.2.13a)

and solve

f: +v(@) * v £ (x,t,a) =0 (1.2.13b)

subject to the initial condition (1.2.13a) and the boundary condi-
tion

£7(x,t,a) = £(x,t4n7,0), x € 3D, t>0, a€ C'(x,E) for all € > 0,
(1.2.13c)

where f(x,t+nT,0) is given by (1.2.10). Finally, set

i PR D o GO S S (1.2.14)

The problem (1.2.13) for f may be solved explicitly:

£ (x, t,a) =‘fn(x-v(a)[t-max(o,inf{EIaE C(x,t-€)1)],
(1.2.15)
max(0, inf{E|a€ C(x,t-€)}),0a) ,

x €D, t 2 0. As in the one-dimensional case, the exact solution
(1.2.15) may be approximated numerically by means of quadratures
involving only non-negative quantities.

3. Burgers and Korteweg-de Vries Equations

The method described may be used to solve more general
equations, and we indicate how one would proceed with some repre-
sentative examples. The extension to still other types of equa-
tions will then be obvious.

-28-
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Let us consider "Burgers' equation" (Reference 4)

[
by
-

u + Ve (F(u) =vadu x€I t>0 (1.3.1a)
‘ with
:% u(x,0) = w(x), x€D , (1.3.1b)
-
%- and
:
% u(x,t) = u(x,t), x€ 3D, t € (0,T] . (1.3.1c)

(A more physically motivated generalization of Burgers' equation
to a system of equations for a higher-dimensional flow, with the
flow driven by the requirements of conservation of mass and momen-
tum, will be treated in a later report on this work.)

As above, let u_ satisfy

u S uwx, x€D,
(1.3.2)
L AR L T £ 5Lt 4 T

W (x) is given by (1.2.12). Let fn(x,t,d) satisfy the equation (v
given by (1.2.2))

f: +v@) V" =y paft, x€D, ¢t>0 (1.3.3a)
with fn(x,O,a) given by (1.2.13a) and the boundary condition
£(x,t,0) = D(i(x,nr+t);a), x€ 3D, t>0. (1.3.3b)

D(u;a) is given by (1.2.5). un+1(x) is given in terms of f“(x,T,a)
by (1.2.14).

Note that we may combine (1.2.14) with the solution of
equation (1.3.3a) subject to the initial condition (1.2.13a) and
boundary condition (1.3.3b) approximately as follows:
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n+1
u

(x) ~ h(x,T1) (1.3.4)
where
ht =y A h, x €D, t>0,
h(x,0) = Ig(x,7,*), Xx€ D, (1.3.5)
h(x,t) = u(x,nT+t), x€23P, t>0 ,
and

g tVv(@ *vg=0, x€D, ¢t3>0,

g(x,0,a) = £'(x,0,a) , (1.3.6)

e(x,t,a) = D(u(x,nt+t);a), x€ 3D, o€cC’'(x,E) for all €>0, t> 0.

The device of approximately solving the initial-boundary value
problem for f" and integrating to get ut! by solving (1.3.6) and
(1.3.5) is analogous to the method of "fractional time steps". If
D is all space, this method becomes exact, because of the commuta-
tivity of the operators yvA and v(a)* V. (Solution of either
initial value problem (1.3.6) or (1.3.5) is then equivalent to
multiplying the spatial Fourier transform of the dependent func-
tion by an algebraic factor.) Thus, if we replace, in the algo-
rithm (1.2.12), (1.3.3a), (1.2.13a), (1.3.3b), and (1.2.14), equa-
tions (1.3.3a), (1.3.3b), and (1.2.14) by (1.3.6), (1.3.5), and
(1.3.4), so that the modified algorithm is described by (1.2.12),
(1.2.13a), (1.3.6), (1.3.5), and (1.3.4), the solution of (1.3.1)
is seer to be effected through a sequence of convections of non-
interacting streams, interactions of these streams, and diffusions.
This is similar to the description given at the end of section 1.1
of the algorithm (1.1.12)~(1.1.14), except that now a diffusive
process is interspersed with the others.

Consider the "Korteweg-de Vries equation' (Reference 1)

U+ (KW)) +PAu =0, B>0, x€D, t>0, (l.3.7)
with

u(x,0) = uy(x), x €D ’ (1.3.7b)
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and

u(x,t) = G(x,t), x € 3D, t € (0,71] 5 (1.3.7¢)

b i W T R - R ©,11 , (1.3.74)
where

(1.3.8)

will generate functions un(x), x €D

umber q: 8uch that

Ue < u(x), x€9D |
(1.3.9)
u_ < G(x,t), x€ 3D € (0,1]
We solve the €quation
f0 + v(a) - y ¢n *Baflap (1.3.10a)

with {niria) condition (1.2,13a),

and boundary conditions (1.3.3b)
and

EED . a0

V(o) is given by (1.2.2). 1a the opPerators p ang I given by
(1.2,5) ang (1.2,4), u ig

replaced by ug. Finally, ynt+1 is
Calculated from (1.2,14),

Just ag we could replace (1.3.3) and (1.2,14) ip the algo-
rithm for Burgers ' equation by (1.3.4)-(1.3, of
fractional time 8teps, we m_y replace (1.3.10) ang (1.2,14) 1n thig
algorithm by two bounda

only, and the other 4

-31-
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u"ex) ~ h(x,T) (1.3.11)
where
ht+BA hx=0, x€9P, £ >.0 , (1.3.12a)
(x,0) = Ig(x,7,"), x€D , (1.3.12b)
h(x,t) = u(x,nr+t), x € 3D , t >0 . (1.3.12¢)
h (x,t) = & (x,t+n7),  x € o', e>o, (1.3.124)

and g satisfies (1.3.6). In this case the solution of (1.3.7)
takes place through a sequence of convective, interactive, and dis-
persive processes,

The number u: is generally dependent on n in (1.3.9), since
a priori bounds on u? are not obtainable as easily as for the
problems previously considered. In general solutions of (1.3.7)
obey neither a maximum nor a minimum principle (References 9 and 12).
This is related to the fact that, whereas each of the components
(1.3.5) and (1.3.6) of the algorithm for Burgers' equation possesses
a maximum and minimum principle, the same is not true for (1.3.12),
In the one-dimensional case with D = R}, we get maximum and minimum
principles in one direction only, in the sense that if h(x,0) = 0
for x > %, then h(x,t) lies in the range of h(x,0) for x > x, and
t>0.

4. Equations with Non-Constant Coefficients and Systems of Equations

Let us restrict ourselves to the case where the governing
partial differential equation holds over all space, so that we can
focus attention on solution of the initial value problem, and not
on satisfaction of the boundary conditions. Taking u, = 0 in
(1.1.11) without any essential loss of generality, we note that
the algorithm (1.1.12)=-(1.1.14) is nothing more nor less than an
approximate solution of (1.1.2), with initial condition (1l.l.1b),
recast in the following form:
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u(x,t) = lim u(x,t,@), x€ R*, t >0, (l.4.1a)
ate

w(x,t) 20, x€R, ¢t>0, (1.4.1b)
X
2 u(x,0,a) = min(u(x),o), x€ R, Osa<o, (l.4.1c)
f (a_U(zl)+6,(u(a))MQ =0, xERI, t>0, 0sy<o,
Y da A o e
= (1.4.1d)

In particular, (l.4.1d) is obtained by differentiating (1.1.2a)
with respect to o, and the intermediate solutions u(a) are chosen
in such a way that either the characteristics

%% = v(u(a)) (1.4.2)

of (1.4.1d) are straight lines, because u(a) and v(u(o)) are con-
stant on them (u(a) = @), or else égésl = 0 on them. Thus, we
may view the algorithm (1.1.12)-(1.1.14) as a way of building up
the solution u(x,t), starting with the trivial solution w (x,t),
by means of a continuum of perturbations, dependent on the param-
eter a.

Similarly, the algorithms of sections 1.2 and 1.3 may be
considered to be obtained by formal differentiation of the equa-
tions (1.2.la), (l.3.la), and (1.3.7a), respectively, with respect
to o. The algorithm (1.2.12), (1.3.9), (1.2.13a), (1.3.6),(1.3.12),
and (1.3.11) thus appears as an approximate solution to (1.3.7) by
means of a continuum of perturbations on the solution u(x,t) = 0,
but it should be emphasized that this is not the same as a_solu-

tion built up out of a formal expansion of the solution u(x,t,e)
of

u(X,t,¢) + € 7 ¢ F(u(xX,t,¢)) +p A u (%,t,€) = 0 (1.4.3)
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in powers of ¢, a procedure which has been shown to fail to yield
solitary waves (Reference 10).

In this vein we might approach the problem of solving
G(u,ut,Vu,x,t) -l (1l.4.4)

subject to given initial conditions, as a problem of determining
a family of functions u(x,t;a), each satisfying (1.4.4), with
initial conditions dependent on o. By differentiating (1.4.4)
with respect to o, we get the linear equation

du(a) du(a) . u oufa) _
Su@@) Bt Cu @ & )t ph N it
(1.4.5)

The characteristics of this equation are

dt dx

ds Gut(a)’ ds GVu(a) z KLk
and on them égégl satisfies

d  du(a) du(a) _

s Gu(a) v 0. (1.4.6Db)

If x € Rn, we have n + 2 equations (1.4.6), and the coef-
ficients of these equations generally depend on the 2n + 3 quanti-
ties x, t, u(w), ut(a), and yu(a). If we desire these equations
to have constant coefficients, for each o, we can satisfy that
requirement if we pick o as a measure on the Borel sets in R™
where m = n + 2, and think of u(a) as a corresponding signed mea-
sure, where du(a) is now to be thought of as a Radon-Nikodym

derivative (Reference 7). As a practical means of solving (1.4.4),
this procedure does not seem to be generally promising; we indi-
cate some more useful approaches below.

-

e —

i —t
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Higher-order equations than (1.4.4) can be solved. As an
example, one might solve

u, = uu o, u(x,0) > 0 , (l.4.7a)

by solving at each time

du(@) ) du(a) du(a) 2
(Bor >t “(a)( % )xx+ e fulo)) (1.4.7b)

and choosing u(x) so that either g%égl = 0 or u(e) = o = constant,

For the equation

u, + xu = o , (l1.4.8a)
we get
du du
(3&'): VI (a) N (1.4.8b)
X

and we want to choose u(a) so that either %s =0 or x = o = constant.

Note that this equation is not in,conservation form., A conservative
equation is obtained by writing u = u, and

’ ! =
u, + (xu )x 0o , (1.4.9a)
du’ du’ du’
('a'a') +x(82)+ ¢ -0 . (1.4.9b)
t X
For the equation
u, + xuu = 0 (1.4.10a)
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we obtain

(B;ao: ) + xu) (a—;ég)') + xu (@) %@- =0 .  (l.4.10b)
t x

To solve this, we take o as a two-dimensional measure, and choose
u(e) so that 2Y = 0 or x = constant and u(ay) = constant.

8101

It may be that an equation
o, S8 V * G (1.4.11)

can be solved more efficiently by means of a method of "fractional
time steps', by solving at each time the equations

|
|
|
ut =9 . G, (1.4.12a)
and {

u =9 G (1.4.12b)

more easily by the methods described here, than can the original l

|
successively. The individual equations (l.4.12a,b) may be solved =
equation (l.4.11). For example, the solution of }

u (Ot -‘5‘)u)x =0 (1.4.13a) ‘ J

|
4
may be reduced to the successive solution of {

b u, + (xu)x =0 (1.4.13b)

|
and : ]
|

u, + uuy = 0. (1.4.13c)
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{ Since quite general nonlinear systems of equations may be
reduced to first order quasilinear systems which are homogeneous
in the derivatives and do not involve the independent variables

E explicitly (Reference 6), we may think of the equations above in

; which the independent variables appear explicitly as special cases
of homogeneous quasilinear first order systems of equations. As
as example of a system of the latter genre, consider the equations

& W

:? Gi(u(l)su(a)’ug(:l)’uéa)!vu(l)’vu(a)) e 0: i=1)2 ’

(1.4.14)

where the Gi depend linearly on ugl), uga)’ Vu(l), and Vu(s). If

the system (1.4.14) is hyperbolic, we may pick o as a two-dimen-

ull dul?
=0and =—— =0

(1) (2) A oo

or u (@) = constant and u (o) = constant,

sional measure such that we either have

It should be emphasized that such a formal scheme to ob-
tain solutions says nothing about the well-posedness of the origi-
nal problem, unless we know something about the well-posedness of

Qa (2)
3ut) and Su . For
da o

all the linear problems which are solved for
example, the system

ugl) +aa—x (u(l) eu(a)) =0,
(1.4.15)
@)

uga) - g& (u(a) e ) =0,

is only hyperbolic if

2 (1) 44,(®)
(L BN G e D > 0. (1.4.16)
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CHAPTER TWO

CONVERGENCE OF THE ALGORITHM FOR A SPECIAL CASE

The principal result of this chapter will be a proof of
convergence of the algorithm (1.1.12)-(1.1.14) in the case when
Xo ™ =®, X} = +®, To carry out the proof, we will have to suita-
bly restrict the initial function ug(x) in (l.l.1b). In the first
section of this chapter we discuss suitable function spaces for
the study of convergence and introduce some operators which ex-
pedite the analysis of the algebraic structure of the algorithm
(1.1.12)-(1.1.14). We will be able to reduce the study of con-
vergence to the case when the initial function uy(x) is of a
special type. In the second section we present an error esti-
mate, and in order to get a particularly sharp result we will
require that the '"velocity" v(u) in (l.1.la) be a monotonic func-
tion of u. Other cases may be treated, and we will show what
sorts of error estimates may be expected for the algorithm
(1.1.12)-(1.1.14) in those cases.

1. Function Spaces and Monotonic Operators

It is clear that we will need some property of continuity
for the function u,(x), and cannot require, for example, that u,(x)
just be bounded measurable. For instance, if we had

2 2n 19 S x < (2n+l)7,
uO(x) s ’ n=0,il,i2,"’ ’
0 (2n+1)Tp< x < 2(n+l) T, (2.1.1)

the algorithm (1.1,12)-(1.1.14) will yield markedly different re-
sults according to whether we pick 7 = 75 or T = 7,/2.

We shall require uy(x) to be almost uniformly continuous
according to the following definition.

Definition: A function g: R* - R is called almost uni-
formly continuous (a.u.c.) if for every a and b such that -» < a<
b< ®and ¢ >0, 36 = &6(e,a,b) with

b
J, 180em (008) - g(x#a (0)8)|dx < & (2.1.2a)

[ -

MRS e el

R SRS S
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for all T, (x), Ma(x) such that

Im ol <1, Ing)| <1 . (2.1.2b)

A more general class of uy(x) will be mentioned later.

At this point, let us recall the operators D and I intro-
duced in (1.1.17):

(0 R u
D(u(*)s@) ={ 1 u <asu() (2.1.3a) 1

0 o > u()

and
r'w
IF(.,.) = u< +d' f(c’a)da ’ (2.1|3b)
-0

where
u. < U (x), x € R . (2.1.3c)
Also, recall the definition of V in (1.1.26) and (1.1.28).

Lemma 2.1.1: Let u"(x) be given by (1.1.12)-(1.1.14).

If

b
S o (et (008) + 4 (x4ma () O)]ax < ¢ (2.1.4)
a

for all T, and 7, satisfying (2.1.2b), then

b-nTV
J [u" x4ty (x)8) - u" (e (x) O)|dx < o (2.1.5)
a+nrV

for all such T,, Ma. In other words, u, a.u.c. = u” a.u.c,

-39~




THE JOMNS HOPKINS UNIVERSITY

APPLIED PHYS!CS LABORATORY

LAUREL MARY AN

Proof: 1t is obviously sufficient to prove (2.1.5) for
the case n = 1. From (l.1.14) and (1.1.15),

[u* ety (x)8)=u* (x#Ta (x)8)| = [ [ £ (a1 (x)6,7,0) = £ (x5 (x)6,7,0) | da

o £ (e (%) 6-Tv (@) ,0,a) - £ (xHp (x)6-Tv(@) ,0,a) |da . (2.1.6)

-0

Then, by (1.1.13b) and (1.1.12),

b-vT
I lu ety (0 8) ot (x# (%) 6) | dx
at+vr
®  b-VT
s} 3 | £ (x+Ty (x)6-Tv(@),0,a) £ (x+T (x)6-Tv () ,0,0) | dx do
=5, . Ayt

® b=Vr=rv(ax)

=t I Ifo(x+n1(x+¢v(a)),0,a)-f°(x+¢5(xﬁwv(a)),o,a)‘dx dor
o aWT=-rv(a)
b =
s 12t (47v(@)) ,0,0) - £° (xHo (x+Tv(a) ), 0,a) | dor dx
a =
b
< ( sup u (y) - inf Uo(Y))dx
| a \yE[x-6,x+5] y€[x-6,x+6]
:
| = Lo (419 (x)8) -uo (x#1s (x)6) | dx + 2 B(b-a) , (2.1.7)
i a

where we pick Ty (x) and Ty (x) to satisfy the same requirement (2.1.2b)
as Ty and To, and

Up (x+1 (x)8) 2 !:p u(y) - 0,
X=0,

(2.1.8)
inf

o o e el | o] B0 =N

-40-
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with 6 > 0. Letting 6 ! 0 and using (2.1.4), we obtain (2.1.5)
for n = 1,

+
Before proceeding further, let us introduce operators I_,
where 1 is a function of a:

GL 0% = Tap £, (2.1.9a)
N YEI1(x,1M)

(B D)= Jnf  Elyoy o, (2.1.9b)
i YGI(X’TI)

where
I(x,M) = [min(x,x+M(+)), max(x,x+M(+))] . (2.1.9¢c)

The+following properties can readily be verified for the
operators I_ :

N

zn1 e zﬂf*ﬂJ En{+ﬂ£ - (2.1.10a)
S ol 1 S : 2.1.10b
M M= nhmd mr+ma : !
where
T7(+) = max(1(+),0) ,
(2.1.11)
N (+) = min(n(*),0) ‘
In particular, it follows from (2.1.10) that
+ ot ot ot
I%h zﬁ’ z%h z%h . (2.1.12a)
41~
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i ot oy oA s - (2.1.12b)
T M MTa
and if 4Ty 2= 0,
+ 4+ +
S e ¢ (2.1.13a)
h e Th +M=
A R i o ‘ (2.1.13b)
Th Me Th 12
Also
s i L
T RNy - 2alv14
“Th r‘na ni Th ( )
and
i e ; (2.1.15b)
-1 ™
+ -
il P 1 | . (2.1.15b)
‘n -
1f |n| s |8], we get
T o AT (2.1.16a)
) 6 :
and
+ o= +
Ty Ein T = T : (2.1.16b)
In terms of the I's we can define
+ + _+
S =3 I . 2,1.17
I ¢ \
iy Ve

eiiger=y
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Given a function g(x) and a number § > 0 independent of a, we can
also define

(S5 8) (x) = (IS; Dg) (x) . (2.1.18)
In other words
S8 (0 = swp gy , (2.1.19a)
y€[x=5,x+6]
(S5 8) (%) = inf g(y) . (2.1.19b)
ye[x-6)x+6]

Finally, let us introduce the shift operator In:

(T'nf)(x).) » f(x"'-'\('):') . (2.1.20)

The following relations among these operators can easily be estab-

lished:
th s TSI, zfﬁ 3 (2.1.21a)
WS s S
T Sz = I I Sz (2.1.21b)
and
e e
T Stz = o Zq Sp2 - (2.1.21c)

We get commutativity between the L's and T:

- - 2
oIy "I Ty (2.1.22)

~43-
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and we note

so that

I+
I+
+

L TS Tl L B

All the operators introduced are monotonic,

& =8 08 >0g, 0-=0D, S:, or
and
£, 2 £, 20f 206y, 0=1, T., 8%, s, =¥
T ety
From the definitions it follows that
+ +
186>561 >
+ +
DSy = Sg D "
+ +
T‘nss 'ssTn
and
IS, s 8, 1 ;

=44~

(2.1.29)
(2.1.24)
That is,
sg (2.1.25a)
or .

(2.1.25b)

(2.1.26a)

(2.1.26b)

(2.1.26c)

(2.1.27a)

(2.1.27b)

(2.1.27¢)
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Also,
- +
< 2.1.28
S“ Tﬂ < S,n ( a)
and
- +
S6 D < Tﬂ D < S6 D (2.1.28b)

where |n(a)‘ < b for all a.

In terms of these operators, with the help of (1.1.15), we
can state the algorithm (1.1.12)-(1.1.14) as

n+1 n
u = ITvT Du . (2.1.29)

Thus, the algorithm proceeds entirely through the application of
monotonic operators. If

Ww(x) 2 U(x) (2.1.30a)

and we denote the respective approximate solutions by un(x) and
u%(x) (with the same u, for ug(x) and u(x)) we get

Vi) 2 ) . (2.1.30b)

This sort of monotonicity result also holds for the problem (1.1.5)
posed on a finite domain, provided we have the appropriate monoto-
nicity required of the corresponding boundary data. The result
also holds for the algorithm (1.2.12)-(1,2.14) used to solve the
problem (1.2.1), and for the algorithm used in the solution of
(1.3.1). Assuming convergence of the algorithms for these prob-
lems, we conclude that the monotonicity carries over to the exact
solutions =° (1.1.5), (1.2.1), and (1.3.1) generated by the algo-
rithms. At this juncture we should reemphasize the point made in
section 1.1, that the solution to (1.1.1) computed by our proce-
dure is not necessarily the desired one in terms of any underlying
physical rationale. For example, the one-dimensional flow of an
inviscid pressureless fluid is governed by an equation of type
(1.1.1) with u the velocity and v(u) = u, However, the underly-
ing physical laws are conservation of mass and momentum, and u is

«45-
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really coupled to a density field p. For general initial density
fields, we do not have monotonic dependence of u(x,t) on u(x,0).
Hence any algorithm with that property will have to be in error,
in general. 1In a later part of this work we will present a phy-
sically correct algorithm to solve

u, + uux =0

when u is the velocity of a one-dimensional flow. !

+
Returning to the operators Sg , we see that

+ - \
s6 S5 ;S S f
| s;s'gZI ; :
| (2.1.31) {
+ o= ot +
; . 85 Sg s6 86 >
i & Taveh i
SG 86 86 - 85 s |
| § & 4
[ 8 The operator §, S, "flattens out" all peaks of_a function g(x) by

B removing portions of width < 28, Similarly, S Sg "flattens out"
I | the troughs by filling in the portions of widtg <"2%.

4 Upon application of equations (2.1.26), (2.1.27), and

P8 P q (

. (2.1.31), we see that the following inequalities can be estab-

( lished by induction in n: ‘

- n _+ —t o= n_ - .+ .-
85(IT, D) S¢ uo = (5.87,8:IT D)" s, Sy Sg U

" (2.1.32)
=y B g el

w The significance of (2.1.32) is that it gives bounds on the quan-
tities w" computed by the algorithm

woasogh s w (2.1.33a) )
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- n
8, IT_Dw . (2.1.33b)

n+1 ey
" B 8.0

When u, is a.u.c., we can use these bounds to show that W' is
close to u", as we shall do below. Assuming that this is the
case, we see then that we may equally well use the algorithm
% (2.1.33), as use the original algorithm (1.1.12)-(1.1.14) (or
i (2.1.29)) to solve the probiem. Furthermore, each of the quan-
& tities w', n 2 0, has the property that all peaks and troughs are
of width 2 28, This fact will permit us, in the convergence proof
given in the next section, to restrict our attention to portions
of the profile wo(x) which are monotonically non-increasing or non-
decreasing. That is, if for example (p,f,) is the interval be-
tween a flattened peak and trough of u,, then for 0 < nt < 2§/V
the function w"(x), x € [§,,& ], will be either non-increasing
or non-decreasing, according as w is. It is clear that if we
can establish convergence and error estimates as T { 0 for such
intervals (x,t) € [€,,8 ] x [0, 26/V], then we can do so for all
(x,t) € (-=,») x [0,=).

B
B
;:“
¥e
©

To show that w® is close to u" if § is sufficiently small,
we use (2,1.32) in the form

Fagay ., (2.1.34)
where
€ =55 w (2.1.35a)
g™t . - T L G (2.1.35b)
and
© = s; o (2.1.36a)
vt . L0y . (2.1.36b)

Because of the monotonicity result (2.1.30), we see from (2.1.35)
and (2.1.36) that

8" 2 " 2 " (2.1.37)
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and hence

|w"-u"] < 8% - " . (2.1.38)

Because of the monotonic dependence of 6" and *n on the
initial data & and §°, and the fact, which follows from the de-
finition of V, that all non-zero contributions to 6" and ¢® in
[a+nTV,b-nTV] have originated as contributions to & and y° some-
where in [a,b], we get

b-nTV &% b
J 0"yMax s [ (®@-¢%)ax . (2.1.39)
a+ntV a

From (2.1.38), (2.1.39), and the initial conditions (2.1.35a) and
(2.1.36a), we get the following result.

Lemma 2,1.2: If uy(x) is a.u.c. and satisfies (2.1.2) and
if " is given by the algorithm (2.1.33) and u™ is given by (1.1.12)-
(1.1.14), then

b=nTV n &
I W x0)-u"(x)|dx < e8) (2.1.40)
a+ntV

where we denote the right hand side of (2.1.2a) by e€(6,a,b).

With the aid of the operators ingrcduced, we can also find
the effect on the approximate solution u (x) of (l.1.1) due to a
perturbation of the "velocity" v(u), when uy(x) is a.u.c. On the
assumption that the approximate solution converges to an exact so-
lution, the same error estimate will carry over to the exact solu-
tion (with nt replaced by t and u™(x) replaced by u(x,t)).

Lenma 2.1.3: In the case x5, = - @, x = + ®, let un(x)
Ea generated from u,(x) by equations (1.1.12)-(1.1.14), and let
u” be generated from up(x) by the same equations with v(a) re-
placed by V(). Suppose up(x) is a.u.c. and satisfies (2.1.2).
Use the notation €(8) in (2.1.40). Suppose Iv(a)l < V and
|¥@)| s v for all a € [u,,U), where U is given in (1.1.26). Then,
with Iv(a)-\';(a)l < V' for all a € [u<.U], we have

-48-
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b-nTV

I E"0-u"(x)|dx < e(ntv’) . (2.1.41)
a+ntV

Proof: Using (2.1.29), we can write

u? = (ITVTD)n o y (2.1.42a)
~N n
i = (g D) w 5 (2.1.42b)

Now, we can establish inductively that

n

~ n .+
<
u (ITVTD) S

Goot W (2.1.43)

The case n = 0 is obvious. To get from n to n + 1, we note that

~n+1 ~n + ~N + n _+
u IT;T Du < Isva TvT Du < ITVT D SV'T (ITvTD) snTV' Ug

n+l _+
S (AT, D) S iyrys Yo ,

upon repeated application of (2,1.26)., Similarly, we can show that

it 2 (ITVTD)n Spey’ Yo : (2.1.44)
Let
+ -

9; X sm’V’ Yo, '; a sn-rv' Yo . (2.1.430)
|
i

n _ n n _ n o
8, (1T, D) 9;. el R gl A (2.1.45b)

That is, 6" and 'n are the functions generated at the nth time
step for the unpc!turbcd velocity v(a), from the initial functions

i
§ -.,-
"

b S, A7
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9; and °, respectively. By reasoning similar to that which led
to (2.1.39),

b=nTV

b
(O"-yMdx < [ (P-4%)dx . (2.1.46)
a+ntV " *n a o vn

The monotonic dependence on the initial data also implies
n n n
*n <u < en 3 (2.1.47)
From (2.1.47), (2.1.43), (2.1.44), (2.1.45), and (2.1.46), we get

b-nTV A “ b > 4
5T e-u"0|ax < ° (Spey’ YSpry’ U)X
ey o (2.1.48)

and this leads directly to (2.1.4l), upon use of the almost uniform
continuity of u, and (2.1.2).

Thus if v(o) is piecewise continuous, we can replace it by
a piecewise constant function V with |v-V| as small as we desire,
and for a.u.c. initial data get as small a change in the solution
uf(x) as we desire (in the L, sense).

By an argument similar to that used to establish lemma
2.1.3, we can prove the continuous dependence, in the L, sense,
of the functions generated by (1.1.12)-(1l.1.14) on the "time".
We again use monotonicity and note that

Sy ¥ su” s s;r e . (2.1.49)

A\

There follows

b-gprV
.?T |ﬂn(x)-un“(x)|dx < e(mrv) . (2.1.50)
a+nTV
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A somewhat broader notion of continuity is that of "almost
continuity" (a.c.)* of a function g, by which we mean that, for
s any € > 0, we can find a set Sg of Lebesgue measure < € such
: that g is uniformly continuous on [a,b] - Sg. We will find this
type of continuity, suitably generalized to flows with other meas-
ureg, to be especially important in the treatment of actual physi-
cal flows. Accordingly, there will be a more complete discussion
of- almost continuity in a later report in this work. Essentially,
instead of removing a set of Lebesgue measure < ¢ from the domain,
we will want to remove sets of small mass or action, depending on

the definitions that if g is a.u.c., then it is a.c. The converse
is not necessarily true, unless the set S, is dense on a set in
[a,b] whose measure | 0 as ¢ { 0. For example, the converse is
not true if g is 1 at all rational numbers in [a,b] and O else-
where. Then g is a.c. but not a.u.c. With a little reflection,
we see that an analogue of lemma 2.,1,1 can be proven when u, is
a.c.: ua.c, = uPa.c, Similarly, the continuous dependence of
the functions u™(x) generated by the algorithm (1.1.12)-(l.1.14)
on the "velocity" v(a), stated by lemma 2.1.3 for a.u.c. initial
data ug(x), can be proven for a.c. initial data, and the suita-
bility of replacing the algorithm (1.1.12)-(l.1.14) by the algo- |
rithm (2.1.33), stated in lemma 2,1.2 for a.u.c. initial data,
holds for a.c. initial data.

ﬁ' the precise type of continuity considered, from various domains of
%‘ independent variables. Further on, when we treat the flows in a
% stochastic framework, still further enlargement of the notion of
& almost continuity will be in order. For the present, let us

%‘ merely note that if g is a.c., then g is measurable, but the

& reverse implication does not hold. In addition, it follows from

The types of continuity we have been considering in this
section are weaker than that required in section 1.1 to show that
the right hand sides of (1.1.33) and (1.1.37), for 0 < t < T, are
o(l) and o(t), respectively, as T ¢ 0. It would be tempting to
conclude that up(x) a.u.c. or a.c. implies that u(x,,t) is a.u.c.
or a.c. in time for each x,. This is not the case, however, as
we can see from the following example. In the limit By ¢ O, and
with v(a) = o, choose the initial profile near x = 0 to satisfy

*
Terminology suggested by Avron Douglis.
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U - Bx 0> x> -Uy
-U 0< x< Uy
ug (x) = . (2.1.51)
U(148Y) < =UY > x > =20y

=U - B(x-Uy) Uy < x <20y

Initially there is a jump 2U at x = 0, and it is easy to see that,
if s(t) is the location at time t of the discontinuity in u(x,t),
2

%% (0) = 0. After a time 2y, we get s(2y) = E%— U, u(s(2y) ,2y) =
U(148Yy), u(s(ZY)fZY) = -U(1+Y), and %% (2yY) = 0. We can now ad-

just us(x) so that s(t) moves back when 2y < t < 4y, forward again
when 4y < t < 6y, gnd so on, After a time t, in the limit % {0,
we get a jump'ZUe%r at a position s(t) which oscillates between

B (i Yo e B ()

4

Points in the interval (O, ﬁ%i U] are included in all the oscilla-
tions. 1In particular, we cannot make any statement about the a.c.
or a.u.c. of u(0,t) which will be valid independent of the choice
of Yy, although the initial profile uy(x) will be a,u.c,, accord=-
ing to the definition (2.1.2), with €(8) independent of y. The
values of x for which we get uniformly large variations in u(x,t)
when t changes by an amount Yy independent of x will, of course,
have Lebesgue measure which goes to 0 as Yy ¢ 0, by the result
(2.1.50).

(The fact that we cannot get a priori that u(x,,t) is
a.u.c, or a.c. for each x, is related to our ability to control
the free boundary problem. In particular, for the case v(e) = a,
if we are given quantities J(t), s(t) for 0 < t < T with the follow-
ing properties:

J) 20 , (2.1.52a)
g% (t) bounded, non-negative, 0 s t < T , (2.1.52b)
-52-




R L e e

R I R R

THE JOMNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

LAUREL MaRYLAND

d?s 1 dJ
s )] = T o 0% Gk Xl (2.1.52c)

then there is an initial profile uy(x), which is unique 1d differ-
entiable in the intervals

s(T) - T [% HT) + g% (Tﬂ <x<0 (2.1.53a)
and
0< x<s(T) + r[% am - 2 (Ti] , (2.1.53b)

and which satisfies

b

X+ u(x)T < 8(T) for x < s(T) - T[% J(T) + % (T)]

(2.1.54a)
X+ uw(x)T > s(T) for x> s(T) + T[% I(T) - %% (Ti] ;
(2.1.54b)

such that the solution of (1.1.2), (1.1.1b) has the following prop-
erty:

u(s™(t),t) - ust(t),t) =Jr), O<t<T. (2.1.55))

It follows from the preceding discussion that we should
cnly expect equations (1.1,6) and (1.1.7) to be satisfied by the

function u(x,t) = lim {(u"(x)) }, when it exists, in some
n f& T-t/n
integrated sense (in time),

If we average equation (1.1.23) over an interval of values
of a and b, so that the left hand side becomes

h
> { ﬁfﬂ £(x,t,0)dx d ,
~h a+q
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then we will obtain averaged versions of (1.1.6) and (l.1.7) which
will hold in the limit T | 0, by two applications of the continuity
result (2.1.50), with a + nTV, b - nTV replaced by a-h, a+h and
b-h, b+h, respectively.

Although we have not discussed the case of the boundary
value problem on the finite interval [xo,xlj in this section, we
may expect, from the discussion following (1.1.33), that the ap-
Eiopriate data to specify at the boundary points x, and x, are
u (xo,t) and u (%, ,t) a.u.c. or a.c. in t.

2. Convergence and Error Estimate

The principal result of this section is that, when the veloc-
ity v(u) is a monotonically non-increasing or non-decreasing func-
tion of u, then the thickness of '"shocks' generated by the algo-
rithm (1.1.12)-(1.1.14) is never more than 2VT, where V is given
by (1.1.26) and (1.1.28). Furthermore, the shocks so generated
are within the distance 2VT of their position in the exact solu-
tion. In order, however, to indicate how one may obtain other
types of error estimates which might be more useful in certain
situations, and to show why we will want to restrict outselves to
rsqotone v if we are to get particularly sharp error bounds, we
st4ll proceed initialiy in a somewhat more general vein. Our de-
liberations will be expedited by the results we obtained in the
last section.

So far we have not stated what assumptions we make on the
function v(-). But it is clear from (2.1.29) that, if the operator
"I'" in the algorithm is to be meaningful, then we should at least
require v to be measurable. When v is piecewise continuous and
U, (x) is a.u.c., we have already seen, in lemma 2.1.3 and the dis-
cussion following it, that we may replace v by a piecewise constant
function v. The study of convergence of the algorithm (1.1.12)-
(1.1.14) for piecewise constant v should be a relatively simple
natter, since we may imagine that we are dealing with the propaga-
tion of a finite number of individual "streams", each moving with a
constant velocity, with a specified law of interaction, and we know
from Chapter One that the algorithm gives the exact solution when
2rch of these streams propagates independently.

In fact, when up(x) is a.u.c. it should be possible to
prove convergence when all we require is that v be bounded measura-
ble. For, by the monotonicity properties shown in the last section,
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we may bound u" above and below by Ch and 5", respectively, where

®(x) = sup Uw(y), x€ [mb,(m+l)8) , (2.2.la)
y€[mé, (m+1)6)
L AN+l n ,‘l'/
4 0 = ITvT D@ , (2.2.1b)
and
P (x) = inf U (¥), x € [mb, (m+1)6) , (2.2.2a)
y€[mé , (m+1)6)
e W B . (2.2.2b)

In (2,2.1) and (2.2.2), m _is an integer, - ® < m < », (Clearly
w s ® <8T u and y 2 ¥°2 87 . Accordingly, the argument
used to prove lemma 2.1.2 can be used, and we find

b-nTV S "
I 18%@)-u ") |ax < ecs)
a+ntV

’ (2.2.3)
-nTV
I 1§0-u"0]ax < ecs) .

a+nTV

Note that the initial data & and §° in (2.2.1a) and (2.2.2a) are
"histograms'. Hence when v is bounded measurable we need only
prove convergence for such initial profiles. The exact solutions
for such profiles can be given for such v. We know that a'" jump'
at x = s(t) from u to u, moves with velocity

ds _ F(w)-F(uw)

= g . (2.2.4)

where F is given by (1.1.2b), 1In fact, when the initial profile
is such a histogram involving only a finite aumber of values of u,
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say, {uj, i=1,+++ N}, it is clear that the exact solution is un-
changed by changes in the velocity field v which leave differences
of values of F at these values {uj} invariant. What sort of con-
vergence result we may expect for our algorithm for v bounded mea-

surable when the initial profile is a jump, will be indicated in
the sequel.

By lemma 2.1.2, we may deal with functions w" whose peaks
and troughs are all of width 2 2§. As we pointed out in the dis-
cussion accompanying the lemma, this permits us to restrict our-
.selves to a portion of a profile w° (x) which is monotonically non-
decreasing or non-increasing. Without loss of generality, we take
the latter case. Given such a portion of a profile, say, for
o < x < §, we may let

U = inf W (x), U+ = sup w(x) . (2.2.5)
xe[go ’gl-] xe[go :glj
Then

lim Ww(x) =0, lim W& =0

5 (2.2.6)
x4 & xt g

and we may imagine the initial profile w’ (x) extended so that

W (x) = U+, x < €4

> (2.2.7a)
w(x) = U, TR A (2.2.7b)
With this profile, we find that
Werr oW, (2.2.8)

8o that effectively we are considering again the functions gene-
rated by the original algorithm (1.1.12)-81.1.14), or (2.1.29).
Thus, we shall now write u°, u® for v, w@,
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Before we proceed with a discussion of convergence, let us
write down the exact solution of (1.1.2) with initial data u(x,0) =
W (x). The proof of convergence and error estimate will then be ob-

tained by comparing the approximate solutions uR(x) with the exact
solution u(x,nrt).

§ o

With a monotonically non-increasing profile g(x),xlig g(x)-U+,

lgrm g(x) = U, we associate a function X(g;a) with range the ex-
x—'
tended real line for o € (U ,U+], as follows:

SRR RN

ot

1 x < X(g3a)
(Dg) (x,a)= . (2.2.9)
0 x > X(g;)

For the solution of (1.1.2) with u(x,0) = W (x), we use the notation

xt(a) = X(u(e,t);a) . (2.2.10)

Note that

Xt(a) < Xt(“1) if v2a . (2.2.11)

We will have given u(x,t) if we know xt(a).

Roughly speaking, the exact solution at t will have degene-
rated into a sequence of shocks. In fact we may regard it as a
continuum of shocks if we regard a continuous profile g(x) as hav-
ing a jump da at X(g;a). Still speaking roughly, we first search
for the position of the "leftmost" shock, by finding

e i
3 SRy o e
e 5 T TR e R I LT o ol i R e e
B D G G G N e

+
F Xo (@’ )da’ F(UhH-F
inf | e + (+) i (2.2.12)
o€(u ,u') U -« U - o
Note that, from (2.2.11),
+
v / ’
| Jy ¥ola')dx
vt - a
-57-
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is non-increasing in «. Let the infemum in (2.2.12) be achieved
for ap. We then proceed to find the next shock in the continuum

of shocks. (Those who object to the 'rigor'" of the argument may
prefer that we start with an initial u(x,0) given as a non-increas-
ing histogram. Then the shocks will be denumerable.) The ''next"
shock will be located at

o
v Xo(a')da’ , Fe@)F@

inf
Qé[u ,ao] Qo = @ Qo = @

In this way we proceed until we have located all the shocks.

More precisely, given € > 0 and B € (U-,U+], let

rg )
. S0 pisias
Ae(B,t) = O'IQEEU ,8), a - inf ("Y (B)-F(Y) t)<

vu,p P e ’
(2.2.13a)
ie(a,c) = closure of A_(8,t) . (2.2.13b)
Define
% (8,¢t) = inf {a|o€A (8,t) V_ > 0} . (2.2.14)

It is clear that ag(B,t) is non-increasing in B. Further, set

o’ @,t) = sup  {o|BE[a0 (e, t),al) (2.2.15a)
€U, U*]

and

a (B,t) = ao(a+(5,t).t) $ (2.2.15b)

Then the exact solution of (1.1.2) with u(x,0) = v’ (x) is given,
for p € (u~,u*], by

Wed O O meweed e e

]

g
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ot Yol@)da' et )P (g, t)-¢)
; . X, (B) = lim (= (B’t)'e_ + — - t
i €et0 o (B,t)-a (B,t) +¢ o (B,t)-a (B,t)+ ¢
| (2.2.16)

Returning to the approximate solutions, we see that, if
g(x) = h(x+§), then

(1T, Dg)(x) = (IT  Dh)(x+8) . (2.2.17)

Accordingly; if g is monotonically non-increasing and § > 0, so
that g(x) < h(x), we get from the monotonicity of the operators
T TVT' D that

~a——

(ITvTDg)(x) < (ITVTDh)(x) = (ITVTDg)(x-b) » (2.2.18)

and thus the functions un(x) will be monotonically non-increasing
if v is. Given u"™(x), using the notation (2.2.9), we define

X:(a) = X(u"(+);0) . (2.2.19)

In addition, we define x:(a). a € [U-.U+], by

" 1 x s x(a)
(T, Du’)(x,2) = . (2.2.20)
i 0 x> xX)
Note that
xh(@) = x*(@) + Tv(a) (2.2.21)
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and

X:(a) < X:(al) £f ‘o %o (2.2.22)

'L might seem that, if for some n and o > o, we have
xn(a) > x (al) (thereby 1mp1ying by (2.2.21) and (2.2.22) that
va) > v(al)), we would have Ixm(a) xm(al)| < 2Vt for m 2 n,
Such a result could then be used to bound the width of a numeri-
cal "shock", or rapid change in u including [o, ,a],and lead to
a convergence result and error estimate. Our expectation is
wrong, however, as we may see by considering the example

1 x<0
w(x) = (2.2.23a)
0 x>0
with the velocity profile
1
0 0 < ac< 3
va) = {-1-c¢ %<a<%, €>0. (2.2.23b)
1 3co< |
4

i
The exact solution of (1.1.2) with initial condition (2.2.23a) and
velocity profile (2.2.23b) is |

1 x < = % €t ‘
1 1 i

u(x,t) = 3 -7 € t<x<0 . i (2.2.24)
0 x>0 1

We have not shown that the approximation to (2.2.24) does not have
numerical shocks whose width is bounded by a multiple of| v, but
only that a conjecture which would readily lead to a bouand of that
type is invalid. The violation of the conjecture seems to have
something to do with the non-monotonicity of v(a) in (2.2.23b).

-
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A more graphic demonstration that we cannot hope to have
numerical shocks of thickness 0(T) as T { 0 when v is merely re-
quired to be measurable is given by the following example. Sup-
pose that v(¢) is measurable and takes on the values 0 and 1,
such that the measure of the subset of any interval in which v is
1 is one half the Lebesgue measure of the interval, and the measure
of the subset in which v is 0 is also one half the Lebesgue measure
of the interval. Consider the initial profile given in (2.2.23a).
We know that the exact solution to the problem is

‘ 1 x < % t
u(x,t) = l > (2.2.25)
0

»

v
N~

el

On the other hand, we compute

1 x<0
ul(x) = -21- 0<x<rt , (2.2.26a)
‘ l 0 X>T
l 1 x<0
' ‘ % 0<x<TrT
u?(x) = 1 5 (2.2.26b)
] Z T YC 2
' 0 x > 27
' 1 x<0
. % 0< x<TrT
W@ (x) = % T<x<2r, (2.2.26c)
L 27t <
3 T x < 37
‘l 0 x> 37
l -61~
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1 x<0
15
R 0<x<TrT
%% T < x < 2
() = 5 : (2.2.26d)
18 271 < x < 37
1
Tg 31 < x < 471
0 x > 47

and so on. It is apparent that we get a binomial distribution for
the "front", which becomes a Gaussian distribution in u“(x) as nte ,
Accordingly, the width of the front is 0 (/nVr) = 0(/tTV) where

t = nT. In this case the time step T gives an effective ''viscosity"

0(veT).

A naturél conjecture to make is that when v(+) is bounded
measurable the width of shocks is 0(/tTV). We do nothing further
in this report to establish the conjecture, but it would appear to
be susceptible to proof by probabilistic methods.

For the remainder of this section we focus on the case where
v is monotonic., Since we have already required the initial profile
W (x) to be non-increasing and we know from section 1.1 that the
algorithm (1,1.12)-(1.1.14) gives the exact solution to the problem
in this case when v is monotonically non-increasing, we shall
consider the other case, where v is monotonically non-decreasing.
That is, we require

vie) 2 v(y) 1if o 2o . (2.2.27)

With the assumption (2.2.27) and the various simplifica-
tions of the general initial value problem which have been made,
we could plunge directly into a proof of our central result. We
will do this shortly, but first we will consider some simpler re-
sults which illustrate the ideas we use in carrying out the proof.
There will be some further discussion of the types of situations
which may arise in implementing the algorithm (1.1.12)-(1.1.14),
in order to better motivate the language in which our central
result is cast.
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We begin by verifying, for the case (2.2.27), the conjec-
ture tentatively put forth after equation (2.2.22), and shown to
be invalid for general velocity profiles v(a).

Lemma 2.2.1: I1f the velocity profile satisfies (2.2.27)
and for some n 2 0, o, 2 agp,

x:(al) 2 x¥(az) (2.2.28)

then for m 2 n,
| ¥ ) -x*@2)| =< 2vr . (2.2.29)
Proof: We shall show that

X*(@z) - 2VT S X¥(oy) < X¥(@z), m 2 n. (2.2.30)
From this we get, by (2.2.21) and (1.1.28),

X0(0a) - 2Vr < xp(@) € x2(ap) + 20T,

which is the same as (2.2.29). Equation (2.2.30) can be established
for m = n, since

Xi(az) = X3() = xp(0a) = xh() + T(v(@)-v(az)) S 2Vr ,

(2.2.31)

by (2.2.28) and (1.1.28). We suppose that (2.2.30) is true for m,
and prove it for m + 1.

One half of (2.2.30) is obvious:

* *
Xppp () = X0 () .

-63~
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For the other half, recall from the algorithm (1.1.12)-(1.1.14)

that
x* (g) < sup *a) . (2.2.32a)
i . [Ofa )U+] xm
X* (v) 2 inf @) . (2.2.32b)
mt1 1 &[U ’al] m
So
X*. (o) - X' (@) s sup x%(@) - inf  x*(a)
W MR e SE ] Y
* : * *
= max sup x (o) - inf x"(o), sup x (o)
(QE[QI,U+] g €U ,0] " oklog,q] ™
- inf x;(a), sup x;(a) - inf x;(a)
o [U505 ] o laz o ] o] ™ )
< max ( 2Vr, sup xF(@) - inf (@) ,
( o€ag,o ] o ok g, ] o )
(2.2.33)
since
x¥(@) - x:(B) < 2Vr for 2B . (2.2.34)
Given ¢, > 0, ¢ > 0, we find a3 and oy such that
a3 € [al »QXJ) *:(as) 2 8sup x;(a) - € N
[og,0 ]
(2.2.35)
o € (0,0 ], xi(oy) s inf  x'(@) + e .
o3, ] "
-64-
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If a3 2 g, by (2.2.34) and (2.2.33) we get

* *
Xm+1(ag) - Xm+1 () <2Vr + ¢, +¢ . (2.2.36)

So suppose a3 < a,. By (2.2.30),

x;(aa) - 2Vr € x;(a,) - 2yr < X;(dl) < x;(a‘) < x;(aa) g
(2.2.37)

Using (2.2.21) and (2.2.27), we find that this leads to
* *
xm(as) - 2Vr = Xm(O") ’

and once again we get (2,2,36). Since € > 0 and ¢3 > 0 are
arbitrary, we get

* *
Xm+1(ag) - xm+1(aa) < 2Vvr . (2.2.38)

This establishes (2.2.30) by induction, and the lemma is proven.

The lemma shows that, if x:(al) and X:(aa) are "close",
then so will be X¥(ay ) and X*(az) “form 2 " we may think of
this as giving a Bound on thé width of numerical shocks. The re-
sult is still not as strong as we desire, since we have no idea
how many such shocks there may be. One may envisage the algorithm
(1.1.12)-(1.1.14) as unfolding through the "interweaving" of vari-
Ous streams. It then appears that, once two such streams are inter-
woven, they cannot subsequently become unwoven. Thus, we will
naturally want to study families of such interwoven streams, in the
hope that they will be approximations to the shocks of the exact
solution. To see what sorts of families of streams we should con-
sider, we may return to our initial heuristic discussion of the
exact solution, where, we recall, we searched for the location of
shocks from "left" to "right"”, minimizi expressions like (2.2.12),
and proceeding downward from the "top" of the velocity profile
to the "bottom", at U".
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Accordingly, we might consider sets of the form

B = {ala € [07,U", g g € [U",a] such that x*(8) - x*(u") <0

for some n < m - 1} . et 5%
If we let

9, = mf{v(a)laésm} (2.2.40a)
and

E *

5 sup{Xm(a)IoEBm} e (2.2.40Db) ]

we can prove, by induction in m, that ‘
€ - Xp(U) s T(v(U) ) - (2.2.41)

However, it may be that a stream becomes interwoven with a
second stream which has itself become interwoven directly with the
stream U*. Such streams would not appear directly in the set B
introduced in (2.2.39). A natural extension of the result given

in the last paragraph then iavolves, given a set DC [U‘,U+], intro-
ducing a set

.

Bx:(D) = {a|a€ [U-,U+],z BE (U ,a] and g 6€ D such that x¥(g)-x¥(8) <0].

(2.2.42) -y
We observe that
5‘3(0) D (2.2.43a)
and
BX:(D) " nx:(n) (2.2.43b)
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i
§
£
t
i

where by § we mean the convex hull of a set §:

§ ={afap€sand 3y € S such that p s o < vy} . (2.2.44)

A Then, we can prove the following: If

sup{x¥(a) | € D} - 1nf{x:(a)|a€ Bl.s d (2.2.45a)

then

sup(X{'(e) | € Bua(D)} - inf{X¥(c) |x€ B (D))
) (S
< max{d+r[sup{v(a)|a€ Bx:(D)-ﬁ} - inf{v(a)|a€ Bx*(D)-ﬁ}],
[¢]

T[sup{v(a)|a€ gx*(D)} - infiv(a)|o€ Bx*(D)}] P ERPR
o o

We are getting progressively larger sets of interwoven
streams, but we still have not achieved '"closure'" of these fami-
lies. The next natural step is, with BX*(D) defined by (2.2.42),
to generate the sequence of sets o

(1)
B =B (o) ,
xo*
(a) (1) L
B = B . & (2.2.46)
S e )
(m+

g(™1) | g(™ e U
Bx:( )

Since B(Ml) o B(m) and B(m) = [U-,U+] Vm=21, we get conver-
gence, and can define

0 a(m)
D U ; 2.2.47
ix: (D) = & B ( )
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Then

Ball o()) = B (D) . 2.2.48
X:( X:( )) X:( ) ( )

With this much as background, let us finally define the
sets which will appear in the statement of our principal result.
We have partitions Hn of the interval [U™,Ut]. By this, we mean
that there are ordered sets A, © [U-,Ut] of points, labeled by
the parameter o, such that with each o € A, there is associated
a set D,(o) with the following properties:

Bsa if BE D () , (2.2.49a)

o € A, € AL, 0>, B, € Dn«l)x =€ Dn(aa) = B> B2

(2.2.49b)
We further require that
+
U..& A Vnz20 (2.2.50a)
and
-+
U D()=[U,0')]Yn20. 2.2.50b
b %@ = () ( )
We may restate (2.2.49b) as
@ €A, €A, o oy =D ()N D (x)=09p.
(2.2.51)
The sets An will have the property that
-+
AnCAn_‘C-'-CAo-[U i A (2.2.52)
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Thus,

Do(a) = {a}, ae[u,u"] . (2.2.53)

(2.2.53) describes the partition I[Iy. We will have described all

the partitions if we can show how to get from Un to Hn+1.

To get from Hn to Il we do the following: We form the

n+1
function X:(a) in accordance with the algorithm (1.1.12)-(1l.1.14)

and the definition (2.2.19). Suppose we have a set DC [U-,U Sl
Given D, we define a number an(D):

a (D) = supfala € A, 3B € D such that g € Dn(a)} 2
(2.2.54)

Now we define another set by

Cy*(D) = {ala€ [U7,a (D)], @ YEA , BE [U”,y], and @ 6€ D such

n
(2.2.55)
that « € D _(Y) and x:(ﬂ) - x:(é) < 0} .
Note that
C,x(D) 2D (2.2.56a)
X
n
and
Cy#(D)" = Cyx(D) (2.2.56b)
n n
where we use the notation (2.2.44). Also, if
D, (@) N cyx (D) . 5 (2.2.57a)
n
then
Dn(a) c Cx: ) (2.2.57b)
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and, if
D €D , (2.2.58a) {
then
Ce# (D) © Cyx (D) . (2.2.58b)
n n

Next we generate the sequence

r®)(p Cox (D)
n

et )y, +o- (2.2.59)
n
| r® D) = gr @y, -
n

Since F(m)(D)<: [U-,U+] and F(m+l) 2 F(m) Vm2 i, we can define

& 11 pie)
Cx: (D) = ngl Iy | (2.2.60)
For each «o € An we find
Dn+x(a) = Cx: (D (@) . (2.2.61)
Clearly,
? Cx; Dy (@) =D . (@ . (2.2.62)

It follows from (2.2,54), (2.2.55), (2.2.59), and (2.2.60) that
| LA W (u*) and U ¢ Dpyy (@) for « € A - {UT}. Now we take a
i subset of points o € A_ such that the associated sets D (@) are

a disjoint collection of sets covering [U~,U*]. From the above, we
must have U* in this subset. Tentatively, we call this subset of

b S i

B S S T S e e e e e e S e e e
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points A . Since we shall see in the next paragraph that An+1

n+1
thus defined is determined uniquely, we have also defined the

partition ﬂn+1

To see that An+1 is defined uniquely, we proceed by induc-
tion. It is clear from (2.2.52) that A, is uniquely determined.
Assume that An is. Now, suppose that An+1 is not defined uniquely,

'

so that there are two sets, An+1 and An+1 ; satfsfying the condi-
tions of the definition. Leta € A . , « 4 A . - Since
oS A, @& A . Also, it is clear from the preceding results
B i ™) (1) (1)
that o # Ut. Then q o € A_ such that « > «, aED Sy,

(1) - (1) ¢ ()
and o € An+1' 1)Since An+1 An’ o An. 1f o € An+1
and o € Dn+1 (a( ), we get « ¢ A L by the requirement that the

sets {D (a)laEEA } be disjoint. Since this is a contradiction,

we find a(l) ¢ B So g a5 o0 een o' € A, CA and
o?) € (oz("")) 8ince o'2) € D, @) = Cx* (D, @@y by
.20y, g TR (2.2.57) i D" N B 'y,

From (2.2.58) we get CX; (Dn(a(l)) & Dn+1(a(3)), and in general
r™ o @) c D, @), Hence, from (2.2.60) and (2.2.61),
T @(1)) c R (a(a)) Since ¢ € D +1(a(1)), we get o €

D +1(a(a)) for « E A, and o'? ) ¢ A . - This gives us a contra-
diction with the required disjoincnesa of the sets {Dn+1(a)|a €

An+1}‘ Accordingly, A,  as defined must be unique.

The sets D (a), a € A 3 have the following property: If
we replace w° (x) by

u‘\’((x) g min( (x),Y), Y=2a, (2.2.63)

then for 0 S m < n X;(ﬂ) for B € D () is unchanged.

-
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Let us now prove the following lemma.

Lemma 2.2.2: [Let the sets A, and the sets D,(B), B € Ap,

be constructed according to the prescription above. Then for
n 20,

sup{X}(a)|@€ b (B)} - inf{x*(e)|a€ D_(8)] = rlsup{v(e)|a€ D (8)]

(2.2.64)
- inf{v(a)|a€ Dn(B)}]

Proof: The case n = 0 is trivial, since, by (2.2.53),
sup{X3(@) [0 € Do (B)} = 1nflxF(o)|a€ Do(B)} = X¥(B) , (2.2.65a)

sup{v(a)|e€ Do (B)} = inf{v(e)|a € Do(B)} = v(B) . (2.2.65b)

We proceed by induction. Thus assume (2.2.64) true for n. We prove
it for n + 1.

As in the proof of lemma 2.2.1, we have

x:+1(a) < E:? x*(8) , (2.2.66a)
x* (@ =z inf  x¥B) . (2.2.66b)
gl pELU ,a] "

By the comstruction of D, (B) with p €A, if 0 <panda 4 D, (),
then x:(a) > x:(Y) for all Y € D, (B). Likewise, if o 2 B and

o f Dn+x (B), then x;(a) < x:(Y) for all vy € Dn+1(a). Hence the
induction will follow for (2.2.64) if we can show that

=72~
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suplxp(@]o € D (8)} - infl{x¥(e)|a € D (8))
(2.2.67)

< lswplv@|a € b (®)} - inflv(@ | € D (8)}] .

First, we try to bound

sup{x:(a)lae Cx: (0, (B))} - 1nf{x:(a)|a € Cx: (D (B))} . (2.2.68)

As in the proof of lemma 2,2.1, this can be approximated arbi-
trarily well by x:(B1) - xg(Ba) for some B, € CX* (Dn(B)) and
n

B2 € Cxx (D). If By 2 s,

x1(81) - xX(Ba) = XX(B1) - X¥(Ba) + T(v(By)-v(Ba))
(2.2.69)
S (vB1)-v(Ba))

and we get the desired bound.

SuppoSe B, < B;. We can write By € D (Y1), Ba € D (Ya),
such that 3B, <V, and B < v, with x:(e{) < x:(bl), x:(a,') <
x:(Bg) and 8, € D (B), 63 € D (B), Clearly, B, € C_* (D _(B))

2 n n Xn n
and B, € cx* (Dn(B)). Since B, < By, B, € D _(B) = B, € D (B).
n n
In that case,

%a(B1) - x0(Ba) = XT(B) - X2(Ba) = sup(x*(@)|a € D_())
(2.2.70)

- ine{x](@)|a€D (B)} = r[sup{v(a)la€p (B)} - inf{v(a)l €D (1)} ,

on use of (2.2.64),

: So consider the case B; € D (B), B, Q Dn(B). Suppose
By < £y, where B/ is given above, en
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xq(B1) - xX(B)) < T(v(B,)-v(B!))
(2.2.71)

< 1[sup{v(a) Iaecx*(nn(a)) =D, (B)} - inf{v(a) o€ C"ia*( D (B))-D (B)}].
n |

|
|

Otherwise B, > By. Since B, € Dn(Y1)’ we‘have B, € Dn(Y1)-
1) -x{(B)) < supli(@) |o€D, (v1)] - tnf(x*@) |e€D_(v,)), v, <.

; (2.2.72)

As we have done before, we approximate the right hind side of
(2.2.72) by \

* * *
x:(al) - xn(az) - xn(al) = xn(aa) \ (2,2.73)

+ T[V(Qﬁ)'v(ae)]a € Dn(Yx): ax€ Dn(Yl)

When o, < &y, an upper bound is !
x
\

X3(e) = X(ap) < r[sup{v(a) lv€D_(v;)} - inf{v() €D (v,)}], (2.2.74)
l

by (2.2.64)., when o, > ap, we get the same bound directly from
(2.2.73). 1In either case, we get
\

(@) - x*(ag) \
|
< Tlaunlv@ lo€ayu(, 80,8} - tnt {v(e) |a€eyud, 1) -2, 811,
n n

since D (Y,) C Cyx (D (B)) and D (v,) N D_(B) = ¢. This last

bound is the same as the right hand side of (2.2.71), which holds,
therefore, whether g, < g, or B, > g,.

|

|
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Since By € Dn(B), we get, with §, given as above,

xp(By) = %1 (Ba) = X¥(By )-xX(BY ) + x*(R) - xX(6;) + x*(8;) -x*(B2)
s rlsup{v(a) |o€Cyx (D, (8))-D (B)} - inf{v(@) |o€Cyx(D (8))-D,(B)]]
+ [sup{v(e)|o€D (B)} - inflv(e)|cD (8)}]

< 7[sup{v(a)la€CX*(Dn(B))} = mf{v(a)loécx*(nn(s))}] ; (2.2.75)
n n
Here we have bounded x:(él) - x:(Ba) in the same way we bounded
x:(al) . x:(da) in (2.2.73).

We have treated the cases B, 2 B, and B, < B, Bz € D_(B).
Suppose now B, < Bz, Bz ¢ Dn(B). Consider the case B < Y, , with
Y, defined above. Then since B, < B, and B, € D (Y,), we have
B, € Dn(Yl)' As above,

x5(By) - x%(B3) < T[sup{v(e) |o€D_(v1)]} - tnf{v(@)|o€D_(v;)}]. (2.2.76)

Otherwise B, > Y, and B, € D (Yz2), Y < Y2 < B. Choose
@ € D _(B) such that v(a) approximates mf{v(a)laelyn(s)}. Then
a > Bz. So

x*(@)=x}(Ba) = X}(o) = X7(Ba) + T[v(e)-v(B2) ) < T[v(0)-v(Ba)] .
(2.2.77)
With g, given above, we have, for B, < B,,
* %0’ ’
x (By) = x (By) = t[v(By)-v(B))]

< «[-up{v(a)lo&nn(y,)} . 1nf{v(a)|a€cx:(bn(a))]] . (2.2.78)

75~
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For B, > By » x:(B1) - x:(B{) can be bounded just as we

did in (2.2,72)-(2.2.74). A suitable bound was given by the ;
right hand side of (2.2.74), which in turn can be bounded by {
the right hand side of (2.2.78). Thus (2.2.78) holds whether

By < B, or B > By

Choosing o € D (B) appropriately, we can bound x (a) - l
x (Ba) above as closely as we desire by T[inf{v(a)laeb (B)} -
v(Ba)] Finally, write I

X (B)= xX(B) =x) (By ) - (B J+x¥(BY ) -x (8, )+ (8, ) -x* @)+t (e) -x*(B2)

]

s tlsup{v(@) |o€D (1)) - tnf{v(e)|aEcyx(p (8))}]

L ——

+ T[Sup{v(a)|a€Dn(B)} - inf{v(a)ldEDn(B)}]
+ T[inf{V(a)loéDn(B)} - v(B2)] ‘

< T{suplv(a) |e€Cox(D (B))} - inf{v(a)|a€cyn(D_ (8))}] .
n

Here we hnve used the fact that B, > v,, and we have bounded
x (61) - x (a) in a now familiar way.

Thus, we obtain ‘

sup{x](@) |o€Cyx(D (B))] - inf(x}(a)|a€C, (D (B))) 1
| p 5 (2.2.79)
! s r[sup{v(@)|a€cy %D (8))} - inflv(m|o€c x(D (8))}] . )
| n n
Now we turn to }
supl(@)|€r (0 ())) - inf(t@ leer @0 30} ,  @.2.80) H

o S
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where F(a)(Dn(B)) was given in (2.2.59). As before, this can be
approximated by

x*8,) - inf{x*@)|e€r® o 8}, 8.€ 1?0 (8))

For o € T (0 (8)) - I (D (8)), x*(2) > x*(8) for all & € p_(B).
Thus,

ing{x*@) €T (p_(8))} = tnt(x*(@) €T M 0_8))}.  (2.2.81)

Suppose B, € F(l)(D (B)). Then sup{x*(a)laél"( )(D (B))} can be
approximated by sup{x*(a)laxr(l)(D (B))}

Consider the other case, B, § I"(l)(D (B)). By € D (Vp).
Then 3 51 < Y, such that x (51) <X (61) for some 8, € e r@ (Dn(a)).
i B/ € T (p_(B)). If v, € F(‘)(n (B ot 8y € T )(0_(8)),
which is a contradiction. Thus vy, § T*’(D_(B)). On the other
hand,

B€ TP ®), 8.€ D ) = e ). so
we 1w @) - rP @ @), sinilarly, 8 s v, ,
Y, € F(a)(Dn(B)) - I‘(l)(Dn(B)), and the connectedness of

1 (0 (8)) mply that 8 € I (p (8)) - IV (o ().

Consider the case B, < B,.

x*(B) = x¥(B{) = XN(By) - X2(B)) + T(V(B)-v(B{)) = T[v(By)-v(B{)]
< t(sup{v(e) |€T® (p (8)) - 1) (0 _(B)) o

- tatlv@) |e€er®@ @ #) - 10 N1 .

o

" . s : e
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In the other case, B, < B,'. Since B, € D (Y,) we ha&e B, € Dn(Yl).
As before, we get in this case "

x1(By) - x2(B)) < T(suplv()|e€D (v,)} - tnf{v@)|e€D (v1)}] ,

which in turn is bounded by the right hand side of (2.2.82) since
w € o ) - 1o ).

Thus,

x(By) - inf(x*@) o€ 0 @)} = KXBy) - KEB) + G - xhy)
+x%(6y) - nflx@|oer® o _(8)))

< r(sup{v(o)la€ T g (8)) - * A0 (8)) }-tne{v(e) |eT CXo_(8))-T ) (0 _(8))}]
+ 1[sup{v(e) |o€r o (8))} - tntlve) wcT ) (0 _(8))}7

< tlsup(v(@)|e€r® (o 8))} - intlvi@laer® o N1 . (2.2.83)

We may continue in this way, getting

sup(x*(@)|€r ™ (0_(8))} - tnf(x*2) |l ™ (0_(8)))
(2.2.84)

< t[suplv(e) |o€r ™ (o (8))} - tntlv(e) |o€r ™ (p_(8))}]

and

lup{x:(a)lﬁcx:(Du(B))} » mf{":(")h ez;(:(nn(a))] (2.2.85)

< t[sup{v(a)|a€ cx*(nn(a))] - inf{v(@)a € c)q(nn(e))]] .
n
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This establishes (2.2.67) by induction, and hence (2.2.64)
and the lemma.

Thus, for v monotone, the total width of all shocks as we
run down from a peak at Ut to a minimum at U~ is no more than
Tlv(U+)-v(U")|. A natural conjecture to make is the following:
The total width of all shocks as we run down from a maximum Ut to
a minimum U” is bounded by

T var(v;[UuT,ut)) , (2.2.86a)

where the variation in the interval is defined by (Reference 8)

8 n
var(v;[U~,ut]) = .TEF {Ei lV(Gi)'V(di_l)‘ (2.2.86b)
and'TT_is a partition of [U~,u"] as follows:

U" =g <oy < **+ <g =y, (2.2.86c)

We leave the proof (or disproof) of this conjecture to the reader.
Since a function of bounded v - iation is differentiable almost
everywhere, it is clear anyway that v of bounded variation in

(U™, u*] can be approximated as closely as we desire (in the maxi-
mum norm) by a piecewise constant v. And for a.,u.c, initial data,
we have bounded the error induced by such an approximation in
lemma 2.1.3.

The situation is this, then: After n time steps we have a
profile X*(a) and, for B € A,, shocks spanning the range of veloci-
ties in the D,(B). To complete our analysis, we should compare our
a;p;oxinnte solutions with the exact solution an(B) given in
(2.2.16).

Because of the way the sets D,(B) for B € A_ were con-
structed, we see that in the first n steps the algorithm (1.1.12)-
(1.1.14) produces no "cascading” of the quantity ¥ (cf (1.1.3))
into the sets D,(B) from above, nor out of these sets below. A
more precise statement of this property, in terms of the set func-
tion U, introduced in equation (1.1.39a) and the operator D, is
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U(Du3Q) = B, (DP;0) +mr [ v()de, Osmsn, (2.2.87a)
D_(B)
n

where

Q= ((x,0|x2 x¥w" - oy, a€D (), €A} .  (2.2.87b)
n n

Defining, for g € A,

D, (B) = inflo|o€D (8)} (2.2.88)

we find from (1.1.24) that

B
nt “l'e v(a)da = .g( (x*n(a)-x:(a))da. (2.2.89)
D<

Using the result in lemma 2.2.2 that, for o € Dn(S), g € An

sup{X7(@)|o€D, (8)) - T[sup{v(a)|o€D (8)} - inf{v(e)|eD_(8)}]

< Xp(@) = inf{x7(@) |o€D,_ (B)} +r[suplv(e) |a€D (B)}-intlv(a)|a€D_(8)}] ,

we see that (2.2.88) leads to

1 B

B
* 2 rP L * __nrt
IXG@ - 57§ Xode - g7 Sp, (@

(2.2.90)
< t[suplv(e) €D (8)} - tnf{v(a) o€ _(B)}] ,

for all p € A, such that D (B) # B. In this paragraph and the fol-
lowing ones, one may, if he desires, consider that the monotonically
non-increasing function ° (x) has been replaced by a histogram, as
described in (2.2.1)-(2.2.4). 1In that case, the sets A, already
introduced and the sets By to be introduced are all finite and D.(8)
< g for B € Ay. Our final error estimate will be independent

—— - S m——— — |
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of the numbers of points in the sets Ap and Bg,
: pendent of how closely we approximate
?ﬁ will hold quite generally. Alternatively, we may use the follow-

£ ing simple bound for the error induced in the frontal locations

i X¢ and X} by replacing W (x) by the histogram (2.2.1a), for «° (x)

= monotonically non-increasing and satisfying the conditions (2.2.5)-

and hence inde-
d°(x) by a histogram, and

= (2.2.7). For, it is clear in this case that

B

= ) ~ aBl) = aslxsb), ‘i < 5o (m+1)6 . (2.2.91)
&j Since reglacing Uy (%) bx U (x-6) will have the effect of replacing
é? Xt and X by X¢+6 and Xn+6, respectively, and since the fronts X¢
ﬁ' and depend monotonically on the initial data, as described

in the last section, we see that

X (P) s xt(§°) S X (L) +8 (2.2.92a)

——

X30P) s X¥®) < x*f) + 5, (2.2.92b)

and

|X:(u°)-xt(u°)| < |x:(5o)-xt(5°)| $8 . {h.500n

Given the exact solution Xe(B) in (2.2.16), we can effect

a partition 8y of [U”,U%] as follows: For each vy € [yU~,ut] we
define a set

Be() = lala€ [U7,v], x @ =x.m} . (2.2.93)

Then we find a set By C'[U-,U+] such that for y € B, the sets

and E,(Y) = {Y}. Just as we proved that the sets A, and the parti-
tions I, were defined uniquely, we can show that the Bt and 8, are

uniquely determined. As we defined D_(B) in (2.2.88),

we can define,
for vy € B,

Ec(Y) = int{o|a€ B (V)] . (2.2.94)

: l {Eg(y)] are a disjoint covering of [U™,u%]. we let Bo = [u~,ut]
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The analogue of (2.2.87) in this case is

U (Du(+,t')350) = Uy (Du(+,0)3Q) +t’ [ v(@)do, Ost's e,
E¢ (Y)
(2.2.95a)
where

Q= {(x,0)|x2 %W - v, a€ E(Y), Y€BJ . (2.2.95b)

Lemma 2.2.3: If °(x) = u(x,0),

A CB_ . (2.2.96)

Proof: It follows from (2.2.10) and (2.2.19) that x:(a) =
¥ (o). The lemma is trivially true for n = 0. We will prove the
lemma for n 2 1 by contradiction. So suppose B € A, and B € E__(Y),
Y>p, V€ Byr. First, consider the case E_(Y) < 8. Over the"Zet

a = {(xa)|x2 %@h - oy, E(v) <a<p} , (2.2.97)

we can have no gain of U, (0) in the approximate solution, and we
can have no loss of U, () in the exact solution, beyond that which
flows across the boundary at x = Xo(Ut) - ntv. Thus,

(B-E_(V)X (V) 2 ? [X (@) + nTv(a)lda , (2.2.98a)
E_(Y)
B B
S XMda s 1 [Xo(a) + mrv(e) lda (2.2.98b)
E_(Y) E_(Y)
and
X2(B7) < X (V) . (2.2.98¢)

Similarly, over the set
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1]

(x| x2 %@ - mv, p<a<y}, (2.2.99)

Q,

we can have no loss of U; (Q) in the approximate solution nor gain
of U, (Q) in the exact solution, except for the flows across x =
Xo (UY) - nTV. This gives

oY

jY Xr(@)de 2 [ [X(@)+ nrv(e)Jdo (2.2.100a)
B
(Y-B)X__ (Y) =< B [Xo(a)4-nTv(a)]da : (2.2.100b)
and
*, -+
X (P) = XnT(Y) . (2.2.100c)

Since monotonicity cf Xn requires X (B ) < X*(B ), the inequalities
in (2.2.98) and (2.2.100) must be equalltles and X (B) 2.T(\()

In particular, from (2.2.100a,b) and the monotonic1ty of X we con-
clude that

v~y = = x*
XX(YT) = X (Y) = X*(B)
But this violates the definition of B € A 0’ and we get a contra-
diction.
Next, consider the case E-(Y) = B. The results (2.2.100)

still hold. On the other hand, from (2.2.16) and our construc-
tion (1.1.12)-(1.1.14), we still must have

Xe (V) =X (B) 2 X(B) + nrv(p) = X3(B) + nTv(p) 2 X7 (B)

(2.2.101)

if p € Ay, the inequalities in (2.2.100) must become equalities,
and we get a contradiction as before.

Thus, if B € A,, we also have B € B, .. Two cases may
arise: (i) D(B) = EnT(B), or (ii) 4 y € Dn(B) with ¥y < B and
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y € Byr+ In the first case, the same considerations as above show
tha t

B

J

r X*(@)da = (B-D_(B)) an(s) if D_(B) <B , (2.2.102a)
D_(8)

Xp(B) = X__(B) if D_(B) =B . (2.2.102b)

Either way,

inf{x} ()|« € D (8)} = X__(B) = sup{X*(o)|a€D_(8)} .
(2.2.103)

In the second case, if D.(B) < Y < B, our arguments based
on the flow of U, indicate that

IB x*@de < ® x_(0)do (2.2.104a)
n nT
Y Y
and
Y Y
J Xiwdaz [ x_(@)da . (2.2.104b)
D_(B) D_(B)

From (2.2.104a) and the monotonicity of both x: and an’ we conclude

u___,,,/’//// 1nf{x:(d)|a€ Dn(B)} <X, 00 . (2.2.105a)

Likewigse, (2.2,104b) leads to
Xor (V) < sup{xi(@)|a€ D (B)} . (2.2.105b)

Finally, suppose Y = Dc(B) < B. The result (2.2.105a) still holds.
On the other hand, a direct check of (2.2.16) and the <onstruction
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X (V) = Xo(Y) + n7(Y) = X§(Y) + n7v(Y) s XX(y) .

(2.2.106)
In all cases considered, we have shown that, for y € Dn(B),
inf{X{()|o€ Da (B)} < X (V) < sup{X](@)|a€D ()} .

(2.2.107)

Combining (2.2.107) with (2.2.64), v~ see that we have proven the
following theorem.

Theorem: For y € D (B),

XG0 -X, (] = rlsuwplv)|a€ b (B)) - tnflv(@)|a€ D _(8)}] .

(2.2.108)
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