-

FEE Copy

ESD-TR-76-359

—y— -
i 3T a¥!

Copy No._ | of - 1 cys.
SECURITY KERNEL SPECIFICATION FOR A
SECURE COMMUNICATIONS PROCESSOR

Honeywell Incorporated
13350 U.S. Highway 9
St. Petersburg, FL 33733

September 1976

Approved for Public Release;
Distribution Unlimited,

Prepared for
DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 0173I

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

Dl e 2l [E

WILLIAM R. PRICE, Capt, USAF DONALD P. ERIKSEN
Techniques Engineering Division Techniques Engineering Division

FOR THE COMMANDER

\—g-/{ Méé{& ’ ggw\.d&.

FRANK J. EMMA, Colonel, USAF
Director, Computer Systems Engineering
Deputy for Command & Management Systems

SECURITY CLASS'FICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFCRE COMPLETING FORM

7. REPORT NUMDER iz. GOVT ACCESSICN NO.
]

ESD-TR-76-359 1

PECI®'ENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

SECURITY KERNEL SPECIFICATION FOR A
SECURE COMMUNICATIONS PROCESSOR

TYFE OF REPCRT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S) i o : 8. CONTRACT OR GRANT NUMBER(S) i
C. H. Bonneau F19628-74-C-0193
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 TRCGRAM ELEMENT, PROJECT, TASK
Honeywell Incorporated APLA » WORK UNIT NUMBERS
13350 U.S. Highway 19
St. Petersburg, Florida 33733
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command and Management Systems September 1976 4
Electronic Systems Division, Hanscom AFB, MA 0I73I ';4";”““ ol g
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a,

DECL ASSIFICATION/DOWNGRADING
EDULE

N/,&C H

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Computer Security Secure F
Secure Computer Systems
Security Kernel
Secure Communications Processor

HIS Level 6

ront-End Processor

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)
This report presents a formal top level interface specification
of a kernel for a secure communications processor based on a
Honeywell Level 6/40 minicomputer enhanced with a security
protection module (SPM).

DD ,55%s 1473 EoiTION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

Because of funding limitations, the Air Force terminated the effort
which this document describes before the effort reached its logical
conclusion. This report is incomplete, but was published in the

interest of capturing and disseminating the computer security tech-

nology that was available when the effort was terminated.

This report describes the top level design of a security kernel for

a secure communications processor. Although the kernel described in
this report should be useful in a wide range of minicomputer appli-
cations, tihe kernel was initially intended for use in the front-end
processor of a secure, general purpose computer system (Multics).

In ¢general, the kernel functions described in this report appear
adequate. The Air Force review of this document included comments

on particular design issues and the style of specification and the
resulting impact of this style on verification of the design. Because
sufficient funds to completely revise the report were not available,

the outstanding comments appear in an appendix.

: 5 %

ACKNOWLEDGMENTS

The author has drawn extensively from the ideas and suggestions
presented in the Multics Security Kernel Top Level Specification in
the preparation of this report and gratefully acknowledges the con-
tribution of its author, Jerry Stern. The author would also like to
give special thanks to Lee Scheffler for many nelpful discussions

over the past year.

TABLE OF CONTENTS

Page

Preface iii

Acknowledgments v
Section

1.0 INTRODUCTION 1

2.0 SPECIAL OVERVIEW 2

3.0 SECURITY KERNEL SPECIFICATION OVERVIEW 4

4.0 SCOMP KERNEL MODULES 6

4.1 Clock 6

4.2 Access Levels 6

4.3 Processes 6

4.4 Volumes 9

4.5 Quota Cells 10

4.6 Segments 12

4.7 Devices 18

4.8 Address Spaces 20

4.9 Host Interfaces 24

540 REFERENCES 26

Appendix A - SCOMP Kernel Specification A-1

Appendix B - Special Reference Manual B-1

Appendix C - Comments on Security Kernel Specification Cc-1

for Secure Communications Processor

vii

INTRODUCTION

This report presents a formal top level interface specifi-
cation of a kernel for a secure communications processor
based on a Honeywell Level 6/40 minicomputer enhanced with
a security protection module (Reference 3). This kernel
provides access controls to support the security and inte-
grity access policies as defined in the Bell and LaPadula

model (Reference 1).

This specification is intended to be suitable for formal
proof of correctness. The specification is written in the
formal specification and assertion language, SPECIAL, devel-

oped by Stanford Research Institute (Appendix B).

Implementation of this specification is intended to support
both secure front-end processor applications and general-

purpose stand-alone communications applications.

SPECIAL OVERVIEW

The following description is intended to serve only as an
overview of some of the basic features of SPECIAL. For a
complete description of the language, the reader is referred
to the SPECIAL reference manual written by Stanford Research

Institute and included as Appendix B of this document.

SPECIAL allows for the definition of abstract data objects
and operations performed upon these objects. The objects are
represented as V-functions, i.e., functions that return a

value. The collection of V-functions represents the state of
1

the system being specified. Operations on objects are repre-
sented by O-functions. O-functions modify the values of
v-functions and thereby change the state of the system. A
third class of functions is that of Ov-functions, i.e., func-

tions that both change the system state and return a value.

A distinction among V-functions is that they can be either
primitive or derived. The value of a derived V-function is
simply an expression in terms of other V-functions. Only the
values of primitive V-functions can be changed by O-functions
and this implicitly changes the values of related derived

V-functions.

A second distinction among V-functions is that they can be
either visible or hidden. A visible V-function is one that

is available to the outside world. A hidden V-function can
only be referenced from within other functions. By convention,
the names of all hidden V-functions contained in the kernel

specification begin with the prefix "h ".

An individual function specification comprises several
different parts. For visible functions, the first part is
always a list of exception conditions, i.e., conditions under
which the function fails to operate or return a value. These
exceptions apply only when a visible function is referenced
from the outside world. When referenced internally, i.c.,
from within another function, cxceptions arc ignored. Simi-
larly, hidden functions, which can only be referenced

internally, have no exceptions. The order of exceptions is

2

significant. Each exception condition is checked in turn, and
only if all the conditions are false will the effects take
place and/or the value be returned. The calling program may
depend on the order in which the exception conditions are
checked. The remaining parts of a function specification
differ for v-functions énd O-functions. 1In the case of a V-
function, the specification contains either an initial value
for a primitive V-function or the derivation expression for a
derived V-function. O-functions and OV-functions contain a
list of "effects" that describe changes to V-functions. For
an OV-function, the effects also define the output value. The
order of effects within a given list is unimportant. All
effects occur at once, i.e., instantaneously. Within an
effects list, references are made to the old and new values of
V-functions, i.e., the values before and after the effects have
occurred. The new value of a V-function is indicated by a

single quotation mark (') preceding the V-function name.

The entire set of functions which constitute the top level
specification are divided into groups called modules. The
purpose of modules is to allow the specifier to conveniently
organize a possibly large number of functions into small
groupings that can be easily understood. The modularization
serves no other purpose. Often, the modules may, in some ways,
correspond to actual program modules in a perceived implementa-

tion. This, however, is not necessary.

Function references between modules are permitted. A function

of one module can observe the value of V-functions, including
3

hicden V-functions, of any other module. However, V-functions
can only be directly modified by O- or OV-functions of the

same module. Therefore, in order for one module to change

a V-function of another module, the first module must invoke

an O- or OV-function of the second module.

The specification of a module is divided into six sections
as follows:
1% “TYBES
This section defines new data types which supplement
the primitive data types of the language.
2. DECLARATIONS
This section defines variable names and their associated
data types.
3. PARAMETERS
This section defines named constants which, in SPECIAL,
are called parameters.
4. DEFINITIONS
This section allows for the specification of macros.
5. EXTERNALREFS
This section defines all external functions referenced
within the module.
6. FUNCTIONS
This section contains all of the individual function

specifications for the module.

SECURITY KERNEL SPECIFICATION OVERVIEW

The SCOMP kernel specification is divided into the following

modules:

e clock

® access levels

® Dprocesses

® volumes

® quota cells

® segments

e devices

® address_spaces

° host_interfaces

Each module takes the form of an object manager; i.e., each
module defines the data representation and operations for a

particular object type.

The functions of these modules define the top level kernel
interface. The visible kernel interface includes all non-
hidden V-functions and all O- and OV-functions not specif-

ically excluded from the interface by the SCOMP-kernel inter-

face specification which precedes the module specifications.

The SCOMP-kernel interface specification identifies the modules
that compose the interface and, for each module, identifies

the 0- and OV-functions that are excluded from the interface.
Unlike the module specifications, the interface specification
is not written in SPECIAL, but is written in a specific inter-
face specification language also developed by Stanford

Research Institute. Functions excluded from the interface

are specified following the WITHOUT clause for each module.

SCOMP KERNEL MODULES

Clock

The first module of the SCOMP kernel specification describes
the system real-time clock. The read_real_clock function
returns the current value of the system real-time clock. The
clock is used as a source of unique identifiers by the various

kernel modules.

Access Levels

The access_levels module serves to define the internal
structure of an access level. An access level is composed

of both a security level and an integrity level. A security
level or an integrity level is composed of both a level number
(e.g., confidential, secret) and a category set (e.g., NATO,

crypto) .

The access_levels module contains functions for determining
subject access (read, write, or read/write) to an object.
These functions implement the nondiscretionary access control
policies of the security model (simple security and the
*-property). The functions take as input a subject access
level, an object access level, and a boolean value indicating
whether the subject is trusted. All access control decisions

made by the kernel depend on these functions.

Processes

The processes module is concerned with the creation and dele-
tion of processes, interprocess communication, process sched-
uling priority, process virtual clocks, and process real timers.

6

At process creation, the access level of the new process, the
trusted or untrusted status of the new process, and the
scheduling priority of the new process are specified. Process
creation and deletion are restricted to the trusted initializer
process only. For this reason, process creation cannot serve
as an information path between untrusted processes. Therefore,

knowledge of the existence of processes is not restricted.

The processes module provides an interprocess communication
mechanism via the block, read-messages, send-signal, and
wake-up functions. The send-signal and wake-up functions
insert a message into the target process message queue. If
the target process state is blocked, the process state is
changed to ready. The difference between signals and wake-ups
is that a signal is recognized immediately by the receiving
process whereas a wake-up is not recognized until the receiving
process next invokes the block or read messages functions.

The block function allows a process to read its message queue;
if the queue is empty, the process is blocked (state changes
to block) until a message arrives. A read messages function
is provided that simply reads any pending messages, but will

not wait for a message to arrive.

The processes module supports the process scheduling mechanism,
which is hidden within the kernel, by maintaining the
scheduling priority of each process. Process priority is

modified via the set priority function. A process may

change its own priority without any restrictions being
imposed by the kernel; however, the priority of another
process may only be increased. The purpose of this mechanism
is to allow a process to associate a message with a priority.
A message may be sent to another process via the wake-up or
send _signal functions. The sender may then request that the
scheduling priority of the target be changed to that of the
message. If the message priority is greater than the current
target process scheduling priority, its priority is raised

to that of the message.

The process module supports real-time timers; the kernel
maintains one real timer per process. If additional timers
are required by a process, they must be managed by the

clock manager portion of the supervisor. When a timer is
set, the caller specifies the timer-interval, a wake-up
message (timer identifier), and the interrupt level at

which the clock manager is to run. When a timer runout
occurs, the target process is sent a wake-up message and the
corresponding timer level indicator is set. Upon process
dispatch, the process will execute the level handler corres-

ponding to the highest priority level indicator which is set.

The processes module also supports a per process virtual-
time clock which only runs when the process state is running.
Ideally, process virtual time represents the real time that
a process has actually been running on a processor with
subtractions made for certain hidden events such as pagc

8

faults and interrupts. The objective is to factor out time
spent performing hidden operations that support the virtual
process environment because this time is unpredictable and,
in general, depends upon the activities of other processes.
The implementation of this ideal virtual clock is difficult.
Thus, the kernel allows access to the virtual clocks only to

the trusted time-monitor process for accounting purposes.

Volumes

The volumes module is concerned with the creation and deletion
of volumes, and the mounting and demounting of volumes. Vol-
umes are considered a logical subdivision of secondary storage

consisting of a single disc pack.

At volume creation, minimum and maximum access levels for the
volume are specified. These access levels define the range
of access levels of information (i.e., segments) that can be
stored on the volume. The minimum access level of the volume
also serves as a visibility access level for the volume.
Volume creation and deletion are restricted to the trusted
volume initializer process to allow a limit to be placed on
the number of volumes without creating an information channel.
At volume creation, an initial quota cell and quota cell limit
are created for the volume. The quota value of the initial
quota cell is set to the volume size (i.e., the number of
pages on the volume). The quota limit value of the initial
quota cell limit is set to the number of allowed quota cells
per volume. Details on quota cells may be found in the

description of the quota_cell module.
9

The only operations which can be performed on a volume by
untrusted processes are mounting and demounting. Both of
these operations require that the caller's access level be
equal to the volume minimum access level because the mounting
and demounting of a volume can be detected by any process at
an access level equal to or greater than the volume minimum
access level. To prevent the creation of an information
channel caused by the finite number of disc drives in the
system, disc drives are allocated by access level. The kernel
requires that for a process to mount a volume on a disc drive,
the process access level, the volume minimum access level, and
the drive access level must all be equal. The access level
distribution of free disc drives may be changed dynamically,
if necessary, by the trusted initializer process using the

change drive_count function.

Quota Cells

The quota_cells module is concerned with the management of
volume quota and provides the mechanism to build a hierarchical
file system outside the kernel. Quota cells are the mechanism
by which the sharing of pages on a volume is controlled - each
segment is assigned to a particular quota cell. The kernel
provides a general interface that allows any arbitrary collec-
tion of segments having the same access level to be assigned

to the same quota cell. The supervisor (i.e., file manager)

is responsible for imposing an arrangement of quota cells

and segments that reflects a directory hierarchy.

10

At quota cell creation, a volume, an access level, and a
visibility access level are specified. The two access levels
must be within the volume range. Storage space on a volume is
first made available by the creation of an initial quota cell
at volume creation. Both the access level and the visibility
access level of the initial quota cell must equal the volume
minimum access level permitting the initial quota to be dis-
tributed to higher access levels as needed. All other quota
cells are created with a quota of zero pages. In order to
assign a nonzero quota to a new quota cell, quota must be
moved from some other quota cell on the same volume. Quota
cannot be moved downward by untrusted processes - the move _
quota function requires that the target quota cell have an
equal or greater access level than the source quota cell; only

trusted processes may move quota downward.

A reference count is associated with each quota cell. This
count is the number of segments that charge pages to the
quota cell. As long as this count is nonzero, the quota
cell cannot be deleted. Another attribute of a quota cell
is the count of pages used. This count is changed by the
Creation and deletion of segments (segment length is con-
verted to equivalent pages) as specified in the segments
module. For all quota cells, the pages used count is not

permitted to exceed the quota.

To prevent the creation of an information path resulting
from shared finite resources, a limit is placed on the number

of quota cells that can be created on a volume. At volume
11

4.6

creation, the volume quota cell limit is assigned to the
volume minimum access level permitting the volume limit
to be distributed to higher access levels as needed. All
other access levels quota limits are initially zero. 1In
order to create a new quota cell with a visibility access
level greater than the volume minimum access level, the
quota cell limit must be redistributed from some lower
access level limit on the volume. The qguota cell limit
cannot be moved downward by untrusted processes - the
change quota_cell limit function requires that the target
quota cell limit have a greater visibility access level than
the source quota cell limit; only trusted processes may

change quota cell limits downward.

Segments

The segments modules is concerned with the management of
segments, the logical unit of storage for SCOMP. Within
this module, segments are identified by global identifier
only; the local process view of segments are identified by
segment number, as defined in the address_spaces module.
The segments module also specifies the interface for the
SCOMP memory manager process which is responsible for all

memory manager policy decisions.

At segment creation, a visibility access level, a volume,
a quota cell, and a segment length must be specified. The
new segment resides on the specified volume and charges
its pages to the specified quota cell. The access level

of the new segment is equal to that of its associated quota
12

cell. The number of pages charged to its quota cell is
derived directly from the requested segment length; initially
all words of a segment have a value of zero. Only paged
segments may be dynamically created by a user; no main memory
allocation is made at segment creation. No limit is placed
on the number of segments that can be created on a given

volume.

For flexibility, a memory manager interface has been included
in the kernel specification in the segments module. The
memory manager is to be an untrusted process running at
system high which is responsible for all memory management
policy decisions; the kernel provides the mechanisms for
implementing its policy decisions. Thus, policy may change

without affecting the kernel.

The memory manager interface must be flexible in order to

accommodate the various operating environments for SCOMP.

That is, the kernel specification must be applicable to the

following configurations:

¢ High performance, core-only system with sufficient memory to
preallocate memory at load time; for performance reasons,
unpaged segments are utilized as much as possible.

® High performance, core-only system with insufficient memory
to preallocate all data buffers at load time; thus, a
simple buffer manager is required.

® Medium performance, disc-supported, fully-paged virtual

memory system with a general memory management function.

13

The kernel specification satisfies the reguirements imposed

by the various configurations, yet retains a simple user

interface, by imposing the following rules and conventions:

Paging is invisible to all user processes; visibility of
paging is restricted to the memory manager. The only
reason for the visibility of paging effects within the
specification is to support the memory manager interface.
Unpaged segments must be defined at load time and retained
in core until deleted; only paged segments are subject to
dynamic memory management.

The allocation of real memory to reguestors is postponed
as long as possible by the kernel; no real memory is

allocated until the user attempts to access it.

The kernel design envisioned is as follows:

The kernel has a free list of available memory pages from
which it draws to satisfy access requests (allocate_page
function) .

When the number of free pages falls below some fixed
threshold (min_free page_count), the external memory
manager is requested to provide additional pages (page_
request count).

When the kernel is unable to satisfy an access reguest,

the requestor is delayed until free resources are available

(as supplied by the memory manager) .

The kernel specification provides a memory manager interfacc

via two functions: get memory data and provide free pages.

These functions are only available to the memory manager.

14

The get _memory data function provides a list of pages eligible
for memory deallocation. The memory utilization data consists
of the global segment name, the page number, the page core
address, an indication of whether the page has been used since
the last time the function was called, and an indication of
whether the page has been modified since it was placed in main
memory. To be eligible for deallocation, a page must be in
core, and not wired. The provide_ free pages function notifies
the kernel of the pages selected by the memory manager for
deallocation. These pages are swapped to disc if modified and
placed on the free list. The data provided by the kernel to
the memory manager process appears sufficient to support a
reasonable memory management policy, e.g., frequency of page
use is provided along with method of access (read or write) -
thus, a reasonable policy would be to favor pages used

infrequently in a read mode only.

Functions are defined for reading and writing the contents

of segments (i.e., read/read). These functions have certain
side effects, as well. That is, if the target segment is
paged, then the kernel checks the page_in core indicator. If
not in core, a free page is allocated to the process to
satisfy the request. If the free page count falls below some

minimum threshold, the memory manager is sent a wake-up.

Segment deletion requests are delayed until all outstanding
I/0 on the segment has completed. Upon satisfaction of this

condition, and if no exception conditions are true, pages in

15

core (paged segment only) are added to the free list.
Similarly, an unpaged segment (which must be in core) is
converted to equivalent pages and added to the free list.
The page quota of the quota cell associated with the segment

is increased by the equivalent segment length.

To support memory management, the segments module is re-
sponsible for monitoring pages used, pages modified, and
segments wired on a global basis. Since page descriptors
are to be shared, page used and modified indicators are only
maintained within the segments module, no process local view
of page utilization (within the address_spaces module) is
necessary. However, wired segments are locally known (a
segment must be locally wired to perform I/0). The segments
module's global view of wired segments is derived from the
local data and provides a count of the number of processes
which have the segment wired. The hidden change_wire_count
function is called from address spaces whenever a segment is

locally wired (wire_seg) or unwired (unwire_segq) .

Devices

The devices module is responsible for the management of

devices. Within this module, devices are identified by global

identifier only; the local process view of devices, where
devices are identified by device number, is defined in the
address space module. The device module also specifies the

interface for the SCOMP device monitor process.

16

At device creation, the device access level, the device type,
and the device mapping mode are specified. Since all devices
are read-write from a security viewpoint (all operations may
return status information visible to a using process and may
result in a change of state visible to the external world), a
process must have an access level equal to that of the device
in order to initiate it. The device type is used to define
those read and write control operations valid for user
processes to perform with the device. The mapping mode speci-
fies whether the device is to operate mapped or premapped.
Device creation and deletion are restricted to the trusted
device manager process. Similarly, the modification of device
attributes (access level and mapping mode) is restricted to

the device manager.

For completeness, a device monitor interface has been included
in the kernel specification in the devices module. The device
monitor process would be analogous to the memory manager
process. The get device data function provides the necessary
interface. The function provides the device utilization data
to the device monitor. This information consists of the
device global name, a device initiated indicator, an indica-
tion of whether the device has been used since the function
was last called, and an indicator of whether the device has
been written to since the function was last called for all

devices which exists in the global device catalog.

17

The devices module also includes the device wake-up function
which notifies the device initiator process of asynchronous
I/0 termination. When the termination interrupt is received,
the kernel sends the initiator process a wake-up message
consisting of the device local name and sets the correspond-
ing device level indicator which schedules the device handler

for the process.

Address Spaces

The address_spaces module supports both the binding of segment
numbers to segments and device numbers to devices within a
process as well as the granting and revoking of current access
to segments and devices. In addition, this module provides
kernel interface functions for reading and writing segments
and devices, as well as functions to support trap and level

handling within a process.

The binding of a segment number to a segment is accomplished
via the assign_segno function. The assigned segment number
is selected by the supervisor, not the kernel. Information
about assigned segments is maintained in a per-process table
called the known segment table (kst). The kst is represented
by a collection of V-functions. Similarly, the binding of a
device number to a device is accomplished via the assign_
devno function. The assigned device number is selected by
the supervisor, not the kernel. Information about assigned
devices is maintained in a per-process table called the known
device table (kdt). The kdt is represented by a collection

of V-functions.
18

The assignment of a segment number to a segment or a device
number to a device does not make the segment or device directly
accessible. Object access is accomplished via the give_access
and give_device access functions for which the caller specifies
the access mode and ring brackets for the segment or device.
The requested access mode is modified, if necessary, by the
kernel to conform to access level restrictions. For device
access, a process level must also be defined (at which a device
handler must have been previously defined) in order to allow
the process execution point to be properly handled during
asynchronous I/0O termination notification (i.e., device_
wake-up). Any process can grant itself access to a segment

or device in this fashion. However, it is expected that the
supervisor will control the use of these functions so as to
enforce the discretionary access control list (ACL) policy.
Similarly, the supervisor will enforce the discretionary

ring bracket policy. The kernel requires only that the seg-

ment and device ring brackets be outside the kernel ring.

Functions are also provided to revoke the access of all
processes to a given segment or device. These functions
can be used by the supervisor to force all processes to
recompute access to a segment or device after an ACL has
been changed. Once access has been revoked, subsequent
references to the segment or device will cause an exception.
The address_spaces module also includes a revoke_vol access
function. At the time a volume is demounted, access to all

segments on the volume is revoked by the use of this function.

19

The address_spaces module provides two functions, hidden from
the kernel interface, which support process creation and
deletion. The init address_space function initializes the
new process address space at process creation time. The
process kst is initialized to a template_kst and the initial
process execution point is defined. This process initializa=
tion is identical for all processes. It is envisioned that
the new process will then utilize the interprocess communi-
cations mechanism to communicate with the initializer process
(e.g., answering service process) to obtain sufficient data
to establish its process-unique functionality (e.g., create
its kdt). The purge_ address_space function releases all
segments and devices in the address space of the process at

process deletion time.

Several functions in the address_spaces module represent
either memory reference or device reference operations
associated with classes of machine instructions. These
functions include:
e Read seg - reads a word from a segment for process
- represents all load memory instructions
e Write seg - writes a word to a segment for process
- represents all store memory instructions
e Execute seg - executes a word from a segment for process
- represents all fetch instruction from
memory cycles
e Call - initiates inter-ring inward movement for process
- represents Link Jump across Rings (LNJR) machine

instruction
20

Return - initiates inter-ring outward movement for process

- represents Return (RETN) machine instructions

Sync_device read - reads a word from a device synchronously

for process

- represents all PIO input instructions
(I0, IOH)
Sync_device write - writes a word to device synchronously
for process
- represents all PIO output instructions
(IO, IOH)
Connect_device_read - starts an asynchronous read operation
from device for process
- represents all DMA input connect
instructions (IOLD)
Async_device_read - asynchronously reads a word from mapped
device to segment for process
- represents DMA transfer from device
to memory (IOLD execution)
Connect _device write - starts an asynchronous write
operation to device for process
- represents all DMA output connect
instructions (IOLD)
Async_device write - asynchronously writes a word from
segment to mapped device for process
- represents DMA transfer from memory

to device (IOLD execution)

4 |

The address_spaces module also includes two functions
primarily intended to support secure user-intiated I/0. A
segment must be maintained in main memory (no page faults)
during DMA I/O to prevent security violations. The function
wire_ seg provides the mechanism by which a user may insure
that an entire segment is in main memory and no longer eligible
for deallocation by the memory manager. The function unwire_
seg releases a wired segment. The effects of wire seg are

to set a process-local wire indicator (h_kst_seg_wired) on
the segment descriptor and a global wire indicator (h_seg_
wire count). The global indicator is used to support the
memory manager interface while the local indicator is checked
by the hardware before allowing a connect device operation

to proceed. In order to have a process-local mechanism to
mediate unwire seg requests, yet support multiple devices
performing I/0 on the same segment, an I/0 count (h_kst_seg_
io count) is also maintained on the process-local segment
descriptor. The I/O count is incremented (by hardware)
whenever a DMA transfer is initiated and decremented (by
hardware) upon I/O termination (i.e., effects of device_

wake-up) .

The address_spaces module allows a process to execute at
multiple interrupt priority levels within its address space.
Three visible functions are adequate to support this capa-
pbility. The set level handler function allows a user to
specify a level handler (i.e., task handler) for a process at
a given interrupt priority level. The kernel enforces the

22

discretionary ring bracket policy within this function as
follows: (a) the effective ring of execution of the level
handler cannot be more privileged than the caller ring;

and, (b) if a more privileged level handler already exists,
then the request is denied (if the existing handler is not
more privileged, it is replaced). The modify activity
level and the lev functions allow a user to manipulate

the activity level indicators for his process. They repre-
sent the functionality provided by the level change (LEV)
machine instruction. The modify activity level function
reflects the defer interrupt option of the LEV instruction,
The lev function reflects both the normal LEV instruction
(level context switch) execution and its suspend level option.
The only requirement for these functions is that the level to
be manipulated must have a defined handler. To support the
multiple priority level capability, three functions hidden
from the kernel interface are included. These functions are:

set_level, change level, and dispatch_level.

The last feature of the address_spaces module is trap handling
or fault processing. The visible trap handling functions allow
nonkernel software to handle traps; certain traps (e.g., page
faults) are not visible at the kernel interface and are not
covered by these visible functions. The trap structure
supported by the SCOMP kernel is a generalization and simpli-
fication of the particular trap mechanism implemented in the
SCOMP hardware. The set trap_handler function allows the user

to specify a trap handler and trap save area for a particular

23

trap type for his process. The kernel enforces the discre-
tionary ring bracket policy within this function in a manner
similar to level handlers. That is, (a) the effective ring of
execution of the trap handler cannot be more privileged than
the caller ring; and, (b) if a more privileged trap handler
already exists, then the request is denied (if the existing
haﬁdler is not more privileged, it is replaced). The trap
function specifies the behavior of the kernel upon the
occurrence of a given trap type. The kernel passes the
pertinent trap information into the user defined trap save
area and changes the process execution point to the trap
handler. The return from trap function specifies the return
from the user-defined trap handler upon completion of fault
processing. The only significant restriction imposed by the
kernel within this function is that the ring of execution of
the specified return execution point not be more privileged
than that of the trap handler; it is not necessary to return

to the point where the trap occurred.

Host Interfaces

The host_interfaces module provides those functions necessary
to support secure communication between a host (e.g., Multics)
and a front-end processor (SFEP). As specified, the link
between the SFEP process and its associated host process 1is
the device name (e.g., terminal) on whose behalf both

processes were created. That is, neither the front-end

24

process nor the host process need be aware of the others
process identifier in order to communicate since only one
untrusted user process may have a device initiated at any
one time. Thus, specifying the device name implies a unique

target process.

In order to support the host interface, several kernel data

areas are associated with each device, represented by a

collection of V-functions. These are:

e device status_area - Area used by the SFEP process to
transmit device status information to the host process.

e device_control_area - Area used by the host process to
provide device control information to the SFEP process
(e.g., change translation table).

e message_queue - Area used by the SFEP process to send

messages to its associated host process.

In addition, each device has a data area or buffer in user
space whose location is specified to the kernel when data is
to be sent to the host process or when data is to be received

from the host.

The following SFEP kernel functions are included in the host_

interfaces module to support the host interface:

e send message - Allows the user to transfer a data buffer
(i.e., message) to its associated host process.

e receive message - Allows a user to specify a data buffer to

receive a data message from its associated host process.

25

© read _control data - Allows a user to read the device
control table set by the host process.

® write status data - Allows a user to transfer device
status information to its associated host process.

e send wake-up - Allows a user to send a message to its
associated host process via its message queue. This
function is analogous to the wake-up function which sup-
ports SFEP inter-process communication.

e send host signal - Allows a user to interrupt the host
process to receive immediate attention. This function is

intended to support a device "QUIT" mechanism.

REFERENCES

1. Computer Security Model: Unified Exposition and Multics
Interpretation, D. E. Bell/L. J. LaPadula, MTR-2997,

July 1975, MITRE Corporation, Bedford, Mass.

2. Secure Communications Processor Specification,
ESD-TR-76-351, Vol II, R. Broadbridge/J. Mekota,

June 1976.

3. Detail Specification for the Security Protection Module

(SPM) , ESD-TR-76-366, G. Rolfe/J. Carnall, September 1976.

26

Appendix A

SCOMP Kernel Specification

DS 34028917

14 February 1977

Rev. B 25 May 1977

Honeywell

AVIONICS DIVISION

ST PETERSBURG. FLORIDA

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B8 = 5/25/77

(
INTERFACE SCOMP_kernel

(clock)
(access_levels)

(processes WITHOUT dispatch
wake
advance_virtual_clock)

(volumes)

(quota_cells WITHOUT set_quota
change_qc_refs
change_qc_pages_used
set_quota_celi_Iimlt)

{segments WITHOUT read
wrilte
allocate_page
deal locate_page
add_page_to_free_1list
remove_page_from_free_|Ilst
change_wlre_count
set_page_used_Ilndicator
set_page_Ilndlcators)

{devices WITHOUT set_device_actlve
wrlte_device
asslign_device
release_device)

{(address_spaces WITHOUT Inlt_address_space
purge_address_space
revoke_vol_access
reset_device_used_Indlcator
reset_device_mod]l fled_Indlcator
decrement_seg_lo_count
set_level
dispatch_ilevel
change_1level)

(host_interfaces)
)

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

MODULE clock

DECLARATIONS

INTEGER tIme}

FUNCTIONS

VFUN read_real_clock() =-> time;
$ (returns the value of the system-wide real tlme clock)
INITIALLY time = 05

OFUN advance_real_clock()}
¢ (advances real time clock one time unlt)
EFFECTS
‘read_real_clock() = read_real_clock() + 13

OVFUN gef_uld() => time;
3 (generates a unlque ldentlfler)
DELAY UNTIL read_real_clock() > h_last_uid()3
EFFECTS
time = read_real_clock ()}
*h_last_ulid() = time}

VFUN h_last_uld() -> time}
$lreturns last unique [dentifier generated)
HIDDENS
INITIALLY tlme = 03

END_MODULE

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B - §/25/77

MODOULE access_levels

IBGRE S

level_number 3 CINTEGER In 2 0 <= In AND In <= max_Inl;
category_set ¢ (VECTOR_OF BOOLEAN c¢s t LENGTH(cs) = cs_slzel};
securjity_level ¢t STRUCT (level_number sinj}
category_set scs)}
Integrity_level ¢ STRUCT (level_number 11in}
category_set ics);
access_level ¢ STRUCT (securlty_level si}
integrity_level [1)}

DECLARATIONS

access_Jlevel sub_al, ob_3al}
INTEGER i3
BOCLEAN b, trusted?

PARAMETERS

level _number max_In ${maximum level number);
INTEGER cs_slze $(category set slze);

FUNCTIONS

VFUN h_read_allowed(trusted; sub_al$ ob_al) => b3
g(returns true [f subject can read object)
HIDDENS
DERIVATION sub_ale.slesin >= ob_ale«stiesin AND
(sub_aleilelln <= ob_aleileiln OR trusted) AND
(FORALL | ¢ | >= 1 AND | <= cs_size ¢
(ob_aleslescsli] => sub_ale.slescs{i]) AND

((sub_alellelcsli) =>» ob_alellelcsli]) OR trusted))?

VFUN h_write_allowed(trusted; sub_al$ ob_al) =-> b}

$(returns true [If subject can write object)

HIDDENS

DERIVATION (sub_aleSleSin <= ob_ale.slesin OR trusted) AND
sub_al.llslin >= ob_alellelin AND
(FORALL [¢ 1 >»>= 1 AND [<= cs_slze ¢
((sub_aleslescsi{i) => ob_aleslaescsli]) OR trusted)
(ob_alellelcsli] => sub_alellelcsiil))}g

VFUN h_read_write_allowed(trusted; sub_alj ob_al) =-> bj
$(returns true 1f subject can read and write object)
HIDDENS

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B - 5/25/77

DERIVATION h_read_allowed(trusted; sub_alj ob_ail) AND
h_write_allowed(trusted; sub_alsi ob_al)}

END_MODULE

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

MODULE processes

T RES

level_number $ CINTEGER In ¢ 0 <= In AND In <= max_In}}
category_set t (VECTOR_OF BOOLEAN cs t LENGTH(cs) = cs_slze):
security_level ¢ STRUCT (level_number sin}
category_set scs);
Integrity_level t STRUCT (level_number [iIn:?
category_set ics);
access_level ¢ STRUCT (security_level sl
Integrity_level 11)}
process_uld ¢ INTEGER}
message ¢ INTEGER}
message_queue t VECTOR_OF message?
process_state ¢ {runningy, ready, blockedl}}
process_priority 3 CINTEGER pr ¢t 0 <= pr AND pr <= max_prlority}}
level : CINTEGER level : 1 <= fevel AND leve! <= pl_size);

DECLARATIONS

process_uld proculd, newprocy, target;
access_level al}s

message msgs

message_queue msg_queue;

process_priorjity pr}

level level}

process_state state;

BOOLEAN b3

INTEGER i1y ny tlme, delta_t, reai_timer_l1d}

PARAMETERS

process_uld inltializer_jid $(inltiallzer process [d)}
process_uld time_monltor $(time monltor process id)}

level signal_level $(process slgnal level)}

INTEGER max_processes $(maxImum number of processes) !

INTEGER max_messages $(maximum size of process message queue) !
INTEGER max_prlority $(maximum procass prlority)}

DEFINITIONS

BOCLEAN no_process(proculid) IS
“h_proc_exists{(procuid)}

BOCLEAN write_not_allowed(proculds al) IS
“h_wrlte_allowed(h_proc_trusted(proculd), h_proc_al (proculd), al)}

A-5

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917
Rev B - 5/25/77

BOOLEAN no_message(proculd) IS
LENGTH(h_proc_msg_queue(proculd)) = 03

BOOLEAN invalld_tlimer(n) IS
N 5= 088

BOOLEAN undeflined_level(procuid; level) IS
“h_level_handler_exlists(proculd, level);

BOCLEAN no_real_timer (proculd) IS
~“h_proc_real_timer({procuid);

EXTERNALREFS

FROM clock 8
VFUN read_real_cliock() => timej
OVFUN get_uid() -> proculid}

FROM access_levels ¢
level_number max_In $(maximum level number);
INTEGER cs_slze $(category set slze)}
VFUN h_write_allowed(bj al; al) => b3

FROM address_spaces ¢
level pl_slze $(number of visible actlvity levels);
VFUN h_tevel_handler_exists{procuid; level) =-> b}
OFUN Inlt_address_spacel(proculd);
OFUN purge_address_space(proculd);
OFUN dispatch_level(procuid);
OFUN set_level(proculd; leveli b)j;

FUNCTIONS

OVFUN create_proc(als b} pr)liproculd] => newproc;

¢ (creates a new process)

EXCEPTIONS
proculd ~= Inltlallzer_id;
h_proc_count() = max_processes;

EFFECTIS
newproc = EFFECTS_OF get_uld()}
*h_proc_exlsts (newproc) = TRUES
‘h_proc_al (newproc) = alj}
*h_proc_trusted(newproc) = bj
*h_proc_prlority(newproc) = prj
EFFECTS_OF Inlt_address_spacel(rewproc);
*h_proc_count() = h_proc_count () + 13

OFUN delete_proc(target)iprocuidl’

SCOMP KERNEL SPECIFICATION = 2/14/77

VFUN

VFUN

VFUN

VF UN

VFUN

VF UN

VFUN

VF UN

OFUN

Rev B = 5/25/77

$(deletes a process)

EXCEPTIONS
procuid = Inltlalizer_ld;
no_process(target);

EFFECTS
‘h_proc_count() = h_proc_count(
‘h_proc_exlsts(target) = FALSE}

EFFECTS_OF purge_address_space(target)

h_proc_exlsts(procuid) => b}
$(returns true 1 f process exlsts)
HIDDENS

INITIALLY b = FALSE}

h_proc_count() => n3

$(returns number of exlsting processes)

HIDDEN;}
INITIALLY n = @3

h_proc_al (proculd) =-> al}

) -

g (returns access level of procass)

HIDDENS
INITIALLY atl = 7?3

proc_al()lprocuid]l] =-> al}
${external form of h_proc_al)
DERIVATION h_proc_al (proculd);

h_proc_trusted(procuid) =-> b}

$(returns true [f process ls trusted)

HIDDENS
INITIALLY b = ?3%

proc_trusted()iproculd] -> b}

$ (external form of h_proc_trusted)
DERIVATION h_proc_trusted(proculd)}

h_proc_prilorlty(procuid) => pr?
$ (returns process prlority)
HIDDEN}$

INITIALLY pr = ?%

proc_priorlty()Iproculid] =-> pr}

$(external form of h_proc_priority)

DERIVATION h_proc_prlorlty{procul

set_prilority(target; pr)iprocuid]
$(sets process scheduling priorlt
EXCEPTIONS

no_process{target)

d);

y)

DS 34028917

write_not_aliowed(proculd, h_proc_al(target)):

A-7

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917

OFUN

VF UN

OF UN

OFUN

OF UN

Rev B = 5/25/77

EFFECTS
*h_proc_prlorlty(target) = IF target = proculd
THEN pr
ELSE IF h_proc_priorlty(target) < pr
THEN pr

ELSE h_proc_priority(target):

dispatch(target)}

3 (dispatches a process)

EFFECTS
*h_proc_state(target) = running;
EFFECTS_OF dispatch_level (target);

h_proc_state(proculd) => states
$(returns process state)
HIDDEN}

INITIALLY state = 273

wake(target; msg);
g (sends a message to target process
message Is lost if target queue full)
DEFINITIONS
INTEGER n IS LENGTH(h_proc_msg_queuel(target))}
INTEGER m IS IF n = max_messages THEN n ELSE n+13}
EFFECAS
*h_proc_msg_queue(target) = VECTOR (FOR | FROM 4 TO m ¢
IF | <= n THEN h_proc_msg_queuel(target)li] ELSE msg) 3
*h_proc_state(target) = IF h_proc_state(target) = running
THEN running ELSE readys;

wakeup(targets msg)lproculdl;
g (external form of wake)
EXCEPTIONS
no_process(target);
write_not_allowed(proculid, h_proc_al (target));
EFFECTS
EFFECTS_OF wakel{target, msg)s

send_slgnal (target; msg) (proculdl;
g(interrupt form of wakeup)
EXCEPTIONS
no_process(target);
write_not_allowed(proculd, h_proc_al(target));
FEFFECTS
EFFECTS_OF set_level(target, slgnal_level, TRUE) 3
EFFECTS_OF wakel(target, msg);

OVFUN read_messages(){proculd]l => msg_queue;

g (returns contents of process message queue)
EXCEPTIONS
no_message (proculd)?

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B = 5/25/77

EFFECTS
mSg_qQueue = h_proc_msSg_queue(proculd):
‘h_proc_msg_queuelproculd) = VECTOR ()3

OVFUN block{)[procuid]l -> msg_queue}
$(returns contents of process message queue
I1f queue empty, walts for message to arrjive)
DELAY_UNTIL “no_messagel(procuid):
EEFECHS
mSg_queue = EFFECTS_OF read_messages(proculd):

VFUN h_proc_msg_queue(proculd) =-> ms g_queaues
$(returns contents of process message queue)
HIDDENS
INITIALLY msg_queue = VECTOR ()3

OFUN set_real_timer(delta_t} real_timer_id; level)Ilprocuidl}
$(sets real tlmer to wakeup process In delta_t time unlits)
EXCEPTIONS

Invalid_timer(delta_t)
undeflined_level (proculd, level)?

EFFEGCTS
‘h_real_timer(proculd) = delta_t + read_real_clock()}$
*h_real_timer_msg_{(procujd) = real_timer_ld}
‘h_real_timer_tlevel {procuid) = levels

‘h_proc_real_tilmer(proculd) = TRUE:

VFUN h_proc_real_tlmer (proculd) -> b}
$(returns true if process has real tlimer)
HIDDENS
INITIALLY b= FALSE}

VFUN h_real_tlmer(proculd) => tlme!
$(returns time of next real timer wakeup for process)
HIDDENS
INLTIAELY tlime = 73

VFUN read_reai_timer()Iprocuid] => time}
$(external form of h_real_timer)
EXCEPTIONS

no_real_timer(procuid)
OERIVATION h_real_timer(proculd):

VFUN h_real_timer_msg(procuid) -> real_timer_id}
$(returns real timer wakeup message)
HIDDENS
INITIALLY real_timer_id = ?3

VFUN h_real_timer_level(procuid) =-> fevel;
$(returns level of real timer handler)
HIODDEN}S

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917

OF UN

VF UN

OFUN

VFUN

Rev B = S5/25/77

INITIALLY ftevel = 723

real_timer_runout ()}
g(notifies processes of real timer runout)
EFFECTS
FORALL proculd ¢ h_proc_exists(proculd)
AND h_proc_real_timer{proculd)
AND h_real_timer(procuid) = read_real_clock() 3
EFFECTS_OF wakel(proculd, h_real_timer_msg(proculd)) AND
*h_proc_real_timer{proculd) = FALSE AND
EFFECTS_OF set_level (proculd, h_real_tlmer_level (proculd), TRUE) 3

n_virtual_clock(proculd) => time;

g (returns the value of process-local virtual time clock)
HIODDENS

INITIALLY tilme = 03

advance_virtual_clock(proculd);

$ (advances virtual time clock one time unit)

EFFECTS

*h_virtual_clock{procuid) = h_virtual_clock(proculd) + 13

read_virtual_clock(target){proculd]l =-> time;
¢ (external form of nh_virtual_c!ock)
EXCEPTIONS
proculd = time_monltor;
no_process(target);
DERIVATION h_virtual_clock(target);

END_MOODULE

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

MODULE wvolumes

TYPES

level _rnumber ¢ CINTEGER In ¢ 0 <= In AND In <= max_Iinl}}
category_set t (VECTOR_OF BOOLEAN cs ! LENGTH(cs) = cs_sized};
security_level t STRUCT (level_number sin?
category_set scs);
integr.ity_level ¢ STRUCT (leve!_number [in}
category_set [cs))
access_level ¢ STRUCT (securlty_level st}
Integrity_ilevel 11)3}
process_uld 3 INTEGER}
volume_uid ¢ INTEGER;
cuota_cell_ulid t INTEGER;

DECLARATIONS

volume_ujid voluld;

process_uid proculd}

quota_cell_uid qcuid;

access_Jlevel min_al, max_al, aly from_al, to_al}
BOCLEAN b3}

INTEGER nj3

PARAMETERS

INTEGER volume_size (number of pages on a volume)}

INTEGER Initial_dlsc_drive_count(al) $(initlal allocation of drives):
process_uld Initlallzer_id $(volume Initlallzer process 1d)}

INTEGER max_volumes 3(maximum number of volumes)}

INTEGER max_quota_cell_count $(maximum number of quota cells per volume)!

DEFINITIONS

BOOLEAN wrlte_not_allowed({proculd} al) IS
“h_write_allowed(h_proc_trusted(procuid), h_proc_al (proculd), al)}

BOCLEAN mounted_volumelvoluld) IS
h_vol_mounted(voluld)

BOCLEAN no_volume(proculds voiluld) IS
IF “h_vol_exists(voluld) THEN TRUE
ELSE “h_read_allowed(h_proc_trusted(procuid)y, h_proc_al{(proculd),
h_vol_min_al(voluld))}

BOOLEAN unmounted_volumel{voluld) IS

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917
Rev B = 5725777

IF “h_vol_mounted{(voluid) THEN TRUE
ELSE “h_read_allowed(h_proc_trusted(proculd), h_proc_al(proculd),
h_vol_min_al(voluld));

BOOLEAN no_dlsc_drivelal) IS
h_drive_count(al) = 0}

BOCLEAN invalld_drive_count(n) IS
n < 03

BOCLEAN insufficlient_drlves{(ali n) IS
h_drive_counti{al) < nj

EXTERNALREFS

FROM clock ¢
OVFUN get_uld() => voluld;

FROM access_levels ¢
leve!_number max_Iin $(maximum fevel number);
INTEGER cs_slize $(category set slze)}
VFUN h_wrlite_allowed(bj alj al) => b}
VFUN h_read_allowed(bs alj al) =-> b,

FROM processes ¢
VFUN h_proc_al{procuid) => al}
VFUN h_proc_trusted(procuid) => b}

FROM quota_cells
OVFUN create_quota_celi(voluld; alj al)lprocuid] =-> gcuid;
OFUN set_quotalgculds n)3
OFUN set_quota_cell_lilmit(volulds n);

FROM address_spaces ¢
OFUN revoke_vol_access(voluld; proculd);
FUNCTIONS

OVFUN create_volume(min_al$ max_al)(proculd]l =-> voluld;
g (creates a new volume)

EXCEPTIONS
procuid ~= Initlallzer_1d;
h_vol_count () = max_volumes;
EFFECIS

voluld = EFFECTS_OF get_uld()3

*h_vol _exlsts{voluld) = TRUE}
*h_vol_min_al(voluld) = min_al}
*h_vol_max_allvoluld) = max_al;

EFFECTS_OF set_quota_cell_limit(voluld, max_quota_cell_count)?

A=-12

SCOMP KERNEL SPECIFICATION = 2/714/77 DS 34028917
Rev B = 5/25/77

*h_vol_Iinlt_qclvoluld) = EFFECTS_OF create_quota_ce ll(voluld,
min_aly min_al, proculd);

EFFECTS_OF set_quota(*h_vol_Iinit_qc(voluid), volume_slize);

*h_vol_count() = h_vol_count() + 13

OFUN delete_voiume(voluld) {proculdl;
$(deletes a volume)
EXCEPTIONS
procuid = [nitiallzer_ld;
“h_vol_exlsts(voluld);
mounted_volume(voluld)}

EFFECTS
*h_vol_exists(voluid) = FALSES
*h_vol_count() = h_vol_count() - 13

VFUN h_vol_exlstsi{voluld) =-> b3
${returns true If volume ex ists)
HIDDENS
INITIALLY b = FALSES

VFUN h_vol_count{) => nj
g (returns number of exlsting volumes)
HIDDEN?S
INITIALLY n = 03

VFUN h_vol_min_al{voluid) =-> min_al}
$(returns minimum access level of volume)
HIDDEN;
INITIALLY min_al = 23§

VFUN vol_min_al(voluld){procuidl =-> min_alj}
$(external form of h_vol_min_al)
EXCEPTIONS

no_volume(procuid, voluid)j
DERIVATION h_voi_min_al{voluld)}

VFUN h_vol_max_al(voluld) => max_al}
$(returns maximum access level of volume)
HIDDENS
INITIALLY max_al = ?3

VFUN voi_max_al(voluld)(proculd]l =-> max_al}
$(external form of h_vol_max_al)
EXCEPTIONS

no_volume(proculds voluld);
DERIVATION h_vol_max_ai(voiuld)}$

VFUN h_vol_Inlt_qclvoluld) => qculd;
$(returns Inltial quota celil 1d for volume)
HINDDENS
INITIALLY qculd = ?3%

A=13

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

VFUN vol_inlt_aqc(voluld)proculd]l =-> gcuid;
¢ (external form of h_vol_inlt_qc)
EXCEPTIONS

no_volume(proculdy voluid);
DERIVATION h_vol_init_qc(vo luid)}

OFUN mount_volume(voluid)lproculdl;

$ (mounts a volume on a disc drive)

EXCEPTIONS
no_volume(proculd, voluld);
mounted_volumel(voluid)
wrlte_not_allowed(procujid,y, h_vol_mln_al(voluld))}
no_dlsc_drivel{h_vol_min_al(voluid));}

EFFECTS
*h_vol_mounted(voluld) = TRUES
‘h_drive_count(h_vol!l_min_al(voluld)) =

h_drive_count(h_vol_min_al(voluld)) - 13

OFUN demount_volume(voluld){proculdl}

g {demounts a volume from a disc drive)

EXCEPTIONS
unmoun ted_volume(proculd, voluld);
write_not_allowed(proculd, h_vol_mln_al(voluld))}

EFFECTS
*h_vol_mounted{voluld) = FALSE}S
*h_drive_count(h_vol_min_al(voiuld)) =

h_drive_count(h_vol_min_al(voluld)) + 13

EFFECTS_OF revoke_vol_access(voluidy procuid)?

VFUN h_vol_mounted(voluld) => b3
$(returns true [f voiume |s mounted)
HIDDENS
INITIALLY b = FALSE;

VFUN h_drive_count(al) =-> nj
$(returns number of avallable dlsc drlves at assligned al)
HIODEN}
INITIALLY n = [nltlal_disc_drive_count{(al)}

OFUN change_drive_count(from_alj to_ailj n)lproculdl}

g (changes access level distributlon of free disc drives)

EXCEPTIONS
proculd ~= Inltializer_l1d3
Invalid_drlive_count(n);
Insufficlent_drlives(from_als, n)3

EEFECES
*h_drive_count(from_al)
*n_drlive_count(to_al) =

= h_drive_count(from_al) - n3}
h_drive_count(to_al) + nj

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917
Rev B - 5/25/77

ENO_MODULE

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77
MODULE quota_cells
TYPES
level _number ¢ CINTEGER In t 0 <= In AND In <= max_Iin}}

category_set ¢ C(VECTOR_OF BOOLEAN cs

security_level

¢t LENGTH(cs) =
$ STRUCT (level_number sinj

cs_slze}s

category_set scs)?

integrity_level

¢t STRUCT (level_number lInS§

category_set lcs);

access_level ® STRUCT
INTEGERS
INTEGERS
INTEGER}

process_uld 3
volume_uld 3
quota_cell_uid ¢

DECLARATIONS

process_uld proculd;
volume_uld volulds

(securlty_level si}
Integrity_level

113

quota_cell_uld qculd, from_qcuid, to_acuidj
access_level aly val, from_al, to_al;
INTEGER npagess N3
BOCLEAN b3
DEFINITIONS
BOOLEAN unmounted_volume(procuidj voluld) IS
IF ~h_vol_mounted(voluld) THEN TRUE

ELSE 'h_read_al!oned(h_proc_trusted(proculd). h_proc_al (proculd),
h_vol_min_al{voluld));

BOCLEAN

outslide_vol_levels(voluld; val; al) 1S

~“h_wrlite_alliowed(FALSE, n_vol_min_al (voluld), val) OR
~h_wrlte_allowed(FALSE, al, h_vol_max_al(voluld))}

unordered_access_levels(val}
~h_write_allowed(FALSE, val,

BOOLEAN

BOOLEAN read_not_allowed(proculd}

'h_read_alIoued(h_proc_trus?ed

BOCLEAN

al)
al)}

IS

al) IS

{proculd), h_proc_al (proculd), al);

wrlte_not_allowed(proculd; al) IS

“h_nrlte_alloned(h_proc_frusted(proculd), h_proc_al (proculd), al)}

BOCLEAN read_urlte_not_alloned(proculd: al) IS
"h_read_urlte_allowed(h_proc_trusted(proculd), h_proc_al (procuid),

al)s

A-16

SCOMP KERNFL SPECIFICATION = 2/14/77 DS 34028917
Rev B - 5/25/77

BOOLEAN no_quota_cell{proculd; volulidj qculd) IS
IF “h_qc_exlsts(voluid, qcuid) THEN TRUE
ELSE ~h_read_allowed(h_proc_trusted(procuid), h_proc_al{proculd),
h_ac_vislblillty_al(qculd));

BOOLEAN non_zero_quotal(qculd) IS
h_ac_pages{qculd) 7= 03}

BOCOLEAN non_zero_refs{qcuid) IS
h_qc_refslqculd) = 03

BOOLEAN invallid_quota_change(npaces) IS
npages < 03

BOOLEAN insufflclent_quotalqcuid; npages) IS
h_ac_pageslaqcuid) - h_qc_pages_used(qculd) < npagess

EXTERNALREFS

FROM ciock ¢
OVFUN get_uid() =-> gculdj

FROM access_levels ¢
level_number max_In $(maximum level number)j3
INTEGER cs_slze $(category set slze)s
VFUN h_read_allowed(b; als al) => b3
VFUN h_write_allowed(b3 al3 al) => bj;
VFUN h_read_wrlite_allowed(bj als al) =-> b3

FROM processes ¢
VFUN h_proc_allproculd) =-> aljs
VFUN h_proc_trusted(procuid) =-> bj

FROM volumes ¢
VFUN h_vol_mounted(voluid) => b3}
VFUN h_vol_min_al(voluld) => alj}
VFUN h_vol_max_al(voluld) =-> alj}

FUNCTIONS

OVFUN create_quota_cell{voluld; valj al)lproculd] -> qculds

$(creates a new quota cell)

EXCEPTIONS
unordered_access_levels(val, al);
write_not_allowed(proculdy val)s
unmounted_volume(proculd, voluld);
outside_vol_levels(voluid, val, al);
h_ac_count(voluid, val) = h_qc_limit(voluid, val);

A=17

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B = $/25/77

EFFECTS
qculd = EFFECTS_OF get_uld();
*h_ac_vislibility_al(aqcuid) = vals
*h_qc_allqculd) = alj
*h_qc_exists(voluid, qculd) = TRUES
*h_qc_count{voluld, val) = h_qc_count (voluid, val) + 13

OFUN delete_quota_cell(voluld; qcul d) lproculd];

$(detetas a quota cell)

EXCEPTIONS
unmounted_volumelproculdy, voluld)}j
no_quota_cell(proculd, volulde qculd)}
write_not_allowed(proculd, h_qc_vislbltity_al (qcuid));
read_not_allowed(proculd, h_ac_al ({aculd));
non_zero_quota(qculd);
non_zero_refs{aculd);

EFFECTS
*h_qgc_exlstslvoluid, aculd) = FALSES
*h_qc_count(voluld, h_visibillty_allagculd)) =

h_aqc_count (voluld, h_vislibitlity_al(aculd)) - 13

VFUN h_gc_count(voluld; al) =-> nj
¢ (returns number of quota cells for volume at glven al)
HIDDENS
INITIALLY n = 03

VFUN h_qc_exists(voluld} qculd) =-> bj
$(returns true I f quota cell exlsts)
HIDDENS
INITIALLY b = FALSE;

VFUN h_gc_visiblilty_allqculd) => als
g (returns access level of quota cell visliblility)
HIDDENS
INITIALLY al = 2?3

VFUN gc_vislibllilty_al(voluld; qculd) Lproculdl => alj}
$ (external form of h_ac_vlisiblilty_al)
EXCEPTIONS

unmounted_volumel(proculd, voluld);
no_quota_cell (proculd, voluld, qculd) s
DERIVATION h_qc_visiblility_al(qculd);

VFUN h_aqc_al(gculd) => al;
¢ (returns access level of quota cell)
HIDDENS
INITIALLY a! = 7?3

VFUN qc_al(voluld} qculd) (proculd]l => al}
¢ (external form of h_ac_al)
EXCEPTIONS

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917

OFUN

OF UN

VF UN

VF UN

VF UN

VF UN

OFUN

Rev B - 5/25/77

unmounted_volume(proculd, voluld);
no_quota_cell(proculdy, voluld, qculd)}
DERIVATION h_qc_al(qculid)}

set_quota(qculd; npages)
$(sets quota of quota cell

used only to Initlallze tirst quota cell on a volume)
EFFECTS

*h_qc_pages{qcuid) = npages}

move_quotal(voluid; from_qcuid; to_qculd; npages)(proculdl}
$ (moves page quota from one quota cell to another)
EXCEPTIONS
Invalld_quota_change(npages)
unmounted_volume(procuidy voluld)}
no_quota_cell{proculdy voluids from_qculd)}
no_quota_cell{procuidy, vo luidy, to_qculd)}
read_wrlte_not_allowed(proculds h_qc_al(from_qculd))}
write_not_allowed(proculd, h_qc_al (to_qculd))}
Insufficlent_quota(from_qcuid, npages)}
EFFECTS
*h_qc_pages(from_qcuid)
‘h_qc_pages({to_qculd) =

= h_qc_pages(from_qculd) - npages;
h_qc_pages({to_qcuid) #+ npages’

h_qc_pages(qculd) =-> npages})
$(returns page quota for quota cell)
HIDDEN}S

INITIALLY npages = Q¢

ac_pages{voluld; qcuid)iprocuid) -> npages}
$ (external form of h_qc_pages)
EXCEPTIONS
unmounted_volume{procuid, voluid)}
no_quota_cell(proculdy volulidy qculd)}
read_not_allowed(proculdy h_qc_al{qculd));
DERIVATION h_qc_pages(qculid)

h_ac_refs({qcuid) =-> n3

$ (returns quota cell reference count)
HIDDEN}

INITIALLY n = 03

qc_refs(volulds qculd)lproculd]l =-> n}
$(external form of h_qc_refs)}
EXCEPTIONS
unmounted_volume(procuid, voluld);
no_quota_cell(proculdy voluidy qcuid)}
read_not_allowed(proculdy h_qc_al(qculd))}
DERIVATION h_qc_refs(qculd)}

change_qc_refs(qcuid} n)3

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917

VF UN

VF UN

OFUN

OFUN

VFUN

OF UN

Rev B = 65/25/77

$(changes quota cell reference count)
EFFECTS
*h_qc_refs(qculd) = h_qc_refs(acuid) + n3

h_qc_pages_usedlaculd) -> npages)

g (returns pages used wlthin page quota for quota cell)
HIDDENS

INITIALLY npages = 03

qc_pages_used(voluld} qculd)lproculd] =-> npages:?
g (external form of h_qc_pages_used)
EXCEPTIONS
unmounted_volumelproculd, voluld)}
no_quota_cell({proculdy vo luldy aculd);
read_not_allowed(proculd, h_qc_al(qculd));
DERIVATION h_qgc_pages_used(qculd);

change_qc_pages_used(qcuid; npages))
g (changes pages used for quota cell)
EFFEGTS
‘h_qgc_pages_used(gcuid) = h_qc_pages_used(qcuid) + npages?!

set_quota_cell_{imlt(voluld} n)3
$(sets quota cell 1imit for volume

used only to Inltlalize flrst quota cell Iimlt on a volume)
EFFECTS

*h_qc_timit(voluldy, h_vol_min_all{voluid)) = n}

h_qc_limlit(volulds al) =-> n3

$(returns quota cell 1imit for volume at glven al)
HIDDEN?

INITIALLY n = 03

change_quota_cell_Illmit(voluid; from_al$ to_als n)lproculdl?
${moves quota for quota cells from one access level to another)
EXCEPTIONS

Invalld_quota_change(n);

unmounted_voiume(proculdy, voluid);

read_write_not_allowned(proculd, from_al)}

write_not_allowed(proculd, to_al);

h_qc_limit(voluld, from_al) - bh_qc_count{voluid, from_al) < n}
EFFEDTS

*h_aqc_limlt(voluld, from_al) = h_qc_limit(voluld, from_al) - n}

*h_ac_1timlt(voluldy to_al) = h_qc_timit(voluld, to_al) + n;

END_MODULE

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917
Rev B = 5/25/77

MODULE segments

TYPES

level_number ¢ CINTEGER In & 0 <= In AND In <= max_In}}
category_set ¢ CVECTOR_OF BOOLEAN cs 3 LENGTH(cs) = cs_slzel;
security_level ¢ STRUCT (level_number sinj
category_set scs)j
Integrity_level & STRUCT (level_number [Inj
category_set lcs)
access_level % STRUCT (securlty_level si;
integrity_level (1)}

-e

process_uld ¢ INTEGERS

volume_uld ¢ INTEGER;

quota_cell_uld ¢ INTEGER)

segment_uld $INTEGERS

segment_offset ¢ CINTEGER so 3 0 <= so AND so <= max_offsetls

page_number 8 CINTEGER pn ¢ 1 <= pn AND pn <= (max_offset ¢ 1)/page_slzel};s

core_address ! CINTEGER addr 3 0 <= addr AND addr <= max_core_addressl};

free_page_list ¢ VECTOR_OF core_address;

segment_length ¢ C(INTEGER length t 1 <= length AND length <= max_offset
+ 1335

memory_utillzatlon_data ¢ STRUCT (segment_uld seguid}

page_number pagenos

core_address addr;

BOOLEAN used;

BOOLEAN modifled);
memory_utliizatlon_data_Ilist ¢ SET_OF memory_utlllzation_datas
page_data t STRUCT (segment_uld seguld}

page_number pageno);
page_data_Illst ¢ SET_OF page_data;
machine_word t INTEGERS
segment_number ¢ C(INTEGER sn t 0 <= sn AND sn <= max_segnol}}

DECLARATIONS

process_uld proculd;
volume_uld voluld}
quota_cell_uld qgculd}
segment_uld seguld;
access_Jlevel aly val?$
segment_offset offsety
page_number pageno;
core_address core_address}
segment_length lengthj
machine_word wordj}
free_page_Illst free_IlIst?
memory_utllilzatlon_data mem_dataj

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

memory_utlilzatlion_data_list mem_Illst;3
page_data_llst page_list}$

segment_number sSegno;

INTEGER 1, page_request_count, npagess Nj
BOOLEAN b3

PARAMETERS

process_uld memory_manager $(memory manager process 1d) 3§

segment_offset max_offset $(maxlmum segment offset);

INTEGER page_slize $(number of words In a page);

core_address max_core_address ¢(maxlmum allowable memory address)?

INTEGER min_free_page_count $(minimum number of free pages))

free_page_list Inlt_free_llist $(free pages in memory Inltially)s

core_address Inlt_core_addressi{seguld) $(inltlal address of unpaged
segments)

DEFINITIONS

BOOLEAN unmoun ted_volume(proculd; voluld) IS
IF ~h_vol_mounted(voluld) THEN TRUE
ELSE ~h_read_allowed(h_proc_trusted(proculd), n_proc_al(proculd),
h_vol_min_al{voluld));

BOOLEAN no_quota_cell (procuid; voluld} qculd) IS
IF ~h_qc_exists{voluid, qcuid) THEN TRUE
ELSE ~h_read_allowed(h_proc_trusted(proculd), h_proc_al{proculd),
h_ac_visibllity_al(qculd))}

BOCLEAN outslde_qc_levels(qculds val) IS
“h_write_allowed(FALSE, h_qec_visibltity_al (qculd),y, val) OR
“h_write_allowed(FALSE, val, h_qc_al {qcuid))

BOOLEAN write_not_allowed(proculds al) IS
“h_write_allowed(h_proc_trusted(proculd), h_proc_al (proculd), al)j

BOOLEAN no_segment{(proculd} voluld} seguid) IS
IF “h_seg_exists(voluld, segulid) THEN TRUE
ELSE ~h_read_alIowed(h_proc__trusfed(proculd), h_proc_al(proculd),
h_seg_visiblllity_al(seguid));

BOOLEAN read_not_allowed(procuid; al) IS
~h_read_allowed(h_proc_trusfed(orocuid). h_proc_al (proculd), al);

B0CLEAN page_quota_overflowl(qculd; npages) IS
h_ac_pages(qculd) - h_qc_pages_usedlqculd) < npages;

EXTERNALREFS

SCOMP KERNEL SPECIFICATION = 2/714/77 DS 34028917
Rev B = 5725777

FROM clock ¢
OVFUN get_uld() =-> seguld}

FROM access_Jlevels
level_number max_In $(maximum level number);
INTEGER cs_slze $(category set slze);
VFUN h_read_alliowed(b3 al3 al) => b3
VFUN h_wrilte_allowed(b3 al3 al) => bj

FROM processes ¢
VFUN h_proc_exists(procuid) => b}
VFUN h_proc_al{procujd) =-> alj
VFUN h_proc_trusted{procuid) =-> bj
OFUN wake(proculd’ page_request_count);

FROM volumes ¢
VFUN h_vol_min_al (voluld) => alj
VFUN h_vol_mounted(volulid) => b3

FROM quota_cells @
VFUN h_qc_exlsts({voluld} qculd) => b}
VFUN h_qc_vislioliity_al(qculd) =-> alj
VFUN h_qc_al tqcuid) -> alj
OFUN change_qc_refs(qculd: 1)}
OFUN change_qgc_pages_used{qculdy i)}
VFUN h_gc_pages(qcuid) =-> npagess;
VFUN h_ac_pages_used(qgculd) => npages;

FROM address_spaces !
segment_number max_segno $(maximum segment number)]
VFUN h_kst_seguld{proculd; segno) => seguid}
VFUN h_kst_seg_lo_count(procuidj segno) => I}
VFUN h_kst_valld(proculd: segno) =-> bj

FUNCTIONS

OVFUN create_seg(volulds qculd: vals length){proculd]l -> seguld;

$(creates a new segment)

DEFINITIONS
INTEGER n IS (length - 1 # page_slze)/page_slze}

EXCEPTIONS
unmounted_volumel(procuidy voluld)
no_quota_cell(proculd,y, voluldy, qculd);
outside_qc_tlevels(qcuid, v3al)}
wrlite_not_allowed(proculdy val);
page_quota_overflow(qculd, n)3j

EFFECTS
sequld = EFFECTS_OF get_uid()3
*h_seqg_exlstsl{voluldyseguld) = TRUES

A=23

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B = 5725777

*h_seg_ac(seguld) = qculd;
*h_seg_vislibillty_al{seguid) = valj
EFFECTS_OF change_aqc_refs(qculd, 1)3
EFFECTS_OF change_qc_pages_used(qculd, n)}
*h_seqg_lengthi{seguld) = length}
*h_seg_paged(seguld) = TRUE}S

OFUN delete_segl{voluid} seguld)lproculdl;
$(deletes a segment)
EXCEPTIONS
unmounted_volumel(proculds voluld)}$
no_segment {proculd, voluld, seguld);
wrlte_not_allowed(procuid, h_seg_visibllity_al({seguld));
DELAY_UNTIL FORALL proc 8 h_proc_exists(proc) ¢
(FORALL segno ¢t h_kst_valld(proc, segno) AND
h_kst_seguld(proc, segno) = seguld
h_kst_seg_lio_count{proc, segno) = Q)3
DEFINITIONS
INTEGER n IS (h_seg_length(seguid) - 1 + page_size)/page_slze;
quota_cell_uld qculd IS h_sej_qclseguld);
EFFECTS
*h_seg_exists(volulid, seguid) = FALSE;
EFFECTS_OF change_qc_refs{qculdy, =-1)3}
EFFECTS_OF change_qc_pages_used(qculd, =-n);
IF h_seg_paged(seguld)
THEN FORALL | ¢ I >= 1 AND | <= n
EFFECTS_OF deallocate_page(seguld, 1)
ELSE FORALL I 8¢ 1 >= 0 AND 1 < n ¢
EFFECTS_OF add_page_to_free_list(h_seg_core_address(seguld)
+ l¥page_slze)}

OVFUN read(seguldj offset) =-> word;

$(reads a word of a segment)

DEFINITIONS
INTEGER n IS (offset + page_slze)/page_slze;

EFFECTS
h_seg_paged(seguld) => EFFECTS_OF allocate_pagel(seguld, n) AND

*h_seg_page_used(seguid, n) = TRUES

word = h_seg_contents(seguld, offset)}

OFUN wrlte(seguld; offsetj word);
g(writes a word of a segment)
DEFINITIONS
INTEGER n IS (offset + page_slize)/page_slze;
EFFECTS
h_seg_paged(seguld) => EFFECTS_OF allocate_page(sequld, n) AND
‘h_seg_page_used(seguld, n) = TRUE AND
*h_seg_page_modifled(seguld, n) = TRUES
*h_seg_contents(seguld, offset) = wordj

OFUN allocate_pagel(seguld; pageno);

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917

OFUN

VF UN

VFUN

VF UN

VFUN

VFUN

VFUN

VFUN

Rev B = 5725777

$(allocates maln memory page to segment)
EFFECTS
“h_seg_page_in_core(seguid, pageno) =>
‘h_seg_page_core_address(seguld, pageno) =
EFFECTS_OF remove_pige_from_free_1ist() AND
‘h_seg_page_In_core(seguld, pageno) = TRUE}

deallocate_pagel(seguld} pageno)}
$ (deallocates segment page from maln memory)
EFFECTS
h_seg_page_in_core(seguld, pageno) =>
EFFECTS_OF add_page_to_free_list(h_seg_page_core_address!
' seguld, pageno))
AND *n_seg_page_In_core(seguid, pageno) = FALSE}

h_seg_exlsts(volulid; seguld) =-> b3
$ (returns true 1lf segment exists)
HIDDENS

INITIALLY b = FALSE}

h_seg_visibility_al(seguid) -> al}
$(returns access level of segment creator)
HIDDENS

INITIALLY al = 23

seg_visiblitity_al(voluid; seguld)iproculd] =-> al}
$(external form of h_seg_visiblllity_al)
EXCEPTIONS

unmounted_volume(procuid, voluld);

no_segment (proculd, voluldy seguld)}
DERIVATION h_seg_visibllity_al(seguld)}

h_seg_al (seguid) => al}

$(returns access level of segment)
HIDDEN}

DERIVATION h_qc_al(h_seg_qc{seguld))

seg_al{voluidj] seguld){procuid]l =-> ail}
$(external form of h_seg_al)
EXCEPTIONS
unmounted_volume(procuid, voluld);
no_segment(procuidy voluld, seguld)}
DERIVATION h_seg_allseguld)}

h_seg_qc{seguid) => qculd}
$(returns quota cell ld of segmert)
HIDDEN}S

INITIALLY qculd = ?3%

seg_qc({voluld; seguld){procuid]l => qculd?
$(external form of h_seg_aqc)

SCOMP KERNEL SPECIFICATION = 2/714/77 DS 34028917

VFUN

VFUN

VFUN

VF UN

VFUN

VFUN

VFUN

OFUN

OFUN

Rev B = 5/25/77

EXCEPTIONS
unmounted_volume({proculd, voluld)}
no_segment (proculd, voluld, seguld)}
DERIVATION h_seg_qcl{seguld);

h_seg_contents(seguld;] offset) -=> word;
2(returns a word of a segment)

HIDDEN;S

INITIALLY word = 03

h_seg_length(seguld) => length}
g (returns length of segment)
HIDDENS

INITIALLY length = 2?3

seg_length(voluld; seguid){proculd]l =-> length}
g (external form of h_seg_length)
EXCEPTIONS
unmounted_volume(proculd, voluld);
no_segment{proculdy, voluld, seguld);
DERIVATION h_seg_length{seguld)}

h_seg_paged(seguld) => b3
g(returns true 1f segment |s paged)

HIDDENS
INITIALLY b = FALSES

h_seg_page_in_core(seguidj pageno) =-> b3
2(returns true |f page Is In core)
HIODEN3S

INITIALLY b = FALSES

h_seg_page_core_address(seguld} pageno) =-> core_address;
g (returns core address of page)

HIDDENS

INITIALLY core_address = 73

h_seg_core_address(seguld) -> core_address;

g (returns core address of unpajed segment)

HIDDEN;S

INITIALLY core_address = [Inlt_core_address{seguld)}

set_page_used_indicator(seguiid; pageno);
$(sets global page used Indlicator)
EIFEECTS

‘h_seg_page_used(seguid, pageno) = TRUE};

set_page_lndlcators(seguld; pageno)}
g(sets global page used and modl fled Indlcators)
EFFECTS

*h_seyg_page_used(seguld, pageno) = TRUE;

A-26

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = S5/25/77

‘h_seg_page_modifled(seguid, pageno) = TRUE}

VFUN h_seg_page_used(seguld} pageno) => b}
$(returns true [f page globally used)
HIDDEN3S
INITIALLY b = FALSE:

VFUN h_seg_page_modifled(seguld; pageno) => b}
$(returns true i f page globally modl fled)
HIDDEN;

INITIALLY b = FALSE}

VFUN h_seg_wire_count(seguid) => n?
$(returns count of processes having segment wired)
HIDDENS
INITIALLY n = g3

OFUN change_wlre_count(seguid} n)
$(changes wlre count for segment)
EFFECTS
‘h_seg_wlire_count(segulid) = h_seg_wire_count(seguid) + n¢
h_seg_wlre_count(seguid) = 0 AND h_seg_paged(seguid) =>
FORALL | 2 {4 <= | AND] <= {h_seg_length(seguid) - 1
+ page_slze)/page_size ¢
EFFECTS_OF allocate_page(seguld, i)}

OVFUN get_memory_data()(proculd] -> mem_1ist;
$ (returns memory utliizatlon data to memory manager)

EXCEPTIONS

procuid = memory_manager;
DEFINITIONS

INTEGER n IS (h_seg_length(seguid) - 1 + page_slze) /page_slze}
EFFECTS

mem_Iist = (memory_utllization_data mem_datas ¢

h_vol_mounted(voluld) AND
h_seg_exists(voluld, seguid) AND
h_seqg_paged(seguid) AND
h_seg_wire_count(seguid) = g AND
h_seg_page_In_core(seguldy pageno) };

FORALL voluid ¢ h_vol_mounted(voluld)

(FORALL seguid t h_seg_exists{voluld, seguid) AND
h_seg_paged(seguld) AND
h_seg_wire_count(seguid) = g @

(FORALL pageno t pageno <= n AND
h_seg_page_Iin_core(seguld, pageno)

‘h_seg_page_used(seguld, pageno) = FALSE))

VFUN h_mem_datalseguid} pageno) => mem_datas
$(returns memory utillzation data)
HIDDENS
DERIVATION <seguldy pageno,

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B =~ 5/25/77

h_seg_page_core_address(seguidy, pageno),
h_seg_page_used(sejuld, pageno),
h_seg_page_mod]l fled(seguld, pagenao) >}

OFUN provide_free_pages(page_1list)Iiprocuidl}
$(provldes free pag2s from memory manager for kernel free |ist)
EXCEPTIONS
procuid T= memory_manager)
page_{Ist TINSET mem_1{ist;
DEFINITIONS
INTEGER n IS CARDINALITY (page_1ist);
EFFECTS
FOR 1 FROM 1 TO n ¢
‘h_seg_page_modified(page_Illst.segulidlli],
page_JIilst.pagenoll]l) = FALSE
AND *h_seg_page_in_core(page_Illst.seguidlil,
page_JIlist.pagenoll]l) = FALSE
AND EFFECTS_OF add_page_to_free_Illst(h_seg_page_core_address!
page_list.seqguidll],
page_Illst.pagenol]l1));

VFUN h_free_page_llist() -> free_|Ilst}
g(returns list of free pages Iin maln memory)
HIDDENS
INITIALLY free_l]lst = Init_frea_Illist

OFUN add_page_to_free_IlIlst(core_address);
$(adds page to list of free pajes In maln memory)
DEFINITIONS
INTEGER n IS LENGTH(h_free_page_Ilist())}
EFFECTS
*h_free_page_Ilist() = VECTOR (FOR [FROM § T0 n+1 ¢
IF I <= n THEN h_free_page_{lst(){1l] ELSE core_address)}

OVFUN remove_page_from_free_Ilist() -> core_address)
g (removes page from |lst of free pages In maln memory)
DEFINITIONS
INTEGER n IS LENGTH(h_free_page_1ist())}
DELAY_UNTIL n >= min_free_page_count)
EFFECTS
‘h_free_page_1list() = VECTOR (FOR { FROM 1 TO n-1 ¢
h_free_page_1ist()(]1]}
core_address = h_free_page_Il]lst()I[n];
n = min_free_page_count =>
EFFECTS_OF wake(memory_manager, page_request_count)}

END_MODULE

A-28

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B - 5/25/77

MODULE devices

TYPES

level_number 3 CINTEGER In 8 0 <= |n AND In <= max_Inl;
category_set t (VECTOR_OF BOOLEAN cs % LENGTH(cs) = cs_slzel};s
securilty_flevel $ STRUCT (level_number sin}
category_set scs);
Integrity_level t STRUCT (level_number lin:
Category_set ics);
access_level t STRUCT (securlty_level si}
Integrity_levei [1);
process_uld ¢ INTEGER}S
device_uld 8 INTEGERS
device_mapping_type : {mapped, premappedl};
device_type : {INTEGER type ¢ { <= type AND type <= max_dev_types)}}
device_utlllizatlon_data t STRUCT (device_uid devuld:

BOOLEAN [nitlated;

BOOLEAN used;

BOOLEAN modifled)}
device_utiltlzatlon_data_1list ¢ SET_OF device_utilization_datas
segment_number ¢ CINTEGER sn 8 0 <= sr AND sn <= max_segnol}}
device_number : {INTEGER dn ¢ 0 <= dn AND dn <= max_devnol};
machine_word ¢ INTEGER}
control_operatlion t INTEGER}

OECLARATIONS

process_uld proculd}

access_level alj

machine_word word}

device_ulid devuld?
device_mapplng_type map_type;
device_type dev_type}
device_utlllzatlon_data dev_data}
device_utlilzatlon_data_1lst dev_1iist}
device_number devno}
control_operatlon opcode;
segment_number segno}

INTEGER n3

BOOLEAN b3

PARAMETERS

process_uld device_manager $(device manager process [d)
process_uld device_monltor $(device monitor process ld)
device_type max_device_types $(maximum device types) 3

BOCLEAN valld_read_opl(dev_type} opcode) $(valld read ops for device);

°
L
3
:

A-29

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B8 = S5/25/77

BOOLEAN valld_wrlte_opl{dev_type; opcode) $(valld write ops for device);
INTEGER max_devices ${maximum number of devices);

DEFINITIONS

BOOLEAN existlng_device(devuld) IS
h_dev_exists(devuld)}

BOOLEAN no_device(procuid; devuld) IS
IF “h_dev_exlsts{devuld) THEN TRUE
ELSE “h_read_allowed(h_proc_trusted(procuid), h_proc_al(procuid),
h_dev_al (devuld))

BOOLEAN device_not_active(devuid) IS
“h_dev_active(devuld);

EXTERNALREFS

FROM access_levels 1
level _number max_In ${(maximum level number);
INTEGER cs_slze g(category set slze);
VFUN h_read_alloned(bs als al) => bj

FROM processes ¢
VFUN h_proc_al(procuid) => alj
VFUN h_proc_trusted{(proculd) => b}
OFUN wake(proculd; devno);

FROM address_spaces !
segment_number max_segno ${maximum segment number)}
device_number max_devno $(maximum device number)?3
VFUN h_kdt_dev_used(proculd; devno) => b}
VFUN h_kdt_dev_modlfled(procuid; devno) =-> b3
OFUN reset_device_used_Ilndlcator(devuld)}
OFUN reset_device_modifled_lndlcator(devuld);
VFUN h_kdt_segnol(proculd; devno) =-> segnoj
OFUN set_levell(proculd; levelj b)j
OFUN decrement_seg_lo_count(procuid; segno)})
OFUN revoke_device_access{devuid)iprocuidl}
VFUN h_kdt_level {proculd; devno) =-> level;s

FUNCTIONS

OFUN create_devicel(devuld; alj dev_type; map_type) (proculdl]
$(creates a new device)
EXCEPTIONS
proculd ~= device_manager;
exlsting_deviceldevuld);

A-30

SCOMP KERNEL SPECIFICATION - 2/14/77 0S 34028917
Rev B - 5/25/77

h_dev_count() = max_devices}
EFFECTYS
‘h_dev_exlsts(devuld)
*h_dev_al (devuld) = al
‘h_dev_type(devuld) = dev_type:
‘h_dev_map_type(devuld) = map_type}
‘h_dev_count() = h_dev_count() + 13

TRUE S

we ||

OFUN delete_deviceldevuld) [procuidl}
$ (deletes a device)
EXCEPTIONS
proculd = device_manager}
no_devicel(proculdy, devuld)}
EFFECTS
‘h_dev_exlsts{devuld) = FALSES

‘h_dev_count() = h_dev_count() - 13

OFUN change_device_al (devuld; al){proculdl}

$ (changes access level of device)

EXCEPTIONS
proculd == device_manager}
no_devlce(proculd, devuld)}

EFFECTS
*h_dev_al{devuld) = ai}
EFFECTS_OF revoke_devlce_access(devuld, proculd}

OFUN change_device_mapplng_type(devuld; map_type)lproculdl}
$ (changes device mapplng type)

EXCEPTIONS
proculd = device_manager}
no_devilcelprocuidy, devuld)}
CrEECHS

‘h_dev_map_typeldevulid) = map_type}

OVFUN get_devlce_data()(procuid] -> dev_1l1st}
$(returns device utillzation data to device monltor)
EXCEPTIONS
proculd = device_monjitor}
EFEECTS
dev_list = (device_utilizatlon_data dev_data ¢
h_dev_exists({devuld)};
FORALL devuid t h_dev_exlsts(devuld) AND
h_dev_Iinltlated(devulid) 3
EFFECTS_OF reset_device_used_indlcator{devuld) AND
EFFECTS_OF reset_device_modlfied_indlicator(devuid)}

VFUN h_dev_data(devuid) -> dev_data}
$(returns device utlitilzatlon data)
HIDDEN}S
DERIVATION <devuld, h_dev_inlitlated(devuld),
h_dev_used{devuld)y, h_dev_modified(devulid)>;

A=-31

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917

VFUN

VF UN

OF UN

OF UN

OFUN

OF UN

OF UN

Rev B = 5/25/77

h_dev_used{devuid) => b}
$(returns device used data)
HIDDENS
DERIVATION IF n_dev_Iinitlated(devuld)
THEN h_kdt_dev_used(h_dev_Iinltlator(devuld),
h_dev_devno{devuld))
ELSE. FALSE 3

h_dev_modlfled(devuid) => b}
$(returns device modifled data)
HIDDENS
DERIVATION IF h_dev_Initlated(devuld)
THEN h_kdt_dev_modified(h_dev_initiator(devuld),
h_dev_devnoldevuld))
ELSE FALSE?$

device_wakeup(devuld);
g(notlftles inltlator process of asynchronous lo terminatlon)
EXCEPTIONS
device_not_activel(devuld)
DEFINITIONS
process_uld proc IS h_dev_inltlator{(devuid);
device_number devno IS h_dev_devno(devuld);
segment_number segno IS h_kdt_segno(proc, devno)};
EFFECTS
*h_dev_activeldevuid) = FALSES
EFFECTS_OF wake(proc, devno)})
EFFECTS_OF set_levell(procy h_kdt_level(procy, devno), TRUE)]
EFFECTS_OF decrement_seg_lo_count{proc, segno)

assign_device(proculd; devuid; devno);
¢ (assigns device to Inltlator process)
EFFECTS

*h_dev_inltiated(devuid) = TRUES
*h_dev_Iinitlator{devuid) = proculd)
*h_dev_devno(devuld) = devno;

release_device(devuid);
$(releases Inltiated device)
EFFECTS

*h_dev_Iinitiated(devuld) = FALSE)

set_device_activeldevuid);
$(sets devlice state active)
EFFECTS

*h_dev_actliveldevuld) = TRUES

write_device(devuld; word);
g(wurites a word to device)
EFFECTS

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5725/77

‘h_dev_contents(devuld) = word?

VFUN h_dev_count () => nj
$ (returns number of devices)
HIDDEN;S
INITIALLY n = 03

VFUN h_dev_exlsts(devuld) => b3
$(returns true [f device exists)
HIDDEN3S
INITIALLY b = FALSES

VFUN h_dev_al (devuid) =->» al}
$(returns access level of device)
HIDDEN;
INITIALLY al = 2%

VFUN h_dev_typel(devuld) =-> dev_type)
$ (returns device type)
HIDDENS
INITIALLY dev_type = 7?3

VFUN h_dev_map_type(devuid) =-> map_type;
$ (returns device mapplng type)
HIDDEN}S
INITIALLY map_type = ?3%

VFUN h_valld_read_op(dev_type$ opcode) =-> b}
g (returns true if valld read operation for device type)
HIDDENS
INITIALLY b = valld_read_op{(dev_type, opcode);

VFUN h_valld_wrlte_opl{dev_types opcode) => b}
$(returns true 1f valld wrlte operatlon for device type)
HIDDENS
INITIALLY b = valld_write_op(dev_type, opcode);

VFUN h_dev_Inltliated(devuld) => b}
$(returns true 1f device currently inltlated)
HIDDENS
INITIALLY b = FALSE}S

VFUN h_dev_Iinltlator{devuld) =-> proculd;
$ (returns device Inltlator process id)
HIDODENS
INITIALLY proculd = ?3%

VFUN h_dev_devno(devuld) -> devno3
$(returns local device number In initlator process space)
HIDDENS
INITIALLY devno = 73§

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917

VFUN

VF UN

VFUN

VF UN

VFUN

Rev B = 5/25/77

h_dev_actlvel{devuld) => b}

¢ (returns true i f asynchronous read or write in progress)
HIDDENS

INDVEALLY. b" = FALSES

h_dev_contents(devuid) -> word;
$(returns contents of device)
HIDDENS

INITIALLY word = 73

device_al (devuid)proculd] => alj
$(external form of h_dev_al)
EXCEPTIONS

no_devlcel(proculd, devuld)}
DERIVATION h_dev_al (devuld)

device_typeldevuld)proculd] => dev_type;
$ (external form of h_dev_type)
EXCEPTIONS
no_device(proculd, devuld)}
DERIVATION h_dev_type (devuld);

device_map_typeldevuld)procuidl =-> map_type;
g(external form of h_dev_map_type)
EXCEPTIONS
no_device({proculd, devuld);
DERIVATION h_dev_map_typeldevulid)}

END_MODULE

SCOMP KERNEL SPECIFICATION - 2/14777 DS 34028917
Rev B = 5/25/77

MODULE address_spaces

TYPES

level _number t CINTEGER In 3 0 <= In AND In <= max_Iin};
Category_set 3 (VECTOR_OF BOOLEAN cs ¢ LENGTH(cs) = cs_slzel;
securlty_level ¢ STRUCT (level_number sin}
category_set scs)}
Integrity_level ¢ STRUCT (level_number [in}
category_set ics);
access_level : STRUCT (security_1level sl
integrity_level [1)}
process_uld ¢ INTEGER}?
volume_uld ¢ INTEGERS
segment_uid ¢ INTEGER}
ring_number t C(INTEGER rn t g <= rn AND rn <= max_ringl}s
ring_brackets 3 (VECTOR_OF ring_number rb ¢t LENGTH(rb) = 333
segment_number ¢ CINTEGER sn 8 0 <= sn AND sn <= max_segnol}$
device_number : CINTEGER dn ¢ 0 <= dn AND dn <= max_devnol}}
segment_offsat ¢ (INTEGER so ¢ g <= so AND so <= max_offset};
executlion_point & STRUCT (rlng_number rn}
segment_number sn}
segment_offset so)}
access_mode ¢ (VECTOR_OF BOOLEAN am 3 LENGTH(am) = 3}
machlne_word ¢ INTEGER}
page_number ¢t {INTEGER pn t i1 <= pn AND pn <= (max_offset + 1)/page_slzel;
level : {INTEGER level 2 1 <= level AND level <= pl_slzel};
process_levels ¢ {(VECTOR_OF BOOLEAN pi1 ¢t LENGTH(pl) = pi_sizel};
device_uld t INTEGERS
segment_length ¢ C(INTEGER length : 1 <= length AND length <= max_offset
+ 138
device_mapplng_type ¢ (mapped, premapped}}
trap_number ¢ C(INTEGER tn 2 1 <= tn AND tn <= max_trapnol}:
control_operation ! INTEGER}
mem_area ¢ STRUCT (segment_number sn}
segment_offset so)}
lo_count t (INTEGER count t g <= count AND count <= max_lo_count};
trap_info ¢ VECTOR_OF machlne_word}
device_type t {INTEGER type : 1 <= type AND type <= max_dev_types}}
known_segment_table ¢ STRUCT (S00LEAN vallds
segment_uld seguid}
volume_uld volulds
BOOLEAN access_defined;
access_mode mode;
ring_brackets rb}
BOOLEAN seg_used;
BOOLEAN seg_modifleds
BOOLEAN seg_wlreds
INTEGER seg_lo_count}
BOOLEAN page_used?

A-35

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917
Rev B - 5/25/77

BOOLEAN page_modifled)
knewn_segment_table_Illst ¢ SET_OF known_segment_table;

DECLARATIONS

process_uld proculd, procj;
volume_uid voluld?
segment_uld seguld;
device_uid devuld}
access_Jlevel alj}

access_mode mode, glven_mode;
ring_number ring, eff_ring}
ring_brackets rb}
segment_number segnoj;
device_number devno;
segment_offset offset)
machine_word word}
trap_number trapno;

execut lon_polnt exec_pt,y, return_exec_pt;
page_number pageno;

level level)

process_Jlevels activity_levels;
control_operatlon opcode;
device_mapping_type map_types
device_type dev_type}
mem_area save_area;
segment_length lengthy, range;
lo_count lo_count;

trap_Iinfo trap_Iinfoj

INTEGER iysn}

BOCLEAN b3

PARAMETERS

ring_number kernel_ring $(least privlieged ring used by kernel);}
ring_number max_ring $(maximum ring number);

segment_number max_segno $(maximum segment number);
device_number max_devno $(maximum device number))

trap_number max_trapno $(maximum trap number);

lo_count max_lo_count $(maximum number of actlve io operatlons):
level Init_level $(Inltlal process level)]

executlon_point init_exec_pt $(Ilnitlal process execution point);
kncwn_segment_table_Illst template_kst $(initlal process kst);
INTEGER pl_size $(number of process flevels);

DEFINITIONS

BOOLEAN unmounted_volume(procuid; voluld) IS

A=-36

SCOMP KERNEL SPECIFICATION - 2714777

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOOLEAN

0S 34028917
Rev B - 5/25/77

IF “h_vol_mounted(voluid) THEN TRUE
ELSE ‘h_read_alloued(h_proc_trusfed(procuid), h_proc_al (proculd),
h_vol_mln_al(voluid)):

no_sagment(proculd’ voluld:} seguld) IS

IF “h_seg_exists(voluld, seguid) THEN TRUE

ELSE ”h_read_allowed(h_oroc_trusfed(procuid). h_proc_al(proculd),
h_seg_vlslblllfy_al(seguld)):

write_not_allowed(procuid} al) IS
'h_urlfe_alloued(h_proc_rrusfed(proculdl, h_proc_al (proculd), al)}
invalld_segno(proculd? segno) IS

“h_kst_valid(proculd, segno)

undeflined_access(proculd} segno) IS
’h_ksf_access_deflned(proculd, segno)

no_read_permlsslon{procuid: ring; segno) IS
“(h_kst_mode(procuid, segno) {1] AND
ring <= h_kst_rb(proculd, segnoll21);

no_wrlte_permission{procuid} rings segno) IS
“(h_kst_mode(proculd, segno) [2] AND
ring <= h_kst_rblproculd, segno)(11])}

no_execute_permission(procuid} ring’ segno) IS
“{h_kst_mode({proculd, segno) {31 AND
ring <= h_kst_rb(proculd, segno) (2] AND
ring >= h_kst_rb(proculd, segnollil)s

out_of_bounds(proculd} segno} offset) 1S
offset >= h_seg_length(h_ksf_seguld(proculd. segno))}

outside_call_brackets(proculd? ringj} segno) IS
“(rlng »>= h_kst_rb(procuid, segno)l1] AND
ring <= h_kst_rb(proculd, segno)[31);

invalld_calli_timlter(otfset) IS
“{otfset =.0)?
inward_return(procuid} ring) IS
ring < h_proc_ring(procuid)?
segno_lin_uselproculd} segno) IS
h_kst_vallid(procuid, segno)
segment_wired(proculd} segno) IS

h_kst_seg_wired(proculd, sejno)}

invalld_ring_brackets(rb) IS

A-37

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917

BOCLEAN

BOOLEAN

BOCLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOCLEAN

Rev. B = S725/77

“(kernel_ring < rbl1] AND
rpf{1] <= rbl2) <= rbl31)}

segment_not_wlred(proculd? segno) IS
“h_kst_seg_mwired(proculd, segno);}

segment_used_for_lo{proculd} segno) IS
“(h_kst_seg_lo_count(proculd, segno) = 0)3

undefined_level(proculd; level) IS
“h_level_handler_exists{proculd, tevel);

devno_In_usel(proculdj devno) IS
h_kdt_valld(proculd, devno)}

no_device(proculd; devuld) IS

IF “h_dev_exists(devuld) THEN TRUE

ELSE “h_read_allowed(h_proc_trusted(proculd),y h_proc_al(proculd),
h_dev_al (devuld))

device_In_use (devuld) IS
h_dev_Inltiated(devuid);

invalld_devno(procuidj devno) IS
“h_kdt_valld(proculd, devno)

device_activelprocuid; devno) IS
h_dev_activelh_kdt_devuid(proculd, devno));

invalid_device_ring_brackets{rb) IS
“{kernel_ring < MIN(Crb{1l, rbl313}) AND rbly) <= rbl21)3;

invalld_device_read(procuid; ringj devuld} devno; opcode) IS
“((h_kdt_mode(proculdy devno){i] AND
ring <= h_kdt_rb(proculid, devno){2] AND
h_valld_read_op{(h_dev_type(devuld), opcode)) OR
(h_kdt_mode({proculd, devno) 31 AND
ring <= h_kdt_rbl{procuid, devno)l(3]));

invalld_device_writel(proculds’ ring} devuid$ devno: opcode) IS
“{({h_kdt_mode(proculd, devno) (2] AND
ring <= h_kdt_rb(proculd, devno)lil AND
h_valld_write_opth_dev_typel(devuld), opcode)) OR
{h_kdt_mode(proculdy, devno) (3] AND
ring <= h_kdt_rb(proculd, devnoll31))}

undeflned_device_access(proculd; devno) IS
“h_kdt_access_deflined(proculd, devno);

no_deaevice_wrlte_permisslon(proculd} ring} devno) IS
“(h_kdt_mode({proculd,y, devno) {2] AND

A-38

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917

BOCLEAN

BOOLEAN

BOCLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOCLEAN

BOOLEAN

BOCLEAN

Rev B = 5/25/77

ring <= h_kdt_rb(procuidy devno)l11l)}

no_device_read_permlssion(proculd; ring} devno) IS
“(h_kdft_mode(proculd, devno) {41l AND
ring <= h_kdt_rb(proculd, devnol)(21)}

max_lo_operatlons(proculdj segno) IS
h_kst_seg_lo_count(proculidy, segno) = max_lo_count}

invalld_memory_timlts(procuid; devuid} seqguld; offset; range)
IF h_dev_map_typel(devuid) = mapped
THEN offset >= h_seg_iengthliseguld)
ELSE (offset + range) >= h_seg_length(seguld) OR
(h_seg_paged(seguld) AND
(offset MOD page_size + range) > page_slze);

no_wrlte_memory_permission(proculd} devuld; ring; segno) IS
IF h_dev_map_type({devuid) = premapped
THEN “(h_kst_mode(proculd, segno) (2] AND
ring <= h_kst_rb{proculd,s, segno){il)
ELSE FALSE;S

no_read_memory_permission{proculd; devuld; ring} segno) IS
IF h_dev_map_type(devuld) = premapped
THEN “(h_kst_mode (procuid, segno)l1) AND
ring <= h_kst_rb{proculd, segno)(21})
ELSE FALSE}

device_not_activeldevuid) IS
“h_dev_active(devuld)

invalld_segment_referencel(procuid; devnos segno) IS
“(h_kdt_segno(proculdy, devno) = segno)}

existing_trap_handler(proculds trapnoj ring) IS
(h_trap_handler_exlilsts(proculd, trapno) AND
rina > h_trap_ring(proculd, trapno));}

no_trap_handler({proculd; trapno) IS
“h_trap_handler_exists(proculd, trapno);

no_trap_outstanding(procuid’ trapno) IS
h_trap_depth{proculdsy trapno) = 03

inner_ring_handler(proculd} rling) IS
h_proc_ring(proculd) > ring}

exlstling_level_handler(proculid; level; ring) IS

(h_level_handler_exists{procuid, level) AND
ring > h_level_ring(proculdy, level));

A-39

IS

SCOMP KERNEL SPECIFICATION =~ 2/14/77 DS 34028917

FROM

FROM

FROM

FROM

FROM

Rev B = 5/25/77

EXTERNALREFS

access_Jlevels 3

level_number max_In $(maximum fevel number))
INTEGER cs_slze $(category set slze))

VFUN h_read_allowed(bs alj atl) => bj

VFUN h_wrlte_allowed(b; als al) =-> b3

VFUN h_read_wrlte_allowed{b; alj al) => b3

processes @

VFUN h_proc_exists(proculd) =-> b3
VFUN h_proc_all{procujd) -> alj
VFUN h_proc_trusted(proculd) -> bj

volumes ¢
VFUN h_vol_min_al (voluld) -> al}
VFUN h_vo!_mounted(voluid) -> b3

segments ¢

segment_offset max_offset $(maximum segment offset);
INTEGER page_size $(number of words In a page);
VFUN h_seg_exists(voluid; seguld) =-> b}

VFUN h_seg_vislbitlty_at({saguld) -> al}

VFUN h_seg_al{seguld) => al}

VFUN h_seg_length(seguld) =-> length}

VFUN h_seg_contents(seguid; offset) =-> word;
VFUN h_seg_paged(seguld) =-> b}

VFUN h_seg_page_In_core(seguldj pageno) =-> b}
OVFUN read{(seguld; offset) -> word}

OFUN wrlte(seguld; offsets word)?

OFUN allocate_page(seguid; pageno);

OFUN change_wlire_counti(seguid; n);

OFUN set_page_used_indicator(seguid; pageno);
DFUN set_page_lIindicatorsi{seguld; pageno)}

devices 3

device_type max_dev_types ${maxlmum devlice types);
VFUN h_dev_exlsts(devuld) =-> b}

VFUN h_dev_al (devuld) =-> al}

VFUN h_dev_type(devuld) -> dev_type)

VFUN h_dev_map_typel(devuid) =-> map_type;

VFUN h_valld_read_opl(dev_type3 opcode) => b}
VFUN h_valld_wrlte_op(dev_type; opcode) -> b}
VFUN h_dev_initlated(devuid) -> b}

VFUN h_dev_Iinitiator(devuld) =-> proculd;

VFUN h_dev_devno(devuld) =-> devno}

VFUN h_dev_active(devuld) =-> b}

VFUN h_dev_contents(devuld) =-> word;

OFUN asslgn_device(proculd; devuidj devno)}
OFUN release_device(devuid) j

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917
Rev B - 5725777

OFUN set_device_actlve({devuid)}
OFUN wrlte_device(devuld} word) $

FUNCTIONS

OFUN asslign_segno(voluld} seguld} segno){proculdl}
$(asslgns a segment number to a segment for a process)
EXCEPTIONS

segno_Iln_use(procuid, segno)}
unmounted_volume(procuidy, voluld)}
no_segment (proculd, voluld, seguld)}
EFFECUS
‘h_kst_valid(proculds segno) = TRUE!
‘h_kst_voiluld(proculd, segno) = voiluld}
‘h_kst_seguid(proculd, segno) = seguld;
'h_ksf_access_deflned(proculd, segno) = FALSE?S
‘h_kst_seg_wired(proculd, segno) = FALSE
‘h_kst_seg_lo_count (proculd, S€gno) = 03
“h_seg_paged(seguld) =>
*h_kst_seg_used(proculd, segno) = FALSE AND
*h_kst_seg_modified(procuid, segno) = FALSES

OFUN release_segno(segno) [proculd]}
$(releases a segment number for a process)
EXCEPTIONS
Invalld_segno(proculd, segno)}
segment_wired(procuids segno)}
EFEECTS
‘h_kst_valld(procuid, segno) = FALSE}

OVFUN glve_access{segno} mode! ro)lprocuid] =-> glven_mode:?
$(3ives a process access to a segment and returns glven mode)
DEFINITIONS
volume_uld voluid IS h_kst_voluld{(procuid, segno):
segment_uld seguid IS h_kst_seguld{(proculd, segno) 3
access_level al IS h_seg_allsegulid)?
BOOLEAN readable IS h_read_allowed(h_proc_trusted(proculd),
h_proc_al{procuid), al)}
BOOLEAN writable IS h_write_allowed(h_proc_trusted(proculd),
h_proc_al (proculd), al)}
access_mode max_mode IS VECTOR(readable, writable, readable)
EXCEPTIONS
Invalld_rlng_brackets(rb)}
Invalld_segnol(procuid, segno)}
unmounted_volume(proculdy, voluld):
no_segment(proculd, voluld, seguld)}
EFFECTS
given_mode = VECTOR (FOR | FROM { TO 3 ¢
mode(1] AND max_modef[1):
“h_kst_mode (procuid, segno) = glven_mode}

A-i41

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5725/77

*h_kst_rb(procuid, Ssegno) = rbj}
*h_kst_access_defined{procuid, segno) = TRUE;

OFUN revoke_access(voluld; seguld)lprocuidl;
$(revokes access to segment for all processes
forces access to be recomputed)
EXCEPTIONS
unmounted_volume(proculdy, voluld);
no_segment (proculd, voluld, seguld);
write_not_allowed(procuid, h_seg_al(seguld));
DELAY_UNTIL FORALL proc 3 h_proc_exlsts(proc)
(FORALL segno : h_kst_valld(proc, segno) AND
h_kst_seguld(procy segno) = seguld !
h_kst_seg_lo_count(procy segno) = 0)3
EFFECTS
FORALL proc ¢ h_proc_exists(proc) ¢
(FORALL segno 3 h_kst_valld(procs segno) AND
h_kst_seguid(proc, segno) = seguld
*h_kst_access_deflned(proc, segno) = FALSES

.e

OFUN revoke_vol_access(voluldj proculd);
$ (revokes access to all segments on a volume)
EFFECTS
FORALL seguld ¢ h_seg_exists(voluld, segulid) ¢
EFFECTS_OF revoke_access(voiuld, seguld, proculd)3

OFUN Inlt_address_space(proculd);
¢(inltiatizes process address space)
EFEECTS
*h_proc_kst(proculd) = template_kst}
*h_proc_activity_levels(proculd) = VECTOR (FOR 1 FROM 1
T0 pl_slze ¢
IF | = Init_level THEN TRUE ELSE FALSE)}

*h_level_handlier_exlists(proculd, inlt_level) = TRUE 3
*h_level_ring(proculd, Inlt_level) = Init_exec_ptering;
*h_level_segno(proculid, Init_level) = Inlt_exec_pt.segno;
‘h_level_offset(proculd, init_level) = Inlt_exec_pt.offsets

OFUN purge_address_space(proculd);
g (releases all segments and devices In address space of process)
EFFECTS
FORALL segno : h_kst_valld(proculd, segno) ¢
EFFECTS_OF release_segno(segno, proculd)}
FORALL devno % h_kdt_vallid{(proculd, devno)
EFFECTS_OF release_devno(devno, procuid);

OVFUN read_seglsegno; offset){proculd] => words;
$ (reads a word from a segment)
DEFINITIONS
ring_number IS h_proc_ring(proculd);
page_number pageno IS (offset + page_slze)/page_size;

A=42

SCOMP KERNEL SPECIFICATION - 2714777 DS 34028917

OFUN

OFUN

Rev B = 5/25/77

volume_uld voluid IS h_kst_voluid(procuid, segno)}
segment_uld seguld IS h_kst_seguld(proculd, segno)}
EXCEPTIONS
Invalld_segnol(procuidy segno)?
unmounted_volume(procuidy, volujid)};
no_segment(procuid, voluid, seguld):
undetined_access(proculd, segno)}
no_read_permlsslion{proculd, ring, segno) }
out_of_bounds(proculd, segno, offset)
EFFECTS
word = EFFECTS_OF read(segulidsy offset) s
“h_seg_paged(seqguid) =>
‘h_kst_seg_used(proculd, segno) = TRUES

wrlte_seg(segno} offset; word) [proculd};
g(writes a word of a3 segment)
DEFINITIONS
ring_number IS h_proc_ring(proculd)?
page_number pageno IS (offset + pPage_size)/page_size}
volume_uld volujd IS h_ks t_voluld(proculd, segno) $
segment_uld segquld IS h_kst_seguld(proculd, segno):
EXCEPTIONS
Invalld_segnolproculd, segno) 3
unmounted_volume(proculd, voluld):
no_segment{(proculd, voluid, seguld)s
undeflned_access{proculd, segno)
no_write_permission(proculd, ring, segno)}
out _of_bounds(proculdy segno, offset)}
EFFECTS
EFFECTS_OF write(sequid, offset, word):
“h_seg_paged(seguld) =>
‘h_kst_seg_used(proculd, segno) = TRUE AND
‘h_kst_seg_modified(proculd, segno) = TRUE;

execute_seglsegno; offset)l proculdl}

$ (executes a word from a segment)

DEFINITIONS
ring_number IS h_proc_ring(proculd)}
page_number pageno IS (offset + page_size)/page_slize}
volume_uld voluld IS h_kst_voluld(procuid, segno) §
segment_uld seguld IS h_kst_seguld(proculd, segno)}

EXCEPTIONS
invalid_segno(proculd, segno) $
unmounted_volumel(proculd, volujid)}
no_segment (procuid, voluld, segulid):
undefined_access{proculd, segno)}
no_execute_permlission(proculd, ring, segno) §
out_of_bounds(procuid, segno, offset)

EFFECTS
EFFECTS_OF allocate_page{seguldy pageno)}
‘h_proc_segnol(proculd) = segnos;

A=-43

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/729/77

*h_proc_offset(proculd) = offset}

IF h_seg_paged(seguld)

THEN EFFECTS_OF set_page_used_Indicator(seguld, psgeno)
ELSE *h_kst_seg_used(proculd, segno) = TRUE;

OFUN call(segnoj offset)iproculdls

$(initiates Inter-ring Inward movement for process)

DEFINITIONS
ring_number IS h_proc_ringl{proculd)}
volume_uld voluid IS h_kst_voluid(proculd, segno)}
segment_uld seguld IS h_kst_seguld(proculd, segno)}

EXCEPTIONS
invalid_segnol(proculd, segno)}
unmounted_volume(proculd, votuld);
no_segment (procuidy, voluid, seguld)}
undeflined_access{proculdy, segno);
outside_call_bracket{proculd, ring, segno);
invalid_call_limiter(offset)}

EFFECTS
*h_proc_rilnglprocuid) = MIN{{h_proc_ring{proculd),

h_kst_rb(proculd, segnol)l21})}

*h_proc_segnol{proculd) = segno}
*h_proc_offset(proculd) = offset}

OFUN returni{segno} offsets ring)iprocuidl}
g$(initlates Inter-ring outward movement for process)

EXCEPTIONS
inward_return(proculds ring)s
EFFECTS
*h_proc_rlng(proculd) = rings
*h_proc_segnolprocuid) = segno}
‘h_proc_offset(proculd) = offset;

OFUN wi.re_seg{segno)lproculdl;

$(wires segment into maln memory)

DEFINITIONS
volume_uld voluid IS h_kst_voluid(proculidy segno)?$
segment_uld seguld IS h_kst_seguld{proculd, segno)}

EXCEPTIONS
invalld_segno(procuid, segno)?}
unmounted_volumelproculdy, voluld);
no_segment(proculdy, voluid, seguid);}
undeflined_access(proculd, segno)}
segment_wilred(proculd, segno) 3}

EFFECTS
‘h_kst_seg_wired(proculds segno) = TRUE;
EFFECTS_OF change_wlre_count{seguld, 1)

OFUN unwire_seg(segno) [procuidl;
g lunwlres segment from maln memory)
DFFINITIONS

SCOMP KERNEL SPECIFICATION - 2/14/77 0S 34028937
Rev B =~ 5/25/77

volume_uld voluld IS h_kst_voluld(proculd, segno)}
segment _uld seqguld IS h_kst_seguld(proculd, sagno)}
E XCEPTIONS
Ilnvalid_segnol(procuidy, segno)}
unmounted_volume(proculdy, voluld)}
no_sejment (proculdy voluld, seguid)}
undefined_access(proculds, segno)}
segment_not_wlred{proculd, segno);
segment_used_for_lo(procuid, segno)}
EFEECTS
‘h_kst_seg_wired(procuidy, segno) = FALSE}
EFFECTS_OF change_wlire_count(seguid, -1)3%

VFUN h_proc_exec_pt(proculd) => exec_pt}
$(returns executlon polnt for process)
HIDDENS
DERIVATION <h_proc_rlng(proculd), h_proc_segnolproculd),
h_proc_offset(proculd)>;

VFUN h_proc_ring(proculd) => rlng}
$(returns effective ring of executlon for process)
HINDDENS
INITIALLY "ripng = 7%

VFUN h_proc_segnol(procuid) -> segno}
$(returns segment number of exacutlon polnt for process)
HIDDENS
INITIALLY segno = 7?3

VFUN h_proc_offset(proculd) -> offsat}
$(returns segment offset of execution point for process)
HIDDENS
INITIALLY offset = ?;

VFUN h_tevei_handler_exlists(proculd; level) => b}
$(returns true [f level handler Is deflned for process)
HIDDEN}S
INITIALLY b = FALSE:

VFUN h_proc_activity_levels(procuid) =-> actlvity_levelss
$(returns actlvity level Indicators for process)
HINDENS
INITIALLY activity_tlevels = 7?3

VFUN h_proc_level(proculd) => leveil}
g (returns execution point level for process)
HIDDENS
INITIALLY level = ?23

VFUN h_level_exec_pt(proculd; level) => exec_pt}
$(returns execution point for level handler for process)

A=45

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917

VF UN

VFUN

VF UN

VFUN

VF UN

VF UN

VFUN

VFUN

OFUN

VFUN

Rev B = 5/25/77

HIDDENS
DERIVATION <h_level_ring{proculd, level), h_level_segno(procuid,
level), h_level_offset(proculd, level)>;

n_level_ring(proculd; level) => ring;

¢ {returns effective ring of level handler for process)
HIDDENS

INITIALLY ring = 7?3

h_level_segno(proculd; level) => segnoj;

$ (returns segment number of level handler for process)
HIDDENS

INITIALLY segno = 7?3

h_level_offset(proculd; level) => offsets

$(returns segment offset of level handler for process)
HIDDENS

INITIALLY offset = 73

tevel_handler_exec_pt(level) [procuid] -> exec_pt;3
g (external form of h_level_exec_pt)
EXCEPTIONS
undefined_level (proculd, leveai);
DERIVATION h_level_exec_ptiproculds level)}

proc_actlvity_levels()Iprocuidl =-> activity_levels$
$(external form of h_proc_activlty_levels)
DERIVATION h_proc_activity_levels(procuid);

h_kst_seg_wlired(procuid; segno) => Dj
$(returns true [f segment wired by process)
HIDDENS

INITIALLY b = FALSES

h_kst_seg_used{(proculd; segno) => bj

$ (returns true 1f unpaged segment used by process)
HIDDENS

INITIALLY b = FALSES

h_kst_seg_modlfled(proculd; segno) =-> b3

¢ (returns true 1f unpaged segment modifled by process)
HIDDENS

INITIALLY b = FALSES

decrement_seg_lo_count(proculd; segno);
$ (decrements number of asynchronous lo operations on sagment)
EFFECTS
*h_kst_seg_lo_count(proculd, segno) =
h_kst_seg_lo_count(proculds segno) = 13

h_kst_seg_lo_count(proculd; sejno) => lo_count;

A-46

SCOMP KERNEL SPECIFICATION - 2/14/77 0S 34028917

VFUN

VF UN

Rev B =~ 5/257/77

$ (returns number of asynchronous io operations on segment)
HIDDENjS
INITIALLY lo_count = 03

h_kst_vallid{(procuid; segno) =-> b}

$(returns true (f segment number Is valld for process)
HIDDENS

INITIALLY b = FALSE;

h_kst_access_deflned(procuid; segno) => b}

g(returns ftrue [f access defined to segment for process)
HIODENS

INITIALLY b = FALSE;

FUN h_kst_rb(proculd; segno) =-> rb}

VFUN

VFUN

VF UN

VF UN

VF UN

VFUN

$(returns ring brackets of segment for process)
HIDDEN3S
ENTVIALEY rbi= 23

h_kst_mode{proculd} segno) => mode}

$(returns access mode to segment for process)
HIDDENS

INITIALLY mode = 7?3

h_kst_seguld(proculd; segno) =-> seguld}
$(returns seguld of assligned segno for process)
HIDDENS

INITIALLY seguld = ?3

h_kst_voluld(proculd; segno) =-> voluid}
$(returns voluld of assigned segno for process)
HIDDEN;S

INITIALLY voluid = 7?3

kst_voluld(segno)(proculd] =-> voluld}
$(external form of h_kst_vo luld)
EXCEPTIONS

Invatid_segnolproculd, segno)}
DERIVATION h_kst_voluid(proculds segno)}

kst_seguld(segno){procuid] -> seguld}
$(external form of h_kst_seguid)
EXCEPTIONS

Invalld_segno(proculd, segno)3}
DERIVATION h_kst_seguld(procuidy segno)$

kst_mode(segno)(procuid] => mode}
$(2xternal form of h_kst_mode)
EXCEPTIONS
Invalid_segno(proculd, segno)}
undefined_access(proculdy segno)}

A-47

SCOMP KERNEL SPECIFICATION =~ 2/14/77 DS 34028917
Rev B = 5/25/77

DERIVATION h_kst_mode (proculd, segno)}

VFUN kst_rb(segno)lproculd] => rb}
g (external form of h_kst_rb)
EXCEPTIONS
invalld_segno(procuid, segno)}
undeflned_access{proculd, segno)}
DERIVATION h_kst_rb(proculd, s2gno);

OFUN asslgn_devno(devuid; devno){proculdl?
$(assigns a device number to a device for process)
EXCEPTIONS
devno_In_uselproculd, devno)}
no_devicel(proculd, devuld):
device_Iiln_usel(devuid)}

EFFECTS
*h_kdt_valld(proculd, devno) = TRUE}
‘h_kdt _devuid(procuid, devno) = devuld!?

*h_kdt_access_deflned(proculdy, devno) = FALSE:
‘h_kdt_dev_used(proculd, devno) = FALSE;
‘h_kdt_dev_modlfled(procuid, devno) = FALSE}
EFFECTS_OF asslgn_device(proculd, devuld, devno)

OFUN release_devno(devno) [proculdl:

$(releases a device number for a process)

EXCEPTIONS
invalid_devno(proculdy devno)}
device_actlivelproculdy, davno)?$

EFFECTS
*h_kdt_valld(proculd, devno) = FALSE?}
EFEECTS _OF release_device(h_kdt_devuld(procuid, devno))}

OVFUN give_device_access(devno} mode} rb} level)[procuid]l -> glven_mode?
$(g ives a process access to a devlce and returns glven mode)
DEFINITIONS
device_uld devuid IS h_kdt_devuid(proculd, devno):
access_level al IS h_dev_al(devuld)}
BOOLEAN trusted IS h_proc_trusted(procuid)}
BOOLEAN rw IS h_read_write_allowaed(trusted, h_proc_al (proculd),
al);
access_mode max_mode IS VECTOR (rw, rwy, trusted):
EXCEPTIONS
invalld_device_ring_brackets{(rb):
undefined_level(proculd, level)}
invalld_devno(proculd, devno)?
no_device(proculd, devuld);}
EFFECTS
glven_mode = VECTOR (FOR | FROM { TO 3 ¢
model 1) AND max_model]]1)
‘h_kdt_mode(proculd, devno) = glven_mode}
*h_kdt_rb(proculd, devno) = rb}

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B = 5/25/77

‘h_kdt_levell(procuidy devno) = level}
*h_kdt_access_defined(procuid, devno) = TRUE

OFUN revoke_device_access(devuid) [proculd}}

$ (revokes access to device
forces access to be recomputed)

EXCEPTIONS
no_device(procuid, devuld)?}
write_not_allowed(procuid, h_dev_al(devuid))}

EFEECTS
h_dev_Inltlated(devuld) =>

‘h_kdf_access_defined(h_dev_lnlflafor(devuld),
h_dev_devno(devuld)) = FALSE}

OVFUN sync_device_read(devno} opcode) Iproculd] =-> words;
$(reads a word from a device synchronously)
DEFINITIONS

ring_number ring IS h_proc_ringlproculd)}

device_uld devuld IS h_kdt_devuid{proculid, devno)
EXCEPTIONS

Invalid_devno{proculd, devno)}

no_device(proculd, devuld)}

undefined_device_access(proculd, devno)}

Invalid_device_read(proculd, ring, devuid, devno, opcode);
EFFECTS

word = h_dev_contents{(devuld)}

*h_kdt_dev_used(proculd, devno) = TRUE}

OFUN sync_device_write(devno} opcode} word) I proculdl];}
$(writes a word to device synchronousiy)
DEFINITIONS
ring_number rling IS h_proc_ringl(proculd);
device_uld devuid IS h_kdt_devuid(procuid, devno):
EXCEPTIONS
Invalid_devno(proculd, devno)}
no_device(procuidy, devuid)}
undeflined_device_access(proculd, devno)}
Invalld_device_write(procuid, ring, devuld, devno, opcode)}
EFFECTS
EFFECTS_OF write_deviceldevuld, word)}
‘h_kdt_dev_used(procuid, devno) = TRUE?}
‘h_kdt_dev_modifled(proculd, devno) = TRUE:

OFUN connect_device_read(devno? segnoj; offset; range) [proculdl}
$(starts an asynchronous read operatlon from a device)
DEFINITIONS

ring_number ring IS h_proc_ringlprocuid)}

device_uld devuld IS h_kdt_devuld(proculid, devno):
segment_uld seguld IS h_kst_seguld(proculd, segno)
volume_uld voluid IS h_kst_voluid(procuid, segno)}
page_number pageno IS (offset + page_size)/page_slze!

A-49

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B8 = 5/25/77

EXCEPTIONS
Invalid_devnol{proculds devno)3
no_device(proculdy devuld);
unde flned_device_access{procuidy devno)}
no_device_read_permlisslon(proculd, ring, devno);
device_actlvel(proculd, devno)j;
invalid_segnol(procuidy Segno)}
unmounted_volume(procuidy, voluld)}
no_segment(procuid, seguld);
undefined_access{procuid, segno)}
segment_not_wired(procuid, segno);
max_lo_operatlions(proculd, segno)}
Invalid_memory_1limits(procuid, devuld, segquid, offset, range);
no_wrlte_memory_permission(proculd, devuld, ring, segno);
EFFECTS
EFFECTS_OF set_device_activeldevuid);
‘h_kdt_dev_used{(proculd, devno) = TRUE;
*h_kst_seg_io_count(proculd, segno) =
h_kst_seg_lo_count(proculd, segno) + 13
IF h_dev_map_typeldevuld) = mapped
THEN *h_kdt_segnol(procuid, devno) = segno AND
‘h_kdt_rilng(proculdy, devno) = rlng
ELSE IF h_seg_paged(seguld)
THEN EFFECTS_OF set_page_lindicators{seguid, pageno)
ELSE *h_kst_seg_used(proculd, segno) = TRUE AND
*h_kst_seg_modl fled{proculd, segno) = TRUE}S

OFUN async_device_read{(devuid}? segno3 offset)]
$ {asynchronously read a word from mapped device to segment)
DEFINITIONS
process_uld proculd IS h_dev_initiator(devuid)}
device_number devno IS h_dev_devno(devuid))
ring_number ring IS h_kdt_ring{(proculd, devno)}
segment_uld seguld IS h_kst_seguld{proculd, segno);
EXCEPTIONS
device_not_actlvel(devuld);
invalld_segment_reference(procuidy, devnos segno)3
no_wrjite_permlisslon{procuidy ring, segno);
out_of_bounds(procuid, segno, offset);
EFFECTS
EFFECTS_OF wrlte_seg{segnoy offsety, h_dev_contents(devuld),
procuid)j
“h_seg_paged(seguld) =>
‘h_kst_seg_used({proculd, segno) = TRUE AND
‘h_kst_seg_modified(proculd, segno) = TRUE}

OFUN connect_device_wrlite(devno; segnoj offset; rangellproculdl}
g(starts an asynchronous write operation to a device)
DEFINITIONS

ring_number ring IS h_proc_ring(proculd)}
device_uid devuld IS h_kdt_devuid(proculd, devno)}

A-5S0

SCOMP KERNEL SPECIFICATION - 2714777 DS 34028917

OFUN

VFUN

Rev B = 5/25/77

segment_uld segquid IS h_kst_seguld(proculd, segno):
volume_uld voluld IS h_kst_voluld(proculd, segno):
page_number pageno IS (offset + page_slze)/page_slze}
EXCEPTIONS
Invalld_devno(proculd, devno) 3
no_device(procuidy, devulid)}
undefined_device_access(proculd, devno) ;
no_devlce_wrlte_permlsslon(proculd, ringy devno)}
device_activel(proculd, devno) }
Invalld_segno(proculd, segno) s
unmounted_volume(proculd, voluld):
no_segment (procuid, seguid)}
undefined_access(proculd, segno)}
segment_not_wired(proculd, segno)}
max_lo_operations(proculd, segno)
lnvalld_memory_llmlfs(proculd, devuld, seguld, offset, range)
no_read_memory_permisslon{proculid, devuidy ring, segno)}
EFFECTS
EFEECTS _OF set_device_actlveldevulid):
*h_kdt_dev_used(proculd, devno) = TRUE
‘h_kdt_dev_modlfled(proculd, devno) = TRUE
'h_kst_seg_lo_count(proculd. segno) =
h_kst_seg_lo_count(proculd, segno) + 15
IF h_dev_map_type(devuld) = mapped
THEN ‘h_kdt_segno(proculd, devno) = segno AND
‘h_kdt_ring(proculd, devno) = ring
ELSE IF h_seg_paged(seguld)
THEN EFFECTS_OF set_page_used_Iindicator(seguld, pageno)
ELSE *h_kst_seg_used(procuid, segno) = TRUE}

async_device_wrltel(devuld; segno} offset);
$ (asynchronously write a word to mapped device from segment)
DEFINITIONS
process_uld proculd IS h_dev_Initlator{devuld):
device_number devno IS h_dev_devno (devuid)}
ring_number ring IS h_kdt _ring(proculd, devno)?
segment_uld seguld IS h_kst_seguid(proculd, segno)}
EXCEPTIONS
device_not_activel(devuld)
lnvalld_segmenf_referenCe(proculd, devnoy segno)}
no_read_permlission(proculd, ring, segno)}
out_of_bounds(proculd, segno, offset):
EFFECTS
EFFECTS_OF write_device(devuldy EFFECTS_OF read_seg(segnoy offset,
proculd))
“h_seg_paged(seguld) =>
‘h_ksf_seg_used(proculd. segno) = TRUE:

h_kdt_valld(proculd;s devno) => b}
$ (returns true [f device number valid for process)
HIDOENS

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
ReN. B = S/25LTT

INITIALLY b = FALSES

VFUN h_kdt_devuld{(proculd; devno) =-> devuld}
$(returns devuld of asslgned devno for process)
HIDDENS
INITIALLY devuid = 7?3

VFUN h_kdt_mode{proculd; devno) => mode}
$(returns access mode to device for process)
HIDDENS
INITIALLY mode = 7?3

VFUN h_kdt_rb{proculd; devno) => rb}
$(returns rlng brackets of device for process)
HTODEN}S
INITIALLY rb = 23§

OFUN reset_device_used_Indicator(devuld)}
$(resets local device used indicator)
EFFECTS
‘h_kdt_dev_used(h_dev_Inltlator{devuld),
h_dev_devno(devuld)) = FALSE}

OFUN reset_device_modlifled_Indicator (devuid)}
$(resets local device modified indicator)
FFREECTS
*h_kdt_dev_modifled(h_dev_initiator(devuld),
h_dev_devnol{devuld)) = FALSE}

VFUN h_kdt_dev_used(proculd; devno) =-> b}
$(returns true | f device used by process)
HIDDENS
INITIALLY b = FALSES

VFUN h_kdt_dev_modifled(proculdy devno) =-> b}
$(returns true [f device modifiled by process)
HIDDENS
INITIALLY b = FALSES

VFUN h_kdt_level {(procuid; devno) =-> level}
$(returns level of device handler for process)
HIDDEN;S
INITIALLY level = 7?3

VFUN h_kdt_segnol(proculid; devno) =-> segno}
$(returns segment number being used by device)
HIDDENS
INITIALLY segno =73

VFUN h_kdt_ringl(proculd; devno) =-> eff_ring?
$(returns effectlve ring for medlation of device asynchronous [o)

SCOMP KERNEL SPECIFICATION = 2/14/77

VF UN

VF UN

VF UN

VF UN

OFUN

OFUN

Rev B = 5/25/77

HIDDEN;S
INITIALLY eff_ring = 7?3

kdt_devuld(devno) {proculd] -> dewvuld;
$(external form of h_kdt_devuld)
EXCEPTIONS

invalld_devnol{proculd, devno)3}
OERIVATION h_kdt_devuid(proculids devno) 3

kdt_mode(devno) [proculd] =-> mode;
$(external form of h_kdt_mode)
EXCEPTIONS
Invalld_devno(proculd, devno)}
undefined_device_access({proculds devno)}
DERIVATION h_kdt_mode (procujidy, devno)}

kdt_rb{devno) (procuid] => rb}
$(external form of h_kdt_rb)
EXCEPTIONS
invalid_devno(procuidy, devno) 3
undefined_device_access{proculdy, devno);
DERIVATION h_kdt_rb(proculd, devno)3}

kdt_level (devno) [proculd] => favel}
g (external form of h_kdt_level)
EXCEPTIONS
Invalld_devno{(proculd, devno)3}
undeflined_device_access{proculdy devno);
DERIVATION h_kdt_levell(procuid, devno);

0S 34028917

set_trap_handler{trapno; exec_pt3 save_area)l proculdl}

g (establishes trap handier and save area for process)

EXCEPTIONS
Inner_ring_handler(proculd, exec_pt.ring);

existing_trap_handler(procuidy trapno, exec_pt.rlng);

Invalld_segno(proculd, exec_pt.segno)
Invalid_segno(proculd, save_area.segno);
EFFECTS

*h_trap_handler_exlsts{proculd, ftrapno) = TRUE}
‘h_trap_ring(proculd, trapno) = exec_ptering;’
*h_trap_segnol(proculd, trapno) = exec_pte.segnos
‘*h_trap_offset(procuid, trapno) = exec_pt.offset;

‘h_trap_save_segno(proculd, trapno) = save_area.segno;
‘h_trap_save_offset({proculd, trapno) = save_area.offset?

trap(trapnoj trap_Iinfo)lprocuidl;
$(lnitiates trap handier for process)
DEFINITIONS

ring_number IS h_trap_ring{proculdy trapno)}

segment_number
segment_offset

segno IS h_trap_save_segnol(proculd, trapno)j

offset IS h_trap_save_offset(proculd,

A-53

trapno);

SCOMP KERNEL SPECIFICATION - 2/14/77 0S 34028917
Rev B = 5/25/77

volume_uld voluld IS h_kst_voluld(proculd, segno)$
segment_uld seguid IS h_kst_seguld(proculd, segno)
EXCEPTIONS
no_trap_handler (proculd, trapno);
Invalid_segno(proculd, segno)}
urmounted_volume(proculd, voluld)
no_segment {proculd, voluld, seguld);
undeflned_access(proculd, segno)}
no_wrlte_permlsslon(procuid, ring, segno);}
out_of_bounds(proculd, Segnoy, offset + LENGTH(trap_Iinfo))3
EFFECTS
*h_trap_depth(proculd, trapno) = h_trap_depth(proculd, trapno) + 13
FORALL I ¢ 1 <= 1 AND [<= LENGTH(trap_info) ¢
EFFECTS_OF write_segl(segnoy, offset ¢+ 1 - 1, trap_infollil,
procuid)}
‘h-trap_save_of1sef(procu1d. trapno) = h_trap_save_offset(proculd,
trapno) + LENGTH(trap_Info)}
*h_proc_ring(proculd) = h_trap_ring(proculd, trapno))
*h_proc_segnol{proculd) = h_trap_segno(proculd, trapnol3
*h_proc_oftset{proculd) = h_trap_offset(proculd, trapno) 3
~“h_seg_paged(seguid) =>
‘h_kst_seg_used(proculd, segno) = TRUE AND
*h_kst_seg_modifled(proculd, segno) = TRUE}

OFUN return_from_trap(trapnoj return_exec_pt} trap_info)proculdl}
¢ (returns from trap handler for process)
EXCEPTIONS
no_trap_handler (proculd, trapno)
no_trap_outstanding(proculd, trapno) ;s
Inward_return(proculd, return_exec_pt.ring)?

EFFECTS
*h_trap_depth(proculd, trapno) = h_trap_depth(procuid, trapno) - 13
'h_frap_save_offsef(procuid. trapno) = h_trap_save_offset(proculd,
trapno) - LENGTH(trap_Info);
*h_proc_ring(procuid) = return_exec_pterlings
'h_proc_segno(proculd) = return_exec_pt.segno;
*h_proc_offset (proculd) = return_exec_pt.offset;

VF UN h_frap_handler_exlsfs(proculd% trapno) => b}

$(returns true |t trap handler exists for process)

HIDDENS
INITIALLY b = FALSES

VF UN h_trap_depth(proculd; trapno) =-> nj
¢ (returns number of unprocessed traps for process)

HIODENS
INITIALLY n = 03

VF UN h_trap_exec_pf(proculd: trapno) => exec_pt}

¢ (returns executlon point of trap handler for process)
HIDDENS

A=54

SCOMP KERNEL SPECIFICATION = 2/14/77 0S 34028917
Rev B - 5/25/77

DERIVATION <h_trap_ringl{proculd, trapno), h_trap_segno(proculd,
trapno)y, h_trap_offset(proculd, trapno)>;

VFUN h_trap_ring(proculd} trapno) => ring}
$ (returns effective ring of trap handler for process)
HIDDENS
INITIALLY ring = 7%

VFUN h_trap_segno(proculd} trapno) -> segno;
$(returns segment number of trap handler for process)
HIDDENS
INITIALLY segno = ?!

VFUN h_trap_offset(proculd} trapno) => offset)
$(returns segment offset of trap handler for process)
HIDDENS
INITIALLY offset = ?3

VFUN h_trap_save_area(proculd} trapno) => save_areay)
$ (returns trap save area for process)
HIDDENS
DERIVATION <h_trap_save_segnol(proculd, trapno)s,
h_trap_save_offset(procuid, trapno) >3

VFUN h_trap_save_segno{proculd} trapno) =-> segnoj
$(returns segment number of trap save area for process)
HIDDENS
INITIALLY segno = 7?9

VFUN h_trap_save_offset(proculd} trapno) -> offset:
$(returns segment offset of trap save area for process)
HIDDEN}

INITIALLY offset = 7?3

VFUN trap_handler_exec_pt(trapno)(proculd] =-> exec_pt;}
$ (external form of h_trap_exec_pt)
EXCEPTIONS
no_trap_handler(proculd, trapno)}
DERIVATION h_trap_exec_pt(proculd, trapno)}

VFUN trap_save_area(trapno)lproculd] =-> save_areay)
g (external form of h_trap_s sve_area)
EXCEPTIONS

no_trap_handler (proculd, trapno);
DERIVATION h_trap_save_area(proculd, trapno):

OFUN set_level_handler(level} exec_pt)iproculdl}
$ (establlshes leve! handler for process)
EXCEPTIONS
Inner_ring_handler(procuid, exec_pt.ring);
existing_level_handler(proculd, level, exec_pte.rlng)s

A-55

SCOMP° KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B = 5/25/77

Invalld_segnolproculds, exec_pte.segno);

EFFECTS
*h_level_handler_exlsts(proculd, level) = TRUE;
*h_level_rilng(proculd, level) = exec_pte.rinaj

*‘h_level_segnol(procuid, level) = exec_ptesegnos
‘h_level_offset(proculd, level) = exec_pt.offsets

OFUN set_level (proculd; level3 b)j
$(sets level activity flag for process)
EFFECTS
*h_proc_actlvity_levelsi(proculd) = VECTOR (FOR | FROM 1
TO pl_slze ¢
IF 1 = level THEN b ELSE h_proc_actlivity_levels(procuid)li])}

OFUN dispatch_level({proculd);
¢ (dispatches hlghest prlorlty actlive level for process)

DEFINITIONS
INTEGER level IS MIN(L h_proc_actlvity_levels(proculd)(l])}
EFFECTS
*h_proc_ring(proculd) = n_level_ring(procuid, level);
*h_proc_segnolproculd) = h_levei_segnol{proculd, level)}
‘h_proc_oftset(proculd) = h_level_offset(proculd, level);
*h_proc_level(proculd) = levelj

OFUN change_level(proculd);
¢ (changes actlvity level for process)

DEFINITIONS
INTEGER cur_level IS h_proc_level{proculd);

EFFECTS
*h_level_ring(proculdy cur_level) = h_proc_ringlproculd);
‘h_level_segnolproculdy cur_level) = h_proc_segno{proculd)}

*h_tlevel_offset(proculdy, cur_level) = h_proc_offset (proculd);
EFFECTS_OF dlspatch_level {proculd);

OFUN modlify_actlvity_level(levelj b)Iproculdl;
$(modlfies activity tevel Indicator for process)
EXCEPTIONS

undefined_level (proculid, level);
EFFECTS
EFFECTS_OF set_level(proculd, level, b)}

OFUN lev(tevel$ b)iprocuidl;

¢(inltlates level change for process)

EXCEPTIONS
undefined_level (proculd, level);

EFFECTS
EFFECTS_OF set_levellprocuid, fevel, TRUE);
b => EFFECTS_OF set_level (proculd, h_proc_level(proculd),

FALSE)

EFFECTS_OF change_level(procuid);

SCOMP KERNCL SPECIFICATVION - 2744777

0S 34028917
Rev B - 5725777

END_MODULE

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917
Rev B = 5/25/777

MODULE bhost_inter faces

NYPES

level_number ¢ {INTEGER In ¢ 0 <= In AND In <= max_In};
category_set ¢ (VECTOR_OF BOOLEAN cs ¢ LENGTH(cs) = cs_sizel;
security_level ¢ STRUCT (level_number sinj;
category_set scs);
Integrlity_leve! ¢t STRUCT (level_number linj;
category_set [cs)3
access_level ¢ STRUCT (securlty_level si;
integrity_level [1)35
process_uld ¢ INTEGERS
volume_uld ¢ INTEGERS
segment_uid ¢ INTEGERS
ring_number ¢ (INTEGER rn t 0 <= rn AND rn <= max_ringl}}
ring_brackets $ (VECTOR_OF rlng_number rbdD 3 LENGTH(rb) = 313
segment_number ¢ {INTEGER sn ¢t 0 <= sn AND sn <= max_segno}}
device_number 3 CINTEGER dn 3 0 <= dn AND dn <= max_devnol;
segment_offset ¢ CINTEGER Sso 32 0 <= so AND so <= max_offset);
access_mode ¢ (VECTOR_OF BOOLEAN am 8 LENGTH(am) = 313
segment_length ¢ C{INTEGER length t 1 <= length AND length <= max_offset
+ 133
machlne_word 8 INTEGER}
devlce_control_data ¢ VECTOR_OF machline_word;
device_status_data ¢ VECTOR_OF machlne_word;
message ¢ INTEGER;S
message_queue $ VECTOR_OF message;

DECLARATIONS

process_uid procuid;

volume_uid volulds

segment_uid seguld}

ring_number ring;

rlng_brackets rbj

segment_number segnoj

device_number devnoj

segment_offset offset?

access_mode mode}

segment_length length, range;
machine_word word;
device_control_data dev_control_dataj
device_status_data dev_status_data;
message mMsgj)

message_queue msg_queue;
access_level alj

BOOLEAN b3

INT..GER i3

A-58

SCOMP KERNEL SPECIFICATION =- 2lLL/TT DS 34028917
Rev B = 5/25/77

PARAMETERS

INTEGER max_host_messages g$(maximum size of host message queue)
device_control_data inlt_device_control_data $(Initial control data)

DEFINITIONS

BOCLEAN unmounted_volume(proculd; voluld) IS
IF “h_vol_mounted(voluid) THEN TRUE
ELSE 'h_read_alloned(h_proc_frusted(proculd), h_proc_al(proculd),
h_vol_min_all{voluid)):

B00LEAN no_segment(proculd? voluid] seguld) IS
IF “h_seg_exists(voluld, seguld) THEN TRUE
ELSE 'h_read_alIoned(h_oroc_trusfed(proculd). h_proc_al(proculd),
h_seg_visibillity_al(seguld));

BOOLEAN invalld_devno(proculd} devno) IS
“h_kdt_valid{proculd, devno)}

BOOLEAN invalld_segnol(procuid} segno) IS
“h_kst_valld(proculd, segno)}

BOCLEAN undefined_access(proculid} segno) IS
“h_kst_access_deflned(proculd, segno)}

BOCLEAN no_read_permlssion{proculd; ring} segno) IS
“(h_kst_mode(procuidy segno) {1l AND
rlng <= h_kst_rbi{proculd, segno)(2))}

BOCLEAN no_write_permlssion{(proculid} rings segno) IS
“(h_kst_mode(procuidy segno) 2] AND
ring <= h_kst_rb{proculd, segno)i11)}

BOCLEAN out_of_bounds(proculd} segno} offset) IS
offset >= h_seg_length(h_kst_segulid{(proculd, segno))}

BOOLEAN message_pending(proculd} devno) IS
h_host_msg_output_pendingl{proculd, devno) 3

BOCLEAN no_message_ready(procuid} devno) IS
h_host_msg_lnput_pending(proculid, devno)}

BOCLEAN max_messages{proculd: devno) IS
LENGTH(h_host_msg_queue(proculd, devno)) = max_host_messages:

BOCLEAN interrupt_pendling(proculd} devno) IS
h_host_signal_pending{(proculd, devno)}

A-59

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917

FROM

FROM

FROM

FROM

FROM

OFUN

Rev B = 5/25/77

EXTERNALREFS

access_levels ¢

level_number max_In ${maximum level number);
INTEGER cs_slze $(category set slze);

VFUN h_read_allowed{(b3 ails al) => b3

VFUN h_wrlte_allowed(b3 al; al) => b}

processes
VFUN h_proc_al(proculd) => alj;
VFUN h_proc_trusted(proculd) =-> bj

volumes ¢
VFUN h_vol_min_al(voluld) =-> alj}
VFUN h_vol_mounted(voluld) => b}

segments 2

segment_offset max_offset ${maximum segment offset);
VFUN h_seg_exlists(voluid; seguld) =-> b}

VFUN h_seg_vlisiolllty_al(seguld) =-> alj

VFUN h_seg_length{seguld) => lengthj

address_spaces ¢

ring_number max_ring $(maximum ring number);
segment_number max_segno $(maximum segment number);
device_number max_devno $(maximum device number):?
VFUN h_kdt_valld(proculd; devno) => b}

VFUN h_kst_valid{proculd; segno) =-> bj

VFUN h_kst_access_def lned(proculd} segno) => b}
VFUN h_kst_mode(proculd; segno) => mode;

VFUN h_kst_rb(procuidi segno) => rbj

OVFUN read_seg(segno? offset)lproculd] =-> word}
OFUN wrlite_seg(segno; offset; word)lproculdl;

FUNCTIONS

send_message({segno; offset; rangej devno)lproculdl;
g (sends data message assoclated with device devno to host
DEFINITIONS
ring_number IS h_proc_ring(proculd);
volume_uld voluid IS h_kst_voluid(procuid, segno);
segment_uld seguld IS h_kst_seguid(proculd, segno);
EXCEPTIONS
Ilnvalid_devno(proculd, devno)}
Invalld_segno(proculd, segno);
unmounted_volume(proculd, voluld);
no_segment (proculd, voluld, seguld)’
undeflned_access(proculd, segno);

A=60

process)

SCOMP KERNEL SPECIFICATION = 2/14/77 DS 34028917
Rev B8 = 5/25/77

no_read_permisslion(proculd, ring, segno)}
out_of_bounds(proculd, segno, offset ¢ range):
message_pending(proculd, devno):

EFFECTS
‘h_host_msg_output_pending{proculd, devno) = TRUE}
‘h_host_msg_output_segnolproculd, devno) = segno;
‘h_host_msg_output_offset(procuid, devno) = offset$
‘h_host_msg_output_length(procuid, devno) = range}

OFUN recelve_message(segno} offset} devno)lprocuidl}
$(recelves data message associated with device devno from host)
DEFINITIONS

ring_number IS h_proc_ring(proculd)}

volume_uld voluid IS h_kst_votuid(proculd, segno)}

segment_uld seguld IS h_kst_seguld(proculd, segno)}
EXCEPTIONS

Invalid_devno(procuidsy devno)$

Invalid_segnol(proculd, segno)}$

unmounted_volume(proculd, voluld)}

no_segment (proculd, voluld, seguld)}

undefined_access(procuid, segno)}

no_wrlite_permisslon{procuidys, ring, segno)}

out_of_bounds(proculd, segno, offset + h_host_msg_lnput_lencthi

proculd, devno));
no_message_ready(proculdy devno)}$

EFFECTS
“h_host_msg_input_segno(proculdy devno) = segno}

*h_host_msg_input_offset(proculd, devno) = offset}

OFUN read_control_data(segno} offset$ devno)lproculdl}
$(transfers device control data from host process)
DEFINITIONS

ring_number IS h_proc_rling{proculd)}

volume_uld voluld IS h_kst_voluid(proculd, segno)}

segment_uld seguld IS h_kst_seguld(proculd, segno)}
EXCEPTIONS

Invalid_devno(proculd, devno)}$

Invalld_segnol(proculds segno)}

unmounted_volume({proculd, voluld)}

no_segment(proculd, voluld, segulid)}

undeflned_access(proculd, sejno)}

no_write_permisslion(proculd, rlng, segno)}

out_of_bounds{proculd, segnoy, offset + LENGTH(h_host_control_datal(
proculd, devno))}

EFFECTS
FOR | FROM 1 TO LENGTH(h_host_control_datal{proculd, devno))

EFFECTS_OF write_seg(segno, offset - { + |,
h_host_control_data(proculd, devno)lll, proculd);

OFUN wrlite_status_data(segno} offset$ range} devno)lproculdl;
$(transfers device status data to host process)

A-61

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917
Rev B = 5/725/77

DEFINITIONS
ring_number IS h_proc_rilngl{proculd);
volume_uld voluid IS h_kst_voluid(proculd, segno);
segment_uld seguld IS h_kst_seguid(proculd, segno);
EXCEPTIONS
Invalid_devno(proculd, devno)s
Invalld_segnol{proculdy segno)}
unmounted_volume(proculd, voluld)}
no_segment (proculd, voluld, seguld)?’
undefined_access{procuid, sejno);
no_read_permission(proculd, ring, segno);}
out_of_bounds(proculd, segno, offset ¢ range)}
EFFECTS
*h_host_status_datalprocuidy, devno) = VECTOR (FOR | FROM 1
T0 range ¢
EFFECTS_OF read_seg(segno, offset - 1 + 1, proculd));}

OFUN send_wakeup (devno3 msg)Iproculdlj
$ (sends wakeup message to host process associated with device devno)
EXCEPTIONS
Invallid_devnol(proculd, devno)3}
max_messages{proculdy devno);
DEFINITIONS
INTEGER n IS LENGTH(h_host_msg_queuelprocuid, devno));
EFFECTS
*h_host_msg_queuel(proculdy devno) = VECTOR (FOR | FROM 1 TO n¢1 ¢
IF | <= n THEN h_host_msg_queue(proculd, devno)[l] ELSE msg);

OFUN send_host_slgnal(devno)iproculdl;
$ (sends Interrupt to host process associated with device devno)
EXCEPTIONS

Invallid_devno(proculid, devno)}
interrupt_pending(procuidy devno);
EFFECTS
*h_host_slgnal_pending(proculd, devno) = TRUES

VFUN h_host_msg_output_pending(proculd; devno) => b}
¢ (returns true lf process has data message to host pending)
HIDDEN;S
INITIALLY b = FALSES

VFUN h_host_msg_output_segnol(proculd; devno) =-> segnoj}
$(returns segment number of process data message to host)
HIDDENS
INITIALLY segno = 7?3

VFUN h_host_msg_output_offset(procuid; devno) -> offset;
$(returns offset of process data message to host)

HIODENS
INITIALLY offset = 723

>
v

62

SCOMP KERNEL SPECIFICATION = 2714777 DS 34028917

VFUN

VF UN

VFUN

VFUN

VFUN

VF UN

VFUN

VFUN

VF UN

VF UN

Rev B - 5/25/77

h_host_msg_output_lengthi{proculd: devno) =-> lengths
$(returns length of process data message to host)
HIODEN S

INITIALLY tength = ?¢

h_hosf-msg_lnpuf_pendlng(proculd: devno) =-> b}

$(returns true If process has data message from host pending)
HIDDENS

INITIALLY b = FALSE}

h_host_msg_lnput_segno(proculd: devno) =-> segno}

$(returns segment number of process data message from host)
HIDDEN3S

INITIALLY segno = 7?3

h_host_msg_lnpuf_offset(proculd: devno) => offset:
$(returns offset of process data message from host)
HIDDENS

INITIALLY offset = ?5

h_hosf_msg_lnput_length(proculd; devno) =-> lengths
$(returns length of process data message from host)
HIODENS

INITIALLY length = 2?3

h_host_control_data(proculd: devno) => dev_control _data$
$(returns device control data from host memory)

HIDDENS

INITIALLY dev_control_data = Inlt_device_control_data;

h_host_status_data(procuid; devno) -> dev_status_data?
$(returns devlice status data from host memory)

HIDDENS

INITIALLY dev_status_data = VECTOR ():

h_host_msg_queue(proculd} devno) =-»> msg_queue)
$(returns contents of process message queue for host)
HIDDENS

INITIALLY msg_queue = VECTOR 03

h_host_slgnal_pending(proculd: devno) =-> bj
$({returns true if slgnal perding for host)
HIDDEN3

INITIALLY b = FALSE}

hosf_oufput_message_pendlng(devno)[proculdl =-> b3
$(external form of h_host_msg_output_pending)
EXCEPTIONS

Invatid_devno(proculd, devno) 3
DERIVATION h_host_msg_outpuf_pendlng(proculd' devno) j

SCOMP KERNEL SPECIFICATION - 2/14/77 DS 34028917
Rev B = 5/25/77

VFUN host_lnput_message_pendingl(devno)lprocuid] -> b}
g (external form of h_host_msg_Ilnput_pendling)
EXCEPTIONS
Invalild_devno(proculd, devno)3}
DERIVATION h_host_msg_Iinput_pending(proculid, devno)?}

VFUN host_Iinput_message_length(devno) {proculd] => length}
$(external form of h_host_msg_input_length)
EXCEPTIONS

Invalld_devno(procuid, devno)3}
no_message_ready({proculdy devno)}
DERIVATION h_host_msg_Ilnput_length(proculd, devno)}

END_MODULE

Appendix B

SPECIAL

REFERENCE MANUAL

oy

Olivier Roublne
and

Lawrencz Robinson

(2nd £dition)

Stanford Research Institute
Menlo Park, California

ABSTRACT

Tnis document describes tnhe specificatlion language SPECIAL, which
i35 a tool developed for the design of large software systems. The
lsnguage 1s Dbased on a methodology using the concept of 3 nierarchy of
modulies, and provides a convenient facillty for the description of the
properties of sucn modules. The syntax of the language (s described, as
w2ll as the semantic notions related to .ts various constructss.

i.

2e

3.

Lo

5.

Be

7e

8.

9.

10.

i1.

CONTENTS

TABLE OF CONTENTS

INTRODUCTION
GENERAL PRESENTATIJON OF THE LANGUAGE

THE OBJECTS USED IN THE LANGUAGE

X, 9 B Types and Type Definitions

32 Objects

BINDING AND THE CONCEPT OF DECLARATION
Gbele Simple and Multiple Declarations
Ge2e Global Declarations and Thelr Use
TYPES

Sele Designators

G5e2e Named Types

S5e3e Type Specificatlon

Sela Additlonal Comments

DECLARATIONS

PARAMETERS

DEFINITIONS

EXTERNALREFS

FUNCTIONS

10.1. The Function Header

102 Impliclt Arguments

103 Local Deflaltions

10e4 e The Subsections of a V-functlon

10.5. The Subsections of 0~ and OV-functlons

EXPRESSIONS

11.1. Atomic Expressions

t1s 2 V-function References

44 5By References to Functlonal Objects
11ebe 0- and OV-function References

11:5% Boolean-Valued Operators
11460 Operatlons on Numbers
117 Operatlons on Sets

{18 Operations on Vectors
11.9. Operatlons on Structures
11.10. Quantlfled Expresslions
1111« Conditional Expressions
1112 TYPECASE Expresslions
11.13. LET Expressions

11

~N OO

(~=T= Je e e -]

11

12

s -

14
14
14
15
15
16

18
18
19
20
20
20

22
23
24
25
26

28

CONTENTS 4 |

11«14« SOME Expressions 28
11+.15. The NEW Primitive 29
11.16. Miscellaneous Jperators 29
12 PRECEDENCE 30
138 SCOPE RULES 31
13«15 Establishing the Binding 32
1342, Scope of s Binding 32
14 COERCION RULES 33
15 COMMENTS 34
10 MAPPING FUNCTION EXPRESSIONS 34
16ele Modul2 Names 34
1€e2e TYPES 34
16430 DECLARATIJNS 34
16e4 DEFINITIONS 35
1be5, EXTERNALREFS 35
166, MAPPINGS 35
> 7 A THE TENEX=INTERLISP IMPLEMENTATION 36
176l Strings 36
i Identifiers 36
173 File Inclusion 36
18, CONCLUDING REMARKS 36
REFERENCES 38
APPENDIX A ¢ GRAMMAR 39

APPENUIX B ¢ RESERVED WOR2S 43

SPECIAL Retfterence Manual August 13, 1976

1+« INTRODUCTILON

The design and proof of larje software systems <can be
fscilitated by their descomposition into modulesy, as suggested by
Parnas (Par 72 a, b)e A design methodology based on this 1dea has
been developed at SRI (Neu 743 Rob 75 &4 b))y and applled to the
construction of several large systems,y, including a secure operating
system (Neu 75)e A significant aspect of this work Is the design of
SPECIALy a SPECIfication and Assertion Language, which 1Is descrlbped
neEre.

The reader (s assumed to be already familiar wlth the
methodology itself. The concepts underiying the construction of the
language are not emphasized here and will be the subject of a
forthcoming document.

This manual is chiefly concerned with the syntax of the
Ianguage and the assoclated semaatlc ruless A general presentation
of the language and the objJects it manipulates Ils first given. The
“"paragraphs"™ that may appear in 3 module speclflicatlon are then
dascribed. The part of the language concerned with aflgebraic and
aritnmetic expressions is described in Section 10. Further sections
contain the precedence rules for binary operators and the rules for
referencing an oblect (scope rules)e.

SPECIAL has evolved through several formse The prasent
edition of this manual corresponds to the second versjion of the
fanguaye.

2« GENERAL PRESENTATION OF THE LANGUAGE

The macroscopic unit expressed in SPECIAL Ils fthe

specification of a module or of a set of mapping-function
express ions. The first word of a speciflcation, MODULE (1) in the
former case, or MAP in the lattery, provlides the necessary

distinctione
We are chliefly concerned with module speciflcations, because

specifications of mapping-function exprassions use only a subset of
tre syntax availapble for module specl ficatlons.

(1) In the rest of this documents 3 word written in upper case refers
to a SPECIAL res=2rvea words

Page 1

SPECIAL Reference Manual August 13, 1976

A module speclficatlon consists of a3 sequence of paragraphs
appearing oetween the header

MODULE <symboi>

and the keyword END_MODULE. The paragraphs are entitled TYPES,
DECLARATIONS, PARAMETERS, DEFINITIONS, EXTERNALREFS and FUNCTIONS for
MAPPINGS, for mapping function specifications) and must appear In
that ordere A paragraph starts with a keyword (e«ges TYPES) and ends
at the beginning of the next paragraph or at the end of the modulee.
I1f a paragraph Is empty, It must oe omltted; leeey two paragraph
titles may not follow each otner.

Thusy the general ouftline of a module is something llke

MODULE <symbol> (2)
DECLARATIONS

PARAMETERS

DEFINITIONS

EXTERNALREFS

FUNCTI1ONS

END_MODULE

The part of the language that deals with the oblects of a
module specification 1S known dsS the specification levels we describe
later a more microscopic level known as the assertion jevel.

(2) Names appearlng wlthin angle orackets correspond to non=-terminals
of the grammar (see Appendix A) ;5 <symbol> is a particular non-
terminal referriny to any identifler that is not a reserved words
what is a legal identifler is described in Section 17

Page 2

SPECIAL Reference Manual August 134 1976

3« THE DJBJECTS USED IN THE LANGUAGE

The specification fanguage manipulates several klnds of
objectsy all of which are "typed".

3.1+ Iypes and Type Def.nitions

Eacn oblect manipulated by the language iIs assocliated with a
tfypes For the descriptive purpose of thls manual, It is sufflicient
fo consider a type as a set of posslible values.(3) An important
aspect of the language is the description of the constraints imposed
Oy types on aroltrary expressionse. These constralints are the type
rdles of the langjuagej they describe2 how operands of various types
Csn be comoined with particular operators to form an expression, and
Wnat type this expression will havee.

The syntactlic representatlion of a type is a type
soecificationy which is a description of the properties of a type as
a wholes; type speclfications are described In Sectlon 5.3«

We distinguish various categories of types and describe them
o2 lowt

Predefined types: The predefined types of the Jlanguage are
300LEAN, CHARy INTEGER, 3nd REAL.

Qesiapnator types: Oesignator typas form a class of objects==
desiygnators--that are to<ens for objects manipulated by the system
delny specifieds Such objects may not be used as freely as, let us
Sayy & numbers All the oblects with the same deslignator type are
naintalned by a particular module and can be created only by
functions of this module (generally using the oprimltive NEW=-=-see
section 11+15%)s

Scalar types: Scalar types are types explicitly defined as
sets of constants such that any two of them are disjoint (see the
comments in SectTlon Sel4s)y E0Qey

direction ¢ { lefty, right 2};

which defines "direction" &as being a type, elements of whichn can have
only one of +the values "ieft" or "“right*; those two symbols are
implicltly declared as constants of the type *"“direction™ by the type
declaration. Note that such types are not ordered setsy, and that

oniy two operatlons are permitted on them: = and ~=. Ob)ects of a

b i i i Pl —

(3) The term possible values should be 4istingulshed from meaningful
values, wnich are the values for which a particular assertion is
truee In particular, the range of a function is a subset of the
type of its result.

Page 3

SPECIAL Reference Manual August 13+ 1976

scalar type also correspond to existing objects of the system but are
a2t malntaiped by a particular moduie.

Constructed typast The language contalns two Jpacy type
constructors, SET_OF and VECTOR_0OF, wused to define sets and vectors

of ob)ects of some glven type, and two p-ary type constructorsy,
ONE_OF and STRUCT, used to define united types and structured typess
respectivelys Since we view a type as a set of possible values,
ONE_OF corresponds to the wunion operator on sets, and STRUCT
corresponds fto the Cartfesian product, Note that type constructors
aoply to types, not to elements? in particular, a set type defined as
“SET_OF t"™ is a type that represents a set of sets; lsee.y each
element of this type iIs a set of values of type t.

Suptypest The aotion of subtype corresponds to that of
subset: the language provides the possibility of defining a type as
an explicit set of constants of some existlng type or as the set of
the elements in a particular type that satisfy some oproperty. The
particularity of these types is that, for the purpos2 of type
cneckings they define only oolects of tne princlpal type,y, slnce it
would require at least a theorem prover fto verify the closure of a
subtype under all the operations defined on the principal type.

The term primitive 1typeg refers to types that are sets of
orimitive values, one anotner dis}ointj they are the predeflned,
designator, and scalar types. We can now deflne a type as belng a
primitive type, @ subtypz, or the result of the application of some
of the type-constructors to a certain number of types.

3.2. Qblects

There is a distinction between the objects manipulated by a
module and those manipulated by the specification language, the
former being a subset of the latter. The oblects of a module are
functions and parametfters {designator and scalar types, al though belng
fsmities of objects rather than objects, are sometimes referred to as
oojects of the module, princlpally because they can be referancad In
other moduiles). In addition, the language deals wlith so-called
definitions, formal and result arguments, and locally bound
variables. Each object has a names, a syntactic classy a scope, and a
type. The syntactic class is either simple or functlonali a slimple
object can be referenced by a single identifier (its name), whereas a
functlonal object iIs referenced oy an identifier followed oy a Illst
of "actual parameters® which are expresslons of the Jlanguage. The
scope of an oblect is tne part of a module speciflication where an
ooject can pe referenced affter having been declared (the concept of
declaration is described in tne followinj section);) for lnstance, the
objJects of & module {(functions and parameters) have the entire module
speclfication as their scCope.

3e2e1. FEunctions

A function iIs an objJect of tne module itself. Its syntactic

Page 4

SPECIAL Reference Manual August 13, 1976

class Is always functionaly andy In addition, 3 functlon has to
Defong to one of three categoriess A category Is either VFUN, OFUN,
o~ OVFUNy corresponding to the V-, 0=, or OV-functions of the
mzthodology. Functions are either described in the module ltself or
referred to as external by appearing In the EXTERNALREFS paragraph.
A function has a (possibly empty) argument Ilst} every time the
function is referencad, [t must be followed by a Ilst of expresslions,
the elements of which are in one-to-one correspondence wlth the
tormal arguments, the type of the elements belng the same for each
pairs. In the case of a V- or O0OV-functlon, the function also has a
“result argument®™ of a certain type. We sometimes mentlon the type
of a functiony thereoy meaning tha type of [ts result argument.

Je242. Parameters

The parameters of a module are oblects that receive a value
at modaule initialization and cannot change thereafter. They can be
either simple or functional objectsy, according to whether the value
they receive (s a slmple value or a function (in the mathematical
sense)e. They represent oblects that are fixed in one particular
modu le instantlatlon, but can be different in dif ferent
instantiations. As already mentloned, parameters are oblects of a
nodule,y, and, as such, thzir scope IS the entlire module specificatlone.

3+2+.3. Qetfinitions

A definition is a named ob)Ject that can be textually replaced
by a particular expression; it corresponds to what is generally known
as a macro. Definitions can oe either simple or functlionaly, and they
cCan be declared esther in the DEFINITIONS paragraphy, In which case
their scope is the whole module specificatlony, or In the DEFINITIONS
section of a functlon, In the case of local definltions whose scope
is the function specification.

Definitions differ from the general concept of macros In that
the expression that is tne body of the definition must be a valid
expression when it s declared and not Just when it |s used (the
rdles pertaining to the use of definitions guarantee the latter
cond.tion it the tormer one Is satlsfled)s Tnlis precliudes the use of
free variables inside definitlonse One of the reasons for this
handl ing of definitions is that [t generally prevents the same name
from standing for two totally different meanings depending on where
It 1ls used.

3¢2«4+ Formal Argumeats
Tnese are the variables appearing in the argument I1ilst of a
function specification. They may be used fraely within the functlion
speci fication. Formal arguments are always silmple ob)jects of the
{anguages.

3245« Result Arguments

Page 5

SPECIAL Reference Manual August 13, 1976

A V or OV-function must have one and only one result
argumenty, & slmple object that may be wused In the functlon
specification to refer to the value returned oy that functione

3.2.6. Locally Bound Varigbles

Locally bound variables are ob)ects whose binding remalns in
effect only withln particular expressions, such as Qquantifled
expresslons (see FORALL and EXISTS==Section 1110.) or set and
vector constructors (see Sectlons 11.7. and 1184) Another
important use of such variables Is in the so=called LET-expresslons
(see Section 11.13).

4o BINDING AND THE CONCEPT OF DECLARATION

An oblect of the language Is 3 rather abstract entity: to be
manipulated with a minim3al degree of convenlence, an object must be
associated with a name. Note that it does not make any difference,
as far as the properties of a function are concerned, whether its
first argument Is named "“a"™ or "z", provided that the chosen name is
Jsed consistentiy. In additlon, an object must have a type and
always has a “scope”. We are thus confronted with the proolem of
associating a name with a particular object (€eQey argument), and
also of assoclating an object with a particular type. What one
actually does iIs to assoc.ate a name with a type, and a name wlth an
object, which thus receives tnhe type associated with the name.

4e1s Simple _and Multlple Declaratlons

The association of a name witn a type ls performed DYy a
particular construct of the language known as a declaration. A
simple declaration has the formi

<simple declaration> 33= <type specification> <symbol>

(the syntax for a type speciflcation Ils described In the next
sectlon). An extrapolation of thls construct, referred to as a
multiple declaratlon, can be used 1o associate several names with the
same type specifications using the syntax?t

<multiple declaratlon> 33= <simple declaration>

{ <multlple declaration> *,°* <symbol>

Generally, the association between a name and a particular
object (the ™pinding"™) is performed Impticltly by the place where the
declaration of the name appears; for example?

Page 6

SPECIAL Reference Manual August 13, 1976

VFUN f1(INTEGER I) =-> BOOLEAN b}
means that?

¥ The name i is assoclated with the type INTEGER, and ls bound to
be the first (formal) argument of f1i.

¥ Similarly, the name b is associated with the type BOOLEAN and
designates the result argument of fie.

¥ Lastly, f1 itself s declared as a V-function of the type
(INTEGER => BOOLEAN).

4e2« Global Declarations and ITheir_Jse

It is often the case in specl ficatlons that declaratlons are
an important portion of tne whole specificatilon and that type
specyitfications themselves can be qulte complicated. With thils In
mindy, SPECIAL provides the possipility of separatling declaratlons and
b:ndings (sometimes called the *"“deferred binding* facility), in the
case of formal and result arguments and locally bound varlablese.
TAls separation is achleved by declaring a name {(i.ee.y assoclating it
with a type) in a global DECLARATIONS paragraph (see Sectlon 8)y and
performing the binding by letting the name alone appear where a
declarat.on was expecteds The rules for using deferred binding are
da2scribed pelowt

When a declaratlion [s expectedy two cases are possliblie. IFf
there 1S indeed & declarat.iony the name (S associated with the type
appearing i1n the declaration and [s bound to the relevant objecty, as
determined by the 1(2xical position of the declaratlons If the name
has already appeared In & global daclaratlony, the new local
declaration supersedes the global one for the scope of the object.
Ja the otnher handy, it &a single name appears Instead of the
declaration, the name designates the corresponding objecty, the latter
peiny associated with the type appearing in the global declaration of
the name. It iIs obviously an error to use a single name instead of a
declaration if tne name has not appeared (n the DECLARATIONS
paraygraphe.

Remnsck: In the case of formal arguments to definitlions and
functions, the language allows a list of multiple declarations
separated by *3's However, If globally declared names are used
Instead of deciaratlions, each name must oe followed by a *3*y and not
by @ "+°3 in other wordsy an argument Iilst of the form

(INTEGER iy)3 300LEAN Db)
should be written, If iy }Jy and b had been declared globally

(1515 o)

Page 7

-

SPECIAL Reference Manual August 13, 1976

S+ 1YRES

The TYPES paragraph has two purposes: [t allows the user to
introduce the designators of the module and to assocliate names with
type specifications (thus providing a macro-li.ke facllity for types).
The names defined In the TYPES paragraph as particular type
speciflcations are referrad to as "named types*.

51+ QDeslanators
A user-defined type,y, or designator, corresponds to a class of
oblects that are tokens for aostract objects implemented In the

software system being specified. It must have a name, Introduced by
a declaration of the fornmni

<symbol> ¢ DESIGNATOR}S

The name introduced in thils declaratlon will thereafter be 3
primitive type of its owWne

5«2« Named Types

A type, as defined in Sectlon 3«19 may involve an arbitrary
namber of type constructors, leading to 3 complex type speciflcatlon.
Such a type expresslon can be named in a statement like

<type name> ! <type specification>;

<type name> s a new ldentifler that can textually replace the type
specification appearing on the right-nand side of the equal sign.

53. Iype Specificatlon

A type specificatlion 1Is the syntactic representation of a
typee.

* A predefined type, a designator or a named type I[Is representead
by a3 symbole.

¥ A scalar type has a specification of the form:

<scalar type> $t= *(* <symboi> {*y* <s35ymbol>}* *}°* (&)

* A subtype has the syntax of a set-expraession (see Sectlon 11.7)

*# A structured type |s defined as:

(4) The syntax descriptlons wused [In this manual follow the extended
BNF conventions descr.oed in Appendix A

Page 8

SPECIAL Reference Manual August 13+ 1976

<structured type> $3= STRUCT °*(* {<declaration> *3°}+ °)°

where <declaration>» s
<declaration» $i= <simpie declaration>
{ <multiple deciaration>

Each declaration introduces a name that [s assoclated with a
particular component of & structurey, a “field™.

A unjited type specificatlion is:?

<united type> tt= ONE_OF *"(* <type specification>
{*,* <type specification>}* *)*

A united type 1is a peculliar conceptt We defined have earllier
(Section 3.l.) a primitive type as a set of simple values
disjo.nt from all tne other primitive types (in particular, for
a puristy the predefined types should Include INTEGER and
“NON_INTEGER_REAL"™, with REAL belng deflned as
ONE_OF (INTEGER,NON_INTEGER_REAL)). A unlted type which is the
union of some primitive types Is also a set of simple values
but is not necessarily disjoint from the primitive types. In
additiony, the operations defined on the component types are not
defined on the united typey with the exception of *=* and *7="°
which are defined on any typee. The use of oblects of united
types must abide by certain rules, described later In this
document (see in particular TYPECASE--Sectlon 11.12, and
coercion rules=-Section 14).

Sets and Vectors:?: These are constructed types specifled by
statements of the forms

<constructed type> 8$8= {(SET_OF { VECTOR_OF} <type specliflication>

The TYPES paragraph contains an arbitrary number of type

declarations and might look like?

the

FYPES

capabliitys unlque_ldentifler 8 DESIGNATORS
machine_word ¢ ONE_OF(INTEGER, capablilility);
access_riants ¢ VECTOR_OF BOOLEANS

syntax ceing?l

<types paragraph> $3= TYPES {<type declaration> *;°}+

<type declaratlon> :3= <symbol> { *y°* <symbol>}*¥
2 <¢typa specification>

Page 9

SPECIAL Reference Manual August 13, 1976

5.4« Additiopal Comments

The following remarks concern the use of scalar ftypes and
subtypes; those may not appear expllicitly except when used to deflne
3 named type, wnich means that any type specification having the
syntax of a set expression may appear only inside the TYPES paragraph
or tne EXTERNALREFS paragjraph, and wlthin these paragraphs, may not
be embedded in another type spec.iflcatione. In additlon, some special
rales apply to the use of scalar fypes, slnce some problems mlght
arlse in cases llke!

TYRES

traffic_light ¢ { green , yellow , red 1;
color ¢ { red 4 yellow 4 green , cyan , blue , magenta ¥ 3

Here, we have first to consider "grean", “vellow",y, and *"red" as three
constants of type “trafflc_light", Tnen, when seeing the second
declaration, we must reallze that "green™, "yellow", and “red" are In
fact constants of the type *color® ani that Mtrafflc_Llight™ 'I's 'a
subtype of *“color".

Thus, the deflnitlon of a scalar type Is the following? A
scalar type specification Is a set of literal constants such that
either none of them is =aver used in any other type speclfication In
the text, or some of them are used to deflne a subtype of the scalar
typey ie€ey they appear in a subset of the set_expression defining
tne scalar type.

This deflinition precludesy, in particulary, the following
pathological caset Assume that ‘™color® Is deflned as abovey Dbut the
user wishes to introduce a more sophisticated traffic lighty, to cope
w.th a particularly dangerous intersaction, as?i

traffic_lightt € green , yellow 4 red , left_arrow 1}

tnus creating the problem of defininjy the type of each of the
constantss since "traffic_light* can no longer De conslidered a
subtype of ‘'"color". Is ™green™ of type "color"™ or of type
“trafflc_light*, or is it ™"ONE_JF(color, traffic_light)*? Rather
tran defining complicated rules to solva this problem, we pre fer to
forbid the intermixing of constants of dilfferent types (the problem
r3ised here can be solved by defining a scalar type that LsSica
superset of both “color" and "traffic_lijht™).

Some further thought should also be given to the concept of
structured types. One has to reallze that these types allow the
manipulation of tuples of heterogeneous ob)Jectsy, but that thelr
purpose is not to define complex data structures such as trees, as Is
ordinarlly done In modern programming |inguajes (eeey Pascal). It
ls in fact one of the goals of tne methodology, of whicn SPECIAL Is
only & party to allow the modules themselves to support the
specl fication of complex data structures, and there Ils no reason for

Page 10

SPECIAL Reference Manual August 134 1976

thosa to oe provided dlrectiy by the language. Therefore,
- recursively defined structured types are not allowed.

be DECLARATIONS

The DECLARATIONS paragraph contalns declaratlons (le€ay

- name/type associations) for names the binding of which |Is deferred,
as described in Section L4 If the user does not wish to use the
deferred binding ftacllity, the DECLARATIONS paragraph can be omltted.

A declaration assocjates a nam2 with a type and stays In
effect within the entire module.

The syntax for the DECLARATIONS paragraph [s?$
- <declarations> $$= DECLARATIONS (<declaration> *3°3}+
with

<declaration> :i= <type speci fication>
<symopol> (*y* <symbol>}#*

Example:

DECLARATIONS
BOOLEAN b3
- INTEGER 1s+)3%
capability Gy C19
SET_OF capablillty sc;

7. PARAMETERS

Starting with the keyword PARAMETERS, thls paragraph contains

- declarations for all the module parameters (see Sectlon 3.2¢2)e

Slnce parameters of the module can optlionally have arguments, the

syntax for parameter declarations Is similar to the syntax for global

~ declarationss with the optlon of appendirg a formal argument llist
after each symbol!

Page 11

SPECIAL Reference Manual August 13, 1976

<parameter declaration> $t= <Type speciflcatlon> <symbol>
{<formalargs>]
(*y,* <symbol>[<formalargs>11}* *;*

<formalargs> $13= *{* [<declaratlon> (*3° <declaration>}*] *)°*

8« DEFINITIONS

Definitions are syntactic shorthands for arbltrary
expressions. They are datined in the DEFINITIONS paragraph; that Is,
the name of a definitlon Is associated with fthe expression for which
it stands by a declaration of the form?

<definition> t3= <typespecification> <symbol> [<formalargs>]
IS <expression> *3°

The type speclfication must correspond to the type of the
expresslony, this redundancy being consldered beneflclal to the
clarity of speclfications. The expression appearing in the
definitlion may reference only the formal arguments, Lf anys and the
objects that are bound globally, ie€ey parameters, global definitlons

and functionse.

The tist of formal arguments may be omittedy, or may be
present but empty; there is a di fference in tnat a definlition wlth an
empty argument 1lst must Dbe referenced as a functional expresslon
throughout the specificatlion (e«3., “f30()"), whereas a definltlon
with no argument list nust be referenced as a simple term (e«gey
“fle"). There Is no semantlc difference between these two casessy the
ovly difference belnj purely syntactice.

9. EXTZRNALREFS

Although the decomposltlon of a software system Into modules
is intended to abol.sh the intermodule assumptlons at the
soeclflcation level, this ls not always possible. A mecnanlsm for
reterring to the tfunctions, parametersy, and designator or scalar

Page 12

SPEC IAL Reference Manual August 13, 1976

types of other modules Is therefore needed In order to descrlbe these
intermodule assumptionse. This 1Is the purpose of the EXTERNALREFS
paragraphe

The paragraph ltself s dlvided Into as many groups as there
are references to djifferent modules. Each group starts wlth the
headaert

FROM <symbol> 3

Wwnere <symbol> s the name of an extarnal module, and the group
contains a 1ist of declarations and/or functlon headerse.

A declaration has the regular declaration syntaxy as in
Sectlon 6y or the syntax of a designator or scalar type declaratlon,
as dascribed in Section 5.

A functlon header |s

{ VFUN | OFUN | OVFUN } <symboi> <formalargs>
[*[* <declaration> (*3* <declaration>}* *1*)
[®*->* <declaration>] *;°

If the first term Is VFUN or OVFUN, then the result part (lecey "=>°
<declaration>) should be presanty and not for OFUN.

As wiil be shown, this syntax Is also used to begin Internal
fanction specificatlonse.

Example:
EXTERNALREFS

FROM capaoilities:
capability, unique_identifier? DESIGNATOR}
access_typet { read 4 write 4 exacute 4 modify , append 3}
OVFUN create_capability() => c}
OVFUN restrict_acces(capabllity c1i,
VECTOR_OF access_type atv)

-> capability cj
VECTOR_OF access_type atvs
VFUN geft_uld(c) =-> unique_identifier u;

FROM segments:
OVFUN create_segment(INTEGER i,
VECTOR_OF capaonility siv)
-> capabillity sj
VFUN h_seg_exlists(unique_lidentifier u) =-> BOOLEAN o3
INTEGER maxsegs;)

Page 13

SPECIAL Reference Manual August 13, 1976

10. FUNCTIONS

The FUNCTIONS paragraph contalns the speclflcations for all
the functions of the module and Is therefore (ts most important parte.

Tne methodology deals with OFUN, OVFUN, and VFUN which all
have thelr partlicularlities, although aiso some common points,

A function definitlon consists of a8 header, possibly a set of
local macros in a DEFINITIONS subsectlon, and other subsectlons whlch
Wwill be characterized for each class of functione

i0.1. The Functlon Headar

Simllar to that described In Section 394 It looks |lke

{ VFUN § OFUN ! OVFUN } <sympol> <formalargs>
[*"[* <declaratlon> (*3*" <declaration>}* *]1°* 1]
{ *->* <declaration> 1 *3°

As in definitions or external referencesy any of the formal
argumentsy, as well as the result argument, may have been declared in
the DECLARATIONS ©paragraph and tnus not bpe preceded by a type
soecification.

10.2. Implicit Arguments

The optional list of declaratlions enclosed withln square
brackets in the function header is the list of *“implicit arguments®.
AN Impllicit argument to a function is an argument that should be
provided by the systemy, and not by the wuser, when the functlon Is
called (in the actual inplementation). In terms of specliflicatlions,
any reference to a function that has been deflned wlth lmpliclt
arguments should contain as many actual arguments as the sum of the
namber of formal gnd implicit arguments appearing In the function
h2adere.

Example?
A function whose header 1[s?
VFUN f(INTEGER i)Iprocess_id pl] =-> INTEGER)3

may be referenced as a function of two argumentsy €«Qgey
f(o, pP1)

Page 14

SPECIAL Reference Manual August 13, 1976

10«35« Local Qefinitions

By introduclng a sectlon with exactly the same syntax as the
DEFINITIONS paragraph, the wuser has the possibility of deftining
macros that are known only Inslde one tunctlon speciflcatlon. Such
definltions have the advantage of being able to reference the
arguments of the functlon that have only a restricted binding.

10.4. Ihe Subsections of a V-ftunctlon

The two remainlng sections of a V-function descrlibe |ts
formal propertiess A V-function may be yisible or hldden, and--
independent ly--derivad or prilmltive.

It 3 Vv=-function is visible, it may be referenced I[n programs
outside the moduley so a llst of exceptlon conditlons must appear In
the function speclficatione This EXCEPTIONS subsectlon ls similar to
the one appearing in 3= and O0OV-functlon speclficatlons and |is
detalled in Sectlon 105,

On the other handy @ hidden V-function may not be called
outside the module and needs no EXCEPTIONS subsectlione In such a
casey, the reserved word 4IDDEN appears In Its place.

The last subsection of a V=function speci ficatlon can elther
dz2fine the initial value of the V=function (for oprimltive V-
functions) or expllicitly describe the functions value Iin terms of
other oblects of the module (for derived V-functlons). The former
case ls described through an assertjion of the form

INITIALLY <expression> *3°

where <expression> [s an arbltrary Boolean expression. In the latter
casey the syntax is

DERIVATION <exprassion> °*5°

Here, the expression must have the type of the result argument of the
functlonr.

comments:
¥ The set of all primitive V=-functions entlrely deflnes the
current state of the machline described by the module. The set
of their initial values thus defines the Initlal state of the
modul e

* Derived V-functions are often wused to restrict or to package
the information visible outside the module.

¥ Note that a V-function that Is both hidden and derlved [s very
simiiar to a global definitione

The 3eneral syntax for a Vv-function speciflcation Is thus

Page 15

SPECIAL Reference Manual August 13, 1976

VFUN <symbol> ([<declaration> {*,° <declaration>}®* 1)
-> <declaration>» *;3°

[DEFINITIONS C <definition> *3°* }+ 1]

(HIDDEN *3°* ¢ [EXCEPTIONS (<expression> *3°}+ 1}

CINITIALLY § DERIVATION)} <expression> °;°

1J.5. Ipe Supsections of 0= and JV-tunctions

As opposed to V=-functions, 0- and gVv-functions are always
visible(s) and consequently may have an EXCEPTIONS subsectione. Slince
poth perform some operatlons that affect the state of the module,
they also have an EFFECTS subsectione.

10.5.1. JThe EXCEPTIONS Subsection

This subsection contalns a list of condltions that, I1f any ls
satisfled (le.e.y evaluates to TRUE wh2n the functlon Is called),
should prevent any effect from taking place and/or any value from
bzlng returned. If an axceptlon conditlon is ralsed, gonyrol Ls
returned to the calling program with "approprlate" notiflcatlon to
the cal ler. Exactly how this notificarlon is made depends on the
conventlons of the programming language; we mention here only the
constralnts imposed by tne speclification Janguages.

An exception conditlon is a Boolean expression; the order In
whlch the condltions are listed |is important: The meaning of the

EXCEPTIONS subsection Is that each condition should be checked jin
turns and only if all the conditions are false shoulid the effects

take place and/or the value be returned. The calling program may
depend on the order in wnich the exception conditions are checkede.
For example, a reasonable EXCEPTIONS subsection might be?

EXCEPTIONS
h_interrupt_set (i) = FALSE
h_int_handler_offset(l) =

(mhere the two functional expressions are llkely to be V-functilon
references), which might mean that i does not refer to any Interrupt
in the first exception and that, 1f It 1indeed doess no Interrupt
handler exists for it in the second axceptiony this Illlustrates that
tne second exception mignt be meaningless had not the first one been
checked before.

There is also a particular construct Intended to ©o2e applled
only in tne EXCEPTIONS subsectiont

EXCEPTIONS_OF <call> *3§°
wnere <call> should be a reference to an axternal functlone. The
(5) Probably the only justification for this fact is that the need
for hidden 0 or OV-fuactions has not yet been felt.

Page 16

SPECIAL Reference Manual August 13, 1976

interpretation of this construct is that for each exception conditlon
of the external functiony, there exists a loglcally equivalent
exception condi tion In the current function. The order In which the
exceptions appear in the external function ls preservedy, and the
corresponding conditions are to be checked after all those that
precede the "EXCEPTIONS_OF"™ expressione

The syntax for the EXCEPTIONS subsection can be described as

> *°3°*)+

<exceptions> :1t= EXCEPTIONS { <expression> *
! EXCEPTIONS_OF <cal

.
b
|

Note that this expression forces at least one expression to
occur in the EXCEPTIJONS subsection; if the functlon has no
exception, the whole subsection should be omltted.

1052, Ihe EFFECTS _Subsection

The EFFECTS subsection contains a {ist of assertlons that are
Boolean expressions and have the following meanlngt If the functlon
ls referenced and no exception iIs detected, then, after the functlon
call, the conjunction of all the assertions appearing Iin the EFFECTS
subsectlon may be assumed to be TRUE.

I°f the EFFECTS subsection of function f contalns the
35sertions aly a29yssesaNy le€ey |lOOKS I|lke

EFFECTS al13j a23eees an;

and the EXCEPTIONS subsectlon refers to €1sesevem (leeey ZXCEPTIONS
el e2jeceremy) theny, using Hoare®'s notatlony, a reference to the
function f nas the meaning

NOT (e1 OR €2 OR.««0OR em) Cf} a1 AND a2 ANDe«««AND an

Note that, in +the EFFECTS subsectiony the order of thne
assertions is irrelevant.

In the case of an OV-functiony one of the assertions might
state the equality of the result argument with some expresslons, thus
defining the value returned by the function, but this Is not
mandatory; the result argument shouldy however, appear [In at least
one of the effectsy In order not to be undeflned.

10.5.3. Ine DELAY Congdiltions

In addition to the EXCEPTIONS and EFFECTS subsectlons, an O-
or OV-function may contain an arbitrary numoer (although generally
only one) of so-callad DcLAY expresslons whlch have the syntax!

DELAY UNTIL <expression> °*3°

Page 17

SPECIAL Reference Manual August 13, 1976

where <expression> must pe Booieany and the conjunction of all the
delay conditions can be taken as an input assertion to the function?
in other terms, thls means that the affecrs will not take place untlli
all the conditions evaluate to TRUE.

This concludes our description of the macroscoplc or
specification level of tne ilanguage, The microscopic (or assertion)
level deals with the kind of construct w2 have been so far referring
to as <expresslon> or assertiony, wWith the distinction that an
assertjon 1s an expression of type BOOLEAN, This part of the
language is described nexte.

11. EXPRESSIONS

The assertion language has a relatively large set of syntax
rules for writing concise mathematical expressions to describe
condltions related to a function behavior. In certaln casesy the
semantics assoclated with these rules may require a detalled
descriptions This section explores the different constructs used in
mathematical expresslonsy an Interestingy aspect to be considered is
the set of type rules associated with each operatore.

11.1. Atomic Expressions

These are the simplest kind of expression (from the syntactic
standpoint)$ an atomlc expression can be one of the followlngt

¥ Numeric constant: A numeric constant may be elther of type
INTEGER (any nonempty sequence of digits), or of typa REAL (a
string of dlglts followed Dy a period followed oy another
string of digits followed by the letter E followed by an
optlonally slgned string of dligitsy where elther the integer
part or the fractional part may be omittedy, and the declimal
point or the exponant may also be omitted--but not both)e.

¥ Character and string constant: A constant of type CHAR s a
singley printable ASCII <character enclosed within two =~ (back
apostrophe). A strlng constant has the type "“VECTOR_OF CHAR"
and consists of any sequence of gprintable ASCII characters
enclosed within two " (double-quote). The preclise rules
concerning character and string constants may depend on the
Implementatlon (see Sectlon 17).

¥ Boolean constantt These are the keywords TRUE and FALSE.

¥ Symboilc constant: Any ldentifier appearing (n a scalar type

Page 18

SPECIAL Reference Manual August 13, 1976

declaration will subsequently pe considered a constant of that
typee In additiony, the two symbols UNDEFINED and ? are ftwo
synonyms which, for each type, refer to a particular value of
that type, different from any other value (the particular type
Ils determlinea by the context where they appear). It Is a part
of the verification task to check that the Iimpiementation of
any vislble V= or 0OV-function can never return the value
UNDEF INED.

* Reference to an objectt The name of any oblect that has a
binding and whose syntactic class 1Is not functional Is an
atomic expression whose type is that of the object. Such
refarences can be to parameters or definitions when they have
been declared without arguments, formal arguments of functlons
and def.nitions, result arguments of V- and OV-functions, and
simple variaples within expressions whare they have a blinding
O Y- within set and vactor constructorsy, quantiflied
expressionsy and expressions starting with LET or SOME).

11.2. V=-fupction Refercices
A reference to a V=-function has the form
("] <symbol> <actual 1ist>
where <actual list> Is deflined as
([<expression> {*,* <expresslion>}¥] *)°

and is used as such in the rest of thls document. It corresponds to
tne actual aryuments, which must match in number and type the formal
arguments of the function definitione

<sympol> should oe the name of a V-function either deflned In
the module or appearing In the EXTERNALREFS paragraph.

The first symboly, * 4 1s optional. Its meaning, wlthln the

EFFECTS part of a function speciflcationy ls that the reference |s

made to the value of the V-function Immediately after all the effects

of the O- or DO0OV-function being speclfied have occurredj If ¥ s

onitted, the reference is to the value immediately pefore the call.

Note that this is meaningful only In the EFFECTS sectlon, slnce In

any other place there is no distinction between pefore and aftec, and

in the EXCEPTIONS subsectiony, a reference is always made DQpefore any
effect takes place.(6)

() We must add at this point an important historic note: Until now,
all the module specifications derived from Parnas® ldeas used
guoted expressions to refer fto g9id values of V-functlonse.
However, this notation could not be used consistently because In
the same function spacificationy unquoted references would have
two different meanings,y depending whether they appeared In the
exceptions or In the effects of the functione. Permuting the
convention takes care of this possible confusione

Page 19

SPECIAL Reference Manual August 13, 1976

The type of a V-function reference 1Is the type of the
function itselfe.

11.3. References to Fupctiopal QOblects

We deal here wlith parameters and definitions introduced with
an argument list. A reference to such objects has a syntax very
similar to that of a V-function reference:?

<symbol> <actual {ist>

withy, for definitions, the usual meaning of a macro expanslony the
type being that of the macro, and, In the case of @ parameter, that
of a mere reference to its value.

11.4. Q=-_and QV-function References

A reference to an 0= or 0OV=functlon |s made by the use of the
<ayword EFFECTS_OF

LFFECTS-0OF <symbol> <actual 1| ist>

In the case of O=-functionsy this expression s of type
Boolean} its value Is UNDEFINED If some 2xceptlon ls detected; It ls
FALSE 1f the effects of the O-function that is referenced are never
satisfiable. A value of TRUE, on the contrary, means that all the
assertlons speclified in the EFFECTS section of the corresponding O-
function hold.

In the case of an OV-functions, the type of the expresslon Is
that of thne result argument of the function, and the expresslion
itself is both a reference to the value of the OV=-functlon and an
Indication that ali its effects are true at the polnt where the
EFFECTS_OF appearse

The next sections describe the operators used In the
language. They are classlified by the ftypes on which they operate;)
the word “mode™ appecaring in a type description refers to a
particular type which does not have to be speclifled. The discussion
concerning precedence of various operators iss however, deferred to
Section 12.

11.5. Boolean-Valued QOperafors
11.5.1. Bipary Qperators
AND and OR
Syntax:? <expression> {AND 1 OR} <expression>

Typet BOOLEAN X BOOLEAN --> BOOLEAN
Meanlng? wusual conjunction or disjunction; *error® |[f one

Pags 20

SPECIAL Reference Manual August 13, 1976

of the operands 1s not Boolean«(7)

Syntaxt expresslon_1 => expression_2

Type: BOOLEAN X BOOLEAN --> BOOLEAN

Meaning?! usual Implicatlony [eeey

(expresslon_2 OR NOT expression_1) = TRUE

error® [f one of the expressions IS not Boolean.

11+542. Relational Qperators

Syntax: exp_1 (=1 =} exp_2
Typed mode X modes =--> BOOLEAN
the types of exp_1 and exp_2 may be elthers
any type,y, provided i1t [s the same for both,(8)
or: any type for one expression and UNDEFINED for the ot hery
or?t UNDEFINED for poth;
Meanings usual = or #

€9 <=4 >=4 >
Syntaxs: exp_1 € > { »>= § <= | < } exp_2
Typet number X Aumber =-=-> BOOLEAN
(where number s elther INTEGER or REAL)
Meaning; the usua! order relatlons on numberse.

11.6. Qperatlions on _Numpers

Thne operations on numbers are th2 usual ¢y -4 ¥ and /, where
- can be elther unary or binary; in addltion, the operator MO0 s
also provided. The meaning and use do not depart from those
gencrally encountered. Numbers are either of type INTEGER or of type
RzAL. Both types can be intermixed according to the following rules?
A p.nary operation Involving two intagers will have the type INTEGERs
and an opercation where a&at least one of the operands Is real will have
the type REAL. In particular, the operator /, when appllied fto two
integers, will y.eld the Integer part of tne quotient of the two
operands,y whereas if one of the operands is of type REAL, the result
should be the quotient [tself. In additiony, some primitives are
provided in the languaygz for specifylnjy the Integer and fractlonal
parts of a real (see Section 11.16e«)e The use of MOD [s restricted
to INTEGER operandsa

Al the blnary operators on numbersy as well as those on
300leansy or on sets are left-associatives.

(7) When the term *error®* s usedy It does not refer to any
particular value, but rather means that under the condltions
associated witnh it a speciflcation would oe iIncorrect, as far as
SPECIAL is concerned. In other terms, it [Is conslidered as
erroneous to say "1 AND TRUE™ as to2 say *“D0 I = 1, 10" 1In a
speclficationr.

(8) For more about type matching rules, see Sectjon 14

Page 21

SPECIAL Reference Manual August 13, 1976

11.7. Qperations on_Sets
11.7.1+. Unary Operator

CARDINALITY
Syntaxt CARDINALITY(<set expression>)
Typet set-mode ==> INTEGER
Value: The number of e&lements in the set designated by its
argument

11.7.2. Bipnary Qperators

JNION
Syntax: <set expression> UNION <set expression>
Typet SET_OF mi X SET_OF m2 ==> SET_OF m3
where m3 is the larger of mi and m2 [f they match, and their
union otherwise; note that, Ahen the types of the two
arguments do not match, the result will have the type of the
minimal union of the two typesS,y 2eQe,

If the type of si is "SET_OF INTEGER™
and the type of s2 s "ONE_OF({ SET_OF BOOLEAN, SET_OF CHAR)"™
then s1 UNION s2 will be a
“ONE_OF(SET_OF ONE_OF(BOOLEANs INTEGER),
SET_OF ONE_OF{(CHAR 3 INTEGER))*

Meaning:? The usual union of two setsSe.

INTER
Syntax: <set expression> INTER <set expression>
Typet SET_OF m1 X SET_OF n2 ==-> SET_OF m3
where m3 = miL If m1 Is the same as m2; generates an error |f
mi and m2 refer to disjoint typesy, and m3 is the intersection
of mi and m2 otharwise.
Example:

If s1 is of type ™SET_OF ONE_OF(INTEGER, BOOLEAN)*
and s2 of type "ONE_OF(SET_OF INTEGER, SET_OF CHAR)™,
then s1 INTER s2 |s of type "SET_OF INTEGER"™

Meaning? usual sat inters2ctione.

DIFF
Syntax? se¥f it DIFF. plset. 2
Type: SET_OF mi X SET_OF m2 =--> SET_OF mi
Gener ates an error if mi and m2 cannot have any common valuee.
Examplet

It set_1 Is of type ™“SET_OF ONE_OF(INTEGER, BOOLEAN)"™ and

set_2 is of type "ONE_OF (SET_OF INTEGERs SET_OF CHAR)*™), then
the result will have the type of the flrst argument.

Page 22

SPECIAL Reference Manual August 13, 1976

Meanings {x | x « set_1 AND x # set_2}

11.7.3. Prgdicates

INSET

SUBSET

Syntaxs <expressjion> INSzZT <set_expresslon>

Type: mi1 X SET_OF m2 -=-> 300LEAN

Generates an error If mi and m2 are totally dis)olnt types
(as with DIFF).

Meaningt The expression is TRUE If the first operand is in
the set represented by tha seconde

Syntax? set_1 SUBSET set_?

Typet SET_OF mi X SET_OF m2 --> BQOLEAN

mi and m2 are subject to the same constraints as with INSET.
Meaningt The expression ls TRUE 1ff set_1 1Is a subset of
set_2. Note that "si1 SUBSET s2" can be defined as

FORALL x INSET si1% x INSET s?2

11.7.4. 3et_Constructors

Explicit Constructor

Syntax: *C* expression_1lyeeey expression_n °3}°*

(Here, the curly bracxets are actual symbols of the
language,)

Type: If all the expressions have the same type, let us say
Ty tThen the result will b2 of type "SET_OF t*™; otherwise, it

Wwill pe "SET_OF ONE_OF(ti1seest]))*™ where the unlted-type Is
the minimal unjlon of the types of the expressionse.

Value! The set S such that
expression_i € S (I = 1y 29es93n)

Inplicit Constructor

11.8.

Syntaxst *{* <simple declaratlon> *!* <expresslion> *)}°

Types <expression> must DbDe Boolean; result Is of type
“SET_OF t"™ where t is the type of the variable appearing in
the declaration.

Value: "“{t x ! e(x)}" Is the sat of all x*s of type t such
that e(x) is TRU:z.

Operations_on Vectors

Extractor

LENGTH

Syntax: <vector expression> [<integer expression>)

Types If the first operand s of type “VECTOR_OF t*, the
result will be of type t.

Value: vil] is the Ith component of the vector ve.

Syntax: LENGTH(<vector exprassion>)

Type: VECTOR_OF mode =-=-> INTEGER

Values The numoer of components (dimenslonality) ot ts
operande

Page 23

SPECIAL Reference Manual August 13, 1976

=xp lilclt Constructor
syntax: VECTOR{(exp_ljyeesesseXp_n)
Type: I1f exp_41vesesexp_n are all expressions of type t, then
the result will Dpe of type "VECTOR_OF t*5 If the types are
differenty, the result will be a vector of the minimal union
of these types.
Valuet V such that
LENGTH (V) = n and
VII] = exp_i for i = 1y 23eee9 N

Implicit Constructor

Syntax: VECTOR *(* FOR <symboi> FROM <expression>
TO <expression> *"3* <expression> *)°*

Type? If the Iast expression always has the type t, then the
result will be 3 "VECTOR_OF t" (the expresslons following
FROM and TO must have the type INTEGER)e Note that this Is
tne only place in the language where a name is bound fto an
objJect that need not be previously declared; the symbol
folionwing FOR is a 1locally bound varlable whose type is
always INTEGER
Valuet V = VECTOR(FOR 1 FROM expi TO exp2 ¢ f(l))
Ils the vector such that?
LENGTH(V) = exp2 - expl + 1 and
VIi) = flexpl + | = 1) for I = 1y 29eees(exp2 - expl + 1)

11.9. Qperations on Structures

Extractor
A reference to a particular field of a structure-expression

(ie€ey an expresslon whose type ls a structured type) can be
made by appending a ¥e? followed by the name of the
particular fleld after the structure-expression I[tself. The
syntax iIs thus?

<expresslon> ".° <symbol>

Typet The type is that associ &ted witn the fleld name in the
structure declaratione.

Meaning: The structure expression being a tuple, the
extractor refers to the value of the nth element of this
tupley +f the fleld name appeared In the nth posltion In the
structure decliarations

Explicit Constructor
Syntaxs *<® exp_lieesyexp_n *>°
Type? 1 X ases X tn
where ti is the type of the ith 2xpression in the list,
Value: the tuple whose ith element s exp_l, for | from 1 to
Ne

Implicit Constructor
Syntaxt *<* FOR <symbol> FROM <expression> TO <expression>
1 <expression> *>°
Type?: t X eseee X ¥
iecey the n-fold Cartesian product of the type of the third

Page 24

SPECIAL

11.10.

Bool ean

Keference Manual August 13y 1976

expression, where n is the difference between the second and
first expressionss

Meaningt The tuple € exp_lsesesexp_n > where exp_l Is the
value of the third expression evaluated when the indliclal
variable (i.eey the <symboil>) has the value of the expression
following FROM, augmented of [-1.

Quantified Exprcessions

Althougn quantified expressions are constralned fto yleld a
value, thay have oeen placed in this separate sectlon because

of thneir particular syntax rulese.

Universal Quantifier

Syntax? FORALL (<quatlification> ! <declaration>}
{ *3* (<quallfication> | <declaratlion>} }*
1 <expresslion>

witht <quallfication> tt= {<simple declaration> ! <symbol>}
CINSET § *!*} <expression>

Typet BOOLEAN

Meaning?t as In predicate calculus

Remarks: The <expression> following the *:* will presumabiy

depend on the variables declared after the quantlifier. These

varlables are bound locally, only In the last expression (see

Scope Rules, Section 12)e. The optional quallficatlon may be

used to further qualify the varlable, wlthout complicating

the main quantfified expressione.

The general way of expressing something such as “for all x°'s

such that P(x)sy Q(x) is true™ ist

FORALL x ¢ P{x) ¢ Q(x)

whareas "“for all x*s In the set Sy, Q(x) Is true™ would be
written as?

FORALL x INSET S & Q(x)

(Note that, in tne two examples above, we used fthe de ferred
binding facilityy opresuming that x appeared in the
DECLARATIONS paragraphs)

Several varlables may be guantified simultaneouslyy 2¢Gey

FORALL x ! P({x) 5 yv ¢ Qly) 3 z 2 R(xy Yy 2Z)

In such a case, each gquantified wvariable may appear In Its
own qualification and in the main (quantified) expresslon,
but not in the qualiflication of another variable.

The aoove expresslon has the followin3j meaningi

FORALL X : FORALL y ¢ FORALL z ¢t P(x) AND Qly) => R(Xxy Yy z)

Ixistential Quantifler

Syntax?

Page 25

SPECIAL Reference Manual August 13y 1976

EXISTS {<qualification> { <declaratlon>}
€ *3* (<gualification> | <declaration>} 1}*¥
! <expression>

Typed BOOLEAN
Meaning? as in predlcate calculus
Remarks: same as abovee.

11.11. Congitiopal Expressions

Syntax?i IF <expression> THEN <expression> ELSE <cexpresslon>
Typet Conslder the expresslon

IF P THEN el ELSE e?

If €1 and e2 have the same type, that type will be fthe type
of the whole expression} 1f one of el and e2 (or both) is
UNDEFINED or 7, then the type wi!l match anything. If the
types of e1 and e2 do not match, then the type of the
expression wili pe the union of the type of el and the type
of €2

Meaningt x = IF P THEN e1 ELSE e2 is an abbreviatlon for

(P AND (x = el1)) OR ((NOT P) AND {(x = e2)

Remark: The ELSE part must always be present!

11.12. TYPECASE Expresslons

This kind of expression 1ls orobaply the most complex
construct of the language. It Is Intended to be used in cases where
the type of an object wused in the system being specified cannot be
known before executlon tlme. Its purpose is to allow a temporary
alteratlon of the type of an object, from a unlted type to one of the
component typese This is particularly desirable because [t permits
tne applicatlon to the opbject of some operations that would not be
defined on the united type without compromising the safety of type-
checkinge

Syntax?

TYPECASE <symboi> OF
type_1% exp_13
type_2:3 exp_25

type_ns exp_nj
END

Typet The type of the whole expresslon will be the minlmal
union of the types of exp_lsesey exp_ny In the sense that, 1t
exp_1l9ee €xp_n all have the same typ2 t, then t will be the
type of the axpress lony, otherwls2, the type will Dbe
ONE_OF(t1,y, t2yeeestk) where tly.eytk are all dil fferent, and
are types of exp_iyesssexp_n (in no particular order) .

Page 26

SPEC I[AL Reference Manual

of

Meaning: The value of the expression |Is more

understood by using the meta-function "type_of" the
which would pe the type of its single argument.
Theny for instance

a = TYPECASE w of
type_1%8 exp_13
type_2% exp_235
type_3% exp_33
ENDS

would mean

((type_of(w) = type_1) AND a = exp_1)
OR ((type_of(w) = type_1
AND type_of(w) = tyoe_2)
AND a = exp_2)
OR ((type_of(w) "= type_1
AND type_of(w) T= type_ 2
AND type_of{w) = type_3)
AND a = exp_3)

Remarks: There are several resftrictions Imposed on

this construct. We will call

August 13y 1976

easily

value of

the use

* case variable the varlaole following the keyword TYPECASE]

4t

case lapels the types type_ls.se9 type_nj
Case eXDressions eXp_liresesr €XP_N3

”

* The type of the case variable must be a unlted type
the type that would be obtained by taking the union of
case labels.

Example: If w is of type
ONE _OF(INTEGER, BOOLEAN, capability)
then
TYPECASE w of
INTEGER: w3
BOOLEANS IF w = TRUE THEN { ELSE O3
capabillty: get_uld(w);
END 3}
is a valid expression;
TYPECASE w of
ONE_OF(INTEGER, B0OLEAN)?: TRUES

capabillty? FALSES
END 3

is also valiade.

aequal to
all the

Page 27

SPECIAL Reference Manual

{As an iilustration, 1let

August 13, 1976

Jus mention that the first expression

vould have the type ONE_OF(INTEGER, *"type_of get_uld"), whereas
the second one would have the type BOOLEAN,)

On the contrary,

TYPECASE w OF
INTEGER?: 13
B00LEAN ¢ (3
END 3

1S incorrect because one of the types 15 missinge

¥ Since the expresslon Iltse
is performed.

i has a typey regular type checking

* When the type of each case expression is evaluated, [f the case

variable appears in the

expresslony it s taken to have the

type of the corresponding case labale.

11.13. LET Expresslons

[t is sometimes necessary to olnd some variables locally inslde a

particular expressionsSe.

Yet theilr use is generally very

iim:ted. When it seems to be really necessary, the user can
declare a Ilst of varlables Immedlately before wusling them;
their scope Is restricted to one single expression, and the

syntax for this construct

LET <quallflcation> { *
IN <expression>

The value and tnhe type

iss

3* <qualification> }*

of this expresslion are those of the

expresslon following the keyword IN, The closest approximation to

the semantics of?
y = LET x § P(x) IN Q(x
i3 something like

+ x such that P(x) AND

)

(y = Q(x))

put this is only an example of the use of thls construct.

11.14. SOME _Expressions

The SOME construct can be viewed as a kind of set extractor.

The syntax is?

SOME <simple declaration> CINSET ! *i{*'} <expression>

The meaning of an expression such &s

Page 28

SPECIAL Reference Manual August 13, 1976

SOME x INSET S
5% LET X INSET S IN %
andisimlilar gLt P b Is saseds
he followiny example illustrates the use of this constructs?

EFFECTS_OF wake_up(SOME process p
INSET waliting_processesi{semi))

wnich might b=z an assertion Inside tha speciflication tor -a
synchronjization primitive.

11.15« The NEW Primltive

NEW &5 a special construct that has the same syatax as a
function of one argument:

NEW *(* <symbol> *)*

where the argument should be the name of a deslignator type. The type
of tnis expression is prec.sely this identifier, and the meaning is
that NEW(t) represents an object of typa t tnat has never been used
paforee.

An error will occur if the argument [s not a DESIGNATOR (even
317 external DESIGNATOR will not work).

11«16+ Miscellaneous Operatocs

In &ddition to tne various operators and constructs presented
adovay, tne languaje contains several functional primltivese.

MAaxXx, MIN
Syntaxd {MAX | MIN} *(* <expression> *)°
Types SET_OF numpber ==> number
(Wnere number (s eitner INTEGER or REAL)
Valuet! the largest (respectlvely smallest) element In the set
described in the expressione.

SUM
Syntax: SUM " (' <expression> *)°
Type: SET_OF numder =--> number
ort VECTOR_OF naumber =<> number
Value: the arithmetic sum of all the elements in the set
(respectively vector).

INTPART, FRAC TPART
Syntax: {(INTPART { FRACTPART)} °*(* <expression> °*)*
Typet REAL =-> INTEGER (respe REAL)
Value: These two constructs can b2 viewed as predefined
macros:

Page 29

SPEC IAL Reference Manual August 13y 1976

INTEGER INTPART(REAL x) IS SOME INTEGER y ¢ y <= x AND y+1
> X3

REAL FRACTPART(RZAL x) IS x = INTPART(x)3

They definey respectivelyy, the Integer and fractlonal part of
the.r argument (surprised?).

FEREER
This concludes our syntactic description of the language for
nodule specificationse. We will now concern ourselves wlith some

additional precisions concerning the use of certaln objects.

12. PRECEDENCE

The large numbzr of operators in the assertlion language
raquires a precise deflnition of the precedence ordering, that (s, if
opi and op2 are two operators (let us say binary), we say that opi
has a8 hilgher precedence than op2 (f

el opl e2 op2 e3
nas the same meaning as
(el opl e2) op2 &3
and
€l op2 22 opl e3
has the same mean.ng as
el op2 (e2 opi e3)
(Note that any expression can always be enclosed within parentheses.)
A general rule is that an operator returning a Boolean valued
expression has always a lower precedence than an operator that
returns another typee. This rule (s of course insufficient to compare

operators returning the same type of expresslon.

The ordering is partial, since the operators cannot be freely
combined in the taxt (ee.Jes INTER can hardly oe compared wlith +),

The operators are llsted in decreasling order of precedances

Constructs that do not lead to ambiguities (reference to ftunctlions,
LENGTHy CARDINALITYy NZWy vector subscriptings TYPECASE, FORALL,

Page 30

SPECIAL Reference Manual August 13, 1976

EXISTSy vector and set constructorsy LET, and SOME) are not |isted,
dbut It should be noted that, when used as operands with any of the
operators listed pelowy, the constructs using IF, LET, SOME, FORALL,
iXISTSy and TYPECASE should be enclosed within parenthesese.

INIEGER 3Q0LEAN sefs

unary -

¥y /4y MOD INTER

+y - UNION, DIFF

Sy T=y €4 €=y >z, >,
INSET, SUBSET

NOT

AND

IR

=>

Of interest are the places of NOT, INSET and => ¢ thus
ENOT | %) ITNSET S

is meaningful only (f x has the type BOOLEAN and s is a set of
BOOLEAN (for instance (TRUE})

NOT x INSET s => P{x)

means (x INSET s) OR P(x) .

13+ SCOPE RULES

A name designates an object by two mappingst one from the
name to @« type and the other from the name to a "binding" (in the
sense descr.bed In Section 4)e.

The basic rule [s that a name cannot oe used In an expresslon
it the value of either of the two mappings Is undefinede.

The dusl poss.bility of associating a name with a type

through a declaratlon has been 'descrlibed at length In Sectlon & and
Is not repeated here.

Page 31

SPECIAL Reference Manual August 13y 1976

13.1« Establisbing the 3inding

The binding of an object 1s estaolished by declaring the name
0ne wishes to associate with the objJect in a predetermined place in
the text, wnich Jdepends on the category of the oblect Itself (by
“declaringy™, we mean that the name can aopear in a declaration, In a
neader, or in the place of a declaration In the case of deferred
pinding) .

Here 15 a teble that indicates tne place where a binding 1is
establlshad.

Qolect Binding

Global definlition Definition in the DEFINITIONS
paragraph

Local definition Definltlon in the DEFINITIONS sectlon
of a function

Formal argument When appearing in & functlon or macro
header

Result argument
Quantified var.iable When appearing after FORALL and EXISTS

Locally pbound variable When appearinj between *{* and *1*, or
after FORy LET or SONME

13.2« Scope of a Bilading

We define the scope of a name as that part of a3 module
speci fication where the name may be wused In an expresslon,
independently of the constraints imposed by type compatibility.

Generallyy, a binding is valld from the place where It was
established up to some preclse placey, given below (although In some
cases we give the scope itself rather than the place where the
pinding 1s destroyed).

Qolect 8inding

51lobal definitions The whole module

Formal and result arguments Valid only In the speciflicatlon of the
corresponding function or 1n the

expression defining the macro

Locally bound variable The eaxpraession(s) folloning the *1°,
INSET or *t* after FORALLs EXISTS,
LETy SOME, and 1In set and vector
constructorse.

Page 32

SPECIAL Reference Manual August 13+ 1976

An important additionmal comment Is that, although [t |Is
permitted to galter a valid binding temporarily (e«ge.y by using the
name of a formal aryument as a locally bound variable)l, this will
nask the orlylnal binding for the scopa of the new onee It seems
that tnls practice should be avoidedy Inasmuch as it can bring only
confusion in the specificatione.

14 COERCION RULES

As has peen said in Sectlon 59 3 united type is very close to
beinyg a type by itself, and normally an expression of a united type
should not match an exprassion of one of the components of the united
type. However, such compatibliiity is permitted in some cases. The
deftermination of these cases s oased on what |Is known as the
*‘coerc.on rules".

The first case of coerclon is the TYPECASE expresslion, which
snould be the normal (and only) way to coerce "downwards™, is.ee.s from
a8 unlted type to0 a component typ2, Upward coerclon (i.2¢9y when an
expression of a simple type is Impllclitly converted to a wunited type
containing the original type as one of its components) may taxe place
Iin the following cases?t

* Wwhen a formil argument to a function is of a united type, the
corresponding actual argument may be of a component typ2.

¥ In an expression of the form a = by where a is a guoted V-
function referencey the result argument of the V-functlon beling
of a united type, and o IS an expresslion of a component fypee.

The actual rule is fthe same as apbpove for TYPECASE expresslons
37d actual arguments to functions. It ls more general In the other
cases, where an attempt to match a united type against one of [ts
components is toleratedy albelt wlth a warning message which wlll
hopefully rem.nd the user that he/she is walking on dangerouds grounds.
A warning message will 3also be issued wheny in the <constructs IF,
SETy and VECTOR, the types of the constituent expresslions do not
matche However, this will not be the case for the binary operators
on setsy UNIONy INTER, UIFF, INSETs and SUBSET.

Page 33

SPECIAL keference Manual ‘ August 13,y 1976

15. COMMZNTS

Although it nas oeen barely mentioned so far, the language
nas a comment feature:! A comment consists of the sign *$* followed
oy a sequence of characters without any spacey parentheses, or square
oracket} or by a string of characters enclosed within two double-
quote signs (") (the string itself containing no double=-quote); or by
any sequence of characters anclosed witnin two matching parentheses
or square brackets (in tne case of parenthes2s, the sequence must not
contain any right square orac<et that is not preceded in the sequence
py a left one). More briefly, a comment can be descripbed as a *$*
followed by any arbitrary LISP S-expression--see (Tel 75).

A comment may appear at any place where a space ls legal
(ie@sy anywhare except in the middle of a syntractic unit).

16+ MAPPING FUNCTION EXPRESSIONS

The specificatioans for mapping function expresslions follow a
slightly different syntax, although tne "expression™ part of the
language Is exactly the same.

15.1. Module Names
A list of mapping functlons specifications should beglin with
MAP module_1 TO module_2qyeeey module_kj

where module_1 Is the module contalnlng the functlons and parameters

to be expressed as functlons of efements of module_2jsceymodule_kj;
module_1 is referred to as the “target® module.

15¢2. TIYPES

The TYPES paragraph is similar to the one described for
module specifications, and it abides by the same rulese.

163+ DECLARATIONS
The same conventions for deferrad bindlng can optlonally be

applled and the DECLARATIONS paragraph provides the same faclllty
towards tnis ende

Page 34

SPECIAL Reference Manual August 134 1976

16e4s QDEFINITIONS

The same macro capablliitjies are provided In the DEFINITIONS
paragraphe

165« EXITERNALREFS

An EXTERNALPEFS paragraph similar to the one optlonally used
in a module specificatlon is mandatory for mappling functions} [t must
contain declarations for all the primitive oblJects (ie.eey designator
31d scalar types,y parameters, and V=functions that are not derlved)
appearing in the mapping function.

166+ MAPPINGS

The MAPPINGS paragraph begins with MAPPINGSe It contains a
Ilst of pairs of the fora

<object> ¢ <expression>}
or
<symbol> & <type specification>}

Wiere <expression> ls any expresslon satisfying the rules described
earlier, ana <oblect> Is one of the followlngt

¥ The name of a parameter of the tarjet module

* The ncme of a scalar tyopes in which case <expression> must be a
set expression consisting of a Iist of as many expressions as
there are constants in the scalar type definition}

¥ A construct of the form
<symobol> (<argument list>)

wier=2 <symbol> (s tne name of a visible V=function or a parameter
(with aryuments) of the target module, and <argument llst> is a list
of tormal arguments in the usual sense.

The same scope rules applyy excapt that there Is no result
argument.

The type of each expressiony derjived from the types of its
various components declared elther in the declarations or in the
source modulesy, should be the same as that of the assoclated
parameter or V=-functlon in the target moduley, or a set expression In
the case of 3 scalar typ2 namee.

In the second forms the symbol should Dbe the name of a

designator type of the target moduley, ard the type speclficatlon
should be 1e3al In at least one of the lower modulese.

Page 35

-

SPECIAL Reference Manual August 13+ 1976

17« THE TENEX-INTERLISP IMPLEMENTATION

The properties of speci fications can De checked automatically
by & “specitlication nandlar™. Such a program has been written to run
urder the TENEX operating system on a PDP-11 machinej some of the
conventions used (2eGey for strings) are a consequence of the
convant ions used in the implementation language {namely INTERLISP).

17«1« Sirinas

A string is the equivalent of an INTERLISP string, leesy an
a~bitrary segquence of printable ASCII cnaracters enclosed within two
" (double-guote)s where the characters " ard Z have to be represented
as| 4™ and %Ze

17.2+. ldentifiers

An identifler (generally represented as <symbol> in this
manual) is any sequence of up to 126 printable ASCII characters whlch
Is not a number, which doas not contain any of the characters (s Do
E31 Ty Liglids Vo vo 1y 25 S Ty T9 ty Sy >y %y F9. % T -Tn $4 Space}
and which doas not start wlth either ™ or #. Note that 1789! ils a
per fectly le3al identifiere.

17«3+ Eale Inclusion

If the character # &ppears after any of the characters {isted
in the previous paragraph, the next expression (In the INTERLISP
sense) will be Interpreted as a file name, and the program will take
its input from that file until an end of file is reached, at which
point It will come back to the original flle. This may pe repeated,
le€ey the included ftile may itself LInclude a third one, efCey
al though a file may not include itself, directly or indirectly.

18, CONCLUJING REMARKS

The reader may have noticed (oy the very absence of such
expressions) that nowhere have we spoken of "“the value of a variapble"”
or '"the contents of a varliable™. Such pnrases have been (care ful ly)
avoided to stress one of the particularities of any speclficatlon
languagey le€e the property of being nunproceduraly a name refers
to a3 mathematical oblecty, and never<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>