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LATERAL STABILITY OF AN AIRCRAF;MND VIBRATIONS OF THE AILERONS WHILE
TAKING INTO CONSIDERATION ELASTIC DEFORMATION OF THE WINGS AND THE

ELASTICITY OF THE CONTROL SYSTEM
BY Jerzy MarYniak, and Maris Z%ocka ((Warsaw)

1. Introduction

In this work there has been investigated the influence of stiff-
ness and damping in the system of control (guidancé) by ailerons
while taking into consideration the elastic deformation of the wings
on the lateral stability of the aircraft as well as the vibrations
of the ailerons. The aircraft has been treated as a rigid mechanical

systemwith elastically deformable wings and movable ailerons.
1

The equations of motion have been worked out in quasi-coordinates

using the Boltzmann-Hamel equations /lj/ for mechanics? - -“tems with
holonomic constraints in a system of coordinates con. 1 with the
aircraft.

In the work the assumption has been made that the aerodynamic
forces and moments do not have any influence on the form and frequen-
cy of the free vibrations of the wings. This assumption has wmade pos-
sible a special examination of each inherent form of wing vibrations.
The wings constituting a continuous system of an infinite number of
derrees of I'meedom have been substituted for by s precisely determined
rnumaer of dersrees corresnhonding to the number of agsumed forms. The

forng and frejuencies of the free vibrations have been determined
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experimentally by way of resonance investigations./6,8/,

The linearization of the equations of motion was carried out on

the basis of the theory of small perturbations /1,2,3,7,20/. It was
assumed that antisymmetrﬁc motions of the aircraft cause exclusively
antisymmetric changes of the aerodynamic forces and moments, moreover
symmetric-~-symmetric changes of the aerodynamic loads. The above
assumptions made possible the resolution of the system of equations
/1,2,3,20/, which describe an arbitrary motion of the aircraft, into
two systems: the system of equations of symmetric motions /8,9,13/
antisymmetric

of longitudinal stability, and the system of equations of«motions

of lateral stability /1L/.

There have been taken into account five degrees of freedomj of
these three are the degrees of freedom of the rigid aircraft: rolld
yaw '’ the velocity of lateral dispnlacements v as well as the anti-
symmetric elastic deformations of the wings ¢ and the elastic deflec-

tion of the ailerons é~/1u/.

After linearization of the system of equations,the solution was
carried out as far as the designating of the eigenvectors and the
eigenvalues of the matrix of state corresponding to them. Sample nu-
merical computations have been carried out for an airplane of the
'wilga" class in accordance with their own programs in the Establish-

ment for Numerical Calculations of the University of Warsaw.

In the accessible literature having to do with the dynamics of

moving objects,one does not meet with a derivation of the equations




of motion thru use of the Hamel-Bolzmann equations for systems of
holonomic constraints. Properly, the use of the Boltzmann-Hamel equa-
tions/l/ for the deriving of the equations of motion of mobile
(moving) objects in a system of coordinates connected to that object
makes possible in a relatively simple manner a taking into conside-
ration of the degrees of freedom that result from the deformability
of a body as also the relative motions of the elements of the object

being examined /9,13,14/.

The Bolzmann-Hamel equations are generalized Lagrange equations
of the second type expessed in quasi-coordinates and aquasi-velocities.
The quasi-velocities are linear combinations of the generalized velo~
cities whose cooefficients are dependent on the generalized ceordi-
nates /l4,19/, where one can include also free (arbitrary) terms as
also clearly (those) dependent on time. /19/. In the case considered
such quasi-velocities are kinematic parameters of motion determined
in a sysTem of central axes of reference,rigidly connected with the
aireraft. The kinematic parameters mentioned above are the angular
velocities of the aircraft P,Q,R as well as the linear velocities

of its center of mass U,V,W /1,2,3,4,9,13,14,19, and 20/.

The equations of motion introduced in the third section of the
present work are universal and one can apply them directly to the
description of the motion of arbitrary deformabqgiﬁgﬂects in the as--

sumed system of reference.




2.The Assumed System of Reference

For the description of the dynamics of an aircraft three systems
of reference are indispensable: the gravitational system precisely
connected with the earth 0x1y1z1, the velocity system connected with

the flow Oxaya?a)as well as the one connected rigidly with the air

craft Oxyz.

Diag #1 The assumed system of reference Oxyz connected with the air

craft as well as the introduced linear and angular velocities.

The momentary situation of the aircraft as a rigid body is de-
termined by the situation by the center of mass of the object r, (v, v,
measured with respect to the immovable system of coordinates 0x1y1z1
connected with the earth as well as of the angles of rotation of the

aireraft ¥, 0, 9.

The angles of rotation determine uniquely the situation of the
system of coordinates vprecisely connected with the aircraft Oxyz with
respect to the gravitational system of coordinates Oxpygzgwhich is
parallel to the immovable system 0x1y171((ding -

ottt




Diagram #2 Assumed components of forces and moments in the reference

The assumed angles of rotation are quasi-Euler angles, called

also aircraft (angles)/1,2,19/.

The names of these angles are as follows: ¢ the angle of roll,

0 -the angle of pitch, Y’ -the angle of yaw.

The motion of an aircraft was described in the central system
Oxyz rigidly connected with the aircraft, around axes directed as on

diag #1 and diag #2.

system Oxyz connected with the aircraft.

The components of the momentary velocity vectors, linear ;. and

aneular 0 in the assumed coordinate system ((diag #1) are as follows:
--- vector of linear velocity VC

(1) Ve == Uit Vjy VK,
where U designates the longitudinal velocity, V the lateral velocity
and W--the velocity of vertical (plumb) displacements.

--the vector of momentary angular velocity o

(2) 0 /.‘f’)j"j Rk

’

5
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where P is the angular velocity of roll, Q--the angular velocity of

pitch, R--the angular velocity of yaw.

The vectors of the external forces and the moments of external
forces act{ng on the aircraft have the form (diag #2):

---=-vector of the external forces g

(3) F = Xi+ Yj+ Zk,
where X signifies the longitudinal force, Y--the lateral force, 7=~
the vertical force

---the vector of the main (overall) moment g

(L) M = Lit Mj+ Nk,
where L is the roll moment, M--the pitch moment, and N--the yaw mo-~

ment.

The angular velocities P,Q,R are linear combinations of the gene
ralized velocities & 0 and ¥ with coefficients dependent upon the
generalized coordinates ¢, 0 and ¥ and are expressed in the following

form:

P 1 0 ino | [ @ o
0 0 cosd sindeoso|lO ] =a,]6
(5) 2| ©
R 0 in® costBeosO | | ¥

The kinematic relations between the linear velocities X150 7
measured in the non-moving system Ox1y1:’.1 and the components of velo-

cityU,V,W are the following:




B dx
U1 ; dlli/

",vl
e} ‘

dz‘A
i L4 dt

@ I T
-U'} cosOcos¥ cosOsin? —-¢in@ - 'W

(6)

sin®sin@cosW— sin®sinOsinf + sin@cosO dy,
S = —-cos®sin'¥ +cosPcos¥ dt
cos@sinOcosP+ cos@sinOsin¥— cosPcos@ d=,

tsinPsin'¥ —sin@Pcos¥ ) dr |

W

The relations (5) and (6) determine the kinematic parameters

that are quasi-velocities.

3. Egus ' Motion of a Deformable Free Object

—

The model of a non-deformable aircraft, most frequently encoun-
tered in the litterature, cannot always be assumed (accepted) in an
investigation of the dynamic properties of an object. Some rigid and
elastic relative motions can have a substantial influence on the
character of the motion of an sircrart. In the case of taking into
consideration the elastic flexibility of the wings, one obtains a sys-
tem of an infinite number of degrees of freedom of motion. Practical
carrying out ¢f the computations for such a system is impossible and,
tharefore, there is also used an aonproximate method. It is based on
the assumption that the aerodynamic forces and moments do not change

the non-elastic free vibrations of the wings.

The sag of a wing (diag #4) is described by the function:




Rys. 3. Przyjgty model samolotu i przemieszezen Katowych obrotdw antysyinetrycznych szmaolaty

Diag #3: Assumed model of the aircraftgnd of the angular displace-

ments of the antisymmetric rotations of the aircraft.

Rys. 4. Przyjely model ruchdw preechylajacych i odksstaleed gigtnych skrzydel samolotu

Diag #lit Assumed model of the rolling motions and elastic deforma-

tions of the wings of the aircraft.

where hi(y) is the successive form of the free vibrations. This has
made possible an examination of the influence on the motion of the
aircraft «f each form of the vibrations separately. In agreement (con-
formity) with the above that correspond to the ith form have been pre-

sented as follows:

(7) &y, 1) - RGILQ).




There has been taken into consideration also the motion of the

alilerons, which is possible in spite of the blocked control stick,
due to the existence of elastic deformations in the system of control
by ailerons. The displacement of the ailerons is determined by the

angle of rotation of the aileron ﬁaround the axis of the hinges(diag 3)

The equation of motion of the aircraft has been introduced in
quasi-coordinates, using the Boltzmann-Hamel equations for holonomic
systems /lj/. The Boltzmann-Hamel equations are generalized Lagrange
equations of the second type for non-inertial systems described in

Juasi-coordinates, and they have the following form:

k k
dt lﬁ(!l" ("_7“ + _]J 21 }:I“(‘)(U, g Q::
where e a=1,20 ek signifies the number of degrees of

freedom, W\, --the quasi-velocities, T#--the kinetic energy in quasi-

velocities, Tﬁk--the quasi-coordinates, Q@ --the generalized forces.

The relations between the guasi-velocities and the generalized

velocities has the form:
k

(o) % = gyt
: k
(10) e
where ., signifies the generalized velocities, s ,,(ﬁ,qh'“_;\ "
the generalized coordinates, b, b, (¢, 7., .. .0), whereby

there exists the following matrix dependence

(1) L
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The triple indexed multipliers (coefficients) of Boltzmann

are determined by the relationship:

& . 3
(1?) 4 1 \‘ a5 ('!,;\’
< - Yia = s N el (ol
i ek L T
a =

In the case when the quasi-coordinates are generalized coordinates,
then the triple-indexed Bol:tzmann coefficients . (12) are equal

to zero,

In the assumed model of a deformable aircraft the vector of the

quasi-velocities is the following:

(13) @ = colll, ¥, W, P,0,R, 8.4,
where U,V,W,P,Q,R determine the relations (7) and (6), and the vector

of quasi-coordinates corrssponding to it has the form:

(1 '4) 5 = colfty, 7y, Ty, 7, g, Trs B, f]

The vecor of the generalized coordinates is as follows:
(1 ;) q :U""{rl‘)'la:1)(‘51{4)’ ,1,/) ﬂy (‘.]'

The matrix [, ] in the case of the assumed model (diag#3 and
diag #4)in the assumed system of coordinates (diag#1) in conformance

with the relations (5) and (6) has the following form:

Ay 0 D0
=] 0 iA;: 0 |
(16) 00 I

whereby the matrix corresponding to it [4,]" is determined in the form:

(17) Apti 0 @

(od = la,d = | 0 (Mgt 0
o i @ | I




The majority of the Boltzmann coefficients ;7.  in the case of
the assumed deformable aircraft are equal to zero. One of the non-
zero Boltzmann coefficients is »%:. Tt is computed in accordance with
the following relationship:

1 .1 3 ca
3 g ‘ol
2 bbb
(18) 75 >.l 2(?!1. 0‘7:) k=

a-1 I=1

The quasi-coordinates Q & ¢ are generalized coordinates. In conformity

with the above
Cacy ! Cag

T e et

for &, =1,2,.....8, is simplified and the relationship (18) assumes

the form -
Lo éa
. >1 _t?fzs{_ﬂ1 b!)b‘,b,‘,
Yse = L4 La\ Cq Cqa
a=1 [=1 X
Analyzing the matrices v, and vermits us to note that:

big = byq = b3y = bsy =bey =0; big=1;

Qgy = oy = A3 = Ags = 0; bys = bys = b3s =0;

HEWCT
stad
P(](‘ eﬂr‘
fg e = = c’qs BasRas= -E(": Zasoat
WwHE ¥ '
;__,d/,ic
ca, s a( *Siﬂ'{)
S oSy IR
0aes 2(cosy cosO) sing cos@
s - - = ==3 COs G
: , éq, dg '
wHeREeY
przy czym l
sin
. bss == cosp,  bss = co.»z)-'

A? A REM(CT WE «ev

W rezultacie otrzymano

Y84 = cos?gtsin?p = 1.

The remairing non-zero Boltzmann coefficients are computed analogous-

) = ', "l- = ':
1y: they have the following values: 7? i
vis = 1, yis = -1,
yie == 1, yés = —1, rie = 1, Yor = 1,
Y= =1, =}, vis=~1, sh=1,
2 Ot = 1 L }'?4 = 1' }’:2 = = l;
738 7 1, v =L i i M

V<o ! ’ Yes l ’




After introducing the thus computed Boltzmann coefficients into the
equation (8)we get equations of motion for an arbitrary free object

whose motion is described in the assumed system of reference. The

ecquations of motion take on the following form:

@) roalw) TR e
) t:': e r-a
(:‘,;)
oo GB) T e
» S Gl e

@5) »d‘ol‘) i

¢ B ag =P
(26) d’(or*) OT. = Q¢.

The equations (19) & (2l;) describe the motlon of an arbitrary
rigid body in a central system of coordinates connected with the ob-
ject. The remaining two equations are the result of taking into con-
sideration additional degrees of freedom; of the relative motions of

the ailerons (25) and the deformation of the wings (26).

In an arbitrary motion of an arbitrary deformable object, the

number of equations of the type (25) can be ?rbitrd& and depends ex-
I

clusively on the number of additionally taken into consideration de-

grees of freedom in the presence of the unchanging form of the first

six equations (19)-(2).




4. Equaticns of the Antisymmetric Motions of a Deformable Aircraft

In an arbitrary motion of an object, equations (19) thru (26) in ge-
neral do not resolve themselves into equations describing symmetric
and antisymmetric motions. They are very non-linear ordinary differen-
tial equations of the second order. The resclving of the equations

is only possible in use for studies of the theory of small perturba-
tions with regard to an established motion a2nd linearization of the

equations.

In the present work we have assumed that the aircraft carries
out only antisymmetric motions (diasg 3 and diag #L), that means the
yowing motion '/, the rolling motion <>, the lateral displacement .
the antisymmetric displacements of the ailerons g and the antisymme-
Tric¢ vibrations of the wings ¢ In the presecnce of the above assunp-—

tions, one gets a system of five equations in the general form:

) f,',([y)—(fy e poor,
T IR AT A P
o AT e
(0) ‘,f(”ﬂ) =9,
i

The whole kinetic energy of the aircraft T# computed in quasi-

velocities has the following form:




r——gv_:m&ﬂ%;x?:uL " B e i —

T ; (MU 4 V24 W) L84 B b+ L P 4 L,Q° + LR -1, FQ +
(32) + S, (WP—UR)+S,(VR—~HQ)+S.(UQ ~VP) + {(A; + Bl 4 BHW+
+(Ay +BS + BYYP—[Ay+ (B + BY)x, - BS - BSOS + (ST~ Sp)U+

+ UL~ IR P+ (ST SHIW1E + (85 - BY)LE,

where
d b2 b2
A = [ mOEG)rdy, A= [ mGRG)dy,
—~b/2 ~b/2
52 Cop2 ‘
Ay = [ m@EG)dy, Ac= [ S,0)0)dy,
-b/2 . b/2
52 b/2
B, = [ m(diG)dq, Bi= [ muG)k(m)dn,
/2 b ] b/2 bL
b2 b/2
By = f S,oDh()dn, By = f m () 1)y dn,
b2 bL b)2 bL

where Mgsignifies the mass of the whole aircraft, 7 /./7./ are

moments of inertia 2and the moment of the deviation of the aircraft

with respect to the system of reference, Oxy:: S --are the static

< Sy2 5,
moments of the aircraft with respect to the reference system Oxyz:
Losloy By 850 e --are the moments of inertia,deviation and static of
the ailerons with respect to the axis of the hinges » and of the axis
of symnetry of the aircraft & ; the upper indices of 1. & P determing
respectively the left and right aileron; ::(),::(,) - are the distri-
butions of the masses of the wings and of the aileron as a function
of Span; h(v) --is the function of the sag of the wing correspondin;y
to the lorm being investigated of the free vibrations.

The pgeneralized forces aprearing on the right sides of the enua-

tions (27) thru (31) determine, taling into consideration the roten—

tial energy of the deformations of the wings and of the control sys-~

1
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system [8, 14], the gravitational forces [1, 2, 3, 8, 14] as well
as the aerodynamic forces and moments [1, 2, 3, 8, 14, 20].

The potential energy of the elastic deformations of the wings
and of the control system of the ailerons has the following form:

(33)
33 U, = 2 kol + ) k;82,

where k; the elastic rigidity of the wings, k

the system of control of ailerons, where:

8 the stiffness of

52

(34) ham [ m)iG)dy

is the generalized stiffness of the wings that corresponds to
the taken-into-consideration form of the free vibrations, which
(stiffness) is described by the function h(y) of frequency of
vibrations w.

The viscous damping in the system of control by ailerons

has been taken into account by the introduction of Rayleigh's

dissipation function UR'

(35) O Un = - kg

The components of the force of gravity in the reference
system Oxyz have the form

(36) ) : '”g g Ag'”gv

© —sin@
A, - JcosOsind],
cosOQcosh

where

. I



and in the case under consideration, which takes into consideration
exclusively anti-aymmetric motions

(37) Y, = mgcosOsind,

The aerodynamic forces and moments acting on the aircraft have
been introduced while taking into consideration the stationary
aerodynamics. Linearization of the aerodynamic forces and moments
has been carried out in accordance with the method of Bryan [1, 2,

3, 20]. This method is based on assumption that the aerodynamic
moments and forces are momentary functions of the magnitude of the
changes of velocity, linear and angular and of their derivatives.
These functions have been developed into a Taylor series with respect
to the previously mentioned changed. In these series there have

been considered only terms of the first order [1, 2, 3, 20].

In the case examined it has been assumed that the aircraft
moves with a steady uniform level motion. One assumes that the
steady motion of the aircraft is subjected to small perturbations,
that means that:

O g, P =p: U = U, == const,
(38) O := 0, == const, Q -0, V =9,
Wiy, Ra=! W 0.

The generalized forces in the equations (27)-(31) when taking
into consideration the above perturbations and the introduction of
the relations (37) and (38) have the form:

QF = Yot Y, ptVY,ri ngy confy,

Op = LovtLptl,ri Lifiv 1:54 1,8,
(39) Ok = Nw - Nop 4+ Nor 4 N3 F 4 N;E 4 N, 8,

QF = Ryp+RriyR;f1R:C 1 Ryp,

Ot = Ep+Er+E;f+EE 1 EeL,

where nzeiywy; fir‘m’g,. ‘E are according to the names accepted in
.v - b:
flight i s lore, the aerodynamic derivatives
i
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£1, 2, 3, 20].

The aerodynamic derivatives that appear in the relations (38)
were introduced in [1, 2, 3, 6, 8, 14, and 20].

The system of equations (27) thru (31), after taking into
consideration (28) and (39), are converted into a non-dimensional

form dividing the equations of the forces by sV2S, and the equations
of the moments by or28s/2.

- M'
'ZQVZ§ - the aerodynamic time,
= M,
”"stf - the relative density of the aircraft,
. /5 :
= M52t - the non-dimensional moment of inertia,
L - the non-dimensional time,
t
6:~;» - non-dimensional linear velocity,
ifﬁp; - non-dimensional angular velocity,
Py = {‘. - non-dimensional derivative of lateral force with
. eSVe respect to the change of the linear velocity of
sideslip,
)5::'8:22' - non-dimensional derivative of the lateral force
@%by with respect to the change of roll angular
velocity,
n, == Sylz - non-dimensional derivative of the yawing moment
j AR with respect to the change of the linear velocity
of sideslip,
I tnﬁﬁ%ﬂ - non-dimensional derivative of the roll moment with

respect to the yaw angular velocity change,

In an analogous manner there have been presented in a non-

dimensional form the remaining terms (expressions) of the equations.

The system of equations of motion in non-dimensional form has
been obtained in matrix notation in the following form:

17




(40) A 4+BE+Cx =0,

where x = colfx,, 7, 71, &, B,

% = col(s, 7,7, &, Bl

whereby

— A is the matrix of the coefficients of inertia, VIZ

1 0 0 0 0 |
0 1 j\:/jx I‘/./r jf'JIjx

A=]10 /.l 1 0 (VR
0 e; 0 1 eF
1.0 Jiolin 0 el 1

— B 1s the matrix of coefficients of damping, VIZ

| — e =¥l A=y [) 0 0.
= .”,v/jx i ,p/jx it r/jx /- I: /jx = I;; /jx
“/‘nv/j: ”"p/j: R "r/jx ”;' / .: "ﬁ ./jt

B=] ¢ e e e L€ s
. s ' kjp—r;
0 —I'p/j,, "'rl/]q =g /]q ( i 4 'f)‘

. Jn

— € is the matrix of coefficients of stiffness, VIZ

0 -y, 00 0

0 0 00 —Lulj
C=10 0 00 -—mul

0 0 0¢ s

0 0 00 (kype rpfjy, |

The matrix equation (40) of second order gets reduced to an
equation of the first order in the form:

X
(41) viren o 0 [3]

18




also o 0 1
: [o A]' Q [C : u]‘

(42) P = Rq,

where the matrix of state R has the form

0 I
(43) R =R [\ 1C A 'n]'

The solution has been reduced to the designation (evaluation)
of the eigenvectors A1 and of the elgenvalues corresponding to

2igar = &ga i of the matrix of state R (43)
The general solution has the form

8
(hh) q(r) = ZC}q.,cxp(Zﬂ).
J=1

where the CJ designate constants dependent upon the initial condi-
tions which are the values of the perturbations from steady motion

J
-znﬁ ¢ . 1s the coefficient of damping, whereby T,, -

7 4

for the moment t=0, n, 1s the frequency of oscillation of period
In2
t

T
'3

is the time of damping down of the amplitude to % flor t<0,and in
case &>0, the time of doubling of the amplitude.

5. Numerical Example and Suggestions

The example computations have been carried out for a light air
craft of the tourist class "Wilga". We resolve the system of
equations (40) evaluating the eigenvectors q,4 and the corresponding
eigenvalues AJ of the matrix of state R (43).

All the computations were carried out in accordance with their
own programs at EMC GIER 1in the Institute of Numerical Calculations
of the University of Warsaw.

19




‘4 | —=Figure 5. Coefficients of damping
28 = e i sepc - £ and frequencies of oscillation
’_,——"""""”"'Tﬁi“‘ n of the first four eigenvalues
TP e SRS S _— Al through A, as a function of
eost———F—— —t = the stiffness of the system
P Bk ¢ of control of aillerons.
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The results have been

presented in the form of graphs

(Figures 5-9) on which there have

”ﬂziZISj“;\””?“d been represented by the continuous

: line changes of the damping co-

— | efficients &, and with a broken

e ‘ line the frequency of oscillation
I Ny

with the same indices on all

There have been designated

A graphs the eigenvalues correspond-

ing to them,/that characterize the same motions of the aircraft,

wings and ailerons:

1, = ¢, characterizes

aperiodic displacements of

the ailerons B always powerfully damped

£,<0,
A= characterizes
that indicate

= Ey gt inag characterizes
oorrespond to
with a yawing
damped ¢ <0
344

Ais = Esgtines characterizes

the aperiodic spiral motions
weak instability 52>0,

periodic oscillations that
rocking turns p and v coupled
motion r of a motion always

motions periodic or aperiodic

of the ailerons B coupled with the rolling
or motions of the ailrcraft p

A 8 damped £¢<0,0r divergent £; (>0

Aig = E1gtin s characterizes
: always damped

elastic vibrations of the wings
578<0 of requency no7g close

to the frequency of the free vibrations of

the wings w.

20




a) Influence of the stiffness of the control system on the
stability of the airplane. An increase of stiffness in the control
system (Figures 5 and 6) causes a decrease in damping of aperiodic
displacements of the ailerons (B)El with unchanged characteristics
of the spiral motions g2 and of the rocking turn A3M (Figure 5).

An increase in the stiffness also does not influence the elastic
vibrations of the wings nor the frequency n78 as also the damping
g78<0, it has, however, a powerful influence on the damping and
character of the motion of the ailerons that is coupled with the
roll of the aircraft (Figure 6).
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With small stiffness of the control system of ailerons, the
displacements of the ailerons B and the rolling motions of the
aircraft p are aperiodic diverging motions £S>O and g6>0, which in
the presence of an increase of stiffness pass over into periodic
motions of frequency n56, initially divergent &56<0, and then
damped 556<O (Figure 6).

b) Influence of Damping in the System of Control of Ailerons
on the Stability of the Aircraft. An increase in the viscous damp-
ing in the system of control of ailerons (Figures 7 and 8) causes
an increase of the powerful damping gl<<0 of the aperiodic dis-
placements of the ailerons B (Figure T7) with an unchanged character
of the spiral motions of the aircraft g2>0 as well as of the
frequency n3u and the damping g3u<o of the rocking turns of the
aircraft (Figure 7). Damping in the control system also does not
affect the frequency n78 and the damping £78<O of the elastic i
vibrations of the wings (Figure 8).

A change in the damping in the control system has a decisive
and most important effect on the displacement of the ailerons B8
and coupled with them on the rolling motions of the aircraft p
(Figure 8). In the presence of a small damping there appear
harmonic oscillations of frequency €56’ initially powerfully
divergent £56>0, passing over into damped 556 with a simultaneous
decrease in the frequency of oscillation n56. At a certain critical
damping, periodic vibration of the aillerons and wings pass over
into powerfully damped aperiodic motions £5<O and g6<0 (Figure 8).
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Figure 7. Damping coefficients & and frequencies of oscillation
n of the first four eigenvalues Al—xu as a function of the damping

of the system of control of ailerons.

Figure 8. Coefficients of damping & and frequencies of oscillation
n of the eigenvalues XB—AS as a function of the damping of the
system of control with ailerons.

¢) Influence of the balance (trim) of the Ailerons on the
Stability of the aircraft: Previous balancing of the ailerons
effectively influences the dynamic properties of the aircraft
as also even the motions of the ailerons themselves by the
stabilizing of the aircraft (Figure 9).
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A chanpge in the balance has a decisive influence on the displace-~
ment of the ailerons ‘3 and on the rolling motions of the aircraft p.
7ero static balancing just as before (that means the center of mass
of the aileron';ls located on the axis of rotation of the aileron or in
front of the alxis)} causes aperiodic motions powerfully dameecl\Sr;AG
and%éﬁ , moreover,rear balancing favors the appearance of periodic

oscillations of frequency /P]«7 and of damping ?4040’

6. General Suggestions

Takking into consideration of additional degrees of freedom which
are the elastic deformability of the wings and the elastic displace-
ments of the ailer-ons) in relation to the results obtained in the case

of a rigid plane, causes the appearance of four additional eigenvalues,

The eigenvalues ')\,)& >\q_\ are precise equivalents of the eigen—

values that characterize the motions of a rigid aircraft, that is}

spiral motions and rocking turns.

In the case considered, there is a lack of an equivalent that characterizes
the aperiodic powerfully damped roll of the rigid aircraft.

There arises, moreover, a powerful coupling of the relative displace-—

ments of the ailerons@ with the rolling motions of the aircraft p.

Powerfully damred elastic vibrations of the wings do not influence




in a substantial manner the remaining motions of the aircraft;
they, moreover, exclusively depend on the rigidity of the wings.

The results obtained and the suggestions extracted on the
basis of them are fair (proper) for the case considered. The
application of them to another type of aircraft or flying
object requires additional numerical computations in accordance
with the programs worked out.
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