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LATERAL STABILITY OF AN AIRCRAF :AND VIBRATION S OF TI~~ AILERON S WHILE

TAKING INTO CONSIDERAT ION ELASTIC DEFORMATION OF T1~~ WING S AND T}~~
ELASTICITY OF T1~ CONTROL SYSTEM

BY Jerzy Mar~ n iak, and Maria Z~ ocka ( ( W a r s a w )

1 . In t roduct ion

In this work there has been investigated the influence of stiff.-

ness and damping in the system of control  (gu idance~ by ai lerons

while taking into consideration the elastic deformation of the wings

on the lateral stability of the aircraft as well as the vibrations

o’~ the ailerons . The aircraft has been treated as a rigid mechanical

sys temeith  e las t ica l ly  deformable wings  and movable a i lerons .

The equations of motion have been worked out in quasi-coordinates

usin~ the Boltzmann-Hamel equation s /L~/ for mech an ics’ tems with

holonomi~ constraints in a system of coordinates cons - ~. with the

a~ r c r af t .

In the work the assumption has been made that the aerodynamic

forces and moments do not have any influence on the form and frequen-_

cy of the free vibrations of the wings . This assumption has made pos-

~~ble a speci’i exam ’nat on of each inheren t form of wing vibrn~ ions.

~~~~ ~~~~~~~ con ~ .uY n~ a con t~nuous system of an irifintte number of

‘~~~ ‘~ es of t ’ r’~~s~dom have been substHuted for’ by n prec ise ly  de ’ erminel

nr~ ~~ ‘L~ ~‘ees corr’~r~ ondin~ t~ the number of e~ sumed forms . The

i~~~ j  fr~ menc~ es o~ the f ree “~~ ~~~~~~ on.~ h~ve been determined



experimentally by way of resonance investigations ./6,8’.

The ltheari7ation of the equations of motion was carried out on

the basis of the theory of small perturbations /1 ,?,3,7,2D/. It was

assumed that antisymmetrikc motions of the aircraft cause exclus~ vely

antisymmetric changes of the aerodynamic forces and moments , moreover

symm etrlc---symmetric changes of the aerodynamic loads . The above

assumptions made possible the resolution of the system of equations

/1 ,2,3, 20/) which describe an arbitrary motion of the aircraft, in to

two systems : the system of equations of symmetric motions /8,9,13/
antisymmetric

of longitudinal stability, and the system of equations of~mo tion s

of lateral stability /1L~/.

There have been taken into account five degrees of freedom’, of

these three are the degrees of freedom of the rigid aircraft: ro1l~

yaw 1’ , the velocity of lateral d~ snlacements v as well ~~ the anti-

rri~~ptrtc elastic deformations of the wings ~ and the elasti~ deflec-

tion o~’ the aileron s ~~/1~~/.

After 1~ reari~ ation of the system of equations, the solution was

carried out as far as the designating of the eigenvectors and the

eigenvalues of the matrix of state corresponding to them . Sample nu-.

merica~ computations have been carried out for an airplane of the

~il~ e ” class in accordance with their own programs In the Establish-

men t for Numerical Calculation s of the ~Tn1vers~ ty of’ W ars aw .

In the accessible literat ure h~iv in~ to dn w ith the dynaml~’s of

moving objec ’s,o~e does not meet with ~ der~ vat1on of the eluations



of m o t ion  thru  use of the Hamel-Bo lzmann equat ions  for  systems of

holonomic constraints. Properly 1 the use of the Bo ltzmann-Hame l equa-

tions /L~
1 for the deriving of the equations of motion of mobile

(moving) objects in a system of coordinates connected to that object

makes possible in a relatively simple manner a taking into conside-

ration of the degrees of freedom that. result from the deformability

of’ a body as also the relative motions of the elements of the obiect

being examined /9,13,1L~/.

The Bolzmarin-Hamel equations are generali7ed Lagrange equations

of the second type expessed in quasi-coordinates and quasi-velocities.

The quasi-velocities are linear combination s of the generali7.ed velo-

cities whose cooefficients are dependen t on the ~enerali?ed co~rdi—

notes /L~,19/ , where one can include also free (arbitrary) terms as

also clearly (those) dependent on time. /1 9/. In the case considered

such quasi-velocities are kinematic parameters of motion determined

in a sysrem of central axes of’ reference ,rigidly connected with the

aircraft . The kinematic parameters mentioned above are the angular

velocities of’ the a~reraft ~~~~~ as well as the linear velocities

of Its center of mass U,V ,W /1 ,2 , 3 , L~,9, 1~~,1L1 ,19, and 20/.

The equations of motion introduced in the third section of the

presen t work are universal and one can ann]y them directly to the

deacrintion of the motion of arbitrary deformab ~~~~ects in the as--

sumed system of reference.

1
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2.The Assumed System of Reference

For the descri ption of the dynamics of an a i r c r a f t  three systems

of reference are indispensable: the gravitational system precisely

connec ted wit~i the earth OX1y 1 Z1, the velocity system connected wi th

the flow Oxy ~~ as well as the one connected rigidly with the air

craft Oxyz.

D~nr i~1 The assumed system of reference Oxy7 connected with the air

craft as well as the introduced linear and angular velocities.

The momentary situation of’ the aircraft as a rigid body is de-

termined by the situation by the center of mass of the object T

measured with respect to the immovable system of’ coordinates 0x1y1 z1

connected with the earth as well as of the angles of rotation of the

aircraft v , 0, ~~~.

The angles of rotation determine un i quel y the situation of the

system of coordinates rmrecisely connected with the aircraft Oxyz with

respect to the gravitational sys t em of coordinates OXgYgZgWhlC h Is

parallel to the immovable system Ox1y1~~1 ((diac ~ ~
/1 ) .

‘I. 
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The assumed angles of rotation are quasi-Euler angles, called

also aircraft (angles)/1 ,2,19/.

The names of these angles are as follows: fm the angle of roll,

O -the angle of pitch, ~J’ -the angle of yaw.

The mot ion of an aircraft was described in the central system

Oxyz rigidly connected with the aircraft , around axes directed as on

diag #1 and diag #2.

- E‘

~~~~~~~~~ ~~~~L
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Diaar am #2 ~ssumed components of forces and moments in the reference

sys t em Oxy?. connected with the aircraft.

The components of the momentary velocity vectors , linear and

anc~u l ar~~ in the assumed coordina ’e system ((diag #1) are as fol lows :
vector of Linear velocit~ V~

(1) ~ .,

where U deii~ nates the longitudinal velocity, V the lateral velocity

and ~i--the velocity of vertical (n umb ) displacements.

--the vector of momentary angu1ar velocity ~

(2) :

5
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where P is the angular velocity of roll , ~--the angula r  ve loc i ty  of

nitch , R--the angular velocity o~’ yaw .

The vectors of the external forces and the moments of externil

forces acting on the aircraft have the form (diar! ~2):

- ---vector of the external forces j~
(3) F~ L 

)~j~~ /k ,

where X signifies the longitudinal force, Y--the lateral force, ‘- -

the vertical force

---the vector of the main (overall) moment •f(

(14) .~f I.i~ Mj~ Nk ,

where L is the roll momen t , M--the pitch momen t, and N--the yaw mo—

men t.

The angular velocities r ,Q,R are linear combinations of the gene

ralized velocities c~, (‘ and ~I’ with coefficients dependen t upon the

generali’ed coordinates ?‘, Oar~~ ’ and are expressed in the following

form :

I’ 
- 

1 0 • c) :

(~ ) q )  - 0 ~.“ ~~~~~~~~~~~~~ • 
~ 

()

0 - 
. ‘-  ‘~~~ r )  

~~
‘ 

-

The kinerat~~ relations between the l~ nonr velocities

measured in the nnn-mo~fin~ sys tem Ox1 y1 ~

‘-

~~ ~~~ t;he components of’ ve)o—.

ctty U,V ,W ~ir m ~ the followlnc :

ci
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di ’

V A~ ,

dz 1
di

- -

U cO SOCOSW - cOSOS Ifl F di
( 6 )  

S I11~~~SII1OCO SW Sifl~~~~if lOS i f l’I’ f sIIl~~~COSO ~~~
= 

.)S~~~S il t W  
- 

+cos~1~cosW di

(!) -iflOc OSWF cos~15~i i iOs i i i 1’-- i o s ~PcosO d~1
14” 

~- — sj n~~cos~P
• 

— 
di 

-

The relat ions (~) and (6) determine the kinematic parameters

that are quasi_ve ’r~cities .

3. Em ~~Motion of a Deformable Free Oblect

The m~~~ej of a i-ion-deformable aircraft , most fre-~uen tly encoun—

tereci fri the litterature , cannot always he assumed (accepted) in an

investiga ’-~ on of the dynamic properties of an ob .iect . Some r i ç~i d  ari d

elast~ r’ ~‘elative motions can heve a ~uhstantial influence on t~~e

tha” a-’~~er of ’ the motion of’ an ~~ t ‘ ra T I; . In the case of taking into

con~~ deration the elastic flex ihil ~~
t y of the wings , one obta in s a sys-

tem of’ an in fin ite number of degrees of freedom of motion . Practical

~~~~~~~~ r~~rj p. out *f the compul-at too l for such a system is Impos sible and ,

th’refore, there is also used an annroxItii -~te method . It Is based on

the assumption that the aerodynamic forces and moments do not change

the non—elastic free vibrations of the winRa .

The sa~ of a wing (dla ~ #14) is descr~be-l by the ftin~ t ion :

~~ :) ~~~~ : .  ‘ ,

7
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R~s. 3. P~~ j çty model ~ ~~ t u i r,e:~~-~,-c.-c~i k •~tO~)ch obr otów - - it ~~~ . c tr ~ci~~~~ ~::~

Diag ~3: Assumed model of the aircraftand of the angular displace~

ments of the nntisytnmetric rotation s of the air-~raVt.

- 
~~ 

-
~

~~
ø z

~~~~~~ 4 . 1’ ‘: 5-~ y ~!cl r~J’~w i • ech\! ~c~ch I ~~~~~~~~~ ~ ç ti ~~ch ~~~~~~~~

~)ini~ ~Li: Assumed model of the rolling motions and elastic deforma —

tion s of the wings of the aircraft.

where h.(y) Is the successive form of the free v~ihrations. This has

made possible an examination of the influence ‘~n the motion of the

q i r i ’raf’ ‘feach form of the vibrations separately. In agreement (con-

formtty)with the above that correspond t~ the ith form have been pro—

sented as follows :

( 1 )  ,•_
, (~

• , ••) - ‘ ) -: ‘) .

8



_ _ _ _  ----—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There has been taken into consideration also the motion of the

ailerons , which is possible in spite of the blocked control stick ,

due to the existence of elastic deformations in the system of control

by ailerons. The displacement of the ailerons is determined by the

angle of rotation of the aileron ~ eround the axIs of the hin~ es (diag 3)

The equation of motion of ~-he air~~raft hns been introduced In

quasi-coordinates , using the Bol’~7.mann-Hamel equations for holonomic

systems /L1./ . The Boltzmann-Hamel equations are generalized Lagrange

equation s of the second type for non-inertial systems described in

~uas i-coordinates , and they have the followir~ form :

( 8 )  
~~ 

+ 
~~~~~~~>~~~~~ J~~~~~~~~~

•’
~ 

- Q~,

where 
~, r ,i 1 , 2 ,... , i, j .  signifies the number of degrees of

freedom , ~~~~ --the quasi—velocities , T~—- t i~e kinet ic energy in -‘iuasi—

velocities , ~~&—-the quasi-coordinates , --the generalized forces.

The relations between the --~~as1-velocities and the generaLi zed

velocities has the form :

( q ) 
- -

(0
(10) 

-

where ,~~, 
signifies the generalized veloc itiec . •‘ . ~, H,T~,.. .

the generalized coordinates , 1’ .~, t’ ,,. .- .. , •~~~ whereby

there  exists  the fo l lowing  m a t r i x  dependence

( 1 1 )  ~~‘ . 1 ~
- ‘ .1 ‘ -

9
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The triple indexed multip liers (coefficients ) of Boltzmann

are determined by the relaticnshin:

(12) ;“ , ~,Y (~~
‘ ‘ - 

‘ ‘

~~~~~~ “- ‘~ -

.

J ~ . J I~ ~~ ~F
Q 1 1 1  -

In the case when the quasi-coordinates are generaLi zed coor :i iates ,

then the triple-~ ridexed Boltzmann coefficients :‘~ (12) a~e equal

to zero.

In the assumed model of a deformable aircraft the vector of the

quasi— velo cities is the following:

(1 3) ~ -~LU, V, JV , P. 0, R, ~~, ~J,

where U,V ,W ,P ,Q, R determine the relations V) and (6), and the vector

of ~uqsi-coordinates eorr~ sponding to it h~~ n-he form :

( 1 1 4 )  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-t

The veä~ r of the gei~~rali.zed coordinates is as follows :

(1 5)  ~~~~~ . Y i ,  , ~~~~ ~~~ , i~, fi, ~].

The m a t r ix  r ,j  in the case of the assumed model (diag# ’
~ and

:i ia g ~tL~)irL the assumed system of coordinat es  (d ~ a~~~1 ) in conform~nm ce

:.: i t,h the re .lct~ on’i 
(
~

) and ( 6 )  has 4 h e  f oi .)c~;i r ir  f orm :
• ~~~ O~~: 0

- 
. (e1.~1 0 A0 0 ,

(1 6)  0 I -

- -r ~reby the matrix correspondjr~ to it [/ J ’ is determined in t h e  form :

~l7) 1~~ 0 : o
[1 ; . , )  [a~, 1 ’  0 Ai;~ 0

0~~~. 0~~~~~~I

I- )



The majority of the Boltzmann coefficIents y, in the case of

the assumed deformable aircraft are equal to zero. One of the non-

zero Boltzmann coefficients is ?‘
~ 4 - It is computed in accordance wi th

the fol1owinc~ relationship:

8 8
~ 

-
~ lit?, I~~(’ , ,j

(1 8) ~ 
- 

~q. 
h , b ,~ .

, I I - I

The quas-i-coordinates~~ &~~are generalized coordinates. In conform i ty

with the above
-0; ~~

‘- 0

1~~ 1 ,2,.....8 , is simplified and the relationshir (18) assumes

the form - 
-

6 ~ \m( ~ a6~~~~~
a b I ) b 5 b d

= /., L.i I cq1 c

~~_ l 1— I

Analyzing the matrices ~t.~,;j
’ and z:ermits us to nuit e that:

- b,4 = F,~4 b34 -: b 54 b64 ~
-‘ 0; b44 = 1;

a61 = a62 = a63 == a64 = 0; b ,, = b2, = = 0;

st~d
6 ?a (,, ( a .  6— ~ h,~ u44 — —

eq4

- 
~~~~~ ~( -~;ifl (f)

- — - - = os~~,.~q4
&i,6 ~(c os Vcns (9)

- - -   - - sin~ ~,(9,

~~~~ tiY - 3q4j — i.y
cosq~ /‘~~ - .

A ~~~~ ‘~
IL. 

~~~~~~~~

\V j c , i’~t~ c~c eli r~~ flo

- 
COS j ~~~~~ I

The r&~ain ing  non-zero Bo ltzmnnn coe ff i c~ ents are computed analogrus -

ly: they have the fo l lowing values : ~~~~~ ~~‘ - ‘ I.
, ~~~~ _; — - 1 ,

2 __
~~~1 , )‘t’. 1 , ) 16 - - , -- - -

~~ .-
~ 1: —

~~~~

‘ 

LA. 
~~~~~~~ ~

~
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Af c-~ intre-iucing the thus computed Boltzmann coeffic~i~wt s ir.to the

equation (8)we get equations of motion for an arbitrar y free obiect

whose motion is described in the assumed system of reference. The

equations of motion take on the following form :

d I ~i 1 ~ i ~ ~~ JT’(19) 
~it ~, 

,- U  ) it~u 
R 

~

- Q -

-‘ (f~~ J * ~ (~J *  1~(-0) I I - + R-- P —-d t l ~ V / i 1 y c U  , W

d / 2 r ~ I CT’ tii~ cli’(.1) 
:~~-~wJ ~‘~r w ~~eu Q i 

~~~
(22) ~~!~)-~ ~‘ _

~~ V W+ P
~,,

V_
~~~~~R f  ~T~~Q =Q~

d I C r ’I  ai’ aT’ aT~ CT’ ~3j*

JI Q J
_ +

aU W 1W ~~- R-- t)R 1’
~~~~~’

d I or ’\ aT* (21’ ilT’ ai’ aT’ -( 4 )  dz~~~R C.-~ l U  V 4
~~ 2v U~ ~~, Qi- P - Q~, -

(25) d I . 3T*1 j .* 
-

- 
dt~ ~

) cifl 
-

(26) d 1 ô T * \ — 
aT~ *

~~~ / tl~

The equations (19) & ( 21i ) describe the motion of an arbitrary

rigid body in a central system of coordinates connected wi th the ob—

~iect. The remaining two equations are the result of taking into con —

s~ deration additional degrees of freedom ; of the relative motions of

the ailerons (25) and the deformation of the wings (26).

In an ar b it r a r y  mot ion  of an a r b i t r a r y  defo rmable  ob i e c t , the

number of equations of the type (25) can he rrhitrd~y and depends ox-
,‘

c]usively on the number of additionally taken into consideration de-

grees of freedom in the presence of’ the unchang ing  form of the first

s i x  e q u at i o n s ( l 9 ) — ( 2 ~~) .

i2

~ 

— - - -- -
~~

- -
~~~~~~~~~

-
~~~~~~~

---
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~~ 
:- -lu~~t ions  of the Anti~~yr~metr ~ c Motions of a Defo rmabl o A i r c r a f t ;

In an arbitr zrv motion of an ob~ect , e~iu ation 3 (19) thru (26) in ~e-

noral do not resoive themselves into e-watlon s describing symmetric

and antisymmetric r~ot1on r . They f-re very non-linear ordinary flfferen—

~i~~l e1ua~ ions of th~ ~ercnd order. The reso)vin~ of the equation s

~n]y possir)le in use f-~r studies of the theory of small perturba-

tiOn S wi th regard to an established motion ~nd linearization of the

e~ u~~t ion s

In the ri esent work we have assumed t hat  the aircrnft .- ~qrries

out only ~in t-isymmetric motions (dm 1? 3 and diag ~h ) ,  that mean s the

-~-~‘r~~ m ot-~ c-n 1 ’. the rolling motion ‘
~~ the lateral displacemen t

—he antisynimetric displacements of the ailerons fl and the antisymme~

T h i .~ v ibra t ions of the wings ~ In the pre~~nce of the above assunr—

tions, one gets a system of f i v e  equat ion s in the general form :

d lcTT* CT4 ai’ ~r*
(27) ~ CV ) — + CU (2W P

d I a i ’\  ar 4 ar ’ ar ’ ( 2 J *  ~-j -*
(28) 1t ~ CP J C~ 

— 

~V (2 W V •

~~~~ 

R+ CR ~

d iiT ÔT’ ar ~ 0T’ aT’ aT ’
(29) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Qf (2Q~~ ~~

d CT ’ CI ’
(~0) ~1t 

( ~ ) 
-— 

Cfl

d ( 1  42 1 ’(31) 
J t (  

~ 
~~~~ 

-~Qt.

The whole kinet i c enerrv of ‘he airc~’aft. T* eomruted in quas i—

velocities hrs ~ho foflow~ n 
- fori- :

1~



_____ -

= ~~(~f , (U2 + V2 + W2)~f lJ~ +fl t~~
2 +J~P2 -fJ,Q’ -i- J’~R2] ~ J ~,PQ +

(32) +S~
(WP_ UR)+s1(VR JJQ)+S:(IJQ - VP) i - ( (A~ + B ç  B~) I V +

+ (A 1 + B~ I- B’j )  P [A 4 I (Bc 1- B~)x L. - - - B~1Q g~ 
± ((Sr — S~) (1+

+ (I~’,— 1~ ) P  ~ (Sr — S,~) I V ] i 3  I- (B ~~-B~~~f l ,
where

~ b/2 bit

A 1 5 ‘n~(Y) 1~(y) Y dY,  ~~ 5 
,n~(y)h’ (y) dy ,

- b12 --b/i

h/2 b/2

A3 5 ,ir ,(y) / ~(y) ily ,  A4 5 
S, (v)h (y) dy ,

- b/ 2 - 
bfl

b 2  b/2

5 n~,(t4)~ (’~)Jq. 82 • -  5
b12 bL 6,~ b,

b/I h i

B3 5 S,4 (i 1) 1~(~) dq,  84 — 5 in , ( , )  !:(i~) ,~ dii ,
b/2 b . //2 bL

where M3Stgfllfies the mass of the whole aircr~ ft , i , i , ( • 1 ,.

moments  of inertia ~nd the mom ent of the dev~ ar-1on of’ the aircr:ifl

with respec t to the system of reference, Ox - : 
~~~~~~~~~~~~~ 

the ~~~~~~ ~~~
‘

moments of the aircraft wi th respect to the reference sys t em Oxyz :

—-are the moments of inertia ,deviation and static of

the n~~lerons wi th respect to the axis of the hinges ?~ and of the ax~~

of symmetry of the aircraft ~~; 
the upper indices of I & P determ int

respectively the left and right aileron ; !:fl~ / :(,) - are the distri-

bu t;ions of the masses of the wings and of the aileron as a function

of 5rnn: h ( i r ) -—is  the fu n c t i o n  of the S’I I of the w i n g  co r resrond ir

to the form hei~ inveatir~&ted of the free vibrations.

The r onera l ized  forces ar ? e 1r ~~r ii ’ on 4he ric~ht s1de~ or the e~~i’~—

tm on~ (‘7) thru (31 ) determine , ta ;-~~-~ 
- in~-o consideration the

t i ’~ i ener~~ at’ the deformat~ ons of’ the ~~r~~’ ‘-~nd of’ ‘~~n “on -rd sv ’—

ill



system [8, 14], the gravitational forces tl , 2, 3 , 8, 14] as well
as the aero dynam ic force s an d moments [1, 2, 3, 8, 14, 20].

The potential energy of the elastic deformations of the wings
and of the control system of the ailerons has the following form :

( 3 3 )  ~~~~ 2 2
‘ 2 ~ ~ 2 ‘

~~~
‘

where k~ the elastic rigidity of the wings, k~ the stiffness of
the sy stem of contro l of ailerons , where :

I’ll

(3 4 )  k~ ~~ 5 in~Q)h 2 (y )d y
- b/i

is the generalized stiffness of the wings that corresponds to
the taken—into—consideration form of the free vibrations , which
(stiffness) is described by the function h(y) of frequency of
vibrations w.

The viscous damping in the system of control by ailerons
has been taken into account by the introduct ion of Rayleigh ’s

dissipation function U
R
.

(35) - UR ~~~~~~~

The components of the force of gravity In the reference
system Oxyz have the form

- t ( 3 6 )  ‘

where
- 

-H i( - )  
-

A, l’( )  ~~~~
c ’  ~

A
L ________
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and in the case under consideration , which takes Into consideration
exclusively anti—aymmetric motions

(37) 1, m/jc OsOsir1 (J~. -

The aerodynamic forces and moments acting on the aircraft have

been introduced while taking into consideration the stationary

aerodynamics. Linearization of the aerodynamic forces and moments

has been carried out in accordance with the method of Bryan [1, 2,

3, 20]. This method is based on assumption that the aerodynamic

moments and forces are momentary functions of the magnitude of the

changes of velocity, linear and angular and of their derivatives.

These functions have been developed into a Taylor series with respect

to the previously mentioned changed. In these series there have

been considered only terms of the first order [1, 2, 3, 20].

In the case examined it has been assumed that the aircraft

moves with a steady uniform level motion. One assumes that the

steady motion of the air~ raft is subjected to small perturbations ,
that means that :

9” p = p , U - ‘ U0 cons( ,
(3 8) 0 - -

~ 
0~ - Coii ~ t , 0 0, V v ,

r , ~V ~~ 0.

The generalized forces in the equations (27)—(3l) when taking

into consideration the above perturbations and the introduction of

the relations (37) and (38) have the form :

Y~v Y~p 4- Y,r I i i ; . ~ 
I t~ ~~~~

I f - p p f ! ,r 1  ~~ I : , !
~f1,

(39 )  Q~~~~ V v I V j,~~ V r t ” ’ i v ~~~1 v q

- R~p I- R,r I fl

Qt P~,p F?r I F ,

where Y,-~- 
~~~~
‘

, y 
- ~~~~~ 

4 E  are according to the names accepted In
C-u

flight lore , t h e  aerodynamic  derivatives

lt~ 

- - -- - -—~~~ ~~ - - -------- -~~~~--  -~~~~- - - - - . - - - -~~~~-- -  - -
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[1, 2, 3, 20].

The aerodynamic derivatives that appear in the relations (38)
were introduced in El , 2, 3, 6, 8, 14, and 20].

The system of equations (27) thru (31), after taking into

cons iderat ion (28) and (39 ) ,  are converted into a non—dimensional
form dividing the equations of the forces by ~~~~ and the equations
of the moments by QV Sb/2.

M,
— the aerodynamic time ,

- M,
— the relative density of the aircraft ,

— the non—dimensional moment of inertia ,

t~~~
-= 

~~
- — the non—dimensional time ,

t

— non—dimensional linear velocity,

P p t  — non—dimensional angular velocity,

- — non—dimensional derivative of lateral force with
- eSV~ respect to the change of the linear velocity of

S ides lip

- — non—dimensional derivative of the lateral force
Q S~~ bJ 2 w i th  respect to the change of roll angular

- velocity,

~V h 2  — non-dimensional derivative of the yawing moment
1 with respect to the change of the linear velocity

of sideslip,
-‘ — non—dimensional derivative of the roll moment with

respect to the yaw angular velocity change ,

In an analogous manner there have been presented in a non.-

dimensional form the remaining terms (expressions ) of the equations .

The system of equations of motion in non—dimensional form has

been obtained in matrix notation in the following form :

17
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( 14 0)  A~ - I 1~~- I Cx 0,

where x — co t[~i~, -r 1 C P1,

x - -
~ coI[t~,j, r,C, ;iJ ,

whereby

— A is the matrix of the coefficients of Inertia , VIZ

_
1 0 0 0 0 

--

o 1 J f J  f ~ 1J J / /
A =  0 -j~.Ij~ 1 0 0 ,

0 e~ 0 1 e~

___ o J~.-/J,, 0 r~/j,, I

— B is the matrix of coefficient s of damping, VIZ

- - 
—y, —y~,/p (1 -- 

y,/~~) 
0 0 -

— — / - - !~ /j~ 
- 1 fj~f •  I• ~r!Jz ~~~ij : ~

1i
~IJzB— 0 ep e, t’~

e . (k;1~ - r. ;)
0 — rp/Jq —- r,/j ,, — - r~ Iiq -

— C is the matrix of coefficients of stiffness , VIZ

0 -- )‘, O O  0
o 0 0 0

C r-
~ 0 0 0 0 - - -

0 0 O e c Cp

0 0 0 0 (k~ji r~~/j ~

The matrix equation (40) of second order gets reduced to an
equation of the first order in the form :

(4 1) ~~~~ Qi 0, q

18
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also 
1 0  0

1.0 A1’ 
‘ [ C B1’

(142)

where the matrix of state R has the form

1 0  1
(1 4D\ R — P”~ 

- J
“ -)‘ 

- -  - -  

1 - - A  ‘C A ‘ B

The solution has been reduced to the designation (evaluation)
of the eigenvectors q~~ and of the eigenvalues corresponding to

~j.j4 1  ‘~j .j+i ~~1i.i+i of the matrix of state R (143)

The general solution has the form

(4 4) q(t) r~~~~~~ C~q,~cxp( ~1t),

where the C
i 
designate constants dependent upon the initial condi-

tions which are the values of the perturbations from steady motion

for the moment t=O , is the frequency of oscillation of period

- is the coefficient of damping , whereby T ,2 -

is the time of damping down of the amplitude to for E< 0 , and in

case E - 0 , the time of doubling of the amplitude .

5. Numerical Example and Suggestions

The example computations have been carried out for a light air

craft of the tourist class “Wilga ” . We resolve the system of

equations (40) evaluating the elgenvectors q~~ and the corresponding

eigenvalues of the matrix of state R (43).

All the computa t ions  were carried out in accordance w i t h  t he i r
own programs at EMC GIER in the Institute of Numerical Calculations

of the University of Warsaw .

19 
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~ Figure 5.  Coefficients of dam ping
— --- 1 - ---1 -- -  - - - - ~ and frequencies of oscillation

r~ of the first four eigenvalues
— - - --  — X 1 through X 4 as a func tion of 

- - — the stiffness of the system

- 

of control  of ailerons . 

--- -- - -

~
° The resu l t s  have been

- -~~ - I presented in the form of graphs
- ‘ I I 

-, 

(Figures 5—9) on which there have

been represented by the continuous

1 I - line changes of the damping co—

I _ -i 171 efficients and with a broken
-

~~~~ 

- 

line the frequency of oscillation
- . There have been designated

with the same indices on all

graphs the eigenvalues correspond-

ing to them ,/that characterize the same motions of the aircraft ,

wings and ailerons :

A , characterizes aperiodic displacements of
the ailerons B alway s powerfully damped

characterizes the aperiodic spiral motions
that indicate weak instability 

~2
>°’

).3~4~~~~~ 3,4 4~~~ 3.4 characterizes periodic oscillations that
oorrespond to rocking turns p and v coupled
with a yawing motion r of a motion always
damped

characterizes motions periodic or aperiodic
of the ailerons B coupled with the rolling

or motions of the aircraft p

damped ~~6<O ,or divergent ~ 6>0

-
~~ ~~~ .8 

characterizes elastic vibrations of the wings
always damped 

~78 <0 of’ ~‘requency ~78 close
to the frequency of the free vibrations of
the wings w.

20
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a) Influence of the stiffness of the control system on the

stability of the airplane . An increase of stiffness in the control
system (Figures 5 and 6) causes a decrease in damping of aperiodic

displacements of the ailerons (8)
~ l 

with unchanged characteristics

of the spiral motions 
~2 

and of the rocking turn A 34 (Figure 5).
An increase in the stiffness also does not influence the elastic

vibrations of the wings nor the frequency as also the damping

~78<0, it has, however , a powerful influence on the damping and
character of the motion of the ailerons that is coupled with the
roll of the aircraft (Figure 6).

Ii 
~ Figure 6. Coefficients of t— — —~—— - --T

~-7~ r 1  damping ~ and of frequencyI I I I ‘ - 
- of osc i l la t ion  r~ of the- 

J 
- -  elgenvalues X

5—X 8 as a function

200 
- I 1 ) - of the rigidity of the system

of control of ailerons .

~ 
I>”

. 

- •“~ C~~ ~~~~~~~~~~~~~~~~ ‘ed ’

I L H
~~~~~~~~~~~~~~~~~~

I -
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With small stiffness of the control system of ailerons , the
displacements of the ailerons B and the rolling motions of the
aircraft p are aperiodic diverging motions ~~>0 and ~6

>0, which in
the presence of an increase of stiffness pass over into periodic

motions of frequency initially divergent 
~56 <0 , and then

damped 
~56 <° (Figure 6 ) .

b )  In f luence  of Damping in the  Sy s t e m  of Cont ro l  of Ai le rons
on the Stability of the Aircraft . An increase in the viscous damp-

ing in the system of control of ailerons (Figures 7 and 8) causes
an increase of the powerful damping 

~l
<<0 of the aperiodic dis-

placements of the ailerons B (Figure 7) wi th  an unchanged character
of the spiral motions of the aircraft 

~2
>0 as well as of the

frequency and the damping ~34 <0 of the rocking turns of the
aircraft (Figure 7), Damping in the control system also does not

affect the frequency r~78 and the damping ~78 <
~ 

of the elastic

vibrations of the wings (Figure 8) .

A change in the damping in the control  sys tem has a decis ive
and most important effect on the displacement of the ailerons B
and coupled with them on the rolling motions of the aircraft p

(Figure 8) .  In the presence of a small damping there appear
harmonic oscillations of frequency 

~~~~~~~~~~ 

init ially power fu l ly
divergent 

~s6
>0
~ 

passing over into damped with a simultaneous

decrease in the frequency of oscillation At a certain critical

damping , periodic vibration of the ailerons and wings pass over

into powerfully damped aperiodic motions ~~<0 and ~6
<0 (Figure 8).

22



—— —~- --~~~ - - - - ---- ------- - —-- -—----- - ——--—— .~~~~~~~~~.- .
~~~~~~~~~~~~. -

I 
- 1 - -~-t-~--L I

~~~ 
:‘:H-

~:~~~
- 

~~~~~ ~ i ..o \  I

~~~~~~~~~~~~~~~~ r j~ 
H ‘~~ ;~ c~~~~~~~~

\ - L1 J~ L1
~~+‘~ I L:d

i- i~ ure 7. Figure 8.

Fi~~ur~’ 7. Damping coefficients ~ and f requenc ies of osc i l l a t ion
r~ of the first four eigenvalues A 1—X 4 

as a function of the damp ing

of the system of control of ailerons .

i i ~~ure 8. C o e f f i c i e n t s  of damping ~ and f r equenc ies  of o s c i l l a t i o n
r~ of the eigenvalues X

5—X 8 
as a func t ion  of the damp ing of the

system of control with ailerons .

c) Influence of the balance (trim) of the Ailerons on the

Stability of the aircraft : Previous balancing of the ailerons

effectively influences the dynamic properties of the aircraft

as also even the motions of the ailerons themselves by the

stabilizing of the aircraft (Figure 9).
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A change in the balance has a decisive influence on the displace-

ment of’ the ai lerons ‘~~~~ and on the rolling motions of the aircraft ~~~.

‘-ero stat-ic balancing just as before (that means the center of mass

of the aileron~ts located on the axis of rotation of the aileron or in

fran 4 of the axis) ) causes aperiodic motions powerfully damped ’~~k-0

and~~~~~O , moreover, rear ba1ancint~ favors the appearance of periodic

oscillations of freauency /3~ç 
and of

6. General Suggest-ions

Taking into consideration of additional degrees of freedom which

are the elastic defortnability of the wings and the elestic displace-

ments of the ai lerons~ in relation to the results obtained in the case

of a rigid plane, causes the appearance of fou r additional elgenvalues .

The eigenvalues ~~~& >,~~~ 
are precise equivalents of the elgen—

values that character ize the motions of a rigid aircraft, that~ is1
sniral motions and rocking turns.

In the case considered1 there is a lack of an equivalent that characteri zes

the aperiodic powerfully damped rol l of ’ the rigid aircraft.

There arIse~ ,moreover, a powerful coupli n~ of the relative displace—

ments of the pj 1oron3~~ wi th  the rol 1in :~ mot ions  of the a i r c r a f t  a .  —

Powerfully damped elastic vibration -s of the winra do not in f luence  - 

1~~~~ 



—
~ 

— --.-

in a substantial manner the remaining motions of the aircraft;
they , mpreover , exclusively depend on the rigidity of the wings .

The results obtained and the suggestions extracted on the

basis of them are fair (proper) for the case considered. The

application of them to another type of aircraft or flying

object requires additional numerical computations in accordance

with the programs worked out .

-- 

~~~~~~~~~ -

1i ~~~~~~~~~~~~~~~~~~~~~ 
Figure 9. Coef f ic ien ts  of the

- -  

~: ~~~~~~~~~~~~~~~~ damping ~ and of the frequency
- of oscillation ~ as a func tion

I I- ~ -~~ -~~~ - --~ --~~~ - —-
~~~~~~ of the level of static balance

- 1 I I ~ _! - of the ailerons .- - - -k -a -I- . oJ - - H 

- q 18 -0,08 0~ 0 C~ 
— 

~

~~~ J832
I J
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