" AD=AOH45 415

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO F/6 9/2
A PRE=PROCESSOR FOR A STRUCTURED VERSION OF COBOL.(U)
MAR 77 R C HILB

AFIT=CI=77=55 NL

ko

ST

s

V) s

*

.“ \W
e ———————
|

0

ODG FILE COPY.

AD N

A PRE-PROCESSOR FOR A STRUCTURED

VERSICN OF COBOL

Robert Clifford Hilb

A Thesis

Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degyree of

Master of Science

e

s

|
Auburn, Alabama !

March 17, 1977

[DISTRIBUTION STATCMENT A

Approved for public rele

=

\
1

UNCLASSIFIED

SECURITY CLASS'FICATION OF THIS PAGE (Whan Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE e e
REPGRTERUMURE T2 GovT AccEssioN No./a, PECIS-PRT S CATALDG WUMBER
)] T cI-77-55 ’ & ! Z s Y. o,
4 S et A o et T P T el s st S
4, TiTLE (and Subtitle) S r T 07 RTPORT @ PERIOD COVERED
) digubtitie)
{ IA Pre-Processor For A Structured Version of Thesis
|
‘ CO_I_’g]‘-_ - € FERFORMING ORG. REPORT NUMBER
. |7 AuTwORCE e F 8 CONTRACT OR GRANT NUMBER(S)
77/ | ROBERT CLIFFORD/HILB ,
| CAPTAIN, USAF {
9. PERFORMING ORGANIZATION NAME AND ADDRESS 70 FACG7AM ELEMENT. PROJECT, TASK
) CRT A A WORK UNIT NUMBERS
AFIT Student at Auburn University, Auburn, f
Alabama - i e)
i } | /v
L — _— 5. ..ol ' SIS ..
11. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORF-DAFE—— -
AFIT/CI March 17, 1977 ~
Wright-Patterson AFB OH 45433 T3 NUMBER OF PAGES~ _ -~
70 pages _ | /o, /|
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)-.
Unclassified 4
1Sa. DECL ASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

\M
, Captain, USAF

JERRAL F. GUES

Director of Information, AFIT APPROVED FOR PUBLIC RELEASE AFR 190-17.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)
Attached
FORM
DD | an 72 1473 €0iTiON OF 1 NOV 6515 OBSOLETE UNCLASSIFIED

SECURITY CL ASSIFICATION Cf

THIS PAGE (When Data Entered)

A PRE-PROCESSOR FOR A STRUCTURED

VERSION OF COBOL

Robert Clifford Hilb

Permission is herewith granted to Auburn University to make

copies of this thesis at its discretion, upon the request of
individuals or institutions and at their expense. The author
reserves all publication rights.

Signature «thor

20). 77

Date

Copy sent to:

iii

e B

A PRE-PROCESSOR FOR A STRUCTURED
VERSION OF COBOL

Robert Clifford Hilb i

Certificate of Approval:

_E‘\"L [\) H crgl

JJ N. Hool, Associate B. E. Herring, Chairman
Professor Associate Professor
Industrial Engineering Industrial Engineering

J ’?)W R\ (Y \2‘&\@5 |
-:—-:— Hig ot ham Paul F. Parks, Dean ;

Assistant Professor Graduate School
Industrial Engineering

DDC

r\!'h

. |

0CT 20 1977

DISTRIBUTION STATE MENT A
Approved for public rclease;
Distribution Unlimited

VITA

Robert Clifford Hilb, son of Theodore Robert and

Mar jory (Hayes) Hilb, was born April 21, 1948, in
Plainfield, New Jersey. He attended Westfield Public
Schools and graduated from Westfield Senior High School,
Westfield, New Jersey in 1966. In June, 1966, he entered
the United States Air Force Academy and received the degee
of Bachelor of Science in Engineering Sciences (Astronautics
and Computer Science) and a commission as a Second
Lieutenant in the United States Air Force in June, 1970.
After of a number assignments in the 0. S. Air Force, he was
sent by the Air Force Institute of Technology to the Gradu-
ate School, Auburn University. He married Barbara, daughter

of Earl Easten and Louise (Currier) Hawkins in June, 1970.

iv

THESIS ABSTRACT

A PRE-PKROCESSOR FOR A STRUCTURED

VERSION OF COBOL

Robert Clifford Hilb

Master of Science, March 17, 1977
(BeS., U.S. Air Force Academy, 1970)

77 Typed Pages

Directed by Bruce E. Herring

A version of COBOL that permits structured programming

was designed. It was implemented using a pre-processor that
outputs standard CUOBOL. The pre-processor will indiscrim-
inately run programs that are either structured or non-
structured, or with very limited restrictions, programs with
a mixture of both. A structured IF was included as a modi-
fication of the COBOL IF. 1In line looping was created with
a redefinition of the PERFORM, maintaining all of its capa-
bilities and adding a DO UNTIL. The PERFORM was also
modified to allow a CASE construct. All new structures are

completely nestable.

L15T OF FIGURgs-......-..Q.............-.‘............- vii
I‘ INTRODUCTION.Qo..coo.-.-o.-oo.n.--.o.--.o...-..o. 1 1
Statement of the Problem
Literature Search
Structured COBOL
II. LANGUAGE DESIGNeececvocccnsccsmoesmonssnsnascscsnamons 18
IF THEN ELSE
In-Line Looping
III. PRE-PROCESSOR IMPLEMENTATION. ceveccmccccccssccncsce 27
IF Processing
PERFORM Processing
IV. CONCLUSICNS AND RECOMMENDATIONS.cccecweccncncacas 34
REFERENCEs.l-‘..-.....Ol......-....O...'.....C....I.... 3b
APPENDICES...--....-.-O.-.-‘-.-..-..O.Q.............Q.. .,8

A.

B.

TABLE OF CONTENTS

Source Listing of the Pre~proCesSsSOleeacececses 39

Example COBOL PrOgLfAMecsscssesscanccssccsacnecs 55

Processed COBOL PrOgJradMeccewnscesccsccccmsceses 61

User.s Manudl.-....‘.-....‘.....Q...‘...I..l. 68
vi

LIST OF FIGURES

BaSAC SEEUCLULOS. . scsssaanassesmasesenosnsssnssesnnse 7

Extended StrUCtUreS.cecccsccvcsccncscccscnsnnsccscsnsans 10
Top do'n Design.I....-.-...Q.‘.........Q-.-......-. 11

PLOJraM DeSigNeeceeececceccccsencasnccsacssccsccnccnscscss 29

vii

i

I. INTRODUCTICN

Structured Programming is one of the generally accepted

methods of reducing software costs, both of acquisition and
maintenance, while improving program quality. Until very
recently the high cost of hardware relative to software re-
sulted in the development of software that minimized the
need for and, as a result, the cost of hardware. Today the
sitv tion is reversed and in the future it is predicted to
even more one-sided. With the concentration on

-technology development, the size and cost of computer
hardware has made a quantum jump downward while the avail-
able core has increased almost as much. At the same time,
the size and complexity of problems that can be programmed
have greatly increased. Almost everyone in the computer
field, especially those ir management who have seen their
budgets and cost estimates for software developmeat and
maintenance soar out of sight, have realized something must
be done.

According to McGowan (1975), in 1975 the U. S. Air
Force estimated that 65% of its computer costs went towards
software and by 1985 95% will. He estimated that overall 10

billion dollars was spent cn software in 1975. Gansler

-

N DS S G e ; " B

nmene.:

2

(1976) stated that U. S. Air Force avionics software devel-

opment costs were $75 per instruction while maintenance of
the same software was close to $4000 per instruction. A
method that has been shown by Baker (1972a) to not only
reduce 1initial development costs but more importantly to
reduce the time and cost of debugging and increase
maintainablity is top down structured programming. It was
Dijkstra (1968) who first formalized structured programming
into a programming discipline. However, it is a method of
programming that was probably unconsciously used by the best
ALGOL programmers for years.

when PL/I, SIMSCRIPT and other second generation lan-
guayes were developed!, the facilities for structured pro-
gramming were included, again unconsciously since the
tenants of structured programming had not been formulated at
the time. Of the three early languages, ALGOL had the only
real facility for structured programming. Unfortunately,
due to its poor implementation and the opposition and
competition from a major U. S. producer of hardware and
software, it was and is the least used of the three. Most
programming is still done in FORTRAN or COBOL. These were

languages that were originally designed to run very quickly

—— —— ——

1For the purposes of this thesis, FORTRAN, ALGOL, and
COBOL are defined as first generation lanquages and the
other major languages that were developed, or else
redeveloped, like SIMSCRIPT was, from the mid 60's on, as
second generation languages.

3

in small computers. They were and still are seriously
lacking 1in ease of designability and maintainability, and as
a result often have poor reliability. Due to its widespread
use 1in academia and utter incompatability to the methods of
structured programming, mary changes for FORTRAN have been
recommended. Some have been implemented in both pre-
processors and, for some vendors, in compilers.

COBOL has been a different story. According to Yourdon
(1975c), little nas been done for COBOL because of disdain
for it by the academic community and the lack of research
that is done by the business community in language design.
However, recently there has been widespread support for
changes to COBOL. In April of 1975 a conference was held by
the Programming Language Committee of CODAYSL!, the
Symposium on Structured Programming in COBOL-Future and
Present. Many proposals were put forth by the participants,
ranging from not changing COBOL at all (a minute minority)
to changing it so much that it would resemble PL/I. By the
end of the conference it was generally agreed that some
changes were need2d, although no agreement was reached on
exactly what changes should be made. The changes are not
close to happening. One participant, Edward Yourdon (1975b)

predicted that it would be 1978 or 1979, at the earliest,

1CODOSYL, the COnference On DAta SYstems Language, 1s
the body which governs the specification of the COBOL lan-
guage.

b,

s

4

before any changes would be reflected in any new versions of

COBOL.

Statement of the_Problem

The purpose of this study was to design a structured
version of COBOL and implement it using 4 pre-processor.
Structured programming in PL/I was used to design and imple-
ment the pre-processor. The considerations used to design

the structures were: (1) as much as possible redefinitions

of existing COBOL structures were used, (2) any new verbs or
structures were patterned atter existing COBOL structures,
and (3) all existing programs could be run against the pre-
processor with no changes.

Rather than drastically change the COBOL language,
which would, most likely, produce resistance from experi-
enced programmers, a gradual change would allow a more
orderly transition to a fully structured COBOL. The changes
made here are an addition to, rather than a change to,
COBOL. This will allow the training of new programmers in
structured programming while slowly transitioning the old
programmers. All of the tasic structured programminyg struc-

tures are included in this version of COBOL. As a future

proposal other refinements can be added. Of course, too
drastic a change to COBOL would result in a language so

similiar to PL/I that PL/I could be used instead. However,

due to the large investment in existing COBOL programs, it

will not be economically feasible, at the present, and prob-

5

ably not for the forseeable future, to replace COBOL.

Therefore, not only is a version of COBOL needed that will

allow structured programming, but also one that will run all
existing COBOL programs. When maintenance is done on exis-
ting programs the new structures should be able to be
intermixed with the old. No distinction should be necessary
between old and new programs; they should all run under the
same job control language including the pre-processor. The
route taken in this study is, then, to extend the meaninyg of
certain COBOL verbs, while keeping all previous meaninygs,
and adding some minor terminators and optional modifiers for

clarity.

Literature_sSearch

Many books and papers have been written on structured
programming. In fact, it is probably the favorite subject
of both programming theoriticians and practitioners at the
present time. COBOL has been used almost strictly by the
business community. Until recently this has resulted in the
absence of research on the subject as cited before in
Yourdon (1975c). The theoretical foundations for structured
5 programming in any language were laid in 1966.

Bohm and Jacopini (1966) showed that any program with
one entry and one exit (that is, an algorithmic solution to
‘ a problem as almost all programs are) could be programmed

with only the following three logic structures: simple se-

, quence, conditional branch to two choices (IF THEN ELSE),

it

and iteration (DO WHILE) (Fig. 1). Put more simply, any

program, no matter what its complexity, can be written with
a combination of these three structures. Dijkstra (1968)
took their basic theory and developed a practical program-
ming methodology.

The Structured Programming presented by Dijkstra
includes using only the above three structures. Any program
can be developed by the appropriate nesting of these struc-
tures. The flow of program ccontrol must include single
entrance and exit with no branching out of the flow allowed.
Most practitioners advocate the black box or modular con-
cept (McGowan, 1975), where each module, subroutine, func-
tion, etc. is a small easily understood section of code.
Many recommend that the size be cone page or less. This
allows for both easy debugging and maintenance. The concept
is also fundamental for top down programming. This also
eliminates the forward and backward referencing of eilither
the basic or conditional GO TO. Dijkstra (1972) maintains,
and it seems obvious, that any type of branching out of the
logic flow not only causes the logic of the programming to
be hard to follow but is also a chief cause of error. To
add to both the understandability and readability of pro-
grams, both indentation and documentation aie also required.

For example,

MA

AN

1.~=-BASIC STRUCTURES

Figa.

|
|
(3]
Q
| =
—— e —— <3]
A =) |
| o |
] m
] [} t
« = _
i 3 -
""" oy
] =
| -
| n
|
|
|
A
|
|
I
|
|
p— prs i —
g A A A K a

——

—-——>‘

A
|
|

A L 2
] *
|
.I.lnll#O*.l.ll. _ ——
! | *
| | *
“ (&3] | A
n v 1
| | | M | | |
| _ | | | |
| i = { | 1
| | | m _ | |
| | | Bl | |
{ ! !] ! ! “
A B | |
) - | |
! | |
| 1 _
* | |
Al IS | |
—— ¥ e — —_———— 0
A
» » \
* L}
A
[}
[}

DO WHILE

PERFORM 2100 UNTIL A.

-
-

2100«
IF B THEN
IF D THEN E
ELSE F
ELSE G.
is much harder to follow than

PERFORM UNTIL A.

IF B THEN
IF D THEN
E
ELSE
F
END-IF
ELSE
G
END-IF

END-PERFORM.
0f course for anyone else to understand, check, or change a
program, it is much easier if, at the beginning of each sec-
tion, is written what the programmer thinks the section will
accomplish.

It has also generally been accepted (Yourdon, 1975a and
McGowan, 1975) that extension to the three basic structures

be allowed. These include DO CASE, DO UNTIL, and LOOP EXIT-

et

9

IF END-LOOP (Fig. 2). These do not affect the underlying
principles of structured programming and will allow more
efficient coding. Although anything can be programmed using
the three ltasic structures, limiting programming to just the
three sometimes results in awkward, inefficient, and
hard-to-understand code, this 1s just the opposite of the
purpose for structured programming. Extensions to the basic
structures are sometimes necessary to avoid the "turing
tarpit" (Couperus, 1975), where everything is possible but
nothing is easy. Some authors still feel there should only
be a limited number of structures and constructs (Yourdon,
1975c) . However, one of the main tenants of structured pro-
gramming is that it allows for better debugging and mainte-
nance because it results in understandability and simplic-
ity. What is siampler than having one construct that does
what its name implies, yet replaces a group of complicated
code (as many of the advanced constructs in PL/I do)?

Besides a method for coding, top down structured pro-
gramming is also an overall programming strategy. Most pro-
gramming has been traditionally done with a bottom up ap-
proach where the lowest level programs, subroutines, or sub-
systems were designed, coded, and tested first. These pro-
grams needed driver programs to test them and for integra-
tion testing with parts that other programmers had written.
Probleas often occurred during integration because of

inconsistent data definiticns and interfaces (McHenry,

10

Fige 2.--EXTENDED STRUCTURES

x
1 * x
-=>0=—=—=—- > j———=>* >
A s gf * x
l x
| b5 S I
1 i |)
------- | § (== m=mmmm

——— —— —— ———— —— ———————

' *
v i ! Lk
-=>0====== > |===—~=D>% *—=>
. 1 * *
*
DO UNTIL
| |
°| jo
. ‘.___-i *
® L)
° 8
. |----| s
o, L ol]0 ®
* je ° ’-_____‘ @ .
* |® & e
-—=D% | @ S Q==
x l. s [X J
t_‘_‘o ® | . L) L[]
® e | |e .
. | S v
® @
[] . -
e | ----l L)
e | le
O
DO CASE
P A —

11
1973) . The whole system was sometimes delayed while impor-
tant segyments were reworked to allow proper interfacinge.
The top down approach, as the name implies, is just the op-
posite.
Top down programming follows the natural systems ap-
proach (Yourdon, 1975a and McGowan, 1975). The system is

broken down into a tree structure (Fig. 3). First the

Fig., 3.--TOP DOWN DESIGN

{ MAIN |
 ERRR
1
. e St S o W
| | | | | !
§ o A I A
N cintico! PR e
1 1 1
. NS S . A L 1
| I | | 1 1 | | I |
i1 8 J§ B | I B | STUB i B 11 B |
SRR B PRI ET W R | | i1 |
NGRS,
I o
1 | i
STUB STUB

ma jor functions are identified (A). From there the next
level down is identified, lesser functions (B) derived fronm
those above it. At the same time the interfaces and data
definitions are defined. During this development all

undefined or uncoded segments or branches of the tree are

12

replaced with a dummy stub. For example, if the interface

is in the form of a procedure, when the procedure is called,
a message or a dummy value is returned. This allows the

system to be continually tested as the development proceeds.

é Since many errors occur in the interfacing, they are
g removed early in tae development since they will be the most
: tested part of the system. Each time the system is tested
! ‘ all that was completed before is tested again. This is com-
E pared to the traditional bottom up method, where the overall
. system is not tested until the end of the development, and
1 l at that point it may be difficult to pinpoint where the
g problem is.
' The method was first used in the now famous New York
Times project (Baker, 1972a and 1972b). The project in-
' volved the automation of the New York Times morgue. It was
' to take the newspaper's clipping file and, via a thesauras
and abstracts, have an on-line capability of search and re-
‘ trieval, with the added capability to retrieve the original
article on microfiche and display it at the remote on-line
' terminal. The final system required more than 83,000 source
' lines of code. It took 132 man-months of effort. Using
normal projections and the generally accepted figure of five
' lines of code per man-day, the project under old methods
would have taken over 500 man-months. To add to this was
' the fact that the system had an historic low error rate,
' with most of these errors, as could be expected using top
‘ |

»
A« 4 o Al

13
down design, in the lowest level and least tested code. But
these also turned out to be the easiest to fix with no error
taking more than one day to correct. Equally impressive
results were obtained in a seccnd project, the mission simu-

lation of Skylab for NASA.

Structured COBOL

All of the above literature were on the gemneral topic
of structured programming and did not address the problem of
structured programming in COBOL, except for McGowan (1973)
and Yourdon (1975a). They, together with McClure (1975) and
numerous other authors in journals and recent publicatioas,
included small sections on how to simulate structured COBOL
for those constructs in COBOL which hinder or prevent struc-
tured programming from being attained. 1In most cases, the
authors recommend that COBOL be changed, although few jive
specifics on how it should be changed. Some, such as
Kauffman (1975), recommend that a pre-processor be written
and used until the official language changes are made and
incorporated into compilers. All of the serious proposals
for changes to COBOL, in regard to structured programming,
were presented at the 1975 CODASYL conterence.

Although some authors added a few of their own specific
examples of COBOL code that hindered structured programming,
almost unanimous agreement was shown for four serious
shortcomings of COBUL. These are: (1) there is insuffi-~

cient blocking capability, which partly results in the next

14

two shortcomings, (2) the IF THEN ELSE can not be fully

nested and as a result does some unexpected things, (3)
there is not a method for performing in~line loops, and, (4)
there are no capabilities for the DO UNTIL and CASE struc-
tures. Although there was agreement on the main problems,
there was none in the proposed solutions to each of the
above problems. Many solutions did not fit the criteria
that were previously established. Others were contradictory
to what the majority felt were needed. A fourth considera-
tion for designing the language was thus added to the origi-
nal three. The structures should be those that are likely
to be adopted in the official COBOL language, therefore al-
lowing as much compatibility as possible for the future.
The tollowing articles were considered, along with those
previously mentioned, when this structured version of CUBOL
was designed.

Benning and Nead (1975) made the broadest proposal.
They proposed to use labeled BEGINs and ENDs to designate
blocks in all structures. This would solve the problem of
both the IF THEN ELSE and the in-line PERFORM, in the in-
line PERFORM using PERFORM blocke... with the BEGIN-END form-
ing the block. They also recommended a CASE structure en-
tirely independent of the PERFORM. They suggested allowing
argquments for the PERFORM and changing the AT END to an IF

statement.

15

Couperus (1975) only suggested adding a CASE statement
by allowing subscripted labels. Then either the GO TO or
the PERFORM could be used to operate on the subscripted
label.

Goguen (1975) recommended local terminators to solve
the blocking problem. They would include the END-IF, END-
PERFORM, END-KEY, END-ON, and END-AT. The END-IF would
solve the problem of the nested IF THEN ELSE. She, as did
Benning and Nead, suggested an in-line PERFORM, but used the
END-PERFORM to delimit it. She recommended retaining the
UNTIL and adding a WHILE, which would be its exact opposite,
and appears a little superfluous. These two would form the
DO WHILE structure. To have a DO UNTIL structure, she would
add a REPEAT UNTIL at the end of the PERFORM loop. To add a
CASE structure, the GO TO DEPENDING ON and the PERFORM were
combined into a PERFORM DEPENDING ON... With the target a
group of subscripted CASE's. The AT END, CNSIZE ERROR, and
INVALID KEY would be changed by having local terminators
END-AT, END-ON, and END-KEY. One final change would be
making EXIT a return from anywhere in a paragraph being
PERFORMed.

Hide and Croes (1975) made some PL/I type suggested
changes. To solve the blocking problem, they proposed local
terminators, CLOSE-IF, CLOSE-WHILE, CLOSE-LOOP, and CLOSE-
PROCEDURE. Along with the CLOSE-IF, they would add an

ELSEIF to solve the nested IF problem, however there does

A

16

not seem to be much advantage to adding another reserved

word. In fact, they did not really specify what would be
the difference between their new ELSEIF and the normal ELSE
IF. It just seems harder to read. Rather than allowing an
in-line PERFORM, they would add a myriad of other con-
structs, WHILE, REPEAT UNTIL, LOOP, DO, and PROCEDURE, each
as a stand alone verb with their own individual local
terminators.

Hicks (1975), as with most, would use local terminators
to obtain blocking. His choice of terminators was quite
unigque, however. He would reverse the normal IF THEN ELSE
and have IF ELSE THEN. The conditicnal and true part would
fall between the IF and ELSE and the false part between the
ELSE and THEN, with normal program flow continuing after the
THEN. He would also allow the ELSEIF that Hide and Croes
suggested. Instead of changing the PERFORM, he would have a
general loop with the exit allowed anywhere in it. It would
take the form of LOOP ... EXIT ... REPEAT. The EXIT with a
conditional could be moved anywhere in the loop, so that to
obtain a DO WHILE construct the EXIT would be at the top, a
DO UNTIL construct would have the exit at the bottom. This
seems to be a very flexible idea.

McComas (1975) would prefer biocking like Bening and
Nead suggested, the BEGIN and END. However, he would not
label them. He would eliminate the PERFORM altogether. He

would replace the call function of it with internal proce-

17

dures and the expansion of CALL to include internal proce-

dures. The looping function of PERFORM would be replaced
with DO, redefining UNTIL and adding WHILE, CASE, and TIMES.
To add one more PL/I type change, he would do away with the
A-margin and require labels to be followed by a colon.

McGuinness (1975) would have local terminators also.
The END-1F would terminate the IF and allow for complete
nestingy. An in-line PERFORM would be allcwed with END-
PERFORM terminating it. The AT END, INVALID KEY, and ONSIZE
ERROR would all be changed to implied IF statements. That
is, there would be an assumed IF in front of each one. This
would allow the use of ELSE and END-IF after thenm.

Oorr and Neely (1975) also recommended the local
terminators END-IF and END-PERFORM to solve the blocking,
nested IF, and in-line PERFORM problems. They would make
CASE a seperate verb and would have it in the form CASE SE-
LECTION ... END-SELECTION. They would also like to see a

feature for in-line expansion added to the COBOL language.

e

II. LANGUAGE DESIGN

The primary considerations for the proposed change to
COBOL have been given earlier. To review the criteria, (1)
as much as possible redefinitions of existing COBOL struc-
tures would be used, (2) any new verbs or structures would
be patterned after existing COBOL structures, (3) all exis-
ting programs could be run against the pre-processor ¥with no
changes, and (4) the structures should be those that are
likely to be adopted in the official language. A careful
analysis of the problems in COBOL already presented show
that the blocking problem is throughout COBOL. However, as
far as structured programming is concerned, in any language,
the critical structures are the IF THEN ELSE and loopinge.
Although some of the suggestions were for a general block
structure, such as the BEGIN-END, this would be a drastic
change to COBOL, and except for the just mentioned two
structures, the Paragraph and Section constructs already
constitute at lz:ast a type of blocking. Thus local
terminators were used in this design. The two selected were
END-IF and END-PERFORM. The use of the END was because of
the precedent in COBOL of the END DECLARATIVES. The naming

of particular ENDs was used to allow better distinction of

18

19

which block was ending and to avoid ambiguity. The use of
the hyphen was to avoid a possible problem when, as often
occurs, the IF THEN ELSE is not followed by a period. The
addition of the second IF or PERFORM, could result in an END
IF IF or END PERFORM PERFCRM situation, which would tend to
be forgotten or to be confusing. The use of these two local

terminators also solves the problems of the nested IF THEN

~

ELSE and in-line loops. To add a DO UNTIL.;ndHCASE con-
structs without adding whole new constructs and local
terminators, additions to the PERFORM verb were made. As it
turns out, then, all changes could be made using criterion
one and it was not necessary to use criterion two. Criteria
three and four are discused under the individual

redefinitions.

The easiest redefinition to make was in solving the
nested IF THEN ELSE problem. As can be seen in the Struc-
tured COBOL section of this thesis, the great majority of
authors favored adding a local terminator to close the IF

THEN ELSE; specificially END-IF was favored. Thus criterion

four was complied with. As can be seen from the
redefinition and as explained below, criterion three was

also satisfied.

AP S R, TR e W E—
20
: e
| FORMAT
[s -
l
l {statement-1 } {statement-2
| IF condition [THEN] { } ELSE { }
l {NEXT SENTENCE} {NEXT SENTENCE}
|
|
] [END-IF)
1
|

The restrictions that make it possible to rum all old pro-
grams against the pre-processor follow. All of those that
are listed in the present official COBOL language. If the
optional END-IF is used, THEN becomes mandatory. Any type
sentence is allowed in either the true part, between the
THEN and ELSE, or the false part, between the ELSE and the
END-IF. Complete nesting of IF statements can occur in

either part. Of course, no periods are allowed as this

would terminate the IF statement as in official COBOL. Thus

all criteria for design have been met.

In-Line_Looping

Although there was not as great a majority of authors
who preferred the in-line PERFORM for the generalized solu-
tion to the in-line looping problem, there were a signifi-
cant number who did. Also there was no consensus of those
who preferred the in-~line PERFORM on what form the changes

should take. Therefore the simplest and most straightfor-

ward change was accomplished. To be consistent with the IF,

e s s . s il e e

21

the END-PERFORM, as stated before, was used as the local

terminator. All looping was accomplished by redefining the
PERFORM formats. There are four PERFORM formats in official
COBOL and the changes in all of them will be explained iadi-
vidually. The first format has no applicability to looping
and a redefinition is really meaningless. However, for con-

sistency, the following redefinition is made.

FORMAT 1

PERFORM [procedure-name-1 THRU procedure-nane-2]

[sentences END-PERFORM]

— A e S G—- S S d—

The following restrictions are added to those in official
COBOL. Procedure-name-1 becomes optional; however either it
or the END-PERFORM, but not both, must be present. Logical-
ly, THRU procedure-name-2 can only be used if
procedure~-name-1 is used. This restriction also applies to
the other formats. The pre-processor will correctly process
Format 1, but the result, when using it as a structured PER-
FORM, would be the same as a simple sequence of the sane
sentences, paragraphs, or sections.

The same general changes are made for the other formats
but the changes become more meaningful. Format 2 becomes as

follovws.

——— —— o — — — — —

e e i i i AT A2

22

FORMAT 2

PERFORM [procedure-name-1 THRU procedure-name-2]

e A

{integer-1 }
{ } TIMES [sentences END-PERFORM]
{identifier-1}

The only change is the addition of the in-line capability.
As above THRU procedure-name-2 is only allowed when
procedure:;ame-1 is used and when procedure-name-1 is used
nothing is allowed after TIMES.

Format 3 has added to it the capability for the DO
UNFIL. When UNTIL is used in COBOL, the structure that
results is actually a DO WHILE since the condition is

checked before entering the loop. Since the object was to

minimize the changjes to COBOL and a redefinition of UNTIL

would both tend to confuse and would create problems in run-
ning old programs, the problem occurred about which word to
use to implement the DO UNITL. The problem has been dis-
cussed before. Tompkins (1975) points out while and until
do not, by any stretch of the imagination, connotate
"zero-or-more" or "one-or—-more". In fact, in any literal
interpretation, they are logical opposites. He suggests
that they should be used as inverses and that a new looping
structure of REPEAT WHILE and REPEAT UNTIL be used as the

"one-or-more", with the DO being the '"zero-or-more". This

23

would be fine for a language like PL/I where a DO coastruct

is already present. However, since this type of change 1is
not wanted for COBOL, the word BEFORE was chosen as having
the closest meaning to imgly "cne-or-more". Format 3 thus

becomes,

FORMAT 3

— -—— —_—— - — -

{(UNTIL }
{ } condition-1 [sentences END-PERFORM]

i

|

|

|

| PERFORM [procedure-name-1 THRU procedure-name-2]
|

|

|

| {BEFORE}

|

with no other restrictions or changes execpt for those in

the previous two formats. Format 4 has no changes except
for the addition of the in-line capability. It also has no

additional restrictions or changes as shown below:

FORMAT 4

PERFORM [procedure-name-1 THRU procedure-name-2]

[sentences END-PERFORM]

The capability that was to be added to the perform verb
was the CASE construct. It did not easily fit into any of

the other formats, so an additional format, Format 5, was

B - — — - — - N b s St

—— — — — — — — 2 o .

24

added. For the authors that did suggest adding a CASE con-
struct there was no agreement on elither the form of the CASE
statement or the label targets. Thus the simplest form was
chosen, again in the hope that this would result in
compatability with any official changes. 1In this case, this
vas the closest to compliance to criterion four that could

be obtained. The resulting format is as follows.

FORMAT 5

PERFORM CASE identifier-1(arithmetic-expression)
identifier-1(1) [statements
identifier-1(2) statements

identifier-1(n) statements]

END-PERFORM

— . A G G — - — — — — — — — —
s [t S . — G G G S G O — — —

The subscripted identifier-1 must have consecutive sub-~
scripts from 1 to N, where N is greater than or equal to 1.
The statements after the subscripted identifier-1 are op-
tional. As a result a statement may have more then one sub-
script identifying it, allowing more flexibiltiy. This is
limited by the fact that the subscripts must be consecutive.
Periods are optional after the arithmetic expression, after
each subscripted identifier, at the end of each statement,

and at the end of the construct, after END-PERFORM.

B e RN

25

There are a few other restrictions on all of the above

new constructs and redefinitions that are a result of imple-

mentation by a pre-processor. The first was mentioned for

some of the individual redefinitions but applies throughout.
The restriction in COBOL that no periods appear in an IF
statement or else the IF statement is terminated applies
equally for any of the structured constructs. This should
not affect any programs and should not in any way hinder the
use of any of the structured constructs. All will work with

no periods in them. Programmers must be aware that when

they are programming in an IF statement, that they use no
period until after the END-IF. A second restriction is that
no labels starting with Z are allowed. These are reserved

for the pre-processor. The following reserved words are

i i L e i e e e

also added: END-IF, END-PERFORM, BEFORE, and CASE. The
only other restriction is that a structured PERFORM not be
used in a non-structured IF statement. This restriction
should not matter to programmers writing a new progranm,
since they should be using either all structured or all non-
structured programming. It might affect a programmer doing
maintenance on an old program. Any time a structured PER-
FORM is add=2d to an old program, the programmer must insure
that it is not within an IF statement or else the IF state-
ment must also be re-written. The reason for this restric-
tion is the pre-processor will sometimes add periods when

processing a structured PERFORM. These periods are taken

26
care of when the structured IF is processed, so they do not
affect the structured IF. The removal of these restrictions
and further additions to COBOL are discussed in the conclu-

sion of this thesis.

R

Wk

III. PRE-PROCESSOR IMPLEMENTATION

This chapter describes the PL/I program (Appendix A)
that implements the pre-processor. PL/I was used for two
reasons: one, it is a lanquage designed for character ma-
nipulation while COBOL is not, and, two, it is a language
that can be programmed using structured programming and thus
would be a good example to show structured programming
methods. Top down design was also used to design the pro-
gram. Many changes were made between the original top down
design and the final design that corresponds to the final
programe.

The major reason that the top down design had to be
completely reworked was a result of the same problem that
caused the previouly discussed restrictions. The problem is
that no periods are allowed in the IF statement. This meant
that in the processing of the structured IF's and PERFORMS,
when nesting occurred some way had to be found, in rewriting
the mixture of the two, to have no periods, yet to still
have proper blocking. The only fairly simple method that
was found involved taking the original design, which
intermixed the processing, and separating it into two job

steps. Thus in essence two programs were written. This is

27

'l!......!!!-qh;iwsﬁm;&g.f;‘_ L

R O

—

28

shown in Fig. 4 where an immediate breaking into two sepa-

rate parts at the top of the design tree occurs. The rest
of the design can be seen in Fig. 4 and the two separate job

steps are explained below.

e —— -

The first job step scans the soutrce program for IF
statements. It prints out the source listing as it scans,
if requested. Each IF statement is checked. If it is a
structured IF then it is processed, if not it is ignored.
The general scheme is that statements between the THEN and
ELSE and the ELSE and END-IF are moved to a paragraph at the
end of the source program and are replaced with a PERFORM of
that paragraph. Nesting can occur as many times as neces-
sary. After this job step, all structured IF statements end
up in the form: IF condition PERFORM label-7Zn THRU label-
Zn+1 ELSE PERFORM label-Zm THRU label-Zm+1. Since all other
statements, including structured PERFORM statements, are in
the PERFOEMed parayraphs at the end of the source progranm,
they can be processed in a second job step regardless of
periods.

The only executable statement in the main program of
the first job step is a call of SCAN. This initiates all
other execution through calls cn procedures. At the begin-
ning of each procedure there is a small paragraph that
explains what each procedure does. The three main proce-

dures are called PROCESS_IF, NEST_SCAN, and NEST_IF. The

e — -
DTV AT T QITTY T .
AaUdd da S ldav L
N T ANLTLT QT AN Yoy TCATAY {
Qo Auwvad OO AU {1 D g i

% e rrore ..)411-
TONVEID O TR

1

29

jzoaza] fazon anig]

1 4

NOTE T A T
WUV LG LAl

oY A T Y Tasen'® 4 BCIT ¥
B A S i i Tk

e . T W———

SR —_

30

PROCESS_IF is called from the main scan any time an IF is
encountered. Unless it has already been determined that the
present statement is a structured IF, by the preseance of a
THEN in the same line, the source program is searched for a
THEN or an ELSE. An IF statement that has a THEN in it is
processed the same whether it is actually a structured IF or
not. When an ELSE is found first, it means that the present
statement is not a structured IF so a return without proc-
essing is made. The IF is transformed into the form given
above and then NEST_SCAN is called to build the paragraph.
NEST SCAN builds the paragraph until either another IF is
encountered or else an ELSE, END-IF, or period is encoun-
tered. If any of the latter three is found, then a return
is made to PROCESS_IF, where the completion of processing 1is
done. If an ELSE has been returned, it will be necessary to H
build another paragraph so PROCESS_IF is called again.

If, back in NEST_SCAN, an IF had been found, a differ-
ent processing path must be taken. In this case since a
paragraph is being built at the end of the source progran,
it is necessary to have a procedure which will consecutively
build new paragraphs at the end of the string that is being
built; this is NEST_IF. 1Its operation is almost exactly

like that of PROCESS_IF except instead of building the IF-

PERFORM in the middle of the source program, it does all its
operations at the end of the source program. It also turns

out that for simplicity and for core size savings, it is

31

better to dump each paragraph as it is completed, so that

some paragraphs will end up ahead ot the paragraphs from
which they are performed. This only occurs at the end of
the original program, however, and does not afrect anything

except readability.

e ————————— =

The second job step takes the output from the first job
step and scans it for structured PERFORMs, processing then
as encountered. Since all of the structured PERFORMs have
already been removed from the structured IFs and are not al-
lowed in the unstructured IFs, it is a simple matter to
change all of the in-line PERFORMs into a PERFORM of a
paragraph. The paragraph is inserted immediately after the
PERFORM, using a GO TO to remove the paragraph from the
stream of the program. All of the PERFORMs except for the
CASE are transformed into the following form.

PERFORM Zn THRU 2Zn+1 conditions.
GO TO Zn+1.
Zn.
sentences.
Zn+1.
The only additional processing reguired is for the PERFORM
BEFORE. 1In this case an additional simple PERFORM on the
paragraph is added. This insures at least one execution of
the paragraph. A large part of the job step is used to keep

the labels straight in nesting situations.

32

Another large part of the job step is used in the proc-

essing of the PERFORM CASE.

TO DEPENDING ON was used. However,

To implement the CASE, the GO

the target of a GO TO

DEPENDING ON is very limited; only an identifier of four

digits or less with a limited USAGE is allowed. To add the

flexibility that is allowed by the definition of the PERFORM

CASE given in the last chapter,

identifier, named CASE,

target for the CASE,
the variable CASE in
processed CASE takes
COMPUTE CASE =
GO TO Zn.
case-label-1.
statements.
GO TO Zn+1.

case-label-2.

case-label-n.
statements.
GO TO Zn+1.

Zne

the pre-processor adds an

in the working storage section. The

¢n arithmetic statement, is assigned to

A COMPUTE statement. The form that the

is as follows:

(arithmetic statement).

GO TO case-label-1,

case-label-2,

l {

< AN L S

33
case-label-n,
DEPENDING ON CASE.
Zn+ 1.

The liberal use of GO TOs in the processing of the PER-
FORMs does not result in a structured product. However,
this output is invisible to the programmer. It does have
the advantage of putting the processed code in the position
corresponding to its position in the input, thus allowing
for easier debugging. As in the first job step, all proce-
dures have an explanation of what they do at their beginning
in the program listing. PROCESS_PERFORM and NEST_SCAN have
about the same purposes as the corresponding procedures in
the first job step. They are not as complicated and there
is no need for a procedure correspcanding to NEST_IF, since
there is no need to distinguish between any nested PERFORMs
as they all will be put in-line in the source progranm.

Appendix B i1s a COBOL program that is written using the
structures defined here. Appendix C is the same program
after it has been processed. Appendix D is a user’'s manual

for the pre-processor.

IV. CONCLUSICNS AND RECCMMENDATIONS

These changes to COBCL need to be adopted into the
official COBOL language and implemented into the COBOL com-
pilers as soon as possible. The advantages of structured
programming that have been given here and shown to work in
some of thg pro jects listed, prove that there are definite
cost savings and increased reliability resulting from its
use. The longer the delay, the more unstructured programs
will be written which will have to be maintained in the
future. The major obstacle seems to be the disagreement on
exactly what changes need to be made. As seen in the 1975
conference, in many cases there is wide disagreement on
which structures are needed and how they should be imple-
mented. The changes suggested here are a minimum that will
allow good structured COBOL to be written. They also have
the advantage of offering the least change to, and are the
closest to keeping, the traditional COBOL. Thus they have
the best chance of being accepted. Any change to a language
should be evolutionary, both because of the investment in
programs and to keep the retraining and transitioning as
simple as possible. If any drastic or revolutionary changes

to a language are needed, it is proktalkly best to go to a

34

e o

'riuunnnnlmg&rnuggiwamnggﬁ;;;; - i

35

ARG

completely new language, thereby making a clean break with

old methods and any bad habits that may have evolved.

g

The advantages of implementing these changes in a con-

piler as soon as possible are twofold; it will increase

coding efficiency and it will remove those restrictions that

’ had to be made because of the pre-processor. Since the
local terminator is present in the IF, it should be possible
to implement the compiler with no restrictions on the use of
periods in the IF THEN ELSE. This will allow better reada-
bility and make the program easier to follow, a definite
goal of structured programming.

The only other constructs whose value would make them
candidates for implementation in the near future would be
allowing an exit in the middle of a loop as suggested by
Hicks (1975) and explained in the first chapter, and adding

; local terminators for the AT END, CN53IZE ERROR, and INVALID
| KEY as suggested by Goguen (1975). Of the two, the first

would probably have the most usage and therefore should be

;
i1
‘
!
3
L
4
i
.
i
|
|
3_
;
|
|
i
]
!
'
.

implemented first.

This study has examined structured programming and its
possible use in COBOL. Recommendations for changes to COBOL
to allow structured programming have been made and imple-

! mented in a pre-processor. They definitely need to be

accepted and implemented into the official language. Until

‘ this is done, the pre-processor can be used to attain struc-

‘ tured programming in COBOL.

1

L ST S —

REFERENCES

Baker,F. T., Chief programmer team management of production
programming, IBM Systems Jourmal 11, 1 (1972a), pp-.
56—730

Baker, F. T., System quality through structured programming,
Proc. FJCC 1972b, pp. 339-343.

Bening, L. C. and Nead, J. M., Some Modifications to COBOL
Designed to Promote Structured Programming, Structured

Programming in COBOL-future and present, New York, N.
Y.: ACHM, 1975, pp. 134-144.

Bohm, C. and Jacopini, G., Flow diagrams, turing machines
and languages with only two formation rules. Comnm.
ACM 9, 5 (May 1966), pp. 366-371.

Couperus, J., A Proposal to Enhance the COBOL Language With
a Case Construct, Structured Programming in COBOL-
future and present, New York, N. Y.: ACM, 1975, pp.

_—————— - -

15-35.

Dahl, 0., Dijkstra, E., and Hoare, C., Structured Program-

2 S 22t 21

ming, New York, N. Y.: Academic Press Inc., 1972.

Dijkstra, E. W., Go To Statement Considered Harmful. Comm
ACM 11, 3 (Mar 1968), pp. 147-148.

Gansler, J. S., Remarks, Managing The Development Oof Weapon
System Software, Maxwell Air Force Base, AL.: Air
University 1976, ppe. 4-1 - U4-12,

Goguen, N. H., Control Structures for Structured Programming
in COBOL, Structured Programming ip CQBOL-future and
present, New York, N. Y.: ACM, 1975, pp. 68-87.

Hicks, J. R., Suggested Changes to COBOL to Facilitate
Structured Programming, Structured Programming in
COBOL-future and present, New York, N. Y.: ACM, 1975,
pp. 88-94.

36

37

Hide, D. J. and Croes, G. A., SCOBOL-Shell's Structured

present, New York, N. Y.: ACM, 1975, pp. 240-275.

Kauffman, R. L., COBOL/Structured Programming (Will the
Marriage Survive?), INFOSYSTEMS 22, 2 (Feb 1975), pp-
48-50.

McClure, C. L.,
Notices 10, 4 (Apr 1975), pp. 25-33.

McComas, C. A., Can COBOL Be a "Structured Programming" Lan-
guage? gStructured Programming in COBOL-future and
present, New York, N. Y.: ACHM, 1975, pp. 107-114.

McGowan, C. L., Top Down Structured Programming Technigjues
New York, N. Y.:

McGuinness, j., Changes to COBCL for Structured Programaing,

New York, N. Y.: ACM, 1975, pp. 95-106.

McHenry, R. C., Management Concepts for Top Down Structured
Programming: FSC 73-0001 Gaithersberg, Md: 1BM
Corporation, 1973.

Oorr, K. T. and Neely, P. M., A Modest Proposal for the
adaption of COBOL to facilitate the development of
structured programs, so as to make said programs
beneficial to the public. Structured Programming in
COBOL-future and present, New York, N. Y.: ACHM, 1975,
pp. 5S4-67.

Tompkins, H. E., Comments on "Structured Programmming in a
Broduction Programming Environment"™, IEEE Trans. Soft-
ware Eng. 2, 1 (Mar 1976), p. 67.

Yourdon, E., Techaijues of Program Structure aand Design,
Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1975a.

Yourdon, E.,
Datamation 21, 6 (Jun 1975b), p. 97.

Yourdon, E., Teaching Structured COBOL to the Masses.
Structucred Prograsming in COBOL-future and preseant,

New York, N. Y.: ACM, 1975c, pp. 115-133.

-‘
Structured Programming in COBOL. SIGPLAN
Petrocelli/Charter, Inc., 1975.
Symposium on Structured Programming in COBOL.
i i ~%;7;mn- S—

APPENDICES

38

_—

— W e

APPENDIX A

SOURCE LISTING OF THE PRE-PROCESSOR

39

! 40
/* THIS PROGRAM TAKES A STRUCTURED VERSION OF COBOL AND
PROCESSES IT INTO ANSI COBOL.

THE FIRST JOB STEP PROCESSES ALL IF STATEMENTS INSURING
THAT PROPER NESTING IS OCCURING. */

E— o o

MAIN:
PROCEDURE OPTIONS (MAIN) REORDER;

i DECLARE FILLER CHARACTER (69) INITIAL('. ')
- /¥ FILLER IS USED TO PAD A CHARACIER STRING WITH A PERIOD
AND BLANKS WHERE NECESSARY. 4

DECLARE ENDING CHARACTER(1) ;
/¥ ENDING IS A PLACE TO PUT A ELANK OR PERIOD. */

DECLARE CAKD CHARACTER (160) VARYING INITIAL((160)°® *);
/* CARD HOLDS THE INPUT CARD IMAGE PADDLD WITH BLANKS. */

DECLARE BLANKS CHARACTER (160) INITIAL((160)*' *);

DECLARE COUNT PICTURE '999' INITIAL (500);
/¥ COUNT HOLDS THE CURRENT LABEL COUNT. *x/

DECLARE STARS CHARACTER (80) INITIAL((80)**");

ON STRINGRANGE PUT DATA;

OPEN FILE (ER&KORS) PRINT;

/¥ ERKOR MESSAGES ARE PRINTED OUT CN ERRORS. *x/

/*¥ OTHER FILES USED: OUTPUT IS WHERE THE NON-
NESTED SOURCE IS STORED,

BOTTOM IS WHERE ALL NESTED

SOURCE IS PLACED, IT IS CONCATENATED TO
OUTPUT IN THE NEXT JOB STEP. */

/* THE CALL ON SCAN IS T4E ONLY STAIEMENT EXECUTED IN THE
MAIN PROGRAM. IT INITIATES ALL OTHER ACTION IN
THE FORM OF PROCEDURE CALLS. */

CALL SCAN;
/**#*#tt##‘#t***tt***#‘*##‘t#*‘.t#‘0‘l-‘ttttt#“#t#tOt‘##tt‘tt/
GET_CARD:

/* HANDLES ALL INPUT AND OUTPUT WHEN WE ARE NOT IN A NESTING

SITUATION. REMOVES SEQUENCE NUMBERS AND ANYTHING IN
COLUMNS 73-80. THEN PADS WITH BLANKS. */

PROCEDURE;

41

ON ENDFILE(SYSIN) CALL CLEANUP;

PUT PILE (OUTPUT) EDIT (SUBSTR (CARD, 1,80)) (COL(1),A(30));
GET EDIT (CARD) (COL (1) ,A (80));

PUT EDIT (CARD) (COL (1) ,A(80));

CARD = ! ' |) SUBSTR(CARD,7,66) }| BLANKS;

END GET_CARD;
JEEEERRRXRRERREIRRRARRBE AR B RS SR SRR AR KR AR R SRS RN R SR S EE R R R X K%/
SCAN:

/¥ SCAN IS IN PROGRESS WHENEVER THE PROGRAM IS NOT IN AN
IF NEST. SCANS FOR IF STATEMENTS, CALLS FOR
PROCESSING WHEN FOUND. */

PROCEDURE;

DO WHILE (*1'B);
IF INDEX (CARD,' IF ')>0 THEN
IF INDEX (CARD,* THEN) >0 THEN
CALL PROCESS_IF (COUNT,*THEN',*0'B) ;
ELSE CALL PROCESS_IF (COUNT,' THEN®,*1'B);
CALL GET_CARD;
END;
END SCAN;

/tt‘t‘#t‘#t‘tttt#t#*##“‘#.‘t*.‘ttt*‘t.‘t‘#tt*ttt#‘tttt‘t.lt‘/
ERROR:
/* ERROR PRINTS OUT AN APPROPRIATE ERROR MESSAGE AND
TERMINATES THE PRE-PROCESSOR. HERE IS WHERE A
METHOD FOR PREVENTING FURTHER JOB STEPS FROM
EXECUTING COULD BE PLACED. */
PROCEDURE (MESSAGE) ;
DECLARE MESSAGE CHARACTER (80) VARYING;
PUT FILE (ERRORS) EDIT (STARS) (A (80));
PUT SKIP(2) FILE(ERRORS) EDIT (MESSAGE) (COL (1) ,A(80));
PUT SKIP(2) FILE(ERRORS) EDIT (STARS) (A(80));
CALL CLEANUP;
END ERROR;
/t##‘t“#‘#t‘.‘0#..‘##‘.#'#‘."#‘t. "0.0‘“#“.#.“O‘t‘l“##‘/

CLEANUP: /¥ A CONVENIENT PLACE TG STOP. */

PROCEDURE;

Rer _ 03

42

STOP;
END CLEANUP;

/‘tttttt t*ttttt0tt#t.ttt*t.#ttttttttt#tt#ttttttttt#*tt*tttttt/
PERIOD_PLACE:
/* PROCEDURE FINDS THE END OF A SENTENCE OR PARAGRAPH
AND PLACES A PERIOD THERE OR REMOVES IT DEPENDING
ON PLACE. */
PROCEDURE (PLACE,STRINGS) ;
DECLARE STRINGS CHARACTER (6000) VARYING;
DECLARE PLACE BIT (1);
DECLARE (I,J,K) FIXED BINARY(15) INITIAL(O);
I = VERIPY(STRINGS,' ');

/% ALTERNATE BETWEEN FINDING THE NEXT BLANK AND THE NEXT
NON-BLANK UNTIL ONLY BLANKS REMAIN. */

DO WHILE (I>0);

J = INDEX (SUBSTR (STRINGS,K),' ') + K;
I = VERIFY (SUBSTR(STRINGS,J),' ') ;
E =K #* 1;
END;
/% CHECK IF THE LAST CHARACTER IS ALREADY A PERIOD. x/

IF PLACE THEN DO;
IF SUBSTR(STRINGS,J-2,1)~
SUBSTR (STRINGS ,J=-1,1)
END; ELSE
IF SUBSTR{STRINGS,J-2,1)="'.' THEN
SUBSTR (STRINGS ,J=2,1) = ' *;

'<' THEN

END PERIOD_PLACE;
JEEREEERREERER R R BR KR AR R R R AR SR SRR R R KR E R R R E K KRR R SRR XN/
PROCESS_IF:

/* THIS PROCEDURE WILL PROCESS THE OUTER MOST NEST OF AN
IF STATEMENT. */

PROCEDURE (LABEL_#,KEY_WORD,SET) RECURSIVE;

DECLARE SET BIT(1);
/* SET, DO WE KNOW ALREADY ITS A STRUCTURED IF? */

DECLARE KEY_WORD CHARACTER(6) VARYING;
/* KEY_WORD, ARS WE AT AN ELSE OR AN END-IF? */

R —

43

DECLARE SENTENCE CHARACTER(6000) VARYING INITIAL('');
/¥ STORAGE FOR CODE x/

DECLARE (LABEL_#,TEMP_LABEL_#) PICTURE '999';
/% STORAGE FOR DIFFERENT LABEL COUNTS. */

/*¥ NEXT LOOP SCANS FOR EITHER A THEN OR AN ELSE.
IF THEN IS FOUND THEN WE COULD HAVE A STRUCTURED
IF AND PROCESSING CONTINUES. IF AN ELSE IS FOUND
WE DO NOT HAVE A STRUCTURED IF AND WE RETURN. */

DO WHILE (SET) ;
CALL GET_CARD;
IF INDEX (CARD,* IF ')>0 & INDEX (CARD,' THEN ')>0 THEN
CALL NEST_IF (LABEL_#,'THEN',SENTENCE,'0"'B) ;
IF INDEX(CARD,* THEN ')>0 THEN SET='0'B;
IF (INDEX (CARD,' ELSE ')>0 | INDEX(CARD,'. *)>0)
& INDEX (CARD,' THEN ')=0 THEN DO;
/¥ NON-STRUCTURED 1IF, ALL PERIODS THAT HAVE JUST
BEEN PLACED MUST BE REMOVED. */
IF INDEX (CARD,' ELSE ')>0 & INDEX(SENTENCE,'. ')>0 THEN
CALL PERIOD_PLACE(*'0*'B, SENTENCE) ;
RETURN;
END;
END;

I = INDEX (CARD,KEY_WORD) +4;
PUT FILE (OUTPUT) EDIT (SUBSTR (CARD,1,I)) (COL(1),A(80));
SENTENCE = SENTENCE [{ * Z* {{ LABEL_# {{| FILLER;
SENTENCE = SENTENCE || ° ' || SUBSTR(CARD,I,68);

TEMP_LABEL_# = LABEL_# + 1;

/¥ WE NOW CAN PLACE A PERIOD IF WE KNOW WE ARE
COMPLETELY OUT OF THE NESTING. */
IF KEY_WORD='ELSE' THEN
ENDING = '.*';

ELSE
ENDING = ' ';
CARD = PERFORM Z' || LABEL_#% || ' THRU 2°*

|| TEMP_LABEL_# || ENDING;
PUT FILE (OUTPUT) EDIT (CARD) (COL (1) ,A(80))

LABEL_# = LABEL_#% + 2;

/¥ AT THIS POINT ALL IS SET UP TO NEST THE IF SO WE CALL
NEST_SCAWN TO FIND EITHER ELSE, END-IF, OR A PERIOD. */

CALL NEST_SCAN (KEY_WORD,LABEL_#,SENTENCE) ;
CALL PERIOD_PLACE('1'B,SENTENCE) ;

44

SENTENCE = SENTENCE || ! z' |
PUT FILE (BOTTOM) EDIT (SENTENCE) (&)
SENTENCE = '°';

| TEMP_LABEL_# (| FILLER
g

/¥ IF WE RETURNED WITH ELSE WE MUST PROCESS THE FALSE PART
OF THE STRUCTURE, OTHERWISE WE ARE THROUGH. */

IF KEY_WORD='ELSE' THEN
CALL PROCESS_IF (LABEL_#,'ELSE',"'0'B) ;

END PROCESS_IF;

/‘**‘#**‘t*#‘#t.ttt#tttt#it#tt#t0#‘#"tttt‘#‘t.tt**t###‘##*#t/

NEST_SCAN:

/% NEST_SCAN STORES ALL CARD IMAGES UNTIL IT FINDS A KEY
WORD, IT THEN RETURNS WITH THE STORED IMAGES. */

PROCEDURE (WORD,COUNTER,LIST) RECURSIVE;

DECLARE WORD CHARACTER (6) VARYING;
/¥ RETURNS WITH KEY WORD. */

DECLARE COUNTER PICTURE '999¢;

DECLARE LIST CHARACTER(6000) VARYING;

ON ENDFILE (SYSIN) CALL ERROR('STRUCTURE CLOSING MISSING?);
/% SCAN UNTIL IF, ELSE, END-IF, OR A PERIOD IS FOUND.

DO WHILE('1°'B);

GET EDIT (CARD) (COL (1),A(80));
PUT EDIT (CARD) (COL(1),A(80));
CARD = ! ' || SUBSTR(CARD,7,66) || BLANKS;

IF INDEX (CARD,* ELSE ')>0 THEN DO;
WORD = 'ELSE';
RETURN;

END;

/% IF WE FIND AN IF, WE START NESTING. *x/
IF INDEX (CARD,' IF *)>0 THEN DO;
IF INDEX (CARD,*' THEN *)>0 THEN
CALL NEST_IF(COUNTER, 'THEN',LIST,'0'B);
ELSE CALL NEST_IF (COUNTER, *THEN',LIST,'1'B);
END;

/% END-IP MUST BE REMOVED, PROCESSING FOR AN
END-IF OR A PERIOD IS THE SAME SO THE

€7

e rr———

/*

/*

45

SAME KEY WORD CAN BE RETURNED. x/
I = INDEX (CARD,*'END-IF?) ; :
J = INDEX (CARD,'. ');

IF I>0 { J>0 THEN DO;
WORD = 'END-IF';
IF I>0 THEN
SUBSTR (CARD,I,6) = ' ';

RETURN;
END;
NO KEY WORDS FOUND SO STORE CARD IMAGE. */
LIST = LIST || CARD;
END;

END NEST_SCAN;

JEFEREREERREX AR AR EREREER R AR AR IR BN AR R R R R R AR AR KRR RR /

NEST_IF:

NEST_IF IS ALMOST A COPY OF PROCESS_IF EXCEPT INSTEAD
OF PRINTING OUT CARDS IN THE STREAM OF THE PROGRAM
THEY ARE PUT AT THE END OF THE SOURCE PROGRAM. */

PROCEDURE (NUMBER,TYPE,L15TS,SET1) RECURSIVE;

DECLARE SET1 BIT (1);

DECLARE (NUMBER,NUM) PICTURE '999';

DECLARE (LISTS,TEMP) CHARACTER (6000) VARYING;
DECLARE TYPE CHARACTER (6) VARYING;

DECLARE STRING CHARACTER (80) VARYING INITIAL('');
DECLARE POINTER FIXED BINARY (15) ;

POINTER = LENGTH (LISIS) ;

DO WHILE(SET1);
LISTS = LISTS || SUBSTR(CARD,1,80);
GET EDIT (CARD) (COL(1),A(80));
PUT EDIT (CARD) (COL (1) ,A(80));
CARD = ¢ ' || SUBSTR{CARD,7,66) |] BLANKS;
IF INDEX(CARD,* IF *)>0 & INDEX (CARD,' THEN *)>0 THEN
CALL NEST_IF (NUMBER,'THEN',LISTS,'0'B);
IF INDEX (CARD,' THEN *)>0 THEN SET1='0'B;
IF (INDEX (CARD,' ELSE ')>0 | INDEX(CARD,'. ')>0)
& INDEX (CARD,* THEN ')=0 THEN DO;
I = INDEX (SUBSTR (LISTS,PCINTER), '« ');
DO WHILE (I>0);
SUBSTR (LISTS,I+POINTER-1,1) = ' !
I = INDEX(SUBSTR(LISTS,POINTER),"
END; ‘

Y

46

RETURN;
END;
END;

NUM = NUMBER + 1;

I = INDEX (CARD,TYPE) +4;

LISTS = LISTS || SUBSTR (SUBSTR (CARD,1,I)||BLANKS,1,80);
TENP = ¢ Z' || NUMBER || FILLER;

TEMP = TEMP |] SUBSTR(CARD,I,80);

ENDING = '.'; ELSE ENDING = ' *;

STRING = ! PERFORM Z' || NUMBER J{| ' THRU 2°
}) NUA |) ENDING || BLANKS;
LISIS = LISTS || STRING;

NUMBER = NUMBER + 2;

CALL NEST_SCAN(TYPE, NUMBER,TEMP) ;
CALL PERIOD_PLACE('1'B,TEMP) ;

TEMP = TEMP || ! Z']| NUM || FILLER;
PUT FILE(BOTTOM) EDIT (TEMP) (A);

IF TYPE='ELSE' THEN DO;
CALL NEST_IF (NUMBER,'ELSE',LISTS,'0'B);
END;
CALL PERIOD_PLACE('1'B,LISTS) ;
END NEST_IF;

END MAIN;

47

/* THIS SECOND JOB STEP TAKES THE OUTPUT FEOM THE PREVIOUS
STEP WITH ALL NESTED IF'S PROCESSED AND PROCESSES IT
FOR IN-LINE PERFORMS. */

MAIN: 1
PROCEDURE OPTIONS (MAIN) REORDER; :

DECLARE (CARD,NEW_CARD) CHARACTER (80) VARYING INITIAL{((80)"' *);
/¥ CARD IMAGE STORAGE 2

DECLARE (COUNT,COUNT_PLUS) PICTURE *'999' INITIAL (100);
/* LABEL COUNT STORAGE */

l DECLARE NEXT_WORD CHARACTER(40) VARYING;

DECLARE CASE_LABEL CHARACTER (40) VARYING;

DECLARE CASE_NUMBER PICTURE *9*' INITIAL (1);
’ DECLARE STARS CHARACTER (80) INITIAL((80)''*");

DECLARE RESERVED({30) CHARACTER (10) VARYINs INITIAL

(* ACCEPT *," ADD ',' ALDER *,Y APPLY *," CALL "," CANCEL °*,
i ¢ CLOSE',' COMPEUTE *',' COBY “," DISPLAW *,* DIVEDE *,
ENTER %,* ENTRY *,' EXAMINE '," GO %, GOBAGCK “,' EIF °*,

MOVE *," MULEFPLY *," OBEN *,
REWRETE Y,Y SEBEK %,' SHEARE *,
TRANSPORM *,' USE *,' WRITE °

s
Y BERFORM Y,* READ %,
v SEePp *,' SUEBTRACT Y,
)

OPEN FILE (ERRORS) PHRINT;

CALL FIND_PROCEDURE_DIVISION;
CALL SCAN;

/***#tt*tt##t*tttttt#*##‘#*0t“tl#****#‘t#*##tt#*t*ttttt‘t*tt**/
GET_CARD:
/* HANDLES ALL CARD IMAGES WHEN NOT IN NESTING SITUATION. ¥/

PROCEDURE;

PUT FILE (OUT) EDIT (CARD) (COL (1), A(80)) ;
GET EDIT (CARD) (COL (1) ,A (80));
PUT EDIT (CARD) (COL (1),A(80));

END GET_CARD;
/####*tt#tt*‘**##t##*tt#t*‘#**#‘t#‘tt#‘#ttt#ttt#ttt"‘t‘t“‘t#t/
FIND_PROCEDURE_DIVISION:

/* THIS PROCEDURE SCANS FOR THE WORKING STORACE SECTION

IF IT DOES NOT FIND ONE IT MAKES ONE.
IN EITHER CASE IT ADDS THE RESERVED WORD CASE

48

FOR THE PROCESSING OF CASE STATEMENTS. */

PROCEDURE;

DECLARE (I,J) BIT (1) INITIAL(®*1'B);
DECLARE K PICTURE *'9°*';

DO WHILE (INDEX(CARD,'PROCEDURE DIVISION.')=0);
CALL GET_CARD;

/% IF THE PKOCEDURE DIVISICN IS FCUND FIRST, THEN A WORKING
STORAGE SECTION MUST BE ADDED. */
IF INDEX (CARD,'PROCEDURE DIVISICN.')>0 THEN DO;

IF I THEN DO;
“PUT FILE (OUT) EDIT(* WORKING-STORAGE SECTION.?)

(COL (1) ,A(80)) 3
DO K=1 IC 9;

PUT F1LE (OUT) EDIT (' 77 CASE' || K i
L PICTURE 9(4)."') (COL(1),A(30));
END;
I = '0'B;
Jd = '0'B;
END; ELSE J = '0'B;

END;

/* IF WORKING STORAGE IS FOUND FIRST NEED GNLY TO ADD CASE. */
IF INDEX (CARD, *WORKING-STORAGE ')>0 THEN DO;
PUT FILE (OUT) EDIT (CARD) (COL(1),A(80));
DO K=1 TO 8;
PUT FILE (OUT) EDIT(* 77 CASE' || K |]
' PICTURE 9(4)."') (COL(1),A(30)):

CARD = ¢ 77 CASE9 PICTURE 9 (4)."';
I .
END;
END;
END FIND_PROCEDURE_DIVISICN;

/¥ tt#‘*"“#*t###.t*#*‘tt#*###tt#**tlltt*###*tt*#*tttt#tt####t**/

SCAN:
PROCEDURE;
/* EVERYTHING STARTS WITH A PERFORM. %/

ON ENDFILE(SYSIN) CALL CLEANUP;

DO WHILE(*1'B);
IF INDEX (CARD,*PERFORM') >0 THEN
CALL PROCESS_PERFORM (COUNT,CASE_NUMBER) ;
CASE_NUMBER = 1;

49

CALL GET_CARD;
END;
END SCAN;

VaeR A Rt R 22 2 2 R R R R R R R R s R S S R s L L L 4
NEST_SCAN:

/* ONCE WE ARE IN A PERFORM PARAGRAPH SEARCH

END-PERFORM OR A NESTED PERFORM.

FOR AN

*/
PROCEDURE (KEY_WORD) RECURSIVE;
ON ENDFILE(SYSIN) CALL EKROR ('STRUCTURE CLOSING MISSING');
DO WHILE ('1'B);

IF INDEX (CARD,?*PERFORM') >0 THEN DO;

COUNT = COUNT + 1;
CALL PROCESS_PERFORM (COUNT,CASE_NUMBER) ;
END;
IF INDEX (CARD,*END-PERFORM')>0 THEN DO;
KEY_WORD = 1;
RETURN;

END;
CALL GET_CARD;

END;
END NEST_SCAN;

/‘t#t#t#tt#t#‘*“#‘**3##‘#*.0#*.**!##*##‘####‘#*###****#***‘tt#/
FIND_WORD:

/* SEARCHES FOR NEXT WORD IN CARD AND RETURNS IT.

CHANGES NEW_CARD TO THE REMAINDER OF CARD. *y

PROCEDURE (WORD) ;

DECLARE WORD CHARACTER (40) VARYING;

NEW_CARD = SUBSTR(CARD,INDEX (CARD,WORD)) ;

NEW_CARD = SUBSTR(NEW_CARD,INDEX(NEW_CARD,' "))

NEW_CARD = SUBSTR (NEW_CARD,VERIFY (NEW_CARD,"' '));

NEXT_WORD = SUBSTR(NEW_CARD, 1, INDEX (NEW_CARD,' *)=-1);
END;

/##*#t#t*t‘t.“.“O#.t#ttttttt“““‘#t‘t"##tt‘t*t.ttt.#“"tt/

50

ERROR:
PROCEDURE (MESSAGE) ;

DECLARE MESSAGE CHARACTER (80) VARYING;

PUT FILE (ERRORS) EDIT (STARS) (A(80));

PUT SKIP(2) FILE(ERRORS) EDIT (MESSAGE) (COL(1),A(80));
PUT SKIP(2) FILE(ERKORS) EDIT (STARS) (A (80));

CALL CLEANUP;

END ERROR;

/‘*tt##***#t#*#“#t‘*#‘###tt’t‘##*‘0t##‘ttt#**tl‘#ttt##t#ttt#tt‘/

CLEANUP:
PROCEDURE;
STOP;

END CLEANUP;

JEEREEEREEESRRR B ERRER AR R A I AR R R R R KRR RS R AR R AR H AR I SE AR ER R R Rk
CONDITIONAL_SCAN:
PROCEDURE;
ON ENDFILE (SYSIN) CALL ERROR('I¥YPROPER CONDITIONAL?);

DO WHILE('1'B);
IF INDEX (NEW_CARD{|* ",'. ')>0 THEN RETURN;
DO I=1 TO 30;
IF INDEX(NEW_CARD,RESERVED(I))>0 THEN RETURN;
END;
CALL GET_CARD;
NEW_CARD = CARD;
END;

END CONDITIONAL_SCAN;
JEEXERREREERBE SRR EIERR DR EE R R R SRR R KRR R AR AR E R SRR R KRR KK/
PROCESS _PERFORM:
/¥ WHEN PROCESSING THE PERFORM, WE TREAT BEFORE AND CASE
DIFFERENTLY THEN OTHER IN LINE PERFORMS AND DO
NOTHING WITH OUT OF LINE PERFORMS. .

PROCEDURE (COUNT,CASE_NUMBER) RECURSIVE;

DECLARE (COUNT,TEMP) PICTURE *'999';
DECLARE (CASE_NUMBER,OLD_CASE) PICTURE '9';
DECLARE KEY_WORD FIXED BINARY (15) INITIAL(O) ;

51
CALL FIND_WORD('PERFORM') ;
COUNT_PLUS = COUNT + 1;
/¥ BEFORE--PERFORM ONCE AND THEN CHANGE TO AN UNTIL. */

IF NEXT_WORD='BEFORE® THEN DO;
SUBSTR (NEW_CARD, INDEX (NEW_CARD, *BEFORE') ,6) = CUNTIL °*;
PUT FILE(OUT) EDIT (" PERFORM Z' §{ COUNT {{
* THRU 2*' §| COUNT_PLUS || '.!
) (COL (1) ,A (80)) ;
NEXT_WORD = *'UNTIL';

END;
/¥ CHANGE THE IN LINE PERFORM TO AN OUT OF LINE CNE. *x/
IF NEXT_WORD='UNTIL® | NEXT_WORD='VARYING' THEN DO;
PUT FILE(OUT) EDIT(® PERFORM Z' || COUNT {|
* THRU 2' }| COUNT_PLUS || * * |}
NEW_CARD) (COL(1),A(80));
CARD = '
/* SCAN TO FIND THE END OF THE CONDITIONAL. */

ILF INDEX (NEW_CARD||* *,'. *)=0 THEN
CALL CONDITIONAL_SCAN;

PUT FILE(OUT) EDIT(® GO TO 2")) COUNT_PLUS {|
' ') (COL(1),A(30));
PUT FILE(OUT) EDIT(' Z*' || COUNT || '.')

(COL (1) ,A(80)) ;
COUNT = COUNT + 1;
TEMP = COUNT;
CALL NEST_SCAN (KEY_WORD) ;

IF KEY_WORD=1 THEN DO;

PUT FILE(OUT) EDIT(' GO TO 2*' || TEMP (1
'.") (COL(1),A(80));
CARD = ! Z' || TEMP]] '.*;
END; ELSE

e o S S A R A S N e P R i S S A e

CALL ERROR ('IMPROPER STRUCTURE CLOSING') ;
COUNT = COUNT + 1;
KEY_WORD = 0;

END;

IF NEXT_WORD=*CASE' THEN DO;

/* 1ISOLATE THE CASE LABEL, ASSIGN TARGET TO CASE. %/
CALL FIND_WORD('CASE');
I = INDEX (NEW_CARD,' (') ;
CASE_LABEL=SUBSTR (NEW_CARD, 1, I-1);
PUT FILE(OUT) EDIT (" CCMPUTE CASE® ||
CASE_NUMBER || * = * ||
SUBSTR (NEW_CARD,I, INDEX (NEW_CARD,*) *)-I+1)

52

f 1 *<%) (COL(1),A(80));
OLD_CASE = CASE_NUHBER;
CASE_NUHBER = CASE_NUMBER + 1;
l CARD = " GO TO Z'|| CCUNT ||'.?;
COUNT = COUNT + 1;
CALL CASE_SCAN(OLD_CASE);
END;

' CALL PROCESS_TIMES;
CALL PROCESS_BEFORE;

4 END PROCESS_PERFORM;
JEREREEEER KRR RE R RN R R R R RN IR R AR R RIS RN KRR AR R KRR R R RN KKk /
PROCESS_BEFORE:

/¥ PROCESS_DBEFORE LOOKS FOR NCN STRUCTURED BEFORES
AND THEN PROCESSES THEM IF FOUND x/

PROCEDURE;

DO WHILE('1'B);
I = INDEX(CARD,' BEFORE ')
I I>0 THEN DO;
PUT FILE (OUT) EDIT (SUBSTR (CARD,1,I)) (COL (1),A(80));
SUBSTR (CARD,I,8) = ' UNTIL ?;
SUBSTR (CARD, 1, INDEX (CARD, *PERFORM*)~1) = ' ¢,
RETURN;
END;
IF INDEX (NEW_CARD||"* *','- ')>0 THEN RETURN;
DO I=1 TO 30;
IF INDEX(NEW_CARD,RESERVED (I)) >0 THEN RETURN;
END;
CALL GET_CARD;
NEW_CARD = CARD;

END;

END PROCESS_BEFORE;

/¥ ‘#tt“tt.#“t“t‘#'#tt'.##tt#t“4t###.‘#t#t*t###t##‘tt#“##‘t/

PROCESS_TIMES:

/* PROCESS_TIMES LOOKS FOR STRUCTURED TIMES
AND THEN PROCESSES THEM IF FOUND */

PROCEDURE;
CALL FIND_WORD (NEXT_WORD) ;
IF NEXT_WORD='TIMES' THEN DO;

' . . .mm-..ﬂ--.;;.-.‘.‘

#ﬁ._—:_w; R T T T ' i mpre—- —

; 53
‘ CALL FIND_WORD (' PERFORM ');
PUT FILE(OUT) EDIT (" PERFORM Z' || COUNT |}
* THRU Z' || COUNT_PLUS || ' ' |}
l NEW_CARD) (COL (1) ,A(80));
CARD = #°¢;
PUT FILE (OUT) EDIT (* GO TO Z' || COUNT_PLUS
L[11 *.') (COL(1),A(80)) ;
PUT FILE(OUT) EDIT(* Z' 11 COUNT {1 *.7)

(COL (1) ,A (80)) ;
COUNT = COUNT + 1;
TEMP = COUNT;
CALL NEST_SCAN (KEY_WORD) ;
IF KEY_WORD=1 THEN DO;

PUT FILE (OUT) EDIT (? GO TO 2°' |1
TEMP || '.') (COL(1),A(80)) ;
CARD = * Z' || TEMP |} ‘'.';
END; ELSE

CALL ERROR('IMPROPER STRUCTURE CLOSING') ;
COUNT = COUNT + 1;
KEY_WORD = 0;
END;

END PROCESS_TIMES;

[4 JEREREEREERREEEEE S AR AR B RT ISR AR R E R A AR R R R R AR KRRk k¥ /

1 CASE_SCAN:

- /* BEING PASSED THE CASE LABEL WE SCAN FIXING LABELS AS WE
FIND THEM UNTIL FINDING END-PERFORM. THE GO TO

7 DEPENDING ON IS THEN SET UP. */

PROCEDURE (OLD_CASE) ;

DECLARE OLD_CASE PICTURE '9°¢;
E DECLARE (CASE_PIC,CASE_COUNT) PICTURE '999°*;

! CASE_COUNT = 1;
8 CALL GET_CARD;

- DO WHILE (INDEX (CARD,'END-PERFORM') =0) ;
: IF INDEX(CARD,CASE_LABEL)>0 THEN DO;
" PUT FILE(OUT) EDIT (' GO TO Z*' {|{ COUNT (| ‘'.")
(COL (1) ,A(80));
CARBD= ! * }) CASE_LABEL] *-' || CASE_COUNT
11 '« ' || SUBSTR(CARD,INDEX (CARD,")")+2);
CASE_COUNT CASE_COUNT + 1;
END;
IF INDEX (CARD,*' PERFORM ') >0 THEN
CALL PROCESS_PERFORM (COUNT,CASE_NUMBER) ;
CALL GET_CARD;
END;

S4
PUT FILE(GUT) EDIT(® GO TO 2* |) COUNT | '.")
(COL (1) ,A (80)) ;
COUNT_PLUS = COUNT - 1;
PUT FPILE(OUT) EDIT (' Z' |} COUNT_PLUS | '.')
(COL (1) ,A (80)) ;
PUT FILE(OUT) EDIT (' GO TO') (COL (1) ,A(80)) .,
DO CASE_PIC = 1 TO CASE_COUNT-1;5;
PUT FILE (OUT) EDIT(® ' |1 CASE_LABEL {|
'-%)JCASE_PIC |{ *,") (COL(1),A(80));
END;
PUT FILE(OUT) EDIT(* ~ DEPENDING ON CASE*
})) OLD_CASE |} *'."') (COL(1),A(80));
CARD = ¢ Z* |] COUNT i '."';

COUNT = COUNT + 1;
END CASE_SCAN;

END MAIN;

bt i ? - » A e SN e ot

APPENDIX B

i EXAMPLE COBOL PROGRAM

&,

' 55

56

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG6.
AUTHOR. BOB HILB.
INSTALLATION. AU COMPUTER CENTERa
DATE-WRITTEN. NOV 23,1975.
DATE-COMPILED.
REMARKS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370-155.
OBJECT-COMPUTER. IBM—-370-155.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STRANGE-FILE ASSIGN TO UT-S-STRANGE.
SELECT PRINT-FILE ASSIGN TO UT-S—-PRINTER.
DATA DIVISION.
FILE SECTION.
FD STRANGE-FILE
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 10 RECORDS
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS STRANGE-RECORD.
01 STRANGE-RECORD.

02 RECORD-TYPE PICTURE 9.
02 SUBSCRIPTS.
03 ROW PICTURE 9(S) USAGE IS COMPUrATIONAL.
03 COLUMNS PICTURE 9(5) USAGE IS COMPUTATIONAL.
02 TYPE-CNE-RECORD.
03 VALUE-1 PICTURE 9(5) USAGE IS COMPUTATIONAL.
03 FILLER PICTURE X(67).
02 TYPE-TWO-RECORD REDEFINES TYPE-GNE-RECORD.
03 VALUE-2 USAGE IS COMPUTATIONAL-1.
03 FILLER PICTURE X(67). o e
02 TYPE-THREE-RECORD REDEFINES TYPE-ONE-RECORD. '
03 VALUE-3 USAGE IS COMPUTATIONAL-2.
03 FILLER PICTURE X (63).
02 TYPE-FOUR-RECORD REDEFINES TYPE-CNE-RECORD.
03 VALUE-4 PICTURE 9(5) USAGE IS COMPUTATIONAL-3.
03 FILLER PICTURE X (68).

FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS
BLOCK CCNTAINS 1 RECORDS
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE PICTURE X (132).
WORKING-STORAGE SECTION.

77 MEAN PICTURE 9 (6)V9(6) VALUE ZEROS.
77 suMs PICTURE 9 (6)V9(6) VALUE ZEROS.
77 SUM-OF-SQUARES PICTURE 9 (6)V9(6) VALUE ZEROS.

77 VARIANCE PICTURE 9(6)V9(6) VALUE ZEROS.

77 STANDARD-DEVIATION PICTURE 9 (6)V9 (6) VALUE ZEROS.
77 1 PICTURE 9(6) .
i PICTURE 9(6).
_ 77 K PICTURE 9(3).
i 01 STRANGE-MATRIX.
£ 02 STRANGE-ROW OCCURS 10 TIMES.
: 03 STRANGE-COLUMN OCCURS 10 TIMES.

04 STRANGE-ARRAY USAGE IS COMPUTATIONAL-2.
01 PRINT-FORMAT.

02 FILLER PICTURE X VALUE SPACES.

02 PRINT-LEADER PICTURE X (40) VALUE SPACES.

02 FILLER PICTURE X (7) VALUE 'MEAN='.

02 PRINT-MEAN PICTURE Z(6).9(6) .

02 FILLER PICTURE X (3) VALUE °*, . 9

02 FILLER PICTURE X (15) VALUE ‘*VARIANCE='.

02 PRINT-VARIANCE PICTURE Z(6).9(6).

02 FILLER PICTURE X(3) VALUE ', .

02 FILLER PICTURE X (24)

VALUE *STANDARD DEVIATION='.

02 PRINT-STANDARD-DEVIATION PICTURE Z(6).9(6). «
PROCEDURE DIVISION.
A SECTION.

A100-0PEN-FILES.
OPEN INPUT STRANGE-FILE
OUTPUT PRINT-FILE.
A110-INITIALIZE-ARRAY.
PERFORM A300-ZERO—-ARRAY THRU A300-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11 ’
AFTER J FRCYM 1 BY 1 UNTIL J EQUAL 11. :
A120-READ-STRANGE-FILE. .
! READ STRANGE-FILE AT END GO TO A140-COMPUTE-MEAN.
! A130-CREATE-ARRAY.
IF RECORD-TYPE EQUAL *1°¢
PERFORM A310-TYPE-1-MOVE THRU A310-EXIT.
IF RECORD-TYPE EQUAL '2°
] PERFOKM A320-TYPE-2-MOVE THRU A320-EXIT.
IF RECORD-TYPE EQUAL *3!
PERFORM A330-TYPE-3-MOVE THRU A330-EXIT.
IF RECORD-TYPE EQUAL *4° ¢
PERFORM A340-TYPE-4-MOVE THRU A340-EXIT.
GO TO A120-READ-STRANGE-FILE.
A140-COMPUTE-MEAN.
PERFORM A350-SUM THRU A350-EXIT .
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
DIVIDE SUMS BY 100 GIVING MEAN ROUNDED.
A150-VARIANCE-STANDARD-DEVIATE.
PERFORM A360-SUM-OF-SQUARES THRU A360-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
COMPUTE VARIANCE = (SUM-OF=-SQUARES = SUMS *%* 2) / 9900
COMPUTE STANDARD-DEVIATICN = VARIANCE ** _5. |

PP

————————

58

MOVE MEAN TO PRINT-MEAN.

MOVE VARIANCE TO PRINT-VARIANCE.

MOVE STANDARD-DEVIATICN TO PRINT-STANDARD-DEVIATION.

MOVE *'THE VALUES FOR THE ORIGINAL ARRAY ARE' TO PRINT-LEADER.

WRITE PRINT-LINE FROM PRINT-FORMAT
AFTER POSITIONING 1 LINES.
A165-TEST.
PERFORM A170-COMPUTE-2ND~MEAN BEFORE I EQUAL 1.

PERFORM BEFORE I EQUAL 1.

PERFORM UNTIL I IS GREATER THAN J.

IF I EQUAL 11 THEN
CCMPUTE I = 1
ELSE
IF J EQUAL 11 THEN
COMPUTE J =
IF K EQUAL 1
COMPUTE K = 2
ELSE NEXT SENTENCE

20

ELSE
IF K EQUAL 5 THEN
COMPUTE J = 6
END-IF
COMPUTE J = 21
PERFORM CASE LABELA (K)
LABELA (1) COMPUTE I =
LABELA (2)
COMPUTE I =

99

98
END-PERFORM

END-IF
COMPUTE J = 22
PERFORM VARYING I FROM 1 BY 1
UNTIL I EQUAL 11
CCMPUTE J = 97
END-PERFORM

END-IF

END-PERFORM.

PERFORM CASE LABEL (K)-.
LABEL (1).

COMPUTE I =
LABEL (2) .

le

59

COMPUTE I = 12.
END-PERFORM.

END-PERFORHN.

A170-COMPUTE-2ND-MEAN.
HOVE ZEROS TO SUMS.
PERFORM A350-SUM THRU A350~EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
DIVIDE SUMS BY 100 GIVING MEAN ROUNDED.
A180-2ND-VAR-STANDARD-DEVIATE. *
MOVE ZEROS TO SUM-OF-SQUARES.
PERFORM A360-SUM-OF-3QUARES THRU A360-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
COMPUTE VARIANCE = (SUM-OF~SQUARES - SUMS ** 2) / 9900.
COMPUTE STANDARD-DEVIATICN = VARLANCE ** .5.
MOVE MEAN TO PRINT-MEAN.
MOVE VARIANCE TO PRINT-VARIANCE.
MOVE STANDARD-DEVIATICN TO PRINT-STANDARD-DEVIATION.
MOVE 'THE VALUES OF THE CONVERTED ARRAY ARE' TO PRINT-LEADER.
WRITE PRINT-LINE FROM PRINT-FORMAT
APTER POSITIONING 2 LINES.
A190-CLOSE-FILES.
CLOSE STRANGE-FILE
PRINT-FILE.
STOP RUN.
A300-ZERO-ARRAY.
COMPUTE STRANGE-ARRAY (I, J) = 0.
A300-EXIT.
EXIT. 1
A310-TYPE-1-MOVE.
MOVE VALUE-1 TO STRANGE-ARRAY (ROW, COLUMNS).
A310-EXIT.
EXIT.
A320-TYPE-2-MOVE.
MOVE VALUE-2 TO STRANGE-ARRAY (ROW, COLUMNS).
A320-EXIT.
EXIT.
A330-TYPE-3-MOVE.
MOVE VALUE-3 TO STRANGE-ARRAY (ROW, COLUMNS).
A330-EXIT.
EXIT.
A340-TYPE-4-MOVE.
MOVE VALUE-4 TO STRANGE-ARRAY (ROW, COLUMNS).
A340-EXIT.
EXIT.
A350-50M.
ADD STRANGE-ARRAY (I, J) TO SUMS.

|

S i A T P S A<l e P S, 4 s == VR

60

A350-EXIT.
EXIT.

A360-SUM-OF-SQUARES.
COMPUTE SUM-OF-SQUARES = SUM-OF-SQUARES +
STRANGE-ARBRAY (I, J) ** 2,

A360-EXIT.
EXIT.

APPENDIX C

PROCESSED COBOL PROGRAM

62

IDENTIFICATION DIVISICN.
PROGRAM-ID. PROGOb.

AUTHOR.

BOB HILB.

INSTALLATION. AU COMPUTER CENTER.
DATE-WRITTEN. NOV 23,1975.
DATE-COMPILED.

REMARKS.

ENVIRONMENT DIVISICON.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370-155.

OBJECT-COMPUTER. IBM-370-155.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT STRANGE-FILE ASSIGN TO UT-S-STRANGE.
SELECT PRINT~FILE ASSIGN TO UT-S~PRINTER.
DATA DIVISION.

FILE SECTION.

FD STRANGE-~FILE
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 10 RECORDS
RECORDING MODE IS F
LABEL RECOCRDS ARE STANDARD
DATA RECORD IS STRANGE~RECORD.
01 STRANGE-RECORD.
02 RECORD-TYPE PICTURE 9.
02 SUBSCRIPTS.
03 ROW PICITURE 9(5) USAGE IS COMPUTATIONAL.
03 COLUMNS PICTURE 9(5) USAGE IS COMPUTATIONAL.
02 [YPE-CNE-RECORD.
03 VALUE-1 PICTURE 9(5) USAGE IS COMPUTATIONAL.
03 FILLER PICTURE X(67)
02 TYPE-TWO-RECORD REDEFINES TYPE-CNE-RECORD.
03 VALUE-2 USAGE IS COMPUTATIONAL-1.
03 FILLER PICTURE X(67).
02 TYPE-THREE-RECORD REDEFINES TYPE-ONE-RECORD.
03 VALUE-3 USAGE IS COMPUTATICNAL-2.
03 FILLER PICTURE X (63).
02 TYPE-FOUR-KECORD REDEFINES TYPE-ONE-RECORD.
03 VALUE-4 PICTURE 9(5) USAGE iIS COMPUTATIONAL-3.
03 FILLER PICTURE X (68).
FD PRINT-FILE
RECORD CONTAINS 132 CHARACTERS
BLOCK CONTAINS 1 RECORDS
RECORDING MODE IS F
LABEL KECORDS ARE STANDARD
DATA RECORD IS PRINT-LINE.
01 PRINT-LINE PICTURE X (132).
WORKING~STURAGE SECTION.
77 CASE1 PICTURE 9(4).
77 CASE2 PICTURE 9(W4).

.

63

77 CASE3 PICTURE 9(4).
77 CASE4 PICTURE 9(4).
77 CASES PICTURE 9(4).
77 CASE®6 PICTURE 9 (4).
77 CASE? PICTURE 9 (4).
77 CASE8 PICTURE 9(4).
77 CASE9 PICTURE 9(4).
77 MEAN PICTURE 9 (6)V9(6) VALUE ZEROS.
77 SUMS PICTURE 9 (6) V9 (6) VALUE ZEROS.
77 SUM-OF-SQUARES PICTURE 9 (6) V9(6) VALUE ZEROS.
77 VARIANCE PICTURE 9 (6)V9(6) VALUE ZEROS.
77 STANDARD-DEVIATION PICTURE 9 (6)V9(6) VALUE ZEROS.
" 3 PICTURE 9(6) .
m 3 PICTURE 9 (6).
77 K PICTURE 9(3).
01 STRANGE-MATKIX.

02 STRANGE-ROW OCCURS 10 TIMES.

03 STRANGE-COLUMN OCCURS 10 TIMES.
O4 STRANGE-ARRAY USAGE IS COMPUTATIONAL-2.

01 PRINT-FORMAT.

02 FILLER PICTURE X VALUE SPACES.

02 PRINT-LEADER PICTURE X (40) VALUE SPACES.

02 FILLER PICTURE X (7) VALUE *MEAN='.

02 PRINT-MEAN PICTURE Z(6).9(6) .

02 FILLEK PICTURE X (3) VALUE ¢, .

02 FILLER PICTURE X (15) VALUE *VARIANCE='.

02 PRINT-VARIANCE PICTURE Z(6).9(6)

02 FILLER PICTURE X (3) VALUE ¢, .

02 FILLER PICTURE X (24)

VALUE *STANDARD DEVIATION=T'.

02 PRINT-STANDARD-DEVIATION PICTURE 2 (6).9(6).
PROCEDURE DIVISIOCN.
A SECTION.

A100-OPEN-FILES.
OPEN INPUT STRANGE-FILE

QUTPUT PRINT-FILE.

A110-INITIALIZE-ARRAY.
PERFORM A300-ZERO—ARRAY THRU A300-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11,
A120~READ-STRANGE-FILE.

READ

A130-CREATE~ARRAY.

IF

IF

IF

IF

GO

RECOKRD-TYPE EQUAL *'1°
PEKFORM A310-TYPE-1-MOVE
RECORD-TYPE EQUAL '2°¢
PERFORM A320-TYPE-2-MOVE
RECORD-TYPE EQUAL *'3!
PERFORM A330-TYPE-3-MOVE
RECORD-TYPE EQUAL 4!
PERFORM A340-TYPE-4-MOVE
TO A120-READ-STRANGE-FILE.

THRU

THRU

THRU

THRU

A310-EXIT.
A320-EX17.
A330-EXIT.

A340-EXIT.

STRANGE-FILE AT END GO TO A140-COMPUTE~-MEAN.

st S i S S

64

A140~-COMPUTE~MEAN.
PERFORM A350-SUM THRU A350-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
DIVIDE SUMS BY 100 GIVING MEAN ROUNDED.
A150-VARIANCE-STANDARD-DEVIATE.
PERFORM A360-SUM-OF-SQUARES THRU A360-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
COMPUTE VARIANCE = (SUM-OF-~SQUARES - SUMS ** 2) / 9900.
COMPUTE STANDARD-DEVIATICN = VARIANCE ** .5.
MOVE MEAN TO PRINT-MEAN.
MOVE VARIANCE TO PRINT-VARIANCE.
MOVE STANDARD-DEVIATICN TO PRINT-STANDARD-DEVIATION.
MOVE *THE VALUES FOR THE ORIGINAL ARRAY ARE' TO PRINT-LEADER.
WRITE PRINT~-LINE FROM PRINT-FORMAT
AFTER POSITIONING 1 LINES.
A165-TEST.
PERFORM A170-COMPUTE-2ND—-MEAN
PERFORM A170-COMPUTE-2ND-MEAN UNTIL I EQUAL 1.

PERFORM 2100 THRU Z2101.
PERFORM 2100 THRU 2101 UNTIL I EQUAL 1.
GO TO Z101.

Z100.

PERFORM 2102 THRU 2103 UNTIL I IS GREATER THAN J.
GO TO Z103.
z102.

IF I EQUAL 11 THEN
PERFORM 2500 THRU 2501

ELSE
PERFORM 2502 THRU 2503.

GO TO Z103.
Z103.

COMPUTE CASE1 = (K).

GO TO z107.
GO TO z108.
LABEL-001.
COMPUTE I = 1.
GO TO z108.
LABEL-002.
COMPUTE I = 12.

ey A e e SN 1

e

65

GO TO 2103.
Z107-
GO TO
LABEL-001,
LABEL-002,
DEPENDING ON CASE1l.
Z108.

GO TO 2Z2101.
Z101.

A170-COMPUTE~-2ND-MEAN.
MOVE ZEROS TO SUMS.
PERFORM A350-SUM THRU A350-EXIT
VARYING I FRCM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
DIVIDE SUMS BY 100 GIVING MEAN ROUNDED.
A180-2ND~VAR-STANDARD-DEVIATE.
MOVE ZEROS TO SUM~OF~SQUARES.
PERFOKM A360-SUM-OF-SQUARES THRU A360-EXIT
VARYING I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.
COMPUTE VARIANCE = (SUM-OF-SQUARES - SUMS ** 2) / 9900.
COMPUTE STANDARD-DEVIATICN = VARIANCE ** _5.
MOVE MEAN TO PRINT-MEAN.
MOVE VARIANCE TO PRINT-VARIANCE.
MOVE STANDARD-DEVIATICN TO PRINT-STANDARD-DEVIATION.
MOVE 'THE VALUES OF THE CONVERTED ARRAY ARE' TO PRINT-LEADER.
WRITE PRINT~LINE FROM PRINT-FORMAT
AFTER POSITICNING 2 LINES.
A190-CLOSE-FILES.
CLOSE STRANGE-FILE
PRINT~FILE.
STOP RUN.
A300-ZERO~ARRAY.
COMPUTE STRANGE-ARRAY (I, J) = 0.
A300-EXIT.
EXIT.
A310-TYPE-1-MOVE.
MOVE VALUE-1 TO STRANGE-ARRAY (ROW, COLUMNS).
A310-EXIT.
EXIT.
A320-TYPE-2-MOVES
MOVE VALUE-2 TO STKANGE-ARRAY (ROW, COLUMNS).
A320-EXIT.
EXIT.
A330-TYPE-3-MOVE.
MOVE VALUE-3 TO STRANGE-ARRAY (ROW, COLUMNS).
A330-EXIT.
EXIT.

s

r S L S I LR - - T grr—
!
¢
!

66

A340~-TYPE-4-MOVE.
MOVE VALUE-4 TO STRANGE-ARRAY (ROW, COLUMNS).
A340~-EXIT.
EXIT.
A350-SUM.
ADD STRANGE~ARRAY (I, J) TO SUMS.
A350-EXIT.
| EXIT.
A360-SUM-OF-SQUARES.
COMPUTE SUM~OF-SQUARES = SUM-OF-SQUARES +
STRANGE-ARRAY (I, J) ** 2.

A360-EXIT.
EXIT.
Z500.
COMPUTE I = 1.
2501.
Z504.
COMPUTE J = 20
IF K EQUAL 1
COMPUTE K = 2
ELSE NEXT SENTENCE.
2505.
2508.
CCMPUTE J = 6.
2509.
2506.

IF K EQUAL 5 THEN
PERFORM Z508 THRU 25009.

COMPUTE J = 21

COMPUTE CASE1l = (K).
GO TO Z111.

GO TO z112.
LABELA-001. COMPUTE I = 99

GO TO z112.
LABELA-002.

COMPUTE I = 98

B I LIt

67

GO TO Z112.

Z111.
GO TO
LABELA-001,
LABELA-002,
DEPENDING ON CASE1.

Z112.

Z507.

2502.

IF J EQUAL 11 THEN

PERFORM 2504 THRU 2505
ELSE

PERFORM 2506 THRU 2507

CCMPUTE J = 22

PERFORM Z113 THRU 2114 VARYING I FROM 1 BY 1

UNTIL I EQUAL M

GO TO Z114,

Z113.
COMPUTE J = 97

GO TO 2114,
2114,

Er——

APPENDIX D !
USER'S MANUAL i

68

SANRNEIE L

69
The job control language for runuing the pre-processor
on an IBM 360/370 follows:

V74 A 2 R R RS RS R R R R R R R R A AR R SRR S22 22 2 R RS R R 2 2

//3TEP1 EXEC PLIXCLG,PARM='OPT (2)°
//SYSPRINT DD DUMMY

//* CHANGE DUMMY TO 3YSOUT=A FOR A SOURCE LISTING OF THE
//* FIRST JOB STEP OF THE PRE-PROCESSOR

//SYSIN DD DSNAME=IE212.STEP1,DISP=SHR

//* IE212.STEP1 IS THE DATA SET CONTAINING THE SOURCE
VL PROGRAM FOR THE FIRST JOB STEP OF THE PRE~PROCESSOR
//GO.SYSPRINT DD DUMMY

//* REMOVE THIS CARD TO GET A LISTING OF THE ORIGINAL
//* COBOL PROGRAM

//GO.SYSIN DD *

/% PLACE THE COBOL DECK HERE

//G0.ERRORS DD SYSOUT=A *PRINT OUT ERROR MESSAGES
//GO.OUTPUT DD DSNAME=E&TEMP1,DISP= (NEW,PASS),

// SPACE= (TRK, (3,3) ,RLSE) , UNIT=DISK,

// DCB= (RECFM=FB,LRECL=80,BLKSIZE=800)

//* TEMPORARY DATA SET TO STORE PROGRAN

//GO.BOTTOM DD DSNAME=66TEMP2,DISP=(NEW,PASS),

// SPACE= (TRK, (3,3) ,RLSE), UNIT=DISK,

7/ DCB= (RECFM,FB, LRECL=80, BLKSIZE=800)

//* ANOTHER TEMPORARY DATA SET USED BY THE FIRST

/)% JOB STEP

J/FEEERRR R AR RN AR IR SRR AR IR R F R R AR AR AR AR R R R R R AR R KK &
//STEP2 EXEC PLIXCLG,PARM='0PT (2)"°
//SYSPRINT DD DUMMY

/% CHANGE DUMMY TO SYSOUT=A FOR A SOURCE LISTING OF
//* THE SECOND JOB SIEP OF THE PRE-PROCESSOR

//SYSIN DD DSNAME=IE212.STEP2,DISP=SHR

//* IE212.STEP2 IS THE DATA SET CONTAINING THE SECOND
/% JOB STEP OF THE PRE-PROCESSOR

//GO.SYSIN DD DSNAME=E&6TEMP1,DISP=(OLD,DELETE)

// DD DSNAME=EE&TEMP2,DISP=(OLD,DELETE)

//* TAKE THE OUTPUT FROM THE FIRST JOB STEP AS INPUT
//G0.OUT DD DSNAME=EETEMP3,DISP=(NEW,PASS),

// SPACE= (TRK, (3,3) ,RLSE) ,UNIT=DISK,

7/ DCB= (RECFM=FB,LRECL=80,BLKSIZE=800)

/% OUTPUT FROM THIS JOB STEP TO BE PASSED TO THE

//* TO THE NEXT JOB STEP--THE COBOL COMPILER
//GO.ERRORS DD SYSOUT=A *PRINT OUT ERROR MESSAGES

//l*##*tt####***#t*‘##‘*##‘t‘#i#t‘t#t#‘tt‘t“‘#‘t‘ttt##
//STEP3 EXEC COBUCLG, PARM=***PLACE PARMS DESIRED HERE*¥*!
//SYSUT5 DD DSN=&&UTS,UNIT=SYSDA, SPACE=(CYL,5),D1SP=(NEW,PASS)
//COB.SYSIN DD DSNAME=&6ETEMP3,DISP= (0LD,DELETE)

//GO.STEPLIB DD DSNAME=5Y51.COBLIB,DISP=SHR

//* PLACE NECESSARY GO. CARDS HERE

The joo control language given here will have to be modified

~r

70
depending on the particular COBOL and PL/I1 procedures that
are available and the requirements that they entail. If it
is not desirable to maintain the capability to print out the
source listing of the pre-processor, it would be much more
efficient to compile and link-edit both job steps and make
the whole pre-processor a cataloged procedure with the out-

put options as parameters to the procedure.

