
• AD A045 1415 AIR FORCE INST OF TECH WRIGHT—PATTERSON AFB OHIO F/G 9/2
N

A PRE—PROCESSOR FOR A STRUCTURED VERSION OF COBOL. (U)
MAR 77 RCH IL .U

UNCLASSIFIED AF1T C1 77 55 NI.

ENJO
~~rr

____ - a 711

F.-
~~~~~~~~~~~~

--

~~~~~~~

‘- - --

~

-

~

--—-

) L
~~.

A PRE— PR OCESSOR FOR A STRUCTURED

VERSION OF COBOLI
I

Robert Clifford HUb

I,
A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillmen t of the

Repiirements for the

Deyree of

Master of Science

D D C
• -

>— — : I ~~
~- r- ’

~.t - C....)
~~~~~~~~~~~~~4 / L~~~L)

4 1 Auburn , Alaba ma Li
‘
i
~~~~~~ ~- March 17, 1977

C-,
4 _________ Dl t ’

c T\ I ¶ A

UNCLASSIFIED
SECURITY CLASS EICAT ION OF rNI~ m A3E (W’t., f) , . E l - , . - !)

t. REPORT flflC1I~ E JTATIO~1 PAGE R E A L ’ INSTRU(~ TI f lN’,
-—

BE F GK E C O M P L E r I N (1- 0kM
I REPOWT PiUMUER ~2 GOVT ACC ESS ION NO. 4.-~~~~~-t~~ - r 5

~ i •
. ‘ — CI-77—55

— /4 ,,
.

-__________ - —.—-~~~~~~~~~
- - - - - — -_ _ _ _ _ _ _ _ _ _ _

4. T r L E ~(an d Subtitle) ~--- ‘ +-~~~ -~~t -~-~~~~~~~~r-~ ~ eev~~ t~ —

/A Pre—Processor For A Structured Version of Thesis

Cobol - _______________

€ t- - Ek~~G Iou ING OR’~ REPORT •~~j U9E R

9 ‘ C ~~ 1 ~~A C T ~)N G R A N T ~!UMBER(s)

~~~~~~~~ 
),,OBERT CLIFFORD !UILB /
CAPTAIN

9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRES S ~O ~~. I M E y ’ PROJECT . TASr~
S ~ NI~ P.~ IMRER S

AFIT Student at Auburn University, Auburn, 
-

Alabama ,
.

_____________________________________ ;~~~~ k j / I ’ 
_ _ _ _ _ _ _ _ _

II. CONTROLLING OFFICE N A M E  AN D ADDRESS 12 R .W~ - OA’~ — - — — —

An T/Cl Narch 17, 1977
Wright—Patterson AFB OH 45433 13. NJ M B E P G ~ P A G E S .

_______________________________________________________ 70 pages —____________________________ - —-~~~~~~~~--
74. MONITORING A G E N C Y  NAM E & ADD RES S( i f  d i f ferent  from Con r o l l i n g  O f f , ce)  IS. S E C U R I T Y  C L A S S . (~ f f b i .  ‘.po.I ~-

Unclassified
IS. DE C L A S S I F I C A T I O N  DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of th is  Report)

Approved for Public Release; Distribution Unlimited

77. DISTRIBUTION STATEMENT (of the abatracl entered in B lock  20, if different from Report)

--

JERML F. GUESS , Captain , USAF .• 190-17
Director of Information , AFIT APPR OVED FOR PUL3 UL~ ~ELEASL AFR

I9. KEY WORDS (Cont inu e on reverse s ide i f necessary and i d e n t i f y  by block number)

7 —

—
~ 

— — -
~~ /

20. AB S T R A C T  (Continue on reverse side If necessary and i d e n t i f y  by k In k number)

Attached

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ __________________________________________ 

CD 1J A N 73 1473 EDI1 ION0 F I NOV AS IS OBSOLETE UNCLASS IFIED
S E C U R I T Y  C .  F S O I E V  A T I ~~~ F rN IS  PAC E (Whe n G.t. £nt•r.d)

- - - —.-.-~~~~~-~~~~~~~~~~~~~~~



_______ ~~~~~~~~ . - - -. . —.---- ,--- - - -

L _ _ _ _

- , . r

A PRE—PROCESSOR FOR A STRUCTURED

• 
‘

- 

~~~

. . VE RSI ON OF COB OL

Robert Clifford H u b

Persissio~ is h e r ew i t h g r a n t e d to A u b u r n U n iv e r s i t y to mak e
copies of t h i s thesis a t its d i sc re t ion, upon the request of
in a iv i du a l s or i n s t i tu t i o n s and at their expense. The a u t h o r
reserves al l pu b l i c a t i o n ri ghts .

S i g n a t u r e .thor

a~ P~t,ir 77
t~ ate

Copy sent to:

iii

A P i l E — P R O C E S S O R FOR A S T R U C T U R E D

V E R S I O N OF COBOL(I
p

Rober t C l i f f o r d H u b

I
C e r t i f i cat e of A p p r o v a l :

I J .~ . Hool , Associate B. E. H e r r i n g , C h a i rm a n
Pr”otessor Associate Professor
I n d u s t r i a l E n g i n e e r i n g In du s t r i a l E n g i n e e r in g

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 

_ _I -r. F. H i g ~l~totha~a P a u l  F. Pa rks , Dean
Ass i s tan t  Professor  G r a d u a t e  School
I n d u s t r i a l  E n g i n e e r i n g

I D D C
-. 

~~~~~~ TT.TT~ T~~T~~T 
L•~

ocT 2o 1977
~~

J

~~~J_
_ _



t
rip-, _i._.-e_._~ •_. . -- — —.. —•-.-- ,—.-— .—•- ., —...

~-- , .~~~~~~ .•..——.-—--•- . -.. —.---.- . -.-. -. . —-—- --— ,-. ..-— — . .—

j V I T A

Robert Cliffori H u b , son of Theodore Robert and

p ~arjo ry (Hayes) H u b , was born April 2 1 , 194d , in

P la i n f i e l d , New Jersey.  He a t t e n d e d  Wes t f i e ld  Publ ic

I Schools an d g r a d u a t e d  f r o m  Wes tfi e l d Senior Hi gh School ,

W e st f i e ld , New Jersey in 1966.. In  June , 1966 , he en tered

the  U n i t e d  States Ai r  korce  A c a d e my  and  received the  degee

I of Bachelor  of Science in E n g i n e e r i n g  Sciences (As t ronau t i c s

and  C o m p u t e r  Science) and a commiss ion  as a Second

I L i e u t e n a n t  in t h e  U n i t e d  States Ai r  Force in June , 1970.

a ft e r  of a n u m b e r  a s s i g n m e n t s  in t h e  U. S. Ai r  Force , he was

sent  by t he  A i r  Force I n s t i t u t e  of Technolog y to the G r a d u —

I at e  School , A u b u r n  U n i v e r s i t y .  He ma r r i e d  Barba ra , d a u g h t e r

of Ea r l  Easten a n d  Louise ( C u r r ier )  H a w k i n s  in J un e , 1970.

I
I
I
I
I
I iv



r~~~~~~~~ ~~~~~~~~~ 
-

~~~~~~

THE SIS AB STRA CT

A PRE—P hOCESSOR FOR A STR UCTURED

I V E R S I O N 0? COBOL

I
Rober t C l i f f o r d H u b

Mas te r of Science , t~arc h 17 , 1977
4 (B .S. , U . S . A i r Force Academy, 1970)

1 77 Typed Pages

Directed by Bruce E. Herring

A vers ion of COBOL t h a t p e r m i t s s t ruc tu red p r o g r a m m i n g

w a s de si g n e d . It was i m p l e m e n t e d u s i n g a pre—processor t h a t

i o u t p u t s s t a n d a r d COBOL. The pre—processor wil l i n d i s cr i i n —

inately run p r o g r am s t h a t a r e e i t h e r s t r u c t u r e d or non—

s t r u c t u r e d, or w i t h very l imited res tr ic t ions, programs w i t h

a m i x t u r e of bo th . A s t r u c t u r e d IF was i nc luded as a modi-

f i c a t i o n of the COB OL IF. In l ine looping was crea ted w i t h

a r e d e f i n i t i o n of the P E R F O R M , m a i n t a i n i n g a l l of its capa-

b i l i t i e s a n d a d d i n g a DO UNT IL . The P E N F O R Z I was also

I m o d i f i e d to a l l ow a C A S E cons t ruc t . Al l new s t r u c t u r e s are

c o m p l e t e l y nestable.

I
I

V

r

w~ —
- --—— -----

~~~~~~

-- ---—

~~~~
--

~~~~
. .-- —------ - - -

~~~~
----- ..

~~~~
.

T A B L E  OF C O N T E N T S

L I ST OF F I U R ES Vi i

I • I N TRODU c -r  ION 1

S t a t e m e n t  of the  Prob lem

I L i t e r a t u r e  Search
S t r u c t u r e d  COBOL

II. L A N G U A G E  DESIGN 18

1 IF  T H E N  ELSE
I n — L i n e  Loop ing

I III.  P i l E — P R O C E S S O R  I M P L E M E N T A T I O N  27

IF  Processing
P E R F O R M  Process ing

IV. C O N C L U S I O N S  A N D  R E C O M M E N D A T I O N S   34

I R E F E R E N C E S  3b

A P P E N O ICES   38

A. Source L i s t ing  of the Pr e—pr oceSsor  39

8. E x a m p l e  COB OL P r o g r a m   55

C. Processed COsOl P r o g r a m   6 1

I D. U ser S M an u dl 6 8

I
I
I
I vi

I



I
I
I LIST OF F I G U R E S

1 1. Basic S t r u c t u r e s  7

p 2. E x t e n d e d  S t ru c t u r e s   10

3. Top d o w n  Design 11

1 ‘4. P r o gr a m  Design . 29

I
I
I
I
I
I
I
I
I
I

v i i

I 
—. ~~~~~~~~~~~~~ . _ _ _



TI~~ ~~
..- ---‘ ~~~~~~~~

I
I

I.

Structured Programming is one of the generally accepted

I methods of reducing software costs, both of acquisition and

maintenance , while improving progra m quality. Until very

I recently the high cost of hardware relative to software re-

sulted in the development of software t h a t  m i n i m i z e d  the

1 need for and , as a result , the cost of hardware . roday the

sit”~ tion is re versed and in the future it is predicted to

even more one—sided. With the concentration on

I u—technology development , the size and cost of computer

hardware has made a quantum jump downward while the avail—

able core has increased almost as much. At the same time ,

i the size and complexity of problems that can be programmed

have greatly increased. Almost everyone in the computer

I field , especially those jr management who have seen their

budgets and cost estimates for software development and

I maintenance soar out of sight, have realized something must

be done.

According to McGowan (1975) , in 1975 the U. S. Air

Force estimated that 65% of its computer costs went t o w a r d s

software and by 1985 95% will. He estimated that overall 10

billion dollars was spent en software in 1975. Gansler

1 

— -  --- . - .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-—-- -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

(1976) stated that U. S. Air Force avionics software devel-

opment costs were $75 per instruction while maintenance of

I the same software was close to $L3000 per instructiDn . A

I
method that has been shown by Baker (1972a) to not only

reduce initial development costs but m ore importantly to

I reduce the time and cost of debugging and increase

maintainablity is top down structured programming. It was

I Dijkstra (1968) who first formalized structured programming

into a programming discipline. However , it is a method of

programming that was probably unconsc iously used by the best

ALGOL programmers for years.

When PL/I, SINSCRIPT and other second generation lam—

f guajes were developed’, the facilities for structured pro—

I
gramming were included , again unconsc iously since the

t e n a n t s of s t r u c t u r e d p r o g r a m m i n g had not been f o r m u l a t e d a t

I t he t ime . Of the t h r ee e a r l y l a n g u a g e s , A L G O L had the o n l y

r E a l facility for s t r u c t u r e d p r o g r a m m i n g . . U n f o r t u n a t e l y ,

due to its poor i m p l e m e n t a t i o n and t he oppos i t ion a n d

competition fro m a nalor U. S. producer of hardware and

software , it was and is the least used of the three. Most

i programming is still done in FORTRAN or COBOL. rhese were

l a n g u a g e s t h a t were originally designed to run very quickly

I
‘For the purposes of this thesis , FORT RAN , ALGOL , and

I COBOL are defined as first generation languages and the
other major languages that were developed , or else
redeveloped , like SINSCRIPT was, from the mid 60’s on, as
second generation languages.

4

_ _ _ _ _ _

-

~~~ 
- :  

- 

II in ~ n a l l  c o m p u t e rs  T h e y  were  and  s t i ll  are  ser ious ly

lacking in ease of designability and maintainability, ani as

I a result often have poor reliability. Due to its w i d e s p r e a d

I 
use in academia and utter incompatability to the methods of

st ruc tured programm ing, mar~y changes for FORTRAN have neen

I recommended. Some ~iave been implemented in both pre-

processors and , fo r  som e v e n d o r s , in  compi le rs .

I COBOL has been a d i f f e r e n t  s t o r y .  A c c o r d i n g  to lo u r d o n

( 1975c) , little nas been done fo r  COBOL because  of d i sda in

I f o r  i t  oy the academic community and the lack of research

J that is done by the business community in language design.

However , recently there has been widespread support for

J changes  to COBOL . In April of 1975 a con fe rence  was he ld  by

I 
t h e  P r o g r a m m i n g  L a n g u a g e  C o m m i t t e e  of C O D A Y S L ’ , the

S y m p o s i u m  on Structured Programming in COBOL—Future and

I Present .  M a n y  proposals  were  p u t  f o r t h  b y  the p a r t i c i p a n t s,

ranging from not changing COBOL at all (a minute minority)

J to changing it so much that it would resemble PL/I. By the

I 
end of the conference it was generally agreed that some

changes were needed , although no agreement was reached on

I exactly what changes should be made. The changes are not

close to happening. One participant , Edward Yourdon (1975b)

J predicted that it would be 1978 or 1979, at the earliest ,

I
‘CODOSYL , the çQn ference Qn Q~ ta ~Xstems Language , is

I the body which governs the specification of the COBOL lan-
guage.

I
L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



—

14

I before any changes w o u l d  be reflected in any new versions of

CJ B DL.

~ I S t a t e m e n t  of t h e  P rob lem

The purpos e of this study wa s to design a struc ture d

v e r s i o n  of CO 8OL a n d  i m p l e m e n t  i t  using a pre—processor.

I Structured programm ing in PL/I was used to design and imple—

men t the pre—processor. The considerations used to design

the structures were: (1) as much as possible redefinitions

I of existing COBOL structures were used , (2 )  a n y  ~iew verbs or

struc tures were pa tte rned after e x i s t i ng  COBO L tructures,

I and (3) all existini programs could be run against the pre—

pr ocessor with no changes.

Ra ther tha n drastically change the COBOL language ,

I w h i c h  w o u l d , most likely, produce resistance fion experi-

enc ed programmers , a gr adual change would allow a more

ord erly transit ion to a fully structured COBOL. The changes

made here are an addition to , rather than a change to,

COBOL. This will allow the training of new p r o g r amm e r s  in

structur ed programming while slowly transitioning the old

programm ers. All of the basic structured programming struc—

tures are included in this version of COBOL. As a future

proposal other refinements can be added. Of course , too

drastic a change to COBOL would result in a language so

similiar to PL/I that PL/I could be used instead. However,

due to the large investment in existing COBOL programs , it

I will not be economically feasible, at th e present , and prob—

I



_ _ _  
- -.- -.

S

ably not for the forseeable future , to replace COBOL.

Therefore , not only is a version of COBOL needed that will

allow structured programming, but also one that will run all

e x i s t i n g  COB OL p rograms .  W h e n  ma i n t e n a n c e  is dome on exis-

ting programs the new structures should be able to be

i n t e r m i x e d  w i t h  t he  old. No distinct ion should be necessary

between old and new programs; they should all run under the

same job c o n t r o l  l a n g u a g e  i n c l u d i n g  t h e  pre—processor.  The

route taken in this study is, then , to extend the meaning of

certain COBOL verbs, while keeping all previous meanings ,

and adding some minor terminators and optiona l modifiers for

clarity.

Literature Search

Many books and papers have been written on structured

programming. In fact, it is pro bably the favorite subject

of both programming theoriticians and practitioners at the

present time. COBOL has been used almost strictly by the

business community. Until recently this has resulted in the

absence of research on the subject as cited before in

Yourdon (1975c) . The theoretica l foundations for structured

programming in any language were laid in 1966..

Bohm and Jacopini (1966) showed that any program with

one entry and one exit (that is, an algorithmic solution to

a problem as almost all programs are) could be programmed

with only the following three logic structures: simple se—

quence , conditional branch to two choices (IF T8EN ELSE) ,

L~~~~~.



6

I an d itera t ion (D O WHILE) (Fig. 1). Put more simply, any

program , iio matter what its complexity, can be written with

I a comnination of these three structures. Dijkstra (1968)

took their basic theory and developed a practical program-

ming methodology.

The Structured Programmin g presented by Dijkstra

includes using only the above three structures. Any progra m

I can be develope d by the appropriate nesting of these struc—

• tures. The flow of program c o n t r o l  m u s t  i nc lude  s ingle

entrance and eA it with no branching out of the flow allowed.

I Most practitioners advocate the black box or modular con-

cept (McGowan , 1975), where each module , subroutine , func—

I tion, etc. is a snail easily understood section of code.

M a n y  r e c o m m e n d  t h a t  t h e  size be one page or less. This

I allows for both easy debugging and maintenance. The concept

is also fundamental tor top down programming. This also

eliminates the forward and backward referencing of either

the basic or conditional GO TO. Dijkstra (1972) maintains ,

and it seems obvious , that any type of branching out of the

I logic flow not only causes the logic of the programming to

be hard to follow but is also a chief cause of error. To

add to both the understandability and readability of pro—

I grams , both indentation and documentation al:e also required.

For example ,

I
I
I



7

Fig.  1. — — B A S I C  S T R U C T U R E S

I I I I

I I I I I 
>1 I >1 I 
I I I I
I I I I

I

SI M P L E  SEQU E N CE

I
I I

—————
’- I I 

>1 I 
I I

I I I I
* I

* * -4’
* 0——>

* * 4’.
* —————— I

I I I I I
— I I I I 

>1 1 

I

I I
I I

I IF T H E N  EL SE

I
I I

I I I 
1 1 <——— —

I I I I
I I I II I a
+ a *

——> 0 >* a——>
I * *
I a

DO WHILE

I

-~ -

. 
.: ~~~:

- - ---— 
-:: -:— -

~~
-
~ 

- • --.—.- -•-. -1_--- 
~~~~~~~~~~~~~~~~~~~ 4


8

P~~R F O R N 1100 U N T I L A.

I

.

1100.

I
IF B THEN

IF D THEN E

I EL SE F

I
is much harder to follow than

PERFORM UNTIL A.

IF B THEN
I

- IF O TH EN

E

EL SE

I F

E N D — I F

I ELSE

I G

END— IF

I END—PERFORM.

Of course for anyone else to understand , check, or change a

I program, it is much easier if , at the beginning of each sec-

tion , is written what the programmer thinks the section will

accomp lish.

I It has also g e n e r a l l y been accepted (Y o u r d o n , 1975a and

McGowan , 1)75) that extension to the three basic structures

1 be allowed. These include DO CASE , DO UNTIL , and LOOP EXIT—

I
_______ _____________ _____ —

9

IF END—LOOP (Fig. 2). These do not affect the underlying

principles of structured programming and will allow more

efficient coding. Althoug h anything can be programmed using

tne three Lasic structures, limiting programming to just the

three sometimes results in awkward , inefficient , and

hard—to—understand code, this is just the opposite of the

purpose for structured programming. Extensions to the basic

structures are sometimes necessary to avoid the “turing

tarpit” (Couperus , 1975), where everything is possible but

nothing is easy. Some authors still feel there should only

be a limited number of structures and constructs (Yourdon ,

1975c) . However , one of the main tenants of structured pro—

gramm ing is that it allows for better debugging and ma inte—

nance because it results in understandability and simplic-

ity. What is simpler than having one construct that does

what its name implies , yet replaces a group of complicated

code (as m any of the advance d constructs in PL/I do)?

Besides a me thod for coding, top down structured pro-

gramming is also an overall programming strategy. Most pro—

gramming has been traditionally done with a bottom up ap—

proacK where the lowest level programs , subroutines , or sub—

systems were designed , coded , and tested first. These pro—

grams needed driver programs to test them and tor in tegra-

tion testing with parts that other progr ammers had written.

Problems often occurred during integration because of

inconsistent data defiriiticms and interfaces (McHenry,

10

Fig. 2.—’-EXTENDED STRUCTURES

I

I I *
——> 0 >1 l — ——— > a——>

4 L...._ i * a
*

I II 1 I I I
I 1<
I I

I
LOOP EXIT—IF END—LOOP

I *

~ 4’ 1 1 * *
——>0 >1 I >~ a—— >

I I_ _ _ I * *I *

DO U N T I L

I I I
I I

• L___ I •
I S

I .
S I

• I 1. •

I * 1 • I I S

* I’ .
— — > * j . .0——>

* I. __ __ _

• I I
• S

~~ 1
• I II • •

• 1 I .
I •I

I

DO C A S E

A

-
- . ~~~~~~1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-.

~~

- . -.—

~

—--.--- “ • -—

~

11

1 1973). The whole system was sometimes delayed while impor—

tint seg ments were reworked to allow proper interfacing.

I The top down approach , as the na me implie s, is just the op—

I posite.

Top down programming follows the natural systems ap—

I proach (Yourdon , 1975a and McGowan , 1975). The system is

broken down into a tree structure (Fig. 3) . First the

I
I Fig. 3.——T0P DOWh DESIGN

I I I
I MAIN 1

I
I I I I I I

I I A I I A I I A I
I I I I I I I

___ 1_______
I _

~ L._ ._L.... — I — ..._L__ .~ ...L
I I I I I I I I I I I I

I B I B I I B I STUB B I I B
I I I I I................_ I I_ — — I I.......__._..i I I

I _ L _ _ I _
I I I I
STUB STUB

I.... — I I _
— — I

I
1 ma jo r f u n c t i o n s are i d e n t i f i e d (A) . From there the n e x t

I level down is identified , lesser functions (B) derived from

those above it. At the same time the interfaces and data

definitions are defined. During this development all

1 undefined or uncoded segments or branches of the tree are

I

•~~ ~1

12

replaced with a dumm y stub. For example , if the interface

is in the form of a procedure , when the procedure is called ,

a message or a dummy value is returned. This allows the

I
system to be continually tested as the development proceeds.

Since many errors occur in the interfacing, they are

I removed early in tae development since the y will be the most

tested part of the system. Each time the system is tested

I all that was completed before is tested again. This is con—

I pa red to the traditional botto m up method , where the overall

sy~ tem is not tested until the end of the development , and

at that point it may be difficult to pinpoint where the

prob lem is.

The method was first used in the now f a m o u s New York

I
Times project (Baker, 1972a and 1972b). The project in-

volved the automation of the New York Times morgue. It was

I to take the newspaper ’s clipp ing file and , via a thesauras

and abstracts, have an on—line capanility of search and re—

trieval , with the added capability to retrieve the original

article on microfiche and display it at the remote on—line

I terminal. The final system require d more than 83,000 source

l ines of code. It took 132 m a n — m o n t h s of effort. Using

norma l projections and the generally accepted figure of five

lines of code per man—day, the projec t under old methods

would have taken over 500 man—months. To add to this was

I the fact that the system had an historic low error rate ,

with most of these errors , as could be expected using top

I

IIii. _ —_- —— ---~-— — ---.---~~- —-—--—----- -- ~- — .. —---- . ~~~~~~ ~
.
~~~~~~r-Inrr—



_

1 3

d o w n  de s ign , in the  lowest  level and least tested code. But

these also turned o u t  to be t h e  easiest to f i x  w i t h  no error

1 taking more than one day to correct. Equally impressive

I 
results were obtained in a seccnd pro ject, the mission simu-

lation of Skylab for NASA.

Structured CO BOL

I All of the above literature were on the general topic

of structured programming and did not address the problem of

I structured programming in COBOL , except for McGow an (1973)

and Yourdon (1975a). They, together with McClure (1975) and

I numerous other authors in journals and recent publications ,

I 
included small sections on how to simulate structured COBOL

for those constructs in COBOL which hinder or prevent struc—

I tured programming from being attained. In  most cases, the

authors recommend tnat COBOL be changed , although few give

I specifics on how it should be changed. Some , such as

I 
Kauffman (1 )75) , recommend that a pre—processor be written

and used until the official language changes are made and

I incorporated into compilers. All of the serious proposals

for changes to COBOL , in regard to structured programming,

I were presented at the 1975 CODASYL conference.

I 
Although some authors added a few of theiz. own specific

examples of COBOL code that hindere d structured programmi ng,

I almost unanimous agreement was shown fo r  t o u r  serious

shortcominp . of COBJL. These are: (1) there is insuffi—

I cient blockin g capability, which partl y results in the next

I
1 - — 

-
- ~~~~ ~ —=-=- -~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



- ,  

~
-
~~

.- - 
~~~~~

--
~
--- - — - -

~~~~
- .--.- ,

~~
- - - ---. .-.--- . --

~~~

,----
~~~~~~~~~~~~~~~~

1~4

two shortcomings, (2) the IF THEN ELSE can not be fully

nested and as a result does some unexpected things, (3)

there is not a method for performing in—line loops, and , V~
)

g there are no capabilities for the DO UNTIL and CASE struc-

tures. Although there was agreement on the main problems,

there was none in the proposed solutions to each of the

above problems. Many solutions did not fit the criteria

that were previously established. Others were contradictory

to what the majority felt were needed. A fourth considera-

tion for designing the language was thus added to the origi—

nal three. The structures should be those that are likely

to be adopted in the official COBOL Language , therefore al—

lowing as much compatibility as possible for the future.

The tollowing articles were considere d, along with those

previously mentioned , when this structured version of CUBOL

was designed.

Benning and Nead (1975) made the broadest proposal.

They proposed to use labeled BEGINs and ENDs to designate

blocks in all structures. This would solve the problem of

both the IF THEN ELSE and the in—line PERFORM , in the in—

line PERFORM using PERFORM block.., with the BEGIN—END form-

ing the block. They also recommended a CASE structure en—

tirely independent of the PERFORM. They suggested allowing

irguments for the PERFORM and changin g the AT ENi~ to an IF

statement. 

~~~~-“ - —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- . .-


... - - - — ---.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

15

Coupe r us (1975) only suggested adding a CASE statement

by allowing subscripted labels. Then either the GO TO or

I the PERFORM could  be used to  ope ra t e  on the subscri pted

label.

Goguen (1975) recommended local terminators to solve

the blocking problem. They would include the END—IF , END—

PERFORM , END—KEY , END—ON , and END—Al. The EN D—IF would

I solve the problem of the nested IF THEN ELSE. She , as did

I 
Benning and Nead , suggested an in—line PERFORM , but used the

EN D—PERFORM to delimit it. She recommended  r e t a i n i ng  the

I UNTIL and adding a WHILE , which would be its exact opposite ,

and appears a little superfluous. These two would form the

I DO WHILE structure. To have a DO UNTIL structure, she would

I 
add a REPEAT UNTIL at the end of the PERFORM loop. To add a

CASE structure , the GO TO DEPENDING ON and the PERFORM were

I combined into a PERFORM DEPENDING ON... with the target a

group of subscripted CASE ’s. The AT END , ONSIZE ERROR , and

IR VALI D KEY would be changed by having local terminators

‘ 
END—AT , END—ON , and END—KEY. One final change would be

making EXIT a return from anywhere in a paragraph being

PERFORMed.

Hide and Croes (1975) made some PL/I type suggested

changes. To solve the blocking problem , they proposed local

terminators , CLOSE—IF , CLOSE—WHILE , CLOSE—LOOP , and CLOS k~—

I PROCEDURE . Along with the CLOSE—IF , they would add an

E L S E I F  to solve the  nested IF p r o b l e m , ho we ve r t h e r e  does

I
_ _ _ _  _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



--

16

no t seem to be much advantage to a d d i n g  a n o tn e r  reserved

word. In fact, they did not really specif y wh a t woul d be

t he  di f ~~erence between their new ELSEIF and the normal ELSE

IF. It just seems harder to read. Rather than allowing an

in—line PERF ORM , they would ad d a myriad of other con—

structs, W H I L E , R E P E A T  U N T I L , LOOP , DO, and PROC EDURE , each

as a stand alone verb with their own individual local

termina tors.

H icks ( 1975) , as w i t h  mos t, would use local terminators

to ostain blocking. His choice of terminators was quite

un Ljue, however. He would rever se the normal IF THEN ELSE

and  h a v e  IF ELSE THEN. The conditional and true part would

fall b etween the IF and ELSE and the false par t  be tween  the

ELSE and THEN , with nor mal program flow continuing after the

THEN. He would also al low t h e  E L S E I F  that Hide and Croes

suggested. Instead of changing the PERFORM , he would have a

general loop with the exit allowed anywhere in it. It would

take the form of LOOP ... EXIT ... REPEAT. The EXIT with a

conditiona l could be mov ed anywhere in the loop, so th a t  to

obtain a DO WHILE construct the EXIT would be at the top, a

DO UNTIL construc t would have the exit at the bottom. This

seems to be a very flexible idea.

McComas (1975) would prefer blocking like Bening and

Nead suggested , the BEGIN and END. However , he would no t

label them . He would eliminate the PERFORM altogether. He

would replace the call function of it with internal proce—

I

_ _ _ _ __ _ _ _ _ _ _ _ _



—
- — - - — - -- .—----- ..- ---

~

- --- . .-- - ,----—-- ,------ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--‘I,

I
Jures a n d the expansion of CALL to include internal proce—

I
dures. The loop ing function of PERF O RM would be replaced

with DO , redefining UNTIL and adding WHILE , CASE , and TIME S.

To add one more PL/I type change , he would do a w a y w i t h the

A—margin and require labels to be followed by a colon.

Mcduinness (1975) would have local terminators also.

The END—IF would terminate the IF and allow for complete

nesting . An in—line PERFORM would be allowed with END—

PERFOHM terminating it. The AT END , INVALID KEY , and ONSIZE

ERR OR would all be changed to implied IF statements. That

is, ther e would be an assumed IF in front of each one. This

would allow the use of ELSE and END—IF after them .

Orr and Neel y (1975) also recommended the local

t e r m i n a t o r s E N D — I F and EN D — P E R F O R M to solve the b l o c k i n g ,

nes ted IF, and i n — l i n e P E R F O R M p rob lems . They would make

CASE a seperate verb and would have it in the form CASE SE-

LECTION ... END—sELECTION. They would also like to see a

I feature for in—line expansion added to the COBOL language.

I
I
I
I
I

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ —‘~- .----—.. .- - — --- .---— — -— -- - -.—-

I
I

$
II. LA NGUAGE DESIGN

The primary considerations for the proposed change to

COBOL have been given earlier. To review the criteria , (1)

as much as possible redefinitions of existing COBOL struc—

tures woul d be use d , (2) any new verns or structures would

be patterned after existing COBOL structures , (3) all exis-

ting program s could be run against the pre—processor with no

I chang es, and (Li) the st ructur es should be those t hat are

lik€4y to be adopted in the officia l lang uage. A careful

I a n a l y s i s of t he p rob l ems in COBOL a l r e a d y presented show

that tae blocking problem is throughout COBOL. However , as

I tar as structured programming is concerned , in any lang uage,

the critical structures are t he IF THEN ELSE and loop ing .

Al though some of the suggestions were for a general block

st ructure, such as the BE GIN—END , this would be a drastic

cn ang~ to COBOL , and except for the just mentioned two

I structures , th e Paragraph and Section constructs already

i con sti t u t e a t l~~ast a type of blocking. Thus local

terminator s were used in this design. The two selected were

I END—IF and END—PERFORM. The use of the END was because of

the preceden t in COBOL of the END DECLARATIVES. The naming

1 of particular ENDs was used to allow better distinction of

1 18

I

- . ~~~~.. - -- -~~~~~ ~~~~~~~~~~~~~~~~~~~~~ — -,-- - --~~~— — ~~-~~- - - - - -.------

19

which block was ending and to avoid ambiguity. The use of

the hyphen was to avoid a possible problem when , as often

occurs, the IF THE N ELSE is not followed by a period. The

addition of the second IF or PERFORM , could result in an END

IF IF or END PERF ORM PERFORM situation , which would tend to

be forgo tten or to be confusing. The use of these two local

termin ators also solves the problems of the nested IF THEN

ELSE and in—lin e loops. To add a DO UNTIL and CASE con-

structs without adding whole new constructs and local

terminators , addi tions to the PERFORM verb were made. As it

turns out, then , all changes could be made using criterion

one and it was not necessary to use criterion two.. Criteria

three and four are discused under the individual

r e d e f i n i t i o n s .p
IF THEN ELSE

The easiest redefinition to make was in solving the

nested IF THEN ELSE problem. As can be seen in the Struc-

tured COBOL section of this thesis, the great ma jority of

authors favored adding a local terminator to close the IF

THEN ELSE; specificially END—IF was favored. Thus criterion

four was complied with. As can be seen from the

redefinition and as explained below , criterion three was

also satistied.

I
I
I

---- -- — ~~~~~~~~~~~~~ — - -~~ -—- -~------ .-- ------- - ---- — - - - - — - .- - -~ - .~~~~~..--


~~~~~~~~

---
-—-—-~~.---~ ~~~

_‘
~~~~~~ 

——---- ..— —-- --
~~
-_— -- .-.-- --

~~ ~
-_— —

~~~~~~
-
‘ —_— —~~~

20

I

F O R N A ~ I
g I _ ______________

~
______ ___

I I
(statement— i ) ( statement— 2 ) I

I l 1? condition [THEN ) [ ) ELSE ( ) I
(NEXT SENTENCE) (NEXT SENTENCE) I

I I
I I [END—IF]
I I I

I —  
___ I

I
rhe r e s t r i c t i ons  tha t  make  it possible to run  all old pro—

grams against the pre—processor follow.. All of those that

are listed in the present official COBOL language.. If the

$ opt ional  E N D — I F  is used , THEN becomes mandatory. Any type

I sentence is allowed in either the true part , between the

THEN and ELSE, or the false part , between the ELSE and the

END—IF. Complete nesting of IF statements can occur in

either part. Of course, no periods are allowed as this

would terminate the IF statement as in official COBOL. Thus

all criteria tot design have been met.

$ Although there was not as great a majority of authors

who preferred the in—line PERF ORM fo r  the genera l ized  solu—

- tion to the in—line looping problem , there were a signifi—

cant number who did. Also there was no ~.onsensus of thosep

who preferred the in—line PERFORM on what form the changes

I should take. Therefore the simplest and most straightfor-

ward change was accomplished. To be consistent with the IF,

I

_ _  ~~-.- .~~-.----- .



-
. -. 

-
~~ ‘ ç ~~~~~~~~~~ -~~-- --~~~~~~~~~~~~~~~~~~~~~~~

21

t h e  E N D — P E R F O R M , as s ta ted  before , was  used as the local

termina tor. All looping was accomplishe d by redefining the

P E R F O R M  f o r m a t s .  T h er e  are f o u r  P E R F O R M  f o r m a t s  in o f t i c ia l

COBOL and the changes in all of t h em  will be exp lained  m di—

v idu a l l y .  The f i r s t  f o r m a t  has no a p p l i c a b i l i t y  to Loop ing

and a redefinition is really meaningless. However , for con-

sistency, the following redefinition is made.

I —————— — — —  — 

.1

FO R M A T  1

I —————— ——— ———— —— 
I P E R F O R M  ( p r o c e d u r e — n a m e — i T H R U  p roc edure— t~a m e — 2 ]

I I
I [sentences  E N D — P E R F O R M )

I — — 

The following restrictions are added to those in official

COBOL. Procedure—name— i becomes optional; howeve r either it

i or the END—PERFO RM , but not both , must be present. Logical-

ly, THRU procedure—name— 2 can only be used if

procedure—name— i is used. This restriction also applies to

the other formats. The pre—processor will correctly process

I Format 1, b u t  t he  result, when using it as a structured PER—

FORM , would be the same as a simple seq uence of the same

sentences, paragraphs , or sections.

The same genera l changes are made for the other formats

but the changes become more meaningfu l .. Format 2 become.. as

I follows.

I
I 

—--,-. -— . . —----- - . —- .---— --—— ~~~~~ -. ~~ - ---.-- — .



I
I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i

I FOR M A T  2

I I

I PERFORM lprocedure—nawe— 1 THRU procedure— name—21

I I
I (integer— i )
I ( ) TIMES [sentences END—PERFORM ]
I (identifier—i)

I I
I ~~~~~~—— .———————————— 

The only change is the addition of the in—line capability.

As above THRTJ procedure—name— 2 is only allowed when

procedure—name— i is used and whe n procedure—n ame—i is used

nothing is allowed after TIMES.

Format 3 has added to it the capability tor the DO

I UNTIL. When UNTIL is used in COBOL , the structure that

results is actually a DO WHILE since the condition is

I checked before  e n t e r i ng  t h e  loop. Since t h e  object  was to

i m i n i m i z e  t h e  c h a nge s  to COB OL and a r e d e f i n i t i o n  of U N T I L

would  bo th  tend to confuse and would create problems in run—

I n i n g  old p r o g r a m s , the  p rob lem occur red  a b o u t  which  word  to

use to implement the DO UNLTL. The problem has been dis-

I cussed before. Tomp kins (i975) points out while and until

do not, ~y any stretch of the imagination , connotate

“ z e r o — o r — m o r e ” or “one—or—more ”. In fact , in a n y  l i t e ra l

I interpretation , they are logical opposi tes. He suggests

tnat they should be used as inverses and that a new looping

1 structure of REPEAT WHILE and REPEAT UNTIL be used as the

“one—or—more”, with the DO being the “zero—or—more ”. Fhis

I 

- - - - - . .  — — - —-—----— - -- — ——--- - ----- —~~~-—- — ---- — —-------.----.-----— ----- — —-----—------------.- 
.- --



23

woul i be fine for a language l ike  PL/ I w h e r e  a DO constiuct

is already present. Howe ver, since this type of chan .~e Is

iiot wanted for COBOL , the word BEFORE was chosen as havin g

the closest meaning to imply “one— or—mor e”. Format I thus

becomes ,

I 

- 

1

I FORMAT 3
I I
I I

I P E R F O R M  [ pr o c e d u r e — n a m e— i T H R U  proc edure— na m e — 2 ]  I
I I
I ( U N T I L  ) I
I ( J condition— i (sentences END—PERFORM ]
I (BEFORE} I
I I
I __ 

1

w i t h  no o the r  r e s t r i c t i ons  or c h a n g e s  execpt  for  those in

the previou s two formats. Format 4 has no changes except

for the addition of the in—line capability. It also has no

additional restricti ns or changes as shown below :

I I

F O R M A T  4
I  __

~~~~~~~~~~~~
__ 1

I P E R F O R M [procedure—name— i THRU procedure— name—2) 1
I . I
I . I
I . I
I (sen tences END—PERFO RM] I

1 —

The capability that was to be ad ded to the perform verb

was the CA SE construct. It did not easily fit into any of

the other formats , so an additional format , Format 5, was

I

-- --- -- .- - -~~~ - --~~-

-~~~~~~~ - - -

—
~ - _ _ _ _ _

24

aJd’~:I. For the authors tha t did sugy ’~~t adding a LA SE con-

struc t there was no a gr e e m e n t on e it h er t h e f o r m ot t he L A S E

I statement or the label targets. Thus the simplest form was

& cnosen , again in the hope that this would result in

compatabili ty with any official changes. In this case, this

was the closest to compliance to criterion tour that could

be obtained. The resulting format is as follows.

I -

I I
I FORMA T 5 I
I I
I I
I PERFORM CASE identifier—i (arithmetic—expression) I
I I
I identitier—1 (i) [statements
I I
I identifier—1 (2) statements I
I . I
I . I
I . II J identifier—1(n) statements) I
I 1
I END—PERFORM I

I I I

The subscripted identifier— i must have consecutive sub—

I scripts from 1 to N , where N is greater than or equal to 1.

The statements after the subscripte d identifier—i are op—

tional. As a result a statement may have more then one sub—

script identif ying it , allowing more flexibiltiy . This is

limited by the tact that the subscripts mus t be consecutive.

I Periods are optional after the arithmetic expression , after

i each subscripted identifier , at the end of each statement ,

and at the end of the construct , after END—PERF ORM ..

I
I

_ _ _

25

There are a few other restrictions on all of the above

new constructs and redefinitions that are a result of imple—

mentation by a pre—processor. The first was mentioned for

‘
some or the individual redefinitions but applies throughout.

The restriction in CO BOL that no periods appear in an IF

statement or else the iF statement is teriinated applies

equally for any of the structure d constructs. This should

not affect any programs and should not in any way hinder the

use of any of the structured constructs. All will work with

no periods in them. Programmers must be aware that when

they are programm ing in an IF statemen t, that they use no

period until after the END—IF. A second restriction is that

no labels starting with Z are allowed. These are reserved

for the pre—processor. The following reserved words are

also added: EN D — I F , E N D — P E R F O R M , B E F O R E , and CASE. The

only other restriction is that a structured PERFORM not be

used in a non— structured IF statement. This restriction

should not matter to programmers writing a new program ,

since they should be using either all structured or all non—

structured programming. It might attect a programmer doing

maintenance on an old program . Any time a structured PER—

FORM is add-i d to an old p r o g r a m , the programmer must insure

that it is not within an IF statement or else the IF state—

raent must also be re—written. The reason for this restric—

tion is the pre—processor will sometimes add periods when

processing a structured PERFORM . These periods are taken

I

-~~~~~~ .~~~~~~~~~~~~~~~~~~ - - - . - - - -. . —~~~ — - -- -—
~~~~~~~~

-— 



-- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~-~~~~~-- ---- ~~~~~----~~~~-- _ _ _

I
I 

- 26

I care of when the structured IF is processed , so they do not

affect the structured iF. The removal of these restrictions

I and further additions to COBOL are discussed in the conclu—

sion of this thesis. 

~~~~--~~ ---— -— -  ~~~-—- ~~
-- ~~~~~~~~~~~~~ -- —— -

‘rr~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~
- — - - - - ----~

-
~
-

~~~~~~~~~~~~~~~~~~~~~~ — -- .- —- -- -
~ 

— — — ----- ---

I
I I I .  P R E — P R O C E S S O R  i M P L E M E N T A T I O N

This chapter describes the PL/I prog ram (Appendix A)

that implements the pre—processor. PL/I was used for two

reasons; one, it is a langudge designe d for character ma-

nipulation while COBOL is not, and , two , it is a language

that can be programmed using structured programming and thus

would be a good example to show structured programming

I methods. Top down design was also used to design the pro—

gram. Many changes were made between the original top down

design and the final design that corresponds to the final

program.

I The major reason that the top down design had to be

completely reworked was a result of the sane problem that

caused the previouly discussed restrictions. The problem is

I that no periods are allowed in the IF statement. This meant

that in the processing of the structured Ii’s and PERF ORMS ,

I when nesting occurred some way had to be found , in rewri ting

the mixture of the two , to have no period s, yet to still

ha ve proper blocking. The only fairly simple method that

was found involved taking the origina l design , which

intermixed the processing, and separating it into two jon

I steps. Thus in essence two programs we re written. This is

I 27

I

—



I
1 

28

I shown in Fig. 4 where an immediate breaking into two sepa-

ra te parts at the top of the design tree occurs. The rest

I of the design can be seen in Fig. 4 and the two separate job

steps are explained below .

The first job step scans the source program for IF

sta tements. It prints out the source listing as it scans,

if reque5ted. Each IF statement is checked. If it is a

structured IF then it is processed , if not it is ignored.

The general schem e is that statements between the THEN and

ELSE and the ELSE and END—IF are move d to a paragraph at the

end of the source program and are replaced with a PERFOR M of

tha t paragraph. Nesting can occur as many tines as neces—

I ~ary . After this job step, all structured IF statements end

up in the form: IF condition PERFORM label—Zn THRU label—

I ln+ 1 ELSE PERFORM label—Zn THRU .Label—Zm+1. Since all other

s t a t emen t s, i n c l u d i n g  s t r u c t u r e d  P E R F O R M  s t a t emen t s, are in

the PERF ORMed paragraphs at the end of the source program ,

tney can be processed in a second job step regardless of

periods.

I The only executable statement in the main program of

the first job step is a call of SCAN. This initiates all

I other execution through calls cn procedures. At the begin—

i ning of each procedure there is a small paragraph that

explains what each procedure does. The three main proce—

I dures are called PHOC ESS IF, N E S T  SC A N , and N EST _IF. The

I 

_ _ _



I,— —- ________ 
—------ -—

~

----- -—-- - - _ - -,,--_- -— —— ---------
~
- - -.

~
- —--.- --- - - - - - — --— ---- 

~~
—..- - — -

~~
.-- ---- ---

I

c
i

~ {i~i

} 

I 

L LI

— -- ~~~~~~~~~~~~



______ — 
_ _  ______ ____ _ •__ ‘_ _

~~J 
~~~~~~~~~~~ ~~~~

..
~~~~~~~~~~~ -~~~ -

30

PROCES IF is called from the main scan any time an IF is

encoun tered. Unless it has already been determined tha t the

present statement is a structured IF , by the presence of a

T HEN in the same line , the source program is searched ror a

THEN or an ELSE. An IF statement that has a THEN in it is

processed the same whether it is actually a structured IF or

not. When an ELSE is found first, it means that the present

statement is not a structured IF so a return without proc-

essing is made. The IF is transformed into the form given

above and then NES SCAN is called to build the paragraph.

NEST S C A N  builds the paragraph until either another IF is

encoun tered or else an ELSE , END—IF , or period is encoun-

tered. If any of the latter three is found , then a return

is made to PROCESS_ IF, where the comple tion of processing is

done. If an E L S E  has been returned , it will be necessary to

build another paragraph so PROCEsS_ IF is called again.

If , back in N EST_SCA N , an IF had been found , a differ-

ent processing path must be taken. In this case since a

paragraph is being built at the end of the source program ,

it is necessary to have a procedure which will consecutively

build new paragraphs at. the end of the string that is being

built ; this is NEST_IF. Its operation is almost exactly

like that of PROCESS_ IF except instead of building the IF—

P E R F O R M  in the middle of the source program , it. does all its

operations at the end of the source program. It also turns

out that for simp licity and for core size savings, it is



_ ._ _ 
~~~~~~~~~~~~~~~~~~

- -- —- - -

31

better to dump each paragraph as it is completed , so that

some parag raphs will end up ahead of the paragraphs from

which they are performed. This only occurs at the end of

the original progra m , however , and does not. atrect anything

except readabili ty.

The secon d job st ep takes the ou tput from the first j ob

step an i scans it for struc tured PERFORMs , processing them

as encoun tered. Since all of the structured PERFORMs have

already been removed from the structured IFs and are not al-

lowed in the unstructured IFs, it is a simple mat ter to

change all of the ia—line PERF ORMs into a PERFORM of a

paragrap h. The paragraph is inserted immediately after the

P E R F O R M , using a GO TO to remove the paragraph trom the

stream of the program. All of the P E R F OR M s except for the

CASE are transformed into the following form.

PERFORM Zn TH1~U Zn+1 conditions.

GO TO Zn+1

Zn.

sentences.

The only additional processing reguired is for the PERFORM

BEFORE. In this case an additional simple PERFORM on the

paragraph is added. This insures at least one execution of

the paragraph. A large part of the job step is use d to keep

the labels straight in nesting situations.

_ _ _ _ _ - -~~~~~~~~~~~ -- -- ---~~~~~~~~~~--— - — .
~~~~~~~ -— -~~~~~~~



-~~~~ 
--

32

Another large part of the job step is used in the proc—

essing of the PERFORM CAS E. To implement the CASE , the GO

TO DEPENDING ON was used. However , the target of a GO TO

I D E P E N D I NG ON is very limited; only an identifier of four

digits or less with a limited USAGE is allowed. To add the

I flexibility tha t is allowed by the definition of the PERFORM

CASE given in the last chapter , the pre—processor adds an

I identifier , named CASE , in the working storage section. The

target for the CASE , a arithmetic statement , is assigned to

the variable CASE i~i a COMPUTE statement. The torn that the

processed CA SE lakes is as follows:

C O M P U T E  C A S E  = (arithmetic statement).

case—label—i .

statements.

GO TO Zn+1.

case—la bel—2.

case—label—n.

statements.

I GO TO

Zn.

GO TO case—label—i ,

1 .

I



1
case—label—n ,

DEPENDIN G ON CASE.

I
The libera l use of GO TOs in the processing of the PER-

FORMs does not result in a structured product. However ,

this outpu t is invisible to the programmer. It does have

the advantage of putting the processed code in the position

corresponding to its position in the input , thus allowing

for easier debugging. As in the first job step, all, proce-

dures have an explanation of what they do at their beginning

in the program listing. PROCESS_PERFORM and NEST_SCAN have

about the sane purposes as the corresponding procedures in

the first job step. They are not as complicated and there

is no need for a procedure correspcnding to NEST_IF, since

there is no need to distinguish bet ween any nested PERFORMs

as they all will be put in—line in the source program.

Appendix B is a COBOL program that is written using the

structures defined here. Appendix C is the same program

after it has been processed. Appendix 0 is a user ’s manual

for the pre—processor.

I
I

L.~ ______________ _ 
-— - —-—~~~~~~ - -_______



- 
- 

~~~~~~~~~ --—— —

a
I
I

IV. CONCLUSICNS AND RECCNNENDArIONS

I
These changes to COBOL need to be adopted into the

official. COBOL language and implemented into the COBOL com-

pilers as soon as possible. The advan tages of structured

I programming that have been given here and shown to work in

some of the pro jects listed , prove that there are definite

cost savings and increased reliability resulting from its

use. The longer the delay, the more unstructured programs

will be written which will have to be maintained in the

future. The ma jor obstacle seems to be the disagreement on

exactly wha t changes need to be made. As seen in the 1975

conference , in many cases there is wide disagreement on

which structures are needud and how they should be imple-

mented. The changes suggested here are a minimum that will

I allow good structured COBOL to be written. They also have

the advantage of offering the least change to, and are the

I closest to keeping, the traditional COBOL. Thus they have

I the best chance of being accepted. Any change to a language

shou ld be e v o l u t i o n a r y , bo th because of the i n v e s t m e n t in

programs and to keep the retraining and transitioning as

simp le as possible. If any drastic or re volutionary changes

I to a lan-juage are needed , it is pro~aLly best to go to a

I
I

~~~~~-~~--~~- -  -a- --- 
- ——-- - . -  

-- - - _ _ _ _ _ _ _ _ _ _ _



-, —,- - .----- - ,-~ —~~~~—-- ,---—--.—- —,,-,---—,-— -- -

I
I

completely new language, thereby making a clean break with

old methods and any Lad habits that may have evolved.

The advantages of implementing these changes in a corn—

piler as soon as possible are twofold; it will increase

coding efficiency and it will remove those restrictions that

had to be made because of the pre—processor. Since the

local terminator is present in the IF, it should be possible

to i m p lement the compiler with no restrictions on the use of

periods in the IF THEN ELSE.. This will allow better reada—

bility and m ake tne program easier to follow , a definite

goal of s t r u c t u r e d  p r o g r a m m i n g .

The only other constructs whose value would make them

candidates for implementation in the near future would be

allowing an exit in the middle of a loop as suggested by

Hicks (1975) and explained in the first chapter , and adding

local terminators for the AT END , CN3IZE ERROR , and INVAL iD

K E Y  as suggested oy Goguen (1975). Of the two, the first

would probably have the most usage and therefore should be

implemented first.

This study has examined structured programming and its

possible use in COBOL. Recommendations tor changes to COBOL

to allow structured programming hav e been made and iai p le—

nented in a pre—processor. They definitely need to be

accepted and implemented into the otficial language. Un til

this is done, the pre—processor can be use l to attain struc—

tured programming in C O B O L .

- ___________ __



I
I

R E F  E R E N C E S

I
Baker ,F. T., Chief programmer team management of production

programming, j~~ ~~~~~~~ ~~~~~~~ ]J~
, 1 (1972a), pp.

56—73.

Baker , F. T., System quality through structured programming,
~~oc. ~~~~ 1122b, pp. 339—343.

Bening, L. C. and Nead , J.. M.., Some Modifications to COBOL
Designed to Promote Structured Programming, 

~~~ uctureaPro ramming in CObOL-future and Qrese~ t, New York , N.
Y. : ACM , 1975 , pp. 134—144.

Llohm, C. and Jacop ini, G., Flow diagrams . turing machines
and languages with only two forma tion rules. ~~~~~
A~ M 9, 5 (May 1 966), pp. 3 6 6 —3 7 1 .

Couperus, J., A Proposal to E n h a n c e t h e COBO L L a n g u a g e W i t h
a Case Construc t, S~~~uct~~~ed Pro ~~~min~ ~~fu ture 4nd ~~esent , New York , N. Y.: ACM , 1975 , pp.
15—35.

DahI, 0.,, Di jkstra , E., and Hoare , C., S~~~uçtured ~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ New York. N. Y . :  Academic Press Inc., 1972.

Dijkstra, H. W., Go To Statement Considered Harmful. çg.~m~ACM 11 , 3 (Mar 1968), pp. 147—148.

Gansler, J. S~~, R em a r k s , ~~~na~~jn~ ~~~ ~~~~~~~~~~ej ~~
~~~ tern Sg~~tva re , Maxwell Air Fo rce Base, AL.: Air
University 1976, pp. 4—1 — 4 — 1 2 .

Goguen , N. H., Control Structures for Structured Programming
in COBOL,

~~~~~~~~~~~ L2 .!!l~~ £!~ ~~~~~~~~~~~ ~J1~p~esent, New York , N. Y.: ACM , 1975 , pp. 68—87.

Hicks , J. H., Suggested Changes to COBOL to Facilitate
Structured Programming, Structured 

~&Q a!~~J~ i~coaoJ~-future and  Qresent, New York , N. Y.: A CM , 1975 ,
pp. 88—94.

36

- ~~~~~~—~~~~ - - - —~~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- ---

~~~~~~~~~~~~~~~~~~~~
-

.1
I
I Hide , D. J. and Croes, 0. A., SCOBOL—Sheil’s Structured

COBOL , ~~~~~~~~~ ~~~~~ ~~~~~~~~~~ ~~~2resent, New York , N. 1.: ACM , 1975 , pp. 240—275.

• Kauffman , R. L., COBOL/Structured Programming (Will the
Marriage Survive?) , I N ? O S Y S T E M S ~2, 2 (Feb 1975), pp.48—50.

McClure , C.. L., Structured Programming in COBOL.
~~~~~~~~

~~~~ .iQ~ 
4 (Apr 1975) , pp. 25—33.

McComas, C. A., Can COB OL Be a “Structured Programming ” Lan-
guage? ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~a ~~~~~~~~~~~ ~~~
~resent, New York , N. Y.: ACM , 1975 , pp. 107—114.

Mc Gowan , C. L., TQ.~ ~o~ n ~~~ uc~~~~ed Pt~~~rammin~ Techni~~~~s
— New Y o r k , N. Y.: Petrocelli/Charte r, Inc., 1975.

McGtiinness, j., Changes to COBOL for Structured Programming,
&~~t~&~~ ~~~~~~~~ ~~ cQ~ QL- tl~~~ ~~ ~~~] N ew York , N. Y.: ACM , 1975 , pp. 95—106.

Mc Henry, H. C., Manageme~~ Conç~~~~ ~~&i L2~ QQ!1~ ~~~&L~~~
~ rog~~amrnin~~: FSC 73—0001 Gaithersberg, Nd: IBM

- Corporation, 1973.

Orr , K. T. and Neely, P. N., A Modest Proposal for the

I
adaption of COBOL to facilitate the development of
structure d programs , so as to make said programs
beneficial to the public. ~~~~~~~~~~~~ ~~2~&.~i~1aa jJ~I COBOL—future and 2resent, New York , N. V.: A CM , 1975 ,

I pp . 54—67.

I Tomp kins, H. E., Comments on “Structured Progrannminy in a

J productio n Programming Environment” , ~~~~ ~~~~~~~~ Soft—
~~~~~~~~~~~~ 

2, 1 (Mar 1976), p. 67.

I Yourdon, E., of Pro~~~~~ Struc~~&~Englewood Cliffs, N. J.: Prentice—Hall , Inc., 1975a.

I Yo urdon , E., Symposium on Structured Programming in COBOL.
Q~~~~~~ion ~~1, 6 (Jun 1975b) , p. 97..

I Yourdon , ~~., Teach ing  S t r u c t u r e d  C O B O L  to the  Masses.
~~~~~~~~~~~~~~~~~~i ~~~~~~~~~~ ia cQ~.Qk-L ~~~~~~~~~ ~a4 ~~~~~New York , N. V.: ACM , 1975c , pp. 115—13 3.

I
I
I

- -- - - — —- ~~— - - - -~ -

- - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~
— -~~-—--—- —

~~~~~ 
— -— 

~~
— - -~

---—— —---- 
~i _ _ _

.

I
I
I APPENDICES

I

I 38

- ~~~ ,- .~~~~~~
- -



I
1 APPENDIX A

SOURCE LISTING OF THE PEE—PROCESSO R

I

39

I 
~~~~~~~~~~~~~~~~~~~~~~


40

/* THIS PROGRAM ~‘AKE S A STHUCTURLD VERSIO N OF COBOL A N D

PROCESSES IT I N T O A N S I COBOL.

P T IlE FIRST JOB STEP P R OCESSES ALL IF S E A X E N E N T S I N S U R I N G
THAT PROPER NESTING iS OCCURING. */

MAIN:
P R O C E D U R E OP T I ONS (M A I N) ~~EOHDBR ;

DECLARE FILLER CHARACTE R (69) INITIAL(’. ‘)

/* FILLER IS USED TO PAD A CHAHAC IER STl~ING W ITH A PERIOD
AN D B L A N K S ~HEHE NE CESSARY .

DECLARE ENDING C HAR A CT ER (1)
/* ENDIN G IS A PLACE TO PUT A BLANK OR PERIOD.

D E C L A R E CAR D CHA RA C T ER (1 6 0) V A R Y IN G I N IT I A L((16 0)’ ‘);

/* C A R D HOLDS THE I N P U T C A R D I M A G E P A D D E D WITH BLANKS. */

D E C L A R E B L A N K S C HA R A C T ER (1 6 0) L NIT IA L ((1 60) ’ ‘);

D E C L A R E C O U N T P I C T U R E ‘999’ INI TIA L (50 0) ;

/* C O U N T HOLDS TH E C U R R E N T L AB E L COUNT.

D E C L A R E STARS C H A R A C T E H (8 0) I N I T I A L ((8 0) 1* 1) ;

ON STRINGRANGE PUT DATA;
O P E N F I LE (ER RO R S) PR I N T;

/* ERROR MESSAGES ARE PRINTED OUT CN ERRORS.
/* OTHER FILES USED: OUTPUT IS WHERE THE NON—

N E S T E D S O U R C E IS STO R ED ,

BOTT OM IS W HERE ALL NESTED
S O U R C E IS P L A C E D , IT IS CONCATENATED T O
O U T P U T IN T H E NEXT JOB STEP.

/* THE CALL ON SCAN IS T H E O N L Y S T A I E N E N T E X E C U T E D I N THE
MAIN PROGRAM. IT INITIATES ALL OTHER ACTION IN
THE FORM OF PROCEDURE CALLS.

CALL SCAN;

/ * * * * * * * * * * * * * *****************•** * * ***************

GET _CA RD:

/* H A N D L E S A L L I N P U T A N D OUTPUT W H E N W E A R E NOT I N A N E S T I N G
SITUATION. REMOVES SEQUENCE NUMBERS AND At~YTHIN G IN
C O L U M N S 73—80. THEN PADS WITH BLANKS. */

PROCEDURE;

I

—- - _—- — — - -- ~_-_ - - — - - ----_— —-_---- - --~~~- - - — -—_---- ———-_——---— _—--- -_--—_ --_- ——~~~
——-—--_.-—--—

~‘~~~ -~~~~~~~


~~~~~~~~~~ -- -_ --~~~~~~~~ --~~~

41

ON ENDFILE(SYSIN) CALL CLEANUP;
PUT FILE (OUTPUT) EDiT (SUBSTR (CARD , 1,80 ) )  (COL (1)  , A (80)) ;
GET ED I T ( C A R D )  ( C O L ( 1 ) , A ( 8 0 ) ) ;
PUT EDIT (CARD) (COL (1) ,A ( 80))
CARD = ‘ ‘ H SUBST H (CA R D ,7,66) II B L A N K S ;

END GET _ C A R D ;
p

SCA N:

/* SCAN IS IN PROGRESS WHENEVER THE PROGRAM IS NOT IN AN
IF NE ST. SCANS FOR IF STATEMENTS , CALLS FO R
PROCESSING W H E N  FOUND.

PROCEDURE;

DO WHILE (‘l’B) ;
IF  I N D E X ( C A R D , ’ IF ‘ ) > O  T H E N

IF  I N D E X (C AR D , ’ T H E N  ) > 0  T H E N
CALL PROCESS_IF (COUNT ,’THEN’,’O’B) ;

E L S E  C A L L  P ROCESS I F ( C O U N T , ’ T H E N ’ , ’l ’B ) ;
CALL GET_CARD;

END;
END SCAN;

ERROR:

/* ERROR PRINTS OUT AN APPROPRIATE ERROR MESSAGE AND
TERMINATE S THE PEE—PROCESSOR. HERE IS WHER E A
M E T H O D  FOR P R E V E N T I N G  F U R T H E R  JOB STEPS FROM
EXECUTING COULD BE PLACED.

PROCE DU RE( M ESSAGE) ;

DECLARE MESSAGE CHARACTER(80) VARYING ;

PUT F I L E  ( E R R O R S )  EDIT ( S T A R S )  (A  (80)  ) ;
PUT SKIP (2) FILE(ERR ORS) LDLT (NESSAG E) (COL(1) ,A( 80)) ;
PUT SKIP  (2) FILE ( E R P O R S )  E D I T  ( S T A R S )  (A (80) ) ;
CALL C L E A N U P ;

END ERROR;

/ * * ** * * * * ** * * * ** * * ** * * ** ** * ** * * *  $* *

CLEANUP: /* A CONVENIENT PLACE TO STOP. */

P R O C E D U R E ;

I



-~~~~~~~~ - 
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

42

STOP;
END CLEANUP;

I
P E H I O D _ PLACE:

/* PROCEDURE FINDS THE END OF A SENTENCE OR PARAGRAPH
AND PLA CES A PERIOD THESE OR REM OVES IT DEPENDING
ON PLACE.

PR OC E D U R E (P L A CE,STRINGS)

‘
DECLARE STRINGS CIIARACTEB (6000) VARYING;
DECLARE PLACE BIT(1);
D E C L A R E (I ,J ,K) F I X E D B I N A R Y (1 5) I N I T I A L (0) ;

I = V E R I F Y (S T R I N G S , ’ 1) ;

/* ALTERNATE BETWEEN FiNDING THE NEXT BLANK AND THE NEXT
N O N— B LA N K U N T I L O N L Y B L A N K S R E M AIN . */

DO W H I L E (I > O) ;
• J = I ND E X (S~J B STR (S T R I N G S ,K) , ’ ‘) + K;

I = V E R I F Y (S U B S T R (s T R I N G S ,J) , ’ ‘)
K = K + I;

END;

/* CHECK IF THE LAST CHARACTER IS ALREADY A PERIOD.
IF PLA CE THEN DO;

• IF SUB STR (STRINGS ,J—2 ,1)-. ’.’ THEN
SUB ST R (S T R I N G S ,J — 1 , 1) =

END; ELSE
IF SUBSTR(STRLNGS ,J—2,1)=’.’ THEN

SUBSTR(STRINGS ,J—2 ,1) = ‘

E N D P E R I OD_PLA CE;

PROCESS_ IF:

/* THIS PROCE~ IJ R E W I L L PR OCESS T H E OUTER MOST N E S T OF A N
IF STATEMENT. Sf

PROC EDUR E(LA BLL_ I,K E Y _ WO R D ,SET) RECURSIVE;

DECLARE SET BIT(1)
/5 SET , DO W E KN OW ALREADY ITS A STRUCTURED IF?

DECLARE KEY _ W ORD CHAR AC TER (6) VARYIN G;
/5 KEY _ W O R D , AR E WE AT AN ELSE OR AN END—IF? 5/

-•

~

-- - - - - ~~~~- • •~~~~~~- - - ~~~-- • . •~~~~~~~~~~~~

_ _ _ _

43

D E C L A R E S E NTE N C E CH A R AC T E R (6000) V A R Y IN G INITIAL(’’)

/* STORAGE FOR CODE

DECL A R E (L A B E L _ *,T E M P _ LABEL _ *) PiCTURE ‘999’;
/* ST ORA G E FOR D I I FE REN T L A B E L COUNTS. 5/

/5 NEXT LOOP SCANS FOR EITHER A THEN OR AN ELSE.
IF T H E N IS F O U N D THEN W E COULD H A V E A S TR U C T U R E D

IF AND PROCESSING CONTINUES. IF AN ELSE IS FOUND
W E DO ~ OT H A V E A STRUCTURED IF AND WE RETURN.

DO W H I L E (SET);

CALL GET _ C A R D ;
IF IN DEX(C A RD,’ IF)>O & INDEX (CARD ,’ THEN ‘)>O -THEN

CA L L N E ST_IF (LABEL #,‘THEN’ ,SENTENCE ,’O’B) ;
IF I N D E X (CA R D ,’ THEN ‘)>O THEN SET= ’O’B;
I F (INDEX (CA RD,’ ELSE ‘)>O INDEX (CARD,’. ‘)>O)

~ I N D E X (C A R D ,’ THEN ‘) O THEN DO;
/5 N O N— S T R U C T U R E D iF , ALL PERIODS THAT HAVE JUST

BEEN P L A C E D M U S T BE R E M O V E D . 5/

IF I N D E X (CARD ,’ ELSE ‘1>0 & INDEX(SENTENCE ,’. ‘)>O THEN

CALL PER[0D _ PLA CE (‘0’ B, SENTEN CE)
RETURN;

END;
END;

I = I N D E X (C A R D ,K EY _ W O R D)+ 4 ;

PUT F I L E (O U T P U T) E D I T (S U B S T R (C A R D ,1 ,I)) (C O L (1) , A (8 0)) ;
S E N T E N C E = SENTENCE II ‘ V j i L A B E L _ I H FILLER;
SENTENCE = SENTENCE I I ‘ ‘ ~J SUBSTR (CARD ,I,68)

T E M P _ L A B E L _ I = L A B E L * • 1;

/* WE NOW CAN PLACE A PERIOD IF WE KNOW WE ARE
COMPLETELY OUT OF THE NESTING. 5/

IF KEI_ W O R D ’ELSE’ THEN

E N D I N G ‘ ‘ ~~~

ELSE
E N D I N G ‘

C A R D = ‘ P E R F O R M V I L ABEL _ I I ‘ THRU V
I I TE NP _LABEL_ * II ENDIN G;

PUT FILE (OUTPUT) EDIT (CARD) (COL (1) ,A (8O))

LABEL_ I LAB EL _ * + 2;

/5 AT THIS POINT ALL IS SET UP TO NES T T HE IF SO W E CALL
NEST_SCA~4 TO FIND EITHER ELSE, ~ND—IF , OR A P ER I O D . */

CALL NEST_ SCAN (K E Y _ WORD ,LABEL _ *,SENTENCE) ;
CALL PERIOD_ PLA CE(’l’B,S E NTE NCE)

~

- - - - - - _ - - - - _ _

-•

44

SENTENCE = SENTENCE 1 • Z’ I I T E M P _ LA BE L _ I I I FILLER;
PUT FILE (BOTT OM) EDIT (SENTEN CE) (A) ;
S E N T E N C E = ‘
/5 IF W E RETURNED W ITH ELSE WE MUST PR OCESS THE FALSE PART

OF T H E ST R U CT U R E , OTHERWISE WE ARE THROUGH. 5/

IF KE!_ WOED=’ELSE ’ THEN
CALL PROCESS_ I F (L A B E L _ #,’EL SE’,’O’B) ;

E N D PROCESS _ IF;

/5 * * *** * * ** * * ** * ** ********************s ************

NEST_SCAN:

/5 N EST _SCAN STORES ALL CARD IM AG ES UNTIL IT FIN DS A KEY
WORD , IT THEN RE~ LJRNS WITH THE STORED IMAGES. */

P R O C E D U R E (W O R D ,C O U N T E R ,LIST) R E C U R S I V E;

D E C L A R E WOR D CHA RA C T ER (6) V A R Y I N G ;

/* R E T U R N S WITH KEY WORD. 5/

D E C L A R E C O U N T E R PICTURE ‘999’ ;

DECLARE LIST C HA RA CTER (6000) V A R Y ING;

ON ENOFILE (SYSIN) CALL ERROR (‘STRUCTURE CLOSING MISSING’)

/* sCA N UNTIL IF, ELSE, END—IF , OR A PERIOD IS FOUND. 5/

DO W H I L E (’ l ’B) ;

GET E D I T (C A R D)
PUT E D I T (C A R D) (C O L (1) , A(80));
CARD = ‘ ‘ ~ SUB ST R (C AR D,7,66) I I BLANK S;

IF I N D E X (CA R D ,’ ELS E ‘)>O THEN DO;
W ORD ‘ELSE’ ;
RETURN;

END;

/5 IF W E FIND AN IF, WE START NESTING. 5/

IF I N D E X (CA R D ,’ IF ‘)>O THEN DO;
IF INDEX (CARD ,

’ T H E N) > O T H E N

CALL NEST_ IF(C OUNTER ,’THEN’ ,LIST,’O’B) ;
ELSE CALL NEST _ I F (C O U N T E R , THEN ’ ,LIST ,’l ’B) ;

END;

/* END—IF MUST BE REMOVED , PROCESSING FOR AN
EN D—IF OR A PERIOD IS THE SAME SO THE

I

45

SAME KEY WORD CAN BE RETURNED. 5/

I = I N D E X (C A R D ,’END—IF’) ; -

J = I N D E X (C A R D ,’. ‘);
IF 1>0 I J>O THEN DO;

WORD = ‘END—IF’ ;
IF 1>0 THEN

• S1JBSTR (CARD ,I,6) = ‘

RETURN;
• END;

/5 NO KEY WORDS FOUND SO STORE CARD IMAGE. 5/

LIST = LIST II CARD;

END;

EN D NE ST_ SCAN;
—

/ ** ** * * * * * * ** * ** ** * ** * * * * * ** * * * * * * * * * * * * ** ** ** * * ** ** * * * ** ** * */

NEST _ IF:

/* NEST_ IF IS ALMOST A COPY OF PRO CESS _ IF EXCEPT I N S T E A D
OF P R I N T I N G OUT CA R D S IN THE STREA M OF T H E PR OG R A M
THEY ARE PUT AT THE END OF THE SOURCE PROGRAM. */

PR OC E D U R E (N U M BER ,T Y P E ,LLSTS,SET 1) RECURS IVE;

DECLARE SET1 BIT(1);
DE CL A R E (N U M BER ,NIJM) PICTURE ‘999’;
D E C L A R E (LIS TS ,TEMP) CHARACTER (6000) VARYiNG;
DE CLA R E TYPE CHARACTER (6) VARYING ;
DECLARE STRING CHARACTER (80) VARYING INITIAL(’’);
DECLA RE PO INTE R FIXED BI NAR Y(15)

PO I N T E R = LE N GTH (LI STS)

DO WHILE (SET1);
V LISTS = LISTS Il SUBSTR (CARD ,1 ,U 0)

GET EDIT(CARD) (COL(1), A(80));
PUT EDIT (C A R D) (COL (1) , A (8 0))
CARD = ‘ ‘ H SUBSTR(CARD ,7,66) II BLANKS ;

—

IF INDEX (CAR D ,’ IF ‘)>O & iNDEX (CARD ,’ THEN ‘)>O ?H~ N
CALL N E ST _ 1 F (N U M B E R , ’THEN’ ,LISTS,’O’B) ;

IF INDEX (CARD ,’ THEN ‘)>O THEN SET1 ’O ’b ;
IF (INDEX (CARD ,’ ELSE ‘))O INDEX (CARD ,’. ‘))O)

& I N D E X (C AR D , ’ T H E N) 0 T H E N DO;
I = INDEX (SUB STR (LIS~IS ,PO INT ER),’. ‘)
DO WHILE (1>0) ;

SUBSTR (LISTS,I+POINTER— 1,1) = ‘ ‘ ;

I = INDEX(SUBSTR (LIST S,POINTE R) ,’. ‘);
END;

I

- - -~~~~~~~- ~~~ -~~~~~

_ _

_ _

~~~~~~ 

.

~~~~~~~

_

~~~~~~~~~~~

_

~~~~

_

~~~~~~

_ -- -- — - -- --‘— —---— -- - —~----------- -- --

46

RETURN;
END;

END;

NUN = NUM8ER + 1;
I = I N D E X ( C A R D ,TYPE)+L4 ;
LISTS = LISTS 

~ 
SUBSTR (SUBSTR (CARD ,1 ,L) H BLANKS ,1,80) ;

TE M P = ‘ V I I N U M B E R  I I  FILLER ;
TEMP = TEMP II SUBSTR(CASD ,I,80) ;

IF IN DEX (C ARD ,’. ‘)>O I TYPE= ’EL SE’ THEN
E N D I N G  = ‘.‘ ; ELS E E N D I N G ‘

STRING = ‘ PERFORM Z’ 
~ 

NUMBER II ‘ THRU Z’
)J NUi~ I I ENDING II  BLANKS;

LISTS = L I S T S H STRING;

NUM BER = NUMBER + 2;

CAL L N EST SCAN (TY PE ,NU M BER ,TEMP)
CALL PERIOD_ P L A C E (’ l ’ B , TENP)

TEMP = TEMP II ‘ 1’ ~ 
NUN II FILLER;

PUT FILE (B OTT OM) EDIT (TEMP) (A)

IF TYPE= ’ELSE’ THEN DO;
CALL NEST_ IF ( NU N B E R ,’ELSE’,LISTS,’O’B) ;

EN D;
CALL PERIO D_ P L A C E ( ’ l ’B , LISTS)

END NEST_ IF;

END MAIN;

I
I
I

- _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~
----—-— -—

~
--

47

/* THIS SECOND JOB STEP TAKES THE OUTPUT FROM THE PREVIOUS
STEP WITH ALL NESTED IF’S PROCESSED AND PROCESSES iT
FOR IN—LINE PERFORMS . S/

I

MAIN:

A PROCEDURE OPTIONS (MAIN) REORDER;

D E C L A R E (C A R D ,N E W _CARD) CHARACTER (80) VARYING LNITIAL ((8O) ‘

/5 CARD IMAGE STORAGE S/I

D E C L A R E (CO U N T,COUNT_PLUS) PICTURE ‘999’ INITIAL (100)
/5 LABEL COUNT STORAG E 5/

D E C L A R E N E X T _ W O R D C H A R A C T E R (4 0) V A R Y I N G ;
D E C L A R E C A S E _ L A B E L C H A R A C T E R (4 0) V A R Y I N G ;
D E C L A R E C A S E _ N U M B E R P I C T U R E ‘9’ IN I T I A L (1)
D E C L A R E S T A R S C H A R A C T E R (8 O) I N I T I A L ((8 O) t 5 1) ;

D E C L A R E R E S E R V E D (3 0) C H A R A C T E R (1 0) V A R Y I N G I N I T I A L
(‘ A C CE P T ‘ , ‘ A D D ‘, ‘ A L T E R ‘, ‘ A P P L Y ‘ , ‘ CALL ‘, ‘ C A N C E L ‘ ,

C L O S E ’ , ’ C O M P U T E ‘ , ‘ C O P Y ‘, ‘ DI SPL A Y ‘ , ‘ D I V I D E ‘ ,
E N T E R ‘, ‘ E N T R Y ‘ , ‘ E X A M I N E ‘, ‘ GO ‘ , ‘ G O B A C K ‘, ‘ IF ‘ ,
M O V E ‘ , ‘ M U L T I P L Y ‘, ‘ O P E N ‘ , ‘ P E R F O R M ‘ , ‘ R E A D ‘ ,

• R E W R I T E ‘ , S E E K ‘ , ‘ START ‘ , ‘ STOP ‘, ‘ S U B T R A C T ‘ ,
T R A N S F O R M ‘ , ‘ U S E ‘, ‘ W R i T E ‘) ;

O P E N F I L E (E R R O R S) PR INT;

C A L L F I N D _ P R O C E D U R E _ D I V I S I O N ;
C A L L S C A N ;

/**********s******s*******s*****************•*******•*•****•***/

GET _ C A R D :

/* HANDLES ALL CARD IMAGES W H E N NOT IN NESTING SITUATION. 5/

P R O C E D U R E ;

PUT F I L E (OU T) E D I T (CA R D) (COL (1) , A(80));
GET EDIT (CARD) (COL(1),A(80));
P U T E D I T (C A R D) (C O L (1) , A(8J));

E N D GET _ C A R D ;

/*****************************•***s*****•******a*****.S********/

FIND_ PRO CE D U R E _ DIVISION:

/5 T H I S P R O C E D U R E SCANS FOR THE WORKIN G STORA CE SECTION
IF IT DOES NOT FIND ONE IT MAKES ONE.
IN E ITHER C ASE IT ADD S THE RESERVED WORD CA SE

_________ -. ~~~~• ~~~~~~~~~~~~~~~~~

I
I

48

FOR THE P R O C E S S I N G OF CASE S T A T E M E N T S .

PROCEDURE;

DECLARE (I,J) BLT (1) INITIAL(’l’B)
DECLARE K PICTURE 1 9 ;

DO W H I L E (I N D E X (C A R D ,’PROCEDURE DIVISION.’)=O)

C ALL G ET _CARD;

/5 IF THE P R O C E D U R E D I V I S I C N IS FCU ND FIR ST, THEN & WORKING
STORAGE SECT iO N MUST BE ADDED.

IF I N D E X (C A R D ,’PROC ED URE D I V I S IGN . ’)>O THEN DO ;

IF I T H E N DO;
- PUT FILE (OUT) EDIT (’ WORKING—STORAGE SECTION.’)

(COL (1) ,A (80))
DO K=1 TO 9;

P U T FLLE (OUT) EDLT (’ 77 CASE’ I i K II
PICTURE 9(4).’) (COT. (1) ,A (aO))

E N D ;
I = ‘0 ’s;
J ’O’B;

E N D ; ELSE J = ‘0’S;
END;

/5 IF W O R K I N G S T O R A G E IS FOUND FIRST NEED ONLY TO ADD CAS E. 5/

IF I N D E X (C A R D ,’WORKING—STORAGE)>O THEN DO;
P U T F I LE (O U T) E D I T (C A R D) (C O L (1) , A (8 0)) ;
DO K=1 TO 8;

PUT F I L E (O U T) ED I T (77 C A S E ’ I I K I I
PICTURE 9(4) . ‘) (COL (1) ,A (SO))

E N D ;
C A R D = 77 CASE9 PICTURE 9 (4).’;
I ‘0’S;

END;
END;

END FIND _ PRO CE D U R E _ DIVISION;

SCAN:
PROCEDURE;

/5 EVERYTHIN G STARTS WITH A PERFORM. 5/

ON ENDFILE(SYSIN) CALL CLEANUP ;

DO WHILE (’l’B) ;
IF INDEX (C A RD ,’PERF ORM ’)>O THEN

CA L L PROCE SS_ P E R F ORM (C OU NT ,CA SE_ NUNBER)
CA SE_ NUMBER = 1;

I
I

49

CALL GET _CARD;
END;

END SCAN;

I / 5 5*4*5 5*5 5* * * ** * * * * * *4 * ** * * ***** * *** * ** **** ***a* * * *** *** * ** * ** /

I
NEST _ SC A N :

/5 ONCE W E ARE IN A PERFORM PARA GRAPH SEAR CH FOR AN

I
END—PERF ORM OR A NESTED PERFORM. 5/

PROCEDURE (KEY_ WORD) RECURSIVE;

ON ENDFILE (SYSIN) CALL ERROR(’STRUCTURE CLOSING MISSING’);

DO WHILE (‘1’S) ;

IF I N D E X (CA R D ,’PERFORM’)>O THEN DO;
COUNT = C O U N T + 1;

CALL PROCESS_ P E R F ORM (CO U N T ,C ASE N U M B E R)
END;

IF I N D E X (CA R D ,’END—PERF ORN’)>O THEN DO;
KEY _W O R D = 1;
RETURN;

END;

I CALL GET _ CARD;

E N D ;

I END N EST_SCAN;

/ * * * * * ** ** * *** * ** ** ** *** * ** * * * * ** * .* * * * ** ** * ** * ** * * * * * * * ** * * * ** /

FIND_ W ORD:

/5 SEARCHES FOR NEXT WORD IN CARD AND RETURNS IT.

I C H A N GES NEW _CARD TO THE REMAINDER OF CARD.

PROC E DURE (W O R D)

I DECLARE WORD CRARACT ER (40) VARYING;

N E W _CARD SUBSTR (CABD ,INDEX (CA R D ,WORD))
I NEW _CARD = SUBST R (NE W _CAR D,I N D E X (N E W_CAB D ,’ ‘))

N E W _CARD = SUBS?R (N EW _C A R D ,VERIFY (NE W_CA R D ,’ ‘))
NEXT _ W O RD = SUBSTR (N E W _CA RD, 1,INDEX (NE W _C A R D ,’ ‘)—l);

END;

/**********************************$************S**************/

~
•
~~~~~~~

• 
~

- - _

~~~~~~

--- - • -

~~

--_ -

~~~~~~~~~ 

- —  — -- 
—‘I”

I

50

E R R O R :
P R O C E D U R E  ( M E S S A G E )

D E C L A R E  M E S S A G E  C H A R A C ? E R (80)  V A R Y I N G ;

PUT F I L E  ( E R R O R S )  E D I T  ( S T A R S )  (A ( 80)  ) ;
PUT SK I P ( 2 )  F I L E ( E R R O R S )  E D I T ( N E S S A G E )  ( C O L ( 1 ) , A ( 8 0 ) ) ;
PUT S K I P ( 2 )  F I L E ( E R R O R S )  E D I T ( S T A R S )  (A ( 8 0 ) ) ;
CALL CLEANUP;

E N D  E R R O R ;

/5 * ** ** * * * * * ** * * * * ** * *  5*5* 4 * * 5 * 5 * 4  * *

C L E A N U P :

PR OCEDURE;
STOP;

END CLEANUP;

/ * * * * ** * * * ** ** * * ** ** * * * * * ** * * * * ** * * * ** * ** * * ** * ** * ** * * * * * * * * * ** * /

C O N D I T I O N A L _ SCAN:

PROCEDURE;

ON E N D F I L E ( S Y S I N )  C A L L  E R H O R ( ’ I I P R O P E R  C O N D I T I O N A L ’ ) ;

DO W H L L E ( ’ l ’ B ) ;
IF  I N D E X ( N E W _ C A R D I I ’  ‘, ‘. ‘ ) > O  T H E N  R E T U R N ;
D O 1= 1 TO 30;

IF I N D E X ( N E W _ C A R D .R E S E R V E D ( I ) ) > 0  TH~ ’N R E T U R N ;
E N D ;
CALL GET _CARD;
N E W _ C A R D  = C A R D ;

E N D ;

E N D  C O N D I T I O N A L _ SCAN;

P R O C E S S _ PERFORM:

/5 W H E N  P R O C E S S I N G  T H E  P E R F O R M , W E  T R E A T  SE F O R E  A N D  C A S E
D I F F E R E N T L Y  T H E N  O T H E R  I N  L I N E  P E R F O R M S  A N D  DO
NOTHING WITH OUT OF LINE PERfORMS. 5/

PROCEDURE(COUNT ,CA SE _ NU MBER ) RECURSIVE;

D E C L A R E  ( C O U N T ,TENP) PICTURE ‘999’
DECLARE (CASE _ N U~13EN ,OLD_CA SE) PICTURE ‘9’;
D E C L A R E  K .~Y _ W O R D  F I X E D  B I N A R Y ( 1 5 )  I N L T I A L ( O )

I



- 

I
51

CALL F I N D _WORD (’PERFORM’);
CoUNT_PLUS = COUNT + 1;

/5 BEFORE——PERFOR M ONCE AND THEN CHANGE TO AN UNTIL. 5/

I F  N E X T _ W O B D = B E F O R E ’  T H E N  DO;
S U B S T H ( N E W _ C A H D ,I N D E X ( N E W _C&RD,’HEFORE’),6) = ‘UNTIL ‘;
PUT FILE (OUT) EDIT (’ PERFORM 1’ I I  COUNT I I

‘ THRU V I I  COUNT_PLUS I I  ‘.

) (C0L(1), A (80fl ;
N E X T _ WOR D = ‘U N T I L ’ ;

END;

/5 CHAN G E THE IN LINE PERFORM TO AN OU T OF L I N E  ONE.  */

I IF N E X T _ W O R D = ’ U N T I L ’  NEXT _ WORD ’ VARYING’ THEN DO;

PUT FILE (OUT) EDIT (’ PERFORM Z’ II COUNT II
‘ T H R U  Z I I  C O U N T _PLUS Il ‘ ii

• NEW _CA R D ) (COL( 1 ), A (8O));
¶ C A R D  =

1 /* S C A N  TO F I N D  T H E  E N D  OF THE CO N D I T I O N A L .
I IF I N D E X ( N E W _ C A R D I I ’  , ‘ . ) = O  T H E N

C A L L  C O N D I T i O N A L _ S C A N ;

I P U T  F I L E ( O U T )  E D I T ( ’  GO TO V I I  C O U N T _ P L U S  j j
‘. ‘)  ( C O L ( 1 )  ,A ( 8 0 ) )

P U T  F I L E ( O U T )  E D I T ( ’  V J I  C O U N T  I I  ‘ ‘ )
(COL (1 )  , A ( 8 0 ) ) ;

• C O U N T  = C O U N T  + 1;
TE MP = COUNT;

I C A L L  NEST _ SCAN ( K E Y _WORD)

• IF  K E Y _ W O R D 1 T H E N  DO;
PUT FILE(OUT) EDIT(’ GO TO Z’ I I  T E M P  I I

‘. ‘) (COL ( 1 )  , A ( 8 0 ) ) ;
C A R D  = ‘ Z ’  I I  T E M PI I  ‘.‘;

- - $ E N D ;  ELS E
C A L L  E R R O R ( ’ I M P R O P E R  STRUCTURE CLOSING’);

C O U N T  = C O U N T  + 1;
K E Y _W O R D  = 0;

E N D ;

IF N E X T _ WORD= ’CASE’ THEN DO;

P /5 ISOLATE THE CASE LABEL , ASSIGN TARGET TO CASE. 5/

CALL FIND _ WORD (’CASE’)

I I = INDEX ( N E W _CARD ,’ (‘)
I C A SE _ L A B E L = SU B S T R  ( N E W _ C A R D , 1, 1—1)

PU T F I L E ( O U T )  E D I T ( ’  C O M P U T E  C A S E ’  II
i CASE _ NUMBER I I  ‘ ‘ I I

sUB STR(NEW _C A R D ,I,I N D E X ( N E W _CA R D ,’)’)— I+l )

I



I
I

52

I I ‘. ‘) (COL (1) ,A (80));
OLD _ CASE = CASE _ NUMBER;
~ ASE _ N U N B E R  = C A S E _ N U M B E R  + 1;
C A R D  = ‘ GO TO Z’ II CCUNr II’ .’ ;
C O U N T  C O U N T  + 1;

C A L L  C A S E _ SCAN (OLD _ C A S E )

E N D ;

C A L L  PROCESS _T I M E S ;
CALL PROCESS_ B E F O R E ;

E N D  PROCESS _ PERFORM;

PROCESS _ B E F O R E :

/5 PROCESS_ BEFORE LOOKS FOR NON STRUCTURED BEFORES
AND THEN PROCESSES THEM IF FOUND

PROCEDURE;

DO WHtLE (’l ’B) ;
I = I N D E X ( C A R D ,’ B E F O R E  ‘);

Ii’ 1>0 THEN DO;
PUT FILE (OUT) EDIT( SUBSTR (CA R D,1,I)) (COL ( 1) , A (d0));
SUBST R - ( C A R D ,I ,8) = ‘ U N T I L  ‘;
SU B S TR (CA R D ,1,I N D E X ( C A R D ,’PER F OR M ’ )— l )  = a

RETURN;

END;
IF I N D E X (N E W_CARD II ’ ‘,‘. ‘)>O THEN RETURN;
DO 1=1 TO 30;

IF I N D E X ( N E W _ C A R D ,R E S E R V E D ( I f l> 0  THEN R E T U R N ;
END;
C A L L  GET_ C A R D ;
NEW _CARD = CARD;

END;

E N D PROC E SS_ B E F O R E ;

/5 5*5*5 5* 5 * * *5*  * * 5 * 5 * 5 * 5 *  * * * * * * * *5  * * * * * *

PROCESS _ T I M E S :

/5 PROCESS_TIME S LOOKS FOR STRUCTURED TINES
A N D  T H E N  PROCESSES T H E M  IF F O U N D  5/

PROCED (JR E;
CALL FIN D_ WO RD (NEXT _ WORD) ;
IF N EXT _ WORD ’TIMES’ THEN DO;



_______ • - - - 
~~

- -  —-‘.5 - . -—-5 - ---5-.--- —

53

CALL F IND _ W O R D (’  P E R F O R M  ‘);

PUT FILE(OUT) EDIT(’ PERFORM Z’ I I  CO U N T  I I
T H R U  Z ’  I~ C O U N T _ P L U S  I I  ‘ ‘ U

I NEW _CARD) (COL(1), A ( 80 ) ) ;
C A R D  =

PUT FILE (OUT) EDIT(’ GO TO Z’ J I COUNT_PLUS
r I j ‘. ‘) (COL (1) ,A (80)) ;

L PUT F I L E ( O U T )  E D I T ( ’  V I i  C O U N T  ~I(COT. (1) ,A (80))
COUNT = COUNT + 1;

I TEMP COUNT ;
CALL NEST _ SCAN ( K E Y _ W O R D )
I F  KEY WORD= 1 THEN DO;

PUT FILE(OUT) EDIT(’ GO TO Z’ Ii
TEMP II ‘. ‘) (COL(1), A ( 8O))

C A R D  = ‘ Z’ I I TEMP I I  ‘.‘
, END; ELSE

CALL ERR OR(’IMPROPER STRUCTURE CLOSING’);
COUNT = COUNT + 1;
K E Y _ W O R D  - 0;( END;

E N D  PROCESS _ T I M E S ;

CASE _ SCAN:

/5 B E I N G  P A S S E D  THE CASE L A B E L  WE SCAN FIXING LABELS AS WE
FIND THEM UNTIL FINDING END—PERFORM., THE GO TO

- DEPENDIN G ON IS THEN SET UP. 5/

- 
P R O C E D U R E ( O L D _ C A S E )  ;

.1 D E C L A R E  OLD _ CASE P I C T U R E  ‘9 ’ ;
• DECLARE (CASE _PIC,CA SE_COUNT) PICTURE ‘999’;

CA SE_COUNT = 1;
CALL GET _CARD;

— DO W H I L E ( I N D E X ( C A R D ,’EN D— P EHF OR M ’ ) O)

IF INDEX (C AH D,CASE_ LABEL) >0 THE N DO;
PUT FILE(OUT) EDIT(’ GO TO Z’ I I  COUNT II ‘ . ‘)

(COT. (1) ,A (80) )
CAR D= ‘ ‘ j J  CASE_LABEL II ‘— ‘  ( I  CASE _COUNT

I I  . ‘ I I  5UBST R ( CARD ,INDEX( CAR D ,’)’)+2) ;
C A S E _ C O U N T  = C A S E_ COUNT + 1;

END;
IF INDEX (CA R D,’ PERFORM ‘)>O THEN

CALL PROCESS_PERFO RM (COU NT ,CASE _ N U M B E R )
CALL GET_CARD;

I END;

I 

— - -— - -• -- -- -5 - - — - - ----- - --- -—5 __  __



r ~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~ 

-

~~

-

54

P UT FILE (OU?) EDIT (’ GO TO Z’ I I COUNT I I ‘ . ‘)

(CO L (1) , A(80));
COUNT _PLUS COUNT — 1;

I PUT FILE (OU?) E D L T (’ Z ’ II COUNT_PLUS ~J
(COt (1) ,A (80)) ;

PUT FILE (OUT) EDIT(’ GO TO’) (COL(1),A (80));
DO CASE_Plc = 1 TO CASE_COUNT—i ;;

PUT FZL E (OUT) EDIT(’ ‘ I I CASE _LABEL I- I
‘— ‘ I)CASE _PIC Ii ‘

i ’) (COL (1),A (80))
I E N D ;
I PUT FILE (OUT) EDIT (’ DEPENDING ON CASE’

I I OLD_CASE I I ‘. ‘) (COL (1) ,A (80))
I C A R D = ‘ Z’ I I COUNT I I ‘.‘;

COUNT COUNT + 1;

END C A S E _ S C A N ;

I END MAIN ;

- ‘ I

~

I

I
I

__________________________ - ——-- - -—‘..-~--..-~.—- - - .5.- — •~~~~~~ -—5—
—I

I I

I

APPENDIX B

EXAMPLE COBOL PROGRAM

t

I
I 55

I

_ _ _ __ _ _ _ ~~~~~~~~~~~~~—-~~~~~~~~~~~~~~~——-~~~~~~.

- 5-.--- - 5— --- - --

56

IDENTIFICATI ON DIVISION.
PRO GRAM— ID. PROG6.
AUTHOR. BOB HILB.
I N S T A L L A T I O N . A U C O M P U T E R C E N T E R .
DATE—WRITTEN. NOV 23,1915.
D A T E — C O M P I L E D .
REMAR K S . .
E N V I R O N N E N T D I V I S I O N .
CONFIGURATION SECTION.
S O U R C E — C O M P U T E R . I B M — 3 7 0 — 15 5 .
OBJECT—COMPUTER. IBM—370—155.
INPUT—OUTPUT SECTION.
Ft LE— CONTROL .

SELECT STRANGE-FILE ASSIGN TO UT— S—STRANGE.
SELECT PRINT—FILE AS SIGN TO UT— S—PRINTER.

DATA DIVISION.
FILE SECTION.
FD STRANGE—FILE

RECO RD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 10 RECORDS
R E C O R D I N G M O D E IS F
L A B E L R E C O R D S A R E STANDARD
D A T A R E C O R D IS S T R A N G E — R E C O R D .

01 S T R A N G E — R E C O R D .
02 RECORD—TYPE PICTURE 9.
02 SUB SCRIPTS.

03 ROW P I C T U R E 9 (5) USAGE IS COMPUTATIONAL.
03 COLUMNS PICTURE 9(5) U S A G E IS COMPUTATIONAL. .

02 T I P E — C N E — R E C O R D .
03 VALUE— i PICTURE 9(5) USAGE IS COMPUTATIONAL.
03 F I L L E R P I C T U R E X (6 7) .

02 T Y P E—T ~~O — R E C O B D R E D E F I N E S T Y P E — O N E — R E C O R D .
03 V A L U E — 2 U S A G E IS C O M P U T A T I O N A L — i .
03 FILLER PICTURE X(67). .— -

02 TYPE—THREE—RE CORD REDEFINES TYPE—ONE— RECORD.
03 V A L U E — 3 U S A G E IS C O N P U T A T I O N A L — 2 .
03 F I L L E R P I C T U R E 1(63) .

02 TY P E— F O U R — R E C O R D R E D E F I N E S T Y P E — O N E — R E C O R D .
03 V A L U E — L 4 P I C T U R E 9 (5) U S A G E IS C O M P U T A T I O N A L — 3 .
03 F I L L E R PI C T U R E X (6 8) .

FD PRI NT—FILE
RECORD cONTAINS 132 CHARACTERS
BLOCK CONTAIN S 1 REC O RDS
R E C O R D I N G M O D E IS F
L A B E L R E C O R D S ARE STANDARD
D ATA R E C O R D IS P R I N T — L I N E .

01 P R I N T — L I N E P I C T U R E X (1 3 2) .
W O R K I N G — S T O R A G E SECTION .
77 M E A N P I C T U R E 9 (6) V 9 (6) VALUE ZEROS.,
77 SUMS P I C T U R E 9 (6) V 9 (6) V A L U E ZE R OS .
77 S U M — O F — S Q U A R E S P I C T U R E 9 (6) V9 (6) V A L U E ZEROS.
71 V A R I A N C E P I C T U R E 9 (6) V 9 (6) V A L U E ZEROS .

-- - - -5 - -5- - -— —- - --~~~~~~~~~~~~~~~ - --- ~~~~~~~~~~~~~~~ --- -5 — — - 5 - - - - - 5--- - —

- --- 5-5-

57

77 STANDARD—DEVIATION PICTURE 9(6)V9 (6) VALUE ZEROS.
77 I P I C T U R E 9 (6) .
77 J PICTURE 9(6).
77 K P I C T U R E 9 (3) .
01 S T R A N G E — M A T R I X .

02 STRANGE—ROW OCCURS 10 TIMES.
03 STRANGE—COLUMN OCCURS 10 TIMES.

04 STRANGE—ARRAY USAGE IS C O M P U T A T I O N A L — 2 .
01 PRINT—FORMAT.

02 FILLER PICTURE X VALUE SPACES.
02 PRINT—LEADER PICTURE X (40) VALUE SPACES.
02 F I L L E R P I C T U R E X (7) V A L U E ‘ N E A N ’.
02 PRINT—MEAN PICTURE Z(6).9(6).
02 FILLER PICTURE 1(3) V A L U E a , ~~
02 FILLER PICTURE X(15) VALUE ‘VARIANCE= ’.
02 PRI NT—VARIANCE PICTURE Z(6) .9(6).
02 FILLER PICTURE X (3) VALUE ‘, ‘.

02 FILLER PICTURE X (2 4)
• VALUE ‘STANDARD DEVIATION= ’..

02 PRINT—STANDARD—DEVIATION PICTURE Z(6).9(6).
PROCEDURE DIVISION.
A S E C T I O N .
Al 00— OPEN—FILES.

OPEN INPUT STRANGE—FILE
OUTPUT PRINT—FILE.

£ 110—INITIALIZE—AR RAY.
P E R F O R M £ 3 0 0 — Z E R O — A R R A Y T H R U A 3 0 0 — E X I T

V A R Y I N G I F R O M 1 81 1 U N T I L I EQUAL 11
AF T ER J FROM 1 81 1 UNTIL J E Q U A L 11.

£120—READ—STRANGE—FILE.
READ STRANGE—FILE AT END GO TO A140—CONPUTk.—NEA N.

£ 1 3 0 — C R E A T E — A R R A Y .
IF RECORD—TYPE EQUAL ‘1’

PERF ORM A3 10—TY PE— 1—MOVE THRU A310—EXIT.
IF RECORD—TYPE EQUAL ‘2’

PERFORM A320—TYPE— 2—MOVE TURD £320—EXIT.
IF RECORD—TYPE EQUAL 3’

PERF ORM A33 0—TY PE—3—MJVE TURD A330—EXIT .
IF RECORD—TYPE EQUAL I L 4 ~~

P E R F O R M A 3 4 0 — T Y P E — 4 — M O V E T H R U £ 3 4 0 — E X I T .
~J TO A 120— REA D— STRANGE—FILE..

Al 40—COMPUTE—MEAN.
PERF ORM A350—SUN TURD A350—EXIT

VARYIN G I FRO M 1 BY 1 UNTIL I EQU AL 11
A F T E R J F R O M 1 BY 1 U N T I L J E Q U A L i i .

DIVIDE SUMS BY 100 GIVING MEAN BOUNDED.
A l 5 0 — V A R I A N C E — S T A N D A R D — D E V I A T E .

PERF ORM A360—SUII—O F—SQUARES THRU A3 60—EXIa.
VARYIN G I FROM 1 BY 1 UNTIL I EQ UAL 1 1
AFTER U FR OM 1 BY 1 UNTIL U EQUAL 11.

COMPUT E V A R I A N C E = (S U M — O F — S Q U A R E S — SUNS ** 2) / ~9 U O .
COMPUTE STANDAR D—DEV IATICN = V A R I A N C E *5 ~~~

-5~~~~~~~~- - - -

- ----- --------- - ---,---- --- - --.- - - - - - -
.5

58

MOVE MEAN TO PRINT—MEAN.
MOVE VARIANCE TO PRINT—VARIANCE.
MOVE STANDARD—DEVIATION TO PRINT—STANDARD—DEV IATI ON.
MOVE ‘THE VALU ES FOR THE ORIGINAL ARRAY ARE’ TO PRINT—LEADER.
WRITE PRINT—LINE FROM PRINT—FORMAT

AFTER POSITIONING 1 LINES.
Al 65—TEST.

PERF ORM A 170—COM PUTE—2ND—ME &N BEFOR E I EQUAL 1.

PERF ORM BEFORE I EQUAL 1.

PERFORM UNTIL I IS GREATER THAN U.

IF I EQUAL 11 THEN
CCMPUTE I = 1

ELSE
IF J EQ UAL 1 1 THEN

CO M P U T E J = 2 0
I F K E QU A L 1

COM P U T E K = 2
EL SE N E X T SE N T E NC E

EL.~E IF K EQUAL S THEN
COMPUTE U 6

E N D — IF
CO M P U T E U = 2 1

P E R F OR M CA SE L A B E L A (K)
L A B E L A (1) COMPUT E I = 99
LA BE L A (2)

- COM P U T E I = 98
E N D — P E R F O R M

END—IF
COM P U T E J 22

PERFORM VARYING I FROM 1 BY 1
UNTIL I EQUAL 1 1
COMPUTE J = 97

E N D — P E R F O R M

E N D — I F

END-PERFORM.

PERFORM CA SE LABEL (K).
L A B E L (1) .

C O M P U T E I = 1.I
I

-5- -- - - - - - -_-- - --- _- — - —5- - - - - -— - - - ...--~-~~~-—- 5 - -

- - - - - - - -5 - --— --- - ---- .5 -

59

COMPUTE I = 12.
END—PERFORM.

END— PERF ORM.

All 0—COM PUTE—2N D—M EA N.
MOVE ZEROS TO SUMS.
P E R F O R M £ 3 5 0 — S U M T H R U A 3 5 0 — E X L T

VARYIN G I FR OM 1 BY 1 UNTIL I EQUAL 11
AF TER J FROM 1 BY 1 UNTIL J EQUAL 11.

D I V I DE SUM S BY 100 G I V I N G M E A N R O U N D E D .
A l3O—2 N D—VAR—SCANDA R D—DEV tATE.

MOVE ZEROS TO SUM—OF—SQUARES.
PERF ORM P360—SUM—OF—SQUARES TURD £360—EXIT

VARYI N G I FR OM 1 BY 1 UNTIL I EQUAL 11
4 AFTER U FROM 1 BY 1 UNTIL U EQUAL 11.

COMPUT E VARIANCE = (SUM—OF—SQUARES — SUMS ** 2) / 9900.
COMPUTE STANDARD—DEVIATION = V A R I A N C E *5 .5.
MOVE MEAN TO PRINT—MEAN.
M OVE VARIANCE TO PRINT—VARIANCE.
MOVE STAN DA RD—DEV IATICN TO PRINT—STAN DARD—DEVIAT ION.
MOVE ‘THE VALUES OF THE CONVERTED ARRAY ARE’ TO PRINT—LEADER .
WRITE PRINT—LINE FROM PRINT— FORMAT

A F T E R POS ITI ON I N G 2 L I N E S .
£1 90—CLOSE—FILES.

CLOSE STRANGE—FILE
PRINT—FILE.

STOP R U N .
£300—ZERO—ARRAY.

COMPUTE STRANGE—ARRAY (I, U) = 0.
A3 00—EXIT.

E X I T .
£ 3 1 0 — T Y P E — i — M O V E .

MOVE VALUE— i TO STRANGE—ARRAY (ROW , COLUMNS).
£ 3 1 0 — E X I T .

EXIT.
A 3 2 0 — T Y P E — 2 — M O V E .

MOVE VALUE— 2 TO STRANGE—ARRAY (ROW , COLUMN S).
£320—EXIT.

EXIT.
A 3 3 0— T ! P E — 3 — M O V E .

M O V E V A L U E — 3 TO S T R A N G E — A R R A Y (R O W , C O L U M N S) .
£ 3 3 0 — E X I T .

EXIT.
A340—TY’PE— 4—PIOVE.

MOVE VALUE— 4 TO STRAN GE—ARRAY (ROW , COLUMNS).
£340—EXIT.

EXIT.
£ 3 5 0 — sU N .

ADD S T R A N G E — A R R A Y (I , U) TO SUMS.

I
_ _ _ _ 51 ~~~~~~~~~~~~~~~ _ __ ~~~~~:~~~~~~~~~~~~

— -

~~~~~~~~ L : r : :!~~~~~ . _ r - t - ~~~~ 4



— —-—-- — —---———————— -— 
- ~~~~~~~~~~~~~~~~~~~~

60

£ 3 5 0 — E X I T .
EXIT.

£3 60—SUM—OF—SQ tJ AR ES.
— COMPUTE SUM—OF— SQUARES = SU M — O F — S Q U A R E S  +

I STRANGE—ARRAY (I, J) ** 2.
£360—EXiT.

EXIT.

i f

I 

5-—-- ------ - ---— 5 _ _



——-5-. -- -5 — ——--—-----—---- --— --- 5. ---—-- - - -—-—--•--- 5- - - - - — — - -  

-i

APPEND iX C

PROCESSED COBOL PROGRAM

p

I
I

I

I

I
I
I

_ _ _ _ _ _



-5 - -- -—- -5-- -

62

I D E N T I F I C A T I O N  D I V I~~IC~N.
PROGRAM—ID. PROGÔ .
AUrdOR. BOB HILB.
INSTALLATION. A U COMPUTER CENTER.
DATE—WRITTEN. NOV 23 ,1975.
DATE—COMPILED.
REMARKS.
ENVIRONMENT DIVISICH .
C O N F I G U R A T I O N  S E C T I O N .
SOURCE—COMPUTER. IBM—37 0—155.
OBJECT—COMPUTER. IBM—370— 155 .
INPUT—OUTPUT SECTION .
FILE—CONTROL.

SELECT STRANGE—FILE ASSIGN TO UT— S—STRANGE.
SELECT PRINT—FILE ASSIGN TO UT—S--PRINTER.

• DATA DIVISION.
FILE jECTIUN .
FD STRANGE—FILE

RECORD CONL ’ALNS 80 CHARACTERS
B L O C K  C O N T A I N S  10 R E C O R D S
R E C O R D I N G  M O D E  IS F
L A B E L  RECORDS ARE STANDARD
DATA RECORD IS STRANGE—RECORD.

01 STRANGE—RECORD.
02 R E C O R D — T Y P E  P I C T U R E  9.
02 SUBSCRIPTS.

03 ROW PICTURE 9(5) USAGE IS COMPUTATIONAL.
03 COL U M N S P I C T U R E  9 ( 5 )  U S A G E  IS C O M P U T A T I O N A L .

02 £ Y P E — C N F ~— R E C O R D .
03 VALUE— i PICTURE 9(5) USAGE IS COMPUTATIONAL.
03 FILLER PICTURE X(67).

02 T Y P E — T W O — R E C O R D  R E D E F I N E S  T Y P E — C N E — R E C O R D .
03 VALUE— 2 USAGE Is COMPUTA TIONAL—i.
03 F I L L E R  P I C T U R E  X ( 6 7 ) .

02 TYPE—THREE—RECORD REDEFINES TYPE—ONE—RECORD.
03 V A L U E — 3 U S A G E  IS CCNPUTATICNAL— 2.
03 FILLER PICTURE X(63).

02 TYPE— FOUR—RECORD REDEFINES TYPE—ONE—RECORD.
03 VAL UE— 4 PICTURE 9(5) USAGE 15 COMPLJTATI JNAL—3.
03 F I L L E R  P I C T U R E  X ( b 8 ) .

FD P R I N T — F I L E
RECORD CONTAINS 132 CHARACT ERS
BL OCK CO N T A I N S 1 RE CO RD S
RECORDING MODE IS F
LAUEL R ECORDS AR E GIANDA RD
DATA RE CORD IS PRINT—L iNE .

01 PRINT—LINE PICTURE X(132).
WORK ING—STORAGE SECTION.
77 CASE1 PICTURE 9(4).
77 CASE2 PICTURE 9(4).

I 

—- - - -- -— -~~~~~--- --~~~~~~~~~ 5. ---5.



-—--— ----------—----------
~~
--— 

~— 
-

63

77 CA SE3 PICTURE 9(4).
77 CASE4 PICTURE 9(4).
77 ~AsE5 PICTURE 9 (4).
77 CASE6 PICTURE 9(4).
77 CASE7 PICTURE 9(4).
77 CASEB PICTURE 9(4).
77 CA S E 9  P I C T U R E  9 ( 4 ) .
77 M E A N  P I C T U R E  9 (6 )  V9 (6)  V A L U E  ZEROS.
77 SUMS PICTURE 9(6)V9 (6) VALUE ZEROS.
77 SUM—OF—SQUARES PICTURE 9(6)V9(6) VALUE ZEROS.
77 VA RIANCE PICTURE 9(6)V9 (6) VALUE ZEROS.
77 STANDARD—DEViATION PICTURE ~ (6) V9 (6) VALUE ZEROS.
77 I P I C T U R E  9 ( 6 ) .
77 U PICTURE 9(6).
77 K PICTURE 9(3).
01 STRANGE—MATRIX.

02 STRANGE— BOW OCCURS 10 TIMES.
03 STRANGE—COLUMN OCCURS 10 TINES.

04 STRANGE—ARRAY USAGE IS COMPUTAT IONAL— 2 .
01 PRINT—FORMAT.

02 FILLER PICTURE X VALUE SPACE.~.
02 PRINT—LEADER PICTURE X (40) VAL UE SPACES.
02 FILLER PICTURE X(7) VALUE ‘MEAN ’.
02 P R I N T — ~1 E A N  P I C T U R E  Z ( 6 ) .  9 ( 6 )

• 02 F I L L E R  P I C T U R E  X ( 3 ) V A L U E  ‘, ‘.

02 FILLER PICTURE X(15) VALUE ‘VARIAN CE= ’.
02 PRINT—VARIANCE PICTURE Z(6) .9(6)
02 FILLER PICTURE X ( 3) VALUE ‘, ‘.

02 FILLER PICTURE X(24)
VALU E ‘STANDARD DEVIATLON= ’.

02 P R I N T — S T A N D A R D — D E V I A T I O N  P i C T U R E  Z(6).9(6).
P R O C E D U R E  D I V I S I C N .
A S E C T I O N .
£100—OPEN—FILES.

OPEN INPUT STRANGE—FILE
OUTPU T PRINT—FILE.

Al 10—I NITIALIZE—ARRAY.
PERF ORM £300—ZERO—AR RAY THRU £300—EXIT

V A R Y I N G  I F R O M  1 BY 1 UNTIL I EQUAL 11
A F T E R  U FROM 1 BY 1 U N T I L  J EQUAL ii.

A l  )~~i~~ A D — S T R A N G E — F i L E .
R EAD ~TRA NGE—F ILE AT END GO TO A1’40—CONPUTE—M EAN.

Al 30—CREATE—AR RAY.
IF RECIi R D— TYPE EQUAL ‘1’

P-~RFORM £310—TYPE—i— MOVE TURD A3i0—EXIT.
IF  RECORD—TYPE EQUAL ‘2’

PERFORM A )20—TYPE— 2—MOVE THRU A320—EXU .

P 
IF R ECORD—TYPE EQUAL ‘3’

P E R F O R M  A 3 3 0 — T Y P E — 3 — M O V E  L U H U  £ 3 3 0 — E X i t .
IF RECORD—TYPE EQUAL ‘4’

P 
PERF ORM A3 40—TYPE— 4—MOVE THRU A 3L40—EX I1’.

GO TO A 12 0 — R r J ~D — S T R A N G E — F I L E .

p 

_ _ _ _ _ _ _  --5- - - - _ _ _



- 
~~~~~~~~~~~~~~~~~~~~~ -~--------- - -- - - - - ------ -— - -—--- —-----‘ —-—--- -.~—-- - _ _

64

A l-4 0—COMP(JTE—tIEAN ,
PE RFORM A350—SUM THRU £350—EXIT

V A R Y I N G I F R O M 1 BY 1 U N T I L I E Q U A L 11
AFTER J FROM 1 BY 1 UNTiL J EQUAL 11.

DIVIDE SUMS BY 100 GIVING MEAN ROUNDED.
Al S0—VARIAN CE— GTAMDARD— DEV IATE.

PERFORM A 36O— S(J~~—OF—SQUAEES THRU £360—EXiT
V A R Y I NG I FR OM 1 BY i U N T iL I EQU A L 1 1
AFTER J FROM 1 BY 1 UNTIL J EQUAL 11.

COMPUT E VARIAN CE = (S U M — O F — S Q U A R E S — SUMS ** 2) / 9900.
C O M P U T E S T A N D A R D — D E V I A T I O N = VA R i AN CE ** •5~
MOVE MEAN TO PRINT—MEAN.
MOVE VARIANCE Ti PRiNT—VARIANCE.
MOVE STANDARD—DEVIATICN TO PRINT—STANDARD—DEVIATION.
MOVE ‘THE VALUES FOR THE ORIGINAL ARRAY ARE ’ TO PRINT—LEADER.
WRITE PRINT—LINE FROM P R I N T — F O R M A T

AFTE R POSITIONING 1 L I N E S .
A 16 5—TEST.

PERFORM A 170—COMPtJTE— 2ND—M EAN
PERFORM A1 70—COM PUTE—2ND—MEAN U N T I L I E Q U A L 1.

PERFORM Z100 TSRU Z101.
P E R F O R M Z 10 0 T H R U Z i O l U N T I L I E Q U A L 1.
GO TO Z101.

2100.

I
PERF ORM Z102 THR U 2103 UNTIL I IS GREATER THAN U.
GO TO Z103.

Z 102 .

IF I EQUAL 11 THEN
P E R F O R M 2500 T H R U z50 1

ELSE
PERF ORM Z502 THRU 2503.

GO TO Z103.
Z10 3.

COMPUTE CASE 1 = (K).
GO TO 2107.
GO TO Z108.

LA BEL—O0l.
COMPUTE I = 1.

GO TO Z108.
LABEL—002.

COMPUTE I = 12.

I
_________ -

~ --- - -- •----- --- -—-- -~--—~~

65

GO TO Z10d.
Zl 07.

GO TO
L A B E L — O 0 l ,
LA BEL—002,
DEPENDIN G ON CASE1.

GO TO 2 101.
2 101.

A 170—C OMP UTE— 2ND—MEAN.
M O V E Z EROS TO SUM S.
PERFOR M A350—SUM THRU £350—EXIT

• VARY iNG I FROM 1 BY 1 UNTIL I EQUAL 11
AFTER J FROM I BY 1 UNTIL J E Q U A L 11.

D I V I D E SUM S B Y 100 G I V I N G M E A N R O U N D E D .
A 1 8 0 — 2 M D — V A R — S T A N D A R D — D E V L A T E .

MOVE ZEROS TO SUM—OF—SQUARES.
P E R F O R M £ 3 6 0 — S U M — O F — S Q U A R E S T H R U £ 3 6 0 — E X I T

V A R Y I N G I FR OM 1 BY 1 U N T I L I E Q U A L 11
AFTER U FROM 1 BY 1 UNTIL U EQUAL 11.

COMPUTE VARIANCE = (SUM—OF—SQUA RES — SUMS ** 2) / 9900.
COMPUTE STANDARD—DEVIATI ON V A R I A N C E ** .5.
MOVE MEAN TO PRINT—MEAN.
M O V E V A R I A N C E TO P R I N T — V A R I A N C E .
M OVE STANDARD— DEVIAT ICN TO PHI NT—STAN DARD—DEVIATION .
M O V E ‘T H E V A L U E S OF T H E C O N V E R T E D A R R A Y A R E ’ TO P R I N T — L E A D E R .
~RtTE PRINT—LINE FROM PRINT—FORMAT

A F T E R P O S I T I O N I N G 2 LINES.
A 1 90—CLOSE—FILES.

CLOSE STRANGE—F ILE
PRINT—FILE.

STOP RUN.
£300—ZERO--ARRAY.

COMPUTE STRANSE—A RRAY (I, J) = 0.

£300—EXIT.
E X I T .

£310—TYPE—i—MOVE.
M O V E V A L U E — i TO S T R A N G E — A R R A Y (RO W , C O L U M N S) .

£ 3 1 0 — E X I T .
EXIT.

A 320—TYPE—2—MOVE .
MOVE VAL LJE— 2 TO STRANGE—ARRAY (ROW , COLUMN S).

£ 3 2 0 — E X I T .
EXIT.

A 3 3 0 — T Y P E — 3 — M O V E .
M O V E V A L U E — 3 TO S T R A N G E — A R R A Y (RO W , CO L U M N S) .

£ 3 3 0 — E X I T .
EXIT.

-5
-

~~~~ S - -~~~~~~



I

I
66

A 3 14 0 — T Y P E — L $ — M O V E .
L MOVE VA LUE— Le TO STRANGE—ARRAY (ROW , COLUMNS).

£340—EXIT.
j  EXIT.

A 3 5 0 — S U N .
ADD S T R A N G E — A R R A Y  (I , J)  TO SUN S.

£350—EXIT.
j EXIT.

A360— SUM—O F—SQUARES .
COMPUTE SUM—OF—SQUARES = SUM—OF—SQUARES +

STRANGE—ARRAY (I, J)  ** 2.
£ 3 6 0 — E X I T .

EXIT.
Z500-

COMPUTE I 1.

z50 1.
Z504.

COMPUTE U 20

IF K E QUAL 1
COMPUTE K = 2

ELSE NEXT SENTENCE.

2505. -
Z508.

COMPUTE U 6.

Z509..
2506.

IF K EQUAL S THEN
P E R F O R M  2508 T H R U  Z509.

COMPUTE U 21

C O M P U T E  C A SE 1  = ( K ) .

GO TO 1111.

GO TO 1112.
L A B E L A — 0 0 1 .  C O M P U T E  I = 99

GO TO 2112.
L A B E L A — 0 0 2 .

COMPUTE I = 98

-- -~~~~ 
_ _ _ _



-— r ~.- -- - -~~~~ ~~- - -  —----—-~~—---- — -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - -—-----------—--- - - -------~-- —------ --•- —— ——-—--

67

GO TO 2112.
1111.

GO TO
L A B E L A— D O 1,
L A B E L A — 0 0 2 ,

D E P E N D I N G ON CASE1.
Z 112.

1507.
1502.

IF U E Q U A L 11 T H EN
PERFORM 2504 TUR D 2505

ELSE
• P E R F O R M 2506 T H R U 2507..

COMPUTE U = 22

PERFORM Z113 TURD 1114 VARYING I FROM 1 BY 1

U N T i L I EQUAL 11

GO TO 1114.
1113.

COMPUTE 3 = 9?

GO TO 2 114.
Z 114.

2503.

- - _— —_-_—-----_-•--•_ • -~~—_ - , - - -_•‘•,—--•-

A P P E N D I X D

USER’S MAN U A L

£
t I

I
I
I

I
I 68

I
S ~~~~~~~~~~~~ - —~~~~- -— -—~~~~~~~- - - - - - _ _ _ _ _ _

J

_~

__
_

~
_5__ _ S____ S __

~~~ _ -• -5-- ~ _ •- -
~~~~~~~~~~~~~~

--—

~~
•--

~
--—-

69

The job control language for runxiing the pre—processor

on an IBM 360/370 follows:

,,**** ** ,** ****..**** ..* ******* ** ,************ *********
//STEP1 EXEC PLIXCLG ,PARM= ’OPT(2)’
/ / S Y SP R I N T DD D U M M Y
/,. CHAN GE DUM M Y TO 3YSOU T A FOR A SOURCE L I S T I N G OF THE

FIRST JOB STEP OF THE PE E—PROCESSOR
//SYS IN DD DSNALIE=IE212.STEP1 ,DISP SHR
//* I E 2 12 . 3 F E P 1 IS T H E DATA SET C O N T A I N I N G T H E S O U R C E

P R O G R A M FOR THE F I R S T J O B STEP OF TH E P E E — P R O C E S S O R
/ / G O .SY SP R IN T DO D U M M Y

R E M O V E THIS CARD TO GET A LISTING OF THE O R I G I N A L
COBOL P R O G R A M

/ /GO .SY SIN UD *
PLACE THE COB OL DECK H E R E

//GO.ERRORS DD SYSOUT A *PRINT OUT ERROR MESSAGES
//GO.OUTPUT DO DSNAME=&&TEMP1 ,DISP= (NEW ,PASS) ,
// SPACE= (TRK, (3 ,3) ,R L S E) ,UN I T=D IS K ,
// DCB= (RECFM=FB ,LRECL=80,BLKSIZE 800)

TEMPORARY DAT A SET TO STORE PROGRAM
//GO.BOTTOM DD DSNAME &&TEMP2,DISP (NEW ,PASS) ,
// SPACE= (TRK , (3,3),RLSE),UNIT=DISK ,
// DCB= (RECFM ,FB,LRECL=80,BLKSIZE HOO)

ANOTHER TEMPORARY DATA SET USED BY THE FIRST
//* JOB STEP

a / /* * * * * *l* ** * ** * * * * * ** ** ** $* ** *$ * *** ** ****** *** * ** * * * * *
//STEP2 EXEC PLIXCLG ,PARM= ’OPT (2) ‘

/ / S Y SP R I N T DO D U M M Y
CHA NGE DUMMY TO SYSOUT A FOR A SOURCE LISTING OF
THE SECOND JOB STEP OF THE PEE—PROCESSOR

//SYSIN DD DSNAIIE=IE212.STEP2 ,DISP=SH R

//* IE212.STEP2 IS THE DATA SET CONTAINING THE SECOND
JOB STEP OF THE PEE—PROCESSOR

//GO.SYSIN DD DSNAME= &&TEMP1 ,DISP= (OLD,DELET E)
// DD DSNANE=&&TEMP2,DISP=(OLD,DELE TE)
//* T A K E THE OUTPUT FROM THE FIRST JOB STEP AS INPUT

//GO.OUT DO DSNAME=& &TENP3 ,DISP=(NEW ,PAS S),
// SPACE= (TEA , (3,3) ,RLSE) ,UNIT=DISK ,
// DCB= (RECFII=FB ,LRECL 8 O ,BLKSLZE=800)

OUTPUT FROM THiS JOB STEP TO BE PASSED TO THE

//* TO THE N E X T JOB STEP——THE COBOL COMPILER
//GO.EREORS DO S YS O U T = A *PRIN T OUT ERROR MES SA GES

//STEP3 EXEC COBUCLG,PA RM=~ **PLAC E FARMS DESIRED i-iERE**’
//SISUTS DD DSN=&&UT5 ,UNIT= SYSDA ,SPACE= (CYL ,5),DISP= (NEW,PASS)
//COB.SYSIN DD DSNAIIE=&&TEMP3,DISP= (OLD,DELETE)
//GO.STEPLIB DO DSNAfiE=SYS1.COBLI k3,DISP=SHR

PLACE N E C E S S A R Y GO. C A R D S H E R E

$ The jOD control language given here will have to be m odified

-- - - - _ - - _ ~~~~~~~~~---~~~~~~~~~~~~~~~~~~~~~~


~~~~~

-

~~~~~~~

-5-

~~~~

-—-— - —“--5 -—•- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ =~~-~~~~~~~~—-5~~~~~~~ _ -5_ S -~~~~~

70

depending on the particular COBOL and FL/I procedures that

are available and the requirements that they entail. If it

is not desirable to maintain the capability to print out the

source listing of the pre—processor, it would be much more

efficient to comp ile and link—tdit both job steps and make

the whole pre—processor a cataloged procedure with the out—

put options as parameters to the proc€dure.

-

~

--_ -5

