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Abstract

Let the positive definite matrix A have a Cholesky factorization
A= RR. For a given vector x suppose that A = A - xx! has a
Cholesky factorization A = R'R. This paper considers an algorithm
for computing R from R and x and an extension for removing
a row from the QR factorization of a regression problem. It is
shown that the algorithm is stable in the presence of rounding
errors. However, it is also shown that the matrix R can be a
very ill-conditioned function of R and x.
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1. Introduction -~

Let A be a positive definite matrix of order p. Then A can

be factored in the form
A=RR

where R is upper triangular. This "Cholesky factorization" of A is
unique up to the signs of the rows of R (e.g. see [6’

In this paper we shall be concerned with the followw.y problem.
Given a p-vector x and the matrix R find the Cholesky factorization of

the matrix
(1.1) A=A-xx ,

where it is assumed that x is such that A is positive definite. We
shall refer to this problem as the downdating prcblem.

An important application of downdating is the removal of an observa-
tion from a linear regression problem that is being solved by means of the

QR factorization. Specifically, consider the problem of minimizing

o = Ixg-yl® ,

where X is an n x p matrix of rank p and |+|| denotes the usual

Euclidean vector norm defined by iix|? = x'x. It is well known that X




can be factored in the form
X=QR,

where R is upper triangular and Q has orthonormal colums, i.e.

QQ=1. If z is defined by
z=Qlr,
then the solution of the regression problem is given by
B = R-lz
and the residual sum of squares by
oF = iyl Nz’ .

When n is large, it may be impossible to retain the elements of
the n x p matrix Q in the main memory of the computer performing the
calculation. In this case one may compute R, z, and p without expli-
citly forming Q [3,5]. Although this suffices for the computation of
B, one is left with the problem of performing a variety of statistical
computations when one knows only R, z, and p. (It is interesting
to note that aficiandos of the normal equations have the same problem;

they cannot retain X in main memory and must work instead with XTX,

Xy, and Jiyl? (1].)
One frequently occurring requirement is to remove an observation

from the regression, that is to remove a row xT from X and the corre-



sponding component m from y. Without loss of generality we may

suppose that x'r is the last row of X, so that X can be written
X
X =
X

1.2) 8% = x0x - xxF .

in the form

It follows that

Now

X'x = RIQ'QR = RIR ,

which shows that the triangular part of the QR factorization of X is
the Cholesky factor of XIX. Likewise R, the triangular part of the QR
factorization of &, is the Cholesky factor of X'X. Comparing (1.1) and
(1.2), we see that the problem is one of downdating the Cholesky factori-
zation of XTX. There is, of course, more to it than this, for we must
also campute the downdated vector 2z and residual sum of squares 52.

In this paper we shall give a rounding error analysis of an algorithm
for computing R, z, and H. Our conclusions are that the algorithm is
remarkably stable; however, this stability does not guarantee that the
results are accurate, for the downdating problem can be quite ill condi-

tioned. We begin with a discussion of this ill-conditioning, before going

on to a description of the algorithm and the subsequent error analysis.
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2. The condition of the downdating problem

Let A, A, and x be as in the previous section with A having
a Cholesky factorization RTR. Let A have the Cholesky factorization
ﬁTﬁ. In applications we will of course not know A and B. Rather we
will be given R and x and be required to compute R. Consequently,
we are interested in assessing the effects of perturbations in R and
x on R.

We shall first consider a perturbation E in R. Assume that the
matrix (R+E)T(R+E) - xxT has a Cholesky factor R. We wish to assess
the size [IR-Rl, where here |l+|| denotes the spectral matrix norm
(6,7]. We begin by comparing the singular values [6] of R and R,

which we denote by 5, 23, > ... 2§ and 61 Bty & e zép. Now

RIR = (RE)T(R*E) - xx

= RTR - )O(T + RTE + ETR + ETE

=RIR+RE+ER+EE.

2 -2 -2

52,52 2 are the eigenvalues of %R and likewise &l,oz,...,cp

Since G107+ ,Ep
are the eigenvalues of l'!Tfl, it follows from the classical perturbation

theory for eigenvalues of symmetric matrices [6,7] that for i = 1,2,...,p

2

5262 = IRTE+ETR+ETE) < ppe el

il

where o, = |IRl and e = ||[E|. In particular
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and it follows from the inequality |1 - VT + x | < |x| that

Zole+sz Zole+ez

(2.1) Gi-T— 2@ & Of £ S

Q
Q

IR - R = max|3, - o

hence (2.1) has the disturbing implication that ||R-R| can be as large as
(Zole+ez)/'6 P’ In particular if Gps/é;;?, we cannot guarantee that
o} b and % agree in any significant figures.

Casting the results in terms of relative errors (e.g. rounding errors)
may make this clearer. Suppose that the original matrix R has nonzero
elements all of about the same size,and these elements are perturbed by
a relative error of order ey Then in the above, e o eyiRIl = e\fpr SO

that if

.
(2.2) 5= = fey
p

ap may be obliterated by the error in R. The square root has the impli-

cation that in downdating one cannot tolerate a spread of singular values

of half the computational precision without losing all precision in the
smallest singular value.
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Perturbations in x have much the same effect. If

RTR = RIR - (x+£)(x+6) T,

then a repetition of the above argument shows that

2
fosa] = ZIlelllgl!ﬂlfll ;

i

It should be observed that the dependence of the bounds on .0.;2

can be removed by the following argument. The derivation of (2.1) is
symmetric in ai and o i Consequently we may replace the denominator

in (2.1) by ul = max{s%,6%}. But we also have the bound B;-5;| = u;.

Combining the two bounds gives
2.3) 15,651 = (oyereHV/3 .

In computational practice it is unlikely that both &, and éi will be

less than (Zolenz)l/ 2

, SO that the cube root in (2.3) is effectively
a square root.

That the bound (2.1) is realistic can be seen by considering the
scalar case p = 1. This case actually arises in practice; for in the
regression problem mentioned in §1, X becomes an n-vector, Xx becomes
a component of X, and R becomes [IX||. Thus the downdating problem
becomes: given the norm of a vector find the new nomm after a component
has been removed from the vector. The results of this section have the

following implications for downdating norms in t-digit arithmetic. If

ever a sequence of downdates reduces the norm by a factor greater than 10‘/ 2,

the results can be expected to be completely spurious.




3. The algorithm

The algorithm described in this section is an extension of one that
has appeared in [2,5].

We shall use the notation introduced in §1. We assume that
the reader is familiar with computations with plane rotations (for details
see [6] or [7]). In order that the several computational steps of the
algorithm will not be lost in the derivations, we proceed immediately to
a description of the entire algorithm.

Lve the system aTR = xT.
all 2 1, report RTR - xxT indefinite and stop.
5. Compute a = ./1-||a||2 z
4. For i = p,p-1,...,1 determine plane rotations Ui in the

(i,p+1) plane such that

a 0 )
U 'Up-lup (a ) (1 )

5. Calculate

R R
=U,...U .U .
(XT> 1 plp(())

To justify this algorithm, we first show that the condition |la| < 1
is necessary and sufficient for RTR - xxT to be positive definite. In

fact

(3.1) (R'R-xx") = R\ (I-aa")R .

Now the eigenvalues of I-aaT are 1 - ||a|l2 of multiplicity unity and 1
of multiplicity p-1. It follows that I-aa', and hence R'R, is positive

\
|




definite if and only if [lall® < 1.

Let Q = Up...U U . Then

a R o R
(3.2) Q - T> '
a 0 B b

in which we must verify that § = 1 and b = x. Since QIQ = I, if each
side of (3.2) is multiplied by its transpose, the result is

T, 2 <32 BbL >
Rla  RR 8b  RIRebbl/

It follows immediately thatp= 1, b = x, and
RIR = RTR + xx! .

But it is easily seen from the form of the plane rotations U, that R
is upper triangular. Hence R is the downdated Cholesky factor.

In applications to regression problems, it is necessary to compute
2 and p. One way of approaching this is to observe that the Cholesky
factor of (X,y)T(x.y) is

R z
9 ( ) |
0 P

Thus the new decomposition can be determined by removing (x'r n) from (3.3).
However we prefer to use a different algorithm for two reasons. First if

one has several vectors y, the algorithm must be repeated for each one,




= e e R

-9 -

with considerable diseconomies in time and storage. Second, the aug-
mented downdating may fail, even though R by itself can be downdated,
and it is desirable not to confound these sources of failure.

In the description of our proposed algorithm below, 4 and S;
are the cosines and sines defining the plane rotations Ui'

j SetﬁO = 7

2. Fori-=1,2,...,p compute

e
[}

(z3+5:0;.1)/¢;
(3.4)

3t
(=
n

5. % Fed.
g ! iql-l

3. If ﬁp > p Stop

4. p=vp ip

To show that these formulas indeed produce the required % and 3,
we first observe that they are well defined, since a # 0 implies that

no c; can be zero. Now the two relations in step two of (3.4) are equi-

valent to

(3.5) (ci 'si)<li )-(zi) :
o W P S T

It follows that




R z (4 R 7z ( §T§+)o(T ﬁTme>
0 p 0 p ETﬁmxT sz+p2
But sz + p2 = 2T'i + BZ + nz; hence

o

&

<i
“\o

2)T(1”2 2>
P 0

and %2 and P comprise the last colum of the Cholesky factor of the

downdated augmented system.

We note that if qp > p, then p is not large enough to accommodate

the decrease in the residual due to the deletion of (xT,'q), and the algo-

rithm should be stopped.
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4. The effects of rounding error

In this section we shall adopt the conventions and assumptions usual
in floating-point rounding-error analyses. If e is an arithmetic expres-
sion with a specified order of evaluation, §£(e) will denote the result
of evaluating e in floating-point arithmetic. We shall assume that

floating-point multiplication and division satisfy
§L(aob) = acb(l+e), o = x,*,
where
le| < ey

Here ey is the rounding unit of the computer in question (i.e. e is
approximately the largest number e for which §£(1+e) = 1). We assume

addition and subtraction satisfy
§L(atb) = a(l*e;) + b(l+e,)

where |e,|,|e,| < ey Finally we assume that

§L(/a) = (1+¢)/a ,

1A

where again |e| eye As is customary, we jgnore problems of overflow and
underflow.

In order to simplify our bounds we shall freely discard higher order
terms in en: For example (1+5M) (1+eM) will be approximated by 1 + 2°M'

Although our results will no longer have the status of theorems, their
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derivation will be considerably less cluttered. Moreover, if p is
sufficiently small, say Pey < .01, then the bounds can be made rigorous
by multiplying by a factor near unity.

We begin with the computation of a. Here, and in what follows,
all quantities stand for their computed, not their true, values. The
solution of triangular systems has been analyzed elsewhere [6,7], and

we merely quote the results. The vector a satisfies

(4.1) al (R+F) = xV
i where
4.2) |fij| = (j*z)h‘ij'eM .

It follows that if rj and fj denote the j-th colums of R and F, then
(4.3) Hfjll < ﬁ(J’*Z)lIrjlleM .

We turn now to the computation of a. If we compute a? in the
2.2 2
order 1 - (al+a2+...+ap) we have

a® = (1+ey) - al(lve;) - al(lve;) -...- a;(l*ep)

where lcol < ¢y and Ieil < (p-i*S)eM (i=1). Hence, since Jla)|“ < 1,

(4.4) a= (1+¢1)/1-Hanz+12
| where
|1’1| s ey |1’2| = (P’S)‘M . “

ol
?
‘ *
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The computation and application of plane rotations has been analyzed

in detail by Wilkinson [6], where he shows that there are exact rotations

~ ~

Ul,UZ,...,ﬁp such that for any vector v
6£(U‘1. ..Up_lupv) = Ul...Up_IUpv +g
where
(4.4) lgh 5 6plvliey .
Here we have suppressed some second order terms that account for the slow

growth in a bound on "UI'“Up-IUpv"'

Let

(4.5) g= ﬁl...ﬁp_lﬁp :

We first consider the application of § to the vector (aT,a)T. From the

results quoted above

a g
(4.6) Q( ) - < 0>
a/ \s
where
lggll < 6peyClan’ea’y?/? .
Now from (4.4)

o + o = pa? + Qer?0-lahPery)

1+ 28l ¢ T,




ae

4.7) ligyll < 6pey

and

(4.8) B = (lalZsa-lggh B/
=] + gg »

where

4,5 logl < P‘? M °

We next consider the application of § to (r},O)T. We have

! T.+g.
(4.10) Q J)- 3,
y £ ib

where
(4.11) lgylls Iyl 5 oplirslley -

Here Ej is the computed value. We wish to find a bound on )xj -Ejl .
Since § is orthogonal, we have from (4.6), (4.8) and (4.10) that

aTTj v (gg:ﬂ) (rj’gj)
\&;5%Y;

~ T
e SEj . Yj " gorj

T.
-gjoqo(j+yj+goi~j 3

|
|
;
z
!.
|
i
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But from (4.1)
T
W wagt g
a rJ xJ a j
Hence
T'- g~ ano .

-l ® Gy o ¢
Xj © &y ok T vy * 8oty

Since up to tems of order ey, IT;ll = | cr},aj)n, we have from (4.3),
(4.7), (4.9), and (4.11) that

B NTY

where

(4.12) loj1 = L2352+ /7 (5+2) iyl -

To summarize we have shown that there is an orthogonal matrix §

. <R (iw;
Q - ’
0 xT+sT

where G and s satisfy (4.11) and (4.12). In other words, the computed

such that

downdated Cholesky factor R is very near the factor obtained by downdat-
ing with a slightly perturbed vector x. The error G in R is unimportant,
except as it may affect subsequent downdates; however, the results of §2
show that the error s in x may seriously affect the accuracy of R.

Two other points. First, the higher order temm in (4.12) is due to

the solution of the triangular system aTR = xT. The factor (j+2) can be
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removed from this term by accumulating inner products in double precision;
however, in practice this is unnecessary, since the term does not dominate
its companion (and this only in colum p) until p = 40, and it is not yet
double when p = 150.

Second, the bounds are given column by column and hence are indepen-
dent of colum scaling. This is not surprising, since the computations
in each colum are independent of one another.

We turn now to the analysis of the errors involved in downdating %.

Define

& 23

w, = (zl,zz....,zi_l,li,...,z ,ni) 5

P

w. : W, 1 ’ ’ l""p »

However, the evaluation of u(UTwi_l) is not the straightforward one implied
by (3.5); rather it is the indirect one implied by the formulas in step 2
of (3.4), which we now analyze. We have

_ [2,(ve )05 Ry (19e)) (14e g))
i <

(1’54)
mlcilsm.‘nns

2, = c.% (1+e,) T%e) ! - s, L (1+e,) Q%er) Q4ey) L

§ TR 4 iti-1'4%2 3 L PO
and it follows that

2y = ¢g2y(veg) - sgfly ) (%eg)




|

I e
where lesl < 2y and le6| < J) Likewise

M.

i = Si2g(lteg) + cfi; o (1%eg) ,

where |e7],lt:8| < ZeM.

These results show that as far as rounding errors are concerned,
the formulas in (3.4) are equivalent to the direct application of (3.5),
with the exception that the term e 6 has the bound SeM instead of

Ze This means that the error analysis of Wilkinson cited above goes

M.
through mutatis mutandis, with the result that the right hand side of the

bound (4.4) becomes 7p||viie). Hence
N " QTWO ) A

where ||gll < 7p||wollsM. Since 6 is orthogonal,
z %2+h
gt 1= '
n n+e

I, 1<) 5 To0EN 2 mPey, -

where

Thus the computed % is very near the vector that would be obtained
by downdating 2z with a slightly perturbed n. It should be noted that
the transformation § is the same as the one defined by (4.5) in the
previous analysis.

It goes without saying that these bounds are an extreme over-estimate
of the errors that would be encountered in practice. None the less they

&
&
)
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suffice to demonstrate the exceptional stability of the algorithm. Any
inaccuracies observed in the results cannot be attributed to the algorithm;
they must instead be due to the ill-conditioning of the problem. This

raises the question: does the algorithm provide some way of detecting

ill conditioning? We shall answer this question in the next section.
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5. The meaning of |al
It is a consequence of the results of §2 that ill conditioning

in the downdating problem is associated with small singular values in
R. In §3 it was shown that if [la]l = 1, then R is singular, i.e.
E‘:p = 0. It is therefore reasonable to conjecture that values of a
near unity will be associated with ill-conditioned problems and vice
versa. However, just as the determinant is a poor indicator of the
condition of a matrix, the value of |la]l may be a poor indicator of the
condition of the downdating problem. In this section we shall show that
the value of |lall will reliably signal trouble.

We first show that the value of |lalj cannot cry wolf; if it is
near unity, then the problem must be ill conditioned. It follows from

(3.1) and the fact that the smallest eigenvalue of I - aaT is 1 - Ilall2

that the smallest eigenvalue of RIR is

Anin ®RB = IRI51-la?)

Since © (ﬁTi) ;

2

P Apin
i
;f‘ A-tal? .

It follows from the discussion surrounding (2.2) that if 1 - [la| = O(ey)

then R can be expected to lose about half its accuracy.

We cannot show that a small value of &, implies that |la] is near

unity. However we can show that if any singular value of R is reduced
in the downdating by a significant factor, then |la]] must be near umity.




Lolg
We start by developing an expression for IIaIIZ. First
llallz = xR IR T = xT(RTR)'lx

= xT(§Ti+nT)'1x

= xTﬁ-l(hi'T)o(Tﬁ'l)ﬁ'Tx §
Set

b=R 'x,

so that

laf® = bY(1ebbD) b .

Since b is an eigenvector of I + bb'r corresponding to the eigenvalue
1 + Ibli%, it follows that

2

(5.1) fay? = LB

1+//bll

We next obtain a lower bound on llbllz. Let ¥, be the right singular
vector corresponding to &; and let Vi = Wi’f'i'*l""’vp)' Then if V}‘x 0
LA
(5.2) nw-m%zgg.
But from the minimax theorems [6,7]
of = IVIR'RV, I = IVIRTRV, ) + VD™V

= of + IVixi*
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>
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Hence

(5.3) Wixi? 2 o
Combining (5.1), (5.2), and (5.3) gives

:  (0;/8)%1
e
(0:/6.)7+1
i’7i
Thus a large value of (cri/c’:“ri)2 will be reflected by the nearness of llaﬂ2

to unity.
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