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SPECTRAL CLASSIFICATION TECHNIQUES FOR REMOTE-SENSING ALARMS

I. INFROI)U(’ IiON.

The re m ote sensing of toxic chemical agent clouds requires discr iminat ion techniques
that  tn i n i m i t e  responses due to back ground change s and interferences while ma in ta in ing  ade quat e

~gcn1 response. BecauSe of the large number of possible variat ions in agents , backgrounds and
inte rk ’rences. most techniques use computer optimization programs to find a d iscr iminat ion
f U f l C t I O n .  SUCI ) programs arc usually designed to maximize the response of some target spectrum
t i he  agent ),  while limiting the responses of all the constraint spectra (backgrounds and
interkrcnces) to the noise level of the instrument. Since computer capacity restricts the number
ol constraints that  can be used at any one time , there exists a need for a classification system to
sdect a represe n tative set of independent background and interference spectra that  serve as

~dequatc constraints in all situations. In addit ion , the system should be capable of examin ing
newly obtained spectra and rejecting those found to be similar to existing constra ints. The
purpose of this report is to describe the classification methods tried to date and to construct a
ti le of independent spectra using the most appropriate technique.

The data used to examine the classification methods were diffe rence energ y spectra
from the exploratory development (XD) Passive LOPAIR. It is composed of two subsystems:
a spectroradiomete r and a discriminator.

The spectroradiometer uses a circular variable filter (CVF) and a nitrogen cooled
llg:Cd :Te detector. The CVF covers hal f of a wheel that rotates at 1 Hz. A chopper which is
mecha nically connected to the rotating filter wheel , rotates at 1000 Hz with the detector
alternately viewing the scene and an internal blackbody. This chopping produces an ac signal
whose peak-to-peak amplitude is proportional to the energy difference between the background
and the internal blackbody. The ac signal is normalized by automatic gain control and
demodulated to produce a continuous difference energy spectrum of the 8.4 to 1 2 5  i~m region.
The AGC maintains a constant amplitude of ±3.0 volts depending on whether the scene is hotter
or cooler than the internal blackbody. The field stop of the CVF is set so that  the
spectroradio meter has about 1% spectral bandwidth , but the actual spectral resolution is
about 2’~ .

The discriminator is a small , special-purpose, hybrid com pu ter , which com putes the
absol u te value 
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wh er e

(‘( X )  is the coe ltici ent value

X (X ) is the signal value

X 1 is the beginning of the first channel

)~ is the end of the last channel.

the dist rj m inatj r  can accept up to sixteen channels , where a channel is defined as any part of
th e difference energy spectrum with bandwidth rangin g from zero to the full spectral range of
11w instrument.  To account for minor variations in instrument responsivities , this range was
limited to 8.68 to 11 .83 pm.

The signal from each channel is weighted by an op-amp whose effective gain is
proportional to the channel coefficient . The weighted outputs of all channels are summed by an
integrating network with a time constant of 0.1 sec. The integrator is discharged with a time
constant of 2 .7 sec , thus averaging the present value with previous values to improve the
signal-to-noise ratio of the discriminator output.

This output is the instrument ’s response which can be either a positive or negative
voltage. Typically, the discriminant functions were designed to produce a positive response for a
target.

The LOPAIR spectra were standardized by dividing by the instrument ’s responsivity
curve , and normalized by dividing by the maximum absolute value. Both field spectra and
simulated field spectra from laboratory measurements were included in the data file. The spectra
were initially categorized according to their physical type: tha t is low-angle sky, terrain ,
dust , etc.

II .  SPECTRAL DATA FILE.

The data file consists of agents, simulants, interferences and backgrounds. The
classification techniques are applied only to the spectra being used as constraints: that is,
interferences and backgrounds. The set of backgrounds includes low-angle sky (LAS), terrain , and
combinations of both. Interferences include dusts, smokes, decontaminants and explosions.

A. Backgrounds.

The background data set consists of 86 LAS and 9 terrain (or combination) spectra .

The significant feature s in any LAS spectrum are the intensity of the ozone peak
and the slope of the spectrum. For the purpose of this study, the ozone intensity is defined as
the magniitude of the spectrum at 9.65 pm , the approximate center of the doublet. Ozone
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i n lensi t  ~ antI slope vary wit  Ii changes in ambi ent  temp erature , cloud c ver , otoiic concentra t ion ,
.it mno sph er ic t ra usmn it lance . a iid a ugk’ of observa t ion. ( iven a Ii xcd angle of ins t rument  eleva t ion ,
cloud cover var i at ions  are responsible b r  most spectral changes in a continuous I 2—hour period .
( luinges result ing from variat ions in ambient temperature and atmospheric t ransmit tance are
ustiaII ~ gradual and of a lower m agnitude. Most variations in ozone concentration occur over a
long t ime period and have a small effect in relation to the other parameters. At small angles
~~~~~ to 10 ° ) . changes in instrument  elevation can produce significant variations in the spectr um. 2
i liese var ia t ions  are presumed to he equiva lent to combinations of changes in the other
P~i ra m etc rs.

Figure 1 contains I I  LAS spectra showing variations primarily in ozone intensi ty .
These spectra came from a 1 2-hour background test that began in partly cloudy skies (last
spec t rum )  and ended in a snowstorm Ui rst fourspectra) . The instrument had a fixed angle

out the test , and the ambient temperature varied only 5°C over the entire run. The
changes are due primarily to cloud cover variations , with decreasing atmospheric
flee occurring as the snow increased.

Figure 2 shows five spectra having nearly the same ozone intensity,  but  different
slopes. The spectra were obtained on clear days in the fall , winter , and spring, and reflect
changes in all parameters except cloud cover.

Figure 3 shows five spectra in which both slope and ozone intensity vary. These
spectra were taken over a 5-minute time period with changes due entirely to varying cloud cover.

O~casionally, situations occur where the LAS spectrum contains a peculiar feature of
uncertain origin. Figure 4 shows one example from a field test at Yuma , Ari zona. Note that the
ozone peak crosses the zero point . This implies that the upper layers of the atmosphere which
contain ozone are at a higher temperature than the surface layer , an unusual occurrence for
those altitudes. The exact cause is unknown .

Figure 5 shows three spectra obtained from a background run at Aberdeen Proving
Ground. The first spectrum was typical of the run. The remaining two spectra were taken from a
variation that lasted about ~ minutes and caused a considerable negative response (figure 6). The
shape and duration of the response plot indicates that the probable cause was a solar transit near
the field of view of the instrument.

Abnormal occurrences such as those usually cause a response , but are difficult to
classify because their features are unique. They are generally added to the contraint file , but
they probably would not prevent responses to spectra that are similar , but not identical. Spectr.~
such as these are not classified because of their uncertain origins.

The terrain data file consists of just nine spectra . The spectra of trees , water and soil
appear similar to blackbodies, but contain reflected ozone components (figu re 7). Mountains , and
other feature s with varying surface compositions can have unusual and unpredictable spectra ,
par ticularly under direct sunlighting. Figure 8 shows three spectra of similar looking areas on a
snowcapped mountain range under nearly the same lighting conditions. The reflected ozone

_ _ _ _  
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colupolld nt is present, hut the spectra have different  slopes and two of them cross zero . The
differenc es arc apparently disc to sun orientation relative to the mountain , and surface properties
of th e mounta in .  Sonic portions ot ’ the mountain were SflOW covered while others were bare. No
surface had any vegetative cover. These terrain spectra probably represent only a small part of a
necessary design file , hut are still included in the constraint file. The spectra crossing zero are
treated like the abnormal LAS spectra . They are used as constraints , but not classified .

B. Interfe rences.

The interfe rence data file consists of 55 dust spectra , plus several assorted smokes,
explosions and deconta min ants.  Computer simulations and field testing have shown that the use
of simulated field spectra fr !~m laboratory data could serve as adequate constraints .3 Therefore ,
many of the dust , smoke and decontaminant spectra are simulated. Since the field spectra of
interferences have either a LAS or terrain background , they contain background variations in
addition to change s in concentration of the interference itself.

The spectra of explosions present a unique problem in constraining and
classification. Dusts , smokes and decontaminants have specific absorption bands and predictable
spectral structure . According to our data tile, the primary effect of an explosion is a sudden
heating of air in the instrument ’s field of view (FOV), usually resulting in a totally saturated
positive spectru m with no structure . Intermediate spectra before and after saturation are
distorted , with apparently random structure (figure 9). Therefore , present data indicate that
explosions produce unpredictable spectral features that cannot be classified into finite member
groups.

As mentioned before , the dust data consist of both simulated- and real field spectra.
The primary difference between them is the background . The simulations have a plain blackbody
background and the real spectra have varying LAS or terrain backgrounds. Previous studies had
shown that there were five compounds with significant absorption in the 8 to 13 pm region ;
kaolinite , illite , montm orillonite , silica , and calcium carbonate.4 Figure 10 (a , b, c) shows the
three types of simulated spectra used as constraints. The first contains kaolinite , and the other
two contain combinations of illite , montmonl lonite and silica . Cak~ium carbonate , originally
omitted because soil samples indicated that it rarely occurred , was observed in later field tests
and is constrained by field spectra such as in figure 10(d).

The other inte rferences in the data file are HC smoke RP smoke, and methyl
cellusolve , the only component of DS2 decontaminant with significant absorption bands in the
8. to 1 3-pm region. These interferences are also constrained by simulated spectra and have
response effects similar to dusts. Figure I I  shows some simulated spectra of these interferences.

I ll .  CLASSIFICATION METHODS.

Four classification methods were applied to the spectral data: inspection,
correlation , li near programming and factor analysis, Inspection was simply a visual comparison of
spectral features. Correlation involved the calculation of a single numerical valve that indicated

14
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how closely two spectra compared to each other. Linear programming consisted of a modification of
the optimi zation program to examine the responses of backgrounds and interferences. Finally,
factor analysis involved a mathematical attempt to transform the spectra into a smal l number of
sign ificant variables .

To simplify the initial classification attempts , only LAS spectra were used. Terrains
and interferences were examined if the specific method seemed to be successful with LAS. LAS
was chosen because the data set was larger and more varied than the others. In addition , most of
the other field spectra had LAS backgrounds or reflected LAS components , making their
classification partially dependent on the LAS background.

A. Inspection.

The process of visual inspection began as soon as field spectra were obtained. As the
number of spectra in the data file increased , the time and expense for using the computer
optimization program increased. Since the progra m had a reasonable limit of 65 constraints, it
soon became necessary to select 65 spectra fro m a much larger data file.

The selection procedure was straightforward. Spectra having approximately equal
slopes and ozorlf intensities were compared to each other and placed in groups normally
consisting of 2 to lO spectra . One spectrum from each group, plus the individual spectra tha t

16



could not he grouped * would he atided to the  constra int  set. I or exalnpk ’ , Fi gure I 2 shows i~
ci oup ot sc~cn spectra having s imil ar  char a cterist ics , wi th  the Firs t I W() being nearly ident i cal .

)nc spt’ti rii in would he selected to represent the entire group. A set of channels and coeFf icients
won Id he g~’IIt ’ra fed wit  Is t ht’s&’ ~-onst rain ts , and the simulat ion pr gra us would he used to check
I lie responses ol spectra not iii the constraint  I’ik.

5.5 WAVEL ENGTH (pm) 12.0

Figure 1 2. Similar Spectra

I n the majority of cases, the technique provided adequate constraints for the
• existing spectral data , but there were problems. A typical solution for any set of channels and

coe fficie nts limited the constraint response to the ±0.3-volt range . For any set of constraints .
• only those spectra whose responses reached the maximum limits constrained the solution: usually

10 to 20 out of the 65. Given the same initial set , diffe rent targets had different contributing
spectra. Examination of 16 diffe rent solutions involving five -different targets indicated that ,
while some spectra affected almost all the solutions (figure 13 for example), there were others
that never reached ±0.3 volts. With few exceptions, there were no visual clues to explain why a
spectrum did or did not contribute to a solution. The inability to select the dominant constraint
spectra visually for any target placed a severe limitation on the utility of visual inspection. For
newly obta ined spectra , reliable classifications required a new spectrum to be nearly identical to
one alr~’ady included in the constraint file.

There were other drawbacks as well. First , the technique was basically subjective ,
and results could vary from person to person, In addition , the technique required all new spectra
to be recorded and precisely plotted prior to classification. One of the goals of classification was
to eliminate the need for recording redundant spectra. The obvious solution was to seek a
mathematical technique that would be accurate , consistent , and fully automatic.

17
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B. Correlation Analysis.

The inspection technique grouped spectra according to their spectra l characteristics.
This method was limited by the fact that there was no mathematical basis for the technique.
Basic correlation theory provides a mathematical technique of comparing two functions
dependent on the same parameter. 5 Given two spectra , the calculation of the correlation
coefficient produces a single numerical value for the degree of similarity between them.

• I .  Theory .

A spectrum can be represented by an N-dimensional vector where N is the number
of spectral intervals. Given two spectra with signal values x~ and Yj . the vector representations are

N N
X ~~eix~and ~

‘ = E I iYi

where

• is the unit vector
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I 10111 i.’cItii .IIgL ’bi.i . t he ilol p ioti uct is given by
N

x~v ~~ X~y j  ( I )

I lie Iesscths ol t h e  ~ccIoi  a l e

/N \ ½ (N \ ½
Ix I = X = and I Y I  = Y = k ~~~Y~

2 )  ( 2 )

Flic ratio of the dot product to the product of (lie lengths is the direction cosine of
he angle between them. I is this case

x .Y
cos a = (3)

By defi n ition . cosa is the correlation coefficient .

Since the dot product of two vectors is less than or equal to the product of the
lengths, it is clear that the absolute value of the correlation coefficient is less than or equal
1 0 1 .

Lettin g K represent the correlation coefficient and apply ing equations ( 1-3 ) gives the
to ll owi ng easily calculated expression 5

N

~ x i y~K cos a ( )

(~~
X~2)½ (~~Y~2)½

In applying correlation to the spectral data file , the values x1 and Yi are the signals
of two spectra at .01 pm intervals from 8.68 to 11.83 pm. The correlation coefficient can assuni e
any value from I to -I .  Identical spectra will have correlations of I , extremely noisy spectra
could have correlations approaching 0. and two spectra having hot and cold backgrounds of equal
diffe rence energy would have a correlation of -I .

j 2. Results.

* 
A computer program was written to calculate the correlation coefficients for an

array of up to 72 spectra . The program operator had the option of selecting either a numerical
table or a plot of the correlation of any spectrum with the other 7! in the array. In addition ,
other spectra not in the original array could be correlated without changing the original group.

19
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When correlation analysis ha gan , ther e were 59 LAS spectra in the data file. All were
placed into an array, and correlation coet lic ients calculated showing the relationshi p of each
spt~ctrwn wi th  every other one in the array. The coefficients for these spectra ra nged
Ir oiss I .0000 ( tlgurc 14) to 0.8tP) I ( figure I 5) .

The next step was to establish the relationship between the response difference and
the correlation coeffici ent for two spectra. Since the normal constraint response limit was
±0 .3 volts , response values for existin g sets of’ channels and coefficients were examined to find
the lowest correlation value that would still correspond to a response difference within
±0 .3 volts. This value was empirically determined to be 0.9998. Thus, if two spectra had a
correlation value ot 0.9998 or greater , they would be considered the same constrai nt.

h aving established the criterion for correlation , some questions had to be answered
concerning its interpre tation and effectiveness . The first question was whether or not the
correlation values alone could be used to select a set of LAS spectra that would effectively
constrain the entire group. A listing was made of the 59 LAS spectra. The correlation values for
each spectrum were examined and all other spectra tha t correlated to wi thi n 0.9998 or better
were listed ne xt to that spectrum. When this was completed , the list was examined to find the
least number of spectra that would constrain the entire group. A set of 29 were chosen, and
using DMMP as a target , channels and coeffici ents were computed for this constraint set. The
solution was then applied to the simulation program to obtain response values for the other
30 spectra . In every case, the responses of the unconstrained spectra were within ±0.3 volts of
thei r respective constraints. This result was expected because of the similarity between groups
selected visually and groups selected by correlation. The advantage of the correlation method was
in having a mathematical basis for the selection process.

At this point , it was obvious that given the proper hardware, the correlati on
technique could be used to monitor spectra automatically during field tests and eliminate those
that were simil ar to existing constraints. However, man y of the problems that occurred in visual
analysis were occurring in correlation analysis. As mentioned before , for any discriminant
function there existed a few dominant spectra : 7 out of 29 for this constraint set. According to
their correlatio n values these seven spectra were expected to constrain only 17 spectra , not all 59
in the data file. From a visual standpoint there was nothing unusual about these seven spectra
and correlation analysis provided no additional information. Another problem occurred when
correlation values for series of spectra , such as in figure 1 , were compared to their respective
responses. Using the highest ozone spectrum as a base, correlation values decreased continuousl y
in goin g from the highest to the lowest ozone intensity. With one exception , responses values for
various sets of channels and coefficients were neithe r continuously decreasing nor continuously
increasing. Thus, given a spectrum in the middle of a series, its response could not be estimated
from its correlation value and the responses of the other spectra.

The final step in the correlation approach was to apply the technique to the set of
interference spectra. An obvious shortcoming occurred when the technique was used with
simulated spectra. Field spectra that had been constrained by simulated spectra did not correlate
with them. As a result , the technique could not be used with simulated spectra, and thus had
very limited application for interference testing.
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I’he overall conclusion of the correlation technique is that  it provides a limited
capabi l ity to automatical ly classify lieki spectra . The method is limited to comparisons of nearl y
identical  spectra . ( iveis a file ni ti i iT er ent spectra , it cannot select the OflCS that control the
solti ti oj i s nI the opt imiiatio ii  p rogram.

U. Linear -Progr amming Method.

The fi rs t two classification techni ques had sign i ficant limitations. They could not
select the dominant spectra within a data file or constraint set. Also , they could not be used to
est imate response values of spectra that did not look like or correlate with existin g constra’lnts.
Since the success or failure of any techni que ultimately depe nded on the response of a spectrum
to a given channel and coetlicient solution , a logical choice for examination was the optimization
progra m that calculated these solutions.

The fi rst task was to determine how the program could be used as a classification
method. In its normal form , the program solves a multivariable linear equation for a given set of
constraint spectra and a given target. Using the notation of Flaniga n ,1 the progra m finds a set of
vectors W which satisfy

lw.fj l~
where

the fj are linearly independent constraint spectra and

e is the ma ximum allowable constraint response.

The program continues and finds a solution W’ from the set of W vectors tha t max imizes

R = W’ . f~where

is the target spectrum and

R is the response to the target.

If the target spectrum was replaced by a newly obtained background or interference spectrum
the program would compute the maximum absolute response value possible for that spectrum
and constraint set. If this response was within some specified limit , the spectrum could be
eliminated from the group of potential constraints.

The optimization program was modified to remove the portions not required for the
classification study. Since the program required a set of constraints to produce a target response,
an initial set had to be chosen using some other technique. A set of 16 LAS spectra were
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selected based on physic al characteristics. This in i t ia l  selection required subje ctive judg ements
t ha t  would be acceptabl e provided the rest of the program produced decisive results.

Flie most di ffi cult  step was determining the response criterion for  the e l iminat ion  ni
~peetr a Spectra not included in the constraint set would proba b ly have maximum response
valu e s that  were outside the normal range of ±0.3 volts. The new limit  had to he high enough to
e liminat e common spectra hut low enough to prevent the elimination of signif icant spectra . A
value of thre e times the normal constraint l imit was chosen as the maximum-allowed-response
range. This meant that a spectrum eliminated by this method could have as much as a ±0.9-volt
response tor a solution designed to detect an agent. Flowever , the actual response of a spectrum
to a solution calcu lated for an agent was expected to be much less than the
inaxunum-allowed-response value.

The classification procedure was simple. Starting with the basic constraint set , the
remaining 70 LAS spectra (27 more had been added since the correlation study) were inserted
individual ly  as target spectra in the modified program. If the response of the spectru m exceeded
±0.9 volts , it was added to the constraint set and the process continued with the
enlarged constraint set and remaining spectra.

The response values obtained from this procedure were large r than anticipated. It
was hoped that most of the spect ra would have responses close to the normal range of
±0.3 volts, and that a few would have much higher responses that exceeded the ±0.9-volt range .
In fact, only 6 of the 70 spectra had responses within ±0.6 volts and 37 had responses exceeding
±0.9 volts: almost the opposite of the desired result. Thus, a total of 53 contraints was required
from the data f’ile of 86 LAS spectra . From a percentage basis , this nu mber of constraints was
too large to allow expansion of the method to the entire data file. Some thought was given to
increasing the maximum-allowed response , but the potential decrease in the number of
constraints would have been offset by a decrease in the reliability of the method. Procedural
cha nges were also considered , bu t none appeared likely to make any significant improvement.

These results indicated that the linear-programming technique was unsuitable for
classification purposes. The technique required subjective judgements to initiate the classifi cation
process. and thus required that the resultin g response values be capable of clearly defining the
significant spectra in the data tile. The actual response values did not produce decisive results ,
and reliable classifications could not be obtained. Nevertheless, the tech nique provided some
essential information concerning the effectiveness of classification methods.

All of the classificatio n techniques rely on a basic assumption that two spectra fro m
• a data set can be used to constrain a third spectrum not included in that set. This assumption

was supported by field tests and computer simulations. The results of the linear-programming
atte mpt at classification indicated that this assumption might not always be valid. Since most of
the spect ra eliminated by this method had responses between 0.6 and 0.9 volts , there was at least
that one solution in which these spectra would not be adequately constrained to ±0.3 volts by
the constraint file. There was no guarantee that other problem solutions did nut exist and that
some future agent solution might not have a false alarm if one of these so-called insiginificant
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Wectr~i were encounte red. This l a t ter  problem could exist for any spectrum eliminated as a
con straint  by any classification method. The experience to date indicates that it is unlikely to
occur, but  any future  work should examine this problem in more detail.

I) . Factor Analysis.

The tlrst thre e classification techniques had very limited success. None of them were
.ibk to select the significant spectra from a data file and reduce the number of constraints to a
wo rkable level. When applied to the entire data set , at least 100 spectra would have been
required as constraints by each of the methods. In addition , each of the methods required
subj ective j udgements to select some of the constraints. Any new technique should eliminate the
subj ective choosing of constraints , isolate the significant spectra or the significa nt features within
a given spectrum , and provide all the information required to pick suitable constraints.

I . Theory.

Factor analysis is a procedure to find a new set of variables (called factors) which
describe a set of data. 6 In this case , the data are a collection of spectra with common
characteristics. Each spectrum consists of a signal measured at N different wavelengths and can
he treated as an N-component vector Si where the subscript designates a particular spectrum in
the collection.

/ sti

( s 23

Si 1,2, ”,n

S1~ is the signal of the ~th  spectru m measured at the ith wavelength. There are n spectra in the

collection.

The first step in factor analysis is to convert the raw data to a standardized form in
order to simplify the mathematics. At each wavelength , the average signal ~ and the variance o~-
are computed from

A I n
Si = -.-- ~ S..

n i =

n / Az ( s.. ’-S ,
n j~~~~l \ U
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I ~ ra~ data s.ir i.,bk ’s S~, .tre t hen  I i ai i s l or rncd to st a ,idardized vari able s

~ij ~~ (s~j
_
~~ )

Stand ardized vectors Z1, each representing a part icular  spectrum , may he combined into a mat r ix
Z con ta in ing  all the spectra in the collection. I~ach column of Z is one spectrum while each row
repr esents a specific wavelength. The size of Z is N X n.

The fundamental  assumption of factor analysis is that each standardize d variable
can be writ ten as a linear combination of new variables or factors. The factors are considered to
he hypothetical constructs whose general natur e is unknown hut which can be calculated for a
specific case . The number of factors needed to reproduce the original data exactly is equal to the
number of original data variables. In practice , it is usually possible to reconstruct the original
data to an acceptable degree of accuracy with a smaller number of factors. The basic model of
factor analysis can be written as

~1 =
k~~ 

aik t k (~ )

Each Z~ is the standardized signal at the 1th wavelength for an arbitrary spectrum. A total of
in factors t k are bei ng used. The &s are constants and aik is called the loading of factor k on
var iable  i. The loadings are correlations betwee n the original variables and the factors , and are
found. as shown below , from the ej genvalues and eigenvectors of the data correlation matri x R.

Once the matri x Z of sta n dardi zed da t a has been constructed , it is an easy matter to
calc ulate the correlation matrix A since

R
~~~-k ZZ ’ (6)

The prime denotes the transposition of the matrix. The matrix A is square and symmetric with
l’s along the main diagonal. Each element r11 is the statistical correlation between standardized
variables Z, and Zj .

As mentioned above , the loadings are derived from the eigenvalues and cigenvectors
of R. Techniques for finding eigenvalues and eigenvectors can be found in reference 7. Let X~ , 

XN be the eigenvalues such that X 1~~X 2~~...>X N and V I ,V 2 VN the corresponding
t . eigenvectors. The loadings may be found from
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,1x~: 
V Ik

= i = l , ’” ,N , k = l ,~~ ,N
1k V, 

~
= 

Vjk
2

The number  in of iactor s to be used f or  a given set of data can he dete rmined from
th e cigenva lues. The ratio --

In

~~
j =  I (7)

N

~ x.
j = l  ~

is the proportion of the variation in the data reproduced by the m factors.

The a’s may be combined into an N X m matrix A. The basic model of factor
analysis may now be written as

Z = A F  (8)

where F is the matrix of factor scores.

Substituting equation (8) into equation (6) and using the fact that the transposition of the
product of two matrices is equal to the product of their transpositions in reverse order , one
obtains

• ~~~~~~~~~~~~~~~L N J

The quantity in parenthesis is the dot product of a set of orthogonal vectors with itself and is
the refore equal to the identity matrix. The result is called the fundamental equation of factor
analysis. 8

A
R = A A ’ (9)
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I he c i r cu mf ie s  signifi e s tha t  th i s  R is the ma t r ix  of reproduced correlati ons. In general, it w i l l  he
ident ica l  wi t  Ii t lie original correla t ion mat r ix  A only ii N fact ors are used. Comparison of R afl ( l
A shows the  ex t en t  to which t he number  of factors used in the calculation accurately reproduces
I he original dat a .

Another use ful matrix equation can he obtained by considering the product of A
and A. I Is in g several theorems f rom linear algebra, it can be shown that

A = A A  ( 10)

where A is a diagonal matr ix  whose diagonal elements are the eigenva lu es X j .7 The size of A is
in X i n.

It is possible to generate a more useful set of ’ loadings by forming linear
combinations of ’ the original loadings. The new loadings are referred to as rotated loadings while
the original loadings are described as unrotated loadings. The names arc derived from the
procedure for calculating the new loadings which consists of a series of rotations iii an
in-dimensional vector space. The rationale for calculating a new set of loadings stems fro m the
manner in which the different sets of loadings correlate with the original variables. The
unrotated loadings generally have a high correlation with many of the original variables while the
rotated loadings correlate high ly with just a few variables. It should be easier to gain insight into
the relationship between the original variables which have a high correlation with a rotated
loading because of the smaller number of variables.

Although many procedures exist for calculating the rotated loadings the Kaiser
~ ar imax method as described in references 6 and 8 was used . The matrix of rotated loadings B is
computed from A by an orthogonal transformation matrix 1.

B = A T  ( I I )

In te rms of the rotated loadings , the basic model of factor analysis may be written
as

Z = B F R (12)

The subscript on FR identi fi es the rotated fact ors which are different from the unrotated
factors F.

Even though the general nature of the factors is unknown , specific values of each
factor can be calculated for a given Z1. These numbers are referred to as factor scores. A set
(vector) of factor scores F RI is computed for each standardized signal Z~ and is used to classify
each signal. The size of FRi is m X  1. Premultiplying ( i2)  by(B’ B) ’ B’, the factor scores can be
t’ound from

27



F RJ = B ’B -l

t l nI ’or tunate l y .  if is usually not practical to use equation ( 13) to calculate the factor
scores because it is necessary to use the f’u ll N X N matrix for B when computing the inverse . This
irica n s th a t  all N loadings m ust be found and rotated. It would he preferable to perform the
calcu lation by use of ’ only ni loadings . This accomplished with the following equation which is
derive d in app endix A.

F RJ = B ’A A 2  A Z

2. Results.

A computer program was written to calculate all the require d parameters needed to
produce a set of ’ rotated loadings and corresponding factor scores for data sets of up to 200 Spectra.
Computer subroutines from the Internationa l Mathematical and Statistical Libraries, Inc. were used
to calculate A , B and T9 The program ’s output included listings of variances, eigenvalue ratios and
factor scores, plus plots of the mean spectru m , standard deviation , load;ngs , and reconstructed
spectra . There was no preconceived idea as to what the results would be or how they would be used
t’or classificatio n. It was hoped that the data would be reduced to a small group of factors and
loadings that represented the most significant spectral properties.

As before , the technique was first applied to the set of LAS spectra. The progra m
divided the spectra into 63 intervals of 0.05 pm from 8.68 to 11 .83 pm , the same as in the
optimization program. This meant that a maximum of 63 loadings and factor scores would be
required to reproduce a spectrum. The firs t step was a quick calculation of the eigenvalue ratios for
the first 20 factors (expression 7). The cumulative percentage value in table I is the eigenvalue ratio
and represents the proportion of variation reproduced by the number of factors; thus , the firs t 20
out of 63 factors were responsible for 99.98% of the variation . Clearl y as the number of factors
increases, the importance of the individual factor to the reconstruction decreases. Ten factors were
chosen for the initial classification attempt , and rotated loadings and factor scores were calculated
for the 86 LAS spect ra.

Table I .  Eigenvalues and Eigenvalue Ratios for the First 20 Factors from the LAS Data File

Factor number Eigenvalue Factor number Eigenvalue

32.6060 51.76 I l  .0128 99.92
2 24.2045 90.18 I 2  .0099 99 93
3 3.2292 95.30 13 .0065 99.94
4 2.1455 98.71 14 .0049 99.95
5 .3619 99.28 15 .0046 99.96
6 .1687 99.55 16 .0038 99.96
7 .0971 99.70 17 .0028 99.97
8 .0605 99.80 18 .0026 99.97
9 .0382 99.86 19 0020 99.98

10 .0234 99.90 20 .0018 99.98
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At fh is  l~
) mnl . th e resulting data are ex.i ini,ied in an •iI tempt to app ly the m to the

cla ssi f ic at io n su udy. As iiie ii t ion ~’tl before , t h e  loadings are correlat urn s bet ween the or iginal
~.ir ia hles am id the l~mclors . J’he ~Iofs of the rotated loadings (f igure I (~) showed dec reasing correlati on

am es with an increase in (actor number , again veri lying the decreasing signil ’ica nce of higher order
l .ieto r s . t h e  fac t or  scores themselves consisted of po sitive and negative nui i,ber s ranging from -3M
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Figure 16. First 10 Rotated Loadings from LAS Data File
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to + 5. 5 For th e 8(~ LAS spectra. An assumption was m ade that the m axi m um and min imum scores
I or each Factor m ight cre ate a boundary condition for the data set. Those spectra having one or
more factor s on the boundary migh t  he th e most significant spectra in the data fi le , and as such ,
~ tn iId be constraint candidates. Such a selection would he entirely based on numerical data and
‘~ ould not require any subjectiv e judg ements.

Fhcr e were 23 spectra (table 2) tha t  had maximu m or minimum scores. (Spectra are
il lu str ated in appen~Jix B). In some cases , several spectra had the same score for the same factor : in
ot h er s ,  ther e were srectra having more than one factor on the boundary.

Table 2. Factor Scores t’oi LAS Spectra Meet ing the Boundary Conditions

Factor number
Spectrum nu m ber p—

2 3 4 5 6 7 8 9 10

- 1 .7  2.9 - 1.3 .25 .01 -.70 1 .00 .81 1.6 - 2.6
• 2 -.20 -.76 -.08 .86 -.2 9 .55 -.19 -.89 -.45 .2.6

3 -.18 2.4 •1.6 .58 .38 1.2 .75 2.2 1.3 - 1.4
4 -.02 1.1 -.97 .15 -.4 ! .62 -.68 2.6 .44 .10
5 -2 .1  .07 -.11 - 2.0 -.21 .94 3.1 -1.5 -.77 -.16
6 -.76 -.52 -.01 1.2 -.91 -.48 -.64 - 2.6 -.07 -.62
7 1.5 .81 - 1.3  -.68 .73 .64 1.9 -1 .6  - 2.5 - .22
8 1.4 .62 - 1. 1 -.47 .59 .71 1.8 - 1.5  - 2.5 -.18
9 .98 - 1.5 -.06 -.31 -.2 8 -.46 .26 .96 .13 -.04

10 .98 - 1.5 -.01 -.56 -.26 -.25 .41 1.3 .35 -.10
I I  .99 - 1.5 -.01 -.88 -.42 .17 .90 1.5 .64 -.46
12 1.0 -1.5 -.05 -1.0 -.60 -.1 1 1.8 1.1 .89 .01
13 .97 - 1.5 .02 - 1 . 1  -.74 -.18 2.2 1.1 .61 .76
14 - .75 -.43 1.4 2.5 2.1 -1 .3  1.2 1.7 -.72 2.2
15 .47 1.1 1.2 .20 2.6 .92 -.25 -.72 2.5 - 1 . 5
16 .3.0 .18 .12 - 1 . 1  .51 .72 -.22 -.22 -1 .4  .09
17 - 2.4 .01 -.00 -.99 .98 .95 - 2.5 1.6 -1 .8  .38
18 .50 1.0 4.4 -.60 -.87 1. )  .90 .09 .66 .53
19 .82 .81 2.8 -.85 -.49 .43 -1 .1  .02 -.19 - 2.6
20 .79 .69 2. 1 -.36 - 1.5 1.8 - 1.2  .30 -.55 .69
21 1.5 .63 - 1 . 2  .1.4 1.3 2.0 -1.5 -.60 1.2 2,2
22 .42 .68 -.65 .50 2.7 .77 -.20 - 1 .2  .90 .05
23 .72 2.3 .34 - 2.5 -.22 - 3.8 - 1.3 .00 -1.8 .39
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I hose 23 spectra were fhen put into a file and used as constraints for an agent
t.irget in the opti m ization program. The resulting set of ’ channels and coefficients were then used
i i i  the simn u Lilion progra mim to obtain the responses of all the spectra. Many of ’ the LAS spectra
had responses within  ~0.3 volts . Only one LAS had a response exceeding ±0.6 volts. These results
indicated tha t  the technique was promising. A sligh t increase in the number  of factors might
prod u ce a reasonably sized constr aint set that would constrain the entire file to wi th in  the
des ired ~03  volts. In addit ion.  the technique might also he applied to the ent i re  data f i l e  w i th
t i t i l e  d i f f i c u l t y

A new tile of 162 spectra was established that consisted of all LAS , terrain , and
mnk ’ r ter enct ’ spectra except those in which ~iart of the spectrum was positive . As before , t he
e ig e ii ~alues for  th e tirst 20 factors were obtained as a guide in selecting the number of factors to
he used for  classi fication. Fifteen (‘actors , representing 99.9 1% of the variation were chosen . (he
IS loadings , amid corresponding factor scores for each spectrum were calculated. The factor scores
ranged from -8.3 to +7.0 for the 162 spectra in the file. The total number of spectra having one
or m ore boundary factor scores was 27. If these 27 proved to be capable of constraining the
entire group of 162, then factor analysis would be the most promising classification technique .

Using these 27 spectra as constraints , a set of channels and coefficients were
obtain ed. This solution was used in the simulation program to obtain response values for every
spectrum in the data file. Each of the 162 spectra had response values within ±0.6 volts , a
signili cant resul t . It should be noted that in both ~ oups of data , an eigenva lue ratio of
appro ximate ly 99.9I ’~ resulted in response values within ±0.6 volts. These results indicated that
the technique should produce reasonable constraints if the number of factors was increased to
obtain a higher eigenvalue ratio.

The limiting eigenvalue ratio was then increased to 99.98%, and loadings and factor
s.. Jres were obtained for both the LAS file and the larger mixed file. This resulted in 19 factors
and 32 constraints for the LAS file , and 27 factors and 37 constraints for the mixed file. Channel
and coefficient sets for two different agents were obtained for both constraint sets , and the
solutions were entere d into the simulation program to obtain response values. For the LAS
constraints , the remaining 54 LAS spectra were constrained to within ±0.4 volts with the

• exception of five spectra from one sniution and two spectra from the other. Fnr the mixed
constraints, the remaining 1 25 spectra were constrained to withi n ±0.4 volts with the exception
of three spectra from one solution and two spectra from the other. The highest response for any
of the above exceptions was 0.605 volts. These results indicated that the factor analysis

• tech nique coupled with the established procedure for selecting constraints , was the most effective
amid reliable of the four methods examined . Given a large data file, the technique will select a
reasonably sized set of spectra that will constrain the entire data file adequately to within some
specified response limit. The technique is specific and requir es no subjective selection of any

• spectra.

• One final question was the ability of factor analysis to classify new spectral data.
• Based on Ihe previous results, it was assumed that any new spectrum having factor scores less

than the established boundary scores would be adequately represented by existing constraints.
This assumption was tested by examination of five dust and five LAS spectra not included in any
of the previous trials. The 27 factor scores from the mixed-constraint set were calculated for the
new spectra and compared to the boundary scores. Only one spectrum, the LAS in figu re 4, had
factor scores exceeding the boundary limits. All 10 spectra were placed in the simulation



progr am and rcspoiises obta ined for the two agent solutions b r  the larger data set. None of the
new spectra had respoimses esecetling the ~O.4 volt range. Basically, this supported the assumption
t h a t  I .i~ b r  scores with in the boun dary implied that the spectrum was not significant: however ,
si nce ( li e spc~. (m mmi having scores out side the limit did not exceed the response range, the
assumption is still umicertamn . A complete answer to this question requires many more examples
in order to obtaimi a statist ical basis for the final answer.

The overall conclusion of the factor analysis study is that the technique can select a
small group of representative constraints from a large data file. The method has the potential for
automatic implementation and could prove to be capable of classifying new spectra in real time.

IV CONCLUSIONS.

Of the four methods examined , the factor analysis technique was the most useful
and caine the closest to meeting all of the original objectives. The correlation technique could be
used to determine whether one spectrum was nearly identica l to another spectrum , but could not
make any significant reduction in the constraint file. The inspection techni que was usefu l , but
could not he automatically implemented or make a significant reduction in the number of
constraints. The linear- programming technique required too many subjective judgements and was
too compkx to select constraints automatically. Its most usefu l result was to illustrate the
possible limitations in any classification system.

The 37 spectra chosen as constraints fro m the factor analysis technique come close
to m eeting the requirements for a set of independent spectra and are shown in appendix C.
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APPFNI)IX A

I)ERI VAT ION OF F Ri EQUATION

F~ictor scores can be calculated from the unrotated and rotated loadings without com-
puting all N loadings. *

I rom n (8)

= A FJ

FJ = (A ’ A)’~ A ’ Z~

Using (10)

F~ = ir 1 A’ (A -I )

which is the unrotated factor score.

The rotated factor scores are a little more difficult. From (I 2)

= B 
~ Rj

Therefore.

A = B Fg~
and using(ll)

A F 1 = A T  
~Rj

or

~~ = 1’ (A-2)

since I is an orthogonal matrix.

Combining A-i and A-2,

~Rj = T’A-’A’ z~ (A-3)

• See Literature Cited on the next page.



Using ( I I )  again,

B = A T

A’ B A ’ A T

(A ’A)~~ A ’R = I

A I A’R = I

There t’orc.

I’ = B’AA~ 
(A-4 )

Substituting A-4 into A-3, one obtains (14)

F Ri = B’ A 2 A’ Z~
A

The recomistructed spectrum zj can be found from

= aB ’ A A-2 A ’ Z3 
(A-5)

LITERATURE CITED

Kaiser, H. Formulas for Component Scores. Psychometrika 27 (1) ,  pp 83-87, 1962.
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API ’I N DIX _I3

T I N  F ACTO R CON STRAINTS
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Figure B. Constraints from LAS Data File Based on Ten Factors
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