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ABSTRACT

In this dissertation, Langer’s asymptotic solution for second

order differential equations is applied to the problem of acoustical

propagation in the ocean. Langer’s solution is analogous to the WKB

solution, but is developed in terms of the Airy functions Ai( ) and

Bi(’), and is valid at the turning points of the equation

d2u /dz 2 + (w2/c2(z) - k~
2) u~ = 0

n = 0, 1, 2,

which ar ises in normal mode analysis of acoustic propagation in the

ocean. Here, c(z) is the function of sound velocity versus depth. The

solution is extended to take into account the boundaries of the ocean

waveguide in the determination of the normal modes of propagation. It

is shown that the eigenvalue equation for the normal modes may be given

in the form

J
:~~

w
2/c2(z - k 2)~~

2
dz (n + 1/2) r +

The quantities c (w) depend upon boundary values and upon the distances

from turning points to the depth of minimum velocity. From the eigen—

value equation, the formulae for the normal mode quantities of group

velocity and mode cycle distance are derived . These are expressed in

terms of a character istic distance, £~ (w)~ and period ~~(w). It is

shown that

iii.



D (w) = D ( z u . Z L ; w/ k )  + A (t ~)

and

~I~ (w) = T(z
u, ZL

; u/ k )  + r (w)

The terms D and ‘F are the ray theory horizontal distance and travel

time between the turning points , z11 and ZL~ of a ray with turning point

velocity equal to the phase velocity of mode n. The additional terms,

A and i , depend upon the boundary values and upon c(z) between the

turning points and the boundaries , and c(z) between turning points and

the depth of minimum velocity.

For Illustrative c(z) functions typical of the deep ocean,

the normal mode quantities of group velocity and mode cycle distance

are computed using the formulae developed in this dissertation. These

are presented In the form of plots of, for example, group velocity

versus phase velocity for frequencies in the range 10 Hz to 150 Hz.

These plots illustrate the effects of the ocean surface and of anomalous

segments of c(z) upon the mode quantities; the most prominent frequency

dependent effects occur for modes whose phase velocities are close to

the sound velocity at a boundary .

iv 
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ABBREVIAT IONS AND NOTATIONS

SVP — Sound Velocity Profile. The function of sound velocity versus

depth in the ocean.

TP — Turning Point. The depth at which a ray becomes horizontal; or,

the depth at which the phase velocity of a normal mode equals

the sound velocity.

LHS — Left Hand Side (of an equation).

RIIS - Right Hand Side.

— Tilde.. Used to denote a ray theory quantity or a WKB approxima-

tion to a normal mode quantity .

— Caret. Used to denote a Langer approximation to a normal mode

quantity.

U — As a subscript or superscript, denoting the upper TP.

L — As a subscript or superscript , denoting the lower TP.

t — As a subscript or superscript , denoting either TP.

z — Lepth .

(It is customary ir’ ocean acou~:tics to measure depth downward from the

surface, or z—0 at the surface. Therefore, since the upper TP is above

the lower TP, zU
(z

L) .
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I. INTRODUCTION

In the deep ocean, the variations with depth of temperature ,

pressure , and salinity combine to produce a sound velocity which is

also a function of depth. Typically , the s~unc~ velocity varies with

depth a few per cut about the nominal value of 1500 m/sec , with local

maximae at the surface and bottom , and a minimum at a depth of , say,

100 m to 1000 m. In many areas, the sound velocity function is

approximately unchanging across distances of hundreds of kilometers.

Under such conditions , acoustic signals in the frequency range from a

few hertz to a few hundred hertz are guided along a deep ocean wave—

guide, or SOFAR channel, to distances of several thousand kilometers.

The most important factor in determining the acoustical impulse

response of the ocean waveguide is the sound velocity function. The

theoretical models which describe the impulse response may be divided

into the categories of geometrical acoustics , or ray theory , and wave

theory, or normal mode theory .

The principal topic of this dissertation, the Langer solution,

which has not been applied to ocean acoustics before, provides approxi—

mate solutions to differential equations which arise in normal mode

theory. Two features make the Langer solution well suited for applica-

tion to ocean acoustics. First , the sound velocity function over much

of the ocean depth has an approx imately linear form, for which the

Langer solution is nearly exact. Second , the Langer solution is valid

at and near turning points; as shown in Chapter V , a normal 
mode1
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solution is needed when modes with turning points close to boundaries

enter into a propagation problem. An additional feature of the Langer

solution is that, in order to apply the solution, little in the way of

computation , beyond what is necessary for a WKB solution or for a ray

theory description , is required .

In this work, the Langer solution is extended by the

development of an eigenvalue equation for determination of the normal

mode functions . This eigenvalue equation for mode number n has the

f orm:

(
Z
L 2 2 2 1/2

J [w / c _kn ] dz (n+l/2) ii + c (W) . 1—1

Z
U

The quantities of Eq. 1-1 are defined in Chapter IV. However, note that

it is of the form of the Bohr—Sommerfeld equation, plus an additional

term c (u) on the RHS. Approximation formulae for the term c~ (w) ar e

derived in Chapter IV. Additionally , from the eigenvalue equation,

the normal mode quantities of group velocity and mode cycle distance

are derived and related to corresponding ray theory quantities.

The following two chapters are devoted to providing background

and bibliographical material. In Chapter II, the basic features of

the ocean acoustical parameters are presented . Then, the acoustical

wave equation, and the ray theory and normal mode theory formulae which

follow from the wave equation, are introduced . The WKB solution to the

depth equation of normal mode theory and the relationship between

normal mode theory and ray theory are then discussed . In Chapter III,
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a brief survey of the ocean acoustici~ phenomena analyzed in this work

is presented . Recently reported measurements show that , at low fre-

quencies (below 100 Hz), quantities such as signal travel time and

convergence zone spacings are frequency dependent. In particular, low

frequency signals travel from a source to a receiver more slowly than

high frequency signals and along “raypaths” which are shorter than

those of high frequency signals.

The Langer solution is derived in Chapter IV. Then, the

solution is extended by deriving an eigenvalue equation (Eq. 1—1)

which takes into account both the boundary values of the problem , and

the exact, rather than the asymptotic , form of the solution at the

velocity minimum . Finally, the normal mode quantities of group velocity

and mode cycle distance in the Langer approximation are derived and

expressed in terrs of the ray theory quantities of ray distance and

ray travel time.

In Chapter V , the formulae of Chapter IV are applied to

compute normal mode functions and mode quantities for example experi-

mental sound velocity functions. In Chapter VI, a review of the

dissertation is presented , and suggestions are made for future develop-

ments. In the Appendix , the properties of the Airy functions relavant

to this work are presented.

.1 -~~



II. BACKGROUND - THEORETICAL DESCRIPTION OF OCEAN ACOUSTICS

The purpose of this chapter is to provide a description of

the salient features of the acoustical ~arametera of the ocean in

Section 11—2 , and then to review different aspects of the theory used

to describe the acoustics of the ocean for reference in Chapter IV.

In Section Il—A , the acoustic wave equation to be used in

this paper is derived . The ray theory approach to solving the wave

equation is discussed in Section il—C ; in particular , the formulae

(Eqs. 2C—l3) which give the horizontal distance D and the acoustic

travel time T between two points of a ray are presented . The functions

D and T as defined by these formulae will frequently be used in

Chapter IV. The computation of the acoustic field in the ray theory

approximation will not be considered in this work.

The normal mode solution to the wave equation and the

separated depth equation are discussed in Sections II—D and II—E;

the Langer solution , the principal topic of this work, provides

approximate solutions to the depth equation . In Section Il—F , the

concepts of group velocity and phase velocity are introduced . In

Section II—G , the WKB solution, which may be used to obtain approxi-

mate solutions to the depth equation, is discussed . In two important

respects, the WKB solution is inferior to the Langer solution,

especially for application to ocean acoustics. First, the WKB solu-

tion may not be used at the turning points of the mode, whereas the

Langer solution may be. In addition to being useless for computing

14
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the mode function near a turning point , the WKB solution may not be

modified to take into account boundary conditions if the turning point

is near to a boundary . Second , the quantities of group velocity and

mode cycle distance (Section Il—H) computed in the WKB approximation

are identical to their ray theory counterparts , whereas from the Langer

Solution as extended in this work, group velocities and mode cycle

distances which reflect the wave nature of propagation are obtained .

Finally, in Section 11—H , the relation between ray theory and mode

theory is presented , and the concept of mode cycle distance tn

introduced .



6

Il-A OCEAN ACOUSTICAL PARAMETERS

The basic features of the acoustic parameters of the deep ocean

are discussed by , for example , Tolstoy and Clay [1966), William s [1970],

and Hampton [1974). In this work , we shall be interested in the acoustic

wavegu ide formed by the ocean ’s sound veloci ty structure and the ocean

surface, but wil l  not consider the acoustics of the ocean bottom. An

emperical equation published by Wilson [1960) gives the sound velocity c

in water as a function of temperature T, sa l in i ty  S, and pressure P. To

first order, this equation is

c = 1449.14 + 4.57T + .1603P + 1.40(S-35) . (2A-l)

In Eq. 2A-1, c is in un its of m/ sec , T is in degrees (Celsius) , and P is

in kg/cm2
, and S is in par ts per thousand . In the ocean, pressure in-

creases linearly with at a rate of approximately 100 kg/cm2 per kilome ter

of depth. Therefore, if the temperature and salini ty are constant, c wi ll

increase with depth at a rate of approximately 16 rn/sec per kilometer of

depth. In equatorial and moderate latitudes , the temperature I nominally

decreases wi th depth until a minimum tempera ture is reached at a depth

of approximately 1000 m, below which the temperature is constant . Thi s

dependence of temperature upon depth results in a minimum of sound veloc-

ity, the SOFAR (Sound Fixing and Ranging) axis at a depth of approximate-

ly 1000 m. Additionally, the mixing by wave action of the water near the

surface may cause the temperature to be constant down to a depth of, say,

50 to 100 m so that a local velocity minimum is formed there.

Typical sound velocity versus depth curves from different areas

are shown in Fig. 2A-l. Such a curve is known as a sound velocity pro—

file; the abbreviation SVP will usually be used in this work . As may be
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seen , the sound velocity varies approximately 2 or 3 percent with depth.

In the following Sections , reference wil l  of ten be made to the “profile

func tion” q(z ) , where

q(z)  = w2
/c

2
(z) - k2 ; (2A-2)

~ is the angular frequency and k is a wavenumber. Because of the relative-

ly small range of variation of c(z) in the ocean, the term w2/c2(z) w i l l

vary by only , say, S or 6 percen t . Also , the behavior of q(z)  may be

jud ged by examination of the function c(z); that is, q(z)  wi l l  have

roughly constant slope at depths where c(z) does, and q(z) has a maximum

where c(z)  is minimum , etc.
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Il-B ACOUSTIC WAVE EQUATION

The linearized wave equat ion for the acoustic pressure , 
~ a

’ in a

fluid is given by Eq. 2B-8, below . Detailed discussions of the derivation

of the acoustic wave equation may be found in Bergmann [1948], Lindsay

[1960],  and Officer [1958]. Let the pressure p . and density p . and

fluid velocity at a point by given by

= ~o +

= ‘~o 
+ 

~~a 
(2B-l)

9. +
t J = U a

• Here , the subscript “o” refers to the quantity in the absence of acoustic

disturbance while the subscript “a” denotes the increment due to the

• 
acoustic wave . Newton ’s law of motion for a fluid element is given by

+ + 9.
p DU/Dt p(~U/~t + U . ~ 1J)

= _VP
a 

+ , (2B-2)

where the term ~ gives the force density of sources. The equation of

continui ty for the fluid is given by

= ~p/3t + V . (pi~) = 0 . (2B—3)

Next , Eqs. 2B-2 and 2B-3 arc linearized; that is, terms such

as p i ~~, which involve products of incremental quantities, are ignored.

Thus, Eq. 2B-2 becomes
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I

-p au/ at = 
~~~ ~a 

- S , (2B-4)

and Eq. 2B-3 becomes

3P /at = -Vp . - p
~~ 

. 
. (28-5)

Hook’s law for fluids is

= (B/p) 
~a 

, (2B-6)

where B is the adiabatic bulk modulus . Then, take the derivative with

respect to t of 
~a 

of Eq. 28-6, and substitute the result into Eq. 2B-5

(again retaining only first order terms) to get

B + -‘3P /3t = -U . Vp0 • - U . (28-7)

Finally, taking the divergence of Eq. 2B-4, the time derivative of
+

Eq. 2B-7, and adding the results to eliminate terms in U, one obtains

V2P - c 2
(~ ) 32P /3t 2 = -V . (28-8)

where the sound velocity c is given by

c() (B/p)”2 . (2B 9)

If the source S has a single frequency w, so that

= ~~ ~~~~ , (2B-l0)

then the acoustic pressure 
~a 

may be expressed as

= ~~~~~ e~~~
t 

, (2B-ll)

and the wave equation becomes

+ = -~~~ 
. 

. (28-12)
c ( r )
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Il-C RAY TRACING EQUATIONS’

Assume that a point source of frequency u i s  l ocat ed at

and that away from r0, ~ is expressed as

+ + i~p(r)
~(r) = A (r) e ; (2C-1)

the functions A(r) and ‘4(r) are real. A surface defined by ‘,~ = constant
is a surface of cons tant phase for the wave . Along the path s which is

normal to a constant phase surface ,

asp/ax = dx/ds K( )

a~p/~y = dy/ds K(r) , (2C-2)

d~/dz = dz/ds K()
Now if Eq. 2C-l is substituted into Eq. 28-12, then Eq. 2C-3

is obtained by equating the real parts of the resulting equation

(~
I)2 3~~2 3~~2 ~2 V

2
A+ (5—V) + (5~) = - _

~~~~~~ i (2C-3)

The ray theory approximation is that the second term on the RHS of

Eq. 2C-2 is zero; this is equivalent to assuming

IA’ ’/Ak< u
2
/c

2 
, (2C-4)

where primes denote a general spatial derivative. tinder the ray theory

approximation Eq. 2C-3 becomes

(a’P)
2 

+ (~~)
2 

+ (.~~)
2 

= , (2C-5)

Substitute Eqs. 2C.2 into 2C-5, and then use the property of the

direction cosines,

(dX ) 2 
+ (.~Z) 2 

+ (~!)
2 

= 1 , (2C-6)

‘Brekhovsklkh (1960]. Officer [1958]. Tolstoy and Clay [1966]
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and the factor K(r) m ay he shown to be ~AI/c(r), so that Eq. 2C-2 becomes

a) — c ds

J~J w d
d) f c d s  ‘ — )

••
~ 

3~$~~~~w d z

~z c d s

F inally, take the derivatives of each of Eq. 2C-7 along the normal (ray

path) to obtain the ray equat ions. For example , the derivative of

Eq. 2C-7a is

d 1 dx - 3 dm~
~~ 

- 
3x ds

3 (3~I) dX a~p~~~~3mp 
~— 

~~~~~~~ ds ~~ ds dz d~

~~~~~{1~(
dx)2 + (~~ ) 2 

+ (~~)
2~

} 
(2C- 8)

The ray path equations are thus

d ~l dx
) — 

3 
(
l~ds c ds 3 x c ’

L~! ~~ =ds c ds 3y c

L(! ~~) = L(!) (2C-9)
ds c ds 3z c

These equations may also he derived from Fermat ’s princ i ple .

Res tricting c(~) to be a function of the depth z only

simplifies the ray equations. In particu lar . the ratio of the x and >~

direction cosines is then constant , so that a ray which starts at the

i-axis of a coordinate system remains in one plane which contains the

z- axis. Thus, there is no loss of generality by considering a ray to
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be in the x-z plane only, and Eq. 2C-9 becomes

a) dx c(z)
ds c~

b) ~~
(

( )  ~~
) = 

~~~ ( )
) (2C—10)

From Fig. 2C-1 , it may be seen that the constant c
~ 

in Eq. 2C-lOa is the

sound velocity c(z) at a turning point of the ray, where the ray is

horizontal (dx/ds = 1). Equation 2C-lOa is the form of Snell’s law for

a continuously variable index of refraction.

By tracing a ray from the point (x0, z0’, we mean the

determination of the curve (x, z) wh ich passes through (x0, y0) and

satisfies Eq. 2C-lOa. The ray is characterized by the turning point

velocity, c~. We also include in the ray tracing operation the deter-

mination of the acoustic travel time between two points of the ray,

defining an element of time dT among the ray path element ds by

dT = ds/c(z) , (2C—11)

The relation between ds and dz given in Eq. 2C-12 follows from Eqs. 2C-6

and 2C-lOb

ds = dz/((1~c
2
(z))/c 2) . (2C-12)
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Combining E qs. 2C-lOa , 2C- I l , and 2C-12 , the equations for

tracing a ray with turning point velocity c
~ 

are given by
z cdzD(z,,z2;c

~
) / 2 21/’ , (2C-13)

z
2

T(z
1, z 2 ;c

t
) [ dz

2 2 1/ 2c(l—c /c
~ 

)

The horizontal distance D(z1,z2
;c
~
) and travel time T(zi,z2

;c
~

) def inedI

in Eq. 2C-13 are indicated in Fig. 2C-2. When a ray either reaches a

turning poi nt (where integrand in Eq. 2C-13 become infinite) , or str ikes

the surface or bottom , it is continued as indicated in Fig. 2C-2. The

ray cycle distance and ray cycle time are

A(c
~

) = 2D(z
U
,z
L
;c) , (2C—14)

and T(c
~

) = 2T(z
U
)z
L

; c )

the limits z~~, z1 are turning points 
if the ray i s refracted above or

below, respectively, and the correspond ing boundar ies otherw ise.

-• In general , if the two points (x
0
,z
0
) and (x,z) are connected

by a ray which has the turning point velocity c
~
. then

x - x = NA(c ) + cx L)(z ,z ;c ) + ~3t)(z ,z ;c  ) (2C-l5)0 t u o t o t

a = 0 or 2; B = ±1

N = O , l , . . .
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must be satisfi ed for some combination of a , B, and N. Some of the po i nts

at dept.h z connected by a ray to point (x ,z0) are shown in Fig. 2C-3. A

practi cal prob l em in ray tracing is the determination of “eigenrays”

which connect two fixed points . There are numerical techniques to find

the roots (c
r) such that Eq. 2C-15 is satisfied for points (x ,z )  and

(x ,z).

In summary , a ray from a point is a curve which is specified

by a simple param eter, the turning velocity c
~

. The two bas ic ray

quantities are the ray cycle distance and the ray cycle time . It should

be remembered that it follows from Eq. 2C-l0a that a point at depth z5

can be connected (at the proper ranges) to another po int at depth z by

a ray characterized by c
~ 

only i f

c
~ 

> max [ c ( z ) ,  c ( : )]  2C-16

--
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1 1-0 NORMAL MODE SOLUTION

If the source is a point source of unit strength located

at point r~ , then Eq. 2B-l2 becomes

+ 
2 ~~ 

= -~~~~~ e~~~ 6 ç - ~~) . 
(2D 1)

c (r)

In this section , 6 ( .)  is the im irac del ta function ; the symbo l i~

used in another sense in Chapter IV (E q.  4B-6). Then , we express

Eq. 20-1 in a cylindric-i l coordinate system and assume that the

sound velocit y is a function of depth only, and obtain

213  ~~ w ~— — (r —) + + 2 + 
~~~r 3 r  3r s..’ c (z)  r

ó(r-r )
= ~~~r r ~~ ó ( z- z ) 6(mp4 ) , (2D-2)

Nex t , we eliminate the azimutha l dependence by integrating over ‘L’ from

o to 2n and then set r = 0 to obtain

~ f(r~~) + 4 + = - ~ ~(r) 1(z-z ) , (2D-3)

Except at = i~~ , Eq. 20-3 becomes the homogeneous equation

2 2
A~ .L(r~!) + 1± + W 

~ = ~ , (2D 4)r 3r 3r 3z 2 c2(z)

which may be separated by substituting

= F(r) u(z) (2D.-5)



20

into Eq. 2D-4. If this is done, the separated equations 2D-6a and

2D-6b are obtained , where the wave number k is a separation constant .

I d  dF 2a) 
~~

._ (ra—) + k  F 0

2 2
~ d u  w 2
~~ + - k ) u 0 . (2D-6)

dz

Equation 2D-6a is Bessel ’s equation for order zero. In order to satisfy

a radia tion cond it ion as r ~~, the solution to Eq. 2D-6a to be chosen

must be the Hankel function of the first kind ,

(1)F(r) = H (Kr) . (2D-7)

Equation 2D-6b is known as the depth equation ; it is

mathematically equivalent to the one-dimensional Schr~dinger equation of

quantum mechanics. Analyses and solutions of the depth equation , exact,

approximate, and/or numerical , are the central part of many papers on

underwater acoustics. The principal subject of this paper is a technique

for obtaining asymptotic solutions to Eq. 2D-6b.

The spectrum of the depth equation depends upon the nature of

c(z) as z -, ~~. It will be assumed here that c(z) approaches a limiting

value, c , as z ~~ . Both c(z) and the limit c are real and finite. When

the quantities defined in Eq. 20-8 are substituted into Eq. 2D-6b, Eq. 20-9
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is obtained
2 2

q ( z )  = -( -
~~

---— - - 
~

—
~
-) , (20-8)

c (z)  c~,

2
A = - _ k

2d u
+ ( A - q ( z ) )  u = () 

, (2D—9)
dz

This equation is discussed in Chapter S of Titchmarsh [1962], who shows

that the spectrum of u is discret e for A < 0 and is continuous for

A > 0. In terms of the separation constant k , the spectrum is discrete

if Ik i > w/c and is continuous if k w/c .

We will denote the discrete spectrum by {k }, n = 0, 1 , 2,

.N, where N is finite or infinite , depending upon the nature of c(z)

as z ~ ~~~. The solution of Eq. 2l)-~ a for the eigemna lue k w i l l  be

denoted by u~ (z); the ei gcnfunctions u~ are orthogonal , and are defined

to form a normal i zed set

fu (z) U (z )  dz = 6
nm (2D-lO)

These cigenfunctions for the discrete part of the spectrum are the most

important part of the solution for long range acoustic propagation in

the ocean .

We w i l l  denote the conti nuous spectrum by K , where

0 < K < w/c~ , and denote the corresponding eigenfunctions by u(K ,z).

L
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It will be assumed that these eigenfunc t ions are normalized as

J
u(K,z) u(K’,z)dz = 6 (K - K ’ )  . 

(20— h a)

Also ,
fu (z) u(K ,z)dz = 0 . (21)-Jib)

These eigenfunctions for the continuous spectrum are relatively

un importan t for waveguide propaga tion , as wi l l  be shown .

The solutions to the inhomogeneous equation , Eq. 20-3 , may be

expressed in terms of the normal modes as

k

•(r ,z) ix: H0~
1
~ (k r) u (z) F + fH~~~~(Kr) u(K ,z) F(Ic)cjK . (2D 12)

The quantities F and F(k) are easily shown to be a constant times the

normal mode functions at depth z .  To do this , substitute Eq. 2D-12 into

Eq. 20-3 and use the fact that the u~ (z) satisfies Eq. 2D-6b to obtain

E(~-f.r~--+ k~2) H0W (k~ r) u~ (z )  F~

+j
J(o~1 f-rf + K

2 ) H0(Kr) u(K ,z) F(K)dK
= ~~

. 5(r) 6(z-z ) . (20-13)

Next, to obtain F , multi ply Eq. 20-13 by U~ (z) and integrate from

= 0 to z = 
~
; from the orthonormality relations , Eqs. 20-10 and

2D-ll , Eq. 20-14 results:

(~~~—~ r~ j.) + k 2) H
O 

(k r) Fm = ~ 6 ( r )  u
m

(z
o) . 

(20-14)
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Now , the Hankel function of order zero is important as the Green ’s

function for two-dimensional problems ; as discussed in Chapter 8 of

Morse and Feshhach [1953], it satisfies

I 4_. (r~—) + k 
2
) ~ 

(k r) = —~~~- ~~~~ . (20-15)

r d r  dr m o m ii r

Combining Eqs. 21)-14 and 21)-IS , the factor F~ given by

F = iii U (z  ) (2D 16)
m m e

is obtained . In a similar fashion , multi ply Eq. 20-13 by IJ(K ,z) and

integrate to obtain

F(K) = i-TI U(K ,Z
0
) , (2D 17)

Finally, the norma l mode solution to E q. 2D-13 is given by

t~(r,z) = :~aH~: Fl (’
~~~

1(
n1

~
) u Iz) u ( z ) + 

~cont 
‘ 

(2D-18)

where

k

cont 
= ilTf H m(Kr) U(K ,z) U(K ,z )dK . (2D 19)

As mentioned earlier , the continuous port ion of the spectrum

is relatively unimportant in long range acoustic propagation. To see

that this is so, consider only the part of the field at depth z due to

the continuous spectrum , def ined in Eq. 2D-19. Next , let the interval

[ O ki  be divided into segments so that 
~cont 

is evaluated by summing
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the terms ~~n)

~cont = iir~~ ~(n) , (20-20)

K
n+l

$(n) = iirf H~~~~(Kr) u(K,z) u(K,z )dK

The intervals in Eq. 2D-20 do not depend upon r; they are chosen so that

the factor multiply ing H
0~~~(Kr) vanishes at both ends of each interval

and has the same sign over the interval , as indica ted by

G(K) E u(K,z) u(K,z0
) , (20-21)

C(K ) = G(K~~1
) = 0

G(K) ~ 0 K < K < K
1

Thus, there is an approximation for the magnitude of ~ (n)

I~ (n) I 
~ 

~fn+l H (Kr)dK~ , (2D-22)

where
G = maxlG (K ) I K < K < K
n n n+1

A simple change of the integration variable then changes Eq. 20-22 to

< ~~n ~j
XK l H (x) dx~ . (2D-23)

h’~ 4syaptuti~.. form ~f the integral of Eq. 20-23 may be directly

obtained from Eq. 11 .1 .11 of Luke [1970]; the modulus of the Integrand
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approaches a constant t ime s r
h 1

~
’2 as r becomes large.

Thus , at large range ,

I~
(n)I < ronst x r 3” 2 

(20-24)

gives an estimate of the magnitude of 4 ( I ! )  and it fol lows that the

sum of the ‘~(n), 
~cont ’ 

goes as r 3
~
’2 

for large r. This is in contrast

to the asymptotic behavior of the discrete spectrum portion of the

field wh ich , as may be seen from Eq. 20-18, goes as r~~
”2 for large r .

In the following analysis , the continuous spectrum will be neglected and

it will be assumed that the solution to Eq. 2D-l is given by the normal

mode solution

~(r ,z) = irE H W (k r) u (z) u(z ) . (20-25)



26

II-E THE DEPTH EQUATION

We return now to the ma jor subject of this paper , the depth

equation ,

d u n
—~— + q u =  0
dz

(2E -1)
2 2q~ (z)  = - k

c

The wavenumbers which belong to the discrete spectrum of Eq. 2E-1 satisfy

k > w/c . (2E-2)

The norma l mode functions u (z) are the functions which are solutions to

Eq. 2E-1 and also satisfy the appropriate boundary conditions. At the

ocean surface, there is such a large mismatch between the density of the

atmosphere and the water that the acoustic pressure in the water vanishes.

Thus ,

u (O) = 0 . (2E-3)

To rigorously specify a second boundary condition , it would be necessary

to consider the acoustical properties of the ocean bottom . However, a

discussion of the problems involved in ascertaining the acoustical

properties of the ocean bottom and then incorporating them into a theory

of propagation is beyond the scope of this dissertation . The acoustics

of the ocean bottom are discussed in Hampton [1974], Williams [1976],

Bucker (1970], and in references therein. In this work, we shall deal

only with the modes which do not interact with the bottom . To accomplish

this (Tolstoy and Clay [1966]), we model the SVP so that, below the depth
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of the bottom 1
b ’ 

c(z) equals c(z
b
); that is , c~ = c(%). In order for

the mode function u to be formalizable (Eq. 20-10), it must vanish at

infinity. Thus, the second boundary cond it ion is

u (z) ~~~ 0 . (2E-4)
n ~~~~

In Eq. 2E-l , the function q (z), which will be called the pro-

file function, has been introduced . In Fi g. 2E-l , representative sound

velocity profiles, profile functions, and normal modes have been sketched .

The points z~ and Z
L
I where q vanishes, are the turning points of Eq.

2E-4. In the regions where q~ is negative (for example, above the point

z
~ 

and below the point ZL of Fig. 2E-l), the function u has an “ex-

ponential behavior” (Morse and Feshbach [19531), curving away from the

z-axis. Because of the boundary conditions, the normal modes are damped

above z~ and below ZL. In regions where q~ is positive, the function

u curves towards the z-axis, with a “sinusoidal behavior”, as between

the turning points of Fig. 2E-l.

In this paper, the phrase “turning point” usually will be

abbreviated as TP. It will be assumed that there are either only two

turning points, or a reflection at the surface and a turning point below

the axis depth z .  That is, if q is negative at the surface, there is

a turning point below the surface, while if q~ is positive at the surface,

mode n reflects from the surface.

The wavenumbers kn may be arranged in a decreasing sequence,

as indicated by
> k1 

> k
2 

. . . > k > t./c . (2E 5)

-
~~~~~~~~~~~~~~~ -
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c(z) q (z) U
4
(Z)

_ _ _ _  _ _ _ _  
-

z I

FIGURE 2E-1
4 SKETCH OF SVP , PROFILE FUNCTION , AND NORMAL MODE FUNCTION

q~(z)  vanishes at the turning points of the mode
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When this i s done , the upper and lower turning points of the correspond-

ing modes will be ordered as

Z
O 

> 1
U
° > Z

~J . . . > 0 , (2E — 6)

() I1 < 2  < 2
I. I)

c ( z
~~

) = c (z
1~
’) =

More impor tan t ly, when the wavenumbcrs are ordered as in Eq. 2E-5, it

may be shown (Titchmarsh [1062]) that u has n zeros between zJ’ and Z L~~•

I t wil l  of ten be convenient to express u in terms of an amplitude, A (z) ,

and a phase function , ~~(z),

U (z) = A (z) cos(q —r/4) , (2E—7)

A > 0
fl

d -~~/d z > 0

0 < ~~~( z )  < (n + 1/ 2 ) rr

Sketches of the amplitude and ~)a~ e factors arc sho~n in Fig. 2E— 2; at the

zeros of u , ~~(z) = (n - l/ 4 )r .  The ampl itude and phase fa ctors may not

be uniquely specified from the function u~ (z) alon e . However , let tr (z)

denote the linearly independent normalized solution to Eq. 2E-1; the

function i~ will not satisfy the boundary conditions. Then, the functions

A~(z) and •(z) may be given by

A (Z) = (t1 2
(zI ~~~ ( z ) ) 1”2 (2E—8)

~~(z) = arc tan(~~/u ) +
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The representation of Eq. 2E-7 is useful , for example , in discuss ing the

relation between normal mode and ray theory descriptions of sound propag-

ation , as in Section Il-H . The WKB solution , discussed in Section II-G ,

provides approxima tions for the fun ct ions A
n 

and q .  In Section IV-B of

this paper , an improved approximation (Eq. 4B-3) based upon the Langer

solution is used .
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Il-F BROADBAND SOURCES ; PHASE AND GROUP VELOCITY

The normal mode solution developed in section 11-0 was for

a harmonic source of frequency w. However, by the principal of super-

position , the field generated by a broadband source may be given by

Eq. 2F- 3, below. Analysis of the integra l in Eq. 2F-3 leads to the

concep t of group veloc ity. Consider tha t a po int is source loca ted

at r = 0, z = z
~
, and has the time dependence S(t). The Fourier trans-

form of S(t), ~(w), is given by Eq. 2F-la; the inverse Fourier

transform gives S(t), as shown in Eq. 2F-lb

a) S (w) = ~~~~~~~~~~ S(~ )dt

(2 F- i)

b) S( t) = 
~,
r—J e~~~

t S(w) dw

Then, the f ield generated by the sourc e is

•(r ,z ,t) = e ’
~
”4
E ~~(r ,z,t) , (2F-2)

where the terms •(r,z,t) are given by

n~~~
Z,t) r d(J.)~{~J u~ cz

0
) Un

(Z) 

e
i (k

n
r - 

~t) 
(2F-3)

In Eq. 2F-3, the wavenumber k~ is a function of the frequency w. The

u~ are again the normal modes, solutions of the depth equation 2E-l ,

and so also depend upon the frequency. The asymptotic form of the

Hankel function has been used in Eq. 2F-3.
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Assuming that the normal modes have been obtained , and that

the fun ctions k (w) are known , the problem is the evaluation of the

integral , Eq. 2F-3. For most problems , the method of stationary phase

(Copson [1967], Erdelyl [1956], Pekeris [1948] , Tolstoy [1973]), wh ich

assumes that the terms in the integrand of Eq. 2F-3 are slowly varying

with respect to the oscillations of the complex exponential, is adequate.

Because of the cancellation which resu lts from integration over several

oscillations , only near points where k~r - wt varies slowly is there

significant contribution to the integral . That is , the important

frequency is defined by

d—(k r-wt ) = 0
d~ ~ (2F-4)

near which the phase of the integrand changes slowly.

Let the group velocity, v~ , be def ined by

v~(w) (dk /dw)~~ , (2F-5)

so that Eq. 2F-4 may be rewritten as

n t = v ( w ) . (2F-6)
t

Now, Eq. 2F-6 is a prescription for the frequency ~m ;  for mode n , it

is expected that the signal arriving near time t wi l l  he predominantly

made up of components with frequencies near of Eq. 2F-6. If the

factor in the exponential of Eq. 2F-3 , kn
r - wt, is expanded (to second

order) in a power series about and integrated , then •(r,z,t) is
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given by

u ( z ) u ( z )  -‘I’ = S(~ ) v (w ) 4L 0 fl ±irT/4
~~ ~~ ~ 

e (2F-7)
vrk (w )~ v (w ) I0 n o

Here , the plus sign in the exponential is to be used if is positive ,

and the negative sign is used if ~‘ is nega ti ve. ( I f  v ( w ) = 0, a

higher order term in the power series is needed . See , for ex ample ,

Copson [1967]). Note that Eq. 2F-7 predicts that the contribution

-from the nth mode is disregarding the other factors , proport ional to

Another important quantity in addition to the group velocity

of mode n is the phase velocity, defined by

c ( ~) w/k , (2F-8)

From Eq. 2E-l , it “ay be seen that the phase velocity of a mode at

frequency w is the same as the sound velocity in the water at the

turning points of the mode at frequency w

= c (z~~~) = C(Z
nl . (2F-9)

Therefore, it will sometimes be convenient to abbreviate c (w) by ct.

The phase velocity c~
’
~ ) of mode n at frequency w is a useful

quan tity in tha t it may be used to es t imate whether or not mode n is

sign i ficant in the propagation of sound of frequency ,‘ from a source at

depth z5 to a receiver at depth z’. Since the mode decays with distance

away from a TP in a region where q~(z) is negative , or where c(z) is
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less than C
n
(w)

~ 
un(z) will become small at depths such that

c(z) > c (w) . That is, the important modes are those that

> max (c(z5), c(z’)) - (2F-l0)

In the limit of high frequency, the inequality is not an

approximate one, but becomes the analogous requirement of ray theory,

Eq. 2C-16.
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II-G THE WKB SOLUTION

An important technique for obtaining approximate solutions to the

dep th equa tion , Eq. 2E-l , was (according to Bellman [1964]) discovered

by Liouville in the early nineteenth century. It was rediscovered in the

early twentieth century by Wen tzel , Kramers , Bri llou in , as a means of

solving the Schrödinger equation of quan tum mechanics and was also used

by Jeffreys . The WKB solutions are asymptotic , that is , valid in the

limit of “short” waveleng ths , as is the ray p icture. The WKB picture

is a convenient framework within which to relate many aspects of norma l

mode theory and ray theory .

The WKB solution is derived and discussed in detail in several

sources, such as Bellman [1964], Kemb le [19581, Morse [19531, and Tolstoy

[1966]. The purpose of this section is to enumerate several features of

the solution. Following the usual practice , if a turning point is not

the surface or bottom , it will be assumed that the turning point is

inf in i te ly  far from the boundaries.

The normal modes were expressed in terms of an amplitude and

phase factor in Eq. 2E-7. The WKB approximation approximates the mode

functions by

u (z) ~i (z)

~i~ (z) = v~q~~~
’4 

cos(~~ - ir/4) if q
~ 

> 0 , (2G-l)
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in the region between turning points , where the func tion ~ oscillates,

and by

u~(z) = v~~q~~~ /4~ ~ if q,, < o (2G 2)

where ü decays away from the turning points. The factor 
~

the phase between TP’s

~~(z) f ~~
“2dz ’ z~ < ~ < 2

L ‘ (2G-3)

and the decay factor ii’ the other regions

~~(z) ~fjq j h / 2~zI 0 < z < z~

~~~~( z )  =f~~q~~
l/2~ l t 

Z
L 

( z (2G-4)

The quantity v~ is a normalization factor , chosen to ensure that Eq. 2D-lO

is satisfied . The eigenvalue equation from which the wavenumbers k~ are

determined is the Bohr-Sommerfeld equation,

f q ”2 dz = (n + l/2)w (2G-5)zu 
-

In deriving the WBK solution , it is assumed that the second

derivative of the mode amplitude, divided by the mode amplitude , is much

less than the profile function . It may be shown that this is equivalent,

mak ing reasonable assumptions, to

d~q1 < 
~ 

j
~~

31’2 
, (2G-6)

which in terms of the sound velocity c(z) is
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~~~! . < 

~~~~~~~~~~~ 

- k~~)~
’
~ . (2G-7)

There are two situations for which Eq. 2G-7 may not be satisfied . First,

if the slope of the sound velocity at some depth is too great , the LHS

of Eq. 2G-7 becomes large; second , near a turning poin t, the RI-IS of Eq.

2G-7 vanishes.

To estimate the restrictions upon the slope of c(z )  imposed by

the first type of problem , express k in terms of the phase velocity so

that Eq. 2G-7 becomes

1 w3~~~t C)3 
. (2G-8)

Multiply both sides of Eq. 2G-8 by c3/w 2 
to get

c)3 , (2G-9)

which says that the slope of c(z) should be much less than the frequency

times the cube of the fractional difference between the phase velocity

and c(t). In practice , the fractional difference is usual ly  a few

percent, so that the WKB solutions are useful only at high frequencies- or

in regions of slowly varying c(z).

The second type of problem , the failure of the WKB solution at

turning points, does not depend upon frequency or details of the SVP. In

applying the WKB technique to many problems in underwater acoustics, the

difficulty near turning points is a serious one since a source and/or

receiver may be near the depths of turning points of many of the modes

connecting the source and receiver.
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It is interesting to consider the normalization of the WKB

solutions. From Eqs. 2G-l and 2D-1O , we obtain

I = v 2J
1
1
~ q~~

1”2 cos2(~ - 1T/4)dz

+ v
2(J

ZU +

~~~
) ~~~~~~~~ 

e~~ dz . (2G-l0)

Next, assume that the contribution to Eq. 2G-lO from the regions outside

of the TP’s is negligible and that q~(z) is slowly varying over each

oscillation of the cosine term in the region between the TP’s so that the

cos2($_rr/4) term may be approximated by 1/2, so that

2

1 — ” ~ -1/2-yj  q
~ dz

-U

= 
fL(

~~
2 

- k
2) 

dz  . (2G-11)

Both of these assumptions are better the larger the mode number. Next ,

replacing the wavenumber k~ in Eq. 2G-10 by ti~ divided by the phase

veloc ity, or turning point velocity, one obtains

= 
w~~
f

1
L(I - I)~

1/2 dz

c w 2

= ....L.... 
~~

(z
U

, z
L

;c
~~

) . 
(2G-12)
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Here , function D is the ray tracing quantity, the ray cycle d i stance ,

which is defined in Eq. 2C-l3. Thus, the normaliza tion factor for the

WKB normal mode fun ctions is approxima ted as

= (2 [)~~~~~~~~~
/)

~ l/ 2  
. (2G-13)

A second connection between tI’e ~KR theory and ray theory is

seen by considering the group velocity of the ~KB modes. The group

velocity may be obtained from the Bohr-Sommerfeld condition , Eq. 2G-5 ,

which is

(n + l/2)ir = / L (~T - k 2) dz . (2C-14)

Taking the derivative with rtspect to u uf Eq. 2G-14 , r’ne cbta~ ns

~ [

Z

LC

2 
- k 

2)_ hu’2(J~ - k— j~
) 

dz , (2G-15)

from which the group veloc ity , defined hv Eq. 2F-~ may be obtained .

This gives 
~ 2

k j  L w 2 -1/2

~ ) 
dz

= 
U 

__________ 

. (2G-16)

~J
:L c 2

( ~~~~~ 
- k 2  ) ~~‘ dz

Then, if the wavenumber i. cxprc.aed i~ tcrm s of frequency an*.i phase

velocity, then the frequency factors out of the expression, and the group

velocity is expressed in terms of the ray theory cycle distance and cycle

time (see Eqs. 2C-l3 and 2C-14) as

L)(zU,zL
;w/ k

I~
)

v~ (w) 
T(zI,,1L

;t
~
/ k )  . (2G-17)



41

That is, if two different modes (at different frequencies) have the same

phase veloci ty, then , under the WKB approx imation , they will have the same

group velocity .

Finally, consider the quantity A~(w) defined in Eq. 2G-18

2fl(~k /3n)~~ . 
(C-lE)

It will be shown in the next section that Pt is the mode-interference
n

spacing, or mode cycle distance , which is analogous to the cycle distance

of ray theory. To obtain A in the WKB approximation , take the derivative

of Eq. 2G-14 with respect to n to obtain

= 
/

2L w 2 
- k 2

)”2 k _
~a
!! dz . 

(2C- 19)

Then, substitute w/c for k in Eq. 2C-.-14 and solve for

= fD(zU,zL;w/k ) . (2G-20)

Thus , in the WKB approximation , the mode interference spacings for two

different modes with the sane phase velocity (again at different fre-

quencies) are equal.
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Il-H MODE INTERFERENCE , RAY-MODE RELATIONS , AND NORMA L MODE QUANTIT IES

A final topic in th is chapter is the ma tter of mode interference

in situations where there are a large number of modes. As will be shown,

the peaks of mode interference occur along paths which are , in the WKB

approximation , iden tical to the ray pa ths of a ray theory picture of the

problem. Experimental demonstration of the overlap between ray theory

and mode theory for a simple si tuation (isoveloci ty water overlying glass

or rubber) has been given by Wood [1963] and discussed by Weston [1968]

and Tolstoy and Clay [1966]. The connection between mode interference

and ray paths for the WKB solution was given by Tindle and Guthrie [1974].

The normal mode u (z) was expressed in Eq. 2E-7 in terms of

amplitude and phase factors . The normal mode solution , Eq. 2D-25, is re-

written here as
i(k r-1T/4)

p (r ,z) = r 2r e 
~~cos(~~(:)-n/4) cos(~~ (z)-1r/4) , (2H-l)

in terms of these factors . The terms B depend upon the source and re-

ceiver depth and include the normalizing factors; the asymptotic form of

the Hankel function H~~~~(.) has been used . Equation 2H-l is then written

in terms of complex exponentials as

- 4+ +-  -+  - --
1/2 

1~ ) 1~j)
p ( r ,z) = r ~~ B (e n 

+ ~ +e n 
+ ~ 

n 
~ ( 2 14-2)

th~ phase terms arc defined by

= k r  + 
n~~~s~ 

+ 4 (z) - r/2

= k r  + ~~ ( z )  - q (z)
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~j) = k r  - 4 (z ) +

k r  - ~~(z) - P (z) + n/2 (2H 3)

Wi th substitutions such as

1/ 2
P = r B e  , (2H-4)

Eq. 2H-2 is rewritten as

p( r ,z) = + p 4 + + , (2H-5)

and we consider, as an example , the function p
9

. If the number of modes

is large, the contributions from the individual terms in the sum of Eq.

2H-5 will tend to cancel after summing a few adjacent modes except for

those modes such that

i. . +- +-

= 
~
‘n+l ~n 

= 2Mr , M = 0, 1, 2, ... . (2H-6)

When Eq. 2H-6 is satisfied , successive modes will be in phase and a

large contribution to the sum in Eq. 21-1-5 will result. In terms of the

range, wavenumbers, and mode phases, the interference condition is given

by
r Ak

n 
+ ~ q ( z ) - Ll~~(z) = 2MIT . (2H—7)

Mode reinforcement will occur at the ranges given by

21’tn ~~ (z ) -. &~ (z)
r = — ~— — _~

TL_5 (2k-I—s)
L~kn n

in terms of the mo~e-cycie di~ tai.ce definec. by tq. 2G-18, these ranges

are given by
~~~ (z  ) — ~ (z) )

r MA - ~ S 
. ( 2H-9)
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In Eq. 2H-9, the mode cycle d i stance is independen t of source

and receiver depth . The second term , invo lv ing d ifferences be tween the

mode phases at the two depths , is zero when z = and increases as the

difference between source and receiver depth increases.

In the WK B approxima t ion , the mode cycle distance A has been

given by Eq. 2G-20. The WKB expression for the difference in the phase is

given by

~~( z )  - 
~~(z )  [ S 

(
(A) 

- k 2)1/2 dz ’ (211-10)

The derivative of this difference with respe.t to k is
n

- ~
fl z) - k

2
)

uI’2
d1 , . (2b-ll)

If k~ in Eq. 2H-ll is replaced by u/c , then the frequency u may be factor-

ed from the KHS, so that the integral is of the same form as Eq. 2C-13a

for the horizontal distance between depth z and depth z along a ray of

turning point velocity c~ =

- 
~~(z)) = b(z,z ;w/k ) . (2H-l2)

Thus, the ranges at which modes of order close to n constructively inter-

fere for the 
~~~~~ 

term are

r = 2MD(z
U
,z
L
;
~

/ k )  — D (z ,z;w/k ) . (2H-l3)

The relationships between mode number and the ranges at which

they are dominant for all of the terms in Eq. 2H-4 may be developed along

similar lines and are combined in
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r = 2
~
iU(z

U
,zL ;w/k ) + a[ )(z ,z;w/ k )  + 

~
D ( z tj , z ;w/k )

N = ~~~, 1 , 2, . . -
= ‘1

3 0or 2 . (21.- 14)

Again , in the WKB approximation , note that Eq. 211-14 is identical to

Eq. 2C-l5.

To generalize Eq. 21-1-14 , one may regard the WK B expression

(Eq . 2G- 3) for the phases of the normal nodes as a f irs t approxima tion

and add a correction term (to get the exact phase)

~~(z ) [ q 12
dz ’ + e ( z ,w) . (2H-15)

‘-U

Correspondingly, the Bohr-Sommerfeld condition is regarded as an

approximation for the exact expression

= (n + 1/ 2 ) ~ + (~~~ ) . (2H-l6)
Z
U 

Ii

The terrn~ c and C of Eqs. 211-15 and 211-1 takc into account the effect
n n

of boundary conditions in addition to errors in the WKB solution to the

prob l em at hand . If the problem at hand involves a SVP whose exac t

solution is known (a parabol ic prof i le , for example) , then the factorc

e and C may be determined exactly. The principal topic of this paper ,

the Langer solu t ion discussed in Chap ter IV , provides approxima tion

formulae for e and cn fl

Now , in the same way that Eq. 2G-20 followed from Eq. 2G-14,

when the derivative of Eq. 2H-l6 with respect to k~ is taken and the
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resulting equation solved for (dkn/dn
)
~~~ 

one ob tains

2 1r [) ( a  , z ;u/k )

A (w ) -~~~—- = 2 
U L ‘~ . (2H-17)n Ak it + A c ( o )

Sim ilarly , the dcr iv~.tivc of the phase diffcrcnce with respect to wave-

number , w hich defines a distance L . is given by

- 
~~(z ) )  L ( z , z ;w)

= 
~

(z
~~

z;w/ k
~
) + ~j— (e~ (z~~w) - e ( z ,w~) 

. (211 18)

Then , substituting Eqs . 211-17 and 211-18 into Eq. 211-9 (and its equivalents),

one obta ins the mode reinforcemen t equa tion

2Mri i~(z  ,z ;w/k )
r = 

+
U

A6
L

(w) ~ + ~L ( z ,z ;w) + 3L ( z
u
,z
~~

w)

M = 0, 1 , 2, . -
cx = ± 1

8 = O or 2 . (2H-l9)

The interpretation of Eq. 211-19 is straightforward , that is, the

important modes in the propagation of sound from a source to a rece iver

are those whose phase velocities are close to the turning point velocities

of ray paths which also connect the source and receiver . The contribution

from other modes is relatively unimportant . The interpretation of the

exact Eq. 211-19 is identical to that of Eq. 211-14 if Eq. 2H-l9 is in-

terpreted as defining frequency dependent “raypaths.” In the paper by

Tindle and Guthrie (1974], they showed that the maximae (vs depth) of the

sum of only a few terms of the normal mode solution (Eq. 2D-25) did
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trace out “raypaths” as the range at which the sum was computed changed .

The normal modes were exact in the sense that they were obtained by

numerical solution of the depth equation for an experimental SVP.



III. BACKDROUND - EXPERI1VENTS AND MODELS

The purpose of this chapter Ia to offer a survey of ocean

acoustic phenomena and of the analyses and models to explain them. The

measurement of greatest practical interest Is that of propagation loss.

Propagation loss from a source to a receiver is defined as the ratio of

the signal intensity at the receiver to the signal intensity at a

reference distance, say, 1 m, from the source. In terms of the normal

mode solution, Eq. 2D-25, propagation loss is modeled as

PL = 10 log
10 [
~ 

~EH O
(1) 

(k~r) u (z) ~~(zo) 12] . (3-1)

In this paper, we shall not be interested in the computation or

measurement of propagation loss per se. Instead , we shall b~ inter-

ested in the structure of signals from Impulsive sources, and in the

structure of propagation loss versus range cur ves as a function of fre-

quency . Ray theory provides an approximate description of these

details in terms of the quantities of ray cycle distance, 2D , and ray

cycle time , 2T, which were presented in Section Il-C. However, some

recently published measurements (A. Guthrie [l97~ ], Porter 1l97~5]) show

that at frequencies less than, say, 100 Hz, quantities such as signal

travel time are frequency dependent, rather than frequency independent

as predicted by ray theory or the WI~ solution (see Sections Il-C and

II-G). The formulae to be derived ~n Section IV-C of this work will

give normal mode theory quantities D~ and T~ which differ from the ray

48
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theory quantities at low frequencies, but approach them at high

frequencies. These will be applied in Chapter V to compute group

velocities and mode cycle distances for representative SVP ’s.

The basic characteristics of deep ocean acoustic propagation

were originally discovered in experiments using explosive sources;

these were reported by Ewing and Worzel 11948] . The greatest interest

during the period following was in the SOFAR (Sound Fixing and Ranging)

propagation situat ion, whereby the source and receiver are both at the

depth z of minimum velocity. The SOFAR signal at a range of several

hundred miles from an explosive source (of duration of a few xnsec or

less) is of duration of, say, 2 to 10 sec; the arrival consists of a

series of impulses perhaps 100 msec apart which increase in amplitude

until the end of the signal when, abruptly, there is quiet. The final

part of the arrivals, the crescendo , travels at the speed of sound at

the axis. That is, the earliest arrivals have traveled away from the

axis while the strongest portion traveled directly down the channel.

Hirsch and Carter 11965] analyzed the ray quantities for the SVP

modeled by

-12 2/ i b \c (z)  = c ~1-a z-z~ ~ 
. ~3-2

Some of the prof iles of this model are shown in Fig. 5-1.

Hirsch showed (using analytical forms for 1) and ~ ) that only for pro-

files SUCh that b<2 did the slowest arrival travel along the axis; that

is, where the SOFAR signal shape is observed, the SVP must be “sharper”
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c
0 

c (z )
-1/: _ _ _ _

+1/a — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
FIGURE 3-1

HIRSCH PROFILES (Eq. 3-2)

The number l abeling each curve
is the parameter b of Eq. 3-2.
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t han that repre sented by a parabola. Propagation to ranges up to

14000 rim across the At lantic , Pac ific , Arctic , and Indian Oceans has

been reported (Urick [i96~ ) , 11966]; Kibblewhite [1965], [19714-]).

Models of the SOFAR signal structure using norma l mode theory have been

published by Hirsh 11965], using a parabolic f i t  to the SVP, by

Normandy and Uberall [1975), who used an Epstein profile, and

K. M. Guthrie [19714b], using a numerical solution for experimental

profiles.

In the SOFAR configuration , wi th  both source and receiver at

z on the SVP axis , the received signal is dominated by refracted

arrivals; that is , ener&y which was not refle cted from the surface or

bottom . However , when the source anc~t/or the receiver are not close to

the axi s , those mode s or rays which have TP velocities less than the

sound velocity at the source or receiver are not significant to the

propagation between that source and receiver. This effect is illustra-

ted by the ray diagrams of Fig. 3-2. With the shallow source and, say,

a receiver at the same depth, Fig. 3-2b shows the field at the receiver

depth to be separated into relatively narrow bands of high intensity,

known as the convergence zones , and the region between them where there

appear no rays, called the shadow zones. Depending upon the reflec-

tivity of the bottom, and upon the range from source to receiver, there

may be signals propagat ing into the shadow zones which have reflected

from the bottom ; however, in thi s work , the contribution of bottom

re flected components is not considered. The convergence zone phenome-

non is apparent in both theoretical and experimental plot s of propaga-

tion losB versus range ( see , for example , A. Guthrie [1974]) as a
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scalloped modulation of the propagation loss curve which otherwi se is

decaying with range. The period of the modulation depends upon the SVP

as well as upon detaIls of’ the source and receiver geometry, but is

nominally 60 km to 65 km. The amplitude of’ the modulation, or the

difference between adjacent maxiinae and minimae, also depends upon the

situation (and upon the experimental dynamic range), but may be 10 d.B

or more .

The convergence zone phenomenon is predicted by both ray

theory and normal mode theory. However, as discussed in Section Il-H,

the spacing of the convergence zont~s is independent of frequency from

the ray point of view (or in the wi~ approximation), while in normal

mode theory, the spacing depends upon frequency. In a recent paper,

A. Guthrie [1974] presented propagation loss from shallow ( 150 m or

less) continuous tone sources at frequencies of 114- Hz and 111 Hz in the

Atlantic. The convergence zone spacing was approximately 62 ion at the

lower frequency and 6~ ion at the higher. Computations using the eigen-

values for the mode solutions for an approximate fit to the SVP (using

a bilinear c 2(z) profile) gave spacings near to these; the 5% spread

was predicted.

As pert of his dissertation, K. M. Guthrie [19714-a] computed,

using n~~er1ca1 teclrdques, wavenumbers and normal mode funct ions for a

few representative SVP ’s. He then computed Ak~(w) and obtained the

mode inter ference spacing, or cycle distance , A~ of Eq. 2H-17, and

plotted A~ versus “ray angle” (Arc cos(c(z0)/c~ (w)) )  for di fferent fre-

quencies. He showed that , depending upon details of the SVP, the mode

cycle di stance can vary by 5% or more (2 km to 5 Ion out of 60 ion) with
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frequency at those phase velocities which are approximately equal to the

sound velocity at the sur fa ce, c(0).

Examples of the envelopes of signals received from explosive

sources are shown in Fig. 5-5. The tine-pressure waveforms of such

signals may be analyzed to determine the travel time of the individual

arrivals, and to determine the spreading of the arrivals caused by

slightly different travel velocities of different frequency components.

There are several reports of detailed analysis of the arrival time s of

such signals. These show an agreement between predictions from ray

theory and measurements which indicate that , in spite of the variability

of the ocean environment , detailed phenomena predicted by ray theory

may be observed.

Porter [197~] has analyzed a series of signals obtained in

the ~~diterranean at ranges out to 600 Ian ; both the source and receiver

were near the axis. Each signal consisted of a series of 14- to 5

arrivals spaced 200 msec to 500 msec apart . The measured travel times

of arrivals, relative to the slowest ( axial) arrival , were within

50 msec of the predictions of ray theory using only an approximate fV..

to the 5ff (bilinear form for c(z)).

Fitzgerald [1974] analyzed the multiple arrivals from

explosive sources in the Atlantic. He showed that the arrival structw-e

was in accordance with the predictions of ray theory. Also, the evolu-

tion of the signal structure with changing range out to 2000 ion formed

a regular pattern , showing that the ocean acoustical parameters were

reasonably stable during the experiment . The time of signal travel
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10 sec
NE PACIFIC

18 in SOURCE , 3925 m RECEIVER
185 km SOURCE TO RECEIVER RANGE

~~ T ~~ - -
lO sec

NE ATLAN TiC
91 m SOURCE, 2000 m RECEIVER
780 km SOURCE TO RECEIVER RANGE

FIGURE 3-3
EXAMPLES OF ENVELOPES OF SIGNALS FROM EXPLOSIVE SOURCES

In both signals, the arrivals later than approxImately 2 sec after
the initial arrival have reflected from the bottom. Th. signal at
the top has an unusual amount of bottom reflected energy .
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from detonation at long range of the ~arl~est arrival of signals was

studied by Mitchell and Hampton 11975). We compared the speed of the

earliest detectable arrival (along the time minimizing ray path) from

source to receivers at different ranges, and showed that the signal

speed has a perIodic structure. The signal travel time s were the by-

product of propagation loss measurements in which explosive sources

were used. Signal arrivals were decided by an automatic computer algo-

rithm, using a threshold based upon the background noise level. Only

the time of the earliest detectable arrival was measured.

A typical situation is shown in Fig. ~-4. The sound veloc ity

profi le is from the Northeast Pacific during summertime . The two

earliest distinguishable rays from the sources at 91 m depth to a

deep receiver at the different ranges is shown along with the travel

time and corresponding signal velocity along each ray. Between 85 nm

and 5Q rim, the leading path has become deeper and the signal speed

increases because of the trave l in the higher velocity portion of the

water column . Then , at 93 nm , there is no ray path which does not

reflect from the bottom . Because of the steeper angles involved , the

signal speed suddenly drops 18 m/sec within 1 nm. The most dramatic

jumps in signal speed occur when an Increase with range causes the path

of the earliest arrival to strike the bottom.

Several features are Illustrated by Fig. 5-5, which shows the

ray theory signal speed versus range for the geometry and SVP of

Fig. 3-~4. The number of deep turning points , direction , and type of

path (bottom reflected or not ) are indicated to help understand the
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SPEED-
i~so 16000

1000

x

E 2000 

~~~~ 
85 nm

~ 3000 1469.4 rn/ sec RANGE
‘U0

4000

105 7 sic ~5000
1490.5 rn/s.c\,~

0

1000

E 2000 

~~~ sec 92 nm

~ 3000 1475.9 m/SCt RMIGE
0

4000

114.1 sec.5000 
1494.6 rn/sec

0

1000

E 2000 
sec 93 nrn

3000 1476.3 rn/s. c RANGE
‘U0

4000

117.0 sec5000 1472.8 rn/sec

0 20 40 60 80 100
RANGE - nm

FIGURE 3-4
EI GENRAY PATHS , TRAVEL TIMES , AND SIGNAL SPEEDS

FOR FIRST TWO DETECTABLE ARRIVALS
NE PACIFIC PROFILE

91 m SOURCE
4055 rn RECEIVER
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changes. The most obvious feature is th~ ~~ . rtr~ t~~~r f  t h -  plot In to

arc s along which the signal s~~’. - - i  generally in cr -as ’~s with range, and

then suddenly decreases; additionally, w~thin ea~ h ‘irc there are depar-

tures from a smooth curve. The presence and pr~~inence of such features

depend upon the source and receiver  geor~e ~‘; as well as the SVP. The

third arc, for example , starts at about 94 nm , the f rst arrival

reflecting three times from the bottom. As range ihcreases , the

leading ray strikes the bottom at smaller angi~s, and speed increases

at approximately 0.8 rn/sec per nautical milL . At about 103 nm , the

leading ray is refracted at the lower TP and the speed show s a ju mp,

and then increases at a slightly lower rate. At about 109 nm , the 3 TP

ray does not reach the receiver; there is a small decrease with speed

as the 4 PP ray strikes the bottom, and the speed drops.

Signal speed measurements with th~ sam e source-receiver

geometry used to compute the signal speeds of Fig. ‘-5 ,  for which the

SVP of that figure is representative, are shown in FIg. 3-6. There is

approximately one point per nautical mile in Fig. 3- . In spite of the

changes and irregularities caused by variations of the actual environ-

ment, some of the features of Fig. 3-5 ~r’~iicted on the basis of an

ideal ocean are obvious, and evidence ot’ all are liscernible . Most

obviously, the plot is broken into a series of arcs spaced approximately

30 rim apart. At shorter ranges, the jumps are approximately 15 rn/sec

to 20 m/sec, decreasing to 5 or 6 m/sec at the greatest ranges. On

some of the arcs , e.g., near 170 nm , there are discontinuitles such as

those predicted for the change from a bottom reflected to a bottom

retracted first arrival. Also, the bunching of the data, such as
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occurs near 215 rim, is due to a slight decrease in signal speed wIth

increasing range . This behavior was predi cted for a change in number

of lower turning points, which Is from 6 to 7 at 215 run. ~~asurements

in the North Atlantic , with a SVP different from that of Fig. 3-5,

showed a similar agreement between the features of the signal speed pre-

dicted by ray theory and seen in the measurements.

This investigation pointed out two interesting features,

beyond the numerical comparison of the computed and measured signal

speeds. First, the nature of the signal speed versus range curve is

predicted to be strongly influenced by the nature of the SVP, and. the

measurements con f i rm  this. Second, and more important, the environment

during these experiments was stable enough that detailed features of

the signal speed versus range curve predicted by ray theory may actually

be observed experimentally .

Figure 3-3 showed envelopes of received waveforms ; more detail

is shown by the waveforms of Figs. 3-7 and 3-8. In the source waveforms

the pulses following the first shock pulse are the “bubble pulses ” :

acoustic energy radiated from the oscillating globe of gas formed by

the explosion. The amplitudes and spacings of the bubble pulses depend

sensitively upon the size of the explosive charge and upon the depth of

the detonation (Cole [1948), and Mitchell and Bedford [1975]).

The spreading of the arrivals of Figs . 3-7 and 3-8 is typical

of such signals . This spreading Is due to two factors , in addition to

the spread of the bubble pulses of the source. First , there are several

ray paths along which the signal may travel to constitute each arrival,
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and the travel times along the different paths will differ slightly.

This spread of ray path travel time for the arrivals of Fig. 3-7 is

shown. Second, ray theory is valid only at high enough frequencies; at

low frequenc ies, even signal travel time Is frequency dependent. The

observed spread in the arrivals of Figs. 3-7 and 5-8 Is greater than can

be accounted for by the bubble pulse spacing and ray path differences.

Porter [1973) observed that, In signals received in the

MedIterranean, individual arrivals were spread approximately 100 to

150 msec while the source bubble pulse characteristic and multiple ray

arrivals together could account for only one-half of this spreading.

At the ranges involved, 200 to 400 1cm, a 50 msec difference in travel

time corresponded to approximately 0.5 rn/sec spread in signal speed.

Only the arrivals which reflected from neither the surface nor the

bottom were analyzed. In this region, there is a large gradient in

c ( z )  above the depth z
0. Porter presented an analysis, based upon a

bilinear model for c~~(z), to explain the observed spreading. His

conclusion was that the spreading was caused by the closeness of the

ray turning point depths to the SVP minimum and did not consider

any effect of the surface above the upper PP’s.

In his numerical investigat ions, K. M. Guthrie [1974a] also

computed, for several SVP’s, group velocity versus ray angle

(Arc cos!c(z )/c (w)J) at different frequencies. He found that , for

some prof iles, there could be 1 or 2 rn/sec difference between the signal

speeds at different frequencies along rays which a lmost grazed the sur-

face . The magnitude of the effect depended upon the actual SVP but ,

again , the lowest frequencies (less than 100 Hz) traveled most slowly.



IV. LANGER’S SOLtJPION AND EXTENSIONS

In a series of papers published during the 1930 ’s,

Rudolph Langer [1931), [1935], [1937) presented an asymptotic solution

to what in this paper is called the depth equation, Eq. 2E-l. Langer ’s

solution is formally analogous to the WKB solution, but is expressed

in terms of the Airy functions Ai (-) and Bi ( - ) ,  which are solutions

to Stokes ’ equation. The Langer solution is an asymptotic one,

approaching the exact solution as the parameter ~~~~~~ However, if

the profile function q~~(z )  has a linear or bilinear form, the Langer

solution is exact to the extent that the eigenvalues k~ may be deter-

mined ( just as the WKB solution Is exact if %( z )  is a constant

between the boundaries). The asymptotic solutions of differential

equations have been discussed by Cherry [1954], Erdelyi (1953), and

Olver (1954a] and applied, for example, by Olver [l954b1 to analyze

Bessel functions . Asymptotic solutions analogous to the WKB and

Langer solutions are discussed by Dingle [1956). Surprisingly, the

Langer solution does not seem to have been applied to ocean acoustics,

though it is occasionally mentioned. in the literature (e.g., Weinberg

(1975]).

There are two features which make the Langer solution

especially attractive for application to ocean acoustics problems.

First, in the deep ocean, at depths below, say, 1500 m, the SVP is

66
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dominated by the effects of increacing hydrostatic pressure (cee

section li-i), so that the profile function q~ (z) very nearly has a

linear form in that region. Therefore , a solution in terms of the

Airy functions is a natural one for the lower part of the SVP. Second,

and more importantly, the Langer solution (in contrast to the WKB

solution) provides a uniform representation at , and on both sides of ,

the turning points of each mode . This is more than merely a convenient

feature, because it allows one to determine solutions which satisfy

the boundary conditions even when the boundaries are near to the

turning points . As discussed in Chapter III, there is experimental

evidence that the modes which h ive phase velocities nearly equal to

the sound velocity at a boundary are the modes which have group veloci-

ties and mode cycle distances noticeably different (at low frequencies)

from the ray theory predictions . An additional feature, which is

shown in this work , is that by extending the Langer solution to take

into account the boundary conditions, the turning point depths, and

details of the SVP, one obtains an eigertvalue equation of the same

form as Eq. 211-16,

q l/2 dz (n+l/2)~ + € (w) -

From this elgenvalue equation, expressions for the normal mode

quantities of group velocity and mode cycle distance may be derived.

In section IV-A, the Langer solution, Eq. 4A-17, is derived

by substituting Eq. 4A-3 into the depth equation and analyzing the
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resulting differential equations . The solution is derived by, for

example, Olver [l954a], by transforming the independent variable of

the depth equation. In section IV-D, an assumption which is made to

obtain the Langer solution is analyzed.

In section IV-B, the solution is extended by providing

eigenvalue equations from which the k~ may be determined. This is

done in a way intended to result in an equation of the form of Eq. 2H-lt

Eq. ~!-l5 (above). The boundary conL~~ions and the details of the

SVP are taken into account via functions whose arguments are the

integrals of the square root of the profile function q~(z) from a TP

to either a boundary or to the depth of minimum sound velocity, z0.

In section IV-C, the normal mode quantities of group

velocity, 
~ri~ 

and mode cycle distance, A~, are derived. It is shown

that these may be expressed as
A A
A = 2 Dn n

and

=

The term is shown to equal the ray theory cycle distance ~ ( along

a ray whose turning point velocity is w/k~ ) plus an additional dis-

tence, A~(<n) . The distance A~(w) arises from the fact that the

turning points are within a finite distance of the boundaries

and the velocity minimum, z0. Similarly, the term is shown to

equal the ray theory cycle time T plus a time ¶~ ( w) . Both ~~ w) and

Tjw) vanish at high frequencies and when the TP’s are far frcen the

boundaries end the velocity minimum.
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IV-A DEVELOPMENT OF THE SOLUTION

The initial task is to obtain a solution to the depth equation ,

2
+ q(z)  u = 0 . (l fA-l)

In Eq. 4A-1, the subscripts ILenoting mode order have been dropped for

convenience . In analogy with Eq. 2E-7, where u(z) is expressed in

terms of amplitude and phase factors, let the solution to Eq. 11A-l

be expressed in terms of an amplitude factor W(z) and combination of

Airy functions , (L(~ ), of argument y(z).

u(z) = W(z) (L(y(z)) . (4A-2)

The functions W ( z )  and 7(z) are to be chosen so that Eq. 4A-2 is a

solution of Eq. 4A-l. The function 6.(y) is defined by

(1(y) CZAI (-7) + ~Bi(-y) ; (~ A-3 )

the constants a and ~ are a’~-bitrary until boundary conditions are

specified. Properties of the Airy functions Ai(x)  and 81(x) which are

relevant to this paper are discussed in the Appendix; these functions

are discussed in more detail by Antosiewicz 11970], Erdelyi [1956),

and Miller ( 1946) . The sign of V in Eq. 4A-3 is chosen so that the

function 
~

(y )  is an oscillating function for positive y .

The second derivative of Eq. 4A-2 is

4~~~a(v) + (2~~~~+ w A 7)a ( v) - wi(~Z) a .(y) . (4A-4)
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Here , dots denote the derivative of a function with respect to its

argument . In Eq. 1~A-i i , the differential equation (Eq. A-i) which is

satisfied by the Ai ry functions has been used to eliminate the term in

Wi). When Eqs . 4A-2 and ~A-~ are substituted into Eq. ~A-l and

the factors 0r a ( 7) and (1(y) are collected, we obtain

(L (v ) [- w7(~Z ) +  q(z) w 
~~~~~~~~~~~~~ 

+ ~L(y) [2~~~~E+ 
w~~~ J =  0 (~A-5)

This equation will be satisfied. if the factors of a ( v) and a ( v) can be

individually equated to zero and the resulting equations solved. Within

the errors introduced by the approximation of Eq. 14A-1l , this may be

done -

First , setting the factor of Z (y )  to zero gives

(li.A-6)

which may be rewritten as

2 f tn(W) = - In (
~~) 

. (4A-7)

Both sides of Eq. 14A-7 are total derivatives ; if both sides are

integrated and exponentiated, we get

dy -1/2
W = constant )< . (4A-8)

This is an exact formula for W ( z )  if an exact expression for y ( z )  is

available .
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Next, setting the factor of a(~
) to zero gives

(
d7) 

(
~(Z)  +

~
‘
~~

) - (4A-9)

If the factor W”/W on the RHS of Eq. 4A-9 were zero, the equation

could be integrated to give an expression for 7(z). Therefore, it seems

profitable to consider the function 9 defined by

~ (~~
)
~ 

= q(z) - 
( 4A-lO)

and to regard 9 as an approximation for y,

9 7 . (4A-1l)

The conditions upon the profile functions for which the approximation

is good. are discussed in Section IV-D. Note, though, that the approxi-

mation is a good one near enough to a TP, since it follows from

Eq. ~4A-9 that d
2
W/dz

2
=O at a TP where q ( z )  and y ( z )  are both zero.

Equation ii.A-l0 may be rewritten as

[a.... (~ 
~3/2)]~ = ( )  , (1+A-l2)

fr~~ which the solution for 9(z) follows.

9(z) = 

(

~~fz ql/2 (z’) dz~~~~ -

In order that the solutions u(z) oscillate whsre q(s) is

positive and be damped elsewhere, it is necessary that 9(z) be zero at

at TP and have the seine sign as q(z). Accordingly, in the 2TP case,

we may define an argument 9(z) about each turning point

- —- --



72
4

AU \y (zj = (~ f ~ 
q
]/2~~~~ dz t )’~

Z
U

(!~A_l4)

/ fZ L
9~(z) 

3 1/2
(

\

C J~
= q (z’) dz’)

Also, the a~nplitude modulation, W(z), will be approximated as

A 1/2

= constant x ~~ (~A-l7)dz

It follows from Eq. 1
~A-i3 that W may be written as:

W(z) = eonstant x . (4A-l6)
7~z,

If the square root of q(z) is defined as

1/2 1/2 i~t/2 o ~ z ~q = Iq I
1/2 1/2

q = q  Z
U~~~~

Z < Z
L (~A-l7)

1/2 1/2 i~/2q = e Z
L 

-: Z Z
b

AU ALthen the signs of 7 and 7 will  be

AUy (z)<O O < z < z
U

AU AL7 (z) > 0 and y (z) > 0 < z < Z
L 

(1~A-i8)

7
~~

zj <0 Z
L

< Z < z b
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The approximate :;ol u~ u~ ~( z) ~ then j e f i  ned on t.-; overlapping

intervals as

(a) ~~(z) ~~~( 7 )  cL (~~~( z ) )  0 z 
~

L 
(4A-l9)

(b) ii (z) W (z) L-(~~ (Z)) z~ z

In application , the soiu~ ion nevelo~~d about the upper TP, Eq. ~A-l9(a),

will be used from zero depth U’ -wn to the dopth of velocity minimum , z ,

and the s- -lution deveiopecl about the l ower ‘IP wi Ll be used below the

velocity minimum . In Section frB, the elgenval ue equations are obtained

by matching Eq. l+A-1’)(~~) and Eq. 4A-19(b) at z0.

Finally, the combination of Airy functions used in Eq. 1
~A-l9

needs to be m~t- ie spe2ific. To lu this , rewrite Eq. 14A— 19 as

(a) 
~~~~~ 11

(

~~~~~

) N
U H~J [Ai (~~~U) 

+

, (1.~A-2o)
A L - 1/ 2

(b) 
~~~~~ 

N
n
L _

~LL { Ai (_9~~) + ~LBi(_~~L)J
where the tern~ ~~~~~~~ tra N t’ are chosez~ to ensure that tho normal mode

~urictions are normalized.

In generat, the boundary quantities depend upon the SVP, the

‘I’~’ i.~~ ; • b : , ~~~~~ frequency. The boundar~’ c~nndit~on at the surface is

• ‘ ~~ re::~~ru ‘it n~~;h there ; this i~ accomplished by spec’ifying by

= _Ai (_~0
1J
(O))/Bi (_2~

iJ
(0)) (I~A-2l)
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In this work, we do not consider the effects of the ocean bottom.

However, if the bottom is described by an impedance condition (Bucker

(1970]),

f. u (z) = K u (z) , 
(4A-22)

where K depends upon the properties of the bottom, then from Eq. 2k-20

it follows that ~L is given by

L 
- 

p~i( ,L( z ) )  - ~L(~~~) Ai(-~~(z b )) 
(4A-23)

- - 
K Bi(~9L(Z b)) - ~Tl( ) 

~~~~~~~~~~

To apply the Langer solution, it is necessary to compute the

integrals of Eq. 4A-l3, with ql/2 determined by the problem at hand.

The same computations must be made to apply the WKB solution, and

similar integrals arise in ray theory. Therefore, to apply the Langer

solution, only the capability to compute the functions Ai(-) and Bi(-)

is needed beyond what is needed to apply the WKB solution.
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TV-B EIGE~~PJJJJE E~UATI0N

To c~’mp iete the anal ysis , we must require that the solutions

developed about different turning points, Eq. 2A-l9, match properly

at some depth . Above that depth, a
U
wiii be used to approximate

u (z), while below that depth is used. In the next section it

will be shown that U-c approximation errors are greatest at the depths

where the change in the slope of c(z) is greatest. Thus, it is proper

to match the two solutions at the depth of minimum velocity, z , where

the greatest change in dc/dz normally occurs , and not continue the

solution across depth z
0. To match the sulutions , since it is assumed

that the density in the medium is a continuous function of depth, it

is required that the pressure and the normal derivative of the pressure

be continuous . Thus,

A U
A ( Z ) ~~~~U (7  z zn n o

A L
u (z) ~~u ( z )  : ‘n n U

(4B-l)
A U1 \ A 1,, 

~ /
U ~~Z ) = U ~~~‘fl 0 0 0

U
A
U

T
J

/ 1 7  ~~ L/17 at ( r ’l -

We will find it corr~erient to r-~~1ace l;h~ : ;e - r~ or El. ~4B—l by the

condition :

u
d G  /dz du7dzn 

_______ 
(
4B-2)

A U  A L
U Un n
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If only the asymptotic form of the phase of the Airy functions

(Eq . A-ll) were taken into ac-~ount to match the solutions, then the

Bohr-Sonuerfeld equation would be obtained. In this section , the

exact form of the Airy functions is used. However, in this work, the

phase of these functions is expressed in terms of their asymptotic

form plus the function ~( ) ,  defined, below. Thus, we obtain an eigen-

value equation which is a generalized form of the Bohr-Soninerfeld

eigenvalue equation. In the next section, this generalized. eigenvalue

equation will be used, to compute group velocity and mode interference

wavelength equations -

The solutions and ~~L are defined in Eqs. 4A-20; however ,

it is convenient for the present task to rewrite the solutions in terms

of amplitude and. phase factors ,

A U  
= ~(z) M(9

U
) cos (e(9~”) + U) N U/cos(a

U
)

(4B-3)

A L  = ~( z )  M( 9~”) cos (e(9
L ) + L) N L/cos(~~ ) -

No approximation is involved in going from Eq. 1
~A-20 to Eq. 4B-3; the

amplitude and phase functions are defined by

M( 7) = (Ai
2 _7 + Bi2(_ 7) ) ~~

2

(4B-4)

8(y) = arctan(Bi(_’t)/Ai(-7))

Properties of these amplitude and phase factors are discussed in the

appendix . The phase shifts, ~
Tj 
and a~ , which depend upon boundary

conditions, are
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U
= arotarn,~

L (4B-5)
0 — arctan(~~~ )

Note that the function 0(y) is not limited to the principal value

interval ( _ ~/2 ,~ /2 ) .  Also , at this point , it is assumed that the TP’ s

are below the surface and above the bottom so that the arguments of

the Airy functions at the boundaries are positn’e (y (0) negative ,

for example) so that an-i at’ are small. If the mode reflects from

the boundary, the phase there may be large and the analysis needs to

be modified -~s is done at Eqs . 14B-l9 throu~,h ~4B-2~
4, below .

Next , Eq. 1
~B-6

- ~ I2
b (y )  ir/~ - 2/3 r” - 0 ( y )

- 

(4B-6)

B ( - y )  --* 0

defines the function 
~
(-) ts t,~,— ijffcrcr, :~ between the exact e~~ ressions

for 0(y), Eq. 14B-~4, and the asymptotic form , Eq. A-li. A plot of this

p function is given in Fig. 4B-l .

In computing the derivatives of Eqs . 14B- 2 , it will be assumed

that the function.: det’-rmining the magnitudes , that is, ~(z) and M(9~ ) ,

are slowly varying with respect to the vari ttions of the cosine terms,

as expressed by

~~ <c~ ~— o ( y ) ~ (14B 7)

and

I~~I << IM f. ~
(
~) I 

(4B-8)
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These approximations are discussed more thoroughly in Section 4D.

Howeve r, note that Eqs. 14B-7 and 1iC-~3 may be rewritten as

I~
-
~ 

tn~~ <‘ I~ 
0 ( y ) ~ (4B-9)dz

and

t ~1
IcF  

inM~ ~< J~— 0 ( y ) ~ (4B-lo)

both of which may be reasonab[y expected to be satisfied in typical

ocean acoustics problems .

If one assumes that Eqs. 4B-7 and 14B-8 hold, the derivatives

of the normal mode [unct i  ons of E15 . I4T~- ‘~ are

d U A

(

~~~~~~~~
(

~~~ U
) fl . 

( (A  
U U’ d 0(9 U)— u  = -W ~i n O y  )÷~~~ jdz n n U n ‘dz ncos(~

N (4B—ll)
d L Q(z)M(90

1
~) 

ri 
sin(o(9 L) + 0L) 

~~

__ ~~~(A  
U
) -dZ 0 

- 
T I A  (iZ fl( t ~~ j  ( - :

Then, substitute E’j . ~B-~ and Eq. 14B-1l into Eq. ~B- 2 to obtain

A Ii U) d u L’ d 0(y L)tari(9(7 ) 4 a ~— 0(’, ) tan(9(9
L) + 

~ 
) 

~~ ~ (4~-i2)

Now, the derivat i ve ii  l h :  pha.:-~ funct:i’ ii & 1or  the solution from the

upper TP is given by, from Eq. A-]2 and Eq. tiA-8,

d9 U
____ n _ 1

dz n 1 d~~~ (9 U
) 

dz 
- 

,~ 2(9 U
) p2(Z) 

(4B-l3)
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and similarly for the derivative of the phase of the solution from the

lower TP. Since the magnitudes of’ the solutions must match at z=z
0,

as expressed by Eq. 14B-la, the derivatives of the phase functions 9

are opposites,

~— 9(9 U) = - ~~ _. 9(9 L
) at z -~ z • (~ B-l!~)

Thus, the two solutions are properl y matched if

tan (9(9 U ) + 0U) = _tan(9(9T
~) + ~L) . 

(‘~B-15)

Equation 4B-17 is satisfied if

9(9
U
) + 0

U 
= 0(~~

L
) - 0L - as (!~B_l6)

n = 0 , l , 2,

Now , use the definition of 9, Eq. ~4A-l3, and substitute Eq. ~B-6 into

Eq. 14B-16 to obtain

- .i~:° 
~~
l/2d - 8(9

U~~~~
) + ~U =

(1~B—l7)

- 
~ 

~fZ L 
q l/2 dz + 5(9

L~~~~) - 0
L 

- nr~

Finally, combine the two integrals and rearrange terms in Eq. 14B-17

to obtain the eigenvalue equation,

~~l/2 dz = (n + 
~) 

~ 
- 8(9~~~~~~)) 

+ ~U 

(~B-18)

- o(9~~~~) +
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If the mode reflects from the surface (k
n
< a/c(0)), the

eigenvalue analysis must be modified slightly. As discussed in the

next section, it is no longer possible to have 9 U(~~) o  at z=O when

reflection occurs, so we must have

= g + .�. fz q l/2 
dz)

(I~B-19)

(g0 > o )

The term g0 accounts for the effects introduced by the fact that the

profile function is not zero at the lower limit of the integral of

Eq. lIB-19. In the discussion up to now, with the upper TP beneath

the surface, the angle aU has been small ( less than x/6) and it has

been sufficient to define ~
U in terms of an inverse tangent, Eq. 14C..5.

When reflection occurs , the function as a function of , say, fre-

quency, oscillates and we must take into account the proper branch of

This is done by using the function 9(y), defined by Eq. ~‘B-~, so

that Eq. 14A-19 may be rewritten as

= _tan(9(9~’(O)) 
~ (liB-20)

so that

= _6(y n
U (O)) . (~B—21)

Pinally, express in terms of the function ~(~ ) as

~~ ~~~~~~~~ 
+ g + 8(9n~

(0)) (liB-22)

-~ — •  ~~ r - . . - .



Then, substitute Eqs . 4B-19 and 4B-22 into Eq. ~B-l7, to get

J L  ~~l/2 dz = (n+l/~~~ - ~~~~
U~~~~
) 

+

A L (kB—23)
- b (7 

(~)) + a
L

If we consider only the (n+l/4)n term to be on the RHS of this equation ,

it is the same as the Bohr-Sozmnerfeld equation for the case of a mode

reflecting from the surface (Schiff [1955], Tolstoy and Clay [1965)).

Equations ~4B-l8 and. 14B-23 both have the form

I L  2 1/2

J~, ~~ 
- k 2) ~z +1/2~~ + ~~~~ (14B-2~)

which is the same as Eq. 2H-15, which was discussed previously. The

function € is

= - 5(,
U~~~)+ 5

L 
- §(9

L~~~)) (i 1B-2 5(a))

if > 0, and

= ö(9n~~0)) - a
L - - , (~ B-25(b))

if the mode reflects from the surface .

Thus, the eigenvalue equation which is obtained by extending

the Langer solution to account for the effects of boundaries and of

the actual SVP contains important terms in addition to those of’ the

Bobr-So~~erfe1d equation . In Section IV-C , the mode quantities of
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group velocity and mode interference wavelength will be computed. Note

from Eq. ~B-25 that the relative effects of the boundaries and details

of the SVP upon the mode quantities may he evaluated individually.
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IV-C NORMAL MODE Q.UANTITIES

The normal inodc quantities of intorest are the group velocity

and mode interference wavelength. To obtain these quantities in the

Langer approximation, one begins by taking derivatives of the eigen-

value equation , Eq. ~B-l8 or Eq. ~4B-23 . At first, the derivatives of

the factors in Eq. ~B-2~ which account for boundary conditions

and details of the SVP in Eq. ~lB-l8 would seem to yield complicated

expressions. However, the simple form of the derivative of inverse

t angent function, together with the Wronskian of the Airy functions,

give expressions for the mode quantities which are amenable to physical

interpretation.

To obtain the group velocity, begin with Eq. ~B-21~ and take

the derivatives of both sides with respect to frequency, holding the

mode order constant, to obtain

Z
L cik 2 - 1/ 2

d E / d i )  f (~ 
- k - k~

2
~ clz . ( I iC-l)

Since the integrand vanishes at 4;he end points , there is no contribution

from variation of the end points z
~ 

and 2L~ 
From Eq . ~3C-l, the group

velocity, 
~~

k JL  
(

2 2 2 )_ l /~ dz

fz
L 

c 2(W
2
,c
2_k

fl

2)_1/2 
dz - d€ /d~ü 

(~c-2)

is obtained.
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Similarly, to obtain the mode interference wavelength, take the

derivative of Eq. ~B-2O with respect to mode order, holding the fre-

quency constant , to obtain

ZL dk 2 -1/2
g + dE /dn = - k 

~~~~~~~ (; - k 2) d.z . (~c-~)

The mode interference wavelength, Ani is then given by

A 2 

2gk JZ
L 

(
~
2
/C
2_k
2) 

‘dz

= dk /dn = 
s + d€ 7dii .

The functions €~(cu) are defined in Eq. 
11’B-25a, which is

repeated here in simplified fashion as

(~ec-5)

Now, the integrals which are in Eq. 14C-2 and Eq. 1
~C-4 define

the ray theory cycle distance and cycle time ( Eqs . 2C-l3) for a ray

having turning point velocity ct=ci~
/k
n~ 

Thus, the mode theory group

velocity and mode interference distance may be rewritten as

= ~~ u,zr~; c~4/ k )  ( LeC ..6)

L T(z
~J
,zL; o~fk) -

and

= 
2nD(zU,

z
L
; C4/kn) 

~~~~~
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Now, the quantity e
~ 

depends upon both k and m, (there is no explicit

dependence upon n ) ,  so that

d€ a€ ~€ dk

(14C.8)

~€ ~€
n -l

and

dE ~3C
fl 11 fl= ~~~~~ — 

~ric—n
(~4c-9)

(3E

= 2~ ~~~ (A (ü ~))~
’-

Thus , by substituting Eqs. IIC-8 and ~C-9 into Eqs. 14c-6 and 4C-7,

we get

A ~
(zU,zL; ~~~~ - 

~~n~~
1c
n

n T(z U, zL ; ~/k~ ) +

and .

A
n
(U)) = 2D(zU,zL; U~

/k
n) - 2~

€
n/~

k
n

The remainder of this section will be concerned with determining the

derivatives of the function and relating these to physical quanti-

ties. The terms which involve the details of the SVP, and ~L and

the boundary term will be treated individually. Also, modes

reflecting from the surface must be treated separately, as discussed

e 

— —
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in the preceding section, ~tnd reflection t rom the bottom will not be

considered.

Effects of Finite Distance between Turning Points and Velocity Minimum

LWe will f irst consider the derivatives of ~ and b

U L . U .neglecting the elf ect of ~ rnd o . The lunction 8 is defined as

arctan
(~~~~

’
~~) + 

2 3/2 
- 

(~c-io)

where

Taking the t~erivative of 
•~U iti~ r’~spect to 0), one obtains

U6 b y

(4c..li)

- (1 + 
Bi

2
(~~~~)\ (~i()~~~ - 

Bi(-7)A1(-7)\ + 1/2 dy

\ A12(-~)/ 
\M (_~ ) Ai

2
(- y) /

which siniplift~ s t~

- (1/2 Ai(-7)~ i(-y) - Ai~-7) Bi( -V) \

\ Ai ( - Y )  + Bi~ (-y) / U)

Using the Wroriskian relat :Hr the Airy functtons Eq. A13) and

using the definition of Eq. ~1~-3, Eq. ~4C- :~ beoome s

i/~ M
2
(7)~ ~~ . (~c-~~)

~~—-Next, the argument y i~
¶ .  

-

— 
z l/’~ 

2/5
— 7 

~(~J ° (~~~fc~~k 9) (~c-i~)
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and. its derivative with respect to ~ is

-1/2
= ~_l/2 J ~ /~2 2\ 

- k __
~ \~~ . (~ic-i5)(-~~~ k~~

) 
(-

~~Z~ \C

Now, the integrals in Eq. l4C-l~ may be expressed in terms of the ray

theory travel times and travel distances D and ~
‘ as

(7) l/2
( 

k dk k \dy
= 

- 

~(zu
,zo; 

_
~
) - ~ ~(z~,z ;  ~ (~4c-16)

Thus, the derivative of with respect to n becomes

d

~~~~

G

~~~~ 

k dk k ‘

T(zu,z0; 
_
~
) - ~ ~~(Z~~,Z ;  

~)) ‘ (~c-17)

where the function G(y) is defined by

G(y) - ]/ ,~ ~
1/2 M2(7)} . (~c-i8)

A plot of this function is shown in Fig. ~C-l. The derivative of

with respect to frequency is given by

d~~ G(9
L(Z )) ( k dii k ~

T(zO,zL; 
_i~) - ~~~ ,z ; ( 14c-19)

o L w J

In a similar fashion, we may obtain the derivatives with

respect to n of the functions and for example, the derivative

of is

d~~ d~~ dy

1/2 
/~~2(~~) )  dy/dn , 

(~c-2o)
=(7 - l

where 7 — ,
U()
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1

10 1 -

K

10
~
5
0

FIGURE 4C-1
THE FUNCT ION G(x) (Eq. 4C-18)

/ 1G(x) • ~1 - 

wx1”2[A1 2(-x) + B12(-x)J
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Then, the derivative Cf y with respect to mode order is given by

diidy h I- 2 L 2 2 2)_l/2 n(rn /c k k~~~j— dz . (~c-2l)

Combining Eqs. 4C-20 and 14C-2 1, and using the definition of

Eq. 14C-l8, one obtains

w~~ ndôU A U(z 
~ ;(zu~

z ;  r ’ ~
= - G(~ ~ (~c-22)

Similarly, the derivative of t.L with recpect to mode order is given by

d~~ )(;~( 
rn 

)
~~n?

IJ~
Z
L
; 
~~ 

. (4c-23)= — (;(1 (z )

Now we may consider the group 7t~l .~city and mode interference

spacing under the assumption that the boundary conditions are unimportant ,

that is, that the TP’ s are very far from the suz-face and bottom so that

we are assuming th~~ ~~=O and ~~~ Substituting Eqs. 14C~l9 into

Eq. ‘~c-6, one obtains the group velocity giv~en by

fl
= , ( 14C ..2b)

T (cn)

A A
where the functio ns D~(rn ) and T~(w) are given by

= 
~(zu,z0; ~

_ ) + G(~~u (z )) i
~(zu~

z ;  .__
,~ (~c-25)

+ G~9~
L (z u)) ~~~~~~~ k /L))

—
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and

T (u) = ~~ (zu,’i~~
; 

~~
_.) 4- G(;

1
~(z )) ~‘(zu

,z ;  
~

— )
(14C-26)

+ G(9~
L(z )) ~ (z ,zL; ~

)

Also , one may zub3titut~ ~ j. ~~~~~~~ inLu Eq.  14C-7 to show that

A (~ )=2 D ( w) .

Equations ~4C-23 through ~C-~~ ‘ t r o  in ~t form which ma .es their

interpretation ctrai ghtforward . The f unctions fl and T are the ray

theory travel distance and trave l times along a ray ~~~~ TP velocity

~~k .  The leading terms of D or T ar~ the distance or the time in

going from th~ upper TP to the I ower TP al ong the ray. The added terms

are the distance or t ime alonp, the ray fro m , for example , the upper

TP to the depth of velocity minimum times the function G(~~
U( z f l .

If the ~VP is symmetric about z , then Eq. 14C-~~ predicts

that the group velocity v de1 rrn ls on ly  u~ on the phase velocity, k / w.

This is so because for a syimnctr:i c prof i l e , ~
(z

~J, zL
; ct )=2u ( z

~ ,z ; c~ )

and T(zJJ, LL ; c~~ 
1 ‘

~~
,z0; ~ ). h owever, l~rl. ~4C-27 predicts that,

even for a symmetric orofile , the mode interference spacing A~ is not

determined solely by the pn .ce velocity. In general, one would expect

partiel cancellation of the ~tdded terms in the numerator and denomi-

nator of Eq. ~eC-23 . That is , the group velocity is very nearly

determined by the phase v e in - i  ~~~~‘ in ar”~rii~ nre with ~-ty theory), as



was seen in Chapter III. However, one can expect a difference between

the mode cycle distance of a low orde r mode at a low frequency and

the cycle distance of a high order mode at a high frequency which have

the same phas e velocity , which is close to c(z 0) .

Bound ary Effects

Analysis of the ter ms (~U and of Eq. 14B-5 proceeds formally

in the same fashion as that of the term s and ô~. In this disserta-

tion , the effects of the bott om are not investigated , and only the

effect of the pr s~ ure release sur face is analyzed. The case where the

upper TP is beneath the sur face , with the boundary interactin g only

with the diffracted field, is considered first . Then, the problem

with reflection from the surface is add ressed. It will be shown

th at only when the phas e velocity is close to the sound velocity at the

surface are the group velocity and mode cycle distance appreciably

different from their ray theory counterp arts .

Conside r the term in Eq. ~eC-5, which arises from the

boundary conditions. For example , from Eq. 11A-2 1 and Eq. ~4B-5, aU is

given by

= -ar ctan ~~~~~~U
(o))/Bi( 9 u(o)) ; (14c-27)

the derivat ive of with respect to frequency is then

- - 
d~~~(O)/~~ (U )  (~c-28)
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For the case consi terod f i rs t , w i t h  the upper TP be l ow the

surface , 9
t1
(0) is given by

~n~~
0) ( 

fZU 1/2 
~~~- 

~J (
~ 

- 2 � )  dz~ . (14c-29)

Since the surface is in the geometrically shadowed region above z ,

the sign of k 
2 
in Eq. ~C-29 is positive . The derivative ofn

Eq. 14C-29 with respect to u of is i~i ven by

I

k
2 r n \  n ~

dy -1/2 ‘~ 2 
- /2

( 

d.ic
( 9

t1
(o))  Jo (~ 

- k - ~~~)d z
. (

~~~~~)

It  is now convenient to defi ne the functions D* and T*, which

have the units ni distance and time , respectively, by

2 2 1/2
~*(z1,zp ; c~

) — J~, 
(c -c~ ) c (z )  dz (~c-3l)

and

I- 
~~2 2 2~~~

/2
~*( z.1,z 2 ; c

~
) = J _.t—y(c —c~ ) dz . ( 14c—32)

1
—

The function fl~ represents th~ distan c~ d d ~tween z 1 and z 9 along a ray

of turning velocity c~ in a SVP e*(z) as sketched in Fig. 1iC_2. The

function ~~* is approximately the travel Lime along the same ray. In

terms of these functions, Eq. 4C-30 becomesI
1/2 / Ic dE Ic~~d~~~ (O) 

= (~~~
U(0)) 

(~*(o~zu ; 
;~

) - J1 ~*(o,zu ; 

~))
(~~~33)
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Then, wi th the fun~ tion F’* r 1’f i  loll by

= ( M2(~~
TJ
(O))(~~~

T;((
) 

i./2~~
I

L I
the derivat:i ye OU n v .ith respect Lo frequency  m~ y be expressed as

k ilk Ic~~~ (~4c -35)dcYU 
= ~~~~u(o))

(
~~(o .  ._

~ ) - -~
._
~2 D*(o,z~1 ; ~!~))

A plot. of the iun~Liur E~* is ~ i ven in Fig. 14C-3. The rapid

deca y of F’* means that , except at low frequencies and with the upper

TP very near the surface , the presence of the surface does not affect
U ..e solutions . The derivative of ~ with respect to mode number may

easily be shown to be given by

(10 — “ U ,  ‘ ‘° l  ~
U ~) ~ I

~~~~~~~~~~~~ ~• . (~c-36)Ii
n

Now, consider the effect of lb’~ u~per boundary upon the mode

r~uantities, a~suxning t,h-~t, the TP’s .rc ‘/~ry far from the axis of the

SVP, so that the function G of ~;q. 14C-i8 is effectively zero. Then,
A .v i s  given byn

~i (w ) 
ri~~~~~~~~~~~~~

) (~c-yr)

a
where D ani T arc given byn n

~
( ~ ) i ~*(o

A
n~ (~c-38)D (~) = D — F*(y ( ,,) , Z

~ r
;

1,
n

and

~~~~~~~ 

- . .
A 

- ) T~’( 
k \

‘ — IT (w  = 
TI U w / (~c-39)n

1)
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10
_i 

-

)Ø 2 L

10~~ t-

0 ~ ~~ 1~

FIGURE 4C-3

THE FUNCTION F*(x) = 1 2 (Eq. 4C-34)
,r(x) / (A1 2(x )  + B 12(x)1

The ordinate scale Is log[log(F*)}
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Now , the added terms on the EMS of Eqs. 4D-)42 and 4D-143 are

largest when the TP is nearest the surface , where a limiting form for

these equations is needed. We will assume that c
2
(z) is linear near

the surface :

-2, 2(O)(1+ ~z)  , ( liC -)4O)C T~Z )  =

so that

1/2 2/3

9
U
(0) (

~ ~\n c(O) / Z 
(1~C-4l)

1/2

~
*(o,zU ; ~~

_
‘

~~~ 2(_!~) ( liC..42)

and

2
~* ( O z ;  

~
) 1/2

Thus , as the TP approaches the surface, ~ 1(u) and T (u) approach the

values :

D (w) = 
~ (zU,z L; 

~
) - (~;~) 3 M

2
(O) 

‘n

~~( w) = ~ (zn, 
z • - (~ \1/3 4 

(lIC ..4~)L ’ i ~~) 2 ~n ~ cs / 3nc(O) M
2
(0)
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To complete the consideration of boundary effects , reflection

from the ocean surface must be taken into account. The modes which

reflect from the surface are those whose phase velocities exceed c(O).

As we have just seen , when the uDper TP is below the surface , the group

velocity 
~ 

and mode spacing are influenced by the presence of the

boundar y only if the TP is near the surface (9n~~
0) small). Similarly,

if there is reflection from the surface , D~ and 
~n 

differ from the ir

r ay theory counterparts only if the phase velocil r is close to (in

terms of A U ( Q ) )  the sound velocity at the surfs~ e , as will be shown.

The situation of surface reflection needs special attention

because of the fact that the function 9
U( z )  has been defined in terms

of an integral from z~ to z; when there is reflection, z~~ O, and we

need to define the function Y U(z) as:

= (
~
. 

~ 
+ 

~ 

1/2 
dz) 

(1~c...)46)

where

g = .
~

( ;u(O)) 3/2 (~~~ )4~ )

To see that it is not sufficient to set g0=O , consider a situat ion

such as indicated by Fig. 14C_ 4, where the phase velocity is sub-

stantially greater than the c(O). Then, near to the surface , the

mode function will be of the form :

u~(z) = sin( q l/2(o) z) . ( 14C -48)
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A A A
(a ) u  (b ) u  (c) u

q (z) ‘I ‘I

-1 0 .1 -G5 0 .0.5 -05 0 .0.50 .  _  _ _

~~~~~~
S

FIGURE 4C-4
MODE FUNCTIONS NEAR THE SURFACE FOR REFLECTION

Left: PROFILE FUNCTION q~(z) for reflecting mode
Right: Comparison of forms of mode functions for q~(0) 1

(a) ~ sin (z) (Eq. 4C-48)

(b) ii,, • A1 (—~) - Ai(O) Bl (—~)/Bi (O) (Eq. 4C—~1)

— (3 z/2) 2’~
3

Cc) u1~ — Ai (-~’) - A1(-c~) B 1 (-c ’)/Bl(-cj ) (Eq. 4C-54)

— (~~(z + 5)] 2/3 cj — (15/2)2~
3

Th. offset of 5 is arbitrary .

I.
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Also near the surface, will be

~ 

+ ~~~ 1/2
(~ )J /

’3

Thus , if we were to set g
0 
to zero, the Langer solut ion would be

= Ai(-~ ) - B1(O) Bi(-~ )/Ai(O) , (~~-~o)

where

~(z) = (
~ 

z q 1/2(Q))2/~ (~c-51)

Equations 1ic-1~8 and 14C-51 are shown in Fig. ~iC-)4, along with the form

of Eq. Z4c _5)4 (below ) with an arb.~ trary choice of z~~. As may be seen,

Eq. 14C~5l does not have the proper phase; th is prob l em does not occur

if an adequate choice for g0 , such as the one bel ew , is made .

For this paper, we will assume that , near the surface, the

SYP has the form :

c
2
(z) = c

2( O)( l+ i ~z) , (LsC—52)

so that

% (z)  = w2( l+M z)/c 2(Q) - k~~ . (14c-53)

Then , near the sur face , u~ will be of the form

u~(z) = Ai(_t4 (z+z~ )) - Ai(_Mz~ ) Bi (_ M(z+ z n ))/Bi(_MZn ) 
‘ 
(~c-54)

where

/ 2

2 ‘ (~c-~~)
~ c (

~~~~,‘
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and

Z
n 

= 
c
2
(O) 
(k
~
2 - 

c
2
(0)) 

( 140 ..56)

Therefore , when there is reflection from the surface , we need to choose

=Mz , (liC... 57)

or ,

2 ~~~ 3/2

(l~c-58)2 w 1/2 3/2
~~~~~~~~ y IL  z~

To obtain a more familiar form for g0, note that , if we let Eq. ~4C-53

• define %(z)  for negative z , ther is equal to

• a0 
~~ (,~l~o))

31/12 
= %

1/2 ~~~ 
(1~c_59)

Now , we may consider the derivatives of the eigenvalue

equation for the case of surface reflection, Eq. 4B-23. Since we

are considering only the effect of surface reflection, it is

J

Z
L 

%
1/2 

dz = (n+1/)4)n + ~(U (o)) (1êc 60)

We will. use Eqs. 14C_49 and ~C-59 to specify 9
U
(0) The analysis

• leading to Eq. ~C-17 dealt with the derivatives of Eq. 4B—i8~ the form

of Eq. liB-18 differs from that of Eq. 14C-60 only in a factor of ,~/4

and the sign of the function b ( .) .  Thus , from Eq. 4C-17 we have
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~~ ~(9
U~0~
) =G(9

U
(0))(T(~zfl

,O; 

~
) - ~ ~~ z ,o; ~)) ~ (~c-6i)

where T and. D are computed using the SVP of Eq. 1~C-52 and Z
n is given

by Eq. 13C-56. Similarly, from Eq. 1~c-22 , It follows that

~~ 6(9 (o)) = G(9 
U

( )) n(_zn~o; 

~
_ ) 

~~ 
. ( 14C -62)

Thus , the group velocity for mode s reflecting from the surface is

= 
~~~~~~~~~~ ‘ 

(~c-63)

where

= 
~(zU,

zL; ~
—) + G(~~

U(z )) ~(_z~,o; ~
_ ) (lec-64)

and

I: a~) = 
~(zU)

zL; r )  
+ G(9

U(z U)) ~(_z~,o; 
~

_
~) . ( 1iC-65)

— 

If the phase velocity is close to c(O),  then the limiting forms for

and TN given by Eqs . 4c-44 and ~4C-45 are obtained; this is so

because the functions G(x) and _F 11(x) approach each other as x -.O.

8t~~~ary

By combining the effects of the boundary condition at the

surface and the effects of a finite distance from the TP’a to the

velocity ainimum, the group velocity and mode cycle distance may be

written as

~~
(w) = ~~(w)/~~(w) (4c-66)
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and
• 

n~°~ 
= 

‘ 
(14c -67)

• where

= 
~(z

,
~
,zL; ~;)~ ~~

(~o) (~c-68)

and

= 
~(z
,T.~
,zL

; 
~

_) + , (w) . (~c-69)

The quantities D and ~ are the ray theor~i travel distance and travel

time (Eqs. ~~-i3) between TP’s of a ray with turning point velocity

a~fk~. The added terms are given by, in the case of modes ~tot reflecting

from the surface, combining Eqs. 4C-25 and 11C-38 to. obtain &11(w), and by

combining Eqs. 14C-26 and. ~C-39 to obtain T~(cn). For the modes which

reflect from the surface, combine Eqs. 1sC-25 and ~C-6’~ to obtain

A~(Co), and Eqs. 1
~C-26 and ~c-6~ to obtain T~ ( CO) .
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IV-D ANALYSIS OF APPROXIMATIONS

Two approximations have been made , the discussion of which

has been deferred. It is the purpose of this section to examine them

in terms of representative SVP’s. In Section IV-A , in order to solve

for the argument of the Airy function of Eq. I~A-2, it was assumed that

the second term of the EMS of Eq. 14A-9 could be neglected. That is,

it was assumed that the solution of Eq. 14A-9 is approximately the same

as the solution of Eq. 14A-lO. In Section IV-B, it was assumed that,

at the depth where the solutions from the upper and lower TP’s are

matched, Eqs. 14B-7 and 14B-8 are satisfied.

For convenience, we will consider the profile funct ion near,

say, the upper TP, and use the variable ~=z-z~ as shown in Fig. 4D-l.

Also shown are representative sketches for the profile function q(z)

and the argument of the Airy function, y(~ ). We will consider q and ~

near the point ~~; the quantities a, b, and a, which are defined in

Fig. 14D-l, depend upon the point 
~c~

•

First, consider the approximations of Section IV-A . The

differential equation of interest , Eq. 14A-9, is rewritten in terms of

this section’s notation as

(di)
2 

q~~) + 1d
2W (14D-1)

To neglect the second term on the EMS of Eq. 14D-l, we assume that

(4D-2)
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q( c)
I• ~~~~~~~~~~~~~~ 

a~
I
I
I

/• /
/

/
/
I — — —
I -— •- — \

/q(c) / 
\ a~0 + b(~ -/ -..-

I
I
I
/

/
/

C
0 Co

‘~~~

~(c) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_______øl~~~~~~~~~~~

( )  

C

CoI
FIGURE 4D-1

SKETCH OF PROFILE FUNCTION q(~) AND OF ~y(~ ) BELOW A TP

IQ~: PROFILE FUNCTION q(~)
a q( c 0)/c 0
b s dq/d~ at
a
~ 

— dq/dc at ~ — 0 (the IP)

BOTTOM: FUNCTION ~r(c)

~~~~~



106

It should be remembered that if q(~~) is specified by a linear form

(1/c
2
(z) linear), then the function W is a constant and there is no

approximation in our solution. Thus, Eq. 14D-2 will hold if the profile

is “close” enough to a bilinear form . From Eq. 14D-l, it directly

follows that the second terms of Eq. 14D-l vanishes at the TP,

at~~~= O  . (1tD-3)

(The equation corresponding to E~ . 14D-i for the With approximation does

not have the factor of y on the LIIS, so that there is no equation such

as Eq. 14D-3 for the WKB solution.)

Next consider the function y near the point In terms

of the quantities of Fig. 14D-l, y Is given by

= (
~ 
1/2 ~3/2 + 

~ f (a~ + b(~~~~)) dz~ . (~D-4)

Using power series expansions within  the integrand and then for the

2/3 power, ~ is given by

~ l/3~ + (~ + 
A(~ -~~) 

+ 
)
2 

+ 
C(~~~~)

3

) 

(14D-5)

with the terms A, B, and C given by

1/2 1/2 3/ 2  2
B = ( L )  (

~
-
~

) C () 
~~ 2I4.~~2)

(14D-6)
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Note that , if q is linear from the TP to ~~, An and B—C=O. Also, if

the slope of q(~~) at ~ 
is the same as the mean slope from the TP to

~~ 
(that is, a=b), then the second derivative of v vanishes at

Then, neglecting the constant normalizing factor , the amplitude

modulation W (Eq. 14A-l5) is given by

= ~-l/6 (A - 

B(~ -~~) 
- 

3C(x-x )
2
~

~~~ / 
(14D-7)

so that the desired quantity, W”,/qW, is given by

~~~~~~~~ 3 ( ~~~~~~~~~ 21~~a2) 
at~~ . (14n-8)

As mentioned above, this vanishes if a=b; when this happens, W” will

change sign. Therefore, along a profile such as shown by Fig. 14D-2,

even though the magnitude of W”/W might become large, it will oscillate

and be negligible, after integration, in comparison with q(~ ).

Equation ~4D-8 may be used to estimate whether or not a

solution will hold across a break in the SVP. For example, Fig. 14D-3

illustrates a profile with one break - at the axis . Using the values of

a, b, and a in Fig. 14D-3, Eq. 4D-2 becomes

(1~D-9)

That is, at frequencies above, say, 20 Hz, ~. solution about the upper

TP should be valid even across the large jump in the slope of the SVP

shown. (In practice, one woul d use the solution developed about the

lower TP below z0
.) However, at lower frequencies this would not be

the case. This is illustrated by Fig. leD-3, which shows the functions
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q(c)

/

q(c) /

_ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _ _  
C—x x x

FIGURE 4D-2
PROFILE FUNCTION q(C) WHICH OSCILLATES ABOUT A LINEAR FORM

At the depths marked X on the abscissa , = 
~~

-, so that W”= 0

-~~ • -  - -
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FIGURE 40-3(b)
ILLUS TRAT ION OF ERROR MADE IN CONTINUING A SOLUTION ACROSS A CHANGE IN dcldz

The SYP Is the same as for Fig. 40-3(a); only the
ars shown . Mode 4 Is at 11 Hz and mode 1 Is at

7 Hz; the T Ps are the same as Fig. 40-3(a).
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and ~~L(,) ~tt 149, 11, and 7 Hz, which have the same PP ’ s.

Note that, at the higher fre’~ u’~ r i ~~y ,  very iItt i~ error is made by

continuing across the break in the SVP , as predicted by Eq. 14D-9.

Next , consider the approximations of Sections IV-B . Again ,

it will be convenient to express the derivative of 9 as

dO I c17
— 

~~~ ‘iz • D-lO
~rM

Using Eq. 4D-l0, Eq. 4B-8 becomes

I~~ 
M~( y ) ~ << -l ( 1~D-ll)

That this will be satisfied very close to the TP is shown by Fig. 14D-14.

Lastly, for Eq. 4B-7, we will use the form of W (z) given by

1/ L~

q
(14D-l2)

= I ~~~~~~ (z. - z~L
~4 q q

At the axis of the SVP, where we wish to match solutions , q ’=O so that

W ’ ‘W is given by

W ~ 7 /’+r (when q ’ 0) • (~ D-l3)

If Eq. 4D-l3 and 14U-10 are subst~ tuted Into Eq. 4B-9, the requirement

of Eq. 1~D_lJ4 is obtained

M
2
y) <<s

q 
(14D-114)

The LHS of Eq. ~4J)-1~4 is also plotted in Fig. 1#D-14.
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V. EXAMPLE APPLICATIONS

To illustrate the Langer solution, the formulae developed in

Chapter IV will be applied to compute normal mode quantities for speci-

fic examples. First , in Section V-A , a series of profi les constructed

from a few linear segment s will be considered. These example s will

illustrate that the predictions of ray theory and normal mode theory

differ significantly when the turning points are near to a boundary.

Then, in Section V-B, normal mode functions and quantit ies for illus-

trative experimental profiles will be presented.

115
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V-A SIMPLE LINEAR SEGMENT PR0F~ IES

In this sec’Lion , we pre~~nt p1ot~ 
(~f the group velocity,

and mode cycle distance:, A 1 (w) for a series of SVP’s conBtructed

from a few linear segments. This will illustrate the conditions under

which these mode theory quantities differ significantly from their ray

theory counterparts, and therefore there Is a significant frequency

dependence of the mode theory quantities. The condition under which the

versus c
n(u~
) plots have the greatest frequency dependence is when

the upper PP is slightly below tht surface or when c~ (w) is slightly

greater than c(O). When this happens, the boundary value at the sur face

is an important factor determining the normal mode function at low fre-

quencies, whereat; the boundary condition has no counterpart in ray

theory. The Langer solution developed In Chapter IV was used to compute

the figures presented here. Ac stated previously, the Langer solution

Is well suited to the problem wiuh Pp’s near to a boundary.

The profiles designated Al000, A500, A200, and AlOO are shown

irs Figs. 5A-1, 5A-2, 5A- 5, ard 5A-4 , respectively. The group velocity

versus phase velocity c~ for each profile at 20, 50 , and 150 Hz is

also shown. In Fig. 5A-l, the ray theory signal speed (D/T), and 
~n 

at

10 Hz also are shown . The ray theory signal speed is not distinguish-

able from 
~ 

at 150 Hz , exc~pt at the ~~ase velocity of surface reflec-

tion. Therefore, the ray theory quantities are not shown In the other

figures of this section . The most prominent feature of these figures Is

the frequency dependence of the versus curve near c~ = l5~O rn/eec,

the sound velocity at the surface. As Indicated by Eq. ~4C- I~4, thi s
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frequency dependence (or depar l ,ure from ray theory) is greater, the

less the slope of the layer near the surface. Figures 5A-1 through

5A-~4 illustrate the amount of frequency dependence to be expected for

these four nominal SVP ’s. The mode cycle di stance, Arj~ 
versus en at

20 Hz, 50 Hz, and 150 Hz for profiles Al000 and AlOO are shown in Figs.

5A-5 and 5A-6, respectively. Profile A1000 is similar to the one used

by A. Guthrie [l97~] to expinin the frequency dependence of experimental

convergence zone spacings, and the mode cycle distances shown in

Fig. 5A-5 are approximately equal to the ones presented by Guthrie .

We will consider next the effect of the presence of a layer

In which the gradient of the SVP is relatively small In comparison with

the average gradient at nearby depths. From the point of view of ray

theory, those rays which have a TP within such a layer will have an

anomalous increase in D and D/T, because of the relatively large curva-

ture of rays within the layer. The examples examined show that, when

the anomalous layer is far from the boundary , the normal mode quantities

(plotted versus c )  do not have significant frequency dependence as far

as the effects of the layer are conce rned. However, if the layer I s

near the surface (as is often the case in the ocean environment) then

the effect of the layer Is very frequency dependent.

Figures 5~-7 and 5A-8 show versus c for the profiles

named B500 and B501, re3p€ etIv~1y. These are similar to the profile

designated Al000 (Fig. 5A-l~, r xcep~ that, start .ng a~; 500 m depth,

there Is a layer In which Idc,’~zI It only 0.(i:) sec 1 rather than

0.055 sec 1 . The layer Is 100 m thick ir B5CO and only 10 in thick in

B501. A plot of the ray theory signal speed would be indist:~nguishable
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from the 150 Hz curve except for the effects of the surface, neer e~ =

1540 rn/sec. In particular, the cusp near c = 15113.5 rn/sec Is the

anomalous Increase In D/T predicted by ray theory. The ~~(w) at 20 Hz

and 50 Hz in Figs. 5A-7 and 5A-8 lie along the 150 Hz curve, including

the cusp, until the effects of the surface are a factor. Not only the

modes with c~ (u) near the sound velocity in the layer are affected;

above , say, en = 1515 ni/see, th. group velocitIes of Fig. 5A-7 are

approximately 2 in/sec higher than those of Fig. 5A-l. This frequency

independence of the ‘structure” In the normal mode quantities caused by

anomalous layers away from the surface is also shown in similar curves

computed by K. M. Guthrie [l974-a] by numerical solutions of the depth

equation.

When the anomalous layer is near to the surface, a very

different effect is seen. The profile designated B000 is shown in

Fig. 5A-9, wIth a plot of Q versus c~ at 20 Hz, 50 Hz, and 150 Hz.

Again, B000 is similar to the profilc Al000, except that a layer in

which Idc/dz l is only 0.010 sec~~ lies from the surface down to 100 in

depth. For this profile, the ray heory signal speed (D/T) Is also

shown . The presence of the layer of small gradient at the surface

causes, in this example, a spread ef 5 rn/sec in group velocity at these

frequencies for phase velocitIes near the surface velocity.

L
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V-B EXAI~~LE EXPERIMENTA L PROFILES

N ormal mode quantities and rnud~’ functions have been computed

for SVP’s from two areas. The profiles from the two areas are of a very

different nature; this result s in a marke d difference in the curves of

group velocIty or mode cycle dist~tnce versus phase velocity. The normal

mode functIons for two profiles from the Pacific which differ at depths

above the velocity minimum but are otherwise almost identical are pre-

sented t~ illustrate the type of change to be expected of the mode

functions along paths across a gradually changing environment . Some of

the experimental profiles have been slight ly modified to remove small

segment s of positive gradient s of c (z )  above z0, or negative segments

be] ow.

FIgure 53-1 shows a bottom section along the PacIfIc Ocean at

approximately l~5° longItude , together with three SVP ’ s measured at

different locations. The profiles are nearly identical below the veloc-

ity mInimum , but , because of colder temperature or the near surface

portion to the north , the sound velocit y above the minimum is less to

the north. Figure 5B-2 shows group velocIty versus phase velccity at

15 Hz, 50 Hz, and 160 Hz for profile (a) of Fig. 5B-2. The structure in

the plots at phase velocitIes 1’-s~ than 15(X) rn/sec is caused by layers

of locally anomalous gradient, such as tho:~e of profiles B500 and 3501

discussed in the preceding section; In this region, the group velccity

Is largely determined by the phase velocity. At phase velocities near

the surface velocity, 1552 in/see, there Is a noticeable frequency

dependence of group velocity at a glvei1 phase velocity.
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t

Figure 5B-3 shows an SVP from the North Atlantic and a plot of

versus c (u), again at 20 Hz, 50 Hz, and 160 Hz. This profile

differs from that of Fig. SB-i in that the span of e(z) is only

25 in/see, and the profile shapes differ. In Fig. 5B-5, the sound

velocity decreases steadily In the first 50 a, and then varies about a

constant value down to approximately 1001) m depth. This structure Is

caused by the presence of di fferent water masses flowing at different

depths. Because of the seieral velocity minlmae in the SVP of Fig.

5B-3, only modes with phase velocities greater than 11485 in/see were

computed. The group velocity curve of Fig. 5B-5 is also different from

that of Fig. 5B-2. In particular, at phase velocities near the surface

velocity, there is little di fference among the group velocities at

different frequencies. This lack of frequency dependence arises from

the large gradient in c(z) at th,~ sur face, where the SVP is similar to

profile P200 (Fig. 5A-5).

As a final example, normal m ode functions for profiles (a)

and (c) of Fig. 5B-l have been computed. The propagation along such a

“slowly varying” propagation path Is analyzed by Mildner [1969], who

shows that, at sufficiently low frequencies, individual mode excitations

propagate adiabatically, that is, without internode coupling. Figure

5B-11- shows the sixth order mode function at 15 Hz for profiles (a) and

(c) of Fig. 5B-1, computed with the Langer solution; at this frequency,

propagation is adiabatic by Mildner ’s formulae.

The phase velocity, group velocity, and upper TP depth for

the two mode functions are also given . Notice that, above the upper PP

for the mode function of profile (a), the function shows a definite
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decay towards the surface. In contrast, the mode for profile (c), which

has its upper TP closer to the surface, is nearly linear from the

surface to the upper TP. The two modes shown In Fig. 5B-14 differ in

shape in the upper 500 in; however, below 500 m, the mode funct ion for

profile (a) is nearly equal to the mode 1
~unction for profIle (c) at

approximately 100 in shallower depth.



VI. SUMMARY AND EXTENSIONS

In this dissertation , Langer ’ s asymptotic solution has been

applied to the problem of acoustical propagation in the ocean. It is

shown that the elgenvalue equat~ons for the normal modes of propagation

may be given In the form:

JZL () - k~2) dz = (n + 1/2) n + e (w)

The quantities €~ (w) arise from the Langer solution; In addition to mode

order and frequency, the €~ (u) depe nd upon boundary values and upon the

distance from turning points to the depth of minimum velocity. From the

eigenvalue equation, formulae for the normal mode quantities of group

velocity and mode cycle dist’ince were derived. These were expressed In

terms of a characteristic distanc~-~, D~(w), and period, ~~(w). It was

shown that

- D(~~
,z1. ~ ~ 

L~ (w) ,

and

~(~u~
zt,; ~ 

+ t (w)

The terms D and P are the ray ~.heory horizontal distance and travel t ime

• between the turning point.s of a ray w ’th turni~ig point velocity equal to

the phase velocity of mode n. The additional terms, ~ and t
rl~ 

depend

155
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upon boundary values and upon c(s) betv~-en the turning points and the

boundaries , and c(z) between turning points and. the depth of velocity

minimum . For representative sound velocity prof iles, normal mode

quantities were computed using the formulae developed in this work to

illustrate the effects of the ocean surface and of anomalies within the

SVP upon the group velocity and mode cycle distance.

There are several areas in ocean acoustics for future work

with the Langer solution. First , the solution (Eq. 4A-20) may be

Incorporated in a computerized model for computation of the acoustic

field from a source (Eq. 2D-25), or propagation loss (Eq. 5-1); the

Langer solution for the norm’~,.1 modes may be incorporated in existing

computer programs. A second, and more Interest ing, area is the use of

more realistic boundary conditions for the ocean bottom (Williams

[19761). It was shown in this work (Fig. 5A- 1, for example) that the

normal mode quantities (versus has velocity) are most dependent upon

frequency for the mod’~ whose phase velocities are close to the sound

velocity at the surface. A s~milar effect will occur at the ocean

bottom, with additiona l featur e~ due to the acoustic properties of the

bottom.



APPENDIX A

RELEVANT PROPERTIES OF AIRY FUNCTIONS

The purpose of this appendix Is to record the properties of

Airy functions which are used In this work; only functions of real

argument are considered. A thorough discussion of the solutions to

Stokes’ equation, Including historical background, is given by Mi ller

[l9~~]; additional references are Antosiewicz Li96~4] and Erdelyi [1956].

The Airy functions are solutions to Stokes’ equation,

w” - z v = O  . (A-i)

The two solutions to Eq. A-i are the functions Al (s) and Bi(z), so that ,

letting a and ~ be arbitrary constant ;~,

w(z )  = a AI ’z) + f~ Bi(z) . (A-2)

The functions Ai(z) and Bi(z) are shown Ln Fig . A-i; ascending series

expansions about z~0 are gi ven in the referenc~s. The asymptot ic

expansions for Ai(z) and Bi(z) use the auxiliary variable,

~~~~2 ,3/2 . (A—5)

For positive real argument ,

AI(z) 
1 ~~l/2 ~

-1/
~ -

~

Bi(z) - g~ l/ 2 z~~~~ e~ (A-5)
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whereas for negative argument, as may be seen in Fig. A-i, the functior s

oscillate. For negative argument , it is convenient to introduce the

amplitude and phase functions, M(z) and 6(z), defined by

Ai(-z) = M(z)  cos 6(z)  (A-6)

B i ( — z )  = M(z) sin 6(z) (A—7)

= Ai2(-z) + B12 (- z) (A-B)

6(z) = arc tan[Bi(—z)/Ai(-z)] . (A-9)

Then , the asymptotic form of the amplitude function Is given by

?4~ (z )  - l/(nz 1
~
’2 ) (A-b )

and the asymptotic form of the phase function is

0(z) - 
~~ - 2z5/2/5 . (A-li)

An exact equation for the derivntlve of the phase function is

0 ’ ( z )  -l/~ t.~~(z )  . (A- 12 )

The Wronskian of the functions A i ( z ) ,  Bi(z)  is

Ai(z)  Bi ’(z)  — A i ’( z )  Bi(z)  ,t’~~ . (A-l3 )
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