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The quantities € (w) depend upon boundary values and upon the distances from
turning points t0 the depth of minimum velocity. From the eigenvalue equation,
the formulae for the normal mode quantities of group velocity and mode cycle
distance are derived. These are expressed in terms of a characteristic
distance, Dn(m), and period Tn(m). It is shown that

ﬁn(m) B(ZU, 23 w/kn) + An(w) "

and

Tn(w) = T(ZU, z03 m/kn) + Tn(w) .
The terms D and T are the ray theory horizontal distance and travel time
between the turning points, zy and zy, of a ray with turning point velocity
equal to the phase velocity of mode n. The additional terms, A, and 7,
depend upon the boundary values and upon c(z) between the turning points and
the boundaries, and c(z) between turning points and the depth of minimum
velocity. )
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For illustrative c(z) functions,typical of the deep ocean, the normal mode
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surface and of anomalous segments of c(z) upon the mode quantities; the most
prominent frequency dependent effects occur for modes whose phase velocities
are close to the sound velocity at a boundary. (U)
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ABSTRACT

In this dissertation, Langer's asymptotic solution for second
order differential equations is applied to the problem of acoustical
propagation in the ocean. Langer's solution is analogous to the WKB
solution, but is developed in terms of the Airy functions Ai(*) and

Bi(*), and is valid at the turning points of the equation

2 2 2,2 2
d un/dz + (W/c(z) - kn ) o 0 3

which arises in normal mode analysis of acoustic propagation in the
ocean. Here, c(z) is the function of sound velocity versus depth. The
solution is extended to take into account the boundaries of the ocean
waveguide in the determination of the normal modes of propagation. It
is shown that the eigenvalue equation for the normal modes may be given

in the form

z .
L
o -x b e v vnme e @
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The quantities en(w) depend upon boundary values and upon the distances
from turning points to the depth of minimum velocity. From the eigen-
value equation, the formulae for the normal mode quantities of group
velocity and mode cycle distance are derived. These are expressed in
terms of a characteristic distance, Bn(m), and period fn(w). It is

shown that
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D (W) =Dz 25 wk) + 8 (@

and

?n(w) %(zu, 25 w/kn) + Tn(w)

The terms D and T are the ray theory horizontal distance and travel
time between the turning points, zy and Z;» of a ray with turning point
velocity equal to the phase velocity of mode n. The additional terms,
An and T depend upon the boundary values and upon c(z) between the
turning points and the boundaries, and c(z) between turning points and
the depth of minimum velocity.

For illustrative c(z) functions typical of the deep ocean,
the normal mode quantities of group velocity and mode cycle distance
are computed using the formulae developed in this dissertation. These
are presented in the form of plots of, for example, group velocity
versus phase velocity for frequencies in the range 10 Hz to 150 Hz.
These plots illustrate the effects of the ocean surface and of anomalous
segments of c(z) upon the mode quantities; the most prominent frequency

dependent effects occur for modes whose phase velocities are close to

the sound velocity at a boundary.
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ABBREVIATIONS AND NOTATIONS
SVP - Sound Velocity Profile. The function of sound velocity versus
depth in the ocean.

TP - Turning Point. The depth at which a ray becomes horizontal; or,
the depth at which the phase velocity of a normal mode equals
the sound velocity.

LHS - Left Hand Side (of an equation).

RHS - Right Hand Side.

- Tilde., Used to denote a ray theory quantity or a WKB approxima-
tion to a normal mode quantity.

- Caret. Used to denote a Langer approximation to a normal mode
quantity.

U - As a subscript or superscript, denoting the upper TP.

L - As a subscript or superscript, denoting the lower TP.

t - As a subscript or superscript, denoting either TP.

z - Lepth.
(It is customary in ocean acousitics to measure depth downward from the
surface, or z=0 at the surface. Therefore, since the upper TP is above

< .
the lower TP, 2y zL)
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I. TINTRODUCTION

In the deep ocean, the variations with depth of temperature,
pressure, and salinity combine to produce a sound velocity which is
also a function of depth. Typically, the scund velocity varies with
depth a few per-ent about the nominal value of 1500 m/sec, with local
maximae at the surface and bottom, and a minimum at a depth of, say,
100 m to 1000 m. In many areas, the sound velocity function is
approximately unchanging across distances of hundreds of kilometers.
Under such conditions, acoustic signals in the frequency range from a
few hertz to a few hundred hertz are guided along a deep ocean wave-
guide, or SOFAR channel, to distances of several thousand kilometers.
The most important factor in determining the acoustical impulse
response of the ocean waveguide is the sound velocity function. The
theoretical models which describe the impulse response may be divided
into the categories of geometrical acoustics, or ray theory, and wave
theory, or normal mode theory.

The principal topic of this dissertation, the Langer solution,
which has not been applied to ocean acoustics before, provides approxi-
mate solutions to differential equations which arise in normal mode
theory. Two features make the Langer solution well suited for applica-
tion to ocean acoustics. First, the sound velocity function over much
of the ocean depth has an approximately linear form, for which the
Langer solution is nearly exact. Second, the Langer solution is valid

at and near turning points; as shown in Chapter V, a normal mode




solution i1s needed when modes with turning points close to boundaries
enter into a propagation problem. An additional feature of the Langer
solution is that, in order to apply the solution, little in the way of
computation, beyond what is necessary for a WKB solution or for a ray
theory description, is required.

In this work, the Langer solution is extended by the
development of an eigenvalue equation for determination of the normal
mode functions. This eigenvalue equation for mode number n has the

form:

5 - 1/2
f [mz/ cz-kn2 ] dz = (n+l/2) ™ + en(w) : 1-1
z

L))
The quantities of Eq. 1-1 are defined in Chapter IV. However, note that
it is of the form of the Bohr-Sommerfeld equation, plus an additional
term en(w) on the RHS. Approximation formulae for the term eh(w) are
derived in Chapter IV. Additionally, from the eigenvalue equation,
the normal mode quantities of group velocity and mode cycle distance
are derived and related to corresponding ray theory quantities.

The following two chapters are devoted to providing background
and bibliographical material. In Chapter II, the basic features of
the ocean acoustical parameters are presented. Then, the acoustical
wave equation, and the ray theory and normal mode theory formulae which
follow from the wave equation, are introduced. The WKB solution to the
depth equation of normal mode theory and the relationship between

normal mode theory and ray theory are then discussed. In Chapter III,
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a brief survey of the ocean acoustical phenomena analyzed in this work
is presented. Recently reported measurements show that, at low fre-
quencies (below 100 Hz), quantities such as signal travel time and
convergence zone spacings are frequency dependent. In particular, low
frequency signals travel from a source to a receiver more slowly than
high frequency signals and along 'raypaths" which are shorter than
those of high frequency signals.

The Langer solution is derived in Chapter IV. Then, the
solution is extended by deriving an eigenvalue equation (Eq. 1-1)
which takes into account both the boundary values of the problem, and
the exact, rather than the asymptotic, form of the sclution at the
velocity minimum. Finally, the normal mode quantities of group velocity
and mode cycle distance in the Langer approximation are derived and
expressed in terrs of the ray theory quantities of ray distance and
ray travel time.

In Chapter V, the formulae of Chapter IV are applied to
compute normal mode functions and mode quantities for example experi-
mental sound velocity functions. In Chapter VI, a review of the
dissertation is presented, and suggestions are made for future develop-
ments. In the Appendix, the properties of the Airy functions relevant

to this work are presented.




II. BACKGROUND - THEORETICAL DESCRIPTION OF OCEAN ACOUSTICS

The purpose of this chapter is to provide a description of
the salient features of the acoustical parameters of the ocean in
Section II-2, and then to review different aspects of the theory used
to describe the acoustics of the ocean for reference in Chapter IV.

In Section II-A, the acoustic wave equation to be used in
this paper is derived. The ray theory approach to solving the wave
equation is discussed in Section 1I-C; in particular, the formulae
(Eqs. 2C-13) which give the horizontal distance D and the acoustic
travel time T between two points of a ray are presented. The functions
5 and T as defined by these formulae will frequently be used in
Chapter IV. The computation of the acoustic field in the ray theory
approximation will not be considered in this work.

The normal mode solution to the wave equation and the
separated depth equation are discussed in Sections II-D and II-E;
the Langer solution, the principal topic of this work, provides
approximate solutions to the depth equation. In Section II-F, the
concepts of group velocity and phase velocity are introduced. In
Section II-G, the WKB solution, which may be used to obtain approxi-
mate solutions to the depth equation, is discussed. In two important
respects, the WKB solution is inferior to the Langer solution,
especially for application to ocean acoustics. First, the WKB solu-

tion may not be used at the turning points of the mode, whereas the

Langer solution may be. In addition to being useless for computing




the mode function near a turning point, the WKB solution may not be
modified to take into account boundary conditions if the turning point
is near to a boundary. Second, the quantities of group velocity and
mode cycle distance (Section II-H) computed in the WKB approximation
are identical to their ray theory counterparts, whereas from the Langer
Solution as extended in this work, group velocities and mode cycle
distances which reflect the wave nature of propagation are obtained.
Finally, in Section II-H, the relation between ray theory and mode
theory is presented, and the concept of mode cycle distance is

introduced.




II-A OCEAN ACOUSTICAL PARAMETERS

The basic features of the acoustic parameters of the deep ocean
are discussed by, for example, Tolstoy and Clay [1966], Williams [1970],
and Hampton [1974]. In this work, we shall be interested in the acoustic
waveguide formed by the ocean's sound velocity structure and the ocean
surface, but will not consider the acoustics of the ocean bottom. An
emperical equation published by Wilson [1960] gives the sound velocity c
in water as a function of temperature T, salinity S, and pressure P. To
first order, this equation is

c = 1449.14 + 4.57T + .1603P + 1.40(S-35) - (2A-1)

In Eq. 2A-1, ¢ is in units of m/sec, T is in degrees (Celsius), and P is
in kg/cmz, and S is in parts per thousand. In the ocean, pressure in-
creases linearly with at a rate of approximately 100 kg/cm2 per kilometer
of depth. Therefore, if the temperature and salinity are constant, c will
increase with depth at a rate of approximately 16 m/sec per kilometer of
depth. In equatorial and moderate latitudes, the temperature T nominally
decreases with depth until a minimum temperature is reached at a depth
of approximately 1000 m, below which the temperature is constant. This
dependence of temperature upon depth results in a minimum of sound veloc-
ity, the SOFAR (Sound Fixing and Ranging) axis at a depth of approximate-
ly 1000 m. Additionally, the mixing by wave action of the water near the
surface may cause the temperature to be constant down to a depth of, say,
50 to 100 m so that a local velocity minimum is formed there.

Typical sound velocity versus depth curves from different areas
are shown in Fig. 2A-1. Such a curve is known as a sound velocity pro-

file; the abbreviation SVP will usually be used in this work. As may be
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seen, the sound velocity varies approximately 2 or 3 percent with depth.
In the following sections, reference will often be made to the "profile
function' q(z), where

a(z) = w¥c@z) - k2 (2A-2)

w is the angular frequency and k is a wavenumber. Because of the relative-
ly small range of variation of c(z) in the ocean, the term wz/cz(z) will
vary by only, say, 5 or 6 percent. Also, the behavior of q(z) may be
judged by examination of the function c¢(z); that is, q(z) will have

roughly constant slope at depths where c(z) does, and q(z) has a maximum

where c(z) is minimum, etc.




II-B ACOUSTIC WAVE EQUATION

The linearized wave equation for the acoustic pressure, P, in a
fluid is given by Eq. 2B-8, below. Detailed discussions of the derivation
of the acoustic wave equation may be found in Bergmann [1948], Lindsay
[1960], and Officer [1958]. Let the pressure p, and density p, and

fluid velocity at a point by given by

Pty
p=p,+P, (2B-1)
> ->
U=10
a

Here, the subscript '"o'" refers to the quantity in the absence of acoustic
disturbance while the subscript '"a' denotes the increment due to the

acoustic wave. Newton's law of motion for a fluid element is given by

p(dU/at + U * W)

p DG/Dt

VP o+ (Sl (2B-2)

where the term S gives the force density of sources. The equation of

continuity for the fluid is given by

=2 a 3pf0t + ¥ Uy 20 (2B-3)

Next, Eqs. 2B-2 and 2B-3 are linearized; that is, terms such
| as paﬁa, which involve products of incremental quantities, are ignored.

Thus, Eq. 2B-2 becomes

L____a-JL---------I----lIIlI-IllllllllllllllllllllllIlllIIllllllIIIIIlIIIIIIIIIIIlllﬂllllllllllll=====l===:
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-+ -
Py al/at = ¥ P, - S " (2B-4)
and Eq. 2B-3 becomes
-+ > -> .
apa/at = -Voo - U - poV - U : (2B-5)
Hook's law for fluids is
P, = (B/p) G > (2B-6)
where B is the adiabatic bulk modulus. Then, take the derivative with

respect to t of P, of Eq. 2B-6, and substitute the result into Eq. 2B-5

(again retaining only first order terms) to get

B

(6]

3p_/ot = -0 . Vo, -V -0 ; (2B-7)
(o]

Finally, taking the divergence of Eq. 2B-4, the time derivative of

Eq. 2B-7, and adding the results to eliminate terms in ﬁ, one obtains

vzpa e azpa/at2 S R (e (2B-8)

where the sound velocity c is given by
e R T R (28-9)

If the source S has a single frequency w, so that
$ -5 eiut

; (2B-10)

then the acoustic pressure p, may be expressed as

Po=o@m et (2B-11)
and the wave equation becomes
2
oo Y 0. 8-5 (2B-12)
¢ (r)
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I1-C RAY TRACING EQUATIONS

Assume that a point source of frequency w is located at ?0,

and that away from ;o’ % is expressed as
SCEY = Ky IR . t2c-1)
->
the functions A(r) and w(;) are real. A surface defined by ¥ = constant
is a surface of constant phase for the wave. Along the path s which is

normal to a constant phase surface,

W/ox = dx/ds K(t)
ay/dy = dy/ds K(r) (2¢-2)
dy/dz = dz/ds K(¥) .

Now if Eq. 2C-1 is substituted into Eq. 2B-12, then Eq. 2C-3

is obtained by equating the real parts of the resulting equation

B2 B2 a7 of 7
(ax) + (a—y' : (a_z') = w—z' = T » (2C-3)

0

The ray theory approximation is that the second term on the RHS of
Eq. 2C-2 is zero; this is equivalent to assuming

|Av /A << WPt (2C-4)
where primes denote a general spatial derivative. Under the ray theory

approximation Eq. 2C-3 becomes

N

G* s &% . Y- f’f ; (2¢-5)

Substitute Eqs. 2C-2 into 2C-5, and then use the property of the

direction cosines,

dx, 2 dy,2 dz. 2
@+ D gD =1, (2-6)

grekhovskikh [1960], Officer [1958], Tolstoy and Clay [1966]
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> >
and the factor K(r) may be shown to be w/c(r), so that Eq. 2C-2 becomes

9y _ wdx
a) ax ¢ ds ’

W _wdy
b) e - (2¢c-7)
C) ?_wzﬁfi}_

0z ¢ ds A

Finally, take the derivatives of each of Eq. 2C-7 along the normal (ray
path) to obtain the ray equations. For example, the derivative of

Eq. 2C-7a is

d 1dx, _ 93 dy

Wds'c ds’  Ox ds

_3 Qvdx, dydy 9y dz

T 3x9Xds Jyds dz ds

wiv & F AL 2 dy, 2 dz,2
" 3x c((ds) * G (EE) (2C-8)
The ray path equations are thus
dad dxe - 91
st *und
ds"c ds dy ‘¢ ¥
1dz, _ 3 1 (2C-9)

ok AR
These equations may also be derived from Fermat's principle.
Restricting c(;) to be a function of the depth z only
simplifies the ray equations. In particular, the ratio of the x and y
direction cosines is then constant, so that a ray which starts at the
z-axis of a coordinate system remains in one plane which contains the

z-axis. Thus, there is no loss of generality by considering a ray to
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be in the x-z plane only, and Eq. 2C-9 becomes

dx _ e(z)
a) ds C,
d 1 dz d /1
R B L AT S E2c=208

From Fig. 2C-1, it may be seen that the constant N in Eq. 2C-10a is the
sound velocity c(z) at a turning point of the ray, where the ray is
horizontal (dx/ds = 1). Equation 2C-10a is the form of Snell's law for
a continuously variable index of refraction.

By tracing a ray from the point (xo, zo‘, we mean the
determination of the éurve (x, z) which passes through (xo, yo) and
satisfies Eq. 2C-10a. The ray is characterized by the turning point

velocity, c We also include in the ray tracing operation the deter-

¢
mination of the acoustic travel time between two points of the ray,
defining an element of time dT among the ray path element ds by

dT = ds/c(z) » (2C-11)

The relation between ds and dz given in Eq. 2C-12 follows from Eqs. 2C-6

and 2C-10b
/2

1
= < 2
ds dz/((l-c (z))/ct ) . (2C-12)
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Combining Eqs. 2C-10a, 2C-11, and 2C-12, the equations for

tracing a ray with turning point velocity c_ are given by

t
2%
~ 2 cdz
D(Z »2,.5C ) = ’ (ZC—IS)
3’2 ¢ / % (1-c2/c 2)1/2
Z t
1
z
= 2
dz
T(z,,z ;¢ ) = = i
E G270 ~/. c(l-cz/c 2)1/4
z1 t

The horizontal distance 5(21,2,;ct) and travel time %(zl,zz;ct) defined
in Eq. 2C-13 are indicated in Fig. 2C-2. When a ray either reaches a
turning point (where integrand in Eq. 2C-13 become infinite), or strikes
the surface or bottom, it is continued as indicated in Fig. 2C-2. The

ray cycle distance and ray cycle time are

A 2 ;
(ct) D(zU,zL,ct) ; (2C-14)

T X
and (Ct) ZT(ZU,ZL,Ct) '

the limits s 2, are turning points if the ray is refracted above or
below, respectively, and the corresponding boundaries otherwise.

In general, if the two points (xo,zo) and (x,z) are connected

by a ray which has the turning point velocity Cyo then

x - x, = NA(e,) + «D(z 2 5¢) + BD(z ,z3c,) (2C-15)
a=0o0r 2; B = *1 5
N® g ks v o s
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must be satisfied for some combination of a, B, and N. Some of the points

at depth z connected by a ray to point (xo,zo) are shown in Fig. 2C-3. A

practical problem in ray tracing is the determination of "eigenrays"

which connect two fixed points. There are numerical techniques to find

the roots {ct} such that Eq. 2C-15 is satisfied for points (xo,zo) and

(x,2).

In summary, a ray from a point is a curve which is specified

by a simple parameter, the turning velocity Cp- The two basic ray

quantities are the ray cycle distance and the ray cycle time. It should
‘ be remembered that it follows from Eq. 2C-10a that a point at depth zg

can be connected (at the proper ranges) to another point at depth z by

a ray characterized by c, only if

t

c, > max [c(z), c(:s)] 2C-16

t
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II-D NORMAL MODE SOLUTION
If the source is a point source of unit strength located

at point ;0. then Eq. 2B-12 becomes

2
¢+—%—¢='4ne

c (1)

2

v iwt ey , (2D-1)
0

In this section, §(.) is the Dirac delta function; the symbol is
used in another sense in Chapter IV (Eq. 4B-6). Then, we express
Eq. 2D-1 in a cylindrical coordinate system and assume that the

sound velocity is a function of depth z only, and obtain

2 2 2
thel g 0o
r or  dr 9z c(2) r oy
S(r-r )
& o 7 U 2D-2
= -4T - §(z ZC) S(y V) s ( )

Next, we eliminate the azimuthal dependence bv integrating over  from

0 to 2m and then set r0 = () to obtain

2 2
19 3¢ ¢ W 2
=) + + $=- = 6(r) 6(z-2) . (2D-3)
r 3r" or 822 CZ(Z) r 0

> »
Except at r = Eq. 2D-3 becomes the homogeneous equation

2 2
139 3% 3" w
8 i~ Bl

T T (2D-4)
0z2*  o*tn)

which may be separated by substituting

® = F(r) u(z) (2D-5)
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%i

into Eq. 2D-4. If this is done, the separated equations 2D-6a and

2D-6b are obtained, where the wave number k is a separation constant.

1d dE 2
L~ a3 *kF=0 :
2 p
d"u w 2
b) :5*(7-k)u=0 ) (2D-6)
z c

Equation 2D-6a is Bessel's equation for order zero. In order to satisfy

a radiation condition as r +» », the solution to Eq. 2D-6a to be chosen

must be the Hankel function of the first kind,
o G}
F(r) = H °" (kr) 5 (2D-7)

Equation 2D-6b is known as the depth equation; it is
mathematically equivalent to the one-dimensional Schrodinger equation of
quantum mechanics. Analyses and solutions of the depth equation, exact,
approximate, and/or numerical, are the central part of many papers on
underwater acoustics. The principal subject of *his paper is a technique
for obtaining asymptotic solutions to Eq. 2D-6b.

The spectrum of the depth equation depends upon the nature of
c(z) as z + », It will be assumed here that c(z) approaches a limiting
value, ¢ _, as z + ». Both c(z) and the limit c_ are real and finite. When

the quantities defined in Eq. 2D-8 are substituted into Eq. 2D-6b, Eq. 2D-9
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1s obtained

W w

U2 = -(5— -, (20-8)

¢ (2) €y

2 »

A . - ~ = ‘\‘- »

RRer
2
d
dz‘; + (A-q(z)) u = 0 : (2D-9)

This cquation is discussed in Chapter 5 of Titchmarsh [1962], who shows
that the spectrum of u is discrete for A < 0 and is continuous for
A > 0. In terms of the separation constant k, the spectrum is discrete
if |k|] > w/c_ and is continuous if |k| < w/c,.

We will denote the discrete spectrum by {kn}, n =il s 2,
..N, where N is finite or infinite, depending upon the nature of c(z)
as z - ». The solution of Eq. 2D-6a for the eigenvalue kn will be
denoted by un(z); the eigenfunctions u  are orthogonal, and are defined

to form a normalized set

o

!un(z) u(z) dz=6 . (2D-10)

These cigenfunctions for the discrete part of the spectrum are the most
important part of the solution for long range acoustic propagation in

the ocean.

We will denote the continuous spectrum by k, where

0 <k <w/c,, and denote the corresponding eigenfunctions by u(k,z).
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It will be assumed that these eigenfunctions are normalized as

f u(K,z) u(k',2)dz = 8 (k-x") (2D-11a)
(o]
Also, ©
fun(z) ae,2ids = ¢ . (2D-11b)
(o]

These eigenfunctions for the continuous spectrum are relatively
unimportant for waveguide propagation, as will be shown.
The solutions to the inhomogeneous equation, Eq. 2D-3, may be

expressed in terms of the normal modes as
k

o(r,2) =3 Ho(l)(knr) u (2) F ’f Ho(l)(m u(k,z) Fx)ax . (20-12)
n o

The quantities Fn and F(k) are easily shown to be a constant times the
normal mode functions at depth 2 To do this, substitute Eq. 2D-12 into

Eq. 2D-3 and use the fact that the un(z) satisfies Eq. 2D-6b to obtain

l1d d_ . (1)
z:(;'a;.rdr . kn ) Ho (knr) un(z) Fn

n
et ¥ M ST
f(;d_rrdr 5o Mo (k6] Frc)de
-2 -

Next, to obtain Fn’ multiply Eq. 2D-13 by Un(z) and integrate from
2 =0to z = «; from the orthonormality relations, Eqs. 2D-10 and

2D-11, Eq. 2D-14 results:

1d . d 2 . ) A i
(r dr(rdr) i3 km) Ho (kmr) Fm

-

s 6 (r) u (z,) . (20-14)
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Now, the Hankel function of order zero is important as the Green's
function for two-dimensional problems; as discussed in Chapter 8 of

Morse and Feshbach [1953], it satisfies

doud 2 ) = 22i §(x) . (2D-15)
CEe* k) H (e X) = ==~
Combining Eqs. 2D-14 and 2D-15, the factor Fn given by
ﬁm = im um(zo) (2D-16)

is obtained. In a similar fashion, multiply Eq. 2D-13 by U(k,z) and

integrate to obtain

F(k) = im u(K,zo) > (2D-17)

Finally, the normal mode solution to Eq. 2D-13 is given by

. N
o(r,2) = 23 5 Wkr) u 2) uz) + o (20-18)
n=0
where
km
. 1
ocont 2 1"]5 Ho( )(Kr) U(k,z) U(K,zo)dK ! (2D-19)

As mentioned earlier, the continuous portion of the spectrum
is relatively unimportant in long range acoustic propagation. To see
that this is so, consider only the part of the field at depth z due to
the continuous spectrum, defined in Eq. 2D-19. Next, let the interval

[0,k_] be divided into segments so that Qco is evaluated by summing

nt
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the terms ¢(n)

O ne = 1TE O() . (2D-20)
n

K
n+l
¢(n) = iﬂjf Ho(l)(xr) u(k,z) U(K,zo)dK
K
n

The intervals in Eq. 2D-20 do not depend upon r; they are chosen so that

the factor multiplying Ho(l)(Kr) vanishes at both ends of each interval

and has the same sign over the interval, as indicated by

G(k) = u(k,z) u(K,zo) 3 (2D-21)
G(Kn) = G(Kn+1) =0 ’
G(k) # 0 K KK Ly

Thus, there is an approximation for the magnitude of ¢(n)

[é(n)| < 7 G jK“‘l H_(kr)dx 3 (2D-22)
= n o
K
n
where -
= <
G max |G (k) | K, SRCK

A simple change of the integration variable then changes Eq. 2D-22 to

LA [ L
[e(n)] < — fr H, (x) dx ; (2D-23)

rv
n |

the asymptotic form of the integral of Eq. 2D-2Z3 may be directly

obtained from Eq. 11.1.11 of Luke [1970]; the modulus of the integrand
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; 1/2
approaches a constant times r / as r becomes large.
Thus, at large range,

3/2

|[®(n)| < const x r (2D-24)
gives an estimate of the magnitude of ¢(n) and it follows that the
sum of the ¢(n), ¢ , goes as r's/2 for large r. This is in contrast

cont
to the asymptotic behavior of the discrete spectrum portion of the

field which, as may be seen from Eq. 2D-18, goes as r-l/z

for large r.
In the following analysis, the continuous spectrum will be neglected and
it will be assumed that the solution to Eq. 2D-1 is given by the normal
mode solution

N
®(r,z) = iﬂnZ=O Ho(l)(knr) u (z) un(zo) . (2D-25)
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II-E THE DEPTH EQUATION

We return now to the major subject of this paper, the depth

equation,

(2E-1)

(>8]

2

5 O
qn(Z) = 2 kll ’

C

The wavenumbers which belong to the discrete spectrum of Eq. 2E-1 satisfy

kn > w/e 4 (2E-2)
The normal mode functions un(z) are the functions which are solutions to
Eq. 2E-1 and also satisfy the appropriate boundary conditions. At the
ocean surface, there is such a large mismatch between the density of the
atmosphere and the water that the acoustic pressure in the water vanishes.
Thus,

u(o)=0 . (2E-3)

To rigorously specify a second boundary condition, it would be necessary
to consider the acoustical properties of the ocean bottom. However, a
discussion of the problems involved in ascertaining the acoustical
properties of the ocean bottom and then incorporating them into a theory
of propagation is beyond the scope of this dissertation. The acoustics
of the ocean bottom are discussed in Hampton [1974], Williams [1976],
Bucker [1970], and in references therein. In this work, we shall deal
only with the modes which do not interact with the bottom. To accomplish

this (Tolstoy and Clay [1966]), we model the SVP so that, below the depth
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of the bottom zb, c(z) equals c(zb); that 1is, c, > c(zb). In order for
the mode function u to be normalizable (Eq. 2D-10), it must vanish at

infinity. Thus, the second boundary condition is

B (2E-4)

z > @

In Eq. 2E-1, the function qn(z), which will be called the pro-
file function, has been introduced. In Fig. 2E-1, representative sound
velocity profiles, profile functions, and normal modes have been sketched.
The points 2 and 2 where 9 vanishes, are the turning points of Eq.

2E-4. In the regions where q is negative (for example, above the point

and below the point z of Fig. 2E-1), the function un has an "ex-

2y L
ponential behavior' (Morse and Feshbach [1953]), curving away from the
z-axis. Because of the boundary conditions, the normal modes are damped
above ZU and below zL. In regions where qn is positive, the function

un curves towards the z-axis, with a '"'sinusoidal behavior', as between
the turning points of Fig. 2E-1.

In this paper, the phrase ''turning point'" usually will be
abbreviated as TP. It will be assumed that there are either only two
turning points, or a reflection at the surface and a turning point below
the axis depth Z - That is, if a is negative at the surface, there is
a turning point below the surface, while if qa, is positive at the surface,
mode n reflects from the surface.

The wavenumbers kn may be arranged in a decreasing sequence,

as indicated by
kg > k, > k2 TR kn > w/c . (2E-5)
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c(z)
IS

FIGURE 2E-1
SKETCH OF SVP, PROFILE FUNCTION, AND NORMAL MODE FUNCTION

qn(z) vanishes at the turning points of the mode
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When this is done, the upper and lower turning points of the correspond-

ing modes will be ordered as

Shr Tk D (2E-6)

C(ZUn) = C(zl‘“) = w/kn

More importantly, when the wavenumbers are ordered as in Eq. 2E-5, it
may be shown (Titchmarsh [1962]) that u has n zeros between zUn and an.
It will often be convenient to express u in terms of an amplitude, An(z),

and a phase function, ¢n(z),

Un(z) = An(z) cos(¢n—n/4) £ (2E-7)

’

d¢ /dz > 0
n

0 < ¢n(z) <(n+ 1/2)m

Sketches of the amplitude and plase factors are shown in Fig. 2E-2; at the
zeros of un, ¢n(z) = (n - 1/4)1. The amplitude and phase factors may not
be uniquely specified from the function un(z) alone. However, let G;(z)
denote the linearly independent normalized solution to Eq. 2E-1; the
function Eﬁ will not satisfy the boundary conditions. Then, the functions
An(z) and ¢n(z) may be given by

A (2) = (unz(z» , an(z))l/z (2E-8)

¢n(z) = arc tan(Gh/un) + /4
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The representation of Eq. 2E-7 is useful, for example, in discussing the

relation between normal mode and ray theory descriptions of sound propag-
ation, as in Section II-H. The WKB solution, discussed in Section II-G,

provides approximations for the functions An and ¢n. In Section IV-B of

this paper, an improved approximation (Eq. 4B-3) based upon the Langer

solution is used.
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II-F BROADBAND SOURCES; PHASE AND GROUP VELOCITY

The normal mode solution developed in section II-D was for
a harmonic source of frequency w. However, by the principal of super-
position, the field generated by a broadband source may be given by
Eq. 2F-3, below. Analysis of the integral in Eq. 2F-3 leads to the
concept of group velocity. Consider that a point is source located
atr=0, z = 29 and has the time dependence S(t). The Fourier trans-
form of S(t), §(m), is given by Eq. 2F-1la; the inverse Fourier

transform gives S(t), as shown in Fq. 2F-1b

a) SW = =—[el% gar
M e
(2F-1)
b) S(t) = ij;ijp e 1t S(w)dw X
F . R
Then, the field generated by the source is
-in/4
o(r,z,t) = ¢ " / 2% (r,z,t) g (2F-2)
nn
where the terms ®n(r,z,t) are given by
e u (z ) u (z) . ,
3 W i(k. r - wt)
¢ (r,2,t) ;| Fasw “nC) U n ‘ (2F-3)

\/Z\/Er i

In Eq. 2F-3, the wavenumber kn is a function of the frequency w. The
u, are again the normal modes, solutions of the depth equation 2E-1,
and so also depend upon the frequency. The asymptotic form of the

Hankel function has been used in Eq. 2F-3.
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Assuming that the normal modes have been obtained, and that
the functions kn(w) are known, the problem is the evaluation of the
integral, Eq. 2F-3. For most problems, the method of stationary phase
(Copson [1967], Erdelyi [1956], Pekeris [1948], Tolstoy [1973]), which
assumes that the terms in the integrand of Eq. 2F-3 are slowly varying
with respect to the oscillations of the complex exponential, is adequate.
Because of the cancellation which results from integration over several
oscillations, only near points where knr - wt varies slowly is there
significant contribution to the integral. That is, the important
frequency is W » defined by

d =
el Sl |wo e (2F-4)

near which the phase of the integrand changes slowly.

Let the group velocity, Vo be defined by

o -1 L
vn(m) = (dkn/dw) 3 (2F-5)

so that Eq. 2F-4 may be rewritten as
r/t = vn(wo) ’ (2F-6)

Now, Eq. 2F-6 is a prescription for the frequency W, for mode n, it
is expected that the signal arriving near time t will be predominantly
made up of components with frequencies near wy of Eq. 2F-6. If the
factor in the exponential of Eq. 2F-3, knr - wt, is expanded (to second

order) in a power series about wy and integrated, then ¢n(r,z,t) is
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given by

u(z)u (z)

¢n S(w ) v (w ) L2

N et e (2F-7)
\[Tk (w) v (w)l :

Here, the plus sign in the exponential is to be used if Qn is positive,
and the negative sign is used if ;n is negative. (If Qn(wo) =0, a
higher order term in the power series is needed. See, for example,
Copson [1967]). Note that Eq. 2F-7 predicts that the contribution

t : : :
from the n " mode is disregarding the other factors, proportional to

s -1/2
v )™~
Another important quantity in addition to the group velocity

of mode n is the phase velocity, defined by
cn(w) = w/kn ¥ (2F-8)

From Eq. 2E-1, it may be seen that the phase velocity of a mode at
frequency w is the same as the sound velocity in the water at the

turning points of the mode at frequency w

n
cn(w) = c(zun) = c(zu ) . (2F-9)
Therefore, it will sometimes be convenient to abbreviate cn(w) by Cy
The phase velocity cn!u) of mode n at frequency w is a useful
quantity in that it may be used to estimate whether or not mode n is
significant in the propagation of sound of frequency w from a source at
depth 2, to a receiver at depth z'. Since the mode decays with distance

away from a TP in a region where qn(z) is negative, or where c(z) is
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less than cn(w), un(z) will become small at depths such that

c(z) > cn(m). That is, the important modes are those that
¢, () > max (c(zs), c(z") : (2F-10)
In the limit of high frequency, the inequality is not an

approximate one, but becomes the analogous requirement of ray theory,

Eq. 2C-16.
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II-G THE WKB SOLUTION

An important technique for obtaining approximate solutions to the
depth equation, Eq. 2E-1, was (according to Bellman [1964]) discovered
by Liouville in the early nineteenth century. It was rediscovered in the
early twentieth century by Wentzel, Kramers, Brillouin, as a means of
solving the Schrodinger equation of quantum mechanics and was also used
by Jeffreys. The WKB solutions are asymptotic, that is, valid in the
limit of "short' wavelengths, as is the ray picture. The WKB picture
is a convenient framework within which to relate many aspects of normal
mode theory and ray theory.

The WKB solution is derived and discussed in detail in several
sources, such as Bellman [1964], Kemble [1958], Morse ([1953], and Tolstoy
[1966]. The purpose of this section is to enumerate several features of
the solution. Following the usual practice, if a turning point is not
the surface or bottom, it will be assumed that the turning point is
infinitely far from the boundaries.

The normal modes were expressed in terms of an amplitude and
phase factor in Eq. 2E-7. The WKB approximation approximates the mode
functions by

u (z) = Gn(Z) ;

-1/4 s
n -V cos(5n - m/4) if q >0 ’ (2G-1)
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in the region between turning points, where the function Gn oscillates,

and by

i dad -1/4 % |
Un(l) = vn'qnl s " i qQ <0 5 (2G-2)
where ﬁn decays away from the turning points. The factor 6n is

the phase between TP's

z
< 1/2, ¢
Qn(z) ’jﬂ % dz 2, <2<z

g L ’ (2G-3)
u
and the decay factor ir the other regions
z
u
- 1/2
‘sn(z) f lqnl dz' 0 < z < 2 g
z
¢ (2) =/z /2.
n lqnl dz ZL <z . (2G-4)
"%

The quantity % is a normalization factor, choscn to cnsure that Eq. 2D-10
is satisfied. The eigenvalue equation from which the wavenumbers kn are

determined is the Bohr-Sommerfeld equation,
z

L
/ o.Mz s e yn . (26-5)
" i
U
In deriving the WBK solution, it is assumed that thc sccond
derivative of the mode amplitude, divided by the mode amplitude, is much
less than the profile function. It may be shown that this is equivalent,

making reasonable assumptions, to

dal < < jq¥? (26-6)

which in terms of the sound velocity c(z) is '
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2 2
w1 de W 2\3/2
c_z,.E. 3T < <(—2- - kn) . (2G6-7)

c
There are two situations for which Eq. 2G-7 may not be satisfied. First,
if the slope of the sound velocity at some depth is too great, the LHS
of Eq. 2G-7 becomes large; second, near a turning point, the RHS of Eq.
2G-7 vanishes.

To estimate the restrictions upon the slope of c(z) imposed by

the first type of problem, express kn in terms of the phase velocity so

C,_ - C\3
t
( s ) s (2G-8)

Multiply both sides of Eq. 2G-8 by cs/w2 to get

dc xR
Idzl<<m( . ) , (26-9)

which says that the slope of c(z) should be much less than the frequency

that Eq. 2G-7 becomes

times the cube of the fractional difference between the phase velocity
and c(t). In practice, the fractional difference is usually a few
percent, so that the WKB solutions are useful only at high frequencies or
in regions of slowly varying c(z).

The second type of problem, the failure of the WKB solution at
turning points, does not depend upon frequency or details of the SVP. 1In
applying the WKB technique to many problems in underwater acoustics, the
difficulty near turning points is a serious one since a source and/or

receiver may be near the depths of turning points of many of the modes

connecting the source and receiver.




39
It is interesting to consider the normalization of the WKB
solutions. From Eqs. 2G-1 and 2D-10, we obtain
2r% . ~142 3
1 = A ]. a cos (@n - m/4)dz
2y
ST o S
+ Vv
n (li ’f 9l "0 Tz . (26-10)
0 2,

Next, assume that the contribution to Eq. 2G-10 from the regions outside
of the TP's is negligible and that qn(z) is slowly varying over each
oscillation of the cosine term in the region between the TP's so that the

cosz(¢-w/4) term may be approximated by 1/2, so that
S

v L
i j -1/2
2 : qn dz
“U
2
v 2 -1/2
& on L/w 2
" "Z—jl <_—2 - kn > dz g (2G-11)
C
2y

Both of these assumptions are better the larger the mode number. Next,
replacing the wavenumber kn in Eq. 2G-10 by w divided by the phase

velocity, or turning point velocity, one obtains

Ct

2 .« Al 1 \-1/2

- w i

¥ z—f <—z'—'z‘> i
A ¢
u

CO)Z
t

. b(zu,zL;ct) . (26-12)
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Here, function D is the ray tracing quantity, the ray cycle distance,
which is defined in Eq. 2C-13. Thus, the normalization factor for the

WKB normal mode functions is approximated as
o2 o -1/2
“n Qu ctD(zU,zc,Lt)/z) : (2G-13)

A seccnd connection between thke WKB theory and ray theory is
seen by considering the group velocity of the WKB modes. The group
velocity may be obtained from the Bohr-Sommerfeld condition, Eq. 2G-5,
which is

(n+ 1/2)m =/*L(% : kn2)1/2 2y (26-14)
Z )

Taking the derivat.ve with respect to w uvf Eq. 2G-14, one cbtains

-2 2 A
0 / Lyw” K 2\-1/24 w dk"
: o v knm) dz (2G-15)

s

from which the group velocity, defined bv Eq. 2F-% may be cbtained.

This gives 2. 2
L,w 2,172
S o e e
V@ s —2 5 : (2G-16)
fL <y w® 2 y-1f2
wj ( c3 kn ) Iz
U

Then, if the wavenumber is capressed in terms of frequency and phase
velocity, then the frequency factors out of the expression, and the group
velocity is expressed in terms of the ray theory cycle distance and cycle
time (see Eqs. 2C-13 and 2C-14) as
D(z

T(z

U.zL;w/k")

V(@ = g
i L'w/Ln)

: (2G-17)
ik

o ———— e e
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That is, if two different modes (at different frequencies) have the same
phase velocity, then, under the WKB approximation, they will have the same
group velocity.

Finally, consider the quantity An(w) defined in Eq. 2G-18

A (w) = \2" > 2m(ok -1 ST
- 0, kK /9 (<C-1€)
n Kne1 e ( i d

It will be shown in the next section that An is the mode-interference
spacing, or mode cycle distance, which is analogous to the cycle distance
of ray theory. To obtain An in the WKB approximation, take the derivative

of Eq. 2G-14 with respect to n to obtain

:
™= -/IL(EL cp ez, i (26-19)
: c2 n n dn :
“y

Then, substitute w/cn for kn in Eq. 2G-14 and solve for Kn:

~

An(w) = Zb(zU,zL;w/kn) : (2G-20)

Thus, in the WKB approximation, the mode interference spacings for two
different modes with the same phase velocity (again at different fre-

quencies) are equal.
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II-H MODE INTERFERENCE, RAY-MODE RELATIONS, AND NORMAL MODE QUANTITIES
A final topic in this chapter is the matter of mode interference
in situations where there are a large number of modes. As will be shown,
the peaks of mode interference occur along paths which are, in the WKB
approximation, identical to the ray paths of a ray theory picture of the
problem. Experimental demonstration of the overlap between ray theory
and mode theory for a simple situation (isovelocity water overlying glass
or rubber) has been given by Wood [1963] and discussed by Weston [1968]
and Tolstoy and Clay [1966]. The connection between mode interference
and ray paths for the WKB solution was given by Tindle and Guthrie [1974].
The normal mode un(z) was expressed in Eq. 2E-7 in terms of
amplitude and phase factors. The normal mode solution, Eq. 2D-25, is re-

written here as

-~ 8 i(k r-n/4)
p(r,z) = r %z: g = B cos(¢ (z)-1/4) cos(¢_(z)-1/4) (2H-1)
n

in terms of thesec factors. The terms Bn depend upon the source and re-

ceiver depth and include the normalizing factors; the asymptotic form of

(1)

the Hankel function Ho (+) has been used. Equation 2H-1 is then written

in terms of complex exponentials as

++ , . +e L, =+ e
n lwn 1l‘Jn llpl’\ }

iy
p(r,2) = r'l/zz: Bn{c + e +e + e 3 (2H-2)
n

thc phasc terms arc defined by

€
n

Kyt * 0,(z) + 6 () -1/2

<
n

knr b ¢n(zs) i ¢n(z) ’
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=
"

no "Rt 02+ ¢ ()

<
n

n k"r - ¢n(zs) - ¢n(z) + /2 ; (2H-3)

With substitutions such as

+-

- -1/2 2y
P = n
T z: Bne

. (2H-4)

Eq. 2H-2 is rewritten as
Pl sl ¥ Al BT (2H-5)
and we consider, as an example, the function p+'. If the number of modes

is large, the contributions from the individual terms in the sum of Eq.
2H-5 will tend to cancel after summing a few adjacent modes except for

those modes such that

= W = ZMW, M= 0) 1’ 2, LI . (2H-6)

When Eq. 2H-6 is satisfied, successive modes will be in phase and a
large contribution to the sum in Eq. 2H-S5 will result. In terms of the
range, wavenumbers, and mode phases, the interference condition is given
by

T AR *agfz) - Ad, (2) = 2Mm > (2H-7)

Mode reinforcement will occur at the ranges given by

ZMTT A¢n(z:~‘.) = A¢n(z)

P B s =

Akn Akn

(2H-8)

in terms of the mole-cycie distance definec by I'q. 2G-18, these ranges

i b
are given by % Ao (z) - ¢ (2))
L : _ : (2H-9)
n Ak“
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In Eq. 2H-9, the mode cycle distance is independent of source
and receiver depth. The second term, involving differences between the
mode phases at the two depths, is zero when z = z and increases as the
difference between source and receiver depth increases.

In the WKB approximation, the mode cycle distance Kn has been
given by Eq. 2G-20. The WKB expression for the difference in the phase is

given by . 5
o,z - ¢, (2) =/ s (97__ an)l/Z o . (2H-10)

2z C

The derivative of this difference with respect to kn is

s

i P o 2 3—12
kn(¢n(zs) % ¢n(z))='i/ 2 kn(E§ -k ) / dz!' . (2h-11)

(=%

z

1f kn in Eq. 2H-11 is replaced by u/cn, then the frequency w may be factor-
ed from the KHS, so that the integral is of the same form as Eq. 2C-13a
for the horizontal distance between depth Zg and depth z along a ray of

turning point velocity €, = w/kn:

ln—

] (¢n(zs) - ¢n(z)) = D(z,zs;w/kn) : (2H-12)

=

n
Thus, the ranges at which modes of order close to n constructively inter-

fere for the p'~ term are

r = ZMD(zU,zL;w/kn) - U(zs,z;w/kn) . (2H-13)

The relationships between mode number and the ranges at which
they are dominant for all of the terms in Eq. 2H-4 may be developed along

similar lines and are combined in
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X = JMD(zU,zL;w/kn) + ah(zs,:;w/kn) + BB(z“,zS;w/kn)

M=o0,1, 2,

a = *]

B'=0 or 2 . -

Again, in the WKB approximation, note that Eq. 2H-14 is identical to
Eq. 2C-15.
To generalize Eq. 2H-14, one may regard the WKB expression
(Eq. 2G-3) for the phases of the normal modes as a first approximation
and add a correction term (to get the exact phase)
¢ (2) =/ﬁ qnl/zdz' ve (zu) (2H-15)
“v

Correspondingly, the Bohr-Sommerfeld condition is regarded as an

approximation for the exact expression

7
q dz = (n + 1/2)7 + zn(w) . (2H-16)

The terns e and en of Eqs. ZH-15 and 2H-16 take into account the effect
of boundary conditions in addition to errors in the WKB solution to the
problem at hand. If the problem at hand involves a SVP whose exact
solution is known (a parabolic profile, for example), then the factors
. and En may be determined exactly. The principal topic of this paper,
the Langer solution discussed in Chapter IV, provides approximation

formulae for en and €n

Now, in the same way that Eq. 2G-20 followed from Eq. 2G-14,

when the derivative of Eq. 2H-16 with respect to kn is taken and the
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resulting equation solved for (dkn/dn)-l. one obtains

24 :WB(Zuf:wa/kn)
An(f.u) = Kk—'—) = 2

= Aen(w) (2H-17)

Similarly, the dcriv.tive of the phasc diffcrence with respect to wave-

number, which defines a distance Ln.is given by

d i
JE:(¢H(ZS) - ¢ntz)) = Ln(z,zs;w)

d \
= D(zsrz;w/kn) + dk"(en(zs,w) - Cn(z'w)) . (2”-18)

Then, substituting Eqs. 2H-17 and 2H-18 into Eq. 2H-9 (and its equivalents),

one obtains the mode reinforcement equation

ZMnG(zU.zL;w/k )

n
= ; L ,

¥ m o+ Aén(w) i aLm(Z'zs Hlate n(ZU’zs o

M=10, L, 2,

a=*1

B =0 or 2 : (2H-19)

The interpretation of Eq. 2H-19 is straightforward, that is, the
important modes in the propagation of sound from a source to a receiver
are those whose phase velocities are close to the turning point velocities
of ray paths which also connect the source and receiver. The contribution
from other modes is relatively unimportant. The interpretation of the
exact Eq. 2H-19 is identical to that of Eq. 2H-14 if Eq. 2H-19 is in-
terpreted as defining frequency dependent ''raypaths.'" In the paper by
Tindle and Guthrie [1974], they showed that the maximae (vs depth) of the

sum of only a few terms of the normal mode solution (Eq. 2D-25) did




trace out '"raypaths" as the range at which the sum was computed changed.
The normal modes were exact in the sense that they were obtained by

numerical solution of the depth equation for an experimental SVP.
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III. BACKGROUND - EXPERIMENTS AND MODELS

The purpose of this chapter is to offer a survey of ocean
acoustic phenomena and of the analyses and models to explain them. The
measurement of greatest practical interest is that of propagation loss.
Propagation loss from a source to a receiver is defined as the ratio of
the signal intensity at the receiver to the signal intensity at a
reference distance, say, 1 m, from the source. In terms of the normal

mode solution, Eq. 2D-25, propagation loss is modeled as

PL = 10 log,, [ﬁ I:;:Ho(l) (knr) un(z) dﬂ(zo)lz] i (%-1)

In this paper, we shall not be interested in the computation or
measurement of propagation loss per se. Instead, we shall be inter-
ested in the structure of signals from impulsive sources, and in the
structure of propagation loss versus range curves as & function of fre-
quency. Ray theory provides an approximate description of these
details in terms of the quantities of ray cycle distance, 25, and ray
cycle time, 26, which were presented in Section II-C. However, some
recently published measurements (A. Guthrie [1974], Porter [1973]) show
that at frequencies less than, say, 100 Hz, quantities such as signal
travel time are frequency dependent, rather than frequency independent
as predicted by ray theory or the WKB solution (see Sections II-C and
II-G). The formulae to be derived {n Section IV-C of this work will

give normal mode theory quantities Bn and in which differ from the ray
L8
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theory quantities at low frequencies, but approach them at high
frequencies. These will be applied in Chapter V to compute group
velocities and mode cycle distances for representative SVP's.

The basic characteristics of deep ocean acoustic propagation
were originally discovered in experiments using explosive sources;
these were reported by Ewing and Worzel [1948]. The greatest interest
during the period following was in the SOFAR (Sound Fixing and Renging)
propagation situation, whereby the source and receiver are both at the
depth z, of minimum velocity. The SOFAR signal at a range of several
hundred miles from an explosive source (of duration of a few msec or
less) is of duration of, say, 2 to 10 sec; the arrival consists of a
series of impulses perhaps 100 msec apart which increase in amplitude
until the end of the signal when, abruptly, there is quiet. The final
part of the arrivals, the crescendo, travels at the speed of sound at
the axis. That ié, fhe,earliest arrivals have traveled away from the
axis while the strongest portion traveled directly down the channel.
Hirsch and Carter [1965] analyzed the ray quantities for the SVP
modeled by

c2(z) = coe(l-alz-zlb> ; (3-2)

Some of the profiles of this model are shown in Fig. 3-1.
Hirsch showed (using analytical forms for D and f) that only for pro-
files such that b<2 did the slowest arrival travel along the axis; that

18, where the SOFAR eignal shape is observed, the SVP must be "sharper'




DEPTH - z

FIGURE 3-1
HIRSCH PROFILES (Eq. 3-2)

The number labeling each curve
is the parameter b of Eq. 3-2.
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than that represented by a parabola. Propagation to ranges up to
4000 nm across the Atlantic, Pacific, Arctic, and Indian Oceans has
been reported (Urick [1963], [1966]; Kibblewhite [1965], [1974]).
Models of the SOFAR signal structure using normal mode theory have been
published by Hirsh [1965], using a parabolic fit to the SVP, by
Normandy and Uberall [1975], who used an Epstein profile, and
K. M. Guthrie [1974b], using a numerical solution for experimental
profiles.

In the SOFAR configuration, with both source and receiver at
z, on the SVP axis, the received signal is dominated by refracted
arrivals; that is, energy which was not reflected from the surface or
bottom. However, when the source and/or the receiver are not close to
the axis, those modes or rays which have TP velocities less than the
sound velocity at the source or receiver are not significant to the
propagation between that source and receiver. This effect is illustra-
ted by the ray diagrams of Fig. 3-2. With the shallow source and, say,
a receiver at the same depth, Fig. 3-2b shows the field at the receiver
depth to be separated into relatively narrow bands of high intensity,
known as the convergence zones, and the region between them where there
appear no rays, called the shadow zones. Depending upon the reflec-
tivity of the bottom, and upon the range from source to receiver, there
may be signals propagating into the shadow zones which have reflected
from the bottom; however, in this work, the contribution of bottom
reflected components is not considered. The convergence zone phenome=-
non is apparent in both theoretical and experimental plots of propaga-

tion loss versus range (see, for example, A. Guthrie [1974]) as a
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scalloped modulation of the propagation loss curve which otherwise is
decaying with range. The period of the modulation depends upon the SVP
as well as upon details of the source and receiver geometry, but is
nominally 60 km to 65 km. The amplitude of the modulation, or the
difference between adjacent maximae and minimae, also depends upon the
situation (and upon the experimental dynamic range), but may be 10 dB
or more.

The convergence zone phenomenon is predicted by both ray
theory and normal mode theory. However, as discussed in Section II-H,
the spacing of the convergence zones is independent of frequency from
the ray point of view (or in the WKB approximation), while in normal
mode theory, the spacing depends upon freguency. In a recent paper,
A. Guthrie [1974] presented propagation loss from shallow (150 m or
less) continuous tone sources at frequencies of 14 Hz and 111 Hz in the
Atlantic. The convergence zone spacing was approximately 62 km at the
lower frequency and 65 km at the higher. Computations using the eigen-
values for the mode solutions for an approximate fit to the SVP (using
a bilinear c’e(z) profile) gave spacings near to these; the 5% spread
was predicted.

As part of his dissertation, K. M. Guthrie [1974ka] computed,
using numerical techriiques, wavenumbers and normal mode functions for a
few representative SVP's. He then computed Akn(w) and obtained the
mode interference spacing, or cycle distance, An of Eq. 2H-17, and
plotted A versus "ray angle" (Arc cos(c(zo)/cn(w))) for different fre-

quencies. He showed that, depending upon details of the SVP, the mode

cycle distance can vary by 5% or more (2 km to 5 km out of 60 km) with
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frequency at those phase velocities which are approximately equal to the
sound velocity at the surface, c(0).

Examples of the envelopes of signals received from explosive
sources are shown in Fig. 3-3. The time-pressure waveforms of such
signals may be analyzed to determine the travel time of the individual
arrivals, and to determine the spreading of the arrivals caused by
slightly different travel velocities of different frequency components.
There are several reports of detailed analysis of the arrival times of
such signals. These show an agreement between predictions from ray
theory and measurements which indicate that, in spite of the variability
of the ocean environment, detailed phenomena predicted by ray theory
may be observed.

Porter [1973] has analyzed a series of signals obtained in
the Mediterranean at ranges out to 600 km; both the source and receiver
were near the axis. Each signal consisted of a series of 4 to 5
arrivals spaced 200 msec to 500 msec apart. The measured travel times
of arrivals, relative to the slowest (axial) arrival, were within
50 msec of the predictions of ray theory using only an approximate fit
to the SVP (bilinear form for c(z)).

Fitzgerald [1974] analyzed the multiple arrivals from
explosive sources in the Atlantic. He showed that the arrival structure
was in accordance with the predictions of ray theory. Also, the evolu-
tion of the signal structure with changing range out to 2000 km formed
a regular pattern, showing that the ocean acoustical parameters were

reasonably stable during the experiment. The time of signal travel
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FIGURE 3-3
EXAMPLES OF ENVELOPES OF SIGNALS FROM EXPLOSIVE SOURCES

In both signals, the arrivals later than approximately 2 sec after
the initfal arrival have reflected from the bottom. The signal at
the top has an unusual amount of bottom reflected energy.

4
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from detonation at long range of the earliest arrival of signals was
studied by Mitchell and Hampton [1975). We compared the speed of the
earliest detectable arrival (along the time minimizing ray path) from
source to receivers at different ranges, and showed that the signal
speed has a periodic structure. The signal travel times were the by-
product of propagation loss measurements in which explosive sources
were used. Signal arrivals were decided by an automatic computer algo-
rithm, using a threshold based upon the background noise level. Only
the time of the earliest detectable arrival was measured.

A typical situation is shown in Fig. 3-4. The sound velocity
profile is from the Northeast Pacific during summertime. The two
earliest distinguishable rays from the sources at 91 m depth to a
deep receiver at the different ranges is shown along with the travel
time and corresponding signal velocity along each ray. Between 85 nm
and 92 nm, the leading path has become deeper and the signal speed
increases because of the travel in the higher velocity portion of the
water column. Then, at 95 nm, there is no ray path which does not
reflect from the bottom. Because of the steeper angles involved, the
signal speed suddenly drops 18 m/sec within 1 nm. The most dramatic
Jumps in signal speed occur when an increase with range causes the path
of the earliest arrival to strike the bottom.

Several features are illustrated by Fig. 3-5, which shows the
ray theory signal speed versus range for the geometry and SVP of
Fig. 3-4. The number of deep turning points, direction, and type of

path (bottom reflected or not) are indicated to help understand the

o7
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EIGENRAY PATHS, TRAVEL TIMES, AND SIGNAL SPEEDS
FOR FIRST TWO DETECTABLE ARRIVALS

NE PACIFIC PROFILE
91 m SOURCE
4055 m RECEIVER




29

371408d J141Dvd 3N
JONVY SNSA3IA A33dS TYNIIS
§-€ 33N9Id

wy = JONVY
0sZ 00z oSl 0oL
T Sy T

OIS1 07!
tot

0ss1
soyw - O

T
Y3AI3D38 WSSOV
32¥N0S w16
Y3A13D3Y LV NMOQ 30 dN INIOD AVY ¢ ¢

S.dl d330 31VIIANI SY3IBWNN
NOILD3T43¥ WOl1108 @

NOI1D3 1434 WOLL08 ON x
‘e

074

7441

ok

+08r1

.762

29s/uW = 33dS

-06v1

sérl

1




changes. The most obvious feature is the separation of the plot into
arcs along which the signal speed generally increases with range, and
then suddenly decreases; additionally, within each arc there are depar-
tures from a smooth curve. The presence and prominence of such features
depend upon the source and receiver geometry as well as the SVP. The
third arc, for example, starts at about 94 nm, the first arrival
reflecting three times from the bottom. As range increases, the
leading ray strikes the bottom at smaller angles, and speed increases
at approximately 0.8 m/sec per nautical mile. At about 103 nm, the
leading ray is refracted at the lower TP and the speed shows a jump,
and then increases at a slightly lower rate. At about 109 nm, the 3 TP
ray does not reach the receiver; there is a small decrease with speed
as the 4 TP ray strikes the bottom, and the speed drops.

Signal speed measurements with the same source-receiver
geometry used to compute the signal speeds of Fig. 3-5, for which the
SVP of that figure is representative, are shown in Fig. %-6. There is
approximately one point per nautical mile in Fig. 3-6. In spite of the
changes and irregularities caused by variations of the actual environ-
ment, some of the features of Fig. 3-5 predicted on the basis of an
ideal ocean are obvious, and evidence of all are discernible. Most
obviously, the plot is broken into a series of arcs spaced approximately
30 nm apart. At shorter ranges, the jumps are approximately 15 m/sec
to 20 m/sec, decreasing to 5 or 6 m/sec at the greatest ranges. On
some of the arcs, e.g., near 170 nm, there are discontinuities such as
those predicted for the change from a bottom reflected to a bottom

refracted first arrival. Also, the Yunching of the data, such as
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occurs near 215 nm, is due to a slight decrease in signal speed with
increasing range. This behavior was predicted for a change in number
of lower turning points, which is from 6 to 7 at 215 nm. Measurements
in the North Atlantic, with a SVP different from that of Fig. 3-5,
showed a similar agreement between the features of the signal speed pre-
dicted by ray theory and seen in the measurements.

This investigation pointed out two interesting features,
beyond the numerical comparison of the computed and measured signal
speeds. First, the nature of the signal speed versus range curve is
predicted to be strongly influenced by the nature of the SVP, and the
measurements confirm this. Second, and more important, the environment
during these experiments was stable enough that detailed features of
the signal speed versus range curve predicted by ray theory may actually
be observed experimentally.

Figure 3-3 showed envelopes of received waveforms; more detail
is shown by the waveforms of Figs. 3-T7 and 3.8, 1In the source waveforms
the pulses following the first shock pulse are the "bubble pulses':
acoustic energy radiated from the oscillating globe of gas formed by
the explosion. The amplitudes and spacings of the bubble pulses depend
sensitively upon the size of the explosive charge and upon the depth of
the detonation (Cole [1948], and Mitchell and Bedford [1975]).

The spreading of the arrivals of Figs. 3-7 and 3-8 is typical
of such signals. This spreading is due to two factors, in addition to
the spread of the bubble pulses of the source. First, there are several

ray paths along which the signal may travel to constitute each arrival,




ISOW 3@ J3SW QG| Sl S3JU3434Lp burwil yjedAea pue
WI0JIARM 324N0OS 3Y3 03 3|qe3nqLdile S|eALAJR Y]
30 buipeauds ayy -wy Q|G A)ajewixosdde si abuea
J3A13234 03 324NOS 2141084 IN UL JBALIIBJ W £G0P

304N0S 3AIS0TdX3 d330 W 16 WOYS WHOA3IAVM
L-€ 3¥N914

23S - NOIL12313Q ¥314V 3WIL

| e

295w QG|

_h:«o&z; 324N0S
p sl

QY Ly sy LA e

(84

(B SN FMRSRTE i e T A > Sl Seis=r t S : S . (i

Y r‘)ﬂ. .Li.t.}a).r ey b




64

wy 01 Al23ewixoudde s} abued 43A13334 03 324NOS
131084 JN Ul SJIALIDAL W €50y PuR W 0092

324N0S 3AIS0NdX3 d330 W 81 WOYS WIOJ3AVM
8-t JMIJ

99S - NOILVNOL13Q ¥3L14V 3WIL

.‘;}%_.i‘{m___“:i .«??f “> _\, e W 1 TR

hvn ort 1143
gy

T T L} % T T T T Al T T i T T T T T T T T T T

||

! _

LE/VERE:
_ w 0092

T

T SO L J— T : T T T T T T T ‘—

4}_? i §§f\£.w$q.;,s__,".i_.z...\




A A

el

————————RE

+-___”

65

and the travel times along the different paths will differ slightly.
This spread of ray path travel time for the arrivals of Fig. 3-7 is
shown. Second, ray theory is valid only at high enough frequencies; at
low frequencies, even signal travel time is frequency dependent. The
observed spread in the arrivals of Figs. 3-7 and 3-8 is greater than can
be accounted for by the bubble pulse spacing and ray path differences.

Porter [1973] observed that, in signals received in the
Mediterranean, individual arrivals were spread approximately 100 to
150 msec while the source bubble pulse characteristic and multiple ray
arrivals together could account for only one-half of this spreading.
At the ranges involved, 200 to 400 km, a 50 msec difference in travel
time corresponded to approximately 0.5 m/sec spread in signal speed.
Only the arrivals which reflected from neither the surface nor the
bottom were analyzed. In this region, there is a large gradient in
c(z) above the depth z, Porter presented an analysis, based upon a
bilinear model for c-e(z), to explain the observed spreading. His
conclusion was that the spreading was caused by the closeness of the
ray turning point depths to the SVP minimum Zs and did not consider
any effect of the surface above the upper TP's.

In his numerical investigations, K. M. Guthrie [1974a] also
computed, for several SVP's, group velocity versus ray angle
(Arc coslc(zo)/cn(w)l) at different frequencies. He found that, for
some profiles, there could be 1 or 2 m/sec difference between the signal
speeds at different frequencies along rays which almost grazed the sur=-

face. The magnitude of the effect depended upon the actual SVP but,

again, the lowest frequencies (less than 100 Hz) traveled most slowly.




IV. LANGER'S SOLUTION AND EXTENSIONS

In a series of papers published during the 1930's,
Rudolph Langer [1931], [1935], [1937] presented an asymptotic solution
to what in this paper is called the depth equation, Eq. 2E-1. Langer's
solution is formally analogous to the WKB solution, but is expressed
in terms of the Airy functions Ai(:) and Bi (-), which are solutions
to Stokes' equation. The Langer solution is an asymptotic one,
approaching the exact solution as the parameter knf’“' However, if
the profile function qn(z) has a linear or bilinear form, the Langer
solution is exact to the extent that the eigenvalues kn may be deter-
mined (Jjust as the WKB solution is exact if qn(z) is a constant
between the boundaries). The asymptotic solutions of differential
equations have been discussed by Cherry [1954], Erdelyi [1953], and
Olver [1954a] and applied, for example, by Olver [1954b] to analyze
Bessel functions. Asymptotic solutions analogous to the WKB and
Langer solutions are discussed by Dingle [1956]. Surprisingly, the
Langer solution does not seem to have been applied to ocean acoustics,
though it is occasionally mentioned in the literature (e.g., Weinberg
(19751).

There are two features which make the Langer solution

especially attractive for application to ocean acoustics problems.

First, in the deep ocean, at depths below, say, 1500 m, the SVP is
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dominated by the effects of increasing hydrostatic pressure (see
section II-1), so that the profile function qn(z) very nearly has a
linear form in that region. Therefore, a solution in terms of the
Airy functions is a natural one for the lower part of the SVP. Second,
and more importantly, the Langer solution (in contrast to the WKB
solution) provides a uniform representation at, and on both sides of,
the turning points of each mode. This is more than merely a convenient
feature, because it allows one to determine solutions which satisfy
the boundary conditions even when the boundaries are near to the
turning points. As discussed in Chapter ITI, there is experimental
evidence that the modes which have phase velocities nearly equal to

the sound velocity at a boundary are the modes which have group veloci-
ties and mode cycle distances noticeably different (at low frequencies)
from the ray theory predictions. An additional feature, which is

shown in this work, is that by extending the Langer solution to take
into account the boundary conditions, the turning point depths, and
details of the SVP, one obtains an eigenvalue equation of the same

form as Eq. 2H-16,

z
L
/ 0.2 4z = (wH1/2)x + € (o)
2

From this eigenvalue equation, expressions for the normal mode
quantities of group velocity and mode cycle distance may be derived.

In section IV-A, the Langer solution, Eq. UA-17, is derived

by substituting Eq. 4A-3 into the depth equation and analyzing the
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resulting differential equations. The solution is derived by, for
example, Olver [1954a], by transforming the independent variable of
the depth equation. In section IV-D, an assumption which is made to
obtain the Langer solution is analyzed.

In section IV-B, the solution is extended by providing
eigenvalue equations from which the kn may be determined. This is
done in a way intended to result in an equation of the form of Eq. 2H-1t
Eq. 2H-15 (above). The boundary concitions and the details of the
SVP are taken into account via functions whose arguments are the
integrals of the square root of the profile function qn(z) from a TP
to either a boundary or to the depth of minimum sound velocity, Zg

In section IV-C, the normal mode gquantities of group
velocity, Gn’ and mode cycle distance, Xn’ are derived. It is shown
that these may be expressed as

A
A =2D
n n

A
Vv =
n

|
:,U
B
=

The term Bn is shown to equal the ray theory cycle distance )) (along
a ray whose turning point velocity is aykn) plus an additional dis-
tance, Ah(uﬂ. The distance Ah(m) arises from the fact that the
turning points are within a finite distance of the boundaries

and the velocity minimum, Z,- Similarly, the term Tn is shown to
equal the ray theory cycle time T plus a time Tn(w). Both Ah(w) and
Tn(aﬂ vanish at high frequencies and when the TP's are far from the

boundaries and the velocity minimum.
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IV-A DEVELOPMENT OF THE SOLUTION

The initial task is to obtain a solution to the depth equation,

2
u

fo})

* Q(Z) u=20 . (‘J»A-l)

&

z

In Eq. hA-l, the subscripts denoting mode order have been dropped for
convenience. In analogy with Eq. 2E-7, where u(z) is expressed in
terms of amplitude and phase factors, let the solution to Eq. 4A-1
be expressed in terms of an amplitude factor W(z) and combination of
Airy functions, (1(+), of argument ¥(z).
u(z) = w(z) A(»(z)) . (ka-2)

The functions W(z) and 7(z) are to be chosen so that Eq. 4A-2 is a
solution of Eq. 4A-1. The function d(7y) is defined by

a(7) = aai(-y) + pBi(-7) 3 (4A-3)
the constants @ and B are arbitrary until boundary conditions are
specified. Properties of the Airy functions Ai(x) and Bi(x) which are
relevant to this paper are discussed in the Appendix; these functions
are discussed in more detail by Antosiewicz [1970], Erdelyi [1956],
and Miller [1946]. The sign of 7 in Eq. 4A-3 is chosen so that the
function @(7) is an oscillating function for positive 7.

The second derivative of Eq. LA-2 is

[N

A

2 Eo% e
o s :72"5 ao) + (2 Sy %) aly) - w(E) a) . (ba-k)
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Here, dots denote the derivative of a function with respect to its
argument. In Eq. LA-L 6 the differential equation (Eq. A-1) which is
satisfied by the Airy functions has been used to eliminate the term in
éi(7). When Eqs. 4A-2 and 4A-4 are substituted into Eq. 4A-1 and
the factors of A(7) and.d(r) are collected, we obtain

() [ w(g—;f +a(z) W+ @] + Ay) [e ML,y ‘f-} =0 (a-5)

i
dz dz dz d22

This equation will be satisfied if the factors of () and d(7) can be
individually equated to zero and the resulting equations solved. Within
the errors introduced by the approximation of Eq. 4A-11, this may be
done.

First, setting the factor of d(7y) to zero gives

2
. R LA-6
b & il ol ’ ( )
dz
which may be rewritten as
a vt iR
2 5 tn(W) = - &= In (dz) : (4A-T)
Both sides of Eq. 4A-~7 are total derivatives; if both sides are
integrated and exponentiated, we get
W = constant X IEZI-I/Z
s dz i (hA-B)

This is an exact formula for W(z) if an exact expression for ¥(z) is

available.




T1

Next, setting the factor of @(7) to zero gives

d e il d2w
: (TZ) i (q“) *ﬁ?) : (4A-9)

If the factor W'/W on the RHS of Eq. 4A-9 were zero, the equation
could be integrated to give an expression for 7(z). Therefore, it seems

profitable to consider the function 7 defined by

a2

9(3_;) =gz} (4A-10)

and to regard ? as an approximation for 7,

Y=y ¢ (LkA-11)
The conditions upon the profile functions for which the approximation
is good are discussed in Section IV-D. Note, though, that the approxi-
mation is a good one near enough to a TP, since it follows from
Eq. 4A-9 that daw/dz2=0 at a TP where q(z) and 7(z) are both zero.

Equation 4A-10 may be rewritten as

2
[%z- (§ '7‘5/2)] = q(z) , (ka-12)
from which the solution for %(z) follows.
z a
7(z) = <%/ ql‘/2 (2" dz') /3 '
(LA-13)

In order that the solutions u(z) oscillate where q(z) is
positive and be damped elsewhere, it is necessary that 5(z) be zero at
at TP and have the same sign as q(z). Accordingly, in the 2TP case,

we may define an argument %(z) about each turning point
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2z 213
";U(Z) = <% / q]/z(z') dz') /

U

4 5 S, 2
P(z) = (ﬁ / a'/%(z2) dz')d/i
2

Also, the amplitude modulation, W(z), will be approximated as

(LA-14)

; 5 =112
W = constant x ’%%, . (La-15)

It follows from Eq. 4A-13 that W may be written as:

- a(z)| ™"
W(z) = constant x | ==L . (4a-16)
7(z)
If the square root of q(z) is defined as
Is) 3 2
ql/c @ |q|l/2 elﬂ/ 0= g s ZU
1/2 1/2
g’ =4 / o | it (4A-17)
1/2 1/2 din/2
3 /2 & |al R L Szde
" AU R
then the signs of Y and ¥ will be
AU
7y (z) <0 0 <z <ag,
AU AL N 8)
y (2z) >0 and ¥(z) >0 2y <z <z (bA-1
ohr \ . 4
LS e & <z
7'(z) <o 2, <2 b
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The approximate solution #(z) is then defined on two overlapping
intervals as
(a) 8'(2) =W2)d¥(z)) oO0s5zzz
(4A-19)

() @(z) - W2) 5%2)) 2z Ee

In application, the solu'ion cevelopud about the upper TP, Eq. 4A-19(a),
will be used from zero depth down to the depth of velocity minimum, Z s
and the solution developed about the lowcr TP will be used below the

velocity minimum. In Section 4B, the eigenvalue equations are obtained

by matching Eq. 4A-19(a) and kq. 4A-19(b) at Z-
Finally, the combination of Airy functions used in Eq. 4A-19

needs to be made specific. To do this, rewrite Eq. L4A-19 as

i
A U =
ay
(a) Gnq(z) . B d; [Al{-?nu) + ﬁ”Bi(-? U)]
L4A-20
.1 |1/ ’ (4A-20)
P TR Rt e X A L
(v) 4 (z) N d; [ Al(-7n ) + B B1<-7n )]

U L
where the terms Nn Q. Nn' are chosen to ensure that the normal mode

functions are normalized.

In general, the boundary quantities depend upon the SVP, the

depths, and frequency. The boundary condition at the surface is

the pressure vanish there; this is accomplished by specifying BU by

gl = -As(-$n”(o»/ﬁu(-?nu(0)) : (bA-21)




In this work, we do not consider the effects of the ocean bottom.
However, if the bottom is described by an impedance condition (Bucker

(1970]),

.g‘_z un(z) =K un(z) ’ (4A-22)

where k depends upon the properties of the bottom, then from Eq. 2A-20

it follows that BL is given by

e AL (-8(zy) ) - $M(zy) A (-9(z)

r Bi(-?L(zb)) - éL(zb) éi(—?L(Zb))

B (4A-23)

To apply the Langer solution, it is necessary to compute the
integrals of Eq. 4A-13, with ql/2 determined by the problem at hand.
The same computations must be made to apply the WKB solution, and
similar integrals arise in ray theory. Therefore, to apply the Langer
solution, only the capability to compute the functions Ai( ) and Bi(-)

is needed beyond what is needed to apply the WKB solution.

T4




A T

[V-B EIGENVALUE EQUATION

To complete the analysis, we must require that the solutions
developed about different turning points, Eq. 2A-19, match properly
at some depth. Above that depth, ﬁnU will be used to approximate
un(z), while below that depth GnL is used. TIn the next section it
will be shown that the approximuation errors are greatest at the depths
where the change in the slope of c¢(z) is greatest. Thus, it is proper
to match the two solutions at the depth of minimum velocity, Z. where
the greatest change in dc/dz normally occurs, and not continue the
solution across depth Zg To match the solutions, since it is assumed
that the density in the medium is a continuous function of depth, it
is required that the pressure and the normal derivative of the pressure

be continuous. Thus,

e A U \ @
un(z) =~ un (/ ) z ZO
ul(z) =1 L( ) 2z 7
n 2/ e 0
(4B-1)
A U A L
= (
8 (z)) = 9 (2] 1)
a0 U/dz di Eﬁlz at 2z ()
3 AR n O

We will find it convenient to replace the secornd of Eq. 4B-1 by the

condition:

(4B-2)

d GnU/dz d ﬁnL/az
PO G e ¢

u
un n

[P



If only the asymptotic form of the phase of the Airy functions
(Eq. A-11) were taken into ac-ount to match the solutions, then the
Bohr-Sommerfeld equation would be obtained. In this section, the
exact form of the Airy functions is used. However, in this work, the
phase of these functions is expressed in terms of their asymptotic
form plus the function &(:), defined below. Thus, we obtain an eigen-
value equation which is a generalized form of the Bohr-Sommerfeld
eigenvalue equation. In the next section, this generalized eigenvalue
equation will be used to compute group velocity and mode interference
wavelength equations.

The solutions ﬁnU and ﬁnL are defined in Eqs. 4A-20; however,
it is convenient for the present task to rewrite the solutions in terms

of amplitude and phase factors,

[}

ﬁnU ﬁ(z) M(?nu) cos(e(?nu) + oU) Nn%/cos(ou)

(4B-3)
L
n

A
u

G(z) M(?nL) cos(e(?nL) + UL) NnL cos(cL)

No approximation is involved in going from Eq. LA-20 to Eq. 4B-3; the

emplitude and phase functions are defined by

M(7)

(w0 + Bi%(-7))Y/?
(4B-b4)

it

6(7) arctan(Bi(-r)/Ai(-7)) ’

Properties of these amplitude and phase factors are discussed in the
appendix. The phase shifts, UU and cL, which depend upon boundary

conditions, are
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U
o arctan(p)

(4B-5)

OL = urctan(ﬁL)
Note that the function 6(7) is not limited to the principal value
interval (-n/2,7/2). Also, at this pcint, it is assumed that the TP's
are below the surface and above the bottom so that the arguments of
the Airy functions at the boundaries are positive (7nU(O) negative,
for example) so that OU and UL are small. If the mode reflects from
the boundary, the phase there may be large and the analysis needs to
be modified as is done at Eqs. 4B-19 through 4B-24, bvelow.

Next, Eq. 4B-6

8(7) = x/b = 2/3 v/2 - o(y)

(4B-6)
62 B AL
defines the function 8(+) as the differcncc between the exact expressions

for 6(y), Eq. 4B-L, and the asymptotic form, Eq. A-11l. A plot of this

function is given in Fig. 4B-1.
In computing the derivatives of Fqs. U4B-2, it will be assumed
that the function: detcrmining the magnitudes, that is, W(z) and M(?n),
; are slowly varying with respect to the variations of the cosine terms,

as expressed by

1W< 1L o] (4B-7)

and

l%l << | %E 6(7)|

(4B-8)
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FIGURE 4B-1
THE FUNCTION &(x)

3/2
§(x) = 2x

P

8(0) =

d-

Af(-x

s i Arctan Bil-
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These approximations are discussed more thoroughly in Section 4D.

However, note that Eqs. 4B-7 and 4C-8 may be rewritten as

| < |% 6] (4B-9)

and

‘%; tnM‘ << l%; 6(7)'

» (4B-10)

both of which may be reasonably expected to be satisfied in typical
ocean acoustics problems.

If one assumes that Eqs. 4B-7 and 4B-8 hold, the derivatives
of the normal mode functions of Fgs. UB-3% are

U
N

& Ay Ay s U n AU U\ d U
— U = WizM7 ") ——— sin<9(7 ) + o ) — 6(%
dz n n cos(nU) n dz n )
I (4B-11)
N
d_ L &K A L n Sl N s <
dz Gn 8 'W(‘)M(yn ) SR Sin(a(yu F e ) dz 6(yn )

s
cosl o)

Then, substitute Eq. 4B-3 and Eq. 4B-11 into Eq. 4B-2 to obtain

) U) d ;
tan(9(7n ) + 0 EZT 9(7

nU) - tan(G(?nL) 4 JL) %; 6(7nL) (

4B-12)

at 2 = 3
O

Now, the derivative of the phase function 6 for the solution from the

upper TP is given by, from Eq. A-12 and Eq. 4A-8,

d (9 U 1 d'y\nU 1 (4 )
T PR, ) w - ey " e — = : B-13
dz n nMa(?nU) dz ﬂML(an) Wa(z)
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and similarly for the derivative of the phase of the solution from the
lower TP. Since the magnitudes of the solutions must match at z=z ,

as expressed by Eq. hB-la, the derivatives of the phase functions 6

are opposites,

& o5 ¥) - - & (9 1) et 2= : (4B-1k)

dz
Thus, the two solutions are properly matched if

tan(e(?nu) - oU) = -tan(Q(?nL) + UL) (4B-15)

Equation 4B-15 is satisfied if

L

63 %) + &V = .63 %) - o - nn (4B-16)

He= 05 L

Now, use the definition of %, Eq. 4A-13, and substitute Eq. 4B-6 into

Eq. L4B-16 to obtain

2
(o}
:’%'/ a,/as - 8(9,z;)) + & -
4 ZU
. (4B-17)
L
i % +J/; qnl/2 o i 8(?nL(zo)) - - B

L

Finally, combine the two integrals and rearrange terms in Eq. 4B-17

to obtain the eigenvalue equation,

Z
/;UL qn1/2 e (n " %) s 5(9nu(zo)) e

% 8(?nL(zo)) * ¥

(4B-18)
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If the mode reflects from the surface (kn< w/c(0)), the
eigenvalue analysis must be modified slightly. As discussed in the
next section, it is no longer possible to have ?nU(z)=O at z=0 when

reflection occurs, so we must have

2/3
?nU(Z) = <-2: go +% /Z qnl/2 dz>/
o]

(go > 0) y

The term 8, accounts for the effects introduced by the fact that the

(4B-19)

profile function a, is not zero at the lower limit of the integral of
Eq. 4B-19. In the discussion up to now, with the upper TP beneath
the surface, the angle o’ has been small (less than n/6) and it has
been sufficient to define oU in terms of an inverse tangent, Eq. 4C-5.
When reflection occurs, the function aU as a function of, say, fre-
quency, oscillates and we must take into account the proper branch of
BU. This is done by using the function 6(7), defined by Eq. 4B-4, so

that Fq. 4A-19 may be rewritten as

g¥ - —tan(0(57(0)

(4B-20)
gso that
= -6(r 0) - (4B-21)
Finally, express o’ in terms of the function 8(°) as
R A A () (4B-22)

p ’ — Im"-'>_ {



Then, substitute Eqs. 4B-19 and 4B-22 into Eq. 4B-17, to get

4
[ L g Y2 g v (o1l - 5(9nv(zo)) + 5(?nu(o))

n
o
4B-2
i S(?nL(zo)> ) : i

If we consider only the (n+l/4)n term to be on the RHS of this equation,

it is the same as the Bohr-Sommerfeld equation for the case of a mode

reflecting from the surface (Schiff [1955], Tolstoy and Clay [1965]).
Equations 4B-18 and 4B-23 both have the form

e 1/2
/; (we/ce(z) - kn2> dz = (n+l/2)n + en(w) (4B-24)
U

which is the same as Eq. 2H-15, which was discussed previously. The

function .., is

e (@ = o - 82 Uz )+ o - (5. ) (4-25(a))
1f 2 >0, and

¢y = 8(3,%0) - 8(3.%z )+ oy - 8(3, %z ) - § . (4m-25(b))

if the mode reflects from the surface.

Thus, the eigenvalue equation which is obtained by extending
the Langer solution to account for the effects of boundaries and of
the actual SVP contains important terus in addition to those of the

Bohr-Sommerfeld equation. 1In Section IV-C, the mode quantities of
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group velocity and mode interference wavelength will be computed. Note
from Eq. 4B-25 that the relative effects of the boundaries and details

of the SVP upon the mode quantities may be evaluated individually.
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Iv-C NORMAL MODF QUANTITIES

The normal mode quantities of interest are the group velocity
and mode interference wavelength. To obtain these quantities in the
Langer approximation, one begins by taking derivatives of the eigen-
value equation, Eq. 4B-18 or Eq. 4B-23. At first, the derivatives of
the factors en(aﬂ in Eq. 4B-24 which account for boundary conditions
and details of the SVP in Eq. U4B-18 would seem to yield complicated
expressions. However, the simple form of the derivative of inverse
tangent function, together with the Wronskian of the Airy functions,
give expressions for the mode quantities which are amenable to physical
interpretation.

To obtain the group velocity, begin with Eq. 4B-24 and take
the derivatives of both sides with respect to frequency, holding the

mode order constant, Lo obtain

Z 7 n
L dk \ /.2 2\-1/2
w ny\fw 5
de /dm = / (—-2- - k. '1?5’)('—9 - kn> dz . (luc-1)
ZU (] e

Since the integrand vanishes at the end points, there is no contribution

from variation of the end points Zy and 2y, From Eq. hC-l, the group

~
velocity, Vv

n’

2f 2 2 \V2 i
c (o /c‘-kn') dz - den/dm

is obtained.
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Similarly, to obtain the mode interference wavelength, take the
derivative of Eq. 4B-20 with respect to mode order, holding the fre-

quency constant, to obtain
z
L dkn UF > -1/2
ﬂ"'den/dn= - : kn-dT ?-kn dz - (hc_3)
U

The mode interference wavelength, Kn’ is then given by

V4
./ Lf8
2nk / (u)e/cz-k 2> dz
n n
Aol v gt L E -t
n® = & 7dn - x + d€_Jan . (ke-b)

The functions en(a)) are defined in Eq. “B-25a, which is

repeated here in simplified fashion as

U U L L
eJm):- 8 +0 -8 + ¢ i (kc-5)

Now, the integrals which are in Eq. 4C-2 and Eq. 4C-4 define
the ray theory cycle distance and cycle time (Eqs. 2C-13) for a ray
having turning point velocity ct=aykn. Thus, the mode theory group
velocity and mode interference distance may be rewritten as
D(ZU,ZL; aykn) (1‘0-6)

~ de
) n
T(zU,zL, u;/kn) . e

A
vn(m)
and

2nD( 292y 5 u;/kn)
de

n
N P —
dn

(4c-7)

Xn(aﬂ
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Now, the quantity e depends upon both kn and w, (there is no explicit

dependence upon n), so that

de e de  dk
—-2.: n + n__r_)_
do =~ dw EE; dw
(4-8)
e o€
i
- ()
n
and
de d€  dk
all n_n
dn Wndn
(kc-9)

g€

2 &f ( An(w))"l

I

Thus, by substituting Eqs. 4C-8 and LC-9 into Eqs. 4C-6 and 4C-7,
we get

i B(ZU’ZL; ak ) - O /ok

13 Wk ) + O /A

i(zU,z

and |

25(zU,zL; u{kn) - EBen/akn

A (w)

The remainder of this section will be concerned with determining the
derivatives of the function € and relating these to physical quanti-
ties. The terms which involve the details of the SVP, 8° and 8", and
the boundary term o° will be treated individuaily. Also, modes

reflecting from the surface must be treated separately, as discussed
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in the preceding section, and reflection from the bottom will not be

considered.

Effects of Finite Distance between Turning Points and Velocity Minimum
L

s

We will first consider the derivatives of SU and &

neglecting the effect of cU and aL. The function SU is defined as

i(-7) 2 3/e -
5 - urctan(%%é:%j) s 7jf - /b 5 (4-10)
where
2 U
F=7 (e

: : . L :
Taking the derivative of 5  with respect to w, one obtains

bU

d g 2 %= d %
dw 9y  dw
i (4c-11)
B"L(_-y) 3 9 s s _ s %
AC 2 (i - iy v
AL%(<7) ALiT(-7) %
which simplifies to
U . ;
as 1/2 Adl-7]Bi(-7) - Ad(-7) Bi(-7)> dy
T b - L5} b T (uC-le)
e ( AL(=7) + B (-7) o

Using the Wronskian relation {'or the Airy functions (Fq. Al3) and

using the definition of Eq. 4B-3, Eq. 4C-12 becomes

/,,f~%gr = {71/2 - 1/n M2(7)} %ﬁ . (4c-13)

/Neifjfthe argument 7 is

Z

o W e 1/2 &3
/,/ (w7eK7) " e ' (kC-14)

K
1}

€



and its derivative with respect to w is

A -1/2

dr _-1/2 ° [ 2 i

£ [ oo o
U

Now, the integrals in Eq. 4C-15 may be expressed in terms of the ray

theory travel times and travel distances D and T as

k dk k
& _ ()12 "( ._2) _n~( , B
dw ~ () (T 22l o) " @ VUi’ o ) © (kc-16)
Thus, the derivative of 8V with respect to w becomes
d5U = kn dkn = kn
@~ Nz ) - ewi 7)) (4c-17)

where the function G(7) is defined by

G(7) = {1 - 1/xn 71/2 M2(7)} ‘ (kc-18)

A plot of this function is shown in Fig. 4C-1. The derivative of &'

with respect to frequency is given by

292 = G(? L(z » ™z ,z. ; l-“E) - Sfﬂ 5(2 2z 3 Eﬂ) (4c-19)
dw o ( oL’ o dw oL’ w
In a similar fashion, we may obtain the derivatives with

respect to n of the functions bu and bL; for example, the derivative

of 5U is
g’ _ 48] @y
dn d7 dn

kC-20
- (71/2 - (7)) ar/an ( !

where 7 = 9nu(z°).
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FIGURE 4C-1
THE FUNCTION G(x) (Eq. 4C-18)
1
G(x) = (1 -
w2 [M2(-x) + B12(-x)]
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Then, the derivative cf 7 with respect to mode order is given by

% / dk

dy =1/2 2, 2 2,-1/2 n

- -7 / /z ((.D /C - kn ) kn = dz . (‘JC-2]_)
U

Combining Eqs. 4C-20 and 4C-21, and using the definition of

Eq. 4C-18, one obtains

U ¥, 5 dk
gn_a. - - G(7nU(zo)) D(ZU,ZO: - >dn—n v (4c-22)
n

Similarly, the derivative of 6L with recpect to mode order is given by

d5L dkn
En—'— - (l() (Z )) )(7],ZL k En— . (LlC-23)

Now we may consider the group vei.city and mode interference
spacing under the assumption that the boundary conditions are unimportant,
that is, that the TP's are very far from the surface and bottom so that
we are assuming that ,e”:o and BL;O. Substituting Eqs. 4C-19 into

Eq. 4kC-6, one obtains the group velocity given by

' D (w)
v (w) = z_—n ) ( )‘C —2’4 )
" Tn( w)

where the functions 5n(w) and Tn( w) are given by

PN k
= D 2 (D_ U D LA : n
Dn(w) D(ZU’zo’ k ) % G(?n (zo)) D<‘U’zo’ u)_>

n

(kc-25)

+6(3.M2y)) B(zgpzys K /)
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and
s = w Wi ) ~( w )
= 7 + G " > B s
Tn (w) Tn(zU’,o’ kn) ((711 (Ao) - 2y to? kn

(L4c-26)

A L i LW
% G(‘}'n (zo)) T(zr)’ZL’ kn)

Also, one may substitute ky. 4C-23% into kgq. 4C-7 to show that
Aﬂ@n):QDn(uﬂ.

Equations 4C-23 through 4C-26 arc in a form which ma.es their
interpretation straightforward. The functions D and T are the ray
theory travel distance and travel times nlong a ray w. th TP velocity
aykn. The leading terms of B or T are the distance or the time in
going from ihe upper TP to the lower TP along the ray. The added terms
are the distance or time along the ray from, for example, the upper
TP to the depth of velocity minimum z & times the function G(?nu(zo)).

If the SVP is symmetric about z , then Eq. LCc-23 predicts
that the group velocity v depends only upon the phase velocity, kn/ux

~ ~
This is so because for a symmetric profile, D(z =2D(z

2o )
and T(zU,zL; ct)s?T(zU,Ao; Ct)' However, Fq. 4C-29 predicts that,

2 Cy)

even for a symmetric profile, the mode interference spacing An is not
determined solely by the pnuse velocity. In general, one would expect
partial cancellation of the added terms in the numerator and denomi-
nator of Eq. 4C-23. That is, the group velocity is very nearly

determined by the phase velo~ity (in accordance with »ay theory), as




was seen in Chapter III. However, one can expect a difference between
the mode cycle distance of a low order mode at a low frequency and
the cycle distance of a high order mode at a high frequency which have

the same phase velocity, which is close to c(zo).

Boundary Effects

Analysis of the terms oU and oL of Eq. 4B-5 proceeds formally
in the same fashion as that of the terms bu and SL. In this disserta-
tion, the effects of the bottom are not investigated, and only the
effect of the pressure release surface is analyzed. The case where the
upper TP is beneath the surface, with the boundary interacting only
with the diffracted field, is considered first. Then, the problem
with reflection from the surface is addressed. It will be shown
that only when the phase velocity is close to the sound velocity at the
surface are the group velocity and mode cycle distance appreciably
different from theif ray theory counterparts.

Consider the term o° in Eq. UC-5, which arises from the

boundary conditions. For example, from Eq. 4A-21 and Eq. 4B-5, UU is

given by
o = -arctan Ai(-?nU(O)Z/gi(-?nU(o)) 5 (4c-27)
the derivative of o” with respect to frequency is then
g a?nU(o)/“Mg(,; U0) (4c-28)
dw dw n 3
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For the case considercd first, with the upper TP below the

surface, ?nU(O) is given by

2y 172 \2/3
o 2 e ;
7nU(o) : -<%/o (kn - /e ) dz> : (4C-29)

Since the surface is in the geometrically shadowed region above Zo»

the sign of kn2 in Eq. 4C-20 is positive. The derivative of

Eq. 4-29 with respect to w of 7nU(7) is given by

xB 7 el
dy ~(0) : sijgik Wof g 82
B o) [ 2 4)

@

= dk
s w‘e) dz * (hc-30)
¢

Tt is now convenient to define the functions D¥ and 5*, which

have the units of distance and time, respectively, by

z
2 -1/2

~% 2 2

D (zl,z?; ct) = l/: (c -c, ) c(z) dz (4c-31)
1

and

2 o 1/2

~% 0 M t, 2 2\

T (21’22’ Ct) = [, -m(c -Cy ) dz S (4c-32)
1k

The function ™ represents the distanc: tetween zl and z2

of turning velocity ¢, in a SVP c*(z) as sketched in Fig. 4C-2. The

along a ray

function T* is approximately the travel time along the same ray. In

terms of these functions, Eq. 4C-30 becomes

5 Y0) i K g k
d72wo =(-?nu(o)) 1/2<§*(0,2U; Tn) _En D*(O,zU; w_“)) ‘

(4c-33)
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Then, with the function F* defiuned by

F* - (n Mz(‘/rl”(o))(-’v‘n[](m)"/£>-I ; (kc-34)

Jo A S ;
the derivative ot o with respect to frequency may be expressed as

‘1_0‘_{ - -F‘*(7 U(o))(’r*(o 23 E) - ikﬂ D*(O z, 3 Eﬂ)) (4c-35)
dw 1 XD SN ST i
A plot ot the function f* is given in Fig. 4C-3, The rapid
decay of F* means that, except at low frequencies and with the upper
P very near the surface, the presence of the surface does not affect
2 solutions. The derivative of cU with respect to mode number may

easily be shown to be given by
daU U 2 [ dkn
s 5% (i < ! 3 -—,I ——
an F\*(yn dﬁ) ¥ ("‘U’ kn Ay < (hC-}G)

Now, consider the effect of the upper boundary upon the mode
gyuantities, assuming that, the TP's sre very far from the axis of the
SVP, so that the function G of Eq. 4-18 is effectively zero. Then,
~ .

v, is given by

(@) D (@7 (w) (4c-37)

~ ~
where Dn and Th ar« given by

= ~ w AU - kn 8
Dn(m) = D L ) B F*(7u ())) (0,23 = (4c-38)

and

~ ~ k
) & 5 1 \ o I n
Tn((m B rr(?'”"‘zb’ f) i F‘*(/“ /(') Ty( i | ; (4c-39)
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The ordinate scale is log[log(F*)]

THE FUNCTION F*(x) = (Eq. 4C-34)




Now, the added terms on the RHS of Eqs. 4D-42 and 4D-43 are
largest when the TP is nearest the surface, where a limiting form for

these equations is needed. We will assume that c'e(z) is linear near

the surface:

“(z) = e No)ane) (4c-40)
so that
2/3
1/2
~ U
7y (0) = <§mﬁ’> i (kc-b1)
e
B*(O,ZU; ’?‘3"’) & 2<Eq) ’ (4c-42)
n
and

: . \1/2
f*(o,zU; ;f—';) ~ FE%(%) : (4C-L3)

Thus, as the TP approaches the surface, Bn(QO and Tn(aﬂ approach the

values:
% i ; L LT
Dylw) = D(ZU’ZL’ %) 3 (ﬁ) 3 M(0) ey
1/3 4
3 (o) = Fles; &) (&) (4c-45)
To(@ = T(zgz, kn) (fw ) 3nc(0) M2(0)
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To complete the consideration of boundary effects, reflection
from the ocean surface must be taken into account. The modes which
reflect from the surface are those whose phase velocities exceed c(0).
As we have just seen, when the upper TP is below the surface, the group
velocity Gn and mode spacing Bn are influenced by the presence of the
boundary only if the TP is near the surface (9nU(O) small). Similarly,
if there is reflection from the surface, ﬁn and Qn differ from their
ray theory counterparts only if the phase velocif.y is close to (in
terms of ?nU(O)) the sound velocity at the surfa~e, as will be shown.

The situation of surface reflection needs special attention
because of the fact that the function ?nU(z) has been defined in terms
of an integral from zy to z; when there is reflection, zU=O, and we

need to define the function 7nU(z) as:

Z 2/3
?nU(Z) 5 (% g0 3 g L q'nl/2 dz) ’ (l#C-h6)

where
g = 5( 5,%0)% . (kc-47)

To see that it is not sufficient to set go=0, consider a situation
such as indicated by Fig. hC-h, where the phase velocity is sub-
stantially greater than the c(0). Then, near to the surface, the

mode function will be of the form:

Y20y 2) . WE

un(z) = sin(qn




FIGURE 4C-4
MODE FUNCTIONS NEAR THE SURFACE FOR REFLECTION

Left: PROFILE FUNCTION q (z) for reflecting mode
Right: Comparison of forms of mode functions for qn(o) =
(a) ﬁn = sin (z) (Eq. 4C-48)
(b) wu, = Af(-t) - Ai(0) Bi(-c)/B1(0) (Eq. 4C-51)
¢ = (3 22)%°
(c) U, = Ri(-g') - Af(-zy) Bi(-¢')/Bi(-gq) (Eq. 4C-54)
¢ = 3+ 9P g - 1523
The offset of 5 is arbitrary.
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Also near the surface, ?nu will be

3g s Jel3
3. 02) = | 52 + 2 ¢ MY2(0) : (4 -49)

Thus, if we were to set g, to zero, the Langer solution would be

& Yz)

A Ai(-t) - B1(0) Bi(-t)/Ai(0) 3 (4C-50)

where

¢(z)

1]

(% z qnl/g(o))2/3 : (kc-51)

Equations 4C-48 and 4C-51 are shown in Fig. 4C-4, along with the form
of Eq. 4C-54 (below) with an arbitrary choice of z - As may be seen,
Eq. 4C-51 does not have the proper phase; this problem does not occur
if an adequate choice for 8y such as the one belcw, is made.

For this paper, we will assume that, near the surface, the

SVP has the form:

e s} = & toMANE) (kc-52)

8o that
a,(2) = X(14uz)/c%0) - k ° . (4c-53)

Then, near the surface, u, will be of the form

un(z) = Ai(-M(z+zn)) - M(_Mzn) Bi(-M(‘Z+zn)>/Bi(-Mzn) g (kc-54)
where
2 AL/
3 =((:§:'v,) . (4c-55)
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and
c2 0 2 2
zn = _iu._z (kn - c‘g(o) . (l‘c-56)

Therefore, when there is reflection from the surface, we need to choose

5 %0) =M, (kc-57)
or,

2 3/2
- § 0¥

_2 @&  .1/2
i € o ol

2]
|

k-
3/2 (kc-58)

To obtain a more familiar form for g , note that, if we let Eq. kc-53

define qn(z) for negative z, then g_ is equal to
3/2 R T
o 2 A U = dz .
g = 5 (5,%0) /-zn % (4c-59)

Now, we may consider the derivatives of the eigenvalue
equation for the case of surface reflection, Eq. 4B-23. Since we

are considering only the effect of surface reflection, it is

’L
[ %1/2 dz = (n+l/b)n + 5<9nu(0)) ‘ (4e-60)
o]

We will use Eqs. LC-U49 and 4C-59 to specify ?nU(O). The analysis
leading to Eq. 4C-17 dealt with the derivatives of Eq. 4B-18; the form
of Eq. 4B-18 differs from that of Eq. 4C-60 only in a factor of /b

and the sign of the function 8(-). Thus, from Eq. 4C-1T we have



k
% 8(%, ) =c(9n"(o))(€~(-zn,o; %) - -ikT" B(-z,,0; -w—“)> » (bc-61)

where E,and D are computed using the SVP of Eq. 4C-52 and z, is given

by Eq. 4C-56. Similarly, from Eq. 4C-22, it follows that

dk
& 803,(00) - 6(3,"z,)) r“><-zn,o; ;f—> % - (-6

Thus, the group velocity for modes reflecting from the surface is

§ =D (0)/T (a) (4c-63)
where
Bn(aﬂ = E(ZU’ZL; %:) + G(?nu(zo)) 5(-zn,0; %:) : (uC-6M4)
and
in(w) = T(zU,zL; %t) + c(;nU(zUZ) 5(-zn,o; %ib) : (4c-65)

If the phase velocity is close to c(0), then the limiting forms for

A A

D, and T, given by Egs. LC-L4 and UC-45 are obtained; this is so

because the functions G(x) and -F*(x) approach each other as x —0.

Summary
By combining the effects of the boundary condition at the

surface and the effects of a finite distance from the TP's to the
velocity minimum, the group velocity and mode cycle distance may be

written as

%,(0) = D (w)/T () (kc-66)
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and
R(a) = D (0) (kc-67)
where
By(0) = B(ayzys §-)+ 4w (kc-68)
and
Bl0) = Blayozgs ) + o) (kc-69)

The quantities D and T are the ray theory travel distance and travel
time (Eqs. 2C-13) between TP's of a ray with turning point velocity
ay/kn. The added terms are given by, in the case of modes not reflecting
from the surface, combining Eqs. 4C-25 and 4C-38 to.obtain An(m), and by
combining Eqs. 4C-26 and 4C-39 to obtain T,(®). For the modes which
reflect from the surface, combine Eqs. 4C-25 and 4C-64 to obtain

An(m), and Eqs. 4C-26 and 4C-65 to obtain Tn(a)).




IV-D ANALYSIS OF APPROXIMATIONS

Two approximations have been made, the discussion of which
has been deferred. It is the purpose of this section to examine them
in terms of representative SVP's. In Section IV-A, in order to solve
for the argument of the Airy function of Eq. 4A-2, it was assumed that
the second term of the RHS of Eq. 4A-9 could be neglected. That is,
it was assumed that the solution of Eq. 4A-9 is approximately the same
as the solution of Eq. 4A-10. 1In Section IV-B, it was assumed that,
at the depth where the solutions from the upper and lower TP's are
matched, Eqs. 4B-7 and 4B-8 are satisfied.

For convenience, we will consider the profile function near,

say, the upper TP, and use the variable {=z-z _ as shown in Fig. u4D-1.

)
Also shown are representative sketches for the profile function a(z)
and the argument of the Airy function, 7({). We will consider q and 7
near the point Co; the quantities a, b, and 5, which are defined in
Fig. 4D-1, depend upon the point CO.

First, consider the approximations of Section IV-A. The

differential equation of interest, Eq. 4A-9, is rewritten in terms of

this section's notation as

2
7(%%—) = q(8) + %?g . (4D-1)

To neglect the second term on the RHS of Eq. 4D-1, we assume that

I%W %?”- " i W (4D-2)
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q(c)

v(z)

FIGURE 4D-1 g, ech
SKETCH OF PROFILE FUNCTION q(z) AND OF y(t) BELOW A TP

TJOP: PROFILE FUNCTION q(cg)
a = qlzy)/e,
b = da/dg at ¢
a, * dq/dz at ¢ = 0 (the TP)

BOTTOM: FUNCTION y(z)
72 2 (e )z,
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It should be remembered that if q(f) is specified by a linear form
(l/c2(z) linear), then the function W is a constant and there is no
approximation in our solution. Thus, Eq. 4D-2 will hold if the profile
is "close" enough to a bilinear form. From Eq. 4D-1, it directly

follows that the second terms of Eq. 4D-1 vanishes at the TP,

fii"é:o at £ =0 § (4D-3)

at
(The equation corresponding to E(. 4D-1 for the WKB approximation does
not have the factor of 7 on the LHS, so that there is no equation such
as Eq. 4D-3 for the WKB solution.)
Next consider the function y near the point Co. In terms

of the quantities of Fig. 4D-1, 7 is given by

t 12 /3
7=<E 1/2;3/2+%/ (ag + b(L-t )) / dz) : (4p-4%)
¢ o] O

e

Using power series expansions within the integrand and then for the

2/3 power, 7 is given by

+ + (“D-5)
o e g
(o} (o)

2 3
PO <1 ¢ A(E-co) B(E-L)°  c(t-t,) > :
(o]

with the terms A, B, and C given by
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Note that, if q is linear from the TP to {, A=1 and B=C=0. Also, if
the slope of q(f) at CO is the same as the mean slope from the TP to
A (that is, a=b), then the second derivative of 7 vanishes at §0.
Then, neglecting the constant normalizing factor, the amplitude

modulation W (Eq. 4A-15) is given by

2
A B(§-C.) : 3C(x-x ) ;
5 t 2 (4D-7)
(6}
so that the desired quantity, W"/qW, is given by
w" 3 3 b b2 )
e = - - ab & : (4p-8)
i <Z S aa &

As mentioned above, this vanishes i a=b; when this happens, W" will
change sign. Therefore, along a profile such as shown by Fig. 4D-2,
even though the magnitude of W"/W might become large, it will oscillate
and be negligible, after integratién, in comparison with q({).

Equation 4D-8 may be used to estimate whether or not a
solution will hold across a break in the SVP. For example, Fig. 4D-3

illustrates a profile with one break - at the axis. Using the values of

a, b, and a in Fig. 4D-3, Eq. 4D-2 becomes
3 4 Jare
B i) (4D-9)

That is, at frequencies above, say, 20 Hz, a solution about the upper
TP should be valid even across the large jump in the slope of the SVP
shown. (In practice, one would use the solution developed about the
lower TP below zo.) However, at lower frequencies this would not be

the case. This is illustrated by Fig. 4D-3, which shows the functions




q(z)

q(z)

FIGURE 4D-2
PROFILE FUNCTION q(&) WHICH OSCILLATES ABOUT A LINEAR FORM

At the depths marked X on the abscissa, g% = %. so that W'= 0
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G4L(z) DIFFERENCE - PERCENT
- 0 ol 0 o5
0 1 J 0 _T__ 1 S|
: M“\
1 <:" 1 //>
E /"> £
1]
E k\\\\\\
8 >
2 - // 2
l
[
3 - ! g
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FIGURE 4D-3(b)
ILLUSTRATION OF ERROR MADE IN CONTINUING A SOLUTION ACROSS A CHANGE IN dc/dz

The SVP is the same as for Fig. 4D-3(a); only the

GL are shown. Mode 4 1s at 11 Hz and mode 1 is at
7 Hz; the TP's are the same as Fig. «D-3(a).
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ﬁnU(z) and ﬁnL(z) at 49, 11, and 7 Hz, which have the same TP's.
Note that, at the higher frequency, very little error is made by
continuing across the break in the SVP, as predicted by Eq. 4D-9.

Next, consider the approximations of Sections IV-B.

Again,
it will be convenient to express the derivative of 6 as
a6 T gl
=-—5% ; (4p-10)
1M
Using Eq. 4D-10, Eq. 4B-8 becomes
1 pdte 2 -1
=2 << 4p-11

That this will be satisfied very close to the TP is shown by Fig. 4D-L.

Lastly, for Eq. 4B-7, we will use the form of W(z) given by
(4p-12)

At the axis of the SVP, where we wish to match solutions, q'=0 so that

W'/W is given by

W'/W=7y/4r (whenq' =0) (4D-13)

If Eq. 4D-13 and LD-10 are subst’tuted into Eq. 4B-9, the requirement

of Eq. 4D-14 is obtained

2
: %
’%ﬁ <« n i (LD-1L4)

The LHS of Eq. L4D-14 is also plotted in Fig. 4D-L.
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THE FUNCTIONS OF Eqs. 4D-11 AND 4D-14
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V. EXAMPLE APPLICATIONS

To illustrate the Langer solution, the formulae developed in
Chapter IV will be applied to compute normal mode quantities for speci-
fic examples. First, in Section V-A, a series of profiles constructed
from a few linear segments will be considered. These examples will
illustrate that the predictions of ray theory and normal mode theory
differ significantly when the turning points are near to a boundary.
Then, in Section V-B, normal mode functions and quantities for illus-

trative experimental profiles will be presented.

113




114

V-A SIMPLE LINEAR SEGMENT PROFILES

In this section, we present plots of the group velocity,

GD(w) and mode cycle distance, Xn(w) for a series of SVP's constructed
from a few linear segments. This will illustrate the conditions under
which these mode theory quantities differ significantly from their ray
theory counterparts, and therefore there is a significant frequency
dependence of the mode theory quantities. The condition under which the
Gn(w) versus cn(w) plots have the greatest frequency dependence is when
the upper TP is slightly below the surface or when cn(w) is slightly
greater than c(0). When this happens, the boundary value at the surface
is an important factor determining the normal mode function at low fre-
quencies, whereas the boundary condition has no counterpart in ray
theory. The Langer solution developed in Chapter IV was used to compute
the figures presented here. As stated previously, the Langer solution
is well suited to the problem with TP's near to a boundary.

The profiles designated A1000, A500, A200, and AlOO are shown
in Figs. 5A-1, 5A-2, 5A-3%, ard S5A-4, respectively. The group velocity
Vn versus phase velocity B for each profile at 20, 50, and 150 Hz is
also shown. In Fig. 5A-1, the ray theory signal speed (D/T), and Gn at
10 Hz also are shown. The ray theory signal speed is not distinguish-
able from Gn at 150 Hz, except at the phase velocity of surface reflec-
tion. Therefore, the ray theory quantities are not shown in the other
figures of this section. The mcst prominent feature of these figures is
the frequency dependence of the Qn versus ¢ curve near ¢ = 1540 m/sec,

the sound velocity at the surface. As indicated by Eq. Le-4kh, this
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frequency dependence (or departure from ray theory) is greater, the

less the slope of the layer near the surface. Figures 5A-1 through

5A-4 illustrate the amount of frequency dependence to be expected for
these four nominal SVP's. The mode cycle distance, Kn’ versus c at

20 Hz, 50 Hz, and 150 Hz for profiles AlOOO and AlOO are shown in Figs.
5A-5 and 5A-6, respectively. Profile Al1OOO is similar to the one used
by A. Guthrie [1974] to explain the frequency dependence of experimental
convergence zone spacings, and the mode cycle distances shown in

Fig. S5A-5 are approximately equal to the ones presented by Guthrie.

We will consider next the =ffect of the presence of a layer
in which the gradient of the SVP is relatively small in comparison with
the average gradient at nearby depths. From the point of view of ray
theory, those rays which have a TP within such a layer will have an
anomalous increase in D and 5/5, because of the relatively large curva-
ture of rays within the layer. The examples examined show that, when
the anomalous layer is far from the boundary, the normal mode quantities
(plotted versus cn) do not have significant frequency dependence as far
as the effects of the layer are concerned. However, if the layer is
near the surface (as is often the casc in the oceun environment) then
the effect of the layer is very frequency dependent.

Figures 5A-7 and 5A-8 show Gn versus c for the profiles
named B500 and B501, respectively. These are similar tLc the profile
designated A1000 (Fig. 5A-1', «xcept that, start’ng at 500 m depth,
there is a layer in which Idc/dzl ie only 0.C10 se-c-l rather than
0.055 sec-l. The layer is 100 m thick in B5C0 and only 10 m thick in

B501. A plot of the ray theory signal speed would be indistinguishable




120

*3AJND SNONULIUOD e Se pajjo|d aJe Aay3 3ey3 paseds A|as0|d Os 3de
ZH QSL 3@ S3pow 3y3 404 sjutod Ayl (-89S 34nbLj UL umoys st 3| tjoud siyy

000LlY 3713J0dd ¥04 ALIJ0T3A 3ISVHd SNSA3A 3INVLISIO 370AD 300W
S-VS 3{N9I14

sas/w - Y5 - AL19073A 3SVHd

0sS1 orst OES| o«»n_ o1s1 00S1 Oo6v!
: 1 1 |

osvlL

ZH OL ¢+ o

- 0l

wy - Yy - JONVLSIO 370AI 300W

P




121

3AJNJ SNONULIUOD e se pa3lold aue Aay3 ey padeds A|aso|d os aJe
ZH 0SL 3® s3apow 3y3 4oy sjujod 3yl -85 3.nbLj up umoys sy a|130ad siy)

00LV 371304d ¥04 ALIJ0T3A ISVHd SNSY¥3A 3INVLSIA 31IAD 300W
9-vS N9I4

sas/w - Y5 - A119013A 3IsvHd

0981 0551 orst 0€s!t (7491 ots1 0051 o6v1 osn
B | 1 1 1 | | 1 0
- Ot
m
.ION i
-
“IJ
m
Bkt -
3
=
-0y M
]
HVV
18 []
-
- 09
L o

e

N S —




122

*32uspuadap Aouanbauy 3[33L| SL 343Y3 ‘3J0JUNS Y} WO JB! SL YILym
43Ae| SnoO(owWOuR Y3 JO JBYJ JRAU SALILO0[3A 3seyd 3y "IAJND SNONULIUOD © SP
pajjold aue Aay3 jeyy paseds A|aso|d OS 3Je zH 0§l I S3pow 3y3 40j ~jutod ayj

00S8 371408d ¥04 ALIJ0T3A 3SYHd SNSY¥3IA ALID0T3A dNOY9
L-Y¥S 3¥N914

sas/w - Y3 - ALI2073A 3ISVHd

0951 0ss1 orsi 0ES1 0zst oist 00s!t o6vL 08P
L 1 1 | 1 1 i 1 w osrl
w 00SS I® IIS/W /GG —
ZH 02 = — Serl
w 009 3 J3S/W GEG] — 408 ¢ -~
= 2o
ZH 0SL —

T toaal

/

ses/u - o - AL12073A dNOY9

— 067!
w 00S 3I® J3S/W G pIGL E\ooo_ 30 23s/w S8yl
wQ 3e 23
0 3@ 23s/w Oop5| —— e
0058 3714044
— 00S1




123

*3ouapuadap Aouanbauy 31331 SI 343Y3 “3IRJUNS BYJ WOLS JB) SL YOLYM
J43Ae| SnQlowoOUR 3yl JO Y JRAU SALILI0|3A 3Aseyd Iy ‘IAJND SNONULIUOD © SB
p3330|d 3Je A3y3 jey3 paseds A|3sO|d OS 3Je ZH 0G| 3@ SIpow 3yl 404 sjuiod ay)

L0S8 371J0¥d ¥03 ALID0T3A 3SVHd SNSY3A ALIJ0T3A dNOY¥D
8-VS JN9I4

sas/w - Y5 - 41120731 35VH4

o9st oSSt orst O€S! ozst otst 00S§1 oérL osn
L 1 i 1 1 L | i |
osrt
W 00SS 3® 23s/w 7GG|
ZH ON = (111 m
W 0001 3° 23s/w ggy| g ks \\\ w s
zH 051 — ” . =
W OLS 3® J3s/w §-g (g .\\ ! =
/ | S
/ Losm =2
— -<
W 00S 3I® J3s/w 9 gy — i '
UAv
w 0 3% 395/u Opg| 2
.\\k -som @
10S8 311408d 2
~ 00St
L sost

AR a S e




from the 150 Hz curve except for the effects of the surface, nesr e
1540 m/sec. In particular, the cusp near e = 1513.5 m/sec is the
anomalous increase in 5/5 predicted by ray theory. The Gn(w) at 20 Hz
and 50 Hz in Figs. 5A-7 and 5A-8 lie along the 150 Hz curve, including
the cusp, until the effects of the surface are a factor. Not only the
modes with cn(w) near the sound velocity in the layer are affected;
above, say, ¢ = 1515 m/sec, the group velocities of Fig. 5A-7 are
approximately 2 m/sec higher than those of Fig. SA-1. This frequency
independence of the "structure" in the normal mode quantities caused by
anomalous layers away from the surface is also shown in similar curves
computed by K. M. Guthrie [1974a] by numerical solutions of the depth
equation.

When the anomalous layer is near to the surface, a very
different effect is seen. The profile designated BOOO is shown in
Fig. 5A-9, with a plot of Gn versus e at 20 Hz, 50 Hz, and 150 Hz.
Again, BOOO is similar to the profile Al000, except that a layer in
which |de/dz| is only 0.010 sec™ lies from the surface down to 100 m
depth. For this profile, the ray -heory signal speed (D/T) is also
shown. The presence of the layer o1 small gradient at the surface
causes, in this example, a spread of 5 m/sec in group velocity at these

frequencies for phase velocities near the surface velocity.
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V-B EXAMPLE EXPERIMENTAL PROFILES

Normal mode quantities and mode functions have been computed
for SVP's from two areas. The profiles from the two areas are of a very
different nature; this results in a marked difference in the curves of
group velocity or mode cycle distance versus phase velocity. The normal
mode functions for two profiles from the Pacific which differ at depths
above the velocity minimum but are otherwise almost identical are pre-
sented to illustrate the type of change to be expected of the mode
functions along paths across a gradually changing environment. Some of
the experimental profiles have been slightly modified to remove small
segments of positive gradients of c(z) above Z, OF negative segments
below.

Figure 5B-1 shows a bottom section along the Pacific Ocean at
approximately 143° longitude, together with three SVP's measured at
different locations. The profiles are nearly identical below the veloc-
ity minimum, but, because of colder temperature of the near surface
portion to the north, the scund velocity above the minimum is less to
the north. Figure 5B-2 shows group velocity versus phase velccity at
15 Hz, 50 Hz, and 160 Hz for profile (a) of Fig. 5B-2. The structure in
the plots at phase velocities less than 19500 m/sec is caused by layers
of locally anomalous gradient, such as those of profiles B500 and B501
discussed in the preceding section; in this region, the group velccity
is largely determined by the phase velocity. At phase velocities near
the surface velocity, 1532 m/sec, there is a noticeable frequency

dependence of group velocity at a given phase velocity.
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1532 m/sec 1525 m/sec 1520 m/sec
or // r'/ r/
“ N 1480 m/sec N 1478 m/sec - 1478 m/sec
20+ —— 1491 m/sec
(o) (b) (e)
30+ — 1506 m/sec
40 — 1524 m/sec
50
60 -
NORTH ——o
70 o | 1 1 1 1 1
600 500 400 300 200 100 0
RANGE - nm
FIGURE 5B-1
BATHYMETRY AND SOUND VELOCITY PROFILES
NE PACIFIC

Below 2000 m, the three profiles
are nearly identical



128

"8A4ND snonuUL3uod B S pal3o|d aue Aayy ey paseds
K13s01d> os aue zy 091 3® s3pow 3y3 40y :o pue Y Yy

-85 "614 30 (®) 3114084 - ALIDOTIA ISVHd SNSY3A ALIJ013A dnO¥D
2-9S 34n914

23s/w - Y - 2119073 IswKd

0951 orst 0€S! 0zsi otst 00S$1 (0.3 41 osrl
L 1 | | 1 | | —1 osm
ZH Sl
ZH 0S __
ZH 091 — : Peed -sem
il _
_

— 067(

—Sérl

s9s/u - “p - ALI20T3A dnowo

— 00St

— S0S1




|

129

Figure 5B-3 shows an SVP from the North Atlantic and a plot of
Gn(w) versus cn(w), again at 20 Hz, 50 Hz, and 160 Hz. This profile
differs from that of Fig. 5B-1 in that the span of c(z) is only
25 m/sec, and the profile shapes differ. 1In Fig. 5B-3, the sound
velocity decreases steadily in the first 50 m, and then varies about a
constant value down to approximately 1000 m depth. This structure is
caused by the presence of different water masses flowing at different
depths. Because of the several velocity minimae in the SVP of Fig.
5B-3, only modes with phase velocities greater than 1485 m/sec were
computed. The group velocity curve of Fig. 5B-3 is also different from
that of Fig. 5B-2. In particular, at phase velocities near the surface
velocity, there is little difference among the group velocities at
different frequencies. This lack of frequency dependence arises from
the large gradient in c(z) at the surface, where the SVP is similar to
profile A200 (Fig. 5A-3).

As a final éxample, normal mode functions for profiles (a)
and (c) of Fig. 5B-1 have been computed. The propagation along such a
"slowly varying" propagation path is analyzed by Mildner [1969], who
shows that, at sufficiently low i'requencies, individual mode excitations
propagate adiabatically, that is, without intermode coupling. Figure
5B-4 shows the sixth order mode function at 15 Hz for profiles (a) and
(c) of Fig. 5B-1, computed with the Langer solution; at this frequency,
propagation is adiabatic by Mildner's formulae.

The phase velocity, group velocity, and upper TP depth for
the two mode functions are also given. Notice that, above the upper TP

for the mode function of profile (a), the function shows a definite
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FIGURE 5B-3
GROUP VELOCITY VERSUS PHASE VELOCITY - PROFILE FROM NE ATLANTIC

The ¢ and Cn for the modes 2t 160 Hz are so closely

spaced that they are plotted as a continuous curve.
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z, = 223 m z, = 78 m
Ce = 1502.4 m/sec Ce = 1500.5 m/sec
66 = 1482.8 m/sec 36 = 1481.3 m/sec
FIGURE 5B-4

SIXTH ORDER MODE FUNCTIONS AT 15 Hz
The profiles are (a) and (c) of Fig. 5B-1.
The mode amplitudes are arbitrary




decay towards the surface. In contrast, the mode for profile (c), which
has its upper TP closer to the surface, is nearly linear from the
surface to the upper TP. The two modes shown in Fig. 5B-4 differ in
shape in the upper 500 m; however, below 500 m, the mode function for
profile (&) is nearly equal to the mode function for profile (c) at

approximately 100 m shallower depth.




VI. SUMMARY AND EXTENSIONS

In this dissertation, Langer's asymptotic solution has been
applied to the problem of acoustical propagation in the ocean. It is
shown that the eigenvalue equations for the normal modes of propagation

may be given in the form:

2, [ 2 o 1/2
/ (c?”(; - kn) dz = (n + 1/2) n + en(m) -

2y

The guantities en(w) arise from the Langer solution; in addition to mode
order and frequency, the en(m) depend upon boundary values and upon the
distance from turning points to the depth of minimum velocity. From the
eigenvalue equation, formulae for the normal mode quantities of group
velocity and mode cycle distance were derived. These were expressed in
terms of a characteristic distance, 8n(w), and period, %n(w). It was

shown that

~ ~ w
Dn(a)) = D(’.’.U,ZL; k_) b An(a)) 5
n

and
o] b w
Tn(cu) = T(ZU,ZL; E:) + rn(w) .

The terms D and T are the ray theory horizontal distance and travel time
between the turning points of a ray with turniag point velocity equal to

the phase velocity of mode n. The additional terms, Ah and L depend
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upon boundary values and upon c(z) between the turning points and the
boundaries, and c(z) between turning points and the depth of velocity
minimum. For representative sound velocity profiles, normal mode
quantities were computed using the formulae developed in this work to
illustrate the effects of the ocean surface and of anomalies within the
SVP upon the group velocity and mode cycle distance.

There are several areas in ocean acoustics for future work
with the Langer solution. First, the solution (Eq. 4A-20) may be
incorporated in a computerized model for computation of the acoustic
field from a source (Eq. 2D-25), or propagation loss (Eq. 3-1); the
Langer solution for the normsl modes may be incorporated in existing
computer programs. A second, and more interesting, area is the use of
more realistic boundary conditions for the ocean bottom (Williams
[1976]1). It was shown in this work (Fig. 5A-1, for example) that the
normal mode quantities (versus vhus- velocity) are most dependent upon
frequency for the mode whose phase velocities are close to the sound
velocity at the surface. A similar effect will occur at the ocean
bottom, with additional featurec due to the acoustic properties of the

bottom.




—————— AR

APPENDIX A

RELEVANT PROPERTIES OF AIRY FUNCTIONS

The purpose of this appendix is to record the properties of
Airy functions which are used in this work; only functions of real
argument are considered. A thorough discussion of the solutions to
Stokes' equation, including historical background, is given by Miller
(1946]; additional references are Antosiewicz [1964] and Erdelyi [1956].

The Airy functions are solutions to Stokes' equation,

il

w' -2w =0 : (A-1)

The two solutions to Eq. A-1 arc the functions Ai(z) and Bi(z), so that,

letting @ and B be arbitrary constant:,

w(z) =a Aiflz) + B Bi(z) - (A-2)

The functions Ai(z) and Bi(z) are shown in Fig. A-1; ascending series
expansions about z=0 are given in the referenccs. The asymptotic

expansions for Ai(z) and Bi(z) use the auxiliary variable,

t=8a2 (A-3)
For poeitive real argument,

AL(z) ~ % a2 o1/ -t (A-k)

Bi(z) ~ u-l/z z-l/l+ . (A-5)
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whereas for negative argument, as may be seen in Fig. A-1l, the functiors

oscillate. For negative argument, it is convenient to introduce the

amplitude and phase functions, M(z) and 6(z), defined by

i

Ai(-z) = M(z) cos 6(z)

Bi(-z) = M(z) sin 6(z)

N?(z)

A1%0-x) + Bi%(-2)

6(z) = arc tan[Bi(-z)/Ai(-z)] .

Then, the asymptotic form of the amplitude function is given by
¥() - Y2
and the asymptotic form of the phase function is
o(z) ~ x/h - 225125 .
An exact equation for the derivative of' the phase function is
6'(z) = -1/n W(z)
The Wronskian of the functions 4i(z), Bi(z) is

Ai(z) Bi'(z) - Ai'(z) Bi(z) = P R

(A-6)

(A-T)

(a-8)

(2-9)

(A-10)

(A-11)

(A-12)

(a-13)
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