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INTRODUCTION

Precision frequency control requirements for digital communication and
position location systems currently undergoing development make it imperative
that crystal resonator performance be improved in a number of aspects.
Accordingly,3£he potential of doubly rotated quartz cuts has begun to be
explored.l‘l For cuts on the upper zero temperature coefficient locus in
general (8 = +34°), and in the neighborhood of the SC~cut in particular
(¢ = 21.9°, 0 = +33.9°), a variety of effects having their bases in nonlinear
elasticity have been shown, or are predicted, to be reduced below the corres-
ponding AT-cut values. In addition, the static frequency-temperature

behavior shows some improvement.
Among the nonlinear effects of interest are:
® Force-frequencyl’ll’13’25*
] Acceleration-ftequency26:27*
e Resonance amplitude-frequencyl0,28-31*
e Intermodulation32-35*
e Mode coupling-activity d1p536'43*
e Dynamic thermal-frequencyZ,4,7-9
e Film stress-frequency3s5,44*
Additional references and discussion may be found in References 6 and 45.*
Some of these nonlinear effects have received, or are receiving, theoretical
and/or experimental treatments; this technical report is principally con-
cerned with the force-frequency effect which has thus far not been investiga-~
ted in any detail for doubly rotated quartz plate vibrators. This effect
relates the initial stress produced by the mounting supports to resonance
frequency changes; it contributes to long-term aging and is also related to

the frequency excursions produced in shock and vibration enviromments.

In-plane diametric forces applied to the periphery of vibrating plates
produce frequency changes (order 10~7 per gram) that depend upon the azimuth
angle y in the plane of the plate. If ¢ is measured from the X, axis, then

it is found experimentallyl,11,14-18,20 that for the AT-cut the effect is zero

at ¥ values of approximately 60° and 120°. For the IT-cut at ¢ = 19.1°,
Ballatol found the zeros to occur at ¥ = 85° and 163° with a maximum value

about one~third that of the AT~cut. This points to a reduced coefficient at .
the SC-cut as well.

In this report we extend the force-frequency effect measurement to doubly

rotated quartz plates on the upper zero temperature coefficient locus, con-

centrating on .the SC- and FC-cuts because of their technological significance.
Also given are charts of the mode spectra in the region of the thickness modes

and the modal temperature coefficients.

*See list of references beginning on p. 39.
1
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The force coefficient data are compared with theoretically predicted
values obtained from a variational principle applied to an anisotropic disc
supported at two diametric points. This analysis departs from previous
treatments3,5,19,21,23,24 in two major respects: 1) the isotropic stress
pattern is replaced by the more accurate anisotropic stress; 2) the elastic
problem is treated for the general triclinic symmetry, rather than for the
monoclinic symmetry appropriate to rotated-Y-cuts.

These investigations verify the predicted superiority of doubly rotated
quartz plates over the conventional AT-cut, with respect to the force-
frequency effect, and provide further motivation for their continued
development and utilization.

DOUBLY ROTATED CRYSTAL PLATES

Doubly rotated crystal plates are the most general kind of one-
dimensional thickness-mode vibrator. The orientation is uniquely specified
by two angles--¢ and 6. Following the usual convention,“G* the orientation
with respect to the crystallographic axes is described as (YXwl)¢/6.

Examples of singly and doubly rotated cute are shown in Figure 1 along with
the ansles.6 Shown in Figure 2 is the locus of zero first-order temperature
coefficient (2TC) for quartz resonator plates. In quartz, the first rotation
lowers the apparent symmetry from trigonal to monoclinic; the second rotation
further lowers it to triclinic.

STATIC FREQUENCY-TEMPERATURE BEHAVIOR

For quartz plates on the upper (0 > 0) ZTC locus, the static frequency-
temperature (f-~T) curve exhibits a cubic behavior. The AT-cut is the classi-
cal example. Whereas the inflection temperature (the temperature half way
between turnover points) occurs at room temperature for the AT-cuts, this
temperature increases steadily with increasing angle ¢, becoming 48°C at the
FC-cut, 74°C at the IT-cut, 95°C at the SC-cut, and 157°C for the rotated-X-
cut.13 Frequency-temperature-angle curves for the AT- , FC- , and SC-cuts
are given in Figures 3, 4, and 5, respectively. Typical £-T curves for the
SC-cut are shown in Figure 6 for the c- and b-modes. Dots represent measured
points. For the b-mode (the faster, quasi-shear mode, classed as undesired),
the first-order temperature coefficient is -25.1 X1076/K. The c-mode (slower,
quasi-shear, desired mode) curve was fit by quintic least-squares to yield the
following coefficients at 25°C:

a= 0.38 X10°6/k d = 136. X10~15/g4

b = -11.4 X109/K2 e = 175. X10-18/k5

c= 26.8 X10"12/g3
The SC-cut is seen to have its inflection temperature around 100°C, so that it
would normally be operated around its lower turnover temperature, where the
upper turnover is used for the AT-cut. Compared with the AT-cut, the SC-cut

is also flatter, so a given temperature control will correspond to a smaller
frequency deviation.

*See 1list of references beginning omn p. 39.




FIGURE 1.

SINGLY (a) AND DOUBLY (b) ROTATED CRYSTAL PLATES .
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MODE SPECTROGRAPHS®

A wideband mode spectrograph is shown in Figure 7 for an SC-cut crystal.

The modes, in order of frequency, are denoted as m‘/’), where m is the mode
type (a, b, or c) and M is the order of the harmonic. The sequence shown is
cf1) bfl) afl) cf3) b§3) cf5) b§5) af3) and c(7). The thickaess-shea: mode
TS; at cutoff corresponds to the c-mode; the thickness-twist TT; at cutoff
corresponds to mode b, and mode a 1s the thickness-stretch mode, TE. The
spacings and amplitudes measured agree closely with those calculated last
year.6 Table 1 extends the calculations to higher harmonics The raticsof
frequencies are for unelectroded antiresonance frequencies.

In Figure 8 the spectrum in the vicinity of the c-mode is shown; a
narrowband plot about the b-mode resonance is given in Figure 9. From
Figures 7, 8, and 9 one sees how very clean the spectrum is, even for the
harmonic modes. The flat SC-plate used for this experiment had the following
measurements :

plate diameter ¢, = 14.18 mm;

electrode diameter ¢, = 5.0 mm (keyhole pattern);
mass loading (plateback) u = 1.8%;

c-mode fundamental frequency = 5.937 MHz.

Although one would suspect that the SC orientation, because of its lower
symmetry, would have a more complicated unwanted mode spectrum, it appears
that energy trapping7,48* can be applied readily to these plates, although
the optimum electrode shape®9* and plateback relations are not available at
the present time.

ELECTRICAL CHARACTERISTICS

For the ideal case of an infinite plate having a uniform distribution of
motion laterally, the SC-cut c-mode yields the following physical and electri-
cal characteristicslZ?,13:

e Dielectric permittivity of static capacitance Cg:

€ = Cotya/Ag = 39.8 pF/m

e Motional time constant: 1:‘ - l?.l(:l = l’lI'l = 11.7 fs

e Capacitance ratio of fundamental: r(l) = colc‘ - e/I‘; = 496

e Frequency constant: N = 1.797 MHz-mm
e Motional capacitance constant (permittivity of motional capacitance):

I'l e Clt./Ae = 80.3 fF/m

*See list of references on p. 42,
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TABLE 1. SEQUENCE AND STRENGTHS OF SC-CUT MODES.

Mode Frequency Ratio Strength
XT) (™, D 5
m Cc
e 1.000 4.3
pD 1.100 0.0
D 1.882 10.4
3 3.000 23.4
(3 3.301 19.1
B 5.000 32.3
) 5.501 28.0
at? 5.646 29.5
D 7.000 38.1
{7 7.701 33.8
9 9.000 42.5
2% 9.410 38.3
p¢? 9.902 38.2
L) 11.000 46.0
p b 12.102 41.7
¢t 13.000 48.9
at 13.174 44.2
p{13) 14.302 44.6
(23) 15.000 51.4
p'2) 16.503 47.0
¥ 16.938 48.6
87 17.000 53.5

(Strength = dB level of mode m(M) below

5.5 dB below mode c(l) (AT-cut).)

11

b(l); mode b(l) (SC-cut) is
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NARROWBAIID MODE SPECTROGRAPH FOR THE SC-CUT c-MODE.

FIGURE §.
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T

e Motional resistance constant (resistivity of motional resistance):

Pl = RlAe/ta = 146 SO-mm.

In the above, A = 102/4 is the electrode area, and ta is the plate
thickness.

We pick for illustration the measured characteristics of resonator SC-4:

H fél) = 5.937 MHz

e t

3.304 mm L

® ia = 14.18 mm

® Co = 3.79 pF
® C1 = 5,91 fF
° R1 = 55 Q.

From these measurements we deduce the following effective values:

® Qa/ta = 46.9

o r1) s
° rl = 325 fs

e 3§, (effective) -(lotaca/'lre)!i = 6.06 mm

e A/t =953 mm
e’ "a

® Pl = 62.0 fF/m

° El = 5.24 Q-m

e Q = 1/w 11 = 82,500

o v = Pl (effective)/l‘1 (theoretical) = 77.3%.

In the above the effective electrode diameter ¢ was determined from the
measured value of C_. The measurement of C_ and C, was carried out on an RX
Meter (schering btiage) using a frequency synthesizZer. In the vicinity of
resonance, the parallel capacitance versus frequency curve approximates a
hyperbola very closely, and C_ and C, are obtained at the same time. Our
measurements were fit by leasg-squares to improve the fit. The presence of
stray capacitance effects was also carefully minimized. The nominal elec-
trode diameter was 5 mm, whereas the effective value is about 6 mm; the
discrepancy may be partly due to the electrode tabs, with some component due

to stray.

14




It is interesting to compute the values of C;, R;, and Q that would
result in the ideal case of uniform distribution of motion and all losses due
solely to bulk wave attenuation due to the viscosity. The results are:

e C, = CO/r(l) (theoretical) = 7.64 fF

1
™ Rl -Pl (theoretical) - ta/Ae =1.53 Q

® Q= 1/up t (theoretical) = 2.29 x10°.

Taking into account the nonuniform distribution of motion with ¥, the
motional resistance would become (again assuming all loss is due to
viscosity):

. R1 = R1 (theoretical)/¥ = 1.98 Q.

Most of the loss in this resonator is due to factors other than the bulk wave
viscosity. In fact, since

® Tl (effective)/'rl (theoretical) = 27.8,
the bulk wave component is only (1/26.8) or less than 4% of the total.

At present, the apportionment of the losses in doubly rotated resonators
is largely an open question. It was observed, however, that those SC-cut
resonators having the electrode tabs running along Z" had resistance values
from three to ten times smaller than those with tabs aligned along X". This
points to energy being carried away to the mounting at the plate edges.
Associated with this 1s the fact that the doubly rotated cuts in quartz do
not support pure modes, such as the AT-cut mode. This means that the SC-cut
c-mode consists in particle motion that is out of the plane of the plate.
Considering the plate axes as the reference set, and performing ¢ and 6
rotations with respect to this plate reference coordinate system, the angles
$¢q and 64 of the particle displacement for the SC-cut c-mode are:

® ¢, = 8.57°

(-]
° ed = 13.7
The out-of-plane displacements are not negligible and certainly represent,
for plano-plano resonators as described here, a significant mechanism for
energy loss to the ambient fluid and the mounting system. Beveling or con-
touring the resonators and operation in a vacuum enclosure would decrease the
size of these losses.

Energy trapping is another useful tool for keeping the Q high, as well
as maintaining a clean mode spectrum; the energy-trapping rules for doubly
rotated plates have yet to be worked out.

Additional work must also be done to calculate the frequency-wavelength
dispersion diagrams for doubly rotated resonators. If the ratio & /t_ used
happens to fall at a position where there is, e.g., strong coupling to flexure
waves propagating laterally across the plate, then energy would be carried
from the desired mode into the unwanted motion.

15
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MATHEMATICAL MODELING

An overview of the present theoretical work, compared to past treatments,
is shown in Figure 10.

Past theoretical analyses3,3,19,21 of static mechanical stress bias
effects, in general, and of force sensitivities, in particular, have been two-
step calculations. First, linear elastic solutions for the distribution of
static mechanical stress bias in the resonator blank were obtained assuming
that a-quartz is isotropic. These isotropic static solutions for the stress
at the blank center were then used to calculate resonant frequency shifts in
nonlinear wave propagation calculations which included the correct anisotropy
of quartz and third-order elastic constant effects.

The present work is a two-step calculation where an attempt is made for
a better solution to the static problem. The calculus of variations (essen-~
tially the Rayleigh-Ritz method)’0* is used to find approximate solutions to
the anisotropic static stress problem. The approximate static solution for
the stress at the blank center is used in a nonlinear elastic wave propagation
code to calculate resonant frequency shifts.

The present theoretical results for the singly~-rotated AT- and BT-cuts
provide a much improved comparison with published experimental results than
the earlier theoretical results. The theory is used to calculate force sensi-
tivity coefficients for the doubly rotated family containing the important
AT- , FC- , IT- , and SC-cuts. The results provide the crystal designer with
the appropriate azimuthal angle to mount the resonator on a two-point mount
for minimum force sensitivity.

A. Theory

One calculational approach that has been useful on numerous occasions for
calculating stress patterns in static and vibrating elastic material bodies is
the calculus of variations.>1,52* The method is approximate, although the
closeness to which the approximate solution can be brought to the actual solu-
tion is a matter of degree depending on the choice of trial (basis) functioms,
available computer size, and patience. The method for static problems amounts
to formulating the total elastic stress-strain energy stored in a given body
for the given boundary conditions and trial functions and then adjusting the
trial functions to minimize the stored elastic energy. The approximations
obtained with the method are somewhat better for the elastic energy values
than for the stress distributions, but sufficient accuracy of the stress dis-
tributions can be obtained for practical considerations.

The total stored elastic energy L is given by

s ! 3 i 1)
L= fo av §.3,C y ffd.S F,U,
v ]

Here V and S are the resonator blank volume and surface, ng is the elastic
stiffness tensor in engineering notation, F; is the distribution of force per
unit area acting on the surface, Uj is the elastic displacement vector. We
use a cartesian coordinate system xy for the plate, and

*See list of references on p. 42.
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MATHEMATICAL MODELING OF FORCE-FREQUENCY EFFECT

PRIOR ® [SOTROPIC INITIAL STRESS FIELD ASSUMED,

© ANALYSIS LIMITED TO ROTATED-Y-cuts (YX£)8,

PRESENT @ ANISOTROPIC INITIAL STRESS FIELD OBTAINED
BY CALCULUS OF VARIATIONS.

@ SOLUTION APPLIED TO DOUBLY ROTATED CUTS
(YXwDP/8.

B T W TSPy oo sy ST 7o TSRO

FIGURE 10. SYNOPSIS OF FORCE-FREQUENCY EFFECT MODELING.
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sij = (ui’j + Uj,i)/Z. (2)

Here A and p run 1-6, and 1 and j run 1-3. S_ is related to S44 by the
conventionalll relations between engineering and tensor notatiomns.

The present calculations treat a circular resonator blank of diameter d
and thickness 1 described by the IRE standard46 notation (YXw)¢/6. We con-
sider only contoured or energy-trapped resonator designs where the vibra-
tional acoustic energy is restricted to the vicinity of the blank center.
Contouring effects are ignored for the static stress distribution calculation,
however, so that the much simpler problem of a flat circular plate can be
solved for the static stress distribution. This simplification is warranted
because the thin resonator blanks used for thickness shear resonators allow
the assumption that the thickness dimension is small enough for a plane
stress problem.

In the case of plane stress, A and y run 1, 3, 5 and 1 and j run 1, 3,
in Equations 1 and 2 (x7 is blank thickness direction, x; is £, x3 is w in
the standard notation). Also, C), is replaced by v, , the planar elastic
stiffness coefficients expressed gn the plate coordigate system. Hence: ;

Y. i /f 4 3) 1
L=3 [/:iac]_dx3dv S Sa¥n } 4s FU, _

The variational method involves substituting a linear superposition of
trial functions for Uj into Equations 2 and 3, carrying out the integrals in
Equation 3, and minimizing the resulting expression (differentiating the
expression with respect to a given coefficient and setting that equal to
zero) with respect to the coefficients of the trial functions. The problem
then becomes a linear algebra problem in the coefficients. The choice of
trial functions must be such that they represent a pointwise complete set
over V and S. If the trial functions already satisfy some aspect of the
problem such as the differential equation or boundary conditions, the number
of trial functions needed for adequate convergence is small. For the present
case, we take the easy way out and choose a simple power series expansion for
Uj and rely on the computer to handle large numbers of trial functions. The
trial functions chosen for the two-point problem are

MNPQ .
)
= 2m+l . 2n 2p q+l
Ul Z gA’m T B R
m,n,p,q=0
and
~ 2t 2u+l)
Lo 24 +
vy= D {qu T N T 1 i
Patu

The value for F; is set equal to
Fi = F/(GT) ’ (6)




.

where F is the inwardly acting force applied to the opposite ends of a blank
diameter, T = tg is the plate thickness, and § is some length dimension which
is small relative to the blank circumference (point force). All the inte-
grals can be carried out in Equation 3, the surface integral being treated in
the 1imit of a point force (6 + 0). After differentiation with respect to
Am» qu. and Deyr the resulting linear algebra problem has a solution for

’ Bp , and D_ , which scales with F. Thus, the static stress distribution
can be Solved for any kncwn Yy A+ A computer code for the linmear algebra
problem was written which inc!uded rotation of the quartz elastic temsor to
obtain vy, and arbitrary selection of M, N, P, Q, T, and U. From symmetry
arguments, one is led to use groups of the trial functions, adding new groups
until satisfactory convergence is obtained. The groups are defined by (O,R),
where the group includes all pairs of (m,n), (p,q), and (t,u) with the first
member increasing from zero to R in steps of one while the second member
decreases from R towards zero in steps of one; e.g., (0,3), (1,2), (2,1),
(3,0) make up the family (0,3).

The resulting solution for the static stress at the plate center using
the published c constants for quartz53 is incorporated into a previously
described computer code3s3 which calculates the resonant frequency shift
caused by elastic nonlinearities (third-order elastic constant effects) .4
Wezgse here the definition for the force sensitivity coefficient Kf defined
as

Af FNo
T ke g ¢))

where N, is the frequency constant. The plate diameter_is d = ¢,. Units are
K¢ in m-sec/N, N, in m/sec, d and T in m, and f in sec™l or Hz. K¢ is posi-
tive if frequency increases upon application of a compressive force.

The direction of the applied forces F is important because of the aniso-
tropy of the quartz nonlinear elastic problem and because of the quartz
anisotropy in the static stress problem (the latter is ignored in earlier
isotropic static solutions). We choose to follow the earlier experimental
work by presenting results for the K¢ of a given (YXwL)$/6 cut as a function
of azimuthal angle y. The azimuthal angle is measured in right-hand conven-
tion about x% from x{ (or £) in the plane of the plate: positive angle going
from xi to -x4, as seen in Figure 11. The direction of the applied force is
therefore specified by x}] when it undergoes the rotatioms (YXwit)¢/6/¢y. The
angles ¢, 0, and Y are just the euler angles encountered in classical
mechanics. ¥

B. Results

The program was first tested for isotropic blanks. The solution at the
center of the plate_cgnverges rapidly (four significant figures) to that
found analytically,56 i.e., 6F/ndt compression along the diameter aligned
with (inwardly directed) F and 2F/ndt tension along the diameter perpen-
dicular to F.

Calculations were carried out for the AT- and BT-cuts since there exist
large amounts of force sensitivity data and considerable discrepancies
between the data and earlier theoretical results for these cuts. The results

*See list of references on p. 43.
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for the zero temperature coefficient thickness shear c-mode are shown in
Figure 12 as K¢ vs. y. The "isotropic assumption" in Figure 12 is the result
obtained in the present computer codes when the isotropic solution (-6F/mdr,
2F/mdt) is used for the static stress pattern at the plate center. This
result, which is representative of the best results obtained before the
present work, is numerically equivalent to the results of Lee, et al.2l Note
the discrepancies between the isotropic assumption results and the experimen-
tal summary provided by Ratajski;20 namely, the difference in value for K¢

at ¢ = 0 for the AT-cut, and the complete failure to predict the dip in the
BT-cut results. As seen in Figure 12, the present calculations using the
variational treatment are quantitatively accurate at y = 0 for the AT-cut and
predict a dip for the BT-cut. The calculations leading to Figure 12 involved
using all the families up to and including (0,5), making 21 values each for
Apns Bpqs and D¢y for a 63 x 63 linear algebra problem. The addition of the
(0,5)family only changed the numerical answer for the stress at the plate
center in the third significant figure, so that some idea of convergence
would be provided.

Figure 13 contains present results for the thickness-shear (mode c)
IT-cut and previously published experimental results.l The qualitative fea-
tures of the experimental data are reproduced by both the isotropic assumption
results and the full variational result. In view of the results in Figure 12,
where more experimental data exist, we consider the variational result to be
the more accurate. The quantitative discrepancy between experiment and theory
is not as serious as might appear in Figure 13 because there is a factor-of-
two scale expansion between Figures 12 and 43 to account for the generally
smaller K¢ values of doubly rotated cuts.

A series of calculations has been carried out for the zero temperature
coefficient branch (mode c) subset within (YXw2)¢/6: ¢ = 0° (AT-cut);
¢ = 10°; ¢ = 15° (FC-cut); ¢ = 19.1° (IT-cut); ¢ = 21.9° (SC-cut); $ = 30°
(rotated-X-cut). The results for K¢ vs. y are shown in Figure 14. The curves
drawn in Figure 14 are presented separately in Figures 15-20.

The family of curves for K¢ vs. ¢y in Figure 14 are the general theoreti-
cal results for this report. The curves should be useful in choosing the
optimum location of bonding pads for two-pecint mounts to minimize the effects
of mounting stresses and some effects of shock and vibration.

In Table 2 are given the computed angles y at which K¢ is zero, as func-

tion of ¢. Table 3 lists the computed locations and values of the extrema of
Kf as function of ¢.

TABLE 2. ZEROS OF K¢

64.7 , 115.3
68.5 , 125.2
74.8 , 148.8
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TABLE 3. LOCATION AND VALUES OF K¢ EXTREMA

¢° )d Kf (max) Ve K¢ (min)

0 0 24.5 90 -11.5
10 17.6 21.4 93.2 -10.8
15 26.0 18.2 98.8 - 8.9
19.1 36.6 15.3 118.1 -10.1
21.9 44.3 14.7 131.6 -14.3
30 55.6 14.7 130.0 -23.9

(K¢ in 10715 mes/N)
EXPERIMENTAL CONFIRMATION

Apart from the IT-cut results obtairned in 1960,1 no experimental results
were available for comparison with the theoretically predicted force-
frequency curves of doubly rotated cuts of quartz, shown in Figure 1l4. 1In
order to obtain these results, the experimental apparatus of Figure 21 was
constructed. It contains provisions for the precise rotation of the angle V
by means of a vacuum chuck for holding the crystal (end maintaining strict
crystal vertical alignment) and high-ratio reduction gear. Five mil wires
are bonded to the crystal and serve for the electrical connections. To the
left in the figure, the connections are brought out to a Crystal Impedance
Meter (RFL model 459 = TS-3%0with low drive modification37*). The frequency
is recorded from a counter.

Micrometer adjustments are available for assuring accurate alignment of
the various portions of the jig. Force application was made by a movable rod
on which calibrated masses were applied; the mass of the rod was taken into
account. The overall setup is shown in Figure 22.

The crystals considered here had orientations (YXwl)¢/6, with ¢ = 10°,
15°, and 21.9°, and ¢ such that the units had zero temperature coefficients
(¢ = +34°). All crystal units were provisionally scored near the X} axis
(projection on the Z, or optic, axis). The true location of X% with respect
to the score mark was later determined for each crystal to within 1° by a
conoscope, and enabled Y to be accurately known. (This procedure was also
applied to the still-extant IT-cut crystal that was described in Reference 1.
The new measurement disclosed that the true X% axis as seen in the conoscope
was a full 19° in error with respect to the score mark on the crystal. Thus,
the curve in Figure 18 of Reference 1 ought to be translated to the right
with respect to the graph axes, so that the zeros occur at 85° and 163°.

This finding was a welcome resolution of a disturbing discrepancy between
theory and experiment!)

Measurements were made in |y intervals of 10°. Three readings were taken
at each Y. Firet, the frequency of the unloaded vibrator was measured. Then
the weight was lowered gently, and the loaded frequency was recorded.
Finally, the frequency with the weight removed was measured. The first and
third frequencies were, in all cases, at most one or two Hz apart. Kg was

#See I1st of references on p. 43.
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FIGURE 21, APPARATUS FOR APPLYING EDGE FORCE TO CRYSTAL.
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then calculated from equation (7) using the measured values of frequency
change Af with applied weight, plate diameter and thickness, force applied,
and crystal frequency constant No. For the three cuts considered, the anti-
resonance frequency constants are

¢ = 10°, N, = 1690 m/s
15°%, 1726
21.9°, 1797

Figures 23, 24, and 25 show the experimental curves for the c~mode cuts
at ® = 10°, 15°, end 21.9°, respectively. Included in each figure is a curve,
shown dashed, of the theoretical result obtained from the variational proce-
dure outlined earlier. The solid curves represent experimental results
averaged over a group of units anu also over a number of runs on each unit by
three experimenters. The error bars represent data extremes encountered.

pata scatter is worst for the ® = 10° units, and & fully satisfactory
explanation for this cannot at present be given. In all cases it was
observed that the unloaded frequencies appeared to vary with P, indicating,
e.g., 8 stray capacitance effect due to the changing proximities of the con-
necting wires to the fixture. A wodification of the mounting arrangement to
reduce this effect produced the solid curve shown in Figure 25 without the
error bars. As may be seen in the figure, the modification improves the
agreement of the experimental curve with the theoretical. 1Im Figures 23, 24,
and 25, the agreement between experiment and theory is generally quite good,
especially when the smallness of the effect is borne in mind. The overall
magnitudes predicted and observed agree well, as do the general features in
each case. The symmetry about Y = 0° and 90° observed in the AT- and BT-cut
curves (cf. Figure 12) is seen to be absent in the doubly rotated cut curves
of Figures 13, 23, 24, and 25; this is because the digonal axis of symmetry,
which lies in the plane of rotated-Y-cut plates, is out of the plane for cuts
having ¢ # 0°.

A comparison of Figures 24 and 25 with Figure 12 reveals that the peak-
to~peak excursions of K¢ with ¢ for the FC- and SC-cuts is about one half
that of the AT-cut. This indicates a reduced gensitivity of these cuts to
mechanical shock. Further comparison between Figures 24 and 25 discloses
that the average force coefficient

T
&= 7 fo Re(¥) av (8

for the FC-cut is positive and relatively large (albeit lower than for the
AT-cut); whereas for the §C-cut it is very small (ideally zero). This fea-
ture stems from the SC-cut definition as the ZTC orientation for which planar
stress produces no frequency change.

Figure 26 gives the results of a preliminary set of measurements of the
force sensitivity for the b-mode of the SC-cut. This mode has antiresonance
frequency constant

N, = 1977 m/s,

and a temperature coefficient of approximately -25 or -26 ppm/K. Because of

34
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the large temperature coefficient, the force coefficient measurements are not
as easy to make as for the c-mode. The results reported in Figure 26 should
be regarded as tentative; they disclose, however, that K¢ exhibits no zeros

along the Yy axis.

CONCLUSIONS

Doubly rotated quartz resonators have been considered as to frequency-
temperature behavior, mode spectrum content, and primarily with respect to
the force-frequency effect. It was found that the f-T curve shifts upward
in temperature with increasing ¢ angle and becomes flatter. The mode spec-
trum is complicated by the presence of all three thickness modes, but their
anharmonic overtones may be very adequately suppressed by means of emergy

trapping.

In the force-frequency portion, the calculus of variations has been
used to obtain solutions for the static stress distributions caused in
circular quartz resonator blanks by forces acting along a diameter. The
resulting static stress distributions have been used to predict the force
sensitivity of the resonant frequency of thickness shear resonators. The
present results are shown to agree more favorably with experiment than
results obtained by previous theories where the quartz was assumed to be
isotropic for the static stress solution. General results are given by the
doubly~roteted family (YXwf)¢/6 along the technologically important zero
temperature branch which contains the AT- , FC- , IT~ , and SC-cuts. The
results will be useful for choosing the location of bonding pads for two-
point mounts so that mounting stress effects can be minimized.
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APPENDIX A |
RESONATOR PREPARATION |

The resonator plates used for these investigations were of three |
orientations:

¢ = 10° , 6 = 34°50'
15° 34°16' (FC-cut)
21 . 9° 33°54 v (SC-CUt) .

Each orientation group consisted of four crystals. Initial thicknesses
varied from t, = 0.635 mm to 1.397 mm. All crystal blanks were rough-lapped
to a thickness of 0.559 mm with #400 mesh silicon carbide in a water slurry.
The plates were then reduced to the operating thickness according to the
fcllowing schedule:

Grit Size Material Removed Plate Thickness
# 600 0.076 mm
0.483 mm
12 ym 0.076 mm ;
0.407 mm
5 um 0.051 mm
0.356 mm
3 um 0.038 om
0.318 mm
Polishing 0.013 mm .
Compound 0.305 mm
(cerium
oxide)

The final plate thickness brings the c-mode fundamental resonance into the
neighborhood of 6 MHz.

In the lapping process, the crystals were grouped according to orienta-
tion and thicknesses to within +0.013 mm for each of the above stages. These
groups, in turn, were cemented witi. a wax-rosin compound to a 75 mm diameter
optical flat (flatness better than ln /10) during lapping as a means of
assuring orientational integrity and ﬁarallelism.

All blanks were rounded after lapping. The plates were loafed together
in standard fashion, and the diameter reduced to 14.18 mm for the SC-cut
units and 13.97 mm for the ¢ = 10° and 15° cuts. The final diameter was
reached when, upon microscopic inspection, all hairline cracks, chips, and
scratches were removed.

The cleaning procedure consisted in washing the blanks in detergent and
rinsing them under running tap water, as a first step. (Cleaning was limited
to this first step in the washings that took place between successive stages
of the lapping procedure discussed above, and during each reversal of the

plates on the optical flat.)

Cleaning of the polished resonator blanks prior to electrode plating
congisted of the further steps:
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® Inserting blanks into specially constructed stainless steel wire jigs.
® Degreasing in boiling acetone or methanol for 3 minutes.
® Rinsing In hot distilled water in two successive stages.

e Agitating in ultrasonic bath with hot ethyl alcohol for 1 or
2 minutes.

e Blowing dry with hot air (blanks still in jig).

After the cleaning, the blanks were removed from the holder jig by
teflon-coated tweezer and placed in a UV/ozone cleaning facility. This has
been shown to be_an effective way of removing a variety of contaminants from
quartz surfaces.*?

The blanks were electroded with argon-sputtered gold films to a diameter
of 5 mm with a connecting tab in a keyhole pattern. Plateback values were as
follows:

u=0.8 , ¢=10° |
1.3% 15° |
1.8% 21.9°

Excitation of these plates was made possible by bonding 0.127 mm wires
directly to the electrode tabs with electrically-conducting cement.

1. J. R. vig, C. F. Cook, Jr., K. Schwidtal, J. W. LeBus, and E. Hafner,
"Surface Studies for Quartz Resonators," Proc. 28th AFCS,* May 1974,
PpP. 96-108.

2. J. R. vig, J. W. LeBus, and R. L. Filler, "Further Results on UV Cleaning
and Ni Electrobonding,'" Proc. 29th AFCS, May 1975, pp. 220-229.

*AFCS: Annual Frequency Control Symposium, US Army Electronics Command,
Fort Monmouth, NJ 07703.
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