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The results of an experimental study on the compressive and shear
strengths of floating, fragmented ice covers are presented. The compressive
strength of prestrained covers and of covers submitted to an approximately
constant preload was found to be essentially equal to that of unstrained,
non-preloaded covers. An important finding was that the compressive
strength 9 s became independent of the velocity Vc at which the load was
applied when Vc became greater than 0.01 ft/sec, and that for Vc > 0.01
the ratio of strength to cover thickness t became, within experimental
accuracy, approximately constant independent of both Vc and t. However, the
difference observed between the present study and that of a previous, similar
investigation led to the conclusion that small variations in the air and/or
water temperatures can have a large effect on ocr' and ocr/t, probably due
to their affecting the formation of cohesive bonds between the ice particles
within the ice covers.

The shear strength T of covers of various thicknesses measured in
a linear and in a cylindrical apparatus were found to have essentially the
same values in both apparatus. The strength T was found to become inde-
pendent of both the velocity of application of shear VE and of the cover
thickness for Vc > 0.01 ft/sec. The results also showed that the shear
strength of covers made of crushed ice was higher than that of covers made
of ice parallelepipeds, probably because of the difference in porosity and

interparticular surface area between the two types of cover.
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I. INTRODUCTION

Ice jams can be best described as chaotic disorderly untidy
affairs which at first glance appear hopelessly complex and unsuitable for
analytical or even experimental studies. Problems posed by ice jams include
flooding caused by blockage of channels, damage to structures, interference
with navigation, and obstruction of water diversion intakes, with often
large economic, physical, and even human losses as consequenceé. Attempts
have been made, out of necessity, to understand and predict the conditions
under which ice jams will form, their evolution in thickness and profile,
the forces that they may exert on existing structures (bridge piers, dams,
etc...) or structures specially built for their control (ice booms). Ice-
jam understanding calls upon the knowledge of hydraulics to predict the added
resistance to flow, resulting backwater curves in channel and flooding
potential; as well as upon mechanics of materials for determination of jam
mechanical properties, compressive and shear strengths either as consolidated
ice covers once the individual ice floes composing the jam are frozen
together to form a solid ice cover, or as unconsolidated aggregates of ice
floes of various dimensions, from a few feet to several tens of feet in lateral
dimension and from a few inches to a few feet in thickness. The actual
problem of ice-jam mechanics is further complicated when frazil ice accumulates
below a jam originally formed of large ice floes. Detailed description of
ice jams and reviews of the literature related to their mechanics have been
given by Bolsegna (1968) and Uzuner and Kennedy (1974). Histories of specific
jams have been published by the U.S. Army Corps of Engineers (1967), by
Frankenstein and Assur (1972), and Ly others.

When an ice jam is considered to be a continuous medium, a first
approximation to a most complicated natural phenomenon, the forces acting
on a control volume of length dx and width B (channel width), as depicted
in Figure 1, are

F = the normal thrust per unit width on the upstream face of

the control volume.

F+dF = the normal thrust on the downstream face.
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tt dx
Bt.dx

the shear force at the bank-jam interface

the shear force at the jam-water interface due to the
flowing water beneath the jam.

W, =p'g t B dx S = component of jam weight in flow direction

The force balance equation of the control volume is

[

E
X

+ 2 tt = Bri +p'gtBs (1)

o)

In the available mathematical models for ice-jam equilibrium, by
Pariset et al (1966) and by Uzuner and Kennedy (1974, 1976), the equilibrium

thickness te of the jam is determined by the condition |

F = Fc = maximum compressive strength of cover of thickness te

or

&6

t=t
e

The force exerted by the jam on any structure will then be equal to
Fc. Assuming that the jam has uniform properties across the channel width,
then

where oc is the compressive strength of a fragmented cover of thickness te.

As can be seen from (1) the shear strength T of the cover plays 3

b an important role in the jam thickness. At the limit T = 0, the equilibrium
k condition can never be reached, and the jam thickens continuously at the same

time that it progresses upstream.

| Uzuner and Kennedy (1974) describe the development of a jam as follows:

“"As the length of the jam is increased by the arrest of the newly
arrived floes near its upstream end, the total streamwise external
force applied to the jam upstream from any section will cause the
jam to thicken by failure or "collapse" of the ice cover, until
its shear and compressive strength are great enough to balance

the applied forces,... Moreover, the failure results from dis-
placement between fragments, and not in general from rupture of
the pieces of ice." (page 12)
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In past years, experimental investigations of the relationship
between the failure compressive strength ocr and shear strength 1 of
fragmented ice cover and ice cover thickness and deformation rate were con-
ducted in the IIHR Low Temperature Facility. In their studies of - Uzuner
(1974) and Nakato (results reported by Tatinclaux et al. (1976)) found that
¢ the failure compressive strength is inversely proportional to deformation
rate.

The investigation reported herein was the continuation of these
previous studies on ccr and T. The objects of this study were threefold:
First, to investigate the relationship between . and t. Second, to see
whether ocr is affected by preloading the fragmented ice cover. Third,
to determine whether there is a significant difference in T between the
results obtained in Merino's (1974) investigation and this investigation
in which two kinds of shearing test apparatus, rectangular and cylindrical.
were used.

The experimental procedures, techniques and results of compressive
strength and shear strength tests are described and presented in Sections II
and III, respectively. Discussion of the results and a summary of the

conclusions observed from the study are given in Section IV.

II. COMPRESSIVE STRENGTH OF FRAGMENTED ICE COVERS

A. Introductory Remarks. In the tests reported by Uzuner and

Kennedy (1974) for the determination of the compressive strength ocr of
fragmented ice covers, it was found that the ice covers tested were too

long and, thus, that the part of the cover far away from the area of appli-
cation of the compressive force did not become stressed during loading.
Instead, the load applied was transferred through shear to the walls of the
tank, and consequently the observed failures might have been caused partly

by shear. Furthermore, a buckling type of failure was observed to occur

at times, which was believed to be an artifact of the laboratory test apparatus
and not likely to happen in most field sifuations. In Nakato's tests reported
by Tatinclaux et al (1976), shorter cover of lengths 3.6 ft, 3.0 ft, 2.6 ft
and 2.0 ft, were used. It was observed that the compressive strength of the

ice cover was then independent of the cover length L. Therefore, in the




present experiments, just one cover length, 2 ft, was tested.

B. Experimental Unit. The compressive strength experiments were

conducted in the 2-ft deep, 3-ft wide, and 19-ft long insulated force tank
of the IIHR Low Temperature Flow Facility. The compressive apparatus, shovn

schematically in Figure 2, consisted of three main parts.

1. Force-driving mechanism. The normal force applied to the
fragmented ice cover was created by a driving plate attached to the motorized
carriage supported by four ball-bushings riding on l-inch diameter rails.

The carriage was driven by a variable speed, one-horsepower DC motor on
tweo tracks which were affixed to the tops of the long walls of the tank.

The motor speed was remotely controlled through a SCR drive control, and the

carriage speed could be adjusted through a dial setting on the SCR drive control

regulator. The range of carriage speed could be varied from 0.004 cm/sec to
2.4 cm/sec. The relationship between carriage speed and dial setting was de-
termined by direct measurement of carriage speed for a series of dial readings.
The speed of the carriage could also be inferred during each experiment from

the output of thedisplacement measuring potentiometer described later.

2. Force measuring system. The driving plate was attached to
the carriage through a moment insensitive dynamometer shown in Figure 3. A
Statham Universal transducing cell, Model UC3, and load cell, Model UL4, were
connected to the dynamometer and used to measure the compressive force applied
by the driving plate on the fragmented ice cover. Two load cells, of capacity
up to 200 1b and 500 1lb, were used depending on the expected magnitude of the
compressive force. The voltage output of the transducer was amplified by and
recorded on a multiple channel recorder Beckman Dynograph R Type. A block
diagram of the transducer circuit is shown as Figure 4. The force measuring
system was calibrated by applying known horizontal loads to the driving
plate. The calibration curve was found to be linear between load and output

voltage, with calibration constants as listed in Table 1.

3. Displacement measuring system. The displacement of the driving
plate was measured by a 10-turn potentiometer, shown on Figure 5, attached to
the carriage. A rubber wheel at the end of the potentiometer shaft was set
in contact with one of the two racks installed on the walls of the tank and

rotated while the carriage moved. The voltage output of the potentiometer was
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Table 1 Calibration ratios of force to output
voltage for load cells with different
capacities. (unit: lb/mv).

ensitivity 0.5 1.0 2.0 5.0
Load Cell mv/cm mv/cm mv/cm mv/cm i
|
500 # 37.34 38.31 39.45 38.70 |

1‘
200 # ——— 14.79 14.90 14.84 |
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Figure 5. Photograph of potentiometer
(mounted on cylindrical shear
apparatus)
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also amplified by and recorded on a second channel of the Beckman Dyno-
graph. The calibration constant was found to be 0.011 cm/mv for a recorder
sensitivity of 200 mv/cm. The block diagram of the transducing circuit

is also shown in Figure 4.

C. Test Material. The fragmented ice covers tested were made

of ice parallelepipeds of dimension, 1% inch x l% inch x %E inch, manu-

factured in a commercial ice-maker.

D. Experimental Set-up and Procedure. q

1. Experimental Set-up. During all experiments the room temp-
erature was kept nearly constant at 0°C. Prechilled water was pumped

into the tank and allowed to reach a uniform temperature nearly equal to

0°C. The required quantity of ice to give the desired cover thickness

and cover length (L = 2.0 ft.) was placed in front of the driving plate.
The floating ice cover was gently agitated with a rod to insure as uniform
a cover thickness as possible. Measurement of the floating ice cover
thickness was performed by means of an L-shape staff gage fitted with an
inch scale and attached with a 3 inch x 5 inch horizontal rectangular
plate. The staff gage was inserted through the ice cover and raised until

theplate came in contact with the bottom of the cover. The thickness of

the cover was read from the scale on the gage staff. The thickness was
measured at four or more points of the cover in order to verify that the
cover thickness was practically uniform.

The Beckman recorder was turned on and allowed to warm up at the
beginning of each series of experiments. The initial output voltages
of the load cell for zero applied load and of the potentiometer for zero
displacement were balanced to give zero output voltage by adjusting the
balancing circuit of the Dynograph recorder strain gage coupler. Then the
heat pens of the recorder were set to zero position on the recording
chart. The SCR drive control dial was set at the position corresponding
to the desired carriage velocity and the carriage was set in motion. The
force and displacement outputs were recorded versus time on the dynograph

chart.

2. Conduct of experiments. In order to determine the influence,
if any, of preload on the compressive strength of floating, fragmented ice

covers, several series of test were performed. A first series of "ordinary"
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tests was run where the motion of the carriage; i.e. of the driving plate,
was stopped only after failure of the ice cover had occurred. The test
procedure was identical to that followed in the experiments by Uzuner (1974)
and by Nakato (reported by Tatinclaux et al (1976)). 1In a second series
of experiments, the motion of the plate was halted when the load registered
by the load cell had reached a value equal to a prescribed percentage of the
failure load obtained in the first series of experiments for the same nominal
experimental condition of cover thickness and carriage speed. After a
waiting period of five minutes, the carriage was reset in motion at the
initial speed until failure of the cover occurred. A typical example
of the overall force record obtained in this manner is given in Figure 6.
However, as can be seen in Figure 6, as soon as the plate motion
was first halted, the force registered by the load cell started to decrease;
indicating relaxation of the ice cover. In these experiments the ice covers
were in fact subjected to an initial prestrain rather than to a constant
preload. A third series of experiments was then undertaken. In these
latter runs, the carriage was set into motion until the load applied to the
cover reached a prescribed value, called initial preload, at which point the
carriage was stopped. It was restarted as soon as theactual load registered
by the load cell had dropped to approximately 70% to 80% of the initial
preload, and immediately stopped again, since the registered load was observed
to increase at once back to the value of the initial preload. This stop
and go procedure (an exercise in digital dexterity) was continued for five
minutes, after which the driving plate was set in continuous motion at the
initial speed until the cover failed. An example of force-versus-time
record obtained under this procedure is shown in Figure 7. This procedure
was expected to yield more realistic values of the compressive strength of
an ice cover under constant preload. As previously reported by Uzuner (1974)
and Nakato (1976), considerable variation in the failure force was observed
from one test to another for idenﬁical nominal experimental conditions.
Therefore, experiments were run an average of 8 times under the same nominal
conditions. 1In addition, the ice samples were changed after a few runs
since they were observed to wear, chip, melt slightly or otherwise change
their geometric characteristics which could further cloud comparisons

between results obtained under different conditions of cover thickness

and carriage speed.
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E. Discussion of Experimental Results

1. Compression of tests without preloading. Typical exper-
imental force-displacement-time records are shown in Figure 8. The force
exerted on thedriving plate by the fragmented ice cover is given by the
upper trace and the displacement of the driving plate is given by the
lower trace. The time scale is indicated on the upper edge of the
record.

During the compression process, the ice floes rearranged them-
selves continuously in the ice cover and the porosity of the ice cover
decreased, increasing the interparticle contact between ice floes and, con-
sequently, the resistance to the driving plate increased until it reached
a maximum value then dropped either abruptly or gradually depending on
the velocity Vc of the driving plate; i.e. on the deformation rate of the
fragmented ice cover. This drop in the registered force indicated failure
of the ice cover, and the maximum force recorded was taken as the failure
force of the cover. Three different types of failure were observed during
the compression tests. For the lower deformation rates, Vc v 0.001 ft/sec,
(case 1 in Figure 8), the fragmented ice cover was not actually frac-
tured; instead, interparticle bonding occurred leading to a buckling type
of failure at some point between the driving plate and the end of the
tank. The force decreased slowly after reaching a maximum value which
was taken as the failure strength of the ice cover.

In the middle range of deformation rates, 0.001 ft/sec <VC < 0.006
ft/sec, (case 2 and case 3 in Figure 8), cracks were observed to form in
the ice covers, most of which failed by sudden collapse evidenced by an
abrupt drop in the recorded force. The maximum force before collapse was
taken as the failure strength. When the:compression process was continued
further, the force started to increase again until a second peak appeared.
This indicated that the individual ice floesiin the fragmented ice cover
had rearranged themselves and that the cover had recovered at least part
of its strength. Finally, for higher deformation rates, Vc >0.006 ft/sec,
(case 4 in Figure 8), the fragmented ice cover was found to fail usually
successively by fracture near the driving plate. The force in the record

fluctuated over a small range after it had arrived at some maximum value.

e
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The first maximum force was taken as the failure strength, but could not
be as well defined as for the lower and middle range of deformation rates.
On the records, the carriage displacement-versus-time curve was
usually a straight line indicating that the driving plate moved at a
constant speed and that the fragmented ice cover was compressed under con-
stant deformation rate. However, due to the mechanism of the carriage
system, the speed of the driving plate could not be kept at a constant
rate when the exerted force exceeded 300 1lb, as shown in Figure 9. All the
experiments were under this limitation. The displacement at failure, AL,
was measured as well as the time, T, from the beginning of the experiment

to the occurrence of failure.

2. Compression tests with preloading. As mentioned previously,

Figures 6 and 7 show that when the preload was applied once (prestrained

ice cover), the force registered by the load cell decreased as soon as

the driving plate stopped, rapidly at first, then at a slower rate. When
the driving plate was restarted after a lapse of time of 5 minutes, the force
rose insténtly back to practically the initial level of preload and then
increased almost linearly with displacement until failure happened. This
phenomenon is tentatively explained by the effect of melting and re-

freezing at the ice particle interfaces, with the accompanying production

of cohesive welds, under the application of pressure on fragmented ice blocks.
This formation of cohesive welds also required time as well as the applied
pressure. Accordingly, the 5-minute long prestrain allowed the time and
provided the pressure for the cohesive welds to form. As a result, the
fragmented ice cover became a temporarily rigid cover which gave a quick
responsive resistance force to the restarting driving plate. When the new
force applied to the temporarily rigid ice cover exceeded the amount of pre-
load, the cohesive welds melted and the ice particles continued to re-
arrange themselves with, as a result, an increase in the interparticle
contact surface and hence in the strength until failure occurred.

However, the force diagram of the compressive test with preload
being kept approximately constant is somewhat different from that of the
compression test with preload applied once. 1In the former case, failure
of the ice cover happened almost immediately after restarting the driving
plate. A suitable and reasonable explanation for this phenomenon is not

known; but, it is likely to be due to the frequent application of impact
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onto the ice cover during the 5-minute preloading.

F. Data Calculation and Listing. The average compressive

strength, ocr' of the ice cover was defined as

W5
ry

Sl

w |
™
-
P

(1)

ct

cr

where
n = the number of runs performed under nominally identical
conditions
Fj = failure force recorded in the i-th run.
B = width of the ice cover (3.0 ft).
t = ice cover thickness in each set of runs.

The ice cover thickness, t, is defined as

t=-g—,—t'
where
p = density of the water at 0°C.
p' = density of the ice at 0°C.
£

average submerged ice cover thickness.

The average deformation rate, Vc' of fragmented ice cover was defined as:

1 0 ALi
vV == I (2)
c n , BE o
i=1 i
where
ALi = displacement of driving plate when ice cover failed in the
i-th run.

Ati = time elapsed when ice cover failed (i-th run)

The average strain at failure, €or' of the fragmented ice cover was de-

fined as:
n
b
N -
cr n L
where

L = ice cover length (L = 2 ft)
Using the above definitions and the data collected from the records, the

results of the compression tests without preloading and with preloading

ry Pa———s - R Ay ——n oy
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(both applied once and kept approximately constant) are listed in Tables

2 and 3, respectively.

G. Graphical Presentation of the Results.

1. Experiments without preloading.

(a) Stress-strain relationship. From the force-displacement-
time records, the longitudinal normal stress, ox', experienced by the ice
cover at any time T, and the corresponding strain, €, defined as AL/L,
where AL=VCT is the distance traveled by the driving plate at time T, could
be determined. Typical stress-strain curves are shown in Figures 10,

11, and 12 for submerged ice cover thickness of 0.25, 0.50, and 0.75 ft,
respectively.

In each figure, the data were plotted for different speeds of
driving plate, i.e. of strain rate, the ice cover length and thickness being
held constant. It can be seen that the stress cx' increased concave upward
under the lower rates of deformation and convex upward under the higher
rates of deformation. Furthermore, the yield compressive strength D ® ;
decreases with increasing speed, Vc, of driving plate and thus with rate

of deformation. This phenomenon is attributed to freezing of the liquid

film between the contact surfaces of the particles, thus forming a natural
weld that produces a cohesive bond between the ice-particle surfaces.
Since lower deformation rate allows more time for freezing and thus for
cohesive bonds to develop, the compressive strength of the fragmented

ice cover should increase with decreasing rates of deformation. A yet
unclear phenomenon exhibited by the results is the variation of yield
strain €or with acting speed Vc as shown in Figure 13. It can be seen that
€or increases practically linearly with increasing Vc for the two values
of cover thicknesses of 0.5 ft and 0.75 ft, while ecr decreases nonlinearly
with increasing Vc when t' was equal to 0.25 ft, as was already observed
in Nakato's experiments reported by Tatinclaux et al (1976), in which the
strain at the yield point always decreased with increasing rates of defor-
mation. The only tentative explanation which appears reasonable at this
time for this increase or decrease tendency of €er with increasing Vc is
to be sought in the effect of the ratio L/t' of cover length to cover
thickness on the type of failure the cover undergoes: possible buckling

for thin cover as opposed to "crushing" for thicker cover. This possible




Table 2. Summary of experimental results from
compression tests without preloading

L No. t' F &is Crcr/L & chlon3
()  (1b)  (1b/£t?) (1b/£td) (8)  (ft/sec)
c-1 0.25 86.65 106.31 425.00 7.36 0.51
i c-2 0.25 17.07  20.94 83.76 3.75 0263
c=3 0.25 20.33  24.94 99.76 3.72 1.14
p c-4 0.25 ¥2.18 ° 14.95 59.80 2.24 1.20
- c-5 0.25 10.43  12.79 Bl 18 208
c-6 0.25 5.72 7.02 28.08 0.98 3.21
c-7 0.25 4.20 5.15 20.60 0.70 4.34
c-8 0.50 32.85  20.15 40.30 1.91 2.14
c-9 0.50 21.31 " '13.67 26.14 2.08  3.42
c-10  0.50 17.70  10.86 21.72 2.79 4.74
e<11 " “o.%0 10.60 6.50 1308 397k
e-17 995 83410 34l 68.22 4.19 2.82
=132 0.75 65.46  26.17 53.54 4.48  4.22
c-14  0.75 41.03 * 16.78 33.56 4.84 6.00
c=-15 0.75 35.09  14.35 28.70 5.72. 9.21

4
.
]
i
:
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Table 3. Summary of experimental results from
compression tests with preloading

No. £ Preload F ... vcxlo"3
(Ft) (%) (1b) (lb/ft?) (ft/sec)

PAl  0.50 25" “giaf * H4.33 3.2
PA2  0.50 560/ *ZBial < 42.45 35
PA3  0.50 950 =2%:19 = U6.68 3.0
PA4  0.50 25  18.67 11.45 4.8
PA5  0.50 S0  16.66  10.23 5.6
PA6  0.50 75 1€.35 - B9.95 6.3
PA7  0.50 25 15,11 8.27 6.4
PA8  0.50 50 16.06 9.85 6.
PA9  0.50 35 ' 15.27 9.37 6.3
PAl0  0.75 28  ea.1r  2e.22 B,
PAll  0.75 5§ 70.13 28,68 4.4
PAl2 0.75 75 5 96.85 4 31.43 4.5
PA13  0.75 50 63.58  “2e.06 &1
PAl4  0.75 75  s0.25 a6 5.4
PBL  0.50 50 % 22,29 1M.86 3.2
PB2  0.50 95 "95. 47 . 1609 3.3
PB3  0.50 50  14.39 9.59 4.9
PB4  0.50 % Rl Tiras. 54
PB5  0.50 50 9.90 6.6G¢ . 7.0
PB6  0.50 75  12.90 8.60 7.0

P.S. * PA preload applied once
* PB preload applied approximately constant
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effect of cover thickness was not investigated here.

(b) Compressive strength-plate velocity relationship. The results
of the compression tests without preloading are plotted for the three sub-
merged ice cover thicknesses t' of 0.25, 0.50 and 0.75 ft, as compressive
strength obtained at first failure, Ocr' versus plate velocity, Vc' in
Figure 14. Similarly to results of previous investigations, Oy is found
initially to decrease with increasing Vc (with a slope of -1 on the log-log
plot), but for Vc > 0.01 ft/sec, approximately, ocr appears to become approx-
imately constant. Also, ocr increases with cover thickness t. However,
when ccr/t is plotted versus Vc as in Fig. 15, the data appear to collapse
more or less on a single curve, especially for the two lower values of t
investigated, while the data points for t = 0.815 ft (t* = 0.75 ft) remain
somewhat higher. When Gcr X Vc > 0.01 ft/sec, ocr/t become more or less
constant with an average value of 10 lb/ft3, approximately.

(c) Comparison of present results with Nakato's results. When
the experimental results obtained in the present study are compared with
those reported by Nakato in 1976 for similar cover thicknesses (Figure 21
of report by Tatinclaux et al (1976)), the present values of ccr are found
to be significantly lower; at times as much as 50% difference can be
observed. No fully satisfactory explanation of such a large discrepancy
can be offered. It was verified through consultation with Dr. Nakato that
the two series of experiments were performed in practically identical fashion.
The only actual difference was that the displacement, and thus speed, of
the carriage was actually measured in each of the present experiments while
Nakato relied on the calibration of the speed control setting performed
at the beginning of the series of experiments. It was verified that such
correspondence between dial setting of the carriage remote control and
carriage speed did not vary appreciably over a long period of time. Since
it was also observed that the carriage speed, for a given dial setting, could
be affected by the load applied onto the driving plate, specific experiments
were conducted to determine the magnitude of such effect. It was found that
the load began to affect the carriage velocity, only when IF exceeded 300
to 350 1bs, beyond the range of Nakato's experiments. The porosity of the
covers studied here was found to be in the same narrow range of values as

reported by Nakato. The ice blocks used to form the covers were identical

in shape and size.
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As a last resort, the differences observed in the results of
the two investigations have to be attributed to slight differences in the
air temperature in the ice facility. The present thermostat can control
the room temperature only within 2° to 3°F at best. That is for
a time average temperature of 32°F, the temperature in the room
will actually vary between 30° and 33°F, approximately. Even larger
variations could occur when one of theblowers in the experimental cold
room would become ice covered. Since the pheneomenon studied involves
formation of bonds between the individual ice particles it is quite
possible that a difference of 1°F in the average air temperature between
the two investigations would sufficiently affect the temperature distribution
in the upper layer of the floating covers, the formation of interparticle
bonds, and as a result, the total strength of the cover. 1In this respect
it should be reemphasized that the values of ocr presented were averages
obtained over eight to ten experiments under identical nominal conditions
and that the difference in o e between any two such experiments could be

as much as 100%.

2. Experiments with preloading. The results of the compression
tests with preload applied once (prestrain) and preload applied approximately
constant are plotted as Oy Versus Vc in Figure 16 for different preloads
varying from 25% to 75% of the failure force as determined from the
previous experiments without preload. The values of Ocr are seen to be
virtually unaffected by either the magnitude of the preload, or the type
of preload; the difference between the results with and without preload
are of the same order as the experimental accuracy, even in the case of
a cover thickness of 0.75 ft where all the experimental values of ocr
obtained under preloading conditions are slightly larger than those ob-
tained without preloading. The number of experimental data at that thick-
ness remains insufficient to draw definite conclusion. Because of the
difficulty in performing the experiments with preload, and the long time
required to obtain one data point (which is the average of eight to ten
experiments under nominally identical conditions), the efforts were mainly
directed towards the effect of preload on ocr for one cover thickness,

namely 0.5 ft, and a relatively few experiments were conducted at a thickness
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of 0.75 ft, only to verify that the conclusions drawn from the results
obtained at a thickness of 0.5 ft could be extended to higher cover

thicknesses.

III. SHEAR STRENGTH OF FRAGMENTED ICE COVERS

A. Introductory Remarks. From the results of Merino's (1974)

shear strength tests, it was found that the shear strength was dependent
on the deformation rate, ice cover thickness, ice cover length, size and
shape of ice specimen. The dependence on the cover length was believed
to be due to the presence of compressive stresses during Merino's exper-
iments. These compressive stresses were attributed to the geometry of
the test apparatus and to the manner in which it applied loads to the
specimens. In an attempt to eliminate or at least to reduce greatly the
effects of the length of the ice cover on shear strength, two other
apparatus were used. One was a modified version of the rectangular shear
apparatus used by Merino (1974) and the other was a cylindrical shear
apparatus. The tests performed in the rectangular shear apparatus and
cylindrical shear apparatus are labeled here as direct shear tests and
vane shear tests, respectively. Detailed description of the two apparatus
is presented later.

In this investigation of the shear strength of floating frag-
mented ice cover, experiments were conducted under the conditions listed in

Table 4.

B. Experimental Units.

1. Rectangular shear apparatus. The shear apparatus, illustrated
in Figures l17a,b and 18,consisted of three parts:

(a) Force driving mechanism. A moving vertical I-shape unit with
one flange at each extremity, two intermediate smaller vanes, and one
center web separated the ice cover into two parts within two rectangular
half-compartments fixed to the walls of the tank. Two following walls
at the end of the I-shape unit prevented the ice floes from escaping
from the test compartments after some displacement of the moving I-shape
unit had taken place. The I-shape unit was attached to the motor driven

carriage through the moment insensitive dynamometer. The carriage and the
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Figure 18. Photographs of rectangular
shear apparatus




"

38

dynamomter were the same as those used in the compression tests described
in section II. ;

In reassembling Merino's apparatus it was found that the forward
flange plate was attached to a cross-beam riding freely on the rails but
that the center web was originally bolted onto a cross-beam rigidly attached
to the carriage. The question arose whether part of the shear load generated
when the carriage was set in motion was transmitted to the carriage itself
rather than to the flange plates and the dynamometer. The rigid link
between the carriage and the center web was therefore disconnected since
sufficient support of the moving part of the apparatus was provided by
the arm of the dynamometer atta%hed to one flange plate and by the link
connecting the forward flange plate to the free-riding cross beam. It
was thus ensured that the shear load was entirely transmitted to the
dynamometer.

(b) Force measuring system. One Statham universal transducer
cell, Model UC3 and one load cell, Model UL4 were installed in the dynamometer
and used to measure the shear force of the fragmented ice cover. One of
two load cells, of capacity 200 lbs and 500 lbs,was used depending on the
expected magnitude of the shear force. The voltage output of the trans-
ducer was amplified by and recorded on the Beckman Dynograph R Type pre-
viously used in the compression tests. Calibration ratios are listed in
Table 5.

(c) Displacement measuring system. The displacement of the
moving I-shape unit was measured by the potentiometer previously described and 1
shown in Figure 5. This set-up was the same as that for the compression

tests reported in section II.

2. Cylindrical shear apparatus. A sketch and photographs of

this apparatus are shown in Figures 19 and 20, respectively. The cylin-
drical shear apparatus consisted of:

(a) Rotating mechanism. A cross-shaped vane with radius, Rc =
1.92 in., was attached to an inner rotating axle driven by the 1-hp DC,
SCR controlled motor on the carriage of the ice tank through a cone-

pulley and a geared speed reducer system. An concentric outer cylinder

wall of radius Ro = 5 in. was supported by the rotating axle, but not

constrained by it. This outer cylinder was fitted with eight vertical
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Photographs of cylindrical

shear apparatus

Figure 20




Figure 20. continued
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ribs to avoid ice slippage at the boundary of the appagatus. A transverse

arm mounted on top of the outer cylinder was connected t; a load cell

contained in a small round drum attached to the wall of the taﬁk»umln order

to determine whether the distance between the inner cross vanes and‘Qhe

ribs of the outer cylinder influenced the magnitude of the measured shear e
strength, two different spacings were used, namely 1.5 in. and 2.5 in.,

by changing the width of the ribs on the outer cylinder.

(b) Force measuring system. The Statham universal transducer
cell, Model UC3, and a 100 lbs load cell, Model UL4, were used to measure
the shear force transmitted through the transverse arm when the axle-
cross vane system was set to rotate in the ice cover. The voltage output
of the transducer was amplified by and recorded on the Beckman Dynograph
recorder. The calibration ratios of the load cell are listed in Table 5.

(c) Angular displacement measuring system. A ring of radius
R, = 5.94 inch was attached to the inner rotating axle. The 10-turn po-

tentiometer used in the previous experiments was fixed on the transverse

arm with its rotating rubber wheel pressing on the ring. Thus, the dis-
placement AL=Ry6, and therefore the angular displacement 6 was measured

as the ring rotated with the inner axle.

C. Test Materials. Parallelepiped ice blocks 1% inch x 1% inch

X %E inch manufactured in the IIHR ice-maker and commercial crushed ice

were used as test samples in the rectangular shear apparatus. For the

cylindrical shear apparatus, only the commercial crushed ice was used as

test sample since the ice parallelepipeds were far too big for this apparatus.

The particle distribution curve of the crushed ice was obtained by sieving

and is shown in Figure 21.

D. Experimental Procedure. Shear experiments of fragmented ice

cover were conducted at 0°C room and water temperature. The experimental

procedures were as follows:

1. Rectangular shear apparatus. At the beginning of each run,
the I-shape unit was moved to its initial position so that the compartment
was rectangular. The required quantity of ice floes for the desired cover
thickness and cover length were placed in both side compartments. The

ice cover was gently agitated to insure uniform thickness. The ice-cover
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Table 5 cCalibration ratios of force to output
voltage for load cells with different ]
capacities. (unit = lb/mv) '

T T T R Sy

<_\ 1 | 7
~Sensitivity ' 0.5 { 1.6 1 2.4 t 5.0 10.00
Tl : i I
i Load cell ! (mv/cm) | (mv/cm) ' (mv/cm) L (mv/cm) (mv/cm)
500 # - | 17.200 ' 17.125 ‘ 16.885 16.129
3 3K . $ .
1 i : . t
’ 200 # i s | 6.900 6.800 | 6.866 6.866
100 - # 2.994 3.048 | 3.117 | 3.037 s 4
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thickness was measured at four points or more on each side of the

I-shape unit by the L-shape staff gage used in the compression tests,
to verify that the cover thickness was uniform and of the desired value.
Then, the carriage was set in motion at a prescribed speed and stopped
when the ice cover failed. The voltage outputs of the force transducer

and potentiometer were recorded versus time on a Beckman Dynograph chart.

2. Cylindrical shear apparatus. The required guantity of
crushed ice for the desired cover thickness was introduced between the
outer cylinder and the inner axle. The transverse arm was set in contact
with the load cell. Then, the ice cover was agitated by a rod and measured
by a smaller L-shape staff gage. The inner rotating axle with cross-
shape vane was set in motion at the desired speed until the ice cover
failed. The voltage output of the force transducer and potentiometer
were recorded on the Beckman Dynograph as in the previous experiments.

It was observed that the value of the failure force obtained with
the cylindrical apparatus were more consistent than those obtained in the
rectangular apparatus. Therefore an average of only four runs under
identical nominal conditions were performed with the cylindrical apparatus

as opposed to eight with the rectangular apparatus.

E. Description and Discussion of Results. The failure shear

force of the fragmented ice cover and displacement of the loading apparatus
were determined from the force-displacement-time records. Typical records
of this type for both rectangular shear apparatus and cylindrical shear
apparatus are shown in Figures 22, 23, and 24. Figures 22 and 23 present
results in the rectangular shear apparatus with parallelepiped ice blocks
and crushed ice, respectively, at various loading speeds. Figure 24
presents results obtained with crushed ice in the cylindrical shear apparatus.
The displacement, measured by the potentiometer, is given by the upper
trace and the shear force, measured by the load cell, by the lower trace.
The time scale is also indicated on the upper edge of the record.

On the records, the trace of the displacement versus time is
a straight line indicating that the I-shape unit of the rectangular shear
apparatus or the cross vane of the cylindrical shear apparatus moved or

rotated at a constant speed. Hence, the fragmented ice cover was sheared

under constant deformation rate. The displacement, AL, and the corresponding
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time lapse, At, from the beginning of the experiment to the occurrence
of failure were measured.

From Figures 22, 23, and 24, it is seen that the force-versus-
time records are similar for the two types of ice (crushed or in blocks)
and the two shear apparatus used. In general, the shear force applied
to the fragmented ice cover increased almost linearly with displacement until
it reached some maximum point, then decreased gradually or irregularly,
indicating failure of the cover. The maximum value of force recorded was
taken as the failure shear force, Fr' It was found that at high loading
speed (cases 1 and 2 in Figures 22 to 24) the shear force after
failure of the ice cover varied more irregularly and decreased more rapidly
than at low loading speed (case 3 in Figures 22 to 24). This difference
is believed to be due to the larger relative motion between the ice
particles along the failure surface at high loading speed. Besides, it
was observed that during the low speed experiments formation of weld-
cohesive bonds between ice particles occurred and thus limited the
relative motion and orientation between the ice particles. Hence, the
force versus time trace appears to be smoother at lower loading speeds.

It was also observed that an abrupt drop in the shear force as
case 4 in Figure 24 happened occasionally during shear tests in the
cylindrical shear apparatus. However, this was only accidental, since,
as is characteristic of soil shear tests, there should be a residual shear
along the failure surface of the fragmented ice cover. Hence, the shear
force should decrease after failure to a certain constant residual value,
and not decrease abruptly to zero. The occasional abrupt drop is believed
to result from an unbalance in the force distribution attributed to the
ribs on the outer cylinder. A torsion force existed at this boundary and
was released when the ice cover failed. The release of the torsion force
caused the outer cylinder boundary to rotate in the direction opposite
to that of the cross-vane and, hence, caused the transverse arm to lose
contact with the load cell, resulting in a zero cutput.

By comparing the force--displacement-time records obtained in
the shearing tests, Figures 22 through 24, and in the compression test,
Figure 8, it is found that some difference exists between these two kinds

of records. 1In the compression tests, after failure of the ice cover,
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several force peaks more or less than the failure strength occurred when
the compression test continued, because of rearrangement of the ice floes
and thickening of the ice cover led. However, in the shearing tests, the
shear force decreased after the failure of the ice cover and no more force
peaks appeared, since only the residual shear force remained, which was
approximately constant in each experiment with the circular apparatus,

but decreased in the rectangular apparatus with decreasing shearing area
which accompanied increasing displacement along the failure surface of the

ice cover.

F. Data Calculation and Presentation

1. Calculation of shear strength. The shear strength of the
fragmented ice cover is defined as the ratio of failure shear force to
the area on which the shear force acts. Since the ways for applying
shear force are different between the rectangular shear apparatus and the
cylindrical apparatus, the failure shear strength is thus calculated with
different equations, as follows:

(a) In the tests with rectangular shear apparatus, the average

failure shear strength along the failure surface is calculated from the

equation P
n ri
Lo 2(L - AL.) x t
i= .
Pt : (4)
n
where
Fri = maximum force recorded at i-th run

L = ice cover length
AL, = displacement of the I-shape unit, or the ice cover when the
first peak force appeared at i-th run
t = ice cover thickness
n = number of runs performed under nominally identical conditions
Since the ice cover was sheared on two faces in these tests, the

area on which the shear force acted, was calculated as 2(L - ALi)t as in
(4). This area calculation is different from that of Merino's (1974), in
which the area was calculated as 2Lt. It was found in the present exper-

iments that AL can be as large as 18.8% of the initial ice cover length,
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L, and should not be neglected in calculating the shearing area. Therefore,
the value calculated by Equation 4 will be greater than that in Merino’s
results.

(b) In the tests with the cylindrical shear apparatus, the

SRR NP ERUS R SV SR

recorded force, F,, is the balance force from the torque caused by the
shear force along the failure surface of the ice cover with respect to |
the center of the inner rotating axle. Therefore, the average failure

shear strength along the failure surface was calculated from the equation

F xR
n_ri
.Z 2ﬂR2t
b i=1 S (5)
n
|
where
R = distance from the axis of load cell to the center of the 1
inner rotating axle.
RS = mean radius of the failure surface

It was observed in the experiments that Rs in (5) was always

equal to the radius of the cross vane Rc.

2. Calculation of the acting speed. In the rectangular shear
apparatus, the speed of the I-shape unit on the ice cover is defined as
Vc = L/At, which is the same as that defined in the compression tests.
In the cylindrical shear apparatus, the tangential speed, Vc, of the cross-
shape vane is defined as

AL
RI.' - RC

o i o 6
Vo A (e)

where

Rc radius of cross vane = RS

Rr = radius of ring attached to the rotating axle
3. Calculation of the failure strain. The failure strain of
p LA Lj
ice cover by the rectangular shear apparatus was defined as et = —;E—l ’

which is the same as that defined in the compression tests. However, the

failure strain obtained in tests with the cylindrical shear apparatus was

i n
defined as 2 AL, v 9.
i " 1
- i=1 = E_l__ 7)
L 2TR 2mn (

where ei was the angular displacement of the vanes when failure occurred.

FRISPRFSESSIN bt i drn
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The results of the shearing tests are summarized in Tables 6, 7
and 8, which correspond to tests using parallelepiped ice blocks, crushed
ice in the rectangular shear apparatus, and crushed ice in the cylindrical

shear apparatus, respectively.

G. Graphical Presentation of Results

1. Relation between shear strength, strain and acting speed.
From the force-displacement-time records, the shear strength along the
failure surface, T1', experienced by the ice cover at any time, T, and the
corresponding strain, e, could be determined. Typical strength-strain
plots are shown in Figures 25 through 28. Figures 25 and 27 show t1' - €
curves for various acting speeds, but constant values of ice cover thick-
ness and length. Figures 26 and 28 present 1' - € curves for various ice
cover thicknesses, but constant speeds and cover lengths. Figures 25
and 26 present results obtained with the rectangular shear apparatus,
while Figures 27 and 28 present results obtained with the cylindrical shear
apparatus.

From Figures 25 and 27, it is clear that the shear strength and
the strain of ice cover at yield increase with decreasing speed of the
I-shape unit or rotating cross-vane. This phenomenon was again explained
by Merino (1974) by the effect of bonding. Accordingly, the larger
failure shear strengths and accompanying larger failure strains at the
smaller acting speed result from cohesive bonds having
more time to develop at lower speeds as the ice cover is sheared. At higher
rates of deformation, on the other hand, the cohesive bonds cannot
develop as completely, and the cover strength is reduced.

From Figures 26 and 28, it is seen that the shear strength at
yield is also affected by the ice-cover thickness. The shear strength
increases with increasing cover thickness. The strain at yield in
Figure 26 (rectangular shear apparatus) also increases with increasing
cover thickness. The results obtained with the cylindrical apparatus
(Figure 28) show also an increase of €t with both decreasing speed and

increasing cover thickness.

2. Relation between failure strain, acting speed and ice cover

thickness. Curves of failure strain €. against acting speed vc for
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Table 6

Summary of experimental results
from shearing tests in rectangular
shear apparatus using parallele-
piped ice blocks

No. e ¥, Vo M ¥4
(ft) (ft) (ft/sec) (lb/ftz)

RP1 2. 0.82 52.75
RP2 : - 1.64 20.00
RP3 2. 3.28 8.33
RP4 k 6.54 4.17
RP5 . ’ 9.84 4.17
RP6 E 13.12 2.50
RP7 2.0 18.39 2.10
RP8 : : 19.67 2:10
RP9 4 .0 6.82 59.20
RP10 .0 1.64 45,90
RP11 . g 3.28 15.00
Rpl2 6.54 3.65
RP13 " 9.84 3.15
RP14 g 15:13 3.00
RP15 . 16.39 3.35
RP16 Bl s 1967 3.65
RP17 ‘ 2 0.82 63.90
RP18 : 2% 1.64 34.50
RP19 0.7 y 3.28 12.60
RP20 0.7 y 6.54 8.30
RP21 ; .0 9.84 8.20
RP22 A B8 4.75
RP23 0.7 k 16.39 4.60
RP24 0.7 > 19.67 4.60
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i
. Table 6 Continued
# :
No. £ % vV x 10°° - 4
(Ft)  (£t) (ft/sec) (1b/ft?)
RP25 0.90 2.0 0.82 cver
RP26 0.90 2.0 1.64 50.80
RP27 0.90 2.0 3.28 49.70
RP28 0.90 2.0 6.54 11.70
RP29 0.90 2.0 9.84 6.70
RP30 0.90 2.0 13.12 5.00
RP31 0.90 2.0 16.39 4.20
RP32 0.90 2.0 19.67 3.50 i
RM1 0.30 1.2 0.82 34.70
RM2 0.30 142 1.64 16.25
RM3 0.30 1.2 3.28 15.00
RM4 0.30 14 6.56 9.03
RM5 0.30 192 9.84 6.90
RM6 0.30 1.2 13.%52 4.72 |
RM7 0.30 i B 16.39 4.60
RM8 0.30 142 19.67 4.60 J
RM9 0.50 1.2 0.82 62.50 i
RM10 0.50 i 1% 1.64 31.30
RM11  0.50 1.2 3.28 14.60 ]
RM12 0.50 193 6.56 9.30
RM13 0.50 L 9.84 6.90
RM14  0.50 12 13.12 6.30
RM15 0.50 1,2 16.39 5.40
RM16 0.50 142 19.67 5.40
RM17 0.70 1.2 0.82 94.10
RM18 0.70 P - 1.64 49.40
RM19 0.70 244 3.28 21.30
RM20 0.70 1.2 6.56 7.90




Table 6 Continued

No. t" 5 v x 10°° Z
(ft)  (£t) (Ft/sec) (lb/ft?)

RM21  0.70 9.84 9.40
RM22 0.70 4 13412 6.00
RM23  0.70 2 16.39 5.40
RM24 0.70 .2 19.67 4.90
RM25  0.90 : 0.82 -

RM26  0.90 ) 1.64 -

RM27  0.90 .2 3.28 56.00
RM28  0.90 ; 6.56 16.20
RM29  0.90 1. 9.84 12.40
RM30 . | 0.90 1. 13,12 9.30
RM31  0.90 1. 16.39 9.30
RM32  0.90 1. 19.67 9.30
RS1 0.30 .8 0.82 95.20
RS2 0.30 .8 1.64 51.70
RS3 0.30 .8 3.28 18.80
RS4 0.30 .8 6.56 8.30
RS5 0.30 .8 9.84 6.70
RS6 0.30 .8 13.12 4.80
RS7 0.30 .8 16.39 4.80
RS8 0.30 .8 19.67 2.30
RS9 0.50 .8 0.82 91.20
RS10  0.50 .8 1.64 58.40
RS11  0.50 .8 3.28 29.10
RS12  0.50 .8 6.56 12.50
RS13  0.50 .8 9.84 10.40
RS14  0.50 .8 13.12 8.40
RS1S  0.50 .8 16.39 6.25
RS16  0.50 .8 19.67 5.25

*** Force exceeds load cell capacity




59

Tdble 6 Continued

No. £ L V x 10-3 Ve
(ft) (Ft) (ft/sec) (lb/£t?)
RS17  0.70 0.8 0.82 103.60
_ RS18  0.70 0.8 1.64 65.50
] RS19  0.70 0.8 3.28 26.80
, RS20  0.70 0.8 6.56 13.40
RS21  0.70 0.8 9.84 8.90
RS22  0.70 0.8 13.12 8.90
RS23  0.70 0.8 16.39 6.70
RS24  0.70 0.8 19.67 6.70
.. RS25  0.90 0.8 0.82 112.50
r RS26  0.90 0.8 1.64 62.50
RS27  0.90 0.8 3.28 33.50-
RS28  0.90 0.8 6.56 18.50
RS29  0.90 0.8 9.84 13.90
RS30  0.90 0.8 13.12 11680
RS31  0.90 0.8 16.39 11.60
RS32  0.90 0.8 19.67 11.60

Note RP: results for L = 2.0 ft.
RM: results for L = 1.2 ft.
RS: results for L = 0.8 ft.

*** Porce exceeds load cell capacity
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Table 7 Summary of experimental results
from shearing tests in rectangular
shear apparatus with crushed ice

3

No. £* L V x 10 T €,
(ft)  (£t)  (ft/sec) (1b/ft?) (%)
RL1 0.2551 2.0  §.65 76.06 10.33
RL2 0.25 ° 2.0 1.24 51.37  9.43
RL3 .25V 2.65 21.21 5.80
RL4 Q.25 50 8, 3.88 13.38  3.68
RL5 G258k 5AY P.11° 08
RL6 Q.50 00 e wxk *a
RL7 0.50 1.24 129.32  9.00
RLS 0.50% 3, 2.65 56.22 “ %, 53
RL9Y 0.50 2.0  3.88 36.08 7 6.3
REEG . 0.5¢0 72, 5.47 27.36° 4. 82
REAL L G715 L 1.24 xx *as
REIZ . 9.75°" 2 2.65 137.84 10.98
RE33 (L @75 dJo .08 93.36 10.43
Kid 6t . .0 5.47 70.50 8.0l
RS1 O 3% | Nod . .65 40.55  7.47
RS2 0.25 . 1.2 1,24 17.35  6.59
RS3 0.25 _ 1. 2.65 10.31 4.19
RS4 D25 1. 3.88 5.25 3.75
RS5 PR 1 SR o 5.47 3.34 3.24
RS6 0.50 1, 0.65 120.79 12.77
RS7 0.50 1. 1.24 43.82 8.16
RS8 0.50 1.2  2.65 23.44  6.07
RS9 0.50 1.2 = 3.88 11.83  6.7%
RS10  0.50 1.2  5.47 8.31 5.37




.Table 7 ‘tontinued

No. " L V x 10"3 T €,

(Ft) (ft)  (ft/sec) (lb/ft2) (2)

RS11 0.75 1.2 0.65 207.47 18.89
RS12 075 1.2 1.24 100.88 13.31
RS13 0.75 1.2 2.65 42.51 8.96
RS14 075 1.2 3.88 26.84 8.09
RS15 G.75 1.2 5.47 22.66 7.24

2.0 ft.
1.2 ft

Note RL: results for L

RS: results for L

*** Force exceeds load cell capacity
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Table 8

Summary of experimental results
from shearing tests in cylindrical
shear apparatus with crushed ice

cubes
No. £ v x 1073 F 4 €,
(ft) (ft/sec) (lb/ftz) (%)

csl 0.25 0.65 60.97 6.07
CS2 0.25 1.30 37.61 4.51
Cs3 0.25 2.64 19.89 k.
CS4 0.25 3.94 12.22 4.27
CSs5 0.25 5.36 4,89 3.16
CSé 0.50 0.65 107.97 5.65
Ccs7 0.50 1.30 65.44 4.28
Cs8 0.50 2.64 26.62 3.78
CS9 0.50 3.94 18.77 3.76
CS1l0 0.50 5.36 10.49 5.06
CSll 0.75 0.64 205.16 6.34
CSsl12 0.75 1.30 111.%12 5.40
Csl1l3 0.75 2.64 39.10 4.13
CS14 0.75 3.94 24.21 3.66
Csl15 0.75 5.36 11.32 3.65
CWl 0.25 0.64 42.38 4.45
Cw2 0.25 1.30 24.58 5.57
Cw3 0.25 2.64 15.36 3.75
Cw4 0.25 3.94 11.22 2.31
CW5 0.25 5.36 .77 4.65
CWé6 0.50 0.64 123.70 4.66
CW7 0.50 1.30 15.22 3.49
Cw8 0.50 2.64 30.25 3.61
CW9 0.50 3.94 14.54 3.88
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Table 8 Continued i
No. ! vV x 10~3 T €.
(£t) (£t/8ec) (IB/EEY) (%)
CW1lo0 0.50 5.36 11.35 6.34
Cwll 0.75 0.65 171.29 8.11
CwWl2 0.75 1.30 93.53 6.79
Cwl3 0.75 2.64 35.64 4.36
CWwl4 0.75 3.94 23.79 4.20
CW1l5 0.75 5.36 16.09 4.18

i - Note CS: results with small ribs.

CW: results with large ribs.
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various ice cover thickness t' are presented in Figures 29 and 30 for the
rectangular and cylindrical shear apparatus, respectively. It is seen
that in most cases for a given cover thickness, the failure strain de~
creases nonlinearly with increasing acting speed. This means for the same
ice cover thickness, the lower the acting speed the longer the time and
the larger the relative displacement AL, which are needed for an ice cover
to fail under shear. 1In the tests with rectangular shear apparatus,
Figure 29, the failure strain appears to be approximately proportional
to cover thickness and length; the effect of the latter being more sig-
nificant for the larger values of cover thickness. The range of failure
strain was found to lie between 18.8% and 3.05% when crushed ice was used.
As seen from Figure 30, the failure strains obtained with the
cylindrical apparatus, also decreases with increasing acting speed but
no significant effect of the rib sizes could be detected, nor of the cover
thickness. The failure strain was found to vary between 8.11% and 2.31%,

a range smaller than that obtained with the rectangular shear apparatus.

3. Relation between failure shear strength, acting speed, ice
cover thickness and length. From the above presentation, it is known that
the acting speed, i.e., deformation rate, cover thickness, and the initial
length of the ice cover are the dominant factors influencing the shear
strength of ice cover. Plots of the failure shear strength, T, against
the different factors are shown in Figures 31 and 32 for the tests con-
ducted in the rectangular shear apparatus with parallelepiped ice floes
and crushed ice, and in Figure 33 for the tests conducted in the cylin-
drical shear apparatus with crushed ice.

From these figures, it is seen that for constant acting speed
the failure shear strength increases linearly with ice cover thickness.
The rate of increase of T with cover thickness decreases with increasing
acting speed, Vc, and in fact becomes practically zero for VC greater than
about 0.013 ft/sec. At these large acting speeds, the failure shear
strength is approximately equal to 2.0 lb/fE% independent of the cover
thickness.

Figure 31 presents the results obtained with the rectangular

shear apparatus with parallelepiped ice floes. The dotted lines shown
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in Figure 31(a) correspond to Merino's (1974) results. The former g

results are found to be much larger than the latter. This discrepancy

confirms that in the original set-up used by Merino a significant part

of the shear load was not transmitted to the dynamometer. In addition,

the shearing area calculated here taking into consideration the relative
displacement, AL, was smaller than that used by Merino in his calculation
of 1, thus contributing to the higher values of T found in the present
investigation. 1In Figure 32,which presents the results obtained with
crushed ice in the rectangular apparatus, the dotted lines represent the
mean results from Figure 31 (ice parallepipeds in rectangular shear apparatus).
It is seen that the shear strength of crushed ice is larger than that
obtained with ice parallelepipeds. Ice covers made of crushed ice have
less proosity, and a larger interparticle contact area. Therefore they
can withstand larger shear loaas. In Figure 33, results obtained with the
cylindrical shear apparatus with either small or large ribs are compared.
No significant difference in the values of 1 are apparent between these

two set-ups. The results agree quite well with each other. This indicates
that the size of the ribs on the cylindrical boundary to prevent slippage
of the ice along the boundaries of the apparatus did not affect the failure
shear strength as long as there is enough space between the cross vanes

and outer ribs. The dotted lines in Figure 33 have been taken from Figure
32 with cover length, L, equal to 1.2 ft, for comparison with the

results obtained with cylindrical shear apparatus which had an equivalent
ice cover length L = ZHRS where Rs is the rédius of the shear surface,
equal to 1.0 ft. It is apparent that Fhe failure shear strengths measured

in either the cylindrical shear apparatus or the modified rectangular

shear apparatus are practically identical.

The influence of cover length on the magnitude of the failure
shear strength of fragmented ice cover can be inferred by comparing
Figures 31 and 32. The results of Figure 32(a) and (b) show that for a
given acting speed, the failure shear strength increases with increasing
length in agreement withMerino's (1974) findings. On the other hand,
the results in Figure 31 show the conflicting phenomenon that failure

strength decreases with increasing length. A thorough check of the
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experimental procedures for each series of experiments revealed that

the results of Figure 31, obtained by Hsu, were arrived at from only one
experimental run for each nominal condition, which, as proven by
experience, is not enough to establish reliable data on mechanical char-
acteristics of fragmented ice cover. Hence, the results in Figure 31 are
doubtful and can not be trusted as indicating the actual trend of 1 as

a function of cover length. The increase of T with increasing cover
length was explained by Merino (1974) as follows: for a given V, a larger
L produces a smaller strain rate; hence a greater time elapses until

the shear strength of the ice is reached. This greater time leads

to the development of stronger cohesive bonds, and hence increased

shear strength.

IV. SUMMARY AND CONCLUSIONS

A. Compression Tests on Fragmented Ice Covers. The compressive

strength of fragmented ice covers was investigated by compression tests
with and without initial preloading for a range of loading speed Vc and
three cover thicknesses. In spite of the large experimental scatter

in the results, common to this type of investigation, the following con-
clusions were reached:

1. The strength ocr was found to be inversely proportional to
the loading speed Vc for Vc < 0.01 ft/sec, but to reach a constant value
for Vc > 0.01 ft/sec.

2. ocr was an increasing function of the cover thickness t,
but, within experimental accuracy, the ratio ocr/t is approTimately
independent of t. This ratio ocr/t was found to vary as VC for low
loading speed, but to reach a constant value for Vc > 0.01 ft/sec. 1In

the present experiments it was found that

= Y 2
e = 10 1b/ft

V. »0.01
c

Al el A
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3. Because of the large discrepancy between the results of
the present study and those of a previous similar investigation (Tatin-
claux et al., 1976), it was concluded that relatively small variations
in the air temperature can have a large effect on the compressive strengths
of floating fragmented ice covers. This effect was tentatively attributed
to the influence that air temperature probably has on the formation of
cohesive bonds between individual particles in a cover.

4. O, Was found to be virtually unaffected by either the
magnitude of the preload, or the type of preload. Differences in acr
between the results with and without preload were of the same order of
magnitude as the experimental accuracy.

The manner in which the preload was applied to the ice cover in
this investigation did not, however, correspond to actual field conditions,
which in the cpinion of the writers would be better approximated by a
static preload. Hence, more research should be undertaken on compression
tests with static preload. To this end, a new tentative design is suggested
and shown in Figure 34. A combination of plate, steel rod, pulley and
weight would be used to apply the preload to the ice cover. As shown in
Figure 34 false walls would be installed in the force tank, one set across
the tank as preloading plate and two longitudinal walls a small distance
away from the longitudinal walls of the tank. The preloading plate would
be connected by two rods, located in the space between tank and false
walls and riding on ball bearings to minimize friction (A-A and B-B
sections in Figure 34), to a steel cable passing over a pulley and attached
to a hanging weight. This weight would be used as preload and could be
changed according to the magnitude of the desired preload. The ice cover
would be formed between the plate and force wall. The given static preload
would be applied to the ice cover by the hanging weight. After a period
of time, the driving plate would be started and the compression test con-
ducted. This design should apply a constant static load to the ice cover

and thus the natural condition of preloading would be better simulated.

B. Shearing Tests on Fragmented Ice Covers. The shear strength

T of fragmented ice covers was investigated by direct shear tests with a

rectangular apparatus and by vane shear tests with a cylindrical apparatus.
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The experiments were conducted for different shearing speed, Vc, ice
cover thickness, t, and ice cover length, L. The experimental results
can be summarized as follows:

1. T was found to be inversely proportional to Vc' and pro-
portional to t, as long as Vc was less than 0.01 ft/sec but independent
of t and equal to 2.0 lb/ft2 for values of Vc greater than about 0.01
ft/sec.

2. T was still found to be affected by cover length in the tests
with rectangular shear apparatus. This means that the effects of the
compressive stress during shear were not totally eliminated. Furthermore,
the influence of L on T appeared to depend on the configuration of the
test apparatus. Further tests using cylindrical shear apparatus of larger
dimensions should be undertaken to study the influence caused by the con-
figuration of the test apparatus.

3. T was found to be affected by the size and shape of the ice
samples. Low porosity ice covers made of irregular crushed ice resulted
in higher values of T than when regular shape and parallelepiped ice
floes were used to form the fragmented covers.

4. t© was found to be virtually unaffected by either direct
shear tests or vane shear tests under nearly same experimental conditions.

But, again, more experiments using a larger cylindrical apparatus are

needed to verify this conclusion.
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