
W AO*5 an C*UFOSNIA W h y SANTA CRUZ IWO*NATION SCZCNCES F/S 9’2
r~t uZCATC LnICI A CALCULUS FCfl DCRIVZNS PROSRAl45.(U~
MY 71 K C4.ARSv S Szc~zs. N000I$—76 C—OS5t

W$CLASSIFIED 11 71i4.OO3 Pt
I IlLS ~~~~~~~~~~~~ END

A04323J IfW t St ~~~~~~~~~~~ ~. r~’ iaLaa”:’
I
I
I

I

I
p H

‘ O Ih~ 101121 ~ 2.5
I. L~~~~~~’~~

_______ ~~ II 2.2
L

I. I ‘

~~

f((f(L25 IIIll~ um~
MICROCOPY RESOLUTION TEST CK~~ T

NATIONAL BUREAU OF STANDARDS-1963-~

*


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ / ~~~~‘ A
£~~~~~~~~~~~~ T~I V .  ~~~~~~~~ ~

IR ~ ~~~~~~~~~~ 1i4 LT?J~9
~!~~~W_~~~~ & ~~~~~~~~ ~~~ .II / 

1!’  . 4

PREDICATE LOGIC :

A CALCULUS FOR DERIVING PROGRAMS

I by

Keith Clark and Sha ron S ickel

Technical Report No. 77-8-003

DL~tiibuU~fl 

_ _ _ _ _



r R EPOR T DOCUM EN TATION PAG E READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 )Lc~P l E w T s  C A T A L O G  ~d uMBENI REPORT NUMSER 
12. 

GOVT ACCESSION NO.

C
~ 

LJ.LZJJ (— ~~ _~~~~ .#r .aRUi. 0 COVE RED

-~PREDICATE LOGIC : A CALCULUS FOR j~ERIV ING (~~echnical 7~~~~,?ROGRAMS, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S. PERFORMING ORG. REPORT NUM SIR

7 A UT HO R(s )  S. CONTR AC T OR ORA NT NUMSER(.)

~~~~~ 1i~~ h Clark nd /‘7~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
SharonJSicke~~

S PERFORMING ORGAN IZATION NAME AN D ADDRESS tO . PROGRAM ELEMENT. PROJECT , TAS K

Inf ormat ion Sciences
AR EA I WORK UNIT NUMSERS

Universi ty of California ~~~~~~~~~~)7~~ ‘7SAntA Crnz , CaliforniA ~5fl64 _______________________
I-i . ..~~—,. RT l.*TI—__II. CONTROLLING OFFICE NAME AND ADDRESS

Office of Na va l Research May ~~~
Arlington , Virginia 22217 ‘—~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

IT MONITORING AGENCY NAME I ADORESS(lI dUI.~InI’ ftoaI C.nSroIJisd OUIcI) II. SECURITY CLASS. (.I ffiS.~ jPO~f)

Office of Nava l Research
University of California Unclassified
553 Evans Flail 1.. DECLAISIFICATIONIDOWNGRADINO

SCM LOULE
Berkeley, California 94.720 _______________________

1$. DISTRISUTION STATEM ENT (.1 eDit. R.p.H)

;
~i1

17. OISTRIUUTION STATEMEN T (.1 Di. ab.ftacl .~~D.,.d In BI.ok 20. II dtUP,onl leo. R. o0)

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the
general public .

II. SUPPLEM ENTARY NOT ES

p

IL KEY WORDS (ConiInu. on n v.,.. .Id. It n.c.. .~~ ond IdInII ~~ ~~ bi*ek Ao.S.V j

Predicate calculus, programming methodology, program synthesis

20. A S$T RACT (C lteiuI on n.y.,.. .1d St n.e...ay ond SdonISlp lip 11.01 umb rj

We show redica te lo programs from
axiomatic sp~ cifica tions~~ _4 law J~ts proof theory can
be used to analyze , and re-characterize, the’computa t ions o f a
program

DO
~~~~~~~~ 

1473 EDItION OP NOV 55 IS OPIOI.(TI
S/N 0103.LF 014 HOI 

SECURITY CLAUIFICAfION OF TWIS PAGE (~~on D.C. 1iiO.r. ~

~ 3 S~5

-~~~~ ~~~~~ — -



F V - 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I
PREDICATE LOGIC: A CALCULUS FOR DERIVING PROGRAMS

Keith Clark Sharon Sickel.
Computing & Control Information Sciences
Imperial College University of California
London, England Santa Cruz, California

May 1977

Published in the Proceedings of the International Joint
Conference on Artificial Intelligence, Boston, August 1977.

Supported in part by the Office of Naval Research under
Contract N00014- 76-C- 0681.

ACCES~2~iJ2L_- 

Doc 
-‘ 

‘~ on

S -

BY

~~~~~~~~~~~~ ~~~~~~ ~~~Z~~~~~~~~~~ 2~~~Ii’’ - -- - 
________ _______ — -


~~~ lu__y ~~~~~~ .~~~. —~~-—-...- ~~~~ -r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- ~~. - - —S.- ~__  - - --- -

~
--

~~-~~~~~.- -

~ rçT ~~~~~~~~~~ ~~~~~~~~~~~~~~~

.~~~~I ~~I~~~tL ~~~~~~~~~~~~~~

Abstract
We show how predicate logic can be used to derive Uting th. equivalent expression u—v v ~~~
ç:ograma from axiomatic specifications. We alsO esetn—test (u ,v.x ,t) .4
show how its proof theory can he used to analyse, 

~~~ £ ~~~~~ v utx ~ ~, 
tsP I “(u—v

~
ucx)

am~ re-characterize, the computations of a program.
We now bring the components of the substituted

1. Programs as computationally useful theore~~ expression to the surfac . by distributing connect—
We start with a set of axioms that give an intuit— ives. We do this in order to throw together form-
ively correct characterization of some input—output ulae such as P& P that cen be logically evaluated.
relation we wish to compute . Under the procedural But , more importantly, we ‘multiply out ’ in the
interpretation of logic [5,6] these axioms can be hope of eventually ‘ factoring out’ an expression
used to ‘compute’ the relation. So we ‘symbolically that is just another instanc. of the mem—tast def-
execute ’ the axiom., qua program, for various forms m iens. If we can do this we have found a recur-
of input . From each symbolic execution we distil a sive use of the me -test definition from which ws
theorem that can double for the axioms in the can infer a recursive theor.m. Distributing gives
business of computing th. relation. Our set of mem—te.t(u,v.x,t)___________________________derived theorems is e logic program whose proc.d-
ural use is computational. t—T $ uv v It—? I ucx tsr a w&v a “.ucx J

The boxed disjunction very nearly matches the mem-
Example test definiens. The ‘difference’ is the extra
The following axioms are . specification for the condition u~v that appears in its right disjunct.

• input-output relat..on, meiw-test, of a program to We could factor this out if it also appeared in
test if an element u is a member of a list z. The the left disjunct. So we introduce itt
output is to be T if usa, F if not. All free var- mem—test(u,v.x,t) +
iables (lower case) are implicitly universally t—T i u—v t—? £ u~v I ucx ~ t—F a uIlv a “ucx
quantified.

But note that the ~~~~~~~ has been down-graded to “+°.
Specification Introducing up1v destroys th. equivalence. However,

‘l
~
ueNIL (or uSNIL +4 Sal..) since tT I u~v £ usx implies t.T I utx, we still

have the If-half of the if f. We now factor out u~v.UCV.X1 4-+ ‘i—v ‘ix
mem-t.et(u,v.z,t) 4mem— test(u ,z,t) ~~ t~T I *5 v t F I ‘USE t~? & u-v

~
us~v $ Ct—? a ‘ix ~ t—r a ‘~urx)

In several respe~ t. tIU~ axiomatisation is incom substituting mem—test(u ,x ,t) for its definiens gives
plete . We should really sxiomatise th. equality
relation for lists, and list element., and express mem—test (u,v.x,t) • c T I u v v ~~~ I mem-test(u,*,t)
the finiteness conditLon for lists by an induction which we expand as th. pair of theorums i
schema [3] . Howeve c the absence of explicit equal-
ity axioms is an implicit assumption that things mem-test (u,u.x,T) (2)
are equal only if tn.y are identically named, which mem-test(u,v.x,t) + ut~v a mem-test(u,x,t) (3)
is what we intend, and we shall not need the induc— Theorems (l),(2), and (3) are the statements of
tion schema for the ~coqram synthesis. our derived program. With minor syntactic changes,
Synthesis they are in fact a PROLOG program (10], PROLOG

being essentially a ‘top—down’ resolut~ion theorem
we ‘evaluate’ the deCinition of n.m-test for the
cases z—NIL and z—v.x •

prover. A request to refute
“.isem—tes t (2 , (4. (3. (5 . N X L))) , t)

s—NIL is a call of the program. It will generate the
recursive computation one expects. This cotnputa—

mem-test (u ,NIL ,t) 4”. -°T I usNIL v ~~~~ & ~~sN!L tion ii a constructive proof that. binds t to F.
Using the axiom us.~41L 4—’ Sal.. the ‘call’ ucNlL correctness
evaluates to false , giving —

A logic proqram that comprises a set of theorems
mem-test(u,NIL,t) 4-P t&I £ ~51~~ v ~~~~ ~ ~~~‘‘ about the relation it is •uppose~ to compute ls, in
The definions now red~cee to tsr using only logical

the computational sense, (çartialLy) correct. (Corn—
evaluation rules. I’~ effect we have prov.c~

puting an instance of the r.~lat~on is then proving
it is a correct instance.) Thus , a ~~qic program isI em—test (u,NIL,P) Cl) verified by checking that oi.ch ..~f !.t~ statements
are theoremsi it is sqnthea!.~ed (and enrified) by
find2ng each of its statements as th.~ircms . This

nem-test(u,v.x,t) 4- t—? £ urv.x v t—F £ ~‘U~~V . X approach to verificatios. and synt e...~ir is elabor-
This time we evaluate the ‘call’ ucv .x by eubstit— ated in (2].

~~~~~~~ -— ~~~~-—-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .--~~ -



• 
- - -  - — -- • 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

2. Proof theory analysis of computation The attributes are consistency checks on the van —

The computations of logic programs are resolution ablesj a production can be applied only if its

procfs. We can characterize such proofs as paths
associatea substitution constraint is consistent

through an interconnectivity graph (8], the unific-
with the substitution constraint of all previous

ations that appear on each path being the essential
steps in the derivation. The refined regular .xp-
ression therefore gives us restrictions on each ofsteps of the proof computation. This conceptualiz-

ation of what constitutes a proof gives us a tool
the variables that must be satisfied in any proof.
The restrictions on the input variables determinefor analysing, and reformulating, a logic program. the domain, those on the output variables the range.

Example For Fact, this analysis gives us O+(+l) as the

The logic program domijn, i.e. thc natural numbers , and , for n in the
natural numbers, mx ((n-3.)..X(2X1)..) as the range.Fact(O,l)

Fact (nfl, (n+l) Zy) + Fact(n,y) Termination
is used to compute the factorial function by asking If we are able to describe the set of computations
for a refutation of a conjecture of the form
“Pact (u ,v) where u is some numeral input. Below is

as a regular expression we can use the attributes

an interconnectivity graph for the general theorem to replace the •‘s with specific integer functions
of the arguments. If we can do this for every *,proving task in which the conditional statement has that is for every implicit iteration, we have provedbeen expressed in clausal form. Unifiable comple- that every computation terminates.

mentary literals are connected with an edge labelled
by the unifying substitution. 3. Final remarks

(c:(n+l/n ’,(n+l) xy/y’) of logic programs. However it ii intended to imple-
ment an interactive system which becomes more aut—~~~~~~~~~~~~~~~~~~~~~

So far we have only investigated the hand synthesis

“‘Pa t (a,y)
~
Fact fn+l, (nfl) X y) onomous as the synthesis methodology is refined and

a;[0/u l l/v]S.
\ ~ h:(n+l/u ,(n+l) X y/v)

understood. The idea of synthesing a ricursive
program from the recursive use of a specLfication

“Fact(u,v) . first appeared, independently, in (~] and [7].
Indeed the reader may have notices the e,.milarity

A proof of Fact(u,v) is given by any path through between our approach and that of ~.arlir.gton andthe graph that connects “.F’act(u,v) with Fact(O,lJ. Burstall(l,41. Like them we use the same formalism
In this case the set of all possible paths can be for both specification and program (they use
succinctly described by the regular. expression enriched recursion equations), and like them we
a bc*d . In effect, this is an iterative charact—
erization of the set of compositions of unifications

symbolically execute the sped cation. We have
derived much from their work.

that constitute a proof. Taking into account the -

intended use of the logic program, i.e. that u is to The proof theory analysis of computation is also
be input and v output, it is a compact notation for in its beginning stages. It is in fac: en applicat—
the iterative program : tion of more general work , currertly in progress,
1) a: if u 0 then v~-l •

on the analysis of resolution proofs. We believe
2) b: initialise u’+O~ v’+l it provides a useful conceptual~.za’~ion, and will

c~ : repeat (zero or more times) provide a useful tool.
u’4-u’+l, Refe rencesv’~ u’ X V ’

ds terminate above loop when u’—u [1] R.N.Burstall a J.Darlington , Some tzansforwat—
v+v’ ions for developing recursive programs , Proc . m t .

Conf . on Reliable Software , Los Angeles (1975)
General method

-

(2] K.L.Clark , Synthesis and v’eritication of logic
The above example was simpl, enough for us to read programs,Research report,CCD,Impeniel College(l977)
off directly from the graph a regular expression. [3] K.L.Clark a S~ii Tarnlünd , A fLat order theory
For more complex examples we may first need to char- of data and programs , Proc. IFIP Congress (1977)
acterize the set of proofs by a context free attni— (4] J.Darlington , Application of pr...yram transform—
bute grammar. This we can always do (9]. The ations to program synthesis,Colloques IRIA on Prov—
productions of such a grammar reflect the ground ing and Improving Programs, (1975)
structure of the problem, taking into account unir- (5) p.J.aayes, computation and d.&-ctlon, Proc.
iable pains of literal., but ignoring the necessary MFCS Conf., Czech Academy of Scier.de. (1973)
substitutions. The attributes carry the substitu- (6) R.Xowalskt, Predicate logic .1’. p r ogramirdng
tion information. Temporarily ignoring the attzi~ language, Proc. IFIP Congress (197k)
butes we try to re-express the language generated (71 Z.tdanna I R.Waldinqer , Knowledge 3nd reasoning
using nec,o1~r expressions. To the extent that we in program synthesis , Art. lot. Journal ,6(2),(l975)
are successful, we then re-introduce the subst~tu- [8] S.Sick.l. A search technique for interconnect—
tion constraints as refinements of the regular .lvi ty graphs , IEEE Trans . on Computc.~s, Aug. (1976)
expressions. Thus, in the Fact example , the regu1~r (9) I.Stck.l, A linguistic approach to automatic
expression bc*d would be refined by the constraint theorem prov .nq, Proc. CSCSI/SCEIO summer Conf (1976)
that c is applied the nuznber ,of times to ..~tisfy (~O] D.Warren ,I..Pereira & F.Pere’ra . PROWG—the
the substituLton . The refined expression ie there- .lanquage and i t s implementation comp ~~ed with LISP ,
fore b ’~~

1
~d • sIGp~~jI/SIcART Prog. Lang. Conf.,Pochester

(1977)

Domain and range

~~~~~ ~ r~~r •‘
~~~~~~~~~~BEST AV j & .t’t :~t~i ~~~~~ 

~~~~

- - — -
~~~~~~~~~~~~~ -.


- cc~’a’ t r r~~~ - w.._zc- ~~• •_,~• •, _ — ~--~~~T ! I ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

OPPICLAL DISTRIBUT ION LIST

Contract ~~0O]4-76-C-O68l

~~fsnss Documentation Center Off ice of Naval Research
Camaron Station Branch Office , Pasadena
Alexandria, VA 22314 1030 East Green Street
12 copies Pasadena, CA 91106

i copy
Office of Naval Research
Infonmation Systems Program . New York Area Office
Code 437 715 Broadway - 5th Floor
Arlington, VA 22217 New York, NY 10003
2 copies 1. copy

Office of Naval Research Naval Research Laboratory
Code 1021P Technical Information Division
Arlington, VA 22217 Code 2627
6 copies Washington, DC 20375

6 copies
Office of Naval Research
Code 200 Dr. A. L. Slafkosk y
Arlington, VA 22217 Scientific Advisor
1 copy Commandant of the Marine Corps (CodeRD-

Washington, D. C. 20380
Office of Naval Research 1 copy
Cod. 455
Arlington , VA 22217 Naval Electronics Li~boratory Center
1 copy . Advanced Software Technology Division

Code 5200
Office of Naval Research San Diego, CA 92152
Code 458 - i. copy
Arlington, VA 22217
1 copy Mr. E. H. Gleissner

Naval Ship Research & Development Cent .
Office of Naval Research Computation and Mathematics Department
Branch Office , Bo ston Bethesda , MD 20084
495 St~~ er Street 1 copy

MA 02210
COPY Captain Grace M. Hopper

Office of Navel Research NAICOM/MIS Planning Branch (OP-916D)
Branch Office, Chicago Office of Chief of Naval Operations
536 South Clark Street Washington, D. C. 20350

• Chicago, IL 60605 1 copy
1 copy

• Mr. Kin 5. Thompson
Technical Director

N
~~

Informat ion Systems Division (OP-9 13G)
Off ic e of Chief of Naval. Operations
Washington, D. C. 20350
i copy

L. - ~~~~~~~~~~~~~~~~~~~~~~ ,••~~~ ~_

