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Abstract
We show how predicate logic can be used to derive Uting th. equivalent expression u—v v ~~~
ç:ograma from axiomatic specifications. We alsO esetn—test (u ,v.x ,t) .4
show how its proof theory can he used to analyse, 

~~~ £ ~~~~~ v utx ~ ~, 
tsP I “(u—v 

~ 
ucx)

am~ re-characterize, the computations of a program.
We now bring the components of the substituted

1. Programs as computationally useful theore~~ expression to the surfac . by distributing connect—
We start with a set of axioms that give an intuit— ives. We do this in order to throw together form-
ively correct characterization of some input—output ulae such as P& P that cen be logically evaluated.
relation we wish to compute . Under the procedural But , more importantly, we ‘multiply out ’ in the
interpretation of logic [5,6] these axioms can be hope of eventually ‘ factoring out’ an expression
used to ‘compute’ the relation. So we ‘symbolically that is just another instanc. of the mem—tast def-
execute ’ the axiom., qua program, for various forms m iens. If we can do this we have found a recur-
of input . From each symbolic execution we distil a sive use of the me -test definition from which ws
theorem that can double for the axioms in the can infer a recursive theor.m. Distributing gives
business of computing th. relation. Our set of mem—te.t(u,v.x,t)___________________________derived theorems is e logic program whose proc.d-
ural use is computational. t—T $ uv  v It—? I ucx tsr a w&v a “.ucx J

The boxed disjunction very nearly matches the mem-
Example test definiens. The ‘difference’ is the extra
The following axioms are . specification for the condition u~v that appears in its right disjunct.

• input-output relat..on, meiw-test, of a program to We could factor this out if it also appeared in
test if an element u is a member of a list z. The the left disjunct. So we introduce itt
output is to be T if usa, F if not. All free var- mem—test(u,v.x,t) +
iables (lower case) are implicitly universally t—T i u—v t—? £ u~v I ucx ~ t—F a uIlv a “ucx
quantified.

But note that the ~~~~~~~ has been down-graded to “+°.
Specification Introducing up1v destroys th. equivalence. However,

‘l
~
ueNIL (or uSNIL +4 Sal.. ) since tT I u~v £ usx implies t.T I utx, we still

have the If-half of the if f. We now factor out u~v.UCV.X1 4-+ ‘i—v ‘ix
mem-t.et(u,v.z,t) 4mem— test(u ,z,t) ~~ t~T I *5 v t F  I ‘USE t~? & u-v 

~ 
us~v $ Ct—? a ‘ix ~ t—r a ‘~urx)

In several respe~ t. tIU~ axiomatisation is incom substituting mem—test(u ,x ,t) for its definiens gives
plete . We should really sxiomatise th. equality
relation for lists, and list element., and express mem—test (u,v.x,t) • c T  I u v  v ~~~ I mem-test(u,*,t)
the finiteness conditLon for lists by an induction which we expand as th. pair of theorums i
schema [3] . Howeve c the absence of explicit equal-
ity axioms is an implicit assumption that things mem-test (u,u.x,T) (2)
are equal only if tn.y are identically named, which mem-test(u,v.x,t) + ut~v a mem-test(u,x,t) (3)
is what we intend, and we shall not need the induc— Theorems (l),(2), and (3) are the statements of
tion schema for the ~coqram synthesis. our derived program. With minor syntactic changes,
Synthesis they are in fact a PROLOG program (10], PROLOG

being essentially a ‘top—down’ resolut~ion theorem
we ‘evaluate’ the deCinition of n.m-test for the
cases z—NIL and z—v.x • 

prover. A request to refute
“.isem—tes t (2 , ( 4. (3. ( 5 . N X L ) ) ) , t)

s—NIL is a call of the program. It will generate the
recursive computation one expects. This cotnputa—

mem-test (u ,NIL ,t) 4”. -°T I usNIL v ~~~~ & ~~sN!L tion ii a constructive proof that. binds t to F.
Using the axiom us.~41L 4—’ Sal.. the ‘call’ ucNlL correctness
evaluates to false , giving —

A logic proqram that comprises a set of theorems
mem-test(u,NIL,t) 4-P t&I £ ~51~~ v ~~~~ ~ ~~~‘‘ about the relation it is •uppose~ to compute ls, in
The definions now red~cee to tsr using only logical 

the computational sense, (çartialLy) correct. (Corn—
evaluation rules. I’~ effect we have prov.c~ 

puting an instance of the r.~lat~on is then proving
it is a correct instance.) Thus , a ~~qic program isI em—test (u,NIL,P) Cl) verified by checking that oi.ch ..~f !.t~ statements
are theoremsi it is sqnthea!.~ed (and enrified) by
find2ng each of its statements as th.~ircms . This

nem-test(u,v.x,t) 4- t—? £ urv.x v t—F £ ~‘U~~V . X  approach to verificatios. and synt e...~ir is elabor-
This time we evaluate the ‘call’ ucv .x by eubstit— ated in (2].

~~~~~~~ -— ~~~~-—-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .--~~ -
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2. Proof theory analysis of computation The attributes are consistency checks on the van —

The computations of logic programs are resolution ablesj a production can be applied only if its

procfs. We can characterize such proofs as paths 
associatea substitution constraint is consistent

through an interconnectivity graph (8], the unific- 
with the substitution constraint of all previous

ations that appear on each path being the essential 
steps in the derivation. The refined regular .xp-
ression therefore gives us restrictions on each ofsteps of the proof computation. This conceptualiz-

ation of what constitutes a proof gives us a tool 
the variables that must be satisfied in any proof.
The restrictions on the input variables determinefor analysing, and reformulating, a logic program. the domain, those on the output variables the range.

Example For Fact, this analysis gives us O+(+l) as the

The logic program domijn, i.e. thc natural numbers , and , for n in the
natural numbers, mx ((n-3.)..X(2X1)..) as the range.Fact(O,l)

Fact (nfl, (n+l) Zy) + Fact(n,y) Termination
is used to compute the factorial function by asking If we are able to describe the set of computations
for a refutation of a conjecture of the form
“Pact (u ,v) where u is some numeral input. Below is 

as a regular expression we can use the attributes

an interconnectivity graph for the general theorem to replace the •‘s with specific integer functions
of the arguments. If we can do this for every *,proving task in which the conditional statement has that is for every implicit iteration, we have provedbeen expressed in clausal form. Unifiable comple- that every computation terminates.

mentary literals are connected with an edge labelled
by the unifying substitution. 3. Final remarks

( c:(n+l/n ’,(n+l) xy/y’) of logic programs. However it ii intended to imple-
ment an interactive system which becomes more aut—~~~~~~~~~~~~~~~~~~~~~ 

So far we have only investigated the hand synthesis

“‘Pa t (a,y) 
~ 
Fact fn+l, (nfl) X y) onomous as the synthesis methodology is refined and

a;[0/u l l/v]S.
\ ~ h:(n+l/u ,(n+l) X y/v) 

understood. The idea of synthesing a ricursive
program from the recursive use of a specLfication

“Fact(u,v) . first appeared, independently, in (~ ] and [7].
Indeed the reader may have notices the e,.milarity

A proof of Fact(u,v) is given by any path through between our approach and that of ~.arlir.gton andthe graph that connects “.F’act(u,v) with Fact(O,lJ. Burstall(l,41. Like them we use the same formalism
In this case the set of all possible paths can be for both specification and program (they use
succinctly described by the regular. expression enriched recursion equations), and like them we
a bc*d . In effect, this is an iterative charact—
erization of the set of compositions of unifications 

symbolically execute the sped cation. We have
derived much from their work.

that constitute a proof. Taking into account the -

intended use of the logic program, i.e. that u is to The proof theory analysis of computation is also
be input and v output, it is a compact notation for in its beginning stages. It is in fac: en applicat—
the iterative program : tion of more general work , currertly in progress,
1) a: if u 0 then v~-l • 

on the analysis of resolution proofs. We believe
2) b: initialise u’+O~ v’+l it provides a useful conceptual~.za’~ion, and will

c~ : repeat (zero or more times) provide a useful tool.
u’4-u’+l, Refe rencesv’~ u’ X V ’

ds terminate above loop when u’—u [1] R.N.Burstall a J.Darlington , Some tzansforwat—
v+v’ ions for developing recursive programs , Proc . m t .

Conf .  on Reliable Software , Los Angeles (1975)
General method 

-

(2] K.L.Clark , Synthesis and v’eritication of logic
The above example was simpl, enough for us to read programs,Research report,CCD,Impeniel College(l977)
off directly from the graph a regular expression. [3] K.L.Clark a S~ii Tarnlünd , A fLat order theory
For more complex examples we may first need to char- of data and programs , Proc. IFIP Congress (1977)
acterize the set of proofs by a context free attni— (4] J.Darlington , Application of pr...yram transform—
bute grammar. This we can always do (9]. The ations to program synthesis,Colloques IRIA on Prov—
productions of such a grammar reflect the ground ing and Improving Programs, (1975)
structure of the problem, taking into account unir- (5) p.J.aayes, computation and d.&-ctlon, Proc.
iable pains of literal., but ignoring the necessary MFCS Conf., Czech Academy of Scier.de. (1973)
substitutions. The attributes carry the substitu- (6) R.Xowalskt, Predicate logic .1’. p r ogramirdng
tion information. Temporarily ignoring the attzi~ language, Proc. IFIP Congress (197k)
butes we try to re-express the language generated (71 Z.tdanna I R.Waldinqer , Knowledge 3nd reasoning
using nec,o1~r expressions. To the extent that we in program synthesis , Art. lot. Journal ,6(2),(l975)
are successful, we then re-introduce the subst~tu- [8] S.Sick.l. A search technique for interconnect—
tion constraints as refinements of the regular .lvi ty graphs , IEEE Trans . on Computc.~s, Aug. (1976)
expressions. Thus, in the Fact example , the regu1~r (9) I.Stck.l, A linguistic approach to automatic
expression bc*d would be refined by the constraint theorem prov .nq, Proc. CSCSI/SCEIO summer Conf (1976)
that c is applied the nuznber ,of times to ..~tisfy (~O] D.Warren ,I..Pereira & F.Pere’ra . PROWG—the
the substituLton . The refined expression ie there- .lanquage and i t s  implementation comp ~~ed with LISP ,
fore b ’~~

1
~d • sIGp~~jI/SIcART Prog. Lang. Conf.,Pochester 

(1977)

Domain and range
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