. AD=ADSS 233

UNCLASSIFIED

CALIFORNIA UNIV SANTA CRUZ INFORMATION SCIENCES F/6 9/2 G
PREDICATE LOGIC: A CALCULUS FOR DERIVING PROGRAMS. (V)
MAY 77 K CLARKr § SICKEL NOOO14=76~C=0681

TR=T7=-8=003 NL

& | END
DATE
FILMED
| |77

"m 1.0 =0 iz

=ik
|||l| A E: as l""20
="

22 s nie

. y
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF srmmms.wez.,i

&
e
?

,,,,,

PREDICATE LOGIC:
A CALCULUS FOR DERIVING PROGRAMS

by
Keith Clark and Sharon Sickel

Technical Report No. 77-8-003

i *‘..%\"T A ‘|

Asouioved for pubilc release;

e

* Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Nata Entered)

REPORT DOCUMENTATION PAGE B R

1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. IPIENT'S CATALOG NUMBER

o 4 TIILE andebubriator - D COVERED
{, J-PREDICATE LOGIC: A CALCULUS FOR DERIVING) [Technical

'PROGRAMS, = =2 - = A

- - iy 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) CONTRACT OR GRANT NUMBER(e)

@ md @j N@P@14-76-C-g681) —

. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Uaivbenity of Galitonia. AL TR-77-8-2383)
G il
Office of Naval Research C/L) JZ| Ma 77 /

! 9. PERFORMING ORGANIZATION NAME AND ADDRESS

Information Sciences
University of California

Arlington, Virginia 22217 o F T 5
T4, MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) | 15. SECURITY CLASS, (of thia
Office of Naval Research
University of California Unclassified
{ 553 Evans Hall Tia, gg‘&eg{i:acA'nou7oowucnomo ‘

Berkeley, California 94720

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the
general public,

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)
Predicate calculus, programming methodology, program synthesis

T NI T W T T YUY TR T T NN e R T e

20. ABSTRACT (Cagtinue on reverae aide I neceseary and Identily ? block number)
s oL A

\S
We show howﬁgredicate logic to derive programs from

axiomatic sp&cifications. its proof theory can
be used to analyze, and re-characterize, the computations of a

program7<:\\\\

DD ‘:2:‘!" 1473 eoiTion oF 1 NOV 68 18 OBSOLETE
8/N 0102.LF .014.6601

T T TR Oy e
.

SELCURITY CLABRIFICATION OF THIS PAGE (Whon Dora Bntered)

PREDICATE LOGIC: A CALCULUS

Keith Clark
Computing & Control
Imperial College
London, England

FOR DERIVING PROGRAMS

Sharon Sickel
Information Sciences
University of California
Santa Cruz, California

May 1977

Published in the Proceedings of the International Joint
Conference on Artificial Intelligence, Boston, August 1977.

Supported in part by the Office of Naval Research under

Contract N00014-76-C-0681.

ACCESSION for
EoA 5 Section

NTIS . s
Doc Batt S

UNANA

anMern

O T Ty 0 WL I g T e,

3

Abstract

We show how predicate logic can be used to derive
Fzograms from axiomatic specifications. We also
chow how its proof theory can be used to analyse,
and re-characterize, the computations of a program.

1. Programs as computationally useful theorems

We start with a set of axioms that give an intuit-
ively correct characterization of some input-output
relation we wish to compute, Under the procedural
interpretation of logic [5,6] these axioms can be
used to 'compute' the relation. So we 'symbolically
execute' the axioms, qua program, for various forms
of input. From each symbolic execution we distil a
theorem that can double for the axioms in the
business of computing the relation. Our set of
derived theorems is a logic program whose proced-
ural use is computational.

Example

The following axiom3 are a specification for the
input-output relatior, meu-test, of a program to
test if an element u is a member of a list z, The
output is to be T if uez, F if not. All free var-
iables (lower case) are implicitly universally
quantified.

Specification
VIENIL
UEV.X ++ usv ., uex
mem-test(u,z,t) +* t=T & uez y t=F & “icg

(or ueNIL +* false)

In several respects tlils axiomatisation is incom~
plete. We should really axiomatise the equality
relation for lists, and list elements, and express
the finiteness condition for lists by an induction
schema [3]. Howevez the absence of explicit equal-
ity axioms is an impiicit assumption that things
are equal only if tney are identically named, which
is what we intend, and wa shall not need the induc-
tion schema for the pcogram synthesis.

Synthesis

We 'evaluate' the def{inition of mem-test for the
cases z=NIL and 2=v.x ,

2=NIL
mem-test (u,NIL,t) +> *=T & ueNIL , t=F & “ueNTL

Using the axiom uewWlL ++ false the 'call' ueNiL
evaluates to false , giving

mem-test (u,NIL,t) +*> t=T & false y t=F & “faiso

The definiens now reduces to t=F using only logical
evaluation rules, JIn effect we have proveq

rem-test (u,NIL,F) (1)
z=v.x

men-test (u,v.x,t) +* t=T & UEV.X , t=P & “uev.»

This time we evaluate the 'call' uev.x by rubstit-

— | ' v &

ek LU

T “!ﬁ" AN {*AFY

uting the equivalent expression u=v , uex .,

mem-test (u,v.x,t) +*
t=T & (u=v y uex) y t=F & “(u=v ,, uex)

We now bring the components of the substituted
expression to the surface by distributing connect-
ives, We do this in order to throw together form-
ulae such as P& P that can be logically evaluated.
But, more importantly, we 'multiply out' in the
hope of eventually 'factoring out' an expression
that is just another instance of the mem-test def-
iniens. If we can do this we have found a recur-
sive use of the mem-test definition from which we
can infer a recursive theorem. Distributing gives

mem-test (u,v.x,t) +*
t=T & u=v y[t=T & uex y t=F & ufv & “uex |

The boxed disjunction very nearly matches the mem-
test definiens. The 'difference’ is the extra
condition ufv that appears in its right disjunct.
We could factor this out if it also appeared in
the left disjunct. So we introduce it!

mem-test (u,v.X,t) +
t=T & usv ,, t=T & ufv & uex y t=F & ufv & "“uex

But note that the "++" has been down-graded to "+",
Introducing uyv destroys the equivalence. However,
since t=T & upv & uex implies t=T & uex, we still
have the if-half of the iff. We now factor out ugv,

mem-test (u,v.x,t) +
t=T & u=v y, upv & (teT & uex y t=F & “uex)

Substituting mem-test(u,x,t) for its definiens gives
mem-test (u,v.X,t) + ¢>T & u=v ,, ugv & mem-test(u,x,t)
which we expand as the pair of theorems:

mem-test (u,u.x,T) (2)
mem-test (u,v.x,t) + ufv & mem-test(u,x,t) (3)

Theorems (1),(2), and (3) are the statements of
our derived program. With minor syntactic changes,
they are in fact a PROLOG program [10], PROLOG
being essentially a 'top-down' resolution theorem
prover. A request to refute

“mem-test (2, (4. (3. (5.NIL))),t)
is a call of the program. It will generate the
recursive computation one expects. This computa-
tion is a constructive proof tnat binds t to F.

Correctness

A logic program that comprises a set of theorems
about the relation it is supposel to compute is, in
the computational sense, (partialiy) correct. (Com=
puting an instance of the rolation is then proving
it is a correct instance.) Thus, a iogic program is
verified by checking that each of ts statements
are theorems; it is synthes’sed (and ‘merified) by
finding each of its statements as theurcms. This
approach to verification and syntiecir is elabor-
ated in [2].

bl 400 2

. ——— T ——————— . ———— —

+ — ————

2. Proof theory analysis of computation

The computations of logic programs are resolution
proofs, We can characterize such proofs as paths
through an interconnectivity graph [8], the unific-
ations that appear on each path being the essential
steps of the proof computation. This conceptualiz-
ation of what constitutes a proof gives us a tool
for analysing, and reformulating, a logic program.

Example
The logic program

Fact(0,1)

Fact (n+l, (n+l) Xy) + Fact(n,y)
is used to compute the factorial function by asking
for a refutation of a conjecture of the form
“Pact (u,v) where u is some numeral input. Below is
an interconnectivity graph for the general theorem

" proving task in which the conditional statement has

been expressed in clausal form. Unifiable comple-
mentary literals are connected with an edge labelled
by the unifying substitution.

Fact(0,1)

b: [0/n,1/y] c: [n+1/n', (n+1) Xy/y']
\Fact(n,y) | Fact(n+l, (n+l) Xy)

d: [n+1/u, (n+l) X y/v]

a: [0/“1 llv]
AFact (u,v)

A proof of Fact(u,v) is given by any path through
the graph that connects “Fact(u,v) with Fact(0,1).
In this case the set of all possible paths can be
succinetly described by the regular. expression
a|bc*d . In effect, this is an iterative charact-
erization of the set of compositions of unifications
that constitute a proof. Taking into account the
intended use of the logic program, i.e, that u is to
be input and v output, it is a compact notation for
the iterative program:
1) a: if u=0 then v¢l .
2) b: initialise u'«0; v'+«l
c*;: repeat (zero or more times)
u'+u'+l;
vieu' Xv'
d: terminate above loop when u'=u
vev'

General method

The above example was simple enough for us to read
off directly from the graph a regular expression,
For more complex examples we may first need to char-
acterize the set of proofs by a context free attri-
bute grammar. This we can always do [9]. The
productions of such a grammar reflect the ground
structure of the problem, taking into account unif-
iable pa2irs of literals, but ignoring the necessary
substitutions. The attributes carry the substitu-
tion information, Temporarily ignoring the attri.-
butes we tiy to re-express the language generated
ueing reqgular expressions. To the extent that we
are succeseful, we then re-introduce the substitu-
tion ccnstraints as refinements of the regular
expressions. Thus, in the Fact example, the regulav
expression bc*d would be refined by the constraint
that ¢ is applied the number of times to satisfy
the substitucion., The refined expression is there-
fore belu-liaq ,

Domain and range

»

BEST AVAILADLE

The attributes are consistency checks on the vari-
ables; a production can be applied only if its
associated substitution constraint is consistent
with the substitution constraint of all previous
steps in the derivaticn. The refined regular exp-
ression therefore gives us restrictions on each of
the variables that must be satisfied in any proof.
The restrictions on the input variables determine
the domain, those on the output variables the range.
For Fact, this analysis gives us O+(+1l)* as the
domain, i.e. thc natural numbers, and, for n in the
natural numbers, nX ((n-1)..X(2X1)..) as the range.

Termination

If we are able to describe the set of computations
as a regular expression we can use the attributes

to replace the *'s with specific integer functions
of the arguments, If we can do this for every *
that is for every implicit iteration, we have proved
that every computation terminates.

3. Final remarks

So far we have only investigated the hand synthesis
of logic programs. However it is intended to imple-
ment an interactive system which becomes more aut-
onomous as the synthesis methodology is refined and
understood. The idea of synthesing a racursive
program from the recursive use of a specification
£irst appeared, independently, in [)] and [7].
Indeed the reader may have noticed the similarity
between our approach and that of Darlington and
Burstall(l,4]. Like them we use the same formalism
for both specification and program (thecy use
enriched recursion equations), and like them we
symbolically execute the speci cation. We have
derived much from their work.

The proof theory analysis of computation is also

in its beginning stages. It is in fac: an applicat-
tion of more general work, currertly in progress,

on the analysis of resolution proofs. We believe

it provides a useful conceptualiza*ion, and will
provide a useful tool.

References

[1] R.M.Burstall & J.Darlingtcn, Scme transformat-
ions for developing recursive programs, Proc, Int.
Conf, on Reliable Software, Los Angeles (1975)

[2] K.L.Clark, Synthesis and veritication of logic
programs,Research report,CCD,Imperial College(1977)
[3] K.L.Clark & s-8 Tarnltind, A fiist order theory
of data and programs, Proc. IFIP Congress (1977)
[4) J.parlington, Application of pr.gram transform-
ations to program synthesis,Colloques IRIA on Prov-
ing and Improving Programs, (1975)

[5] P.J.Hayes, Computation and deduction, Proc.
MFCS Conf., Czech Academy of Sciercee (1973)

[6] R.Kowalski, Predicate logic as programming
language, Proc. IFIP Congress (1272)

[7] z.Manna & R.Waldinger, Knowledge and reasoning
in program synthesis, Art. Int. Journal,6(2},(1975)
[8] 8.8ickel. A search technique for interconnect-
ivity graphs, IEEE Trans. on Computecs, Aug. (1976)
[9) s.Sickel, A linguistic approach o automatic
theorem prov:ng, Proc. CSCSI/SCEIO summer Conf (1976)
[10] D.Warren,l..Pereira & F.Pereira, PROLOG-the
Janguage and its implementation compired with LISP,
SIGPLAN/SIGART Prog. Lang. Conf.,Rochester (1977)

MmN
N _;Y
SIM

ko e

OFFICIAL DISTRIBUTION LIST

Contract N00014-76-C-0681

leinsn Documentation Center

Cameron Station
Alexandria, VA 22314
12 copies

Office of Naval Research
Information Systems Prog
Code 437

Arlington, VA 22217

2 copies

Office of Naval Raesearch
Code 1021IP

" Arlington, VA 22217

6 copies

Office of Naval Research
Code 200

Arlington, VA 22217

1 copy

Office of Naval Research
Code 455

Arlington, VA 22217

1 copy

Office of Naval Research
Code 458

Arlington, VA 22217

1 copy

Office of Naval Research
Branch Office, Boston
495 Summer Street
?outon, MA 02210

copy

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office, Pasadena

- 1030 East Green Street

ram

Pasadena, CA 91106
1 copy

New York Area Office

715 Broadway - 5th Floor
New York, NY 10003

1 copy

Naval Research Laboratory

Technical Information Division

Code 2627
Washington, DC 20375
6 copies

Dr. A. L. Slafkosky
Scientific Advisor

Commandant of the Marine Corps (CodeRD-

Washington, D. C. 20380
1 copy

Naval Electronics Laboratory Center
. Advanced Software Technology Division

Code 5200
San Diego, CA 92152
1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Centc
Computation and Mathematics Department

Bethesda, MD 20084
1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations

Washington, D, C. 20350
1 copy

Mr. Kin B. Thompson
Technical Director
Information Systems Division (OP-911G)
Office of Chief of Naval Operations
Washington, D, C. 20330
1 copy

- P

Bk

e

