
A0 A045 231 CAUFC*UA ISIIV SANTA CRUZ IWO*NATIOW SCZCNCCS F/S 9/2
A I.OIZC—SAWD PROIRASINS PETh000LOSY. LU)
MAR 77 $ SICKB. N0001* 76 C.’OS$t

UNCLASSIP tED TN— fl—I—SOS II.

~i ~!r~iI~ ant, ~
:1
3 j

1.0 ~~~ II~~
_ _ _ _

L L 2.2
L

H

OOI~°
IIIIl~11(11’ .25 fft~f~ ~~

MICROCOPY RESOLUTION TEST CI-(~~t
NATIONAL. BUREAU Or STA NUA RDS-I963-~

F

L

~ ‘~\ !

A LOGIC-BASED

PROGRAMMING METHODOLOGY

by

Sha r on Sickel

Technical Report No. 77-8-001

‘
.1-. .• AV

-

~~~~~~ 
Appr.v 4 Is!

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

°
~~

.

~~~~~~~~~~~~~~



-
~~~~~ ~~~~~~~~~~~~~~~~~~~~~Fr 

_ _ _ _ _ _ _ _ _ _ _ _

SECURITY CLASS IF ICATION OF T HIS PAGE (Wh.n Dif• EnSe,.di

orø~~~~y E~~~~~~
,’k’ DAr E

READ INSTRUCTIONS
— —

ni~,~~j n I I1~JI..1,Ini ri I ~ S I” !’ 11W BEFORE COMPLETiNG FORM

cI~
I p. r — -

~
- - -- 2. GOVT ACCIS$0N NO. 3. RECIPIENT S CATA L OG NUMBER

~ 7-
~~~~~~~~~~~~~ ~~~~ 

~~~~ 
_ _ _ _ _

~_XITLI-(~~~
E

~~~~~~~~~~ — --~~—~~~~~~~~ -~~~
- .,. ___ - TYPE OF REPORT B PERIOD COVERED

• 
~~~~~~~~~~~~ .. ! ~~~!L~~

°

~~~~~~~~~~~

”

~~~~~ 

METHO~~~~~~~)
_ _

~~. AUTI4OR(i) • S. CONTRACT OR GRANT NUM$ER(.~

O~~~~~~~~
ro
~~~~~~

e1\ ~~~~~~~~~~~~~~~~~O681J—

S. PERFORMING ORGANIZATION NAME AND ADDRE SS 16. PROGRAM ELEMENT , PROJECT , TASK
AR EA B WORK UNIT NUMBERS

Information Sciences
University of California
Santa_Cruz,_California__95064 ______________________

II. C O N T R O L L I N G O F F I C E N A P 4 E ANO A ODRE$S IS. PEPO~~T

Office of Na va l Research (J. I~~~~~~~~~~~~~~ O~~~P~~Arlington , Virginia 22217 8 
____  

/ ~IA MONITORING AGENCY NAME B ADDRESS(SI dSSl.~.mI Srom ConuoSHn4 OUSc.) IS. SECURITY CLASS.
Office of Naval Research
University of California Unclassified
553 Evans Hall IS.. DEC~.A S S S FP CA TION/DOWNGRAOIN0
Berkeley, California 94720 SCHEDULE

IS. DISTRIBUTION STATEMENT (oS liii. R.pofl)

Distribution of this document is unlimited . It may be released
to the Clearinghouse, Department of Commerce, for sale to the
genera l public .

D C
17. DISTRIBUTION STATEMENT (ot A. .b.ft.ct .~ (.,. d Sn aloch 30, St ditI.,snl Sroa R~~ .W)

IS. SUPPLEMENTARY NOTE S

IS. KEY WO RDS (ConUnu• Ill t•vI?IS .id. IS n•c,iIay aid Sd..flht~’ b~ Block n,aikocj

Logic programming, executable program, data abstraction,
program synthesis

20 ABST RACT (COqitSsiu ~11 r.v.rI. .Id . It n.c•...vy .id Sd ntIfr b~ block .i bi(J

This paper describes a method of program construction that
combines some contributions in structured programming, program
verification and program synthesis. This method has start-to-
finish continuity within mathematical logic.

• OD ~~~~ 1473 
EDITION O’ I W O VI S IS OB$OLETB
S/N 0102 LP 0144401 

SECURIt Y CLASISPICAT ION OP THIS PAGE (IP,ai 0.5. knSas~~

1~ I03~~
0 T~-’

~~-
-
~~- ---~~~~~~~~~~~~ 

. L L ’ ..~~. ~~~~~~~~~~ ______________



V ~

• -,•--- •..- -

~~~~~

.

~~

--S--,.

~

.-.
~

~~~~~~~~ 

- - --.

~~~
-

~~~~~
-.—.-.

~
-----

A LOGIC-BASED PROGRAMMING METHODOLOGY

Sharon Sickel

Information Sciences

University of California

Santa Cruz,

California

I ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

. —

~ ‘ S  Sec~” ~~ ~
ft $ect~S~ C~ID1~C CI

‘
~ ~~~~~~~ — -ii - 
‘

~;l~~~~~~
• I

~~~
’
~ ,~~~~

-

Dis . - - -

A

Research supported by Office of Naval Research Contract # 76-C-0681

Introduction We propose a method of program construction that combines

• some of the contributions In structured programing, program verification

and program synthesis. The new method has the advantage of start-to-finish

continu ity within a well-understood formal system.

The structured programing approach , developed in response to a

concern over the reliabilit y of software, provides a style that helps

clarify the mean ings of programs. This style advocates top-down refinement

in both the control structure of the program , and in the structure of the

data objects. Both are reflected in modern programing languages although

perhaps not in as elegant and general form as we might wish. One specific

disadvantage Is that the programing language forces certain irrelevant

engineering decisions (data encodings , fully ordered sequencing where a

partial ordering is sufficient, etc.) during the problem~solving phase

where it would be advantageous to deal only wi th abstractions. Data objects

need only be understood in terms of their properties , and in terms of the

relations between them and of the functions that act upon them . There is

an extensive literature on this subject; for example see Software Specifi—

cation and Design(Yeh 77].

We also need to state precisely the specification of a program and

then to establish formally that the program carries out t~he task specified .

Program verification starts wi th the program and builds a specification

describing It. Program synthesis starts with a specification and builds a

program to carry it out. In both, the predicate calculus provides the

language in which to express the specification and the formal theory in

which to carry out the proof of equivalence , but does not, In general ,

determine the construction of the program Itself.

.4

F P 7 f l’ t ’ ” ’ —••-.-—-—- ,-•_,-_-._

~~~
‘W r~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘r ~ ‘ “---~~... ~~~ ---. -

2

The method proposed here uses predicate logic for programing, but not

as the executable form of the program (as contrasted to Prolog(Warren 76]

where It Is also executable). Process and data are describable but at a

level of abstraction that is free from implementation issues. In particular

the programing language, compiler and supporting hardware can be ignored.

Once the program is correctly prepared in logic, the transition to an execut-

able program Is done by equivalence-preserving transformations In the first-

order logic , or meta-logic.

This paper ties together several other works by the author[Sickel 76,

Sickel and Clark 76, Sickel 77].

Overview Figure 1 shows the principal components of this approach, and

their relative sequencing. The four forms of programs and the three mappings

between them are defined in the following sections.

ASSERTIONAL LOGIC PROGRAM

mapping # 1

Equivalence preserving transformations in logic

COMPUTATIONAL LOGIC PROGRAM

mapping # 2

Theorem prover analysis

COMPUTATION PATHS

mapping # 3

Semantics preserving translation

CORRECT EXECUTABLE PROGRAM

Figure 1. Program forms and their relationships .

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-

~~~



-~ ---~ -~~~~~ •~~ -.. _~~~~~~~~ •• .._ ..
~ ~~~~ .

3

An assertional logic program is any set of well-formed formulas

of first-order predicate calculus that define a function. A ll data types

and other functions used in this definition must either be primitives or
- - - have been previously logically specified. Example:

Given the predicate Member (v,S), meaning v E S, define the

predicate Subset(S, 1), meaning S CT .

Subset(S,T) (vv)[Member(v ,S) -~ Member(v,T)]

A computational logic program is an assertional logic program In which

1) all variables are implicitl y universally quantified , and

2) all formulas have the form A1 A A2 A ...A A~ 
-

~~ B where n ~ 0, the A1
1 s

and B are positive literals , and B is optional , and

3) the A1
1 s are implicitly simpler subgoals than B. The particular Intent here

is to have the derivation of B subgoal driven and to avoid quantifier driven

definitions . For example, the assertions) logic program given above to

determine the subset relation is not computational . The Implicit computation

Is one of trying all elements of the universe to see that if they are In S, they

are also in T. This is impossible for infinite domains , and undesirable in

all cases. A computational form of Subset is:

Subset(’b ,S)

Member(v,T) A Subset(S,T) -~ Subset(v.S,T)

where v.5 means {v} U S with the proviso that S c v.5 (strIct inclusion).

A computation path is a closed form expression that describes all

proofs of a theorem. Green pointed out[69] that theorem proving can be

used to compute answers. For example, if factorial (n) x Is represented

as the predicate Fact(n.x) and the logic definition is:

Fact(O,l)

Fact(n,x) -~ Fact(n+1 , (n+l)*x) s
sThis is, of course, assuming + and * as evaluable primitives w~’4ch are

assumed to be correct.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~;_~~-~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
• ,•-

then we can refute

Fact(5,y)

and In the process compute a value for y: factorial(5) 120. Therefore,

the computation paths also describe the sequence of operations constructing

the output. In the case of Subset the form of the computation path Is

d(cb)*ca~e where a-e are shown In Figure 2. Each letter can represent a

resolution between literals connected by the edge with that label . Then

any refutations of Subset(A,B) can be described by e or d(cb)~ca. n.? 0.

To better understand this diagram see Sickel[76]. For a more program

oriented description of this computøtlon , see the next section.

Subset($,T)

Menber(v,T) A Subset(S,T) -
~~~ Subset(v.S,T)

c ~
‘ b d

refute Mei~ber(v,T) Subse~(A,B)

FIgure 2

A correct, executable pro~rarn is defined here to

(1) be expressed in a contemporary programing language, the semantics of

which are formally defined , and

(2) be guaranteed to terminate, and

— (3) have associated with it an assertional specification which the program

is guaranteed to satisfy.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•. - - •~ .L

r
- -

~

-—-‘S ____‘_ _ ,- --_ .,_-_ - - -. ~~~~~~~~~~~~~~ -~~~~~~~~~~~~r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For the subset example, the associated assertional specIfication Is

Subset(S,T) (Vu)[Mem ber(u,S) -+ Member(u.T)]

and- the program resembles the following

logical procedure Subset(S,T)

e it S = • then TRUE
else begin

d Remove(v,S)

c while Member(v,T) A S $4’ do

b Remove(v,S)

c,a if Member(v,T) A 5 = 4’ then TRUE

else FALSE

end

The letters along the left-hand margin correspond to letters appearing In

the computation path expression .

MappIng # 1. The mapping from assertional to computational form Is

within the predicate calculus and relies on its theorems and rules of inference

(distributive , commutative, associative laws, modus ponens, etc.) It Is described

in detail by Sickel & Clark [77]. This process is partly automatable.

Mapping # 2. Computational logic programs can be analyzed using

automatic theorem proving techniques to yiel d the computation paths. If you

wish to compute a function or establish a relation , negate the statement you

wish to accomplish and use a theorem prover on the axioms to refute your

negated goal . For example , refuting Fact(5,y) causes y = 120 to be computed.

Refuting Subset({a,b,c},{c,d ,a,b,e}) establishes the truth of Its positive form.

If we negate the most general form of the questIon, e.g. Fact(n,x) or Subset(A,B),

then we can derive a schema for all proofs (and therefore computations) of


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

6

these relations. This schema Is the result of a mapping from the axioms and

negated theorem onto a grammar whose language Is equivalent to the set of all

proofs of the theorem from the given axioms. This mapping can be made automati-

cally for all provable theorems In predicate logic [Sickel 77a]. A closed

form for the language gives a closed form for the proof set.

Mapping # 3. GoIng from the computational path expression to the correct,

executable program invol ves two major steps.

1. Represent the data in the target language . Prove that it satisfies

the abstract definitions of the data types.

2. Construct the control part of the process by modeling the computation

path. The components of the computation path have substitutions associated

with them [Sickel 77a]. The substitutions can be used to generate

invariants and to suggest constructs in the programing language whose

semantics properly interface the invariants. The semantics of the target

language must accurately reflect the actions of the compiler and Incl ude

local hardware peculiarities.

To some extent these two steps are automatable (Slckel 77b].

Conclusions We have proposed a method of program construction. Programs are

expressed in logic. The form of the programs encourages thinking at a high ,

abstract level . The resulting programs are portable in the first three forms,

in that they are aimed at no particular target system. They can be transformed

within the deductive system of logic to achieve efficiency, and they can be

rewritten In a programing language for execution. Some of the steps can be

automated. The resulting programs are more easily understood and their

correctness is more credible.

.1 

.—-. ~~~~~~~~~~~ ~~~~~~~~ ~~~
‘ ‘ 

- -



.-______

References

1. Green, C., Theorem-proving by Resolution as a Basis for Question-

answering Systems, Machine Intelligence, Vol . 4, AmerIcan El sevier, 1969.

2. Slckel , S., A Search Technique for Clause Interconnectivity Graphs,

IEEE Transactions on Computers, Aug. 1976.

3. SIckel , S., Formal Grammars as Models of Logic Derivations, Proceedings

of the international Joint Conference on Artificial Intelligence, Boston,

Mass. ,l977.

4. SIckel , S., and K. 1. Clark , Predicate Logic: A Calculus for Deriving

Programs, Proceedings of the International Joint Conference on Artificial

Intelligence , Boston, Mass., 1977.

5. Warren, David , Implementation of the PROLOG language , University

of Edinburgh , Department of Artificial Intelligence , 1976.

- ~~~~~~~~~~~~~~~~~~~~~~~ —~~- .- ~~~~~~~~~~~~~~~~~~ . —~~. ... ~~~~: ~~~~~~~~~~~~~~~ :. ~..



OFYICLAL DISTRIBUTION LIST

Contract N00016-76-C-o681

Defense Documentation Center Office of Naval Research
Cameron Station Branch Office, Pasadena
Alexandria, VA 22314 1030 East Green Street
12 copies Pasadena, CA 91106

i copy
Office of Naval Research
Inf o rmation Syate ma Program New York Area Office
Code 437 715 Broadway - Sib F~~or
Arlington, VA 22217 New York , NY 10003
2 copiea I copy

Office of Naval Research Naval Research Laboratory
Code 1021P Technical Information Division
Arlington , VA 22217 Coda 2627.
6 copies Washington, DC 20375

6 copies
Office of Naval Research
Code 200 Dr. A. L. Slafkosky
Arlington, VA 22217 Scientific Advisor
1 copy . Commandant of the Marine Corps (CodeRD-

Washington, D. C. 20380
Off ice of Naval Research 1 copy
Code 455 .

Arlington, VA 22217 Naval Electronics Laboratory Center
1. copy Advanced Software Technology Division

Coda 5200 -:
Of fice of Naval Research . San Diego. CA 92152
Cod• 458 1 copy
Arlington, VA 22217
1 copy Mr. E. H. Gle1ssner

Naval Ship Research 6 Development Cents .
Of f ice of Naval Research Computation and Mathematics Department
Branch Office , Boston Bethesda, ~~ 20084
695 Stinmer Street 1 copy

~oston, MA 02210COPY Captain Grace M. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP-916D)
Branch Office, Chicago Office of Chief of Naval Operations
536 South Clark Street Washington, D. C. 20350
Chicago, IL 60605 1 copy
l copy

Mr. Kin B. Thompson
Technical Direcj:or
Information Systems Division (OP-911G)
Offic~ of Chief of Naval Operaiions
Washington, 0. C. 20350
1 copy

- — —.- ---- --- - - —.- - — . 
~~
t-’”-~~~ --~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - M_ - - — - - 1 - - • . •


