| "AD=AO4S 231 CALIFORNIA UNIV SANTA CRUZ INFORMATION SCIENCES F/6 9/2

A LO.IC-IISID PROGRAMMING METHODOLOGY. (V)
$ SICKEL NOOOIQ-TG-C-Oill

TR-T?-.-OOI

L EEEENEEEEE

END

DATE
FILMED

lh—77

o .

|0 e g2 .
|||||_§___ C g
L 1
e A
22l nie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF suNDARDS~1963-,1

%
e
e

ADAO045231

A LOGIC-BASED
PROGRAMMING METHODOLOGY
by
Sharon Sickel

e e e

DISWAIBUTION STATEMENT B,

Appreved Yot public <

n R

.
Ty e
,.')u

-

el
- e ey

aciilcta e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE e

£, E :m—w--w 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

e oy e - TYPE OF REPORT & PERIOD COVERE

rs
.
(-2

V A LOGIC-BASED PROGRAMMING METHODOLOGY, ; |‘{)Technical n.u?x iy
5 B s z IR S - SRS, s 1 KR
T S T 6. PERFORMING ORG. REPO

£

LWL., -5 A
i 10. T. PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRESS ::ggl.lzolé.xtss.ﬂ’ NUHOCJIEI
Information Sciences P s

University of California
Santa Cruz, California 95064

LAUY“O“(” 45 o §. CONTRACY OR GI:'N‘I'N\‘JH'.ER(O)
Sharoys fckel L_/éb 'NO0O14-76-C-0681 | —
Ot e /

1. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research (]l,'”
Arlington, Virginia 22217

University of California Unclassified

Berkeley, California 94720

21 13, NUMBEROF
8
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Olfice) 18. SECURITY CLASS.
Office of Naval Research

553 Evans Hall T8, nec‘,Anmcu'ﬂouloowuonW—
SCHEOULE

. DISTRIBUTION STATEMENT (of this Report)
Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the
general public,

7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If ditlerent from Report) ‘J s
-~
-

8. SUPPLEMENTARY NOTES . ““\j

19. KEY WORDS (Continue on reverse eide il necessary and identify by block number)
Logic programming, executable program, data abstraction,
program synthesis

130. ABSTRACT (Continue on reverae aide If necessary and identify by block number)

This paper describes a method of program construction that
combines some contributions in structured programming, program
verification and program synthesis, This method has start-to-
finish continuity within mathematical logic.fz\\\

DD , 55", 1473 €oiTion oF 1 nov 8 (s OmsOLETR
S/N 0102 LF 0146601

SECURITY CLASSIFICATION OF THIS PAGE (Whon Defa Entered)

&/0350\&

A LOGIC-BASED PROGRAMMING METHODOLOGY
:' 8 Sharon Sickel
: ; Information Sciences !
University of California
; £
Santa Cruz, |
California
/ 4
RCOTSOION for —
' o White Section
’;;é puit Section %
UNANNOUNG™®
i
|
3 Research supported by Office of Naval Research Contract # 76-C-0681 i

e T Gl i i e o T Ty R

Introduction We propose a method of program construction that combines
some of the contributions in structured programming, program verification
and program synthesis. The new method has the advantage of start-to-finish
continuity within a well-understood formal system.

The structured programming approach, developed in response to a
concern over the reliability of software, provides a style that helps
clarify the meanings of programs. This style advocates top-down refinement
in both the control structure of the program, and in the structure of the
data objects. Both are reflected in modern programming languages although
perhaps not in as elegant and general form as we might wish. One specific
disadvantage is that the programming language forces certain irrelevant
engineering decisions (data encodings, fully ordered sequencing where a
partial ordering is sufficient, etc.) during the problem-solving phase
where it would be advantageous to deal only with abstractions. Data objects
need only be understood in terms of their properties, and in terms of the
relations between them and of the functions that act upon them. There is
an extensive literature on this subject; for example see Software Specifi-
catfon and Design[Yeh 77].

We also need to state prec1sg]y the specification of a program and
then to establish formally that the program carries out the task specified.
Program verification starts with the program and buiids a specification
describing it. Program synthesis starts w1th a specification and builds a
program to carry it out. In both, the predicate calculus provides the
Tanguage in which to express the specification and‘the farmal theory in
which to carry out the proof of equivalence, but does not, in general,

determine the construction of the program itself.

landiacn o

A S ARt i

The method proposed here uses predicate logic for programming, but not
as the executable form of the program (as contrasted to Prolog[Warren 76]
where it is also executable). Process and data are describable but at a
level of abstraction that is free from implementation issues. In particular
the programming language, compiler and supporting hardware can be ignored.
Once the program is correctly prepared in logic, the transition to an execut-
able program is done by equivalence-preserving transformations in the first-
order logic, or meta-logic.

This paper ties together several other works by the author[Sickel 76,
Sickel and Clark 76, Sickel 77].

Overview Figure 1 shows the principal components of this approach, and
their relative sequencing. The four forms of programs and the three mappings

between them are defined in the following sections.

ASSERTIONAL LOGIC PROGRAM
mapping # 1
Equivalence preserving transformations in logic
COMPUTATIONAL LOGIC PROGRAM
mapping # 2
ﬂ Theorem prover analysis
COMPUTATION PATHS
mapping # 3
ﬂ Semantics preserving translation

CORRECT EXECUTABLE PROGRAM

Figure 1. Program forms and their relationships.

o 3
e et g bR o alin ‘\\MJ

S —

An assertional lgqgic program is any set of well-formed formulas

of first-order predicate calculus that define a function. A1l data types
and other functions used in this definition must either be primitives or
have been previously logically specified. Example:
Given the predicate Member(v,S), meaning v € S, define the
predicate Subset{(S, T), meaning S c T.
Subset(S,T) « (v¥v)[Member(v,S) + Member(v,T)]
A computational logic program is an assertional logic program in which

1) all variables are implicitly universally quantified , and
2) all formulas have the form Ay A A2 Ave oA An -+ B where n = 0, the Ai's
and B are positive 1iterals, and B is optional, and
3) the Ai's are implicitly simpler subgoals than B. The particular intent here
is to have the derivation of B subgoal driven and to avoid quantifier driven
definitions. For example, the assertional logic program given above to
determine the subset relation is not computational. The implicit computation
is one of trying all elements of the universe to see that if they are in S, they
are also in T. This is impossible for infinite domains, and undesirable in
all cases. A computational form of Subset is:

Subset(4,S)

Member(v,T) A Subset(S,T) - Subset(v.S,T)
where v.S means {v} U S with the proviso that S c v.S (strict inclusion).

A computation path is a closed form expression that describes all

proofs of a theorem. Green pointed out[69] that theorem proving can be
used to compute answers. For example, if factorial(n) = x is represented
as the predicate Fact(n,x) and the logic definition is:

Fact(0,1)

Fact(n,x) - Fact(n+1, (n+1)*x) #

tThis 1s, of course, assuming + and * as evaluable primitives which are

assumed to be correct.

then we can refute

Fact(5,y)
and in the process compute a value for y: factorial(5) = 120. Therefore,
the computation paths also describe the sequence of operations constructing
the output. In the case of Subset the form of the computation path is
d(cb)*cale where a-e are shown in Figure 2. Each letter can represent a
resolution between literals connected by the edge with that label. Then
any refutations of Subset(A,B) can be described by e or d(cb)"ca, n 2 0.
To better understand this diagram see Sickel[76]. For a more program

oriented description of this computation, see the next section.

Subset(s,T)
a \\.
Member(v,T) A Subset(S,T) - Subset(v.S,T) e
/l b g d
- -
refute Member(v,T) Subset(A,B)
Figure 2

A correct, executable program is defined here to

(1) be expressed in a contemporary programming language, the semantics of
which are formally defined, and

(2) be guaranteed to terminate, and

(3) have associated with it an assertional specification which the program

js guaranteed to satisfy.

For the subset example, the associated assertional specification is
Subset(S,T) « (vyu)[Member(u,S) - Member(u,T)]
and the program resembles the following

logical procedure Subset(S,T)

e if S = ¢ then TRUE
else begin
d Remove(v,S)
c while Member(v,T) A S #¢ do
b Remove(v,S)
c,a 1f Member(v,T) A S = ¢ then TRUE
else FALSE
end

The letters along the left-hand margin correspond to letters appearing in
the computation path expression.

Mapping # 1. The mapping from assertional to computational form is
within the predicate calculus and relies on its theorems and rules of inference
(distributive, commutative, associative laws, modus ponens, etc.) It is described
in detail by Sickel & Clark [77]. This process is partly automatable.

Mapping # 2. Computational logic programs can be analyzed using
automatic theorem proving techniques to yield the computation paths. If you
wish to compute a function or establish a relation, negate the statement you
wish to accomplish and use a theorem prover on the axioms to refute your
negated goal. For example, refuting Fact(5,y) causes y = 120 to be computed.
Refuting Subset({a,b,c},{c,d,a,b,e}) establishes the truth of its positive form.
If we negate the most general form of the question, e.g. Fact(n,x) or Subset(A,8),

then we can derive a schema for all proofs (and therefore computations) of

these relations. This schema is the result of a mapping from the axioms and
negated theorem onto a grammar whose language is equivalent to the set of all
proofs of the theorem from the given axioms. This mapping can be made automati-
cally for all provable theorems in predicate logic [Sickel 77a]. A closed
form for the language gives a closed form for the proof set.

Mapping # 3. Going from the computational path expression to the correct,
executable program involves two major steps.

1. Represent the data in the target language. Prove that it satisfies
the abstract definitions of the data types.

2. Construct the control part of the process by modeling the computation
path. The components of the computation path have substitutions associated
with them [Sickel 77a]. The substitutions can be used to generate
invariants and to suggest constructs in the programming language whose
semantics properly interface the invariants. The semantics of the target
language must accurately reflect the actions of the compiler and include
local hardware peculiarities.

To some extent these two steps are automatable[Sickel 77b].

Conclusions We have proposed a method of program construction. Programs are
expressed in logic. The form of the programs encourages thinking at a high,
abstract level. The resulting programs are portable in the first three forms,
in that they are aimed at no particular target system. They can be transformed
within the deductive system of logic to achieve efficiency, and they can be
rewritten in a programming language for execution. Some of the steps can be
automated. The resulting programs are more easily understood and their

correctness is more credible.

=SNG TSI PR

References

1. Green, C., Theorem-proving by Resolution as a Basis for Question-

answering Systems, Machine Intelligence, Vol. 4, American Elsevier, 1969.

2. Sickel, S., A Search Technique for Clause Interconnectivity Graphs,

IEEE Transactions on Computers, Aug. 1976.

3. Sickel, S., Formal Grammars as Models of Logic Derivations, Proceedings
of the International Jdoint Conference on Artificial Intelligence, Boston,

Mass.,1977.

4, Sickel, S., and K. L. Clark, Predicate Logic: A Calculus for Deriving
Programs, Proceedings of the International Joint Conference on Artificial

Intelligence, Boston, Mass., 1977.

5. Warren, David, Implementation of the PROLOG language, University
of Edinburgh, Department of Artificial Intelligence, 1976,

i s sl - » i
o e N & s kU

TRy)

B it s L SR e e ol

OFFICIAL DISTRIBUTION LIST

Contract NO00l4-76-C-0681

anénae Documentation Center

Cameron Station
Alexandria, VA 22314
12 copies

Office of Naval Research

Information Systems Program

Code 437
Arlington, VA 22217
2 copies

Office of Naval Research
Code 1021IP

Arlington, VA 22217

6 copies

Office of Naval Research
Code 200

Arlington, VA 22217

1 copy

Office of Naval Research
Code 455

Arlington, VA 22217

1 copy

Office of Naval Research
Code 458

Arlington, VA 22217

1 copy

Office of Naval Research
Branch Office, Boston
495 Summer Street
?oston, MA 02210

copy

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area Office

715 Broadway - 5th Fiuor
New York, NY 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627.

Washington, DC 20375

6 copies

Dr. A. L. SIGkaSky

Scientific Advisor

Commandant of the Marine Corps (CodeRD-
Washington, D, C. 20380

1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200

San Diego, CA 92152

1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Cenc;3

Computation and Mathematics Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D. C, 20350

1 copy

Mr, Kin B. Thompson

Technical Director

Information Systems Division (OP-911G)
Offics of Chief of Naval Operations
Washington, D, C. 20350

1 copy

