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Section I 

INTRODUCTION 

Although flutter is an exceedingly dangerous phenomenon which can cause 

structural failure, it is possible to approach instability without destruc- 

tive results. If the system is unstable, the amplitude of oscillation begins 

to build up, but the extent to which this increase continues depends on the 

nature of stiffness characteristics of the system. If the system is nonlinear, 
the oscillations might increase to some amplitude and become stable again 

with a limit cycle oscillation. For missile control surfaces having large 

starting friction or a deadspace ("slop") in the control system, the natural 

frequency is a function of the amplitude of oscillation. 

At a speed slightly in excess of the critical flutter speed, the ampli- 

tudes of oscillation (caused by external excitation) would start to build up. 

Since the critical flutter speed is a function of the natural frequency of 

the system, it would be possible that the change in natural frequency attendant 

on the increased amplitude of oscillation would raise the critical flutter 

speed. The oscillations would then decrease until stability would be 

achieved. Thus, although the critical flutter speed of the original con- 

figuration might be exceeded, destructive oscillations would not necessarily 

result from the instability. The possibility of fatigue failure from low- 

amplitude oscillations is of course not ruled out. 

A control surface flutter analysis technique accounting for these non- 

linearities and an understanding of their potential influence on the flutter 

mechanism greatly Increases the efficiency of the control surface design 

process. Benefits In the form of reduced system weight and program cost 

could potentially be realized with the Inclusion of no^inearlties in the 

design process. This study was undertaken to provide a better understanding 

of the effect of various nonllnearltles on the dynamics of a missile control 

surface and to establish procedures to Include the Influence of these non- 

linearities In the flutter analysis process. 

In the past. United analyses hav« been conducted to evaluate the Influence 

of structural nonllnearltles on control surface flutter. For example, the 
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analyses of References 1 and 2 were for a rigid control surface with a single 

nonlinearity. In these references the nonlinear flutter problem was studied 

using basic linearization techniques and an analoq computer. The present study 

extended these results in order to: (a) develop techniques to handle flexible 

control surfaces having structural nonlinearities, (b) remove the limitation 

of allowing only a single nonlinearity in the system, and (c) improve the 

techniques for including the influence of the nonlinearities in the dynamic 

analysis of control surfaces. 

Specifically, the problem that was addressed during this study consisted 

of dealing with a missile control surface, Figure 1, exposed to subsonic flow. 

Structural nonlinearities were associated with the root rotational support 

springs Kfl and KA. Definition of the load acting on the control surface used 

the "simplified" representation defined in References 3 and 4. The basi': 

assumption of the simplified approach is that the lift force is proportional 

to and in phase with the torsional motion. The primary concern of this 

investigation was the evaluation of the influence of structural nonlinearities 

on control surface flutter. The attractiveness of the simplified approach 

to this initial understanding of nonlinearities is that it permits a more 

direct physical feeling of the flutter mechanism while under certain conditions 

yielding approximately the same results as more complicated analysis methods 

with much «ess computation. 

<^ ^ (root pitch) 

0 
(root roil) 

Root" rotational springs K^ and K^ 

Figure 1   Missile control surloce conligurotion 



Three types of structural nonlinearities, as shown in Figure 2 were 

dealt with during the study. The freeplay nonlinearity. Figure 2(a), might 

represent a loose hinge or linkage of a control system or possible joint slip- 

page. The preload nonlinearity. Figure 2(b), corresponds to a control surface 

with a basic freeplay nonlinearity and subjected to a preload which shifts 

the equilibrium position. The friction nonlinearity. Figure 2(c), is charac- 

teristic of control surfaces with freeplay if friction exists in the control 

system linkage or joints. 

During this study the control surface flutter problem was represented by 

the following system of nonlinear equations. 

MX + K(X)X = q A X (1) 

Referring to Figure 1, the detailed elements of Equation (1) are given as: 

 ;\" 
PFT      ;      mn 
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s  q 
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re 
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A baseline control surface was assumed for evaluating the various 

coefficients of Equation (2). This baseline configuration was based on the 

Harpoon Anti-Ship missile quick-attach control surface. Details of this 

Harpoon control surface are presented in Appendix A. 

With no nonlinearities in the system, that is when K(o) and K{t) are 

constants and not a function of system response, standard solution techniques 

may be used to obtain flutter solutions to Equation (1). A common approach 

is to assume harmonic motion and conduct eigenvalue analyses on the resulting 

free vibration problem. For varying magnitudes of dynamic pressure, the 

form of the resulting complex eigenvalues is used to determine system stability, 
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Figure 2  Charocteristics ol structural nonlineorities 



i.e., flutter. In addition, the "flutter mode shape" is obtained when the 

eigenvalue analysis is conducted for the flutter critical value of dynamic 

pressure. As will be discussed in following sections, during analysis of the 

nonlinear system, flutter results for an "effective" linear system are required. 

For these analyses, the eigenvalue approach was employed for obtaining flutter 

solutions. 

During these investigations, the nonlinear flutter problem was anlayzed 

through application of the "describing function" approach. As discussed 

in References 5 and 6 this technique is used in dealing with nonlinearities 

in control systems. This technique is based on a time averaging approach for 

defining the input-output characteristics of a nonlinear system. It is assumed 

that for a sinusoidal input the output is also sinusoidal with the same 

frequency as the input and all other harmonics can be neglected. Based on 

these assumptions, the linearized quantities relating system output to input 

are expressed in terms of the fundamental component of the output's Fourier 

series representation. In the literature of mechanical vibrations, this 

technique is also often referred to as the method of "harmonic balance," 

for instance Reference 7. Further details on applying these methods may be 

found in the Reference 8 text on solution techniques for nonlinear differential 

equations. 

The developed flutter analysis procedures, including the effects of 

structural nonlinearities, and illustrative results when applying these 

techniques are presented in the following three sections of this report. In 

Section II, a summary is presented of the describing function representation 

for each of the nonlinearities shown in Figure 2. The developed flutter 

analysis procedures are then discussed in Section III. Numerical time history 

solutions were obtained for the governing system of nonlinear equations. 

Results from these numerical simulation studies are compared with describing 

function predictions in Section IV. This process verified the developed flutter 

analysis procedures employing the describing function technique and led to a 

better understanding of the flutter mechanism as influenced by structural 

nonlinearities. These sections are followed by study conclusions. Section V, 

and recommendations, Section, VI. Included in this latter section is an 

illustration of how the presence of structural nonlinearities can Influence 

the definition of the allowable flight conditions for a missile control surface. 

5 



Supporting Information is presented in the report appendices. Appendix 

A describes the baseline control surface used in this study. Appendix B is 

a detailed analysis of the describing function for each nonlinearity studied 

in this program and Appendix C explains the load versus amplitude characteris- 

tics of the friction type nonlinearity. Solutions to example problems 

illustrating application of the developed analysis procedures are given in 

Appendix D. 



Section II 

DESCRIBING FUNCTION ANALYSIS 

Application of the describing function technique forms the basis of the 

developed flutter analysis procedures for missile control surfaces with struc- 

tural nonlinearities. With this approach, the nonlinear equations of motion. 

Equation (1), are linearized for subsequent flutter analysis. 

The basic approach in the describing function method is to assume that 

the system displacement is sinusoidal and of the form: 

x(t) = A Sin t or x(t) = A Cos t (3) 

For this displacement expression, the form of the load developed in the non- 

linear spring is defined and this load relationship is then expanded in a 

Fourier series. The higher harmonics in the series expansion of the load time 

history are neglected. That is, for a sinusoidal input displacement, it is 

assumed that the output load is also sinusoidal with the same frequency. The 

ratio of the single term Fourier series expansion of the developed load and 

the assumed displacement are then used to define an "effective" linear spring 

rate for the nonlinear element. 

A summary of the describing function approach for each of the three non- 

linearities shown in Figure 2 is presented in the following sections. Detail- 

ed development of the describing functions for these nonlinearities is pre- 

sented in Appendix B. 

A. FREEPLAY NONLINEARITY 

For a nonlinear spring with freeplay characteristics, as illustrated in 

Figure 2(a), the waveform of the developed load may take one of the two shaoes 

shown in Figure 3. These waveforms are dependent on the relationship between 

the magnitudes of the freeplay and the amplitude of displacement. Equation 

(3). For a displacement amplitude A less than the magnitude of the dear'space r 

no load is developed. Figure 3(b). When A is greater than S the developed 

load Is as shown in Figure 3(c). 

The "effective" stiffness K of the nonlinear spring including the 



A Sin t (A - S) 

o   0 

"3 

o    0 

(a) Displacement 

.L(t)  =   0 

TT 

Time 

(b) Load (A   S) 

L{t)  =   K (A - S) Sin t 

Time \7 
(c) Load (A   S) 

Figure 3« Developed iocd lor frceploy noniireonty 



influence of freeplay is now defined as 
K = 6K (4) 

In this expression 6 is the describing function which accounts for the 

presence of the freeplay nonlinearity. Using the describing function tech- 

nique we acquire a representation for the freeplay nonlinearity of 

the form (from Appendix B-l) 
6 = 0 for A < S 

(5) 

and 

where t1 is given by 

6 = i (i - 2^ - Sin 2^) for A > S 

t1 = Sin -1 (S/A) 

(6i 

Employing Equations (5; and (6), the relationship between the effective 

stiffness and the linear spring rate for a freeplay nonlinearity may be 

obtained«   This relationship is shown in Figure 4 as a function of the 

amplitude of motion to freeplay ratio.    For amplitude ratios A/S less than 

one, the effective stiffness is zero.   As the amplitude increases, the 
linear spring predominates and the magnitude of K approaches that of K. 

4 6 
AmpMtude ratio - AS 

Figure 4   Elective stillness lor Ireeploy nonlineority 



Numerical solutions have been obtained for a single degree of freedom 

system containing a freeplay type nonlinearity. From these numerical time 

histories, the effective natural frequencies of the nonlinear system were 

determined. Comparison of these with frequencies predicted by the describing 

function technique allowed evaluation of the describing function approach. 

A comparison such as this is presented in Figure 5. Here the ratio of 

the effective frequency .^ to the linear frequency . ratio, as a function 

of deadsnace S to amplitude of notion A ratio, is given. The parameter *0 is 

defined as 

^0 =N/
1^" (8) 

where K is the linear spring rate of the freeplay nonlinearity. Also shown 

in Figure 5 is the frequency ratio obtained fron the "exact" necewise 

linear solution to the nonlinear problem, Reference 9. As indicated in this 

figure the describing function technique predicts frequency ratios very 

close to those given by the exact or the numerical solution. 
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B. PRELOAD NONLINEARITY 

A modified displacement function was assumed during the describing func- 

tion development for a preload nonllnearity. This displacement function was 

of the form 
x(t) s A0 + ^ Cos t (9) 

where the coefficients A0 and A1 were defined such that the energy stored In 

the nonlinear spring Is the same for both positive and negative displacements. 

This displacement function Is required to represent the nonsymmetrlc form, 

about the origin, of the motion which results with a preload nonllnearity. 

In addition it was required that Equation (9) result in a positive amplitude 

equal to the initial displacement. Thus these coefficients are obtained 

from 

A1 « | + \ V 2PA-P2 for P < A < (P ♦ 2S) (10) 

or   

^ « | + \<j (A-2S)2 + 4PS for A > (P + 2S)     (11) 

In both cases, the coefficient A0 Is obtained from the relationship 

A « A0 ♦ A, (12) 

Note that it has been assumed that the Influence of a preload nonllnear- 

ity Is related to positive displacements A of the system. It should also be 

pointed out that when A is less than the preload P, A^ equals A and A0 is 

zero. For this situation, the nonlinear problem reduces to a simple linear 

problem« 

With the definition of Equation (9) in mind, the waveforms of the 

developed load will take the shapes shown In Figure 6. As before, these 

waveforms are dependent on the relationship between the magnitudes of 

freeplay, preload, and amplitude of motion. 

Proceeding as before»the fundamental components of the Fourier series 

representation of these developed load waveforms were obtained. This leatis 

to the following definition for the describing function for a oreload 

II 



A Cos t for (A^P+2S) 

-A Cos t for P < A < (P*- 2S) 

(a) Displacement 

•MO =   PK 

•L(i) » K (AQ  ♦  A1 Cos 0 

(b)Load(P   A   P ♦as) 

L(t)  «   K (Aö ♦ A1 Cos t) 

L{0 « K|A0* A, Cos \ -2S) 

CO Load (A^*2S) 

Fit«»© 6 Dcttoped load for pralood nonlmeority 

\? 

-. jrre*»* j »   ■ ■-»* 

wms 



nonlinearl ty 
6 = 1.0 for A < P (13) 

6 « i [ w - ^ + |- (P-A0)S1n t} - j S1n 2tl]   for P < A < (P+2S)   (14) 

where t. 1s given by i /P"Ä \ 

h s Cor (-jr) (is) 

Finally 

i [* +trVl <p+2s-Ao)$1n h*r (p-Ao)s1n h*?(sin 2trs1n ^ (15) 

for A > (P + 2S) 

where t^ Is given as 

and t, is expressed as 

*]9 Cos'1{uf) d7) 

Shown In Figure 7 is the stiffness ratio as a function of the amplitude 

of motion to freeplay ratio for several freeplay to preload ratios. As can 

be seen from this figure, for amplitudes of motion less than the preload P, 

the stiffness ratio is one and the system is linear. With increasing ampli- 

tudes of motion the stiffness decreases. This Is due to the deadspace in the 

spring causing the effective stiffness to be less than the linear value. As 

the amplitude increases further, the Influence of the nonlinearity becomes 

small and the magnitude of K approaches that of K. 

To aid In evaluating the results of the describing function representa- 

tion of a preload nonlinearity, the influence of this nonlinearity on the 

dynamics of a single degree of freedom have been studied. Numerical solutions 

of the nonlinear equation of motion were obtained for various magnitudes of 

the nonlinearity. By examining the resulting time history Information, 

effective stiffnesses were obtained which could be compared with predicted 

describing function values. 

13 
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A numerical solution for the single degree of freedom with an initial 

amplitude of six inches was obtained as shown in Figure H. Also included in 

this figure is the displacement time history given by Equation (9) having an 

amplitude A also equal to six inches. This corresponds to the assumed dis- 

placement function employed during the describing function development. As 

can be seen from this figure the results obtained '.yith the describing func- 

tions compare well with the numerical data. Also, the numerical solution 

illustrates the nonsymmetric nature of the motion for a system with a preload 

nonlinearity. 

A comparison between these numtrical solutions and t*tt describing func^ 

tion results art illustrated in Figur© *. The results presented in tMs 

figure correspond to the infcmation «Iven In Finure 7 for 4 ueads^cc to 

preload ratio of one. As can be ittn in Figure 9 the comparison between the 

two solution techniques is very good. 
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C. FRICTION NONLINEARITY 

For a nonlinear spring with friction nonlinearities, the waveform of 

the developed load will take the form shown in Figure 10, This waveform 

is produced when the amplitude of displacement A is greater than the limits 

of the hysteresis envelope. By geometry, this limiting value of motion 

is given as: 

H=±li|^i (19) 

Proceeding as before, the fundamental components of the Fourier series 

representation of the developed load waveforms were obtained. Thus, in the 

case of the friction nonlinearity, the expansion leads to a load relationship 

of the form. 

L(t) » a1 Cos t + b1 Sin t (20) 

where coefficients a, and b, are defined in Appendix P-. 

For this nonlinearity there is both an amplitude and phase relationship 

between the load output and the input displacement. The load relationship 

may be expressed as 

(21) 

where * ^a^ + b^ (22) 

and - s Tan*1 (a^b^ (23) 

Thus, this representation is analogous to a spring and structural damping 

combination. 

From the above results the effective stiffness of a friction nonlinearity 

is of the form. 

L{t) = t Cos (t + 0 

* 'yja* V 
.-. = Tan"1 (a,/^) 

.J 2   2 
V1V (24) 
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Thus the describing function is given as: 

J a12 + b1 2 (25) 
"1 

KA 

Note that this definition only applies for amplitudes of motion which are 

greater than the parameter H given by Equation (19). 

The equivalent viscous damping, or effective damping, associated with 

the friction nonlinearity was obtained using the procedure discussed in 

Reference 10. Here the work done during a cycle of motion by the load from 

the nonlinear spring, Equation (20), is equated to the work done by a viscous 

damper during a cycle of motion. In this manner, the effective structural 

damping coefficient g may be defined as a function of the amplitude of 

motion. This approach leads to the following definition of the effective 

g for a given friction nonlinearity. 

b1 (26) 

9 = 2A ^Km 

Trends in the effective stiffness and damping are presented in 

Figure H.  These data are presented for various deadspace S to friction F 

ratios. As can be seen, the effective stiffness approaches that of the 

linear system for large motions. In addition, the effective damping goes to 

zero as the amplitude of motion increases. 

To gain insight into the influence of a friction nonlinearity on the 

dynamics of a system, the vibration of a nonlinear single degree of freedom 

system was investigated. The system was given an initial displacement and 

numerical solutions obtained for the nonlinear equation of motion. Frequency 

and decay times were then compared with describing function predictions to 

evaluate the accuracy of the predictions. 
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Figure 11   Effective stiffness and damping for friction nonlinearity 

A typical numerically obtained displacement time history is presented in 

Figure 12. The influence of the nonlinear spring can be noted by the form of 

these results. The decaying nature of the response is a result of the system 

damping due to the nonlinearity. The difference in times between 

successive peaks indicates the dependence of the effective stiffness on the 

amplitude of motion. 

Effective stiffness and damping, as a function of amplitude of motion, 

were estimated from the numerical results. The time between successive peaks 

was used to estimate the system's effective natural frequency. The effective 

system stiffness was then defined in terms of this frequency. A comparison 

between these numerically obtained effective stiffnesses and describing func- 

tion predictions is shown in Figure 13. The average amplitude of motion 

between successive peaks was used as the amplitude in defining the plotted A 

over S ratios. The difference in magnitudes of successive peaks was used to 

estimate the effective damping over a particular cycle. These results are 

compared with describing function predictions in Figure 14. From the results 

presented In Figures 13 and 14, it can be seen that there is good correlation 

between the numerical and describing function results. 
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Section III 

FLUTTER ANALYSIS 

Application of the describing function technique for the flutter analysis 

of control surfaces with structural nonlinearities employs the previously 

discussed concept of effective stiffness. As with a linear system, flutter 

analyses are conducted for variations in these effective stiffness parameters. 

These flutter results are then modified to account for the presence of the 

system nonlinearities. 

Throughout this study the control surface flutter problem is represented 

by the system of nonlinear equations of motions given in Equation (1). In 

the relationship of Equation (1), K(X) is the nonlinear system stiffness 

matrix. With no nonlinearities in the system, that is when K(e) and K(4>) 

ore constants and not a function of system response, standard solution tech- 

niques may be used to obtain flutter solutions to Equation (1). At this 

point the definition of the effective stiffness parameters given by Equation 

(4) Is employed. The nonlinear stiffness terms K(ü) and K(^) in Equation (1) 

are replaced with the corresponding effective parameters K, and K4. In this 

manner the system equations of motion are "linearized'1 and for specific values 

of KL and !<,, standard analysis techniques may be used to obtain flutter 

solutions. The approach that has been used throughout this study is to assume 

harmonic motion and conduct eigenvalue analyses on the resultinq free vibra- 

tion problem. For varying magnitudes of dynamic pressure, the form of the 

resulting complex eigenvalues is used to determine system stability, i.e., 

flutter. In addition to defining the flutter critical dynamic pressure, the 

"flutter mode shape" Is obtained during this eigenanalysis. From this mode 

shape, the relative root motions at flutter are defined. 

Representative flutter results for the effective, or linearized system 

take the form as illustrated In Figures 15 and 16. These results are for 

the baseline control surface which Is defined in Appendix A. The results 

given In Figure 15 are for a rigid fin while those for a flexible fin are 

given In Figure If. 
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Shown in Figures 15 and 16 are variations in flutter critical dynamic 

pressure as a function of effective root pitch uncoupled frequencies w . The 

relationship between the effective uncoupled frequency a* is of the form 

-si " 

In this expression, ^^ is the describing function for the nonlinearity in 

question. The magnitude of ^0 depends on the amplitude of motion in the root 

roll degree of freedom. Expressions for evaluating * for the various non- 

linearities considered during the study are given in Section II. A similar 

relationship holds for the root pitch parameter ~ . Also shown in these 

figures are the relative magnitude of motion in the nonlinear root springs. 

Presented in the following paragraphs is a discussion of the computational 

steps required when employing the describing function approach during control 

surface flutter analyses. Details of the required steps are given for each 

of the three nonlinearities investigated. The case of both rigid and flexible 

control surfaces are discussed. Effective system flutter results shown in 

Figures 15 and 16 form the starting point for all these discussions. 

A. FREEPLAY NONLINEARITY 

The procedure to be followed in obtaining the flutter boundaries of a 

control surface including the influence of root freeplay structural non- 

linearities Is summarized in Figure 17. This approach modifies the flutter 

results obtained for the effective system (either Figure IS or 16) to account 

for the presence of the nonlinearities. For the control surface of interest, 

a magnitude of root pitch freeplay is selected. For a freeplay nonlinearity 

In a single root degree of freedom, such as root roll (S^ 3 0), the initial 

step is to select maonitudes of root roll motion A and effective root roll 

frequency Zt.    For the magnitude of A , the describine function  is obtained 

from either Equation (S) or (6). Using Equation {27)  the corresponding 

magnitude of root roll frequency   is determined. T»-U is followed by 

obtaining the flutter critical dynamic pressure q for the selected value of 

Zri  from the effective system flutter results (Fi^yre IS or l^K This procedure 

is then repeated for other values of  «*nd A and a reUtioruMp between 

dynamic pressure and root roll frequency   is obtained. 

IS 
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For the case of a system with two nonlinearities, (S* f  0), a value for 

the effective root roll frequency i is selected following the definition of 

the pitch freeplay. The flutter critical dynamic pressure q and amplitude 

ratio AM correspondinq to this value of Z   ar? obtained from the effective 

system flutter results (Figure 15 or 16). Following evaluation of the 

relationship      r     /   w   w.   . 
S../A« = (VA,)(Stj/s,HASi/A9) (2o) 

the magnitude of the describing function 6B is obtained from Equation (5) or 

(6). Through application of Equation (27), the corresponding system frequency 

uv is then defined. This procedure is repeated for additional values of the 

parameter w . 

For either of these cases, one or two nonlinearities, the preceding 

steps lead to a definition of the flutter critical dynamic pressure as a 

function of root roll frequency u^. Such a relationship might take the form 

as indicated by the last step of Figure 17. A family of these curves can be 

obtained which will account for variations in the magnitude of root pitch 

freeplay. 

Results for a rigid control surface with a freeplay nonllnearity in the 

root oitch deqree of freedom are shown in Fiqure 18. These results are for 

a deadspace S^ of n.2 degrees and various uncoupled root roll frequencies 

*0. For small motion in the pitch deoree of freedom the effective frequency 

ÜL approaches -^ and the critical dynamic pressure approaches that of the 

linear system. 

Extending these procedures to a control surface with two freeplay non- 

linearities yields results such as shown in Figure 19. The cauie of the 

branch in the flutter critical dynamic pressure is apparent when considering 

the relationships of Figure 30 and the computational s*eps of Fiqure 17. 

Shown in Figure ?0 are typical variations in the dynamic prtsiyre and the 

root motion flutter wte shape A /A as a function of effective root roll 

frequency T_ . 
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As the magnitudes of the assumed values of w 's approach the point of 

minimum dynamic pressure from the left, points A to B in Figure 20 (a), the 

amplitude ratio A /An approaches infinity, points A to B in Figure 20 (b). 

Referring to Eouation (28), it is seen that this causes the amplitude of 

motion parameter SJba  to approach, and possibly exceed, one. This results 
bo 

in the describing function öQ approaching zero. Since the effective and 

actual root roll frequencies are related by 

u>n   - /Vse (29) 

this trend in 6e requires that to approach infinity to yield the assumed 

magnitude of u.. This accounts for the lower branch, points A to B, shown in 
ö 

Figure 19. 

A similar result is obtained when the magnitude of the assumed w.'s 
6 

approach the point of minimum dynamic pressure from the right, points C to 0 

in Figure 20 (a), the amplitude ratio also approaches infinity, points C to D 

in Figure 20 (b). Following the same reasoning as before, the required u 's 

also approach infinity. This accounts for the upper branch, points C to D 

in Figure 19. 

Throughout the following discussions, the narrow flutter region to the 

right of the dip in the dynamic pressure has been neglected. Numerical 

solutions, Section IV, of the nonlinear flutter problem did not uncover this 

indicated strip of flutter critical dynamic pressure. This is reasonable 

since the configuration of the nonlinear system in this flutter region would 

change as its response grows. This configuration change is due to changes in 

the effective stiffnesses of the nonlinear elements as the motion becomes 

large. This would result in the system moving to a stable state and away 

from a flutter condition. Thus, the flutter boundary is assumed to be con- 

tinuous from points A to C as Indicated in Figure 19. 

Following the steps outlined In the preceding paragraphs, the effective 

system flutter boundaries shown in Figures 15 and 16 are converted to a 

definition of the flutter critical dynamic pressure accounting for the 

presence of two root freeplay nonlinearities. Typical results for two control 

surface configurations, riald or flexible, are shown in Figures 21 and 22. 
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These results are presented as a function of the uncoupled root roll frequency 

üj . The family of curves shown in these figures account for variations in the 

magnitude of the amplitude of motion ratio S /A . The physical properties of 

the rigid and flexible control surfaces are presented in Appendix A. 

In the case of two system nonlinearities,it should be noted that only the 

dynamic pressure versus effective root roll frequency curve corresponding to 

the system's uncoupled root pitch frequency (IT-wJ in Figure 15 (a) represents 

a flutter boundary. The remaininq curves are indicative of the stable limit 

cycle amplitudes of oscillation of the system for dynamic pressures below the 

critical flutter value. The effective root pitch frequency curves of Figure 

15 (a) can also be interpreted as individual S /A . «u or A curves. 

B. PRELOAD NONLINEARITY 

The procedure to be followed when conducting the flutter analysis of a 

control surface with preload nonlinearities are very similar to that oresented 

in the preceding section for the case of freeplay nonlinearities. As with 

freeplay nonlinearities, flutter studies for a control surface system having 

preload nonlinearities employ the concept of effective stiffnesses. In a 

manner similar to that for a linear system, flutter analyses are conducted 

for variations in the effective stiffness parameter. These flutter results 

are then modified to account for the presence of the structural nonlinearities. 

The computational steps to be followed during the flutter analysis of a 

control surface including the influence of preload nonlinearities are presented 

in Figure 23. For the control surface of interest, a maonitude of root roll 

preload is selected. With a nonlinearity in just the root roll degree of 

freedom, (SA = 0) the initial step is to select maqnitudes of root roll motion 

A and effective root roll frequency . . For the selected magnitude of A , 

the describing function >M is obtained from the Equation (14) or (16). 

The actual uncoupled roll frequency . is related to the effective 

frequency I. by the expression given as equation (27). The actual roll 

frequency can then he calculated from this relationship for the particular 

value of the descrihino function. This is followed by obtaining the flutter 

critical dynamic pressure q for the selected value of «. from the effective 

system flutter results, Finure IB or 16. This procedure is then repeated for 
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other values of w. and An and a relationship between the dynamic pressure and 

root roll frequency is obtained. 

For the case of a system with two nonlinearities (S^ / 0), a value for 

the effective root roll frequency w is selected following definition of the 

pitch degree of freedom dead space and preload. The flutter critical dynamic 

pressure q and amplitude ratio A /A corresponding to this value of üj are 

obtained from the effective system flutter results. Figure 15 or 16. Following 

evaluation of Equation (28) to obtain the corresponding S/AA ratio, the 

magnitude of the describing function 6 is obtained from Equation (14) or (16). 

It is possible for the amplitude ratio A /Aft to be negative. Calculation 

of the describing function from this case involves determining the positive 

amplitude corresponding to the negative A.. The positive A and negative A" 

amplitudes uf motion for a preload nonlinearity are related by the expression 

A' =V(A+ - 2S)2 + 4 PS (30) 

With the positive Ae from Equation (30), the describing function 6,. is obtained 

from Equation (14) or (16) and the corresponding system frequency, ^, is 

found. This procedure is then repeated for additional values of the parameter 

V 

For either of these cases, one or two nonlinearities, the preceding steps 

lead to the definition of the flutter critical dynamic oressure as a function 

of root roll frequency ^. Such a relationship might take the form as 

Indicated by the last step of Figure 23. A family of these curves can be 

obtained which will account for variations in the magnitude of root pitch 

preload nonlinearity. 

Flutter results have been obtained. Figure 24, for a rigid control 

surface having a single root roll preload nonlinearity. Presented in this 

fiaure is the flutter critical dynamic pressure as a function of root roll 

amplitude of motion for varying freeplay to preload, S /P , ratios. For 

amplitudes of motion less than the preload, the critical dynamic pressure 

equals the linear system value. As the amplitude of motion increases the 

influence of the deadspace is reflected in the raising of the critical 
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Figure 24 Flutter results for o rigid control surface with a single root roll preload noniinearity 

dynamic pressure. This is due to the softening effect on the effective root 

roll stiffness which results in a higher flutte' critical dynamic pressure. 

As the amplitude of motion continues to increase, the influence of the non- 

linearity decreases and the results aaain approach those of the linear system. 

A rigid control surface having preload nonlinearities in both root 

degrees of freedom was also studied. Flutter results are presented in Figure 

25 for a 0.2 degree deadspace in both root deqrees of freedom and a deadspace 

to preload (S/PN "Hio of two. The family of curves shown in this figure 

account for variations in the magnitude of the amplitude of notion ratio, 

S7A   It should be noted that the effective stiffness of a preload noniinearity 

Is a double valued function as illustrated in Figure 7. Thus the results 

indicated in igure 25 are for double valued magnitudes of rot ion ratios. 

The larger S^/A^ values correspond to amplitudes less than the quantity P + 2S 

whereas the lower ratios correspond to amplitudes in evcess of this value. 
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Figure 25 Flutter results for a rigid control surface with two preloaJ nonlinearities 

Finally a flexible control surface having preload nonlinearities in both 

root deqrees of freedom was studied. Presented in Figure 26 are flutter 

results for 0 0.2 degree deadspace in both root degrees of freedom and dead­

space to preload ratios (S/P) of two. The curves depict the dynamic pressure 

as a function of uncoupled root roll frequency w_ for various amplitude of 
tJ 

motion ratios S /A .. As with the rigid control surface case, the amplitude 
~, .:' 

ratios are double valued. The larqer S./A, values correspond to amplitudes 
't lj' 

less than the quantity P + 2S whereas the lower ratios are for amplitude 

values in excess of this auantity. The change in slope on the curve for an 

S /A. of n.27 or n.5S is caused by the root roll amplitude of ·1otion ITJOvino .;' ; 
in and out of the linear ranne on the preload root roll sprina. 

C. FRICTIOn NONLINEARITY 

The procedures to be follovved \vhen conrluctina the flutter analysis of 

a control surfacr v1ith friction nonlinenrities ore very siPlilcw to that 

presented in the rrecedina sections for the freeplay and preload cases. As 

vti th a linear syr; tP.ll1, flutter a ne1l yses are conducted for va riot ions in the 

effective stiffness pilrameter. The fliJtte\' results i.lre then modified to 

account for thr rrrsence of the friction nonl inGilritics. 
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Figure 26   Flutter results for a flexible control surface with two preload nonlinearities 

The presence of damping In the friction nonlinearity will potentially 

cause the flutter analysis procedure to differ from that of the other two 

nonlinearities. The concept of effective stiffnesses is still employed but 

an additional parameter, the effective dampinq q, will play a role in the 

analysis procedure. As with a linear system, flutter analyses are conducted 

for variations in the effective stiffness. The approach of the flutter 

analysis is to assume hamonic motion and conduct eigenvalue analyses on the 

resulting free vibration problem. For varying maqnitudes of dynamic pressure, 

the form of the resulting complex eigenvalues is used to determine system 

stability I.e., flutter. 

Typical flutter analyses results take the form of Figure 21  (a). For 

given system parameters and dynamic pressures less than the critical flutter 

value for the assumed simplified aerodynamics, the eigenvalue analysis pre- 

dicts unequal real roots. At the flutter point and points beyond flutter 

we obtain complex roots havino equa1 n?al parts or frequency coalescence, 

and nonzero imaginary parts. The amount of dampinq required to maintain 

stable system oscillations above the flutter critical dynaric pressure can be 
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related to increasing dynamic pressure as Illustrated in Fiqure 21  (b). 
Attributing system damping to the friction nonlinearity in a system, we can 

obtain the family of flutter curves such as shown in Figure 28 for a single 

root nonlinearity. In Figure 28jthe variation of dynamic pressure as a 

function of the effective root roll frequency w is illustrated for various 

effective root pitch frequencies w and effective damping coefficients g 
_       $ 

corresponding to each w. 

The computational procedure to be followed for a single friction non- 

linearity is summarized in Figure 29. If we assume a single nonlinearity in 

the root pitch degree of freedom, the effective root roll frequency and the 

uncoupled root roll frequency will be one and the same. Choosing a root pitch 

amplitude, A . we can calculate the describing function "delta" iU, the 

effective damping g, md the effective root pitch frequency u corresponding 

to the particular S/A^ value. The flutter critical dynamic pressure corres- 

ponding to these parameters is then obtained from the effective system flutter 

results such as Figure 28. These steps lead to the definition of the flutter 

critical dynamic pressure as a function of root roll frequency Such a 

I 
«A 
«■ 
31 
Ü 

o 

Figure 28 EMectivt system flutter results for friction nonltneority with domping 
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relationship might take the form as indicated by the last step of Figure 29. 

A family of these curves can be obtained which will account for variations in 

the magnitude of root pitch nonlinearity. 

Flutter results have been obtained, Figure 30, for a rigid control surface 

having a single root pitch nonlinearity. Presented in this figure is the 

amplitude ratio S /A as a function of the flutter critical dynamic pressure. 

The describing function prediction curves are shown both with and without 

damping included. The influence of the damping on the flutter dynamic 

pressure is very small. It is of interest to note that effective damping of 

a friction nonlinearity is greater at small amplitudes of motion, Figure 14. 

Thus as the amplitude A4 increases toward divergent flutter. Figure 30, it 

would be expected that the effective damping will become less important. 

This negligible influence of the effective damping associated with a 

friction nonlinearity is apparent from the results of Figure 30. It is also 

significant that this influence is even smaller close to the point of diver- 

gent flutter. For these reasons, and because of the major complication it 

0.40 

60 80 
Dynamic prtssure - psi 

Figure 30  Flutter results lor o rtgii control surfoce with o root pitch friction nonltneority 

43 

■PPPW^WB» 



would cause in the flutter analysis procedure, it has been assumed that this 

damping term may be neglected in the final analysis procedure for friction 

nonlinearities. 

Thus the computational steps to be followed during the flutter analysis, 

including the influence of friction nonlinearities, are presented in Figure 31. 

For the control surface of interest a magnitude of root roll deadspace and 

friction is selected. With a nonlinearity in just the root roll degree of 

freedom (S, and Fi = 0) the initial step is to select magnitudes of root roll 
9      9 

motion An and effective root roll frequency toQ. For the selected magnitude of 

A , the describing function fyj is obtained from Equation (25). 

The actual uncoupled frequency M   is a function of the effective frequency 

ai and the describing function as defined by Equation (27). The actual roll 
9 

frequency can then be calculated from this relationship. This is followed by 

obtaining the flutter critical dynamic pressure q for the selected value of 

üj from the effective system flutter results, Figure 15 or 16. This procedure 
ö 

is then repeated for other values of ^ and AN. 6      0 

For the case of a system with two nonlinearities (St and Ft ^ 0), a 

value for the effective root roll frequency w^ is selected following the 

definition of the pitch deadspace and friction. The flutter critical dynamic 

pressure and amplitude ratio A /A corresponding to this value of ~ are 9 " 
obtained from the effective system flutter results, Figure IS or 16. Following 

evaluation of equation (28) to obtain Sn/A_ the describing function is deter- 

mined by Equation (25). Thus the corresponding system frequency .. can be 

found from Equation (29). This procedure is repeated for additional values 

of the parameter v . 

For either of these cases, one or two nonlinearities, the preceding 

steps lead to the definition of the flutter critical dvnamic pressure as a 

function of root roll frequency . , Such a relationship might take the form 

as indicated by the last step of Figure 31. A family of theso curves can 

be obtained which will account for variations in the nvinnitudo of root pitch 

freeplay and friction. 
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Figure 31.  Computational procedure for friction nonlinearities 
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Flutter results for a rontrol surface with a single friction nonlinearity 

will continue to take the form as illustrated in Figure 30. However, in this 

case, the recommended procedures of Figure 31 will correspond to the results 

of Figure 30 where the effective damping is zero. 

Flutter results for a rigid control surface having friction nonlinearities 

in both root degrees of freedom are presented in Figure 32. These results are 

presented for 0.2 degree deadspaces in both root springs and friction terms 

of 25 in.-lb. An uncoupled root pitch stiffness correspondina to an uncoupled 

frequency w of 215 Hz was used in this analysis. Flutter results are pre- 

sented in the form of a dynamic pressure versus uncoupled root roll frequency 

wß for varying values of effective root pitch frequency ^ or S. M ratios. 

Notice that some of the curves predicted by the describing function analysis 

do not extend as far as others along the .o axis. This is because the root 

amplitudes as predicted by the describing function technique for roll 

frequencies üJ in excess of the end points are less than H. Since no describ- 

ing function has been written for cases where the amplitude is less than H, 

the describing function predictions end at their correspondinn ^ values. 

30 60 90 120 150 180 

Uncoupled rool roll frequency VQ HZ 

..10 240 

Figure 32  Flutter results for a rigid control surface with two friction nonlinearities 
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Finally, flutter results were obtained for the case of a flexible control 

surface with friction nonlinearities in both root degrees of freedom, Figure 

33. As for the rigid fin, results are presented in the form of dynamic 

pressure as a function of the uncoupled root roll frequency for an uncoupled 

root pitch frequency u , and various effective root pitch frequencies, w . 

The friction nonlinearities consisted of root roll and pitch deadspaces of 0.2 

degrees and friction terms, Frt and F, and F . of 25 in.-lb. As mentioned 
9 9 9 

for the rigid control surface studies, the describing function definition 

does not apply when the amplitude of motion is less than the critical H 

value of the system. 

90 120 150 180 
Uncoupled frequency uß - Hz 

Figure 33.  Flutter results for a flexible control surface with two friction nonlinearities 

240 
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Section IV 

ANALYSIS VERIFICATION 

Ideally, the flutter predictions obtained with the techniques described 
in Section III of this report would be verified by comparing these pre- 

dictions with experimental data obtained during a wind tunnel test program. 

However, the expense of such a test program is not warranted at this time 

due to the early stage of the theoretical development.    Rather this "test" 

data were obtained through mathematical simulations of the nonlinear flutter 
problem.   With this approach, the nonlinear system equations of motion, 

Equation (1), were numerically integrated yielding system time history 

response information.    System stability characteristics were then obtained 

by evaluating the nature of this sytem response.    It must be emphasized 

that this "verification" process only   establishes the validity (or short- 
comings) of the describing function approach when compared to a more exact 

numerical solution to the assumed mathematical representation of the non- 

linear flutter problen.    In the final evaluation,this approach does not 
replace the use of experimental   (flight) data. 

The general approach in this verification process was to obtain numer- 

ical solutions to the nonlinear flutter equations of motion for a control 

surface having particular root spring nonlinearities.    Throughout these 

studies the baseline control surface configuration, as defined in Appendix 

A, was assumed.   These numerical solutions, which yield system time history 

response information such as shown in Figure 34, were used to evaluate 
system stability characteristics.    For example, a time history response 

such as shown in Figure ^4(4) indicates a stable system and thus a dynamic 
pressure below the flutter critical value.    Illustrated in Figure 34(b) is 

the type of system response obtained for an unstable syste   and thus the 

dynamic pressure is above the flutter critical value.    System response was 

obtained for increasing values of dynamic pressure q until the character- 

istics of the response became that of divergent oscillations.    In this 
manner, the boundary between flutter and no flutter was evaluated for the 
nonlinear system. 
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Figure 34   Typical simulation results 
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Throughout the discussion of these simulation results the character- 

istics of the system response will be expressed in terms of RSS amplitudes 

of motion. In many cases, the numerical solutions did not exhibit uniform 

amplitudes of motion, but rather experienced a beating type phenonenon as 

illustrated in Figure 35. To correlate these results with the describing 

function predictions, an "average" amplitude of motion is employed. This 

amplitude, the RSS amplitude, is obtained by taking the square root of the 

sum of the squares of succeeding amplitude peaks over a large number of 

cycles of motion. 

Data obtained from simulations such as described above were compared 

with flutter predictions employing the describing function approach to 

assess the validity of these predictions. Presented in the following para- 

graphs is a comparison and interpretation of the flutter predictions versus 

simulation results for each of the three type nonlinearities investigated. 

In each case results are presented for both a rigid and a flexible control 

surface. 

.y .?.: .T .T .9D 1.02 :.j:: j.* 

Figure 35   Example of beating type system response 
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A.  FREEPLAY NONLINEARITY 

Initial simulations were conducted for a rigid control surface having 

a 0.2 degree deadspace S, in the root pitch degree of freedom. Comparisons 

between simulation results and describing function predictions are shown in 

Figure 36. Note that the assumed root stiffness values result in uncoupled 

frequencies w« of 60 Hz and w. of 215 Hz. The predicted flutter boundary 

corresponds to one of the curves shown in Figure 18 Section III. 

A characteristic of the response for the nonlinear system which appeared 

throughout the study is indicated in Figure 36. For increasing magnitudes of 

dynamic pressure, the system response tends to become divergent in nature. 

However, this has the effect of "working" the nonlinear root spring to a 

greater extent. Thus the oscillation builds up to some amplitude and then 

becomes stable again where the system is experiencing a limit cycle type res- 

ponse. This trend of stable limit cycle response continues with increasing 

dynamic pressure, as illustrated in Figure 36, where simulation data points 

are related to the resulting amplitude of the limit cycle motion. Above some 

critical dynamic pressure, the limit cycle motion no longer holds and we have 

the classic divergent flutter motion. 
100 

Q. 

2 

c >. 
O 

0.5 1.0 1.5 2.0 2.5 

Amplitude of motion A^   - deg 

Figure 36 Simulotion results for a rigid control surface with a root pitch freeploy nonlineority 
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This latter point is more clearly illustrated by presenting the data 

in the format as shown in Figure 37. Here the amplitude ratio S7A, is 

plotted as a function of the dynamic pressure. Increasing amplitude of 

motion corresponds to a decreasing S/A amplitude ratio. Thus the amplitude 

ratio decreases with increasing dynamic pressure until the point of divergent 

flutter is reached. 

The comparison between simulation and describing function results was 

extended to the case of a rigid control surface with nonlinearities in both 

pitch and roll degrees of freedom. These simulation results, ore- 

sented in Figure 38, are for a system with equal magnitudes of deadspace 

in the two root degrees of freedom. Specifically, the magnitude of dead- 

space for both pitch and roll was assumed to be 0.2 degrees. In addition, 

the magnitudes of root stiffnesses result in an uncoupled frequency w of 

215 Hz and uncoupled frequencies tua of either 60 or 200 Hz. 

As in the case with a single nonlinearity, the system experiences a 

stable limit cycle type response which continues with increasing dynamic 

pressure. Shown in Figure 38 are simulation data points related to the 

resulting S YA. ratios of the limit cycle motion. Above some critical 

40      60 
Dynamic pressure - psi 

Figure 37 Comparison of rigid control surface pitch motion for a single freeptoy 
nonlinearity in the root pitch degree of freedom 

53 

'jiM0«tHtMr-;ij^i»-^g^  .; -«•■ ,i.. 



100 150 200 
Uncoupled frequency u^ -Hz 

Figur« 38 Simulation results for o rigid control surface with two Ireeptoy nontineorities 
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dynamic pressure, the limit cycle motion no longer holds and we have the 

classic divergent flutter motion. The simulation points desinnated as diver- 

gent flutter correspond to very small S /A ratios which are on the order of 

1. x 10' . These conclusions are further illustrated in Finure 3Q which 

compare simulation and describina function predictions of the amplitude 

ratios as a function of dynamic pressure. 

Similar results for a flexible control surface are qiven in Fiqure An. 

Here information is presented for the baseline control surface with either an 

uncoupled root roll frequency m   of 60 or 140 Hz. In addition, the uncoupled 

root pitch frequency M is ?15 Hz and the maonitude of deadspace was assumed 

to be 0.2 degrees for both decrees of freedom. A more complete comparison 

for both root roll and pitch motions are presented in Fiaure ^1. As with the 

riqid control surface, the limit cycle amplitudes of motion build up with 

increasing dynamic pressure to the point of divergent flutter. 
Freeplay nonlinearity 

S^   =   S^   «   0,2° 

«^   «   215 Hz 

O & A - Simulation results 

0.81 1 1 1 0,8 

Dynamic pressure - psi Dynamic pressur© - psi 

(a) Root roll motion (b)Root pitch motion 

Figure 39« Comporison of rigid control surloct root motions for two frcoptay nonlineorittes 
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Uncoupled frequencyii)| «»Hz 

Figuft 40 Simulotion rttuttt lor o lltsiblt control turfoct with two Irotplo/ nonlinooritios 
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50 w 60       70 
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60        70 
Dynamic pressure - psi 

(b) Root pitch motion 

Figure 41   Comporison of flexible control surfoce root motions with two Ireeploy nonllncarifies 

The overall conclusions from the data presented on Floures 3^ throuqh 

41 is that there exists good correlation between the numerical simulation 

and describing function results for the case of a control surface having 

freeplay type nonllnearltles. This good agreement holds for both a rigid 

and a flexible control surface. The describing function approach predicts 

the point of divergent flutter very well* Also» this technique results 

In a satisfactory prediction of the Urend between root amplitudes of motions 

and dynamic pressure up to the point of divergent flutter. 

B.  PRELOAD NONLINEARITY 

Numerical simulations were obtained for a rigid control surface with 

a root roll preload nonlinearity. As was done for the freeplay nonlinearities, 

numerical solutions were obtained for increasing values of dynamic pres^uft 

until the solutions became divergent in nature. Several different runs wert 

made for varying ranges of dynamic pressure and system Initial conditions. 
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A summary of these results for a Se/Pe ratio of one is presented In 

Figure 42 .   Shown are the results for simulations having different magni- 

tudes of initial root r^oll amplitudes of motion as compared to describing 

function predictions.   Note that the predictions corresponds to one of the 
curves shown in Figure 24, Section III. Two conclusions can be drawn from 

these results.   First,that the area to the left of the flutter boundary is 

not a flutter region.   Rather, the response in this area may try to become 

divergent in nature but as the amplitude Increases it then stabilizes at 

some value having a limit cycle type motion.   This trend continues with 
increasing dynamic pressure until the right side of the boundary is crossed 

and the system experiences unstable response. 

Thus the second conclusion Is that the flutter curve of Figure 42 

should be modified to reflect these results.   That Is, the region to the 

left of the curve in Figure 42 is not an area of flutter for the nonlinear 
system.   This conclusion lead to the modified flutter boundary for a control 

surface having a root roll preload nonllnearlty as shown in Figure 43. 

0.5 1.0 1.5 
Amplitude of motion A* - dtgrtts 

FtQiirt 42    Stmuiotton rtftullt for o rigid control twrloct with o stngtt proteod 
root roll nofilinoority 
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Figure 43  Modified flutter boundary for a rigid control surface with a root roll preload nonlinearity 

Additional investigations were made for a rigid control surface with 

preload nonlinearities in both root roll and pitch springs. Numerical 

solutions have been obtained for the baseline control surface configuration 

for particular magnitudes of preload nonlinearities and root spring stiff- 

ness characteristics. The system response wrs obtained for increasing 

values of dynamic pressure until the characteristics of the response motion 

became divergent. Shown in Figure 44 is a comparison of the flutter boundary 

as predicted by the describing function technique and the numerical simu- 

lation results. The flutter boundaries are for a 0.2 degree deadspace in 

both root degrees of freedom and a deadspace to preload ratio of two. As 

shown, the numerical simulations were performed for uncoupled root roll 

frequencies ü)Q equal to 60 and 140 Hz. The predicted flutter relationships 

correspond to those shown in Figure 25, Section III. 

As previously noted, the effective stiffness for a preload nonlinearity 

is a double valued function. During the simulation studies, it was found 

that the response tended to stabilize to amplitudes of motion qreater than the 

magnitude of preload plus deadspace. Thus the values of interest correspond 
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60 90 120 150 
Uncoupled frequency wg - Hz 

Figure 44   Simulation results for a rigid control surface with two root preload nonlinearities 

to cases where the stable amplitude of oscillation is greater than P + 2S. 

The simulation points plotted in Figure 44 were obtained by holding the 

dynamic pressure constant and increasing the initial amplitude A0 until the 

resultant amplitude exceeded P + 2S. 

The double valued effective stiffness phenomena is further illustrated 

in plots of the root roll and pitch limit cycle amplitudes of motion 

as obtained by numerical simulation. These results are compared with the 

describing function predictions in Figure 45. Presented in these figures 

are simulation results from Figure 44 for an wfl of 60 Hz. 

As evident from Figure 45, for a given set of preload nonlinearity 

parameters (S, P, and K), an Increase in the initial root roll amplitude at 

constant dynamic pressure causes the resultant amplitude of the motion to 

approach the curve for amplitudes below the limits of the deadspace. As the 

initial system displacement is further increased, we find the system exper- 

iences an "amplitude jump". This corresponds to an amplitude transversal of 

the deadspace with the steady state oscillations then stabilizing to those 

predicted by the describing function method for amplitudes in excess of 
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Figure 45   Comparison of rigid control surface root motions with two preload nonlinearities 

P+2S.    Thus this curve defines the steady state amplitude of motion dt whicti 

the system response tends to stabilize. 

Similar type jump phenomenon was evident during simulations of a flex- 

ible control surface with two root preload nonlinearities.    As the magnitude 

of initial conditions were increased, for a given dynamic pressure, the steady 

state limit cycle motion tended to stiJjilize at magnitudes above the preload 

plus deadspace.    Comparison of these simulation results and describing 

function predictions are shown in Figure 46.    These results are for a flex- 

ible control surface with equal 0.2 degree deadspaces and a deadspace to 

preload ratio of two. 
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Figure 46 Comparison of flexible control surface root motions with two preload nonlinearities 

The comparison between simulation results and describing function pre- 

dictions are not as good for the flexible control surface as was the case 

for the rigid control surface. Presented in Figure 47 are root roll time 

histories for increasing dynamic pressure and a flexible control surface. 

Note that these time histories correspond to data points presented in Figure 

46(a). Referring to Figure 47, it appears that the flexibility of the control 

surface causes root motions, at the nonlinear structural element, to be com- 

posed of several harmonics. This is especially true when the dynamic pressure 

is much less. Figure 47(a), than the dynamic pressure for divergent 

flutter. As the dynamic pressure increases. Figure 47(a) to Figure 47 (d), 

the characteristic of the root roll motion becomes that of a single harmonic. 

The significance of this multiple harmonic type root motion for a flex- 

ible control surface is obvious when considering the basic assumption of the 

describing function technique. This technique is based on a time averaging 

approach for defining the input-output characteristics of the nonlinear root 

spring. For a sinusoidal Input displacement, it is assumed that the output 

load is also sinusoidal with the same frequency as the input and all other 

harmonics can be neglected. 
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For the mu1  -le harmonic root roll motion of a flexible control surface, 

Figure 47(a). c - load generated in the nonlinear root spring will certainly 

be made up of several harmonics. This contradiction to the basic assumption 

of the describing function approach accounts for the apparent difference in 

w^  =   216 Hz       ü3ß =   60 Hz 

S^ =   S^   =   0.2° 
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Figure 47  Root roll time histories lor 0 flexible control surface with two preload nonlinearities 
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the results presented in Figure 46. As the dynamic pressure increases 

towards the magnitude required for divergent flutter, the root motion approaches 

a single harmonic, Figure 47(d), and thus the simulation and describing func- 

tion results come into closer agreement as shown in Figure 46- 

Overall, the correlation between the numerical simulation and describing 

function result is good for a control surface having preload type nonlinearities. 

For either a rigid or flexible control surface, the describing function 

approach predicts the point of divergent flutter very well. This technique 

results in good predictions of the trend of root amplitudes of motions and 

dynamic pressure for a rigid control surface up to this point of divergent 

flutter. The predictions in amplitude of motion as a function of dynamic 

pressure is not as satisfactory for a flexible surface. 

C.  FRICTION NONLINEARITY 

In a manner similar to that discussed for systems with freeplay and pre- 

load nonlinearities, numerical solutions were obtained for a rigid control 

surface with friction nonlinearities. As was done for the other nonlinearities 

numerical solutions were obtained for increasing values of dynamic pressure 

until the resulting motions became divergent in nature. Several simulations 

were made for varying ranges of dynamic pressure and system initial 

conditions. 

Initial simulations were conducted for a rigid control surface having a 

single friction nonlinearity in the root pitch degree of freedom. The system 

parameters describing the nonlinearity included a 0.2 degree deadspace and a 

friction term of 25 in-lb. Comparisons between simulation results and 

describing function predictions in the form of amplitude ratio S/A versus 

dynamic pressure are shown in Figure 48. The assumed root stiffness values 

result in uncoupled frequencies u^ of 215 Hz and we of 80 Hz. The value of 

dynamic pressure is shown both with damping Included and neglected In the 

describing function analysis. As Figure 30 Illustrates,the damping In the 

systems studied Is small and can be neglected for our purposes. As witnessed 

in the response histories of the other nonlinearities, for increasing magni- 

tudes of dynamic pressure, the system response builds to some amplitude and 

reaches a limit cycle response. This trend of stable limit cycle response 
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Figure 48.  Comparison of rigid control surface root pitch motion with one friction noniinearlty 

continues with increasing dynamic pressure as illustrated in Figure 48, until 

the critical pressure is reached and the classic divergent flutter motion is 
seen.    The correlation between describing function predictions and numerical 
simulation results for this case is very good. 

Additional investigations were made for a rigid control surface with 

friction nonlinearities in both root springs.    Numerical solutions have been 

obtained for the baseline control surface configuration for particular 

magnitudes of friction parameters and root spring stiffnesses.    As before, 

system response was obtained for increasing values of dynamic pressure until 

the resulting motion became divergent.    Shown in Figure 49 is a comparison 

of the flutter boundary as predicted by the describing function technique 

and the numerical simulation results.    The flutter boundaries are for a 0.2 

degree deadspace in both root degrees of freedom and friction parameters 

of 25 in-lb.    The numerical simulations were performed for uncoupled root roll 

frequencies we of 60 Hz and 100 Hz and a root pitch frequency of 215 Hz.    The 

same limit cycle response found in the single nonlinearity case is evident 

in the two nonlinearity case.    An increase in dynamic pressure causes an 
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increase in the system RSS amplitude in the manner predicted by the describing 

function analysis until eventually the critical dynamic pressure is reached 

and the motions become divergent. The correlation of simulation data and 

describing function prediction is good for the case of two friction non- 

linearities. As can be seen from Figure 49, the correlation is better for 

the root pitch degree of freedom and lower root roll frequencies. 

As in the preload nonlinearity, the correlation between simulation 

results and describing function predictions is not as good for the flexible 

control surface as it was the rigid case. Presented in Figure 50 is the 

dynamic pressure q as a function of the uncoupled root roll frequency a)e. 

Simulation runs were conducted for a flexible control surface case with two 

friction nonlinearitles in the root springs. System parameters included 

root deadspaces of 0.2 degrees and friction terms of 25 in-lb. Simulations 

were conducted for a root pitch freq of 215 Hz and a root roll freq of 100 Hz. 

As can be seen in Figure 50,^6 resulting RSS amplitude were consistently 

higher (lower S/A values) than those predicted by the describing function. 

Friction nonlinearity 

S^ = S^ = 0.2° 

w^ « 215 Hz 

fß   » F^ = 25 In-lb 

O & D   Simulation results 

0.5 

60 w80 
Dynamic pressure - psi 

60 80 
Dynamic pressure - psi 

(a) Root roll motion (b) Root pitch motion 

Figurt 49 Comparison of rigid control surface root motion with two friction nonlineoritits 

66 

™8™'"" niiMiit iiiiiiiil  



As noticed with the preloac nonlinearity, the correlation improves as one 

approaches the flutter dynamic pressure. For the multiple harmonic root 

motion for a flexible control surface, the load generated in the nonlinear 

root spring is made up of several harmonics. This violates the basic 

assumption of the describing function approach which assumes higher harmonics 

can be neglected. 

Friction nonlinearity 
o^ =   215 Hz  

S^    =   S^   =  0.2° 

Fe  =   F^  =   25 In-lb  
O Simulation points 

/AJJ magnitudes indicated) 

Divergent flutter 

S/A.   =   0.33 

• S/A^ = 0 

.S/A^ 0.17- 

30 60 90 120 150 180 
Uncoupled frequency u^ - Hz 

210 240 

Figure 50    Flutter results for a flexible control surface with two friction nonltnearities 
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Section V 

CONCLUSIONS 

Knowledge of the effects of nonlinearitles on missile control surface 

performance and flutter characteristics are important for many reasons.    An 

understanding of nonlinearity characteristics has the potential of reducing 

system weight and program cost along with increasing overall design efficiency. 

This study was undertaken to provide a better understanding of the effect of 

various nonlinearities on the dynamics of a missile control surface and to 

establish procedures to include the influence of these nonlinearities in the 

flutter analysis process. 

The present study has helped to develop an understanding of the control 

surface flutter mechanism as Influenced by structural nonlinearities.    The 

interrelationship between the magnitude of the nonlinearities, flight con- 

ditions, and the nature of the resulting control surface response has been 

Investigated,    In an overall sense, the Influence of each of the nonlineari- 

ties studied; freeplay, preload, or friction; have the same general effect on 

the control surface response.    Since the critical flutter speed is a function 

of the natural frequency of the system, the change in natural frequency 

attendant on the increased amplitude of oscillation alters the critical 

flutter speed.   Each of these nonlinearities has its own peculiarity, but in 

general their presence tends to cause the effective system stiffness to be 

less than that of the linear system.   This relationship, or stiffness ratio, 

between effective and actual system stiffnesses Is dependent on the amplitude 

of motion being experienced by the control surface system. 

For all of the nonlinearities considered, the stiffness ratio can be 

employed to estimate the influence of the nonlinearity on the control surface 

flutter boundary.    Techniques for modifying the linear system flutter results 

In terms of this stiffness ratio are discussed in Section III,    It must be 

noted these procedures for evaluating the influence of structural nonlineari- 

ties on the flutter phenomenon Is related to the simplified aerodynamic 

representation used throughout this study. 
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The close agreement of the describing function predictions with the 

numerical data has verified the applicability of the describing function 

approach to the flutter analysis procedure. With this technique, system 

effective stiffness is expressed in terms of the linear stiffness, properties 

of the nonlinearities, and magnitude of control surface response. This 

definition of the effective stiffness is then used in the flutter analysis 

procedures mentioned in the preceding paragraph. 

The basic characteristic of the response for the control surface system 

was the same for all the nonlinearities investigated. For increasing 

magnitudes of dynamic pressure, the system response tends to beCG;ne divergent 

in nature. However, this has the effect of "working" the structure non- 

linearity to a greater extent. Thus the oscillation builds up to some ampli- 

tude and then becomes stable again where the system is experiencing a limit 

cycle type response. This trend of stable limit cycle response continues 

with increasing dynamic pressure. Above some critical dynamic pressure, the 

limit cycle motion no longer holds and we have the classic divergent flutter 

motion. 

The overall conclusion from this stu4y is that the use of the describing 

function technique results in a good prediction of the control surface 

response for the particular nonlinearities studied. This conclusion is reached 

because of the good correlation between numerical simulations of the nonlinear 

problem and describing function results for all the nonlinearities considered 

during the study. This agreement holds for both a rigid and a flexible control 

surface. This technique results in a satisfactory prediction of the trend 

between control surface amplitudes of motions. The accuracy of the describing 

function predictions improve as one approaches the flutter critical dynat.nc 

pressure. 

The amplitude predictions below flutter are useful from a design point 

of view. Prediction of these steady state oscillations for flight conditions 

below flutter may be related to load and fatigue considerations for design of 

the surface actuator and support structure. The describing function approach 

has the advantage that it is much more efficient than the numerical simulation 
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approach. Also of advantage is the fact that its use is based on the modifi- 

cation of linear system flutter results which are obtained in the normal missile 

control surface design process. 

This study has shown the applicability of the describing function approach 

in accounting for the influence of structural nonlinearities in the flutter 

analysis of missile control surfaces. Understanding the effect of non- 

linearities on the dynamic response of systems is important not only from an 

aerodynamicist's viewpoint but is also of interest to all concerned with the 

accurate prediction of the steady limit cycle type response associated with 
many structural problems. Further study is expected to establish the validity 
and usefulness of the describlno function aonroach to other dynamic systems. 
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Section VI 

RECOMMENDATIONS 

Flutter analysis procedures have been developed to evaluate the influence 

of structural nonlinearities on the flutter of missile control surfaces. 

Based on the results of this investigation, a number of recommendations are 

presented in the following paragraphs. The first of these deals with the 

applications of the developed analysis procedures during the design of a 

control surface. This is followed by a number of recommendations for further 

analytical studies. 

A. APPLICATION OF DEVELOPED TECHNIQUES 

As discussed in the previous sections, application of the describing 

function technique to evaluate the influence of structural nonlinearities on 

control surface flutter amounts to a systematic modification of the linear 

systen flutter results. Thus, during the design process, the initial step is 

to obtain flutter boundaries in the normal fashion. This information then 

forms the basis for evaluating the influence of potential structural non- 

linearities on the flutter characteristics of the particular control surface 

design. 

For the nonlinearities considered during the present study. Figure 2, 

and with the simplified aerodynamics representation, the point of divergent 

flutte** is the same for both the linear and nonlinear system. However, the 

nonlinear system experiences a limit cycle type oscillation of increasing 

amplitude with increasing dynamic pressure. Application of the developed 

procedures yield good prediction of the amplitudes of this limit cycle motion. 

Thus, the motions of the control surface system may be obtained for the flight 

conditions which are below the flutter boundaries. These motions may then be 

employed to define loading conditions In the control surface actuator and 

attachment structure. In addition, the design of the system may be evaluated 

from a fatigue failure point of view In terms of these limit cycle oscillations. 

An example of the results which may be obtained when using the developed 

procedures to predict operating limits based on loading conditions are presented 

In Figures 51 and 52. These figures are for a control surface having equal 
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Figure 52.   Dynamic pressure versus root freeplay for a flexible control surface 
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freeplay nonlinearities in both root degrees of freedom. Presented in Figure 

51, for a rigid surface, are the family of curves defined by dotted lines 

depicting dynamic pressure versus magnitude of root freeplay for various 

magnitudes of limit cycle oscillations. Assuming that the moments in the 

root roll, <|>, and root pitch, e, springs must be less than 500 and 1300 in-lb 

respectively, the maximum deflection in each root spring may be determined. 

Here it has been assumed that these are limits on the oscillationg loads which 

are in addition to trim and maneuver loads. Thus, the maximum limit cycle 

oscillation in each spring is this deflection plus the magnitude of freeplay. 

Cross plotting these limiting magnitudes of oscillation, solid lines, on Figure 

51 defines the indicated design limit. This design limit gives the dynamic 

pressure at which the limits on the load increment will be exceeded for a 

particular freeplay nonlinearity. Similar results are presented in Figure 52 

for the case of a flexible control surface. 

For the particular case presented here, it can be seen that the system is 

very sensitive to the amount of freeplay in the pitch degree of freedom. In the 

case of the rigid fin. Figure 51, an increase of 0.05 degrees in pitch freeplay 

results in a decrease of 20 psi in dynamic pressure for maximum allowable load. 

This indicates tha^ the freeplay tolerance for the pitch degree of freedom is 

more critical than the roll degree of freedom for success of the design. 

In addition, as illustrated in Figures 51 and 52, the limit on dynamic 

pressure from a loads point of view may be quite a bit less than the predicted 

linear flutter ooundary. Design curves such as these may be obtained for many 

different combinations of system stiffnesses, allowable design loads and any of 

the nonlinearities examined in this report. 

B. FURTHER DEVELOPMENTS 

The following are a number of analytical investigations which should be 

undertaken to build on the analysis techniques presented in this report. These 

studies are needed to increase the generality and understanding of the 

present procedures. It should b: noted that in the final evaluation, the 

developed flutter analysis procedures should be verified through comparison 

with experimental data obtained during a wind tunnel or flight test program. 
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1. IMPROVED AERODYNAMICS 

During the current study a "simplified" definition of the aerodynamic 

loads acting on the control surface has been used. This aerodynamic theory 

assumes that the lift force is proportional to and in phase with control sur- 

face torsional (pitch) motion. Results to date are encouraging when using 

this aerodynamic theory to investigate the flutter mechanism of missile con- 

trol surfaces containing structural nonlinearities. However, to determine the 

adequacy of these study results, the developed flutter analysis procedures 

should be evaluated in conjunction with more complete aerodynamic theories. 

The developed flutter computational procedures, employing the describing 

function representation of the structural nonlinearities, should be extended 

to allow incorporation of more complete aerodynamic representations. 

Specifically, for the subsonic flight regime the aerodynamic loadings could 

be expressed in terms of a potential flow, incompressible theory. Aerodynamic 

methods such as the Theodorsen theory and the Doublet Lattice method could be 

examined for intearation with the techniques of the present study. 

2. HIGH ORDER TERMS 

The developed flutter analysis procedures for missile control surfaces 

having structural nonlinearities employ a describing function technique. With 

this technique, the nonlinear structural elements (root springs) are replaced 

by "effective" linear representations. A Fourier Series expansion of the 

output wav^ shape for the nonlinear spring is formulated. Assuming that only 

the first harmonic of the series expansion is of importance, a linear input- 

output (spring rate) relationship is obtained. This linear, or effective, 

spring rate is then used in the subsequent flutter studies. 

Questions as to the accuracy of the developed flutter procedures are of 

importance due to use of only the first harmonic when representing the output 

of the nonlinear spring. Additional terms in the Fourier series expansion of 
the output wave shape for the nonlinear spring could be obtained. The magni- 

tudes of these harmonics would be compared with the magnitude of the fundamental 

harmonic which is employed in the describing function approach. This com- 

parison would be made for a range of control surface root spring rates and 

magnitudes of root spring nonlinearities to develop guidelines for estimating 

potential analysis errors. 
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3. INFLUENCE OF LARGE MOTIONS 

In the present study, the definition of the aerodynamic loads acting on 

the missile control surface employs a "simplified" representation. This 

aerodynamic theory assumes that the lift force is proportional to and in 

phase with control surface torsional (pitch) motion. The lift force is defined 

as a lift-slope coefficient C|_ times the torsional motion, and the area and 

dynamic pressure, acting at a fixed center of pressure location. In addition, 

this approach assumes that neither C|_ nor the center of pressure location are 

dependent on the amplitude of motion experienced by the oscillating control 

surface. 

Results of the current study indicate that a control surface with root 

stiffness nonlinearities may experience very large limit cycle type motions 

before reaching a state of divergent flutter. The influence of this large 

motion on the definition of the loads acting on the contrd surface requires 

further evaluation. 

Representation of the aerodynamic loads acting on the control surface 

could be extended to account for the influence of potentially large limit 

cycle motions. These aerodynamic relationships would be 'included in the 

numerical simulation routines for a control surface having root structural 

nonlinearities. Simulation results would be compared with analytical results, 

obtained when neglecting the large motions, to obtain a measure of the potential 

influence of the large motions on contro surface flutter. 

78 



APPENDIX A 

BASELINE CONTROL SURFACE 

Properties of the Harpoon missile quick-attach control surface were 

used to define the baseline control surface configuration which was used 

throughout the study. The geometric configuration of the control surface 

is shown in Figure A-l. The structural nonlinearities that were investi- 

gated are associated with the root support springs. Presented in Figure 

A-2 are the inertia properties of the control surface. The first two rows 

and columns of the inertia matrix are associated with rigid root roll and 

pitch motions while the last two diagonal elements are the generalized 

masses of the control surface modes. The off-diagonal terms, the PF 

quantities, represent the inertia coupling between rigid and flexible 

motions. The mode shapes associated with the first two control surface 

cantilever modes are given in Figure A-3. These modal data were used 

when investigating a flexible control surface configuration. 

^(Root pitch) 

MRootM rotational springs 

K^ and K^ 

(Root roll) 
All dimensions in inches 

Figure A-l»  Control surface geometry 
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Figure A-2    Control  surface  Inertia properties 

"  Mode 2 - 418.7 Hz 

Figure A-3.  Control surface cantilever modes 
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Appendix B 

DETAILED DESCRIBING FUNCTION DEVELOPMENT 

The detailed development of the describing functions for the three 

nonlinearities considered during this investigation are presented in this 

section. The describing function analysis of nonlinear systems has found 

wide application in the analysis of nonlinear control systems, References 5 

and 6. This technique is based on the following assumptions: 

o The output of the nonlinear element depends only on the present value 

and past history of the input. In other words, no time varying 

characteristics are included in the nonlinear element, 

o If the input to the nonlinear element is a sinusoidal signal, only 

the fundamental component of the output signal is considered and all 

higher harmonics are neglected. 

For an assumed sinusoidal input, the resulting output is periodic and 

contains components at the fundamental frequency (the frequency of the input) 

and, in general, higher harmonic frequencies. The last assumption states 

that for the nonlinear system the fundamental component is the only signifi- 

cant component in the system output. If the basic assumptions listed above 

are satisfied, the sinusoidal response characteristics of the nonlinear ele- 

ment can be expressed in terms of a describing function, defined as the ratio 

of the fundamental component of the outputs to the amplitude of the input. 

Thus in the describing function method, the input to the nonlinear 

system is the starting point of the analysis; it is the waveform at this 

input which is assumed sinusoidal. With the assumption that the output of 

the nonlinear device is also sinusoidal, the describing function s  is 

expressed as 

^ (Bl) 

where A is the amplitude of the input, K is the stiffness of the linear 

portion of the structural nonlinearity and L(t) is the fundamental component 

of developed load. 
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B.l FREEPLAY ANALYSIS 

For a nonlinear spring with freeplay characteristics, Figure 2(a), the 

waveform of the developed load will take one of the two forms shown in 

Figure B-l. The load as a function of time can be expressed as 

L(t) = I 0 for 0 < t < ^ (B2) 
(   K[A-S] Sin t for t, < t < ZTT 

The first step in obtaining the describing function is the Fourier 

series expansion of the relationship for the load L(t). The complete Fourier 

series representation is of the form 

a  a « .    . 
L(t) = -4 + E  aM Cos nt + L brt Sin nt ^^ 

T n=l n       n=l n 

where the coeffleients are obtained by 

a0 = l/  L{t)dt 

a = 1/ ^ L(t) Cos nt dt (B4) 
n  ,, o 

1 2t 

b„ = •!■ /  L(t) Sin nt dt 
n  ' o 

Since the load L(t), Figure B-1, is a single-valued odd function, its 

Fourier series representation is of the form 

oo 

L (t) = 5: bn Sin nt (B5) 
n=l n 

where the coefficient b^ is obtained from n 

i  2* 
b = - /  L(t) Sin nt dt 
n  F 0 (B6) 
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2* 

L(t)   =   K (A - S) Sin t 

Time \y 2n 

(c) Load (A   S) 

Figure EM.Developed food for freeploy nonlintority 
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For the case of freeplay as illustrated in Figure B-l, we have 

(B7) 

and 
bn = 0 for A ^ S 

A      TT/2 « 
bn = -   /     K(A-S) Sin^ t dt for A > S n     TT   f 

tl (SB) 

Performing the operations of Equation (B8), the fundamental component of the 

Fourier series representation becomes 

/   2t,  Sin 2t, 

^) (B9) 

where 

-1 t1 - Sin"' (S/A) 

The describing function is then simply 

6  AK 

(BIO) 

(811) 

which is 

6 - 

0 for 0  A  S 

ZU      Sin 2t, 
1 i L for 0 - A < - 

(B12) 

with t^> given by Equation (BIO). 

B.2 PRELOAD NONLINEARITY 

For a nonlinear spring having preload characteristics, as illustrated 

in Figure 2(b), the waveform of the developed load will take the forms shown 

in Figure B-2. The expressions for the developed load 3- a function of time 

are of the following form. 
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§ P + 2S 

a 

-A Cos t for P < A < (P+2S) 

(a) Displacement 

1             /-'L{t)  *   PK 

\ 
/ | 

'            t 1          Ny^         " 

t— 1   /*\   .    1/   /A 

2tr 

(b) Load(P   A    P ♦ 2S) 

L(t)   =   K (A0  ♦ A1 Cost) 

L(i) « K(A0 ♦ A1 COS t -2S) 

(c) Load  (A^ P ♦2S) 

Figure B-2  Developed lood for preload nonlineority 
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L(t) = 

(A0 + A1 Cos t-2S)-K     for 0 < t < t1 

PK for t1 <  t < t2 

{A0 + A1 Cos t) K for t2 < t < 2TT-t2 

PK for  27r.t2   <   t        2:;-t1 

(A0 + A1 cos t-2S)-K     for 2*-^  - t     2u 

where t* is given as 

t, = Cos -1 
(^) 

and t2 is expressed as 

t2 * Cos 
■'(^^) 

(B13) 

(B14) 

(B15) 

As with the freeplay nonlinearity» the first step in obtaining the 

describing function is the Fourier series expansion of the load L(t). The 

complete Fourier series representation is given by Equations (B3) and (84). 

The coefficients of Equation (84). for amplitudes greater than the preload 

P and less than the quantity P + 2S are 

a = - [/ 1 PK dt + /^^l (KAÄ + KA, Cos t) dt + /   PK dt] 
2T-t. (816) 

a, » i [/ ^PK Cos t) dt + /       1 (KA   Cos t + KA   Cos2 t) dt 

2it 
+ / (PK Cos t) dt] 

bi « i [/ » (PK Sin t) dt ♦ /   l   \K  (A^ Cos t) Sni l\  dt 

(817) 

(BIB) 

+ /   (PK Sin t) dt 
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Evaluating the integrals we obtain 

ao = 7^1 + 2 " Ao " 2Vl -2A1 Sintl] 

Sin Zt, JIM     <• ^1 

a1 = ^ [2P Sin t1  - 2A0 Sin t1 + ^ TT - A1t1 - A1 —y—] 

(B19) 

(B20) 

and 

b1 = 0 (B21) 

The describing function is obtained from 

(^ = x KA, 

or 

(822) 

6 » 1 [n - t, + F- (P - Art) Sin t, - I Sin 2t1] for P < A <  (P + 2S)  (B23) 

The coefficients of Equation (B4) for A greater than the quantity 

(P + 2S) are 

d s 2K [/ ! JA + A, Cos (t-2S)j dt + / 2 P dt + / (A^A, Cos t) dt] 
0  ^ o t

1      
t2 

(B24) 

to 'i 
a, = ?-K- [/ 1 {A Co^ t + A, Cos2 t - 2S Cos t) dt + / ^ P Cos t dt -1   ^o   o (B25) 

♦ / (A Cos t + A, Cos t) dt] 
t2 

M 
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and 

^ = ^ [/ 1 (A0 S1n t + A1 Cos t Sin t - 2S Sin t) dt + / 2 P Sin t dt 
o y' t1 

27T-t2 2w-t1 (B26) 
+ /       c (k   Sin t + A, Sin t Cos t) dt + /        ' P Sin t dt 

tg      0 ' 2Tr.t2 

t /  (Art Sin t + A, Cos t Sin t « 2S Sin t) dt] 
27r.t1 

0       " 

Evaluating the integrals we obtain 

do s: ^7 tAo (t: + ^ mt2^  + Al (Sin tl " Sin ^ + P ^z^l' *2sti]   (B27) 

b1 = 0 (B28) 

and 

2KA1  A (t, - t ) 
ai8 ^r t r (Sin h 'S1n 2t2) + ~-~r- ] 

(B29) 

+ \ (Sin 2t1 - Sin 2t2) - ^ Sin ^ + | + j- (Sin U -  Sin t^] 

The resulting describing function for the case of A  P + 2S is thus 

6 s 7^ + V ^ * ^P 4 2S " V Sin h + \  (P " ÄV ^ ^   {B30) 

♦ j (Sin 2t1 - Sin 2t2)] 

with t^ and t2 as given by Equations (B14) and (B16). 

Per amplitudes less than the preload P, the system load remains a 
linear function of the displacement and we have 

6 = 1.0   A 1P (B31) 
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B.3 FRICTION NQNLINEARITY 

For a nonlinear spring having friction nonlinearities, as illustrated in 

Figure 2(c), the waveform of the developed load will take the forms shown in 

Figure B-3. This output waveform is for the case when the amplitude of 

motion exceeds the limits of the hysteresis envelope (A>H). The describing 

function for the case of A less than H was not studied. Expressions for the 

developed load as a function of time are of the following form. 

Kt) = 

KA Cos t - KS for 0 < t < ^ 

5^ Cos t - F for t1 < t < t2 

KA Cos t + KS for t2 < t < ir + t1 

PA 
P Cos t + F for TT + t, < t < IT + t2 

KA Cos t - KS for 7T + t2 < t < Zu 

(B32) 

where 

tj = Cos"1 (|) 

t2 = Cos"1 (^f) 

(833) 

(834) 

As with the other nonlinearities, the first step in obtaining the 

describing function is the Fourier series expansion of the load L(t). The 

complete Fourier series representation is given by Equations (83) and (64). 

The coefficients of Equation (84) for amplitudes greater than H are 

a = - [/ ^KA Cos t - KS) dt ♦ ^ 2 (^ Cos t - F) dt 
0 t, 

t t 
+ / 3 (KA Cos t + KS) dt + / 4 (^ Cos t ♦ F) dt 

2TT 

+ / (KA Cos t • KS) dt] 
t. 

(835) 
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(a) Displacement 

-KA Cos t - KS 

-j- Cos t - ♦ F 

KA Cos t ♦ KS 

(b) Load 

Figure 6-3 Developed lood (or friction noniineority 
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a, = i [/ VKä COS2 t - KS Cos t) dt + / 2 (~ Cos2 t - F Cos t) dt 
o t. 

(B36) 

+ r (KA Cos"1 t + KS Cos t) dt + / H(^ Cos£ t + F Cos t) dt 
t2 t1 

2n      « 
+ / (KA Cos^ t - KS Cos t) dt] 

and 

b, » i [/ ^(KA Cos t Sin t - KS Sin t) dt + / 2 (^ Cos t Sin t - F Sin t) dt 
1  ^ o t1  ^ 

+ ;3 (KA Cos t Sin t + KS Sin t) dt + /4 (5^ Cos t Sin t + F Sin t) dt 

^ ^ (B37) 
2TT 

+ / (KA Cos t Sin t - KS Sin t) dt] 
t. 

Evaluating these integrals we obtain 

aos0 

a, s -^ [^ - t2 + . + (J - 5KS) (SI« 2t1 - Sin 2t2) 

^ (Sin t1 + Sin t2) 
+ ^5 (t2 - t^ + j^ (Sin t1 - Sin t2)] 

^ = ^ [(gj - 1) (Sin2 t2 - Sin2 t^ + | (2 Cos t1 + 2 Cos t2) 

+ ^j (2 Cos t2 - 2 Cos t^] 

where t1 and t2 are given In Equations (B33) and (834). 
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Thus, in the case of the friction nonllnean'ty, the Fourier series 

expansion leads to a load relationship of the form. 

L(t) ■ a1 Cos t + ^ Sin t (B41) 

For this nonllnearlty there Is both an amplitude and phase relationship 

between the load output and the input displacement. The load relationship 

may be expressed as 

L(t) » ♦ Cos (t + a) (B42) 

where   (B43) 

* -^a,2 + b^ 

and a-Tan'1 (yb,) ^ 

This describing function representation is analogous to a spring and struc- 

tural damping combination. From these results the describing function is 

given as 

« •  /ISL .  (B45) 
ran 

The equivalent viscous damping, or effective damping, associated with the 

friction nonllnearlty was obtained using the procedure discussed in Reference 

10. Here the work done during a cycle of motion by the load from the non- 

linear spring, Equation (B4?)f is equated to the work done by a viscous 

damper during a cycle of motion. In this manner the effective structural 

damping coefficient g may be defined as a function of the amplitude of motion. 

This approach leads to the following definition of the effective g for a given 

friction nonllnearlty. 

(B46) 
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Appendix C 

FRICTION REPRESENTATION FOR SIMULATION STUDIES 

While obtaining numerical simulation data for the friction nonlinearity, 

a definition of the load as a function of the amplitude of motion was needed 

for those cases where the amplitude peaked at a value less than that corres- 

ponding to the limits H of the hysteresis envelope. Figure 2(c). The 

simulation studies confirmed that amplitude peaks below H resulted even when 

relatively large initial amplitudes were used to start the motion. It was 

found that a steady state amplitude condition could be reached if a reasonable 

definition of the load was available for the short periods of time that the 

amplitude spent within the region of hysteresis. 

A review of past literature on the subject did not produce a definition 

of the load fn the mentioned region. Thus an assumed model was developed for 

this phenomena. The definition that was employed is based on the assumptions 

that for amplitudes less that H the stiffness works towards an average stiff- 

ness representative of the hysteresis envelope and it works towards this 

average stiffness in a manner representative of the linear stiffness of the 

system. This revised load versus amplitude relationship is illustrated in 

Figure C-l. 

For the case where the amplitude peaks are always greater than H, we 

traverse the hysteresis loop starting at some initial amplitude at point 1, 

continue consecutively through to point 2, then on to point 3 and returning to 

point 1 for the next time around the loop. If however the amplitude at 

point 2 is a positive peak, i.e, A(t2) > A{t2) + At), then we proceed Into 

the hysteresis loop to point 4 where we reach the average stiffness of the 

loop and continue in the loop unless the amplitude is such that A Is again 

greater than H. If we designate the amplitude at point 2 as A2 and the load 

at this point as I2 we can write the load as a function of the amplitude A 
for peaks less than H as 

A0 ♦ K, - L 

L(A) 

L2MA-A2)        forK<'2^li    **A2 (cl) 

A K3 for A >   *       *      £ ♦ A. 
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where 

= [H-S]^ 
J H 

(C2) 

Figurt C-l   Leod vtcsut amplitude for amplitude peaks less than H. 
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APPENDIX 0 

EXAMPLE PROBLEMS 

This Appendix contains example problems illustrating the use of the ana- 

lysis procedures described in this report.  These problems were chosen to 

provide insight into the steps necessary to develop a number of the figures 

presented in the body of this report, Details of the solution procedures to 

be followed for each of the three nonlinearities investigated may be found in 

Section III. These analysis steps are summarized in Figures 17, 23 and 31 for 

the freeplay, preload, and friction nonlinearities, respectively. 

D.l RIGID CONTROL SURFACE WITH A SINGLE ROOT ROLL PRELOAD NONLINEARITY 

Assuming a rigid control surface with a single root roll preload non- 

linearity, the nonlinear system may be defined by the following parameters. 

se  " 0.2° s*   •   0° 

pe  " 0.18 %   '   o- 

Vpo =    2 Linear degree of freedom 

S   ' 128989 in-lb/rad KA   •   129567 in-1b/rad 

h   ' 0.1667 lb-sec2-in L   «   0.071 lb-sec2-in 
9 

"w   ' 0.058 lb-sec2-1n \H   ■   0.058 lb-sec2-in 

U9    " 140 Hz w^   ■   215 Hz 

The problem Is to find the relationship between the amplitude of root roll 

limit cycle oscillation and dynamic pressure for the above control surface 

configuration. 

STEP 1: Select a root roll amplitude of motion At?. 

Assume A0 is 0.2S degrees and then we have an A/S ratio of 1.25. 

A0/Su « 1.25 
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STEP 2: Calculate the stiffness ratio K/K using the describing function 
technique for the preload nonllnearlty. 

For a preload nonllnearlty, we may use Figure 7 to obtain this 
stiffness ratio. For an A/S of 1.25» we find that K/K equals 0.72 
with a S/P ratio of 2. Thus: 

«e s VKe s 0-72 

STEP 3: Calculate the effective root roll frequency uiQ. 

From Equation (29) we have 

"0 " "0 V^T 

Therefore, with an uie of 140 Hz and 60 equal to 0.72, we obtain 

«e • 118.8 Hz 

STEP 4: Calculate the dynamic pressure. 

For a rigid fin configuration, we use the effective system flutter 
results s> 
we obtain 

q  ■ 71 psi 

SUMKARY OF CALCULATIONS 

results shown In Figure 15. For ZB of 118.8 Hz and w^ of 215 Hz 

A6 (deg)   A6/Se   a0   «^ (Hz)   q (psi) 

0.25      1.25    0.72  118.8     71 

Thus for a ^oot roll amplitude of motion A equal to 0.25 degrees with 
the system as described we obtain a c»yna»1c pressure of 71 psi. This 
point is shown on Figure D-l which is the q versus A^ curve for our case of 
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SÖ/PQ = 2.0. Repeating this series of calculations, the curves of Figure 0-1 
9  0 
(Figure 24) may be obtained. 

85r  1 i i 

Note: Figure D-1 is a reproduction of Figure 24. 
Flutter 

0.25 0.50 0.75 1.00 

Amplitude of motion A^ • deg 

1.25 1.50 

Figure D -1 Flutttr rtsuits for o rigid control surfoct with o single root roll prolood nonlineority 

0-2 «1610 CONTROL SURFACE WITH SINGLE ROOT PITCH PRELOAD NOHUNEARITY 

Consider a rigid control surface with a single root pitch preload non- 

linearity. The nonlinear system may be defined by the following parameters. 

S* • 0.2Ö 

p. • o.r 

Kt    -    129567 in-lb/rad 

I     • 0.71 lb-sec4-in 
9 

rA    -   0.0S8 lb-sec2-in 

m.    • 215 Hz 

sö   -   0^ 

P.   "   o* 
Linear degree of fretdom 

Kti   *   23734 in-lb/rad 

\it   •   0.1667 lb-sec2-in 

Ie#   *   0.0S8 lb-sec2.in 

y,    «    60 Hz 
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The problem Is to determine the limit cycle oscillation in the root pitch 

degree of freedom as a function of dynamic pressure. 

STEP 1: Choose a pitch amplitude of motion A^. 

For example, let A. equal 0.204 degrees. The A/S ratio corresponding 

to this value is: 

V% *   1'0204 

STEP 2: Calculate the stiffness ratio K/K using the describing function 

technique for the preload nonlinearity. 

Figure 7 depicts the stiffness ratio K/K as a function of the 

amplitude ratio A/S for given S/P values. For example with A/S 

equal to 1.0204 and a S/P ratio of 2 we obtain 

STEP 3: Calculate the effective pitch frequency» iy 

By definition. Equation (29), the effective frequency is related to 

the uncoupled frequency by 

With an (44 of 215 Hz and ^ equal to 0.80 we obtain 

*# ■ 192.3 Hz 

STEP 4: Determine the dynamic pressure. 

Using our linear system flutter results for a rigid control surface 

configuration. Figure IS, with the values of effective frequency 

ig " ^ ■ 60 Hz 
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and 
w^ = 192.3 Hz 

we can obtain a value for q.  Thus» we have 

q  = 72 psl 

SIWMARY OF CALCULATIONS 

A0 (deg)   A^/S^   ^   ^ (Hz)   q (psl) 

0.204     1.0204   0.80   192.3      72 

The previous steps may be repeated for other values of root pitch 
amplitudes of motion. A relationship between amplitude of motion and 

dynamic pressure can be found similar to Figure 0-1 discussed In the 
previous section. 
0-3 FLEXIBLE CONTROL SURFACE WITH TWO ROOT PRELOAD HOHLINEARITIES 

Consider a flexible control surface with preload type nonlinearltles in 
both root degrees of freedom. The nonlinear control surface Is described by 
the following parameters. 

Sa • 0.2° S# • 0.2* 

Pe ■ 0.1° »>♦ ■ o.r 

The S/P ratio for both degrees of freedom Is 2. 

K^ • 129567 1n-lb/rad 

*! • 215 Hz 

Ift • 0.1667 lb-sec2-1n I • 0.058 lb.sec2-1n 

L • 0.071 1n-sec2-1n !_ ■ 0.058 lb-sec2-1n 

The problem Is to find the amplitudes of limit cycle motion as a function 
of dynamic pressure and the root roll stiffnesses. 

99 



STEP 1: Choose an amplitude of root pitch motion A^. 

For this example let A^ equal 1.364 degrees. This results In an 

A/S ratio of 

A^/S^ » 6.71 

STEP 2: Assume an effective root roll stiffness KA 

Ass*«« a Ke equal to 23734 1n-lb/rad resulting In an effective root 

roll frequency we of 60 Hz. 

STEP 3: Calculate the stiffness ratio K/K using the describing function 

technique for the preload nonllnearlty. 

Fro« Figure 7, with A/S equal to 6.71, we find the stiffness ratio 

K/K equals 0.78 for an amplitude ratio S/P of 2. Our delta function 

Is thus: 

6# • 0.78 

STEP 4: Calculate the effective pitch frequency ty 

By definition» Equation (29^ we have 

With an y^ of 21S Hz and ^ equal to 0.78 we obtain 

and thus 

«# ■ 190 Hz 

S   '    S ^ " 1015d6 lfl*1b/rid 
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STEP 5: Calculate the dynamic pressure. 

With w known, we can determine the dynamic pressure from 

the linear system flutter results. Thus from Figure 16 we obtain 

q  = 60 psi 

STEP 6: Calculate the uncoupled root roll frequency m , 

Also, from the linear system flutter results, Figure 16, we can obtain 

the amplitude ratio A^/AQ for the effective root frequencies ^ 

and w.. With IL equal to 190 Hz and ZB  assumed to be 60 Hz, from Figure e 
16, we obtain 

or 
A^/A0 = 0.835 

A0/A^ = 1.20 

We can now calculate the quantity S /A from the relationship 

VAe ' (VV (VV ^A5 

With t»n S0/5. ratio of 1, S /A. ratio of 0.149 and the above magnitude 

of A./A^ we obtain 

S M  = 0.124 
9 e 

From Figure 7, we find that an S/A ratio of 0.124 corresponds to a 

stiffness ratio K/K of 0.823. Thus we have 

6e = 0.823 

and with Equation (29) for an w of 60 Hz we obtain 

u»e ^ 66.14 Hz 
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SUMMARY OF CALCULATIONS 

A^ (cleg)        A^ ^ (Hz) 6^ ^ (Hz) q (psi) 

1.364 6.71 60 0.78 190 60 

VAe we  (Hz) 

0.124 0.823 66.14 

These results of these calculations are shown In Figure D-2. By repeat- 

ing these analysis steps, we can obtain all of the curves shown in Figure 0-2 

(Figure 26). 

90 120 150 180 
Uncoupled frequency M 9 Hz 

Figuft D-2   Flutter results (>r o fler.iblc control surloce with two preload nonlinearities 
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LIST ÜF SYMBOLS 

A Amplitude of motion. 

A Aerodynamic loading matrix. 

A »A, Coefficients used in description of displacement time V"! history for preload nonlinearity - Equation (9). 

A^.A^.A    .A0 Rigid, rigid-elastic, and elastic aerodynamic loading 
r   re   er   e matrices. 

A ,a1,b1 Fourier coefficients. 
F Friction parameter, friction nonlinearity - Figure 6(c). 

g Effective damping - Equation (26). 

H Friction parameter - Equation (19). 

L,i ,1 Rigid control surface inertia properties. 

K Linear spring rate. 

K Effective stiffness. 

L(t) Load developed in nonlinear spring. 

m Generalized masses of the cantilevered control surface 
n modes. 

M Mass. 

P Preload parameter, preload nonlinearity - Figure 6(b). 

PF Inertia coupling matrix between rigid and elastic body 
motion. 

q Dynamic pressure. 

qc Flutter critical dynamic pressure. 

q Generalized coordinates of control surface modes, 
n 

S Deadspace - Figure 6. 

t Tine. 

t.,^ Times at which in a given nonlinearity, the load 
1 l relationship, L(t), is altered - Figures (2), (3), and 

(40). 

x(t) Displacement. 

X System displacements. 

X System accelerations. 

a Phase angle - Equation (23), 

5 Describing function or delta function. 

e Root roll. 

% Magnitude of load for friction nonlinearity - Equation (22). 

♦ Root pitch. 
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LIST OF SYMBOLS (Concluded) 

u) Uncoupled frequency. 
a) Natural frequency. 
w Effective frequency. 
Subscripts 
e Parameter associated with root roll. 
<P Parameter associated with root pitch. 

Superscripts 
+ Parameter associated with postive motion. 

Parameter associated with negative motion. 
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