g »
I ™ aport MOC 1734 \ﬂ/ @
1] o
D
-
< FLUTTER OF CONTROL SURFACES
| 11 <" WITH STRUCTURAL NONLINEARITIES
bl < |
) _"‘ | Robert M. Laurenson and Robert M. Trn
P | McDonnell Douglas Astronautics Company - East
1 St. Louis, Missouri 6316€
I
!
] 31 August 1977
B Final Report for Period 1 June 1976 - 31 August 1977
I
I DDC
=l
APPROVED FOR PUBLIC RELEASE U 03 2 ?;%E
) —DISTRIBUTION UNLIMITED -
LWLEIUT
> & ®
o.
S Prepared for
| ! DEPARTMENT OF THE NAVY
e o NAVAL AIR SYSTEMS COMMAND
== ¢ 5 Washington, DC 20361
=25




REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

oc-e1734 l -
7

. TYPE OF REPORT & RERIOD COVERED
Final Kepsart. -
- 31 Augemt 1877

oot

4. TITLE (and Subtitle)

D

-FLUTTER OF CONTROL §URFACE§ WITH STRUCTURAL
"NONLINEARITIES. ™~ - =

P LRTOTTRoOONY

7. AUTHOR(s) 8. CONTRACT,OR GRANT NUMBER(s)
/0 T Robert M.;Laurenson @ Nogad)9-76-C-0524 ""’VJ
Robert M./Tm
10. PROGRAM ELEMENT. PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS AREE & NoRe N RumEE RS

-
McDonnell Douglas Astronautics Company - East
P.0. Box 516 '
St. Louis, MO 63166

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT
Department of the Navy //L 31 August 1977/
Naval Air System Comm:nd MHO

Nashington. DC 20361
‘ . MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 18. SECURITY CLASS. (of this reporr)

/ i
j/ Unclassified
/ g ‘( TS DECLASSIFICATION DOWNGRADING |
£ -/- (] SCHEDULE

[16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release - Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i1 difterent froam Report)

18. SUPPLEMENTARY NOTES

19. KEY WOADS (Continue on reverse side il necennary end identify by block number)

Missile Control Surface Flutter
Nonlinear Flutter Analysis :
Structural Dynamic Analysis ! :

\ 20. ABSTRACT (Continue an reverse side |f necessary end identily hv Block number)

Missile control surface systems often contain structural nonlinearities
which affect their performance characteristics and flutter boundaries. Pre-
sented in this report are flutter analysis procedures which have been developed
to evaluate the potential influence of these nonlinearities on control surface
flutter. Three type nonlinearities, freeplay, preload, and friction, have been
investigated. The describing function technique, which has found application

Vion's T3 eoition oF 1 wov 88 1S oBsoLETE UNCLASSIFIED ’(8

& /Z S gﬁd SECURITY CLASSIFICATION OF wiS BAGE Whan [iaraPrtered




UNCLASSIFIED
ms;cumw CLASSIFICATION OF THIS PAGE(When Detas Entered)

GC. ABSTRACT

in dealing with nonlinearities in automatic control systems, has been used to
mathematically represent these nonlinearities during the investigation. A
simplified representation of the aerodynamic loadings acting on the control sur-
face has been assumed and the techniques have application for either a rigid

or flexible control surface. Numerous examples of the application of the
developed flutter analysis techniques are presented.

TN T —— s
s, i

UNCLASSIFIED

SECUMITY CLASSIFICATION OF YuIS PAGE’When Nara Fntered:




* DSCLATHER NOTICE

Z @
e

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



o FOREWORD

This report was prepared by the McDonnell Douglas Curporation, McDonnell
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administered under the direction of Naval Air Systems Command with Dr. Allan
Somoroff as program monitor and Mr. George Maggos as technical monitor.

Dr. Robert M. Laurenson was Program Manager of this study. Mr. Robert
M. Trn assisted in performing the technical wori of this investigation and
in the preparation of the final report. The effort was performed in the
Structural Dynamics Department of McDonnell Douglas Astronautics Company - East.
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Section I
IKTRODUCTION

Although flutter is an exceedingly dangerous phenomenon which can cause
structural failure, it is possible to approach instability without destruc-
tive results. If the system is unstable, the amplitude of oscillation begins
to build up, but the extent to which this increase continues depends on the
nature of stiffness characteristics of the system. If the system is nonlinear,
the oscillations might increase to some amplitude and become stable again
with a limit cycle oscillation. For missile control surfaces having large
starting friction or a deadspace ("slop") in the control system, the natural
frequency is a function of the amplitude of oscillation.

At a speed slightly in excess of the critical flutter speed, the ampli-
tudes of oscillation (caused by external excitation) would start to build up.
Since the critical flutter speed is a function of the natural frequency of
the system, it would be possible that the change in natural frequency attendant
on the increased amplitude of oscillation would raise the critical flutter
speed. The oscillations would then decrease until stability would be
achieved. Thus, although the critical flutter speed of the original con-
figuration might be exceeded, destructive oscillations would not necessarily
result from the instability. The possibility of fatigue failure from low-
amplitude oscillations is of course not ruled out.

A control surface flutter analysis technique acccunting for these non-
linearities and an understanding of their potential influence on the flutter
mechanism greatly increases the efficiency of the control surface design
process. Benefits in the form of reduced system weight and program cost
could potentially be realized with the inclusion of nonlinearities in the
design process. This study was undertaken to provide a tetter understanding
of the effect of various nonlinearities on the dynamics of a missile control
surface and to establish procedures to include the influence of these non-
linearities in the flutter analysis process.

In the past, limited analyses have been conducted to evaluate the influence
of structural nonlinearities on control surface flutter. For example, the



analyses of References 1 and 2 were for a rigid control surface with a single
nonlinearity. In these references the nonlinear flutter proviem was studied
using basic linearization techniques and an analog computer. The present study
extended these results in order to: (a) develop techniques to handle flexible
control surfaces having structural nonlinearities, (b) remove the limitation
of allowing only a single nonlinearity in the system, and (c) improve the
techniques for including the influence of the nonlinearities in the dynamic
analysis of control surfaces.

Specifically, the problem that was addressed during this study consisted
of dealing with a missile control surface, Figure 1, exposed to subsonic flow.
Structural nonlinearities were associated with the root rotational support
springs Ke and K¢. Definition of the load acting on the control surface used
the "simplified" representation defined in References 3 and 4. The basi~
assumption of the simplified approach is that the 1ift force is proportional
to and in phase with the torsional motion. The primary concern of this
investigation was the evaluation of the influence of structural nonlinearities
on control surface flutter. The attractiveness of the simplified approach
to this initial understanding of nonlinearities is that it permits a more
direct physical feeling of the flutter mechanism while under certain conditions
yielding approximately the same results as more complicated analysis methods
with much i1ess computation.

¢ (root pitch)

=1

6
(root roll)

"'Root"’ rotationai springs Kg and K¢

Figure 1 Missile control surface configuration
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Three types of structural nonlinearities, as shown in Figure 2 were
dealt with during the study. The freeplay nonlinearity, Figure 2(a), might
represent a loose hinge or linkage of a control system or possible joint slip-
page. The preload nonlinearity, Figure 2(b), corresponds to a control surface
with a basic freeplay nonlinearity and subjected to a preload which shifts
the equilibrium position. The friction nonlinearity, Figure 2(c), is charac-
teristic of control surfaces with freeplay if friction exists in the control
system linkage or joints.

During this study the control surface flutter problem was represented by
the following system of nonlinear equations.

MX +K(X)X=qAX (1)

Referring to Figure 1, the detailed elements of Equation (1) are given as:

0 : 1. B 1 1 \
lo lgo: g K(6) 0 ¢ : )
S g .0 A A
I , PF . X r,re
00 lo ¢ 0 K(¢), 1ol : ¢ (2)
--------- R bdutdiabd RS + w-rm—mcemmeb e e (- = q - e e ] (-
l\ :\ 1 {
T : 2 A 1A q
PF' 1 M I 0 Lomwy R er: e n
LN BN L]

A haseline control surface was assumed for evaluating the various
coefficients of Equation (2). This baseline configuration was based on the
Harpoon Anti-Ship missile quick-attach control surface. Details of this
Harpoon control surface are presented in Appendix A.

With no nonlinearities in the system, that is when K(¢) and K(¢) are
constants and not a function of system response, standard solution techniques
may be used to obtain flutter solutions to Equation (1). A common approach
is to assume harmonic motion and conduct eigenvalue analyses on the resulting
free vibration problem. For varying magnitudes of dynamic pressure, the
form of the resulting complex eigenvalues is used to determine system stability,
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Figure 2 Characteristics of structural nonlinearities
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i.e., flutter. In addition, the "flutter mode shape" is obtained when the
eigenvalue analysis is conducted for the flutter critical value of dynamic
pressure. As will be discussed in following sections, during analysis of the
nonlinear system, flutter results for an "effective" linear system are required.
For these analyses, the eigenvalue approach was employed for obtaining flutter
solutions.

During these investigations, the nonlinear flutter problem was anlayzed
through application of the "describing function" approach. As discussed
in References 5 and 6 this technique .is used in dealing with nonlinearities
in control systems. This technique is based on a time averaging approach for
defining the input-output characteristics of a nonlinear system. It is assumed
that for a sinusoidal input the output is also sinusoidal with the same
frequency as the input and all other harmonics can be neglected. Based on
these assumptions, the linearized quantities relating system output to input
are expressed in terms of the fundamental component of the output's Fourier
series representation. In the literature of mechanical vibrations, this

technique is also often referred to as the method of "harmonic balance,"

for instance Reference 7. Further details on applying these methods may be
found in the Reference 8 text on solution techniques for nonlinear differential
equations.

The developed flutter analysis procedures, including the effects of
structural nonlinearities, and illustrative results when applying these
techniques are presented in the following three sections of this report. In
Section II, a summary is presented of the describing function representation
for each of the nonlinearities shown in Figure 2. The developed flutter
analysis procedures are then discussed in Section III. Numerical time history
solutions were obtained for the governing system of nonlinear equations.
Results from these numerical simulation studies are compared with describing
function predictions in Section IV. This process verified the developed flutter
analysis procedures employing the describing function technique and led to a
better understanding of the flutter mechanism as influenced by structural
nonlinearities. These sections are followed by study conclusions, Section V,
and recommendations, Section, VI. Included in this latter section is an
illustration of how the presence of structural nonlinearities can influence
the definition of the allowable flight conditions for a missile control surface.

5




Supporting information is presented in the report appendices. Appendix
A describes the baseline control surface used in this study. Appendix B is
a detailed analysis of the describing function for each nonlinearity studied
in this program and Appendix C explains the load versus amplitude characteris-
tics of the friction type nonlinearity. Solutions to example problems

illustrating application of the developed analysis procedures are given in
Appendix D.




Section Il
DESCRIBING FUNCTION ANALYSIS

Application of the describing function technique forms the basis of the
developed flutter analysis procedures for missile control surfaces with struc-
tural nonlinearities. With this approach, the nonlinear equations of motion,
Equation (1), are linearized for subsequent flutter analysis.

The basic approach in the describing function method is to assume that
the system displacement is sinusoidal and of the form:

x(t) = A Sint or x(t)=ACos t (3)
For this displacement expression, the form of the load developed in the non-
linear spring is defined and this load relationship is then expanded in a
Fourier series. The higher harmonics in the series expansion of the load time
history are neglected. That is, for a sinusoidal input displacement, it is
assumed that the output load is also sinusoidal with the same frequency. The
ratio of the single term Fourier series expansion of the developed Toad and
the assumed displacement are then used to define an "effective" linear spring

rate for the nonlinear element.

A summary of the describing function approach for each of the three non-
linearities shown in Figure 2 is presented in the following sections. Detail-
ed development of the describing functions for these nonlinearities is pre-
sented in Appendix B.

A. FREEPLAY NONLINEARITY

For a nonlinear spring with freeplay characteristics, as illustrated in
Figure 2(a), the waveform of the developed load may take one of the two Shaoes
shown in Figure 3. These waveforms are dependent on the relationship between
the magnitudes of the freeplay and the amplitude of displacement, Equation

. (3). For a displacement amplitude A less than the magnitude of the dearspace ¢
no load is developed, Figure 3(b). When A is greater than S the developed
load is as shown in Figure 3(c).

The "effective" stiffness K of the nonlinear spring including the




/—A Sint(A - 9S)

A Sin t (A S)—/

Displacement
o
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/ [ |

Time
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(b) Load (A §)
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e |
iy
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3 4
D
18]
- ]

(c) Load (A S

Figure 3, Developed locd for ireeplay norlireonity




influence of freeplay is now defined as

K = 8K (4)
In this expression & is the describing function which accounts for the
presence of the freeplay nonlinearity. Using the describing function tech-
nique we acquire a representation for the freeplay nonlinearity of

the form (from Appendix B-1)

6=0 for A<S (5)
and
s =L (vt -sinat) forA=s (6)
where t is given by
t; = sin” (S/A) (7)

Employing Equations (5) and (6), the relationship between the effective
stiffness and the linear spring rate for a freeplay nonlinearity may be
obtained. This relationship is shown in Figure 4 as a function of the
amplitude of motion to freeplay ratio. For amplitude ratios A/S less than
one, the effective stiffness is zero. As the amplitude increases, the
linear spring predominates and the magnitude of K approaches that of K.

! 1.0 =
é .
¥
3 ~
R4
|
: ° 0.6 _
g :
2 0.4 , ;
- !
® 0.2 /
0
0 2 4 6 8 10

Amplitude ratio - A’S

Figure 4 Effective stiffness for freegloy nonlineority




Numerical solutions have been obtained for a single degree of freedom
system containing a freeplay type nonlinearity. From these numerical time
histories, the effective natural frequencies of the nonlinear system were
determined. Comparison of these with frequencies predicted by the describing
function technique allowed evaluation of the describing function approach.

A comparison such as this is presented in Figure 5. llere the ratio of
the effective frequency ., to the linear frequency ‘o ratio, as a function
of deadsnace S to amplitude of motion A ratio, is given. The parameter . _ is

o}
defined as

= ¥/m (8)

where K is the linear spring rate of the freeplay nonlinearity. Also shown
in Figure 5 is the frequency ratio obtained fromn the "exact" piecewise
linear solution to the nonlinear problem, Reference 9. As indicated in this
figure the describing function technique predicts frequency ratios very
close to those given by the exact or the numerical solution.

»

Describing function

m—

1.0

0.8

/

o |
3 | ;
. i
’Q’
3 0.6 -4
; Nume-ical ‘
= Solutions
‘3 ' :
> 04— . -
w

Exract sotution ._// ;
= e B e S = -

0.2}———1t—
§ i
| !
! §

0 0.2 0.4 0.8 0.8 1.0
Amplitude ratio - S/ A

Figure 5 Frequency ratio for freeplay nonlincarity




B. PRELOAD NONLINEARITY

A modified displacement function was assumed during the describing func-
tion development for a preload nonlinearity. This displacement function was
of the form

x(t) = A, * A, Cos t (9)

where the coefficients A0 and A] were defined such that the energy stored in

the nonlinear spring is the same for both positive and negative displacements.

This displacement function is required to represent the nonsymmetric form,
about the origin, of the motion which results with a preload nonlinearity.
In addition it was required that Equation (9) result in a positive amplitude
equal to the initial displacement. Thus these coefficients are obtained
from

A ) -p2
or
A 1 2
A'I =3 + fJ (A-25)¢ + 4PS for A > (P + 25) (1)

In both cases, the coefficient A0 is obtained from the relationship
A= Ao + A‘ (12)

Note that it has been assumed that the influence of a preload nonlinear-
ity is related to positive displacements A of the system. It should also be
pointed out that when A is less than the preload P, A] equals A and Ao is
zero. For this situation, the nonlinear problem reduces to a simple linear
problem.

With the definition of Equation (3) ‘n mind, the waveforms of the
developed 10ad will take the shapes shown in Figure 6. As before, these
waveforms are dependent on the relationship between the magnitudes of
freeplay, oreload, and amplitude of motion.

Proceeding as before.the fundamental components of the Fourier series

representation of these developed load waveforms were obtained. This leads
to the following definition for the describing function for a oreload

1i




———TT

Sp+as
: b
3

2 0

Load

Load
o

A Cos t for (A~ P+2S) /

ACost for P< A~ (P+29)

(a) Displacement

L(t) = PK

L= K(Ag + Ay Cos 1)
(b) Load (P- A P +25)

L) = K(Ay + A, Cost)
L = PK

L() = K(Ag *+ Ay Cos t =28)

(¢) Load (A-P «25)

Figure 5 Developed lood for prelood nonlinearity
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nonlinearity

6§=1.0 forA<P (13)
and :
<1 2_ (p- -1
5= [w ~ty £ (Pa)stn &y - g s 2t]] for P < A < (P+25) (18)
where t1 is given by R P'Ao
t = Cos ("A',—) (1%)
Finally

N 2 2 (o, ] . ] (15)

L

for A > (P + 29)
where t] is given as

-1 P-A°
t] = Cos (-]G- (17)
and t2 is expressed as
P+2S-A
tz = Cos ](——A——-—°) (18)

Shown in Figure 7 is the stiffness ratio as a function of the amplitude
of motion to freeplay ratio for several freeplay to preload ratios. As can
be seen from this figure, for amplitudes of motion less than the preload P,
the stiffness ratio is one and the system is linear. With increasing ampli-
tudes of motion the stiffness decreases. Thic is due to the deadspace in the
spring causing the effective stiffness to be less than the linear value. As
the amplitude increases further, the influence of the nonlinearity becomes
small and the magnitude of K approaches that of K.

s N e

To aid in evaluatinc the results of the describing function representa-

. tion of a preload nonlinearity, the influence of this nonlinearity on the
dynamics of a single degree of freedom have been studied. Numerical solutfons
of the nonlinear equation of motion were obtained for various magnitudes of
the nonlinearity. By examining the resulting time history information,
effective stiffnesses were obtained which could be compared with predicted
describing function values.
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Figure 7 Eftective stiffness fr- prelood nonlineority

A numerical solution for the single degree of freedom with an initial
amplitude of six inches was obtained as shown in Figure B, Also included in
this figure is the displacement time history given by Equation (9) having an
amplitude A also equal to six inches. This corresponds to the assumed dis-
placement function employed during the describing function development. As
can be seen from this figure the results obtained with the describing func-
tions compare well with the numerical data. Also, the numerical solution
i{1lustrates the nonsymmetric nature of the motion for a system with a preload
nonlinearity.

A comparison between these numerical 3o0lutions and the describing func-
tion results are illustrated in Figure ¥, The results cresented in this
figure correspond to the infermation aiven in Ficure 7 for 4 ueadspace to
preload ratio of one. As can be seen in Figure 9 the conparison between the
two solution techniques is very good.
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C. FRICTION NONLINEARITY

For a nonlinear spring with friction nonlinearities, the waveform of
the developed load will take the form shown in Figure 10. This waveform
is produced when the amplitude of displacement A is greater than the limits
of the hysteresis envelope. By geometry, this limiting value of motion
is given as:

+ S (KS+F) (19)

H KS=F

Proceeding as before, the fundamental components of the Fourier series
representation of the developed load waveforms were obtained. Thus, in the
case of the friction nonlinearity, the expansion leads to a load relationship
of the form.

8 + i
L(t) 3 Cos t + by Sin t (20)

where coefficients 3, and b1 are defined in Appendix 9-..

For this nonlinearity there is both an amplitude and phase relationship
between the load output and the input displacement. The load relationship
may be expressed as

L(t) = ¢ Cos (t + 4) (21)
where S =‘/a12 + b]2 (22)
and + = Tan™! (a,/b,) (23)

Thus, this representation is analogous to a spring and structural damping

combination.

From the above results the effective stiffness of a friction nonlinearity

is of the form.

(24)

i
1"
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Thus the describing function is given as:

Note that this definition only applies for amplitudes of motion which are
greater than the parameter H given by Equation (19).

The equivalent viscous damping, or effective damping, associated with
the friction nonlinearity was obtained using the procedure discussed in
Reference 10. Here the work done during a cycle of motion by the load from
the nonlinear spring, Equation (20}, is equated to the work done by a viscous
damper during a cycle of motion. In this manner, the effective structural
damping coefficient g may be defined as a function of the amplitude of
motion. This approach leads to the following definition of the effective
g for a given friction nonlinearity.

by (26)
97 op JKm

Trends in the effective stiffness and damping are presented in
Figure 11.  These data are presented for various deadspace S to friction F
ratios. As can be seen, the effective stiffness approaches that of the

linear system for large motions. In addition, the effective damping goes to
zero as the amplitude of motion increases.

To gain insight into the influence of a friction nonlinearity on the
dynamics of a system, the vibration of a nonlinear single degree of freedom
system was investigated. The system was given an initial displacement and
numerical solutions obtained for the nonlinear equation of motion. Frequency
and decay times were then compared with describing function predictions to
evaluate the accuracy of the predictions.
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A typical numerically obtained displacement time history is presented in
Figure 12. The influence of the nonlinear spring can be noted by the form of
these results. The decaying nature of the response is a result of the system
damping due to the nonlinearity. The difference in times between
successive peaks indicates the dependence of the effective stiffness on the
amplitude of motion.

Effective stiffness and damping, as a function of amplitude of motion,
were estimated from the numerical results. The time between successive peaks
was used to estimate the system's effective natural frequency. The effective
system stiffness was then defined in terms of this frequency. A comparison
between these numerically obtained effective stiffnesses and describing func-
tion predictions is shown in Figure 13. The average amplitude of motion
between successive peaks was used as the amplitude in defining the plotted A
over S ratios. The difference in magnitudes of successive peaks was used to
estimate the effective damping over a particular cycle. These results are
compared with describing function predictions in Figure 14. From the results
presented in Figures 13 and 14, it can be seen that there is good correlation
between the numerical and describing function resuits.
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Section III
FLUTTER ANALYSIS

Application of the describing function technique for the flutter analysis
of control surfaces with structural nonlinearities employs the previously
discussed concept of effective stiffness. As with a linear system, flutter
analyses are conducted for variations in these effective stiffness parameters.
These flutter results are then modified to account for the presence of the
system noniinearities.

Throughout this study the control surface flutter problem is represented
by the system of nonlinear equations of motions given in Equation (1). In
the relationship of Equation (1), K(X) is the nonlinear system stiffness
matrix. With no nonlinearities in the system, that is when K(s) and K(¢)
are constants and not a function of system response, standard solution tech-
niques may be used to obtain flutter solutions to Equation (1). At this
point the definition of the effective stiffness parameters given by Equation
(4) is employed. The nonlinear stiffness terms K(o) and K(¢) in Equation (1)
are replaced with the corresponding effective parameters K and K In this
manner the system equations of motion are "linearized" and for spec1f1c values
of K0 and K¢, standard analysis techniques may be used to obtain flutter
solutions. The approach that has been used throughout this study is to assume
harmonic motion and conduct eigenvalue analyses on the resulting free vibra-
tion problem. For varying magnitudes of dynamic pressure, the form of the
resulting complex eigenvalues is used to determine system stability, i.e.,
flutter. In addition to defining the flutter critical dynamic pressure, the
“flutter mode shape" is obtained during this eigenanalysis. From this mode
shape, the relative root motions at flutter are defined.

Representative flutter results for the effective. or linearized system
take the form as illustrated in Figures 15 and 16, These results are for
the baseline control surface which is defined in Appendix A. The results
given in Figure 15 are for a rigid fin while those for a flexible fin are
given in Figure 1f.
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Shown in Figures 15 and 16 are variations in flutter critical dynamic
pressure as a function of effective root pitch uncoupled frequencies 5«' The

]
relationship between the effective uncoupled frequency w, is of the form

Ty \J'Se’ wg (c7)

In this expression, 8 is the describing function for the nonlinearity in
question. The magnitude of 8 depends on the amplitude of motion in the root
roll degree of freedom. Expressions for evaluating : ~for the various non-
linearities considered during the study are given in Section II. A similar
relationship holds for the root pitch parameter Sﬁ. Also shown in these
figures are the relative magnitude of motion in tae nonlinear root springs.

Presented in the following paragraphs is a discussion of the computational
steps required when employing the describing function approach during control
surface flutter analyses. Details of the required steps are given for each
of the three nonlinearities investigated. The case of both riqid and flexible
control surfaces are discussed. Effective system flutter results shown in
Figures 15 and 16 form the starting point for all these discussions,

A. FREEPLAY NONLINEARITY
The procedure to be followed in obtaining the flutter boundaries of a
control surface including the influence of root freeplay structural non-

linearities is summarized in Figure 17. This approach modifies the flutter
results obtained for the effective system (either Figure 15 or 16) to account
for the presence of the nonlinearities. For the control surface of interest.
a magnitude of root pitch freeplay is selected. For a freeplay nonlinearity
in a8 single root degree of freedom, such as root roll (£ = 0}, the initial
step is to select magnitudes of root roll motion A and effective root roll
frequency . . For the magnitude of A , the describine function - is obtained
from either'EQUatiOn (5) or (6). Using Equation (27) the corresponding
magnitude of root roll frequency = is determined. This is followed by
obtaining the flutter critical dvnamic pressure g for the selected value of

:a from the effective system flutter resylts (Figure 15 or 16), This procedure
is then repeated far other values of and & and a relationship between
dynamic pressure and root roll frequency is ertained,
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For the case of a system with two nonlinearities, (S¢ # 0), a value for
the effective root roll frequency 56 is selected following the definition of
the pitch freeplay. The flutter critical dynamic pressure q and amplitude
ratio A!,/Aﬂ corresponding to this value of E“ are obtained from the effective
system flutter results (Figure 15 or 16). Following evaluation of the

relationship )
Sfhy (S¢/A;)(50/5¢)(A¢/A8) (20)

the magnitude of the describing function & is obtained from Equation (5) or
(6). Through application of Equation (27), the corresponding system frequency
@y is then defined. This procedure is repeated for additional values of the
parameter Wy

For either of these cases, one or two nonlinearities, the preceding
steps lead to a definition of the flutter critical dynamic pressure as a
function of root roll frequency ©,- Such a relationship might take the form
as indicated by the last step of Figure 17. A family of these curves can be
obtained which will account for variations in the magnitude of root pitch
freeplay.

Results for a rigid control surface with a freeplay nonlinearity in the
root pitch deqree of freedom are shown in Fiqure 18. These results are for
a deadspace S_ of 0.2 deqrees and various uncoupled root roll frequencies
... For small motion in the pitch dearee of freedom the effective frequency

[
o, approaches . and the critical dynamiz pressure approaches that of the

¥

linear system.

Extending these procedures to a control surface with two freeplay non-
linearities yields results such as shown in Figure 19. The cause of the
branch in the flutter critical dynamic pressure is apparent when considering
the relationships of Fiayre 20 and the computational s*eps of Fiqure 17.
Shown in Fiayre 20 are typical variations in the dynami¢ pressure and the
root motion flutter rode shape A /A as a function of effective root roll
frequency . .
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As the magnitudes of the assumed values of 55'5 approach the point of
minimum dynamic pressure from the left, points A to B in Figure 20 (a), the
amplitude ratio A¢/Ae approaches infinity, points A to B in Figure 20 (b).
Referring to Eauation (28), it is seen that this causes the amplitude of
motion parameter Se/Ae to approach, and possibly exceed, one. This results
in the describing function s4 approaching zero. Since the effective and

actual root roll frequencies are related by

wy = ByAfS, (29)
this trend in 54 requires that wy approach infinity to yield the assumed
magnitude of Eé. This accounts for the lower branch, points A to B, shown in

Figure 19.

A similar result is obtained when the magnitude of the assumed Ge's
approach the point of minimum dynamic pressure from the right, points C to D
in Figure 20 (a), the amplitude ratio also approaches infinity, points C to D
in Figure 20 (b). Following the same reasoning as before, the required me'S
also approach infinity. This accounts for the upper branch, points C to D
in Figure 19.

Throughout the following discussions, the narrow flutter region to the
right of the dip in the dynamic pressure has been neglected. MNumerical
solutions, Section IV, of the nonlinear flutter problem did not uncover this
indicated strip of flutter critical dynamic pressure. This is reasonable
since the configuration of the nonlinear system in this flutter region would
change as its response grows. This configuration change is due to changes in
the effective stiffnesses of the nonlinear elements as the motion becomes
large. This would result in the system moving to a stable state and away
from a flutter condition. Thus, the flutter boundary is assumed to be con-
tinuvous from points A to C as indicated in Figure 19.

Following the steps outlined in the preceding paraqraphs, the effective
system flutter boundaries shown in Figures 15 and 16 are converted to a
definition of the fiutter critical dynamic pressure accounting for the
presence of two root freeplay nonlinearities. Typical results for two control
surface configurations, riqid or flexible, are shown in Fiqures 21 and 22.
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These results are presented as a function of the uncoupled root roll frequency
W The family of curves shown in these figures account for variations in the
magnitude of the amplitude of motion ratio S¢/A¢. The physical properties of

the rigid and flexible control surfaces are presented in Appendix A.

In the case of two system nonlinearities,it should be noted that only the
dynamic pressure versus effective root roll frequency curve corresponding to
the system's uncoupled root pitch freguency (;§=m¢) in Figure 15 (a) represents
a flutter boundary. The remainina curves are indicative of the stable limit
cycle amplitudes of oscillation of the system for dynamic pressures below the
critical flutter value. The effective root pitch frequency curves of Figure

15 (a) can also be interpreted as individual S¢/A¢, 8¢ OF A15 curves.

B. PRELOAD NONLINEARITY
The procedure to be followed when conducting the flutter analysis of a

control surface with preload nonlinearities are very similar to that presented
in the preceding section for the case of freeplay nonlinearities. As with

freeplay nonlinearities, flutter studies for a control surface system having
preload nonlinearities employ the concept of effective stiffnesses. In a
manner similar to that for a linear system, flutter analyses are conducted

for variations in the effective stiffness parameter. These flutter results
are then modified to account for the presence of the structural nonlinearities.

The computational steps to be followed during the flutter analysis of a
control surface including the influence of preload nonlinearities are presented
in Figure 23. For the control surface of interest, a maanitude of root roll
preload is selected. Vith a nonlinearity in just the root roll degree of
freedom, (S, = 0) the initial step is to select maanitudes of root roll motion
A, and effective root roll frequency .. For the selected magnitude of A
the describing function + s obtained from the Equation (14) or (16).

The actual uncoupled rol! freauency . is related to the effective
frequency . by the expression given as iquation (27). The actual roll
frequency can then be calculated from this relationship for the particular
value of the descrihina function. This is rollowed by obtainina the flutter
critical dynamic pressure q for the selected value of . from the effective
system flutter results, Fiaure 15 or 16. This procedure is then repeated for

54




!\W—-rv' e

4 (root roll)

‘"Root"’ rotational

Physical system

¢ (root pitch)

Moment

280

Root pitch nonlinearity
= ,
two nonlinearities

Select magnitude of

root pitch and roll

deadspace and preload

pitch amplitude A¢

No S¢/ A Yes

springs K g and Ko 254 Ke
System parameters:
30 = S.SS S¢ =ttt
Pg = u.uu P¢ = VoWV wa L—P¢
lg = a.aa ¢ = bbb /
|0¢ = C.CC / A¢
|

Roo

t roll nonlinearity

v

Select magnitude of 60
;}0 = k.kk
obtain flutter q and A¢ /AO

=0
?

i

ratio for value of @y

Flutter resuits
effective system

y

Select magnitudes of Ag & &g

Ag

= d.ddand By = k.kk

calculate §g and solve

wg = Wg /Yoy

"S¢ /A¢ = p.pp...’.

MITTIPPY A

Eftective frequency - ao

Solve for 50 /AO

59/A9 = (S¢M¢)(So /Sé)(A"/Ao) i
calculate §g and solve o by
wg = E’o / 60

3

A¢ _,.-"s¢/A¢ = p.pp

Ao lll"..'-..

e

Flutter q for value ot aa

Effective frequency - -“-’0

Flutter results — nonlinear system

4 q

S¢ /A¢ = p.pp

System frequency~- w g |

Figure 23 Computational procedure for preload nonlinearities

35




other values of Je and Ae and a relationship between the dynamic pressure and

root roll frequency is obtained.

For the case of a system with two nonlinearities (S, # 0), a value for
the effective root roll frequency Ee is selected following definition of the
pitch degree of freedom dead space and preload. The flutter critical dynamic
pressure q and amplitude ratio A¢/Ae corresponding to this value of Ge are
obtained from the effective system flutter results, Figure 15 or 16. Following
evaluation of Equation (28) to obtain the corresponding Se/Ao ratio, the

magnitude of the describing function ée is obtained from Equation (14) or (16).

It is possible for the amplitude ratio A¢/Ae to be neaative. Calculation
of the describing function from this case involves determining the positive
amplitude corresponding to the negative Ae' The positive At and negative A~
amplitudes of motion for a preload nonlinearity are related by the expression

A" =V (A* - 25)2 + 4 ps (30)
With the positive A, from Equation (30), the describing function ¢, is obtained

from Equation (14) or (16) and the corresponding system freauency, wye 18

found. This procedure is then repeated for additional values of the parameter

wg.

For either of these cases, one or two nonlinearities, the preceding steps
lead to the definition of the flutter critical dynamic oressure as a function
of root roll frequency ... Such a relationship might take the form as
indicated by the last stép of Figure 23. A family of these curves can be
obtained which will account for variations in the magnitude of root pitch
preload nonlinearity.

Flutter results have been obtained, Figure 24, for a riqid control
surface having a single root roll preload nonlinearity. Presented in this
fiqure is the flutter critical dynamic pressure as a function of root roll
amplitude of motion for varying freeplay to preload. S /P , ratios. For
amplitudes of motion less than the praload. the critical dynamic pressure
equals the linear system value. As the amplitude of motion increases the
influence of the deadspace is reflected in the raising of the critical
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dynamic pressure. This is due to the softening effect on the effective root
roll stiffness which results in a higher flutte” c¢ritical dynamic p-essure.

As the amplitude of motion continues to increase, the influence of the non-
linearity decreases and the results aaain approach those of the linear system.

A rigid control surface having preload nonlinearities in both root
dearees of freedom was also studied. Flutter results are presented in Fiqure
25 for a 0.2 degree deadspace in both root deqrees of freedom and a deadspace
to preload (S/P' vatio of two. The family of curves shown in this figure
account for variations in the magnitude of the amplitude of ration ratio,
S¢/A¢. It should be noted that the effective stiffness of a preload nonlinearity
is a double valued function as illustrated in Fiqure 7. Thus the results
indicated in igure 25 are for double valued ragnitudes of rotion ratios,
The larger S /A, values correspond te amplitudes less than the yuantity P o« 25
whereas the iowér ratios correspond to amplitudes in excess ef *kis value.
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Finally a flexible control surface having preload nonlinearities in both
root degrees of freedom was studied. Presented in Figure 26 are flutter o
results for a 0.2 degree deadspace in both root degrees of freedom and dead-
space to preload ratios (S/P) of two. The curves depict the dynamic pressure
as a function of uncoupled root roll frequency W for various amplitude of
motion ratios S /A . As with the rigid control surface case, the amplitude
ratios are doub1e va]ued The larger S“/A$ values correspond to amplitudes
less than the quantity P + 2S whereas tﬁe iower ratios are for amplitude
values in excess of this auantity. The change in slope on the curve for an
/A of N.27 or 0.55 is caused hy the root roll amp]itudelof motion movinag
in and out of the 11nnar ranae on the preload root roll spring.

C. FRICTION NONLINEARITY

The procedures to be followed when conductina the flutter analysis of

a control surface with friction nonlinearities are very similar to that
presented in the precedinag sections for the freeplay and preload cases. As
vwith a Tinear system, flutter analyses are conducted for variations in the
effective stiffness parameter. The flutter results are then modified to
account for the presence of the friction nonlinearitics.
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The presence of damping in the friction nonlinearity will potentially
cause the flutter analysis procedure to differ from that of the other two
nonlinearities. The concept of effective stiffnesses is still employed but
an additiona) parameter, the effective damping a, will play a role in the
analysis procedure. As with a linear system, flutter analyses are conducted
for variations in the effective stiffness. The approach of the flutter
analysis is to assume harmonic motion and conduct eigenvalue analyses on the
resulting free vibration problem. For varying magnitudes of dynamic pressure,
the form of the resulting complex eigenvalues is used to determine system
stability i.e., flutter.

Typical flutter analyses results take the form of Fiqure 27 (a). For
given system parameters and dynamic pressures less than the critical flutter
value for the assumed simplified aerodvnamics, the eigenvalue analysis pre-
dicts unequal real roots. At the flutter point and points beyond flutter
we obtain complex roots havina equa’ real parts or frequency coalescence,
and nonzero imaginary parts. The amount of dampina required to raintain
stable system oscillations above the flutter critical dynarie pressure can be
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related to increasing dynamic pressure as illustrated in Figure 27 (b).
Attributing system damping to the friction nonlinearity in a system, we can
obtain the family of flutter curves such as shown in Figure 28 for a single
root nonlinearity. In Figure 28 the variation of dynamic pressure as a
function of the effective root roll frequency Eé is illustrated for various
effective root pitch frequencies vy and effective damping coefficients g

corresponding to each E@.

The computational procedure to be followed for a single friction non-
linearity is summarized in Figure 29. If we ascume a single noniinearity in
the root pitch degree of freedom, the effective root roll frequency and the
uncoupled root roll frequency will be one and the same. Choosing a root pitch
amplitude, A¢. we can calculate the describing function "delta" &4, the
effective damping g, .nd the effective root pitch frequency I$ corresponding
to the particular S¢/A¢ value. The flutter critical dynamic pressure corres-
ponding to these parameters is then obtained from the effective system flutter
results such as Fiqure 28. These steps lead to the definition of the flutter
critical dynamic pressure as a function of ro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>