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ABSTRACT

First an investigation of modeling stochastic processes

by difference equations (Markov process) was undertaken.

The starting point of the modeling procedure is the knowledge

of the spectrum of the process. Two methods are discussed .

One is based on optimal estimation theory and leads in most

cases to a high-order (perhaps infinite) Markov process. The

second method , based on linear sys tem theory , leads to a

first order Markov process (in matrix representation). Both

methods have been extended to two—dimensional processes.

Secondly, recursive estimation (filtering) of two-dimensional

random fields was addressed. It was shown that a t~o-

dimensional recursive filter cannot be optimal. Therefore,

only a sub—optimal solution is available. This solution

minimizes the mean square error for a specific structure of

a filter. Finally , applications of modeling and recursive

filtering are discussed . An image that includes a target,

correlated noise and random noise was processed . Some

methods of target enhancement (also called “restorat4.on”

are discussed.
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NOTATION

x(k ,~~) — correlated field

- modeling error (random wiak of the
Markov process)

v (k , 9..) — white noise field.

- estimation of x (k , e )

y (k , L) ~~ (x~i~,z~ - x(k ,L)) = estimation error

* (~~k+l ,~~) ~ (k , Z ) .€ (k , Z+1))

T — target intensity

— variance of correlated process

— correlation coefficients that determine
the bandwidth of the process

011 02 
- correlation coefficients that determine

the center frequency of the process

TH - value of threshold in the decision process

- variance of error
2P (k , Z) 

~
‘e (k

,.Q) mean of square erros

~ (k , 9.) A E (~~(k , Z ) . € T (k , f l }

— variance of random noise

R g
n

- variance of modeling error (random walk )

‘
A

( ) T 
- means the transpose of the vector ~~
- mean of correlated field

G - steady state gain
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I. INTRODUCTION

1. The goal in this thesis was to solve the problem

described in the following paragraphs . Consider an image

sensing device that has an array of NxN sensing elements.

The images that are sensed by the device include some

targets that suffer  from degradation due to background

(for example , clouds). The background noise eliminates the

possibility of direct detection of the target. The background

is assumed to be a correlated noise source.

Further interference to the output of the imager might

be the internal noise of the device. It is assumed that

the noise of each senFing element is uncorrelated to the

others (white noise). Therefore, the output of the imager ,

y(k,R.) includes three types of processes:

1. the target T(k,2,)

2. The correlated background x(k,~~)

3. The white noise v(k,2..)

y(k,L) = T(k,L) + x(k,Z) + v(k,L)

A typical image is seen in Figure 2. The problem in this

thesis is to detect the intensity and location of the target

by using recursive techniques that are applicable for

real-time hardware.

8



2. The solution to this problem is carried out in three

steps:

a) Mathematical modeling of the background .

b) Estimation of the background.

c) Detection of the target.

The main idea was to eliminate the background by subtraction

of the estimated background from the original imager ’s output.

Then the residual image includes only the target and the

white noise. The detection is, therefore , easier. Still,

for detection wi th small errors (false alarms and misses)

the target must have an intensity higher than the white

noise. The detection procedure is shown in Fig. 1.

I
j

_ ‘ S
y o X  + T + v

Fig. 1: Target Detection from a Noisy Image

In each of the three steps, some original ideas have been

developed.

9



3. In the “mathematical modeling of the background” the

starting point is that there is a correlation between points

of the background . The two dimensional autocorrelation

function was assumed to be known. Only stationary random

fields were treated.

The main idea of the mathematical modeling is to repre-

sent the image by difference equations that are forced by

white noise. The conventional way of representing a process

whose autocorrelation function is given is by using a

“Markov Process.” The value of a point, x (k,~~), is

represented by its neighbors :

= Ii~Lp,qx(p,q)

{ (p , q)} is a group of “ neighbors ” near the point (k ,2.,). And:

x(k ,Z) = c ( k , .~,)  + u(k,2)

=. ~Gtp,qx(ptq) + u (k,~~).

u(k,9..) is called “modeling error.”

The weighting coefficients 
~p q  

are chosen to make the

variance of the modeling error minimum. This is done by

using the well known “orthogonality principle” in optimal

estimation theory (see ch. II section H]. This technique

suffers from some difficulties as follows:

10 
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- The weighting coefficients ~ have no simple
expressions. p,g

— The number of neighbors one has to use is theoretically
infinite for some types of processes.

- The coefficients are found by solving many algebraic
equations , especially in the two—dimensional case.
The number of equations is equal to the number of
coefficients.

- It is difficult to describe the two—dimensional
difference equation in a “state—vector structure” .

The optimal-estimation approach to linear modeling is

suxmnarized in Ch. II section H.

The method of modeling that was derived in this thesis

is to find a recursive, linear, invariant filter H(z1,z2)

such as :

— when forcing the input with whitenoise, the output
of the f i lter will be a random process that has the
same autocorrelation function as the given field.

So, instead of dealing with the spectrum of the process,

one has to deal with white noise and a linear filter. This

is well known .

Rosser (Ref. 12], in 1975, suggested a state—space—

structure for two dimensional fields and also derived some

of the properties for this structure [see Ch. II Section G].

All of the examples that were chosen in this thesis led to

a f i lter , H(z1, z2), whose state—space—structure fitted

easily into Rosser ’s structure.

Moreover , this method of modeling doesn ’t suffer  from

any of the disadvantages of the previous method. It should

be emphasized that this method is limited only to separable,

two-dimensional autocorrelation functions and to causal models.

11



This method is called “Filter Response Method” and

is summarized in Ch. II Section F.

4. The estimation of the background is actually an exten-

sion of the one dimensional Kalman Filter. The problem is

roughly defined : “Given a noisy measurement

y(k,L) = x(k,9.) + v(k,Z)

where x(k,.Q ) is a correlated field and v(k,R.) is white

noise. The filter should estimate x(k ,24 , denoted x(k,~~).

It was shown that a recursive, two dimensional filter cannot

be optimal in the sense that the error cannot be made

orthogonal to the measurements , as some researchers have

tried to do [Ref. 101. There is a distinct difference

between one dimensional processing and two dimensional

processing. Therefore the method in this thesis is to

define a reasonable structure for the recursive filter, and

then to calculate the parameters of the filter to minimize

the mean of the square error. Recursive equations for

calculating the f i lter parameters (gain) and variance of

error were developed.

The results were checked in two ways:

1) By comparing with the optimal, non recursive
estimator.

2) By simulation. A correlated image was added
to a field of white noise. Then the correlated
part of the combined image was estimated by
using the recursive filter. The variance of error
was compared with the theoretical variance of error.

The results for all cases that were checked show good coincidence.

( 12
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5. In the study of target detection, the problem was to

detect lines. Most of the algorithms suffer from one

disadvantage. When detecting a line, an a—priori assumption

must be made about the direction of the line. Therefore,

in order to detect lines in several directions, the image

has to be scanned several times, or during one scanning to

do several calculations for each point. No doubt that for

real time applications all of those algorithms have a great

disadvantage. The algorithm developed in this thesis

detects lines, regardless of their direction. The key

point in this algorithm is feedback from the detection

(which is a decision process) to the filter. Most algorithms

of filtering and detection do it in two separated steps.

Fig. 3 shows the target that was detected from the orig inal

image in Fig. 2.

6. Ou~.line Of Chapters

Chapter II discusses the problem of two dimensional

random fields. In order to make this chapter “stand alone ”

for reading, some background material was included in Sections

B and C. This background material includes information on

two—dimensional operations and random processes. Section E

describes models for a one—dimensional random process.

Section F extends the methods of modeling for two dimensional

processes.

Chapter III is a review of estimation theory. It explains

the “position” of recursive, linear estimation, with quadratic

form, in estimation theory.

13



Chapter IV solves the problem of estimating a two-

dimensional process, when, originally , this process is

combined with white noise.

Chapter V shows the application of Ch. II and IV

(modeling and estimation) to the specific problem of

target detection.

1~
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I I .  LINEAR MODELING OF TWO-DIMENSIONAL
RANDOM FIELDS

A. INTRODUCTION

1.. This chapter contains the basic principles of modeling

a random process by linear equations. The basic assumption

will be that the statistical relationship between each two

measurements is known. This relationship is the so-called

autocorrelation-function. The techniques that will be used

are mainly extensions of the principles that are used in the

one-dimensional case. Terms like “Markov Model” , “state

variables ” , “Factorization ” will be used .

2. In the one—dimensional case the state-equations have the

form:

x(k+l) = A~ x(k) + B.u(k)

The words “one—dimensional” refer to the variable k (but the

state vector x(k) can be a multidimensional vector). It will

be shown how to use state—equations for a two dimensional

random field , in which the variables are k and L .

Note: When a random variable depends only on one dimension ,

k, it is called a “stochastic process ” . When the

dimensionality is two or more , as k ,L , it is called

a “random field” .

17
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3. What is the philosophy behind describing a random process

by state equations? The answer; it is difficult to deal with

random fields in which there is correlation between adjacent

points. Therefore, the main idea is to show how a correlated

field can be described as an output of a linear system which

is driven by white noise. So, instead of handling a

correlated field , one has to handle white noise and a linear

system. The last problem is well known from system theory .

Figure 4 illustrates the concept of modeling by the “ f i lter

response method” .

______________  LINEAR 
__________________________

INPUT IS 
FILTER 

OUTPUT IS THE GIVEN
WHITE NOISE CORRELATED FIELD

Fig. 4: Concept of “Modeling” a Random Field as an
Output of a Linear-Filter

4. Although this thesis mainly delas with discrete fields,

continuous models will be described also, in some cases.

5. In order to make this chapter “stand alone” for reading,

some background material was included in sections B, C.

6. Section D describes the “Filter Response Method” of

modeling a random process.

18
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7. Section E describes the one dimensional processes, and

Section F is its extension to two dimensions. The Markov-

Process is the key to the modeling procedure. It will be

shown that from the same starting point (the given auto—

correlation function) two models can be developed.

8. The modeling by the “Filter Response Method ” leads to

models that have the structure

M(k+l,L) A, 
~~~~~~~~~~ 

r M (k, z ) ~ 1
= .---

~

. I ~~~ 

._.... 

N(k,Z+l) A.~J 
N ( k , 2..) L ~ I

Roesser [12] described the properties of that structure and

section G is a summary of those properties.

9. Section H summarizes another method of linear modeling,

using optimal estimation theory (the orthogonality principle).

This method leads to different results than the filter response

method with the exception of one case.

10. So, two methods of modeling will be shown (sections F, H).

Section I is a summary of this chapter. It also compares

the two modeling methods.

19
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B. BACKGROUND MATERIAL :
TWO DIMENSIONAL OPERATIONS AND FILTERS

This section is a summary of two dimensional operations

as Fourier transformation, 2 transformation, two dimensional

f ilters , etc. Some of these operations are used in the next

sections.

1. Fourier Transformation -

Definition: given a function h(x ,y), the Fourier

transformation H (w
~~

w )  is

J U) ~fH ( W
x

l W
y

) = f f  h(x,y) e •e . dxdy

= T [h(x~Y)~ 2-1

and the inverse transform

:J w x j w y
h(x ,y)  = I x ”~y~~~ 

x e ~‘ .dw
~ &IJy 2-2

a

The two dimensional Fourier Transformation is mostly used in

spatial operations, and w~ ?Wy are called spatial frequencies.

The properties of the Fourier transformation are:

Linearity ~~ [a.f1(x,y) + b.f2 (x,y)1

= a.F
1(t~ ,w) +b .F2 (~u ,~j )

2—3

20



Scaling

rLf(a? 1 by)~ = 
~~~~~~~~~~~~~

(-
~~~~ 

, 
_
~

) 2-4

Shift Operation

-j((~J a+~ b)7 ~f(x-a,y-b)3 = e Y . F ( w , w )  2-5

Convolution

r ~f ( x iY ) * h ( x sY ) J  = F(W x i Wy ) •H(
~ x

iW y ) 2-6

Parsaval Theorem

I I f ( x , y ) . g *(x ,y )  dx dy = I !F(W xIWy)~
G*(Wx~Wy

)•dWxdwy
~ 2—7

Autocorrelation

I 2
— I f f( ~~,TJ) .f( ~ —x ,n—y )~ = JF(w

~ i w~
) I  2— 8

J

21
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Gradient

_ _ _ _ _  = 
~~~ ~~~~~~~~ ,w ) 2-93x J x x y

rf~
f x 1Y w F ( c~ ,~~~ 

) 2—105 ~~y x y

Inversion

r
~
r Lf(x ,y)~~ 

=

2— 11

= f(x,y)

Rotation

r[r~
f x

~Y~~ 
= f(-x,-y) 2-12

Equation 2-9 will be useful in the next sections and the

proof for this equation is given as follows:

-3w x -jwyr {af(x ~Y) l 
~f(x,y) •e •e ~

‘ dxdyI _
~~~~~

_
~~~

3W ~‘

~ ~f(x ,y) .e ’~ dx] e ~
‘ dy

_0) 1_00

22



Using integration by parts:

i~ [(f(xPY).e~~~~)L

1
-jW x 

J 
-j w y

+jo~i • !  f(x,y) • e X J •e ~~
‘ 

- dy

If f(x,y) = 0 at x = ±~~ , y =

_ _ _ _ _ _  = 
~~

W
x

• f 1f(x ,y ) .e~~~ X .e~~~~~ dy

= jW .F(w ,W )
x x y

Note: In the one dimensional case most equations appear with

“t” as the variable. In order to make the equations

in the two dimensional case similar to the one

dimensional case , the notations x, y, w~ , w~, will

be replaced by t1, t2, w1, w~

23
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2. Two Dimensional Z Transf ormation

Definit ion : Given a discrete field X (n1,n2), the

two dimensional z transformation is defined :

Z (x (n1,n 2
) } = X(z1,~~2) = x ( f l1, n

2
) .Z1~~

lZ2~~
2

1 2 2—13

An important property of the transformation which will be

used later is

if: .2 x(n1, n2)f = X(z 1,z2 ) 2—14

then:
2’ (x(n 1—l ,n2)) — z

1~~~X ( z 1,z
2

) 2—15

Z ix(n1,n2—l)~ = 
- -  

Z~~
1X(z 1,z2) 2—16

0) 0)

Proof: (x(n1,n2)} = ~ x (n1-1,n2) Z1
1.Z

2
2

= E x (m ,n2
).Z

1~~~~
U .Z

2
2

CD CD

1 -n
= E ~ x (m ,n2)~~Z1 ~

‘
~2

~~CD -CD
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= z1~~ 
• f f x (n1

,n2)~~Z1 Z2~~~

=

3. Pasponse of a Linear System

If h(t1,t2) is the “point spread function ” of a two

dimensional system , then the response to a given input x(t1,t2)

will be the two dimensional convolution:

0) CD

y(t1, t2) = f I h(t1—T1, t2—t 2)~~x(t1,t2)~ dT 2dt 1 
2—17

and the transfer function is defined :

Y(w ,W
H(W ,W ) = 

1 2 2—l8a1 2 X(c~1, w2)

In the discrete case , the convolution has the form:

0) CD

y ( k ,2~) = ~ h(n,m) .x(k—n ,R—m ) 2—19
—°° fl ~~~~~

where h(n,m) is the discrete “point spread function” and

the discrete transfer function :

Y(z1, z2)
H(z1,z2) — X(z1,z~) 

2—l8b

25 

- -—— . -- -~~~~~~~~ -—- - ---- --~ ~~~~~~~~~~— -. - ~~ -



4. Separable Functions

Definit ion:  f ( t 1, t 2 ) £s called “ separable ” if there

are two one-dimensional functions f 1( t ) ,  f 2 (t )  such as:

f(t1, t2) = f1(t1)~~f2 (t2)

Theorem

If: f(t1,t2) 
= f 1(t 1)~~f 2 (t 2 )

Then : F ( w 1, w 2 ) = F1(w 1)•F2 (W 2
) 2—20

—jw1t1where: F1(w 1) = / f1(t1)•e -dt 1
-0)

— 3w2t2F2 (w 2) = I f2 2 ’~~ .dt2

In the discrete case:

If: *(n11n2
) = ~ 1(n 1)•x2

(n2)

Then: Z1x n1,n 2 } = Z(x(n1
)}2(x(n2)} 2—21

-
. ~~ .- • - - - - -- • -

-
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C. BACKGROUN D MATERIAL :
TWO DIMENSIONAL LINEAR SYSTEMS W ITH RANDOM INPUTS

In this section expressions for the response of two

dimensional filters to random inputs are developed . It will

be shown that the expressions are very similar to the one

dimensional case. First, a brief review of analysis of

random signals (in two dimensions ) is introduced.

Given: A “brightness function” of a two dimensional field ,

x (t1, t2) [see fig. 5].

I I 

• X ( t r )
4 1 2
L_ x Is the Intensity at

point (t 1 t2 )

‘ p

t2

Fig. 5: The Two Dimensional Field

1. The probability that x(t1,t 2) lies in a finite range

a < x(t1,t2) < b at a point in the field , (t11 t2), is given

by the integral

b

Pr(a < ,~(t1,t2) < b) = I f1(x,t1,t2) . dx 2—22

a

27



is the “probability density function.”

2. The first moment is the expected value (or mean) and

is defined by the integral:

x(t1,t2) = E(x(t1,t2)} = / x~ f1(x,t1,t2
)~~dx

2—23

3. The second order moment (variance) of a point in the

field is:

Et~(
2(t1,t2

)} = x2(t,,t2) = 7x2.f1(x ,t1,t2
).dx

2—24

4. The autocorrelation function, between points (t1,t2) and

(t1’,t 2’) is defined as :

Rxx (t1~
t2i t1

1
~~
t2

1) = x(t11.t2) x(t
1~ ,t2

’)

= f !X ~x ’ ,f2
(x
1(t1,t~ ,x1’ (t1

’ ,t2’)) dxdx~ 
2-25

28



‘t i

.. X
I 

I I( t
1 

t 2
)

x C t 1 ? 2
)

1~~

t 2

Fig. 6: The Parameters That Take Part in
the Autocorrelation Equa tion

is the “ jo int  probabili ty density function” .

Fig. 6 shows the parameters that take part in the

autocorrelation equation.

5. Stationary Fields.

The assumption that the field is stationary means that

the statistics of a point in the field is not dependent

on the location of the point.

In this case the mean and variance have the form

Efx (t1,t 2)} = ~ / 
ECx2(t1,t2)} = a

3
2 2— 26

and the autocorre].ation function:

R,~~(t1—t 1,t 2—t 2’) = R
~~~

(-r
i~

-r
2
)

— . x ’ ~f2(x ,x ’,r1,t2)dx •dx ’ 2— 27

29
-
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Such a field is called (in the two dimensional case ) a

“Homogeneous Field.”

6. Ergodicity

A further simplifying assumption which is usually done

during the analysis of stationary signals is the ergodic

property . This hypothesis states that under certain con-

ditions , present in many cases , the statistical averaging

of x at a given point is equal to the spatial averaging

of all points . That means :

E(x ,~ ~ ., ) = x = ç x ) 2—28
‘ “

where by definition:

= 11rn 4 T T  _0)f 0)
I x ( t1, t 2 )~~dt 1 dt 2 2-29

T2~0)

<x)r is the spatial averaging.

The autocorrelation function will be:

R
~~

(r 1,r 2) = E ( x ( t 1, t2j x ( t 1+t 1, t 2 +T 2)} 2—30

— 

T1
CD
4.’rl~~ 2 

I f  x(t~~t2) 
X (t1

+t1,t2
+T
2)dt1dt2

T2~ 0)

30



7. Power Spectrum Density Function

In the study of random signals the concept of power

spectral density function takes place. For the purpose of

this review the spectral density of two dimensional fields

is defined as the two dimensional Fourier transofrmation

of the autocorrelation function. It is called P
~~~

(wi,w2 ) :

P
~~~

(w iiw 2) ~~
T {R

~~~~
(T i, T

2
) }

—jw1
t
1 j W

2

T

2
= f R~~~

(T i, T 2
) . e e .dT 1.dT 2 2—31

and the inverse transform gives the result:
I

j W
1~~T 1 ~~2~~ 2R ( r 1,T2) = 

_ C D  —CD 

P ( w 11~~2
).e •e .dw 1~dW 2

2—32

From the last expression , P
~~~

(W i? w2) gives the density of

mean square value of the variable over the spectrum of the

real frequencies.

8. Response Of A Linear System To Random Inputs

Given: A linear , two—dimensional linear filter

with a transfer function H (jw1,jW 2). The input to the

filter is a stationary process x(t1,t2) with an autocorrelation

function R
~x

(T i,T2).
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H 
- ~~

( t L t 2 )
1 ( J w ~ JW

2
) 

2
P
~~

(w 1 w 2
) I ‘ P

y Y
(w I w 2 ) P Xj H~

Fig. 7: Response Of A Filter To Random Input

Question: Find the autocorrelation of the output signal.
The answer will be presented in next theorems.

Theorem: The mean of the output is given by

y = . H(j w 1, jW 2
)~ 2—33

f:&) 1 0

~ 2~~

Proof :

y ( t 1, t2T E { f / x

= 

_ CD -0) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and because the process is stationary :

• E(x(t
1—c~1, t2—c~2

) } = Efx (t1,t2) 
} —

32



= h(c*1, ct2) dc~1
.dct2

= 
0 ) 0 ) 1 2 1 2

= I !h  l,~~2).e~~~
h 1  . e~~~~~~

2 . 
~~~ 1 

.da
2J~ 

w1 0

w2—0

= . H(j u 11jw 2
)

w1 0

w2 0

Q.E.D.

Theorem: The cross-spectra of x ,y is given by

~~
Pxy (CAil?W 2) = Pxx ( 1Ai i 1w 2) . 

H(j W 1, jw 2) 1 2 — 3 4

Proof:

R~~~tiit2) =

ECy (t
1
,t
2) x(t

1—
-r 1,t2- -r

2
) }

33
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CD CD

R~~,(t11r2) = EfX (t
1
—T1,t2—T2). I / x(t1—~x1,t2—c~2i~h(cx1,a2)da,da2}_0) -0)

CD CD

= Ef 1 1 x(t1—T 1,t 2—t 2
)~~x(t 1

--~111t2—cz2
)~~h(c~1,a2

) dc~1dc~ }-0) -CD

0) 0)

= I I
_0) -0) 

-

0) 0)

= I I R (t1
—a1,r 2—~2)-~h(~1,c~2) 

. da1 
. dct2-~~ -~~

Rxy (t l~
T2) = R (-r ,t2) * h ( r 1, T 2

) 2—35xx 1

The last expression is a convolution . Therefore , taking

the Fourier transform leads to:

P (w ,w 2) = P (~ ,w ) . H(jw1,jw2)xy 1 xx 1 2

Q . E . D .

Theorem: The spectral density of the output is given by :

~~ ~~~ ,w 2) = P~~~ (w 1~~W 2 ) . H ( j w1,j w 2
) •R* (j~ 1,jw2)yy 1

2—36
2/

— P,~~ (W 1, w2 ) l H ( j w
1,j w 2 ) J  I

34
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Proof:

R (-r ,T
2

) E(y(t
1
,t2

)~ y(t1-4--r 1,t2+-t 2
) }yy 1

CD 0)

= -  E {y(t
1+T11t2+-r

2
) . / / x (t 1—ci11t2—a2

) .h ( a
11c 2

) .dci1dci2
j-

-CD -CD

0 ) 0 )

xy 1 1= I I R (ci +~ ,ct
2

+T
2

) .h (ci1,cz2 ) .da1~da2

define: = _e
l = —e 2

th1 = —dO1 th2 = —dO 2

CD CD

= I I R,~ (t1
_
~19 T2_e2 )h ( ...e1,..e2 ) d01d02-CO

R (~- ,‘- ) = R (r ,T  ) * h ( — i 1, — -r 2 ) 2— 37yy 1 2 yX 1 2

Taking the Fourier transform of 2—37:

P (w ,w ) = P (w ,w2) H(—jw 1, —jw 2)yy 1 2 yx 1

But:

P (w ,W ) P . H ( j w 1, jw 2
)yx 1 2 xx

35



and:

P~~~(w 1~w2
) = P

~~~
(w l ,w 2) 

. H(jw11jw 2) 
.H (—jw 1,—jw 2)

= P
~~~

(W is W2) 
.H(jw 11 jw 2) 

.H*(jw 1,jw 2)

2

= P
~~~

(w i,W2) 
. H(jw 1,jw 2)

Q.E.D.

The Discrete Case:

In the discrete case , a stationary , two—dimensional

field has an autocorrelation function defined as :

R
~~~

(n,m) ~ E{x (k ,Z)x(k+n,Z+m)} 2-38

Equivalent to the power density function in the continuous

case , we define:

P
~~~

(z1, z2) ~ Z~R~~ (n ,m)} 2—39

Since it is known that the z transformation is related to

the Fourier transform by:

36
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Z -
~~ ~~~,- e

z~~ ‘- ~~~~~~~

It is , therefore , clear that af ter passing a random process

through a two—dimensional discrc~te filter , the statistics

of the output are :

P
~~~

(zi~
z2) = P

~~~
(Zi, Z2) . H ( z 1, z 2

) 2—40

TPyy~~ l, z2) = P
~~~

(zi,z2) 
. H ( z l, z 2 ) . H ( z l

_ 1, z 2
_ 1

) 1

2—41

The last two expressions can be proven exactly in the same

way as in the continuous case, by starting from the

discrete convolution.

9. Isotropic Fields

The homogeneous (stationary ) field was defined as

the case where the statistics of the field do not depend

on the location. If the statistics are not only independent

of the location, but also independent of the direction,

the field is called isotropic.

I

if —=- - — — —~~~~~~~~ — —— _— .——— z — .—~ - .~~~W U__. J



Example:

If:

cL
l

.T
l

R ( T 1, -r
2

) = e • e

the field is not isotropic. The correlation is greater in

the directions of the system axis, than in other directions.

But if:

1 2  2’
— I +T

xx Tl~
T2 = e

the field is isotropic. The correlation between two points

depends only on the distance between these two points and

does not depend on the direction.

D. BACKGROUND MATERIAL: THE CONCEPT OF MODELING BY
“FILTER RESPONSE METHOD” AND THE FACTORIZATION PROBLEM

1. Continuous , One Dimensional Case

Given: A covariance function of a process ,

Find: A linear system (differential equation model)

such as :

- when the input is white noise

- the out -
~ut has an autocorrelation function

R
~x

(t,T).

Fig. 8 defines the problem:
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A LINEAR SYSTEM
U ( t )  ~

( : A X + BU X ( t )

WHIT E NOISE IN FREQUENCY DOMAIN R ( t , r )  is given

Fig. 8: Definition of the Modeling Problem
in the Continuous Case

Solution:

First, the solution exists only if x(t) is

stationary, say :

R ( t , T )  =

In this case, by using Eq. 2-36 and by assuming that the

t ransfer  function of the required f i l t e r  is H ( j ” ) , the power

Spectral density of the output is:

Pxx (w )  = P
~u

(w) H (j w )  . H * ( j w )

u(t) is assumed to be white  noise, therefore:

Puu (W) 1 2-42

and:

~~given power
P (w) = H(jw) .H*(jW) = Ixx 

L 
spectrum

2—43

- - - - - — - - -

~~ 

_ _

3

_

~~

_ 

~~~~~~
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~~~~~~~
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In this problem P
~~~

(w) is given. Therefore , the solution

for the required filter is to find a function H(jw) that

satisfies Equation 2-43.

Such a solution exists for symmetric autocorrelation

functions (then P
~~~

(w) is a real function of w).

2. Discrete, One Dimensional Case.

In this case R
~~~

(n) is given .

It is required: to f ind a discrete f i lter , H(z),

so that when the input is white noise, the output will

have the given autocorrelation function Rxy (fl)•

Here , the solution is by using the equation :

P~~~
( z) = P~~~

( z) H ( z ) . H ( Z ’) .

If the input is white noise then:

P
~~~

(z) = 1

Therefore the solution for the required filter is to find

a function H(z) that satisfies:

P ( w) = H ( z )  . H(z 1)

where P
~~~

(w) is given in our problem .

40
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Fig. 9: The Modeling Problem in
the Discrete Case

2. The Two-Dimensional Case

In the two dimensional cas e the extension of this

method requires factoring P
~~~

(w 1~~
i2) to

—l —land P
~~~

(z1,z2) to H(z1,z2)•H(z1 , z2 ) .  The problem is

that there is no factorization technique in the two-

dimensional case. Therefore this modeling method is

limited to separable autocorrelation functions. Section

H shows another method of modeling (optimal estimation

approach) that does not suffer from this limitation , but

has other disadvantages.

E. BACKGROUND MATERIAL: MODELING OF ONE DIMENSIONAL RANDOM
PROCESSES (BY “FILTER RESPONSE METHOD”)

There is a special class of stationary random processes ,

which is very common. The basic assumption of these random

processes is that the correlation between two points decreases

exponentially with respect to the distance between the two

points.

This section considers the one-dimensional case. The

next section will be an extension of these processes to the

two dimensional fields.

41 
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1. Markov Process (continuous)

This is a stationary random process with an

autocorrelation function :

R (-t ) = ~
2 e

_ ci• f t - I + m2 2—44

m is the mean of the process , and will be taken zero without

any loss of generality:

[ R ( r )  = ~
2 . e

_
!Thl 2—45

and the power spectrum density function

P ( w )  = 
~~~

R
~~

(r) ~ = 
2; ~ • a  

J 
2—46

Fig. 10 is a plot of R
~~~

(r) and

~:=~ _ _ _ _ _ _  ~~~
2 ~

Fig. 10: Markov Process

42
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Theorem: The process in 2-45 can be generated by passing

white noise through a simple filter. The spectral density

of the white noise is :

N = 2 cia2
0

and the f ilter is :

H(jw) = ______

See Fig. 11.

Fig. 11: The Linear System , H ( j w ) ,  for
Generating First—Order , One-
Dimensional Markov Process

Proof :

Using 2.36 for one dimensional case:

rspectral density~
fat the filter = R

~~~
(w) =

L output _j

43
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Espectral densityl 2
fat the filter = R~~~(w) H (jw) I
L output 

J

— 2a2 . 
1 1

— 

a + j~u

22~~~ c i . a
= 2 2ci + u ~

n
= 

jgiven spectral density of

[the Markov Process J

Q.E.D.

The filter in Fig. 11 can be represented by a differential

equation, which will be associated with the process :

L x(t) = - ci~x(t) + u(t) 
] 

2-47

where u(t) is white noise with autocorrelation function

[ R~~ (t) = 2 • a2 . cid (r) 2—48

If a restriction is added, that the probabili ty density

function of u (t) is Gaussian , the process is called Gauss

Markov process’ and is completely described by the auto—

correlation function. In this case x(t) is also Gaussian.
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Another term which is used in connection with the

Markov Process is the “correlation time ” (~~
- point). This

time is 1/ci.

2. Markov Sequence (Discrete)

Define :

e~~
T 

~ p 2—49

T n n = 0,1,2, . . . 2—50

The autocorrelation w ill exist only for discrete points :

R x (fl) = a2 n = 0 ,1,2, . . . 2—51

and taking the z transform of 2-51:

Z Xx ( n) } = ~
2 

-l 2-52

L ( l — p - z  )~~~( l — p • z

Theorem: The discrete process of Eq. 2-51 can be generated

by passing white noise through a discrete filter. The

“d iscrete spectral density” P (z) of the noise is a2 (l— p 2).

Fig. 12 shows the filter:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIg. 12: Discrete Filter — The First Order Markov Sequence

- — - - -

~~~~~

- - - — _ _ ____ _
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I
Proof:

Using 2—41 for one dimensional case:

z transform o~ -l- the f i l ter = R__ (Z)•H(z).H (z )
output

= ~2 (j - 
~~~ 

1 
-l 

1

1— p z  1 —  pz

t ransform of the given
= L Markov Process

Q.E.D.

The di fference equation that describes the filter is :

x(k÷l) = p .X (k) + W (k+l)

It is convenient to def ine

U(k) w(k+l)

U (k) is also white noise with the same statistics as w (k),

• From the last definition it follows:

46



a2. (1- P
2) if n = 0

R (n ) = 2—53

0 if n~~~ O

[ x (k + l )  = p~ x ( k )  + u(k)1 2-54

The meaning of equation 2-54 is that the value x(k) depends

only on the value of the last step in the past, x(k-l).

3. The “Band-Limited”, Continuous Case

Another typical autocorrelation function is:

R (T) = a2 e~~~ h I cos (w01) 2—55

The spectral der.3ity will be:

= ;~
{R

~~~~
(T)} = 

(w_ w
:)
2 
+ 

~~~ 

] 2-56

This is the case of a “band limited” signal. The process

x ( t )  is limited in a frequency band that is seen in f ig .  13.
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Fig. 13: “Band-Limited” Markov Process

In this thesis, the interest is mainly in discrete cases.

The continuous case is given here because one can easily see

in the continuous case the frequency band of the random

signal and to understand that the autocorrelation function

in 2-55 represents an important class of random signals.

In order to make a complete summary, the dynamic equations

or this case are :

0 1 x1(t) 1

= + x ( t )  2— 57
(t )  _ 8 2 —2a x 2 

(t )  8 — 2ci

-I

48
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[8
2 4 

~
2 +~~~~~

J 
2—58

[R (r) = 2cia 2
~~(r) 1 2— 59

Now, the discrete case will be discussed in detail.

4. The “Band-Limited” Discrete Case

By using the definitions of 2-49, 2-50:

- T  Ae = p

-r ~~T • n n = O , l ,2 , . . .

and define :

w0 •T  ~ 0 2-60

Equations 2-55 has the form:

I R~~ (n) = a
2 p~~~ cos ( O • n )  n = 0,1,2,. 

2—61

and the Z transform of 2-61:

49



P (z) = Z(R
~~~

(n}

— 
(1— [—Z .p cos 0 + (1 + p 2) — Z~~ • cos O]a2 2—62— 

(1 — 2 p Z  cos 0 + p
2Z2) (1 — 2pZ’~~ cos 0 + p2z 2) 

-

In order to f ind a set of di f ferent equations that will

describe the g iven autocorrelation function one has to use

the procedure that is described in section D.

The f i r s t  step is to f ind a factored expression for

P (z):xx

P ( z) = P1
( z)  P1

(z~~ )

Therefore P (z ) is assumed to have the form :

P (z) = ~~ (1 — ) a 
2 —~~~~~XX l— 2pz ~ cos 0 + p z

• ( a z + b 
2 2~ 

2—62a
l — 2 p z  cos 0 + p z

The comparison of 2-62 to 2-62a leads to a pair of algebraic

equations:

a2 + b 2 
=

2—63

a b  — —p cos 0

50 
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and the solution for a ,b:

La = . (51/2 + ~l/2)

2—64

b = . (5 1/2 — ~1/2)

where :

= i - ~~~~~~~~~~ e + ~2]
2—65

= 1 + p. cos 8 +

Next, by using 2-41, one can see that the random

signal discussed here can be generated by passing white noise

through a discrete f i lter :

aZ~~+ b X (z)
WHIT E NOISE I - 2 p Z ~~~~~ i. 

~~
2 . 2 X has the given auto corre Iatio~~

____________________________ 
funct ion of e ~~. 26 1

Fig. 14: Filter for One-Dimensional “Band Pass” Process

where

f ( i — ~~~~ if n = 0

R~~~(n )  =

L 0 i f n ~~~ O

51
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It is convenient to def ine :

-

W(z) = Z~~ U(z) 2—66a

u~k) is also white noise with the same autocorrelation

function.

R (n) = 

~2~~z :: :; :~
and the f i l t e r  will be:

X(z) 
= 

a Z~
1 
+ b

W(z) 
— 2pZ~~ cos8 + p 2Z 2

define

X1
(z) = —p 2Z~~ X2 (z) 

-

— 
W( z)

l—Z 2pcosO + p Z

From the last definition

x
1

(k )  = — p 2X2 (k—1)

x 2 (k )  = x1(k —l )  + 2pcos 6.x2(k—l) + u ( k — l )
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• In matrix form:

t x 1(k )  0 
!

(k l) 0

= + I 4 (k~~~l) 2—67

x 2 (k )  1 2p cos 0 x 2 ( k — l )  1

and :

X(z) = X
2

( z )  (a~~z~~~ + b)

x(k) = a•~~2 (k-l) + b x 2 ( k )

= —p 2 a~~ 1(k) + b~~x2 (k)

x1 (k)

x (k )  = (—p 2.a b) 2—68

x 2 (k )

An Approximated Model

Using the following procedure one can derive an approxi-

mated model , which is simpler than the previous model.

Define :

(aZ ~~ + b) W(z) ~ 
Z
~~~

Ua(z)
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From the last definition :

U a
(k _ l )  = b~W(k) + a W (k—1)

The autocorrela tion of u
a(k) is

r ~~~~~~~ (l—p 2) if n = 0

R ua ua
( f l )  = E (U (k)  .U (k+ l)  } = ~~~~ pcos 0) (l-p 2) if n = 1 269

0 i f n > 2

Because R. (1) ~ 0, u is not white noise. Actually, u
uaua a —  a

is a linear combination of white noises .

Now , an approxima tion is done

R (1) = 0
UaUa

In this case:

1(1 + (1 - p2)~~ if n = 0

R (n) = ‘S 2-70

L 0 i f n ~~~ 0

and now ua(n) is white noise.

Figure 15 shows the correct and the approximated

noise.
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- ( l + p 2 ) ( I — ,o2 )
4 1

~~~~~~~~~~~ 

( I-p
2

)

x x  )( )( 
~~~~

i )( )( x x
-3 -2 -I 0 I 2 3 n - -I  0 I 2 n

CORRECT APPROXIMATED
AUTOCORRELAT ION AUTOCORRELAT ION

Fig. 15: The Autocorrelation of U , R
~ ua a

The filter that generates the “band limited ” random

signal is (compare with 2-66)

Z 1
~u (z)

X(z) = 1 
a 

2 — 2
1 — 2 p Z  cos 8 + p Z

Define :

X (k) ~

X (k) X (k)

--- -

~~~~~~~~~ 

T:::~
= : 0] [:::::j 

~



X (k) = [o  

x~~(k) 
2-72

x 2 (k )~
J

This model is simpler than the one previously described .

5. Second Order Markov Process

In the continuous case, the process is defined by

= a~~ 
. e~~~ h I (1 + c i f i f )

define :

-ciT Ae = p

I = n T

ciT = Znp = 0

It leads to the discrete autocorrelation function :

R~~ (n) a2p I~~~(1 + O l n i )]

The z transform of this process is

P
~~~

(z) = Z-R
~~

(n) = P1
(z) + P2(z)

where:
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p — 
—a2Op [4p — (Z + Z 1) (1 + p2)

(l— p Z ) (1—p Z)

= 
a2 (1— p 2)

(l—pZ )(1—pZ)

This process can be generated by a combination of two filters ,

that are forced by two uncorrelated white noises :

:~ ~: ~~~~~ 
X = X ( k )  + X

b 
( K )

Fig. 16: Filter to Generate Second
Order Markov Process

xa(k) and xb (k) are uncorrelated (because u 1(k) u2(k) are

uncorrelated). Therefore the spectrum of x (k) is the sum

of the spectrums of Xa Oo) and xb (k).

Now : P1(z) can be written :

— ~th2Op (aZ~~ — b) (aZ — b)

(].— p Z  ) ( l — p Z )

where :

1 1
a2 + b 2 = 4 p  a~~~~~(~

2 +5 2) c = 4 p + l + p 2

ab = 1 +p 2 

- 
b ~ (~~~-5~~) 4 p - l - p 2 

-
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the f i lter H
1
(z) is:

—1 X (z)
H ’ ’  — 

(aZ — b )  — a
l~~

z1 — 

(l—pZ 1
~)
2 — 

U1
(z )

(.

- 
—e pa if m = 0

/
R (m) =ulul

0 if m~~~ 0

the state variable expression that follows

0 -p 2 x1(k+ 1) 0 l

= + ~(k—1)

x2(k) 1 2p x2 (k—l)

x1(k )
x a ( k)  = (—p 2a -b)

x 2 (k )

and for H2(z):

1 Xb (z)
= 

1 — pZ 1 = W2 ( z )

define :

u 2 (k )  = W
2(k+l)
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then :

- 
(G

2(l_ P 2) if m = 0

R (m)-u2u2
0 if m~~~ 0

and

= ~X 3 (k )  + u2
(k)

Xb O~
) = x 3 (k )

The combination of x , xa b

[x1(k o -p 2 0 X1(k-l) 0 0

Fu1(k)1x2 (k) = 1 2p 0 . X
2 (k—l) + 1 0

L~2~
1
~J

— 

x3 (k) L° 0 X
3 (k—l) 0

x,L (k~l)

x(k) = [_p 2a —b 1] . X
2(k-1)

x3 (k 1)

P4 
. 6. Conclusions

1) It was shown in this section that some stochastic

processes can be generated by passing white noise (or a
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combination of white noises) through a linear filter of

order P.

2) Also it is seen that the order P is a f in ite

number (in the f i r st two examples P was 1, in the last

two examples P was 2] .

3) P1, the order of the process , tells the number

of “neighbors ” near the point k , upon which the value X (k )

depend s.

F. STATE VARIABLE MODELING OF TWO DIMENSIONAL FIELDS BY
“FILTER RESPONSE METHOD”

1. Introduction

The starting poin t of the model ing procedure will

be an extension of the Markov Process to a two dimensional

case.

It is emphasized that the technique used in this

section is good only for separable autocorrelation functions .

In Section H another modeling method which is valid for

any homogeneous random field will be discussed. [A compari-

son between the two methods is given in Section II.

2. Model For First Order, Continuous, Markov Process

Given a two dimensional field , with an autocorrelation

function :

2 ci
1

fT
1 f — ct2 IT 2 f

= a e e 2—73

60

- -~~~~~~~~Z



is the correlation factor in the t
1 
direction

is the correlation factor in the t2 direction .

~~‘
t 1

t~ t~~)

C t
1

t
2

)

‘ P
t z -

Fig. 17: System Coordinates For
The Field in 2-73

The power spectral density function (using 2—46 , 2-20):

(2ct ) (2ct )a2
P,~~~~ 1,w 2

) = 2 2 2 2 2—74

~~~ 
+ c i

1 
) ( w ~ +ci

2

This au tocorrela tion function might be genera ted by passing

white noise through a two dimensional filter:

OP 9.
Fig. 18: Generation of First Order , Two

Dimensional , Markov Process
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The proof is by using 2-36. One can see that the spectral

density at the filter-output is the same as in 2-74.

Therefore:

X(w1, w2) 
— _____________________________ — 

+ ci
i

) (j w 2 + ci2)

Define:

M(w1, w2) = 

2~~~ 2

= X(w1
,~~2)

Then :

d M( t 1, t
2)

dt2 
= —ci2M (t1,t2) + ‘.‘(t1, t2)

M (w1,w2)N(w1, w2) = 
ci
] 
+jw1

dN(t1, t2)
at 1 

= —ct
1

N ( t 1, t2) + M(t1,t2)

and in matrix form:
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dN(t ,t I
dt1 

2 _ O( +1 N(t11 t2
) 0

= - - -— - — - - + . U(t 1,t 2
)

dM ( t  ,t )
dt2 

2 
°
~2 

M(t1, t2)

-J
2—75

N(t11 t2)

X(t1,t2
) = (1 0 )

• M(t1,t2)

2—76

is white noise:

J R~~ Cr ) = 4a1a2a
2d(r 1)5(t 2) 1 2-77

3. Model For First Order, Discrete, Markov Sequence

Define :

= e~~~

~~2Te
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= 2.T 9 = 0,1,2,

t
2 

= kT k = 0,1,2,

= nT n = 0,1,2,

12 = mT m = 0, 1,2,

Eq. 2-73 has now the form:

L R xx~
,m) = a2 ~~i n I ~~Im i n = ~:~: :::1

2—78

and the two dimensional z transformation of 2-78:

a2(1 — 
2 ) (1 —

Pxx (Z 1I Z 2 ) = 

(1- p z 1) (1 - p1z1) (1- p2z~ 
) ( 1 -  p

2z2)

2—79

This discrete autocorrelation function can be generated by

passing white noise through a two—dimensional discrete

f i lter :
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I 2~~~~~ 1—2 f—I I ~+I
I R I  I I I I

I - .  + +... + + + + +

~~~~

- .  1- 
~~~~~~~~~~~~~~~ 

1- •!
~ 

+ +

k - i - •  + + + + + + +

k~~ + + + + + + +

k+ I - •  + + + + + + +

k SAMPL E INTERVAL.

x

( k + m , +n )

R (n,m) - E I X  X
‘ (11,1) (k-+ m ,L+ n)

k

Fig. 19: The Discrete Area
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Fig. 20: The Filter to Create First Order ,
Two Dimensional, Markov Field

The proof is , again , by using 2—41. One can see that
P

~~~
(z i,z

2
) at the output of the filter will be as ~n 2—79.

The filter expression is, therefore :

X(z11 z2) 
— 1.

W(z1,~~T 
— 

—3. —l(1— p  )(1—p
2

It is convenient to define:

W(z1,z2) ~ Z1~
l Z2

l U(z1,z2)

and the f il ter has not the form

X(z11 z2) Z1 Z2
1

U(i ,Z~J 1— ~ 
—l 

— ~ 
-I—— 2—80

1 “l~~ 2 ~2

One can continue in two directions:
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Direction 1: (Model 1)

From 2—80: -
- 

-

x ( z 1, z 2 )~ [1- z~~
1p 1 

— 

~~~~~~ + z1
1
z2

1p
1
p~~] = z1~~z2~~ .U(z1,z2)

and a difference equation can be wri tten :

~~ (k+l,~ +l) = p~ x~ C+l ,Z)-p 1
p
2x(k,)~~ +~~~x(k~~ +l) +x (k,Z)~~ 2—81

fa
2(l_ p

1
2)(1_ p

2
2) if n=0 and m=0

R~~,(n ,m) =

0 if n�0 ~~~‘ m~0

2—82

The point k+1,~ +1 is connected to its three nearest neighbors

left  and above :

k+I ,f +I

Fig. 21: The Neighbors that are Connected
to Point k+l ,Q+l
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Direction 2: (Model 2)

Define

Z 1
1 U(z1, z2)N(z1,z2) = — l 2—83

1 — p
1

M(z1,z2
) = X ( z 1, z 2 ) 2 — 8 4

From 2-83

N ( z 1, z 2 ) = Z 1~~~p 1M ( z 1, z 2 ) + Z1
’1 tJ(z1

,z2)

2—85

N ( k , 2~) = p 1N1(k , - ~— 1) + u(k,~ —1)

Note: from Eq. 2-78 it is obvious that z 2 corresponds to

the k direction and z 1 corresponds to the 2~- direction.

Substituting 2—83 , 2—84  into 2—80:

z 2
1N ( z 1, z 2 )

M ( z 1, z 2 ) = 
—l1 — Z 2 ~2

M (z1, z2) = z2 p
2

M ( z 1, z 2
) + 2 2 N ( z 11 Z 2 )

M ( k , 2 )  = p
2M (k—l ,L) + N ( k— l , Z )  2 — 8 6

-~~~~~ ~~~~~~~~~~~ - - - - - .~~~~~~~ _ -

~~~~~~~~~~~~

- ~-~-~ - ~~~~~~~~~~- - - -  ~~~~-



By changing indices of 2-85, 2-86 one can write these two

equations in a state vector form

- 

M(k+l,~~) p2 1 M (k,~~) 0

= 

- 

+ . U(k , Z )

N(k,Z+1) 0 p1 j  
N(k,2) 1

2—87

M(k,~~)

= ( 1 0 ) • 2—88

L N(k,Z)

By comparison 2—87 , 2—88 , to 2—81:

M ( k , L )  = ) (( k , 9.~~) 
2—89

~~(k,L) = X(k+l,2) — p 2~X(k ,
Q) 2— 90

It is obvious that model 1 and model 2 describe the same

field .

An interesting property of this model :

[ E C M ( k , L ) N ( i ,

~~~

) = oJ

for any k , L , i , j .
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Proof:

E(M(k ,L)N(i,j)} = ECx (k,2)(x (i+l,j)—p 2 x(i,j)]}

= E~x(k,t)(p 2x(i,j)+u(i ,j)—p 2x(i ,j)]}

u(i ,j) is white noise and therefore it is uncorrelated to

x ( k , L ) .  Therefore :

E(M(k ,Z)N(i,j)} 0.

Q.E.D.

4. Model For “Band Limited ”, Discrete Case

Equivalently to the previous discussion, the two—

dimensional, “band limited.” discrete Markov Process is

defined by the autocorrelation function :

2 m l  I n = 0 ,1,2,

L R ( n ,m) = r~ [P~ cos(81
n)](p2 

m cos (e2m)J m = 0 ,1,2,

2—91

The z transform of this autocorrelation function :

2 2 2 
_________P

~~~
(zi, z2) a (1 — (1— p2 B(z1, z2) 

2—92
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where

A(z 11z2) = (—z 1cos0 l+(l
~~l

) —z1~~cos81] [—z2as02+(l+p2
2)—z2~~cos02]

2—93

B(z1,z2) = [(1—2p 1z1cosO1+p1
2z1

2) (1—2p1z1~~cos01+p
2z1

2)]

((1—2p 2z2cos0 2+p2
2z2

2) (1—2p 2z2~~cos02+p2
2z2

2
)J

2— 94

A(z1, z2) can be written in a form :

A(z1,z2) = [(a
1z1~~+b1) (a2z2

+b1)] [(a2z2~~+b2) (a2z2+b2)] 2—95

where :

a3.
2 
+ b1

2 
= 1 + p

~
2 2—96a

a2
2 
+ b2

2 
= 3. + 2— 96b

a1b1 
= — p 1cos 81 2—96c

a2b2 = — p 2cos0 2 2— 96d

7]. 

- -~~~~~ -- - - ---- ~~— -  .- - - 
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The solution for the a’s and b ’s:

— l~~~ l/2 ~~
l/2a1 

— 

~~
‘
~l 

+ 1

_ 1 1/ 2 ~~l/2a2 
— 

~~~~ 
+ 2

2—97

b — 
1(5 1/2 ~ 1/2)1~~~~~~~~ 1 ~~~1

— 1~~~ l/2 ~~1/22 — 
~~~~~ 2 

— 

2

where :

1 — p1cos91 + p1
2

= — 

~~~~~~~ 
+

2—98
2

= 1 + o1cos 01 + p
1

C
2 

— 1 + p2cos82 + p2
2

Now: This random process can be generated by passing white

noise through a discrete filter of the form:
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X (Z 1 Z.)
( 1 - 2  p 1 Z1

1 COS 9 ~
. p 2 z 2 ) ( I 2 p 2 Z~ COS 92 + p2 Z 2)

Fig. 22: Filter to generate “Band Pass ” random field.

where :

f~~i — p
1
2) (1 — p

2
2) if n = 0 and m = 0

R~~,(n ,m) = ( 2 — 9 9
- 1 

i f n ~~~ 0 o r m � 0

it is convenient to define :

W(z1, z2) = z
1
1
~ z2~~ U(z)

u(k,2.) is also white noise with the same statistics as w(k,~~).

[~~ (1 _ p 2) ( l _ p 2)
R (n,m) = (  1

L 0 , i f n ~~~ 0o r

2—100
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the f i l ter  has the form:

— 

(a1z1~~ + b1) (a2z2~~ + b2) z1~~ z2~~~ tJ (z1,z 2)X ( z 1, z 2 — 

(1— 2p1
z1~~cos 81+p1

2z1
2)(1— 2p2z2~~~ s 02

+p2z2~~)

2—id

Now the following definit ions are done :

N 1(z 1, z 2 ) ~ — p 1
2
~~z 1~~~~N 2 (z 1, z 2 )

A z 1.U(z ,z )
N2

(z 1,z
2

) = 1 
1 

1 2 
2 —21 — 2p

1z1 cos Oi + p
1 z1

X1cz1, z2) 
A (a1z1~ + b1)W2(z1, z2)

From the last three definitions one can write a set of

difference equations:

N
3.

(k , L) 0 ~p
2 N1(k,L-l) 0 

-

= + •u ( k , 2— l)

N2(k,Q) 1 2p 1cos 8 N2(k,~.—l) 1

2—102
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x1(k,
t) = — p 1

2
~ a1N 1(k , Z )  + b1N2(k,Z) 2—103

Now , other definitions are done:

M1(z1,z2
) = —p

2
2-- z 2

1
~M2 (z1,z2

)

z 
— 

X (z ,z
z ,z —

1 — 272 z2 .cos 9 
~~~~ ~2

From these definitions it follows:

X(z1, z2) = (a2~ z2~~ + b2) M2(z1
,z2) 2—104

0 —p 2
2 M1(k—l ,~~) 0

+ .x 1(k—l , 2.)

M2 (k , L)  I 2p 2cos 0 2 M 2 (k— 1,~~) 1

2—105

x (k ,L) = —p 2
2 a2 M1(k,L) + b2~ M2

(k,t) 2—104a
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Equations 2-102, 2-103 , 2-105 can be written together:

M.
1
(k+l,~) 0 ~P2

2 0 0 M1(k,1)

M
2
(k+l,L) 1 2p2cos 02 0 0 M

2

(k , 94

N1
(k,2+l) 0 0 0 —p1

2 N1
(k,L)

- 

N2(k,9+1) 0 0 1 2p
1~~s 01 N2(k,

1)

‘
0

1 
- 

0

+ . x~(k~9) + • u(k,2)

0 0

0 1
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Using 2—103

M
~

(k+l
~~

) 0 _p 2 0 M1~(k~~)

M2 (k+l,~ ) 1 2p2cxs 02 —o1
2a1 b

1 
M2(k,1) 

+

N1(k ,L+l) 0 0 0 —p
1

2 N1(k ,9) 0

- 

N
2

(k ,Z+l) 
•
0 0 1 2p

1cos Gij N2 (k ,~ ) I

2—106

MODEL

3

and using 2—104a:

M
1

(k ,-Q )

2 —I M2(k,~.)
x(k,L) [—°2 ~a2 b2 

0 OJ - —— —- - .  2—107

N
1

(k ,L )

N 2 (k , t )
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Approximated Model

One can derive for the “ band limi ted” case an approximated

model , which has a simpler structure. The starting point is,

again , 2—1 01 .

Define : 
-

ua(zii z2) = (a1z1~~ + b1) (a2z2~~ + b2) u(z1,z2) 2—108

From eq. (2-87) one can see that U
a
(k
~
Z) is the noise-

input to the filter that creates the “band limi ted” random

field. Now , what are the statistics of Ua (k
~~R ) ?  Equation

2- -“
P

(2—108 ) tells us that u(k ,2~) is a linear combination of

white noises:

ua(k,L) = a1a2u (k— l,9 — 1) + b
1a2u(k—1

,,~) + a1b2
u(k,2~—l) + b1b2

u(k,i)

2—109

Using eq. (2 -108) ,  together with the definitions of the a’s

and b’ s in eq. ( 2 - 9 6 ) ,  the autocorrelation of U
a
(k
~

R
~
) can be

calculated .

• (1+~~~2) (1+p2
2) (l-p1

2) (l-p2
2) if m = 0 and n = o

R = (anurl,er that is not zero) i f m < l a n d n < 1uu (n,m) —a a

L 
0 ifm> ]. Q r f l > l

2—110
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I
For example, the calculation for R 

~ 
(0,0) is shown:

Ua a

R ( O ,O) = E{u 2(k,2~)}

= E (a1a2)
2 
+ b1a2

2 
+ a1b2

2 
+ b1b2

2 
. [(l—p1

2) 1—p2
2

.

= (a1
2 +b1

2) (a2
2 +b2

2) (1—p 1
2) (l—p 2

2)

= (1—p
1
2) (l+p2

2) (l— p
1
2) (1—p 2

2) 2—Ill

Here is the place to make an approximation : One can see that

R is not white noise, because R 
~ 

(n,m) ~ 0 when n or m
a a a a  -

are equal to one. Now, arbitrarily , it is decided to let

this value be zero(for n or m equal one). In that case U
a ~~~~~~

white noise:

[(l+p1
2) (l+p2

2) (1-p1
2) (1_ p2

2 ) if n = 0 ai~ m = 0

u (n,m) = 2 112
a a  L 0 / i f n~~~0 or m~~~0

The filter to create the random field will be:

X(z1,z2) a 
-l 

z1’z2 ’.Ua (z iiz 2 ) 
-1 2 -2 2—113

(l—2p1z1 cog 01+ p1 z1 ) - ( l—2p 2z2 cos 82 + p2 z2 )
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Comparing 2-113 with 2— 101 , one can write for 2-113 a state

variable model that will be similar to eq. 2-106:

Def ine:

N1
(z1,z2

) = —p
1
2’z 1

1
~N2 (z11 z2)

—1 -z1 U (z,,z
~ , — ~. a

— 1 2 21 — 2p 1z1 ~c~Ds 8~ + p2 ~~~

M1(z1, z2) = p
2 z2 M2 1 , z2)

z 1
~N (z ,z

2 Z11~~Z

2 

— 

—l 2 —21 — 2p 2z2 cos 02 
+ p

2 
•z2

From these definitions it follows:

2—114

M1(k+l ,2.) 0 — P 2
2 I 0 1 M~(k~Z) 0

M2(k+l,9.) 1. 2P~cos 
~2 

‘ 0 0 M2(k,~ ) 0 l’tOEL

- = - - - = ‘u (k ,~ )

N1(k,
2+l) 0 0 0 —01

2 N1(k,
Z) ~ -

N2(k,2+1) 0 0 1 2(’
3cos 0~ N2 (k ,~~ 0

~ (k ,

x (k ,L) I 0 1 : 0 0 . 2 115
N1(k ,~ )

N2(k,~)
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By comparing the difference equation that follows from 2-113

to the structure of 2—114, 2-115, it is found :

M2(k,9.) = x ( k ,~~)

N 2 (k , 9 . )  = x(k,1.+1) — 2p
2
.cos 0

2~
x(k ,Z ) +

M1
(k,2.) = —p 2

2.x (k—l ,Q~)

N1(k , Z) = p1
2
~~~~c ,U — 2p2 cos 02~ x(k,~~—1) + p2•x(k ,Z—2)

5. Model for Second Order Markov Process

The extension of the one dimensional case to the two

dimensional case is:

R ( n ,m) = p1
IfI (1 + e1t n m ) ~2

Im t (1 + 82 1m 1 )

and following very similar procedures to all previous cases ,

the state space model in this case has the form :
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M~(k+1.Z) 
~~2 0 0 0 0

M2(k+1,1) I 2p
2 

0 Lp
1
2
a1 b1 0 M2

(k,L)

— 

0 0 f~ 0 0 1 M3
(k,2,)

N1(k,2.+l) 0 0 0 0 —p1
2 0 N

1
(k ,Z)

N2(k,2.+l) 0 0 0 1 2p1 0 N2(k,L)

N3(k,Z+l) 0 0 0 0 0 p
1 

N3
(k,2,)

0 0

0 0

0 0 u1
(k,Z)

+

0 0 u2(k,9.)

1 0

0 1

M1(k,
2~)

M2(k,2.)

M3
(k,Z)

z(k,Z) a —p2
2
~a2 —b2 1 0 0 0

N1(k , L)

N2 (k , 2 )

N3 (k , 2.)
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= + 1 + p
1
2 a1 = 4 (c 1~ +

£ 2 = 4p2 + 1 + P2 a2 ~ ~~2 
+

5 3. = 4p 1 - 1 - p1
2 b1 = 4 (c 1~ - 51

2)

= 
~~~~ 

— - P2
2 b2 

= 
~~~ (c

2~ 
-

0102
p
1
p
2a
2 if m = n = 0

Ru u ( m n) =

- 
0 i f m ~~~ 0 or n~~~ 0

f 
(l—p 1

2) (1-p2
2)a2 if m n = 0

R (m,n) =
u2u2 0 i f n~~~ 0 or m~~~ 0

G. THE STATE SPACE STRUCTURE

1. Introduction

Section F showed that one can arrive at a Discrete—

Space—Model for linear Image Processing, that has the form:
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M(k+ 1 ,2.) A
1 

A
2 

M(k,9.) B1

= . - - - - ~~~- - -. - , -  + -— . u (k,9~.)

N ( k , Z+1 A3 A4 N ( k , .Q~) B2

M(k,2~)

x (k,Z) = jC 1 c2j

where :

An integer valued vertical coordinates

£: An integer valued horizontal coordinates

M: A vector which conveys information vertically

N: A vector which conveys information horizontally

u : A vector that acts as an input

X: A vector that acts as an output.

A1, A2, A3, B1, B2 , C1, C2 are matrices of appropriate

dimensions . Boundary conditions N(k,0), M(0 ,-Q ) are also

inputs. u ( k ,~~) is specified externally.

This section will summarize the properties of the State—

Space model. The discussion is based on Ref .  £ 12] .
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2. Realization of a Discrete Filter By The State
Space Structure

The following realization result has been demonstrated :

Given an arbitrary two dimensional digital filter whose 2-D

z transfer function is:

— 

n(z1,z2) 2—117H ( z 1, z 2 ) — _____________________________________

+ a10
.Z
1
m .Z + a~~

then matrices A1, A2, A3, A4 and vectors £~~, B2 exist with

dimensions A
1 

— mxn, A2 — mxn, A3 — nxm, A4 — nxn, 33. — mxl ,
B2 

- nxl such that Eq. 2-117 may be put into the form of

Eq. 2—116.

In addition , the following canonical form for Eq.

2-116 has been developed: If the denominator d ( z 1, z 2 ) of

Eq. 2—117 factors as follows (such a factorization is

denoted “doubly factorable ’9:

d (z 1,z 2
) = d1

1(z 1)~~d2
1(z 2 ) + d1

2 (z1)d 2
2(z2)

then the canonical form for the A
~ 

(i = 1,.. .4) of Eq.

2—116 is:
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0 0 0 ... 0 —a 1

1 0 0 ... 0 —a2

O 1 0 . . 0 —a 3
A
1 

=

O 0 0 ... 1

0 0 0

0 0 0 —b2

O 0 0

A2 
=

0 0

0 0 0 —C l

0 0 0 —C
2

O 0 0 C 3
A
3 

=

0 0 0

0 0 0 • . .  0

1 0 0 • . .  0 —d2

0 1 0 ...~~- -- 0

A4 
a :

0 0 ... 1 —d
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where the coefficients a., ~~~ c~ and d~ are determined

from d(z 11 z2) by

d(z1,z2) = (Z
1
m + am ~

m—l + am_lzl
m_2 

+ .. .a1) (Z 2
n + d~ z1~~

1 + .. .d~ )

- (bmzl
m_l

+bm l zl
m_2

+...blXCn zl
n_l

+ ... c1)

2. The State Transition Matrix

Definitions:

A
1 

A
2

A A 2-ll8a

A
3 

A
4

B
1

3 2-ll8b

B2

C 
~ I C 1 C2 2—118c

M(k,L)

T (k ,~~) ~ 2—ll8d

N(k ,L)
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M(k+l ,Z)

T’ (k ,2~) = 2—ll8e

N ( k , R.+l) -

Then:

T ’ (k,Z) = AT(k , 9.) + Bu(k,Z) 2—119

y (k ,2~) = CT (k , 2~) 2—120

Now , for k > 0, 2. > 0, the next definitions are done:

A1’° = 

f 

~ 
2/ 2—121a

0 0

= 2—121b

A
1 

A
2

Ak ?

~ 
= A”° Ak l ,

~~ + A°’1 Ak I~~~~l 2—l2lc

A° ’° 1

—k , 2. k , —9.
A = A ~ 0

88
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A ( k , . ~) is called “State Transition Matrix ” . Examination

of these definitions leads to formulas of system—response

that are similar to the one-dimensional discrete case.

Table 1 compares the formulas for the one

dimensional case to the two dimensional case.

- k,2.3. Properties Of A

A
1 

A
2 

A
1 

A
2 

0 0

l~ A = = +

A3 A4 0 0 A3 A4

rA = A1’° + A°’1 J 2—122

2~ Ak? O 
= A1’° Ak l

~
O 

+ A°’
1 Ak~~

l

= A
1’° Ak~~~

O

Thus, Ak,O 
= (A

1,0)
IEJ 

2-123

and 
[
~ 0~ 2. (A 04~~~~ 2—124

I 0

3, I =

0 I
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ONE DIMENSION TWO DIMENSIONS

I (k.i,fl~ I_ L _ 2I (k~fl
1M 1 IA A 1 I M  

1 [ B
1

L ] ___ J U(k L)

MODEL X =AX +BU 
IA A I N B
i ~ : ~~I 

(k,1) 2

( k + I )  (k) (k) r ‘ 
r M(k )1I ‘ I I

= I~~I ~ 2I I N jL J L  (k ,L)

STAT E
TRANSITION ~~(k)  A1’ A1 

A
k t  A~’1~ A 1 ’~ A k I ,I 

+ A O, I A k ,L I

MATRIX l~(0 ) - ~ A i A0’0 :I

DEFINE :
I

T
(k ,)

(k ,t)]
RESPONSE

I MFOR ZERO 

~

INPUT’ (k ,f) -

L~ ~ THEN:
A T  + BU(k ,1) (k ,R) (k ,Z )
C

k klx = X aAX T A T
1 ( k )  #( k )  (o )  ~ L (k ,L) (o ,oj

Table 1: Comparison Between the Response of Two
Dimensional Systems to One Dimensional

Systems
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where I is the identity matrix with appropriate dimensions .

Thus ,

I 0

il,0

0 - 0

0 0

i0,1 =

0 I

I 0 A
1 A2 A1 A2

4, 1
1’° A = =

0 0 A3 A4 0 0

= A1’°

or:

I~~ ° A = i1’° A1’° = A
1’° 2—125a

A = i0,1 A0’1~ = A°’
1 2—l25b

0 0 A1 A2
5• I°’~~ A

1’° = = 0

0 I 0 0
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Briefly ,

10,1 A1’° = I~ ’~ A~’
1 

= 0 J 2—126

In the next discussion we shall use some figures

for better understanding. The f igures include arrows that

are going from one pixel to its neighbor. For example :

The arrows in Fig. 23 means that the values M ( k , 94 ,  N (k , 2. )

contribute the values N ( k , 2.+l)  and M (k + l , 2 4 .

k ,2 k ,1 -1. 1

k 4 1 ,1

Fig . 23: The Propagation of the States M and N.
(The values M ( k ,2.), N ( k ,-Q) contribute
the values N (k,-Q+1) and M(k+l,L)].

4. General Response Formula

Lemma: Let u ( k , t )  be zero for all (k , Q ) .

M ( 0 , 2. ) a N ( k , 0) = 0 for (i, j) ~ 0
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(only M(0,0), N(0,0) are not zero).

Then : I T ( k , 2 . )  = Ak~
2. T(0,0)~~ 2-127

Proof: (By induction )

‘F(0.~0) 
I T (0 ,0) = A°’° T(0,0)

Now assume it is correct for  any (0,0) < (i , j )  < (k ,Z ) , then :

M(k,Z)

T(k,Z) =

N (k, 9.)

— 

A1 M(k—l ,Z) + A2 N (k—l ,9.) + B1~ 0

A3 M(k,Z—l) ÷ A3 N(k,2.—l ) + B2
.0

A1 A2 0 0
= T(k—l ,2.) + T(k,Z—l )

0 0 A3 A4

= A1’° Ak h ? 2. T(0,0) + A°’1 Ak,2 . l  T(0 ,0

= Ak,Z T(0,0)

Q.E.D.

Figure 24 shows the propagation of the field due to

M ( 0 , 0) and N ( O , 0 ) .
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4

_ J N ~~~~~~~~_

_
:

~~~~

:

~~

_

:k

~~

- N2o ~
_ _ _  _ _ _ _

I 
_ _ _  _ _ _  _ _ _

- M M M M
1~~__ ~rL,~

r_ 
~
__

Fig. 24 : The propagation of states due to M(O ,0) N (0,0).

Equation 2-127 will be used for the next two cases :

Effec t  of M ( 0 , j ) :

Assume : M (0,j) is the only non-zero boundary condition

and that all inputs are zero.

Using Eq. (2—ll8d)

M(0,j)

T(0,j) a

0
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Therefore T ( 0 , j )  can be used as initial condition for

~~~~~~~~~ 2— 128 :

M ( 0 , j )
T ( k , 2. )  = Ak?~~J ,T (O , j ) = Ak,Z j 

• 2—128

0 1

Effec t of N(i,0):

Similarly to M (0,j) the effect of N(i,0) is:

0

T(k,9.) = Ak i ,2. 2-129

N(i,0)

Effec t  of u ( k , - 2 4 :  
-

Assume : u ( i , j )  for some (i , j )  < (k,2.) is the only

non—zero input . All boundary conditions are

zero .

Then:

M(i+l,j)

T( i+ l , j )  = =
N ( i+ 1 ,j )

A1
M(i,j) ~ - A2N (i,j) + B. U(i ,j )

A3M ( i + l , j — l )  + A3N(i+1,j—1) + 32u (i+1,j—1)
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V + A2 0 + 31 u(i , j)

T(i+1,j) =

0

Si

= u(i,j)

0

and:

0

T(i,j+i) = u(i,j)

T(i+1,j), T(i,j+1) m i ght be substituted in 2-127 as boundary

conditions. Therefore , by using superposition :

T(k,~~) = (A
i
~
i
~
i
~
z_i 

Si

\ 0 B
2/

2—130

Fig. 25 shows the effect of u(i,j).
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U . I
(i ,j ) (i ,j ii) N

T( i 4 1 1j ) ~~

-
~~~~~

Fig. 25. Effect of u (i,j)

Superposition:

Theorem: for all (k,2i > 0:

M(o,j) 0

T(k,~~) = Z . + ~
j=0 i=0

0 N(i,0

/ B1 0

+ E ( A~~1 l ~ t J . 4 Ak k , t u l

(0 , 0 ) < ( i , j ) < ( k , L ) ~ 0 B 2

2— 130

L 
_ _ _ _ _ _ _ _ _ _ _ _  
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Proof: By superposition of the effects of all inputs and

boundary conditions.

Q.E.D.

5. Characteristic Function

In the one dimensional case the eigen values of

the system

x(k+1) = Ax (k)

are defined as those values which satisfy the algebraic

equation :

Ax = Xx

or the characteristic equation

~XI — A I = 0

Now, for the “State Space Structure ” let ’s define in the

same way: given:

M(k+l,L) A1 A2 M(k,Q)

N(k,~ +1) 

— 

A3 A4 i 
N(k,~~)



define operators E, F such that:

A1 A2 
M (k,~~) EM(k,Z)

S

A3 A4 
N(k,~,) FN(k,2~)

or:

E’I—A 1 
A2 

M ( k , .~ )

= 0 2—131

N(k,2~)

To have a nontrivial solution of this equation we require

that the matrix in 2-131 is singular . Therefore the

determinant should be zero.

E I—A1 A2
= I E  11’°+f I0?1 — A~ = 0

A3 F

2—l 3 1~

6. Stability

The stability criteria of Huang (241 can be generalized

in a straightforward manner to systems represented in state

variable form. This generalization allows the use of

standard one-dimensional routines in the determination of

two dimensional system stability .
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The stabili ty criteria will be:

1) The eigenvalues of the matrices A1, A4 are

less than one in magnitude.

2) The eigenvalues of the comp lex matrix :

A4 + A3 (z1 I—A1
) 1 A2 2—132

are all less than 1 in magnitude as z1 var ies

about the unit circle (~~Z ]~ = 1). If any

eigenvalues of Eq. 2-132 has magnitude greater

than one for 1z 11 = 1, then the system is

unstable.

H. MODELING BY USING OPTIMAL ESTIMATION THEORY

So far we have seen a. technique for modeling random

fields that uses z transformation , properties of linear

filters and special types of correlation functions (separable).

That method was called “Filter Response Method” . In this

section optimal estimation theory is used to solve the modeling

problem . The advantage of this method is that it is not

limited. For comparison between the two methods (see Section

I).

1. The Basic_Principle

Suppose a discrete random field x(k,fl is given and

assumed to be homogeneous (stationary) . Given the values

x(k,L) at all points c2(k, Z), the problem is to estimate the

value x(k,t). In other words, if ~(k,t) is the optimum

estimate for x(k,L), then:
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= ~~~~ . m~(k— i , Z — j )  2— 133
for all (i , j )  1J

so that
(k—i , n — j ) E c 2 ( k , ~)

I 2 i_
~ ( I+i

• • • • • • .1
• • • .. • •

~l(K 11)

k - I  • • • • • •
k • • • • • •

• • • • • • •
k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. 26: Definition of c2 (k ,~~)

The coefficients of ~~~~
. must be determined so that the
1,)

“mean square ë~rror”

= E((x(k,2~) 
— x(k,L)]2} 2—134
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is minimized . x(k,~ ) will be the “linear least square

estimate ” of x (k,Z).

Substituting 2—133 in 2—134, differentiating with

respect to each ~~~~~ and setting each derivative equal to

zero , we obtain the following set of simultaneous equations

for the unknowns

E ( ( x ( k , Z )  — x ( k , . Q ) ]  x ( i , j )}  = 0 for all
(i , j ) c c2

2—13 5

which says that the coefficients must be such that

the estimation error x ( k , 9.) - x(k,Z) is statistically

orthogonal to each x(i,j) that is used to form the linear

estimate. This is known as the orthogonality principie, in

linear least square estimation.

Let D represent the following collection of pairs

(i , j )  :

D = {(0,l), (1,1), (l ,0)} 2—136

Now comes the definition of a first order process.

Definition 1:

A random field will be called first order Markov if

the coefficients in 2—133 are such that ~ is of the

form:
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L-i  I

• • • •
L)

k

Fig. 27: Definition of Reg D

x ( k , 2 ,) = E x ( k — i , 2,— j )  2—137
(i ,j ) E D ( k , L) 1)

(all other ct ’ s are ze ro ) .

That is , the least square estimate of x (k,L ) in terms of

c~(k,9.) is the same as that in terms of only the three

immediate neighbors lef t and above the point (k ,Z).

Substituting 2-137 in 2-135, the foliowing conditions

for the Markov field must be satisfied:

Ef [x(k,9~) 
— Z c& .  x (k—i ,2..—j )] x(p,q)} = 0

(i,j)~ D(k,~.) 
‘‘~~

2—138

for all (p ,q )  I
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For a Markov field the coefficients ct . must be such that
1,3

2-138 is satisfied for all (p,q) E c2(k,Q). In particular ,

2-138 must be satisfied for the following values of (p,q):

(k— l , Z ) ,  (k— 1, 9~— l ) ,  (k , 2~— l ) .

SubstitutLig the values of (p,q) in 2-138, the following

equations are obtained, for c t .
1,3

ct 1 0  R~,~(O~ O) + ct1 1  R (—l ,O) + ct
0 3  

R ,~ (— 1 , l) = R
~~

(—l ,O)

a1 0  R~~~(l~.0) + a11  R,~~(O~ O) +ct0 1  R~~ (O,l) = R
~~~

( — l i l)

a1 0  ~~~~~~~~~ + ct1,1 Rxx ( O i _ l )  + ct o , i. Rxx~ 0 , 0) = R
~~~

(O , _ l)

2—139

where R ( c t ,8) = E {x ( k , .Q ) X(k-1-ct,Z+8)}. For system coordinates

in this problem see Fig. l~ .

Example 1

Given

R~~~(n ,m) = ~~In~ ~2 I1t~t~ 2—140

by substituting 2-140 into 2-139, the solution for the

a. . is:
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a0 1  = p
1

= p
1 p 2

= p
2

and by substituting into 2-137:

x(k,Z) = p 1 x (k—l ,Z) — p1
p2 x(k—1 ,Z—1) + p 2 x (k , Z — l ) .

2—141

Note: The discussion in this section will be limited rflain-

ly to “one—side process” (causal difference equation)

in order to compare it to the method of modeling that

is described in Section F. In the end of this section

there will be some examples of non-causal models.

2. The Modeling Error

Definition 2: The modeling error is the difference

between the true value, x (k,Z) and the estimate, x(k,L).

u(k,2,) x(k ,Z) — x(k ,L)

= x(k ,9.) — E x(k—i,R.—j) a. . 2—142
(i , j ) c c 2  1,3

It is obvious that:

x(k ,L) = x(k ,2~.) + u(k,L)
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x(k ,9~) = E a. . x(k—i ,2.—j) + u(k,L) J 2—143
1,J

The error u (k ,Q) creates also a random field . The question

is what kind of random field? We are concerned in the

variance and ..he autocorrelation-function of this error.

a) The Variance (of the modeling error)

Using 2—137:

Q ~ E {u 2 (k,Z)}

= EC(x(k ,Z) -

= E (x 2 (k,Z) - 2x(k,t)~~x~k,Z) + x2(k,~~)}

= ECx 2 (k,~~) - ;(k,Z) .x (k ,Z) +

The zero in the last term is set by using the orthogonal

principle (Eq. 2-138).

Therefore :

Q = E{x 2(k,Z) — [ E a ,. .~ x (k—i,9.—j)] x(k,24}
(i , j ) ~~ “‘i ’

and recall that:

R(i,j) = E{x(k-i,R.-j) x(k,Z)} = autocorrelation function
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E {u 2(k,i)} = R (0,0) - Z a. . R(i,j)
(i , j ) e c 2  “~

2—144

b) The Autocorrelation (of the modeling error )

Theorem: The modeling error crea tes a random

field that is white noise , e.g.:

Q if m = 0  and n = 0

R (n,m) =

t._ o if m~~~ 0 or n~~~ O

Proof: By using 2-143, Eq. 2-137 can be written in a

non—recursive way as follows:

k 9~x(k,Z) = E E B u(m ,n )
m=1 n=1 m,n

+ 
~~ 

Y o . x ( 0 , 2. — j )  + E y .  0 x ( i — i , 0)
i=1 1,

Initial conditions 2-145

But using the orthogonality principle:

E {u ( k , & ) x ( i , j ) }  0 (i,j) c ~ 2—146

and especially:
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E (u (k ,Q) x(k,9~)} = 0 2—147

substituting 2—145 into 2-147, the result is obvious :

E{u(k,L) u(m ,n)} = 0 (m,n) ~

Q.E.D.

Note: As previously determined, this discussion concerns

causal models. In this case we proved that the

random process is forced by white noise. That is

not the case in a non-causal model.

Example 2

Problem : Find the variance of the modeling error for the

model of Example 1.

Solution:

Q = 1 — R(0,l) — a11 R(l,l) 
— a1 0  R(l,0)

= 1 — p
1
2 

+ (p 1
p
2)
2 

— p
2
2

= (1 — (1 
~ ‘2~~ 

2—148

Conclusion: For the autocorrelation function of 2-140

R
~~~

(n ,m) ~~InI~~ ImI
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the model is :

x (k+l,~ +1) = p
1x (k-fr1,~~) + p

1
p
2x (k,fl + p 2x(k,L+l) + u (k , 2~)

E~u
2(k,i)} = Q = (l—p 1

2)(1-p2
2)

2—149

Now, comparing 2—149 to 2—81 , 2—82 it is seen that:

For the First Order Markov Field the orthogonality

principle (Minimum Mean Square Error) leads to the

same model as the “filter response method ” .

3. Advantages Of The “Orthogonality Principle” Method

There are three distinct advantages of this method:

a) This method can be applied to non-separable autocorrela-

tion functions. This is impossible to do with the

Linear Filter Response method.

b. This method can be extended to non-causal models. The

technique is very similar to the causal-modeling tech-

nique. The only differences are that the modeling

error is not white any more and that the solution

doesn ’t exist for all cases.

c. It is optimal in the sense that the modeling error,

u(k,t), is minimum. It was not proved that the method

of Section F, Linear Filter Response, leads to an

optimal model. (We see it only for one special case,
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the first order Markov field.] For further discussion

of this point see Ref. 23.

The next examples will highlight these three advantages.

Example 3 (for advantage a):
2 2

Given: R = 
n +m 2-150xx

Find: A linear model for the field that uses region

D (defined in Eq. 2-136 and described in Fig.

27)

Solution: As in Example 1, the set of three algebraic

equations of 2-139 has to be used :

R
~~~

(Oi O) + R,~~(—1 ,0) + R
~~~

(—i ,i) R
~~~

(-i,0)
~

R
~~

(li O) + R
~~~

(0 ,O) + R
~~

(O,l) = R
~~

(—l ,l)

R
~~

(l,_l) + R
~~~

(0s _1) + a
01  R

~~~
(O
~
—l)

and by substituting 2-150:

1 0 P

P 1 , a
1 = p

/~
.

1 a 0 1  0~~~
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t The a’s are solutions of these three equations.

Note: The process in Eq. 2-150 is not first—order , if we

use definition 1. There is not a finite set

of elements on which the point x(k,.~) depends.

Therefore the choice to model the process by region

D was arbitrary in this example.

Example 4: (for advantage b):

k-2~~~~~~~~~~
_ __ __ __ __ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _____ - 

k k ,f

L- 2  Z - i  £ L÷ i  t +2

Fig. 28: A Non—causal Region For
Modeling (in example 4)

Problem: Find the non—causal representation of x(k,L)

by using the dotted elements of Fig. 28, for the

- autocorrelation function

I~ I ImiR
~~~

(n,m) = 

~l ~2

ill

--

~

- ~~~~~—~~ —- - - , - -



Solution: By using Eq. 2-138 for

(i , j )  = C (—2 , —2 )  , (—1, —i), (—1,1), (—1 ,2) }

we have the next set of equations:

R
XX

(O
~
O) Rxx(~

li~~
l) R

~~
(—3i —l) R

~~~
(—4 ,O) a_2 ,_2 R (—2 ,2)xx

Rxx (l
~

l)  R (0,0) R (—2,0) R (—3 ,1) a~ 1,_~ R (—1,1)xxxx xx xx
=

R (3, 1) R (2 ,0) R (0,0) R (—1 ,1) a_ 1, 1 R (—1, 1)xxxx xx xx xx

R (4,0) R (3,—i) xx - xxxx xx R~~~
(l , — l )  R (0 , 0) ~ 1 2  R ( — 1, 2)

a p1 ~1
P
2 

p
1

p
2 

p
1 — 2 , —2 ~

2 
~ 2

2

P
1
P
2 1 a_i ,_1 

p
i
p
2

2 1 a~.1, 1

P
1
3 P
2 

Pi
p2 ~l ~2
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The solution:

= a_1,2 = 0

ct , 1~~~ 
— 

2~~.1.,~~ 
_

.&S , 

~ + p
1

It is not surprising that a_2 ,_2 and a_1,2 are zero.

The given autocorrelation function in this example is a

first-order Markov process.

Example 5:

This example compares between the two methods of modeling

(by optimal-estimation and by “filter-response—method”).

The results turn out to be different. In this example we

consider a second-order process. The optimal estimation

approach for the two-dimensional case requires solving

eight algebraic equations,, which is complicated .

Therefore . this example deals with a one-dimensional auto-

correlation function. The extension to a similar two-

dimensional problem is straightforward .

Given: The one dimensional “Band Pass” autocorrelation

function (see Chpt. II, Section E , parts 3,4).

R (n) = ~Ir1I cos (en)
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Find: A model that describes this process by:

a) optimal estimation approach .

b) by filter response method.

Solutior:~

a) In the optimal-estimation-approach one has to

determine the order of the model (order of the difference

equation). So let’s choose a second order model :

x ( k )  = a 1 x ( k — i )  + a2 x(k-2) + u(k)

where :

1 p cos O 
~~, 

p cos O

p cos e 1 ~z. p 2 cos O

Therefore :

p cosO ( i— p 2cos 2)~~
1 1 —  p2 cos28

~2 sin2G
2 l — p 2 cos29
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and by using 2—144: The variance of u(k,2.) is

E {u 2(k,Q)} = Q = 1 — c t 1 p cosO — a 2p
2 cos2e

for :

p = 0.96

e = 8°

a1 
= 1.127

a2 = —0.1854

Q = 0.0911 =
~
, 

~~~~~~~~~~~~~~~~ error~ 
=

b) Eq. 2-71, 2—72 , lead to a model :

x ( k )  = p 2x ( k — l )  — pcos e x ( k — 2 )  + Ua(k)

= a1’x ( k — l )  + c*2’x(k—2) + u~~
(k )

for:

p = 0.96

8 = 80

11.5
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a 1’ = 0.9216

a 2 ’ = —0.95

= 0.150 ~~~~~~~ ~~ror~ 
= = 0.387

Q’ is found from: Q.’ = (1 — p 2 ) (1 + p 2). Table 2

summarizes the results.

Table 2:

R~~~(n) = ~~~ cos (On)

p = 0.96

8 = 8°

Optimal estimation approach Filter Response method

One can choose to represent Inherently from the model-
x ( k ) , theoretically , by a ing process it follows that
set of infinite previous the difference equation that
points (the order of the expresses the process is
difference equation can of second—order .
be in f in i t e) .

x(k)=a1x(k—1)+a2
x (k-2)+u(k) x(k) a1

’x (k—1)+cz2
’x (k—2)+u~~(k)

~1 
=~~c0~~~(1;P

2c0s2a) 
= 1.127 a1

’ = p = 0.9216
1—P COS ~

2 . 2
a2 = ~ = —0.1854 a2

’ = — p cos 8 =—0.95
1 - 0  cos a

var {u} = modeling error varCu} = modeling error

= ~ii~.alpcos8 — ct2p
2cos2 8 = 

~
/h—p2) (1+p2)

= 0.302 = 0.387
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One can see that the modeling error in the optimal solution

is not much smaller than in the Filter Response Method

(0.302 compared with 0.387). Therefore , in the sense of

optimality , the model in Eq. 2-67, 2-68 is “almost good”

as the optimal solution . It seems that the “ nature ” of

the process Rxx (n )  = ~
jn I

~~0~ (On) is to be modeled by

Eq. 2—67 , 2—68. These equations are simpler , and easy to

handle.

Another point is that the method of Section F

[Linear Filter Response] leads to a representation of x(k,2.)

by a finite number of points . Using the optimal estimation

approach , one can find a model by using three , four and

more points, previous to x (k,.1~). The coefficients of the

far—away points are not zero. In other words it seems like

the “nature” of this case is not to be presented by orthogonal

projections .

Finally , these models are used in recursive estimation.

In this application, anyway, the whole set of previous data

is used to estimate a point (in a recursive way). There-

fore , both models lead to an optimal-estimation-solution.

We can summarize , as a consequence of this example. In

the sense of optimality , the Linear Filter Response method

is worse than the orthogonality principle method. But it

has other obvious advantages that make it a good candidate

for signal processing and especially image processing .
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I. SUMMARY

Note: It is recommended that Example 5 in Section H

be studied until the end of that section ,

before reading Section I.

1. This chapter has developed a state-variable representation

of two dimensional random fields.

2. The concept of the modeling is primarily based on passing

white noise through a linear filter. The basic equations

that were used is Eq. 2—40 and 2-41. This concept was

explained in Section D, and then was used in Sections

E, F. It was called “filter response method ” . The

method was applied to three types of Markov fields:

a) The first—order type , where :

2 n I  m lRxx (n,m) = a p1 p 2

b) The “band limited ” type , where the spectrum of the

signal is limited in a certain band:

R ( n ,m) = a2p l n h cos(O n)p tm l cos (e m)

c) The second order type , where :

R,~~(n,m) a2 p I~~I (l+O i I n I ) P 2
I m I  (l+e l m I )

01 = thp 1 82 
= thp2
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3. In all cases it was shown that the random fields can

be expressed in a form that was recently suggested by

Roesser [Ref. 12].

M(k+1,2~) A1 A2 M(k,2..)

= + u(k,2.)

N(k,Z+1) A
3 A4 N(k,.Q) B2

The nature of models with such a structure was discussed

in Section G.

4. The “filter response method” of modeling as it was

discussed in Section F has two disadvantages :

a) The difference equation which is used to represent

the field (i.e.: the linear filter) turns out,

always , to be a causal equation. But in image

processing, there might be reasons to use non-

causal filters. It is obvious that representing

a random field by a non-causal filter will be

better than a causal filter

b) This method is limited to separable autocorrelation

functions (smaller modeling error).

5. The modeling method by the orthogonal principle has

its disadvantages :

a) The weighting factors have no simple expressions .

b) The number of neighbors one has to use, is theoretically

infinite for some types of autocorrelation functions.
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c) The calculation of the coefficients required
~1- ~~7 ~ solving many algebraic equations , especially

in the two-dimensional case. The number of

equations is equal to the number of coefficients.

d) Perhaps, the greatest disadvantage in using this

method for modeling two d imensional fields is

the fact that it is difficult to represent the

two dimensional difference equation that

describes the field in the “state—space—

structure ” (Ref. 12].

The “Filter Response ” method does not su f fe r  from these

disadvantages.

6. Although there are two disadvantages mentioned above ,

it seems that the “Filter Response Method ” is a good

candidate for modeling random fields.

7. Table 3 summarizes the properties of the two methods:
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Table 3: Summary of Two Methods of Modeling

optimal estimation “filter respanse”
approach approach r~ narks

~~tinality The n~ 1el is The nodel is not see Exam ple
(minini.~n ptimnal. The necessarily optimal , 5 - Section H
ni~ eling cxieling error is and the nodeling
error) ~hite noise (for error is not always

-
~ causal nodel). white noise

Deriving a Possible Impossible see Example
non-causal 4 - Section H
nodel

Handling of Possible Impossible see Example
non-separable 3 - Section H
autoa rrelation
functions

O~~,1ication Calculation - can— Calculations are see Exairple
of: plicated (many simple and the 5 - Section H

— calculation algebraic equations) nodel has a
- ncdel form 

~~~el form - ~~~~ simple structure
cases caplicated.

Deriving a Difficult in rrost Simple see Example
form of the cases [even for 5 - Section H
ncdel by separable
using a auto~~rre1ation
state vector functions]

Is the ‘I~~oreticafly, for Yes see Example
recursive nost cases , the 5 - Section H
equation that recursive equation
describes the is infinite
process (itodel
finite?

1~~ many Th~~retical1y - The order of the see Example
points to infinite, recursive equation 5 - Section H
incltx3.e in Practically - encugh that describes the
t~~ ntdel points to make the process is an

ncdeling error ~na1l inherent result of
the ncdeling procedure
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III. REVIEW OF ESTIMATION THEORY CONCEPTS

A. INTRODUCTION

1. Definition: Stochastic estimation is the operation

of assigning a value to an unknown system state or parameters ,

based upon noise—corrupted observation involving some function

of the state or parameters.

2. For example , consider a random field whose model

is the first-order-Markov :

x(k+1,R,+l) = p
1x(k+l,

Z) — p
1
p
2x(k,~~) + p 2x(k,Z+l) + u ( k , Z )

3—1

where u (k ,Z) is white noise:

1
0 if k~~~ i or 

~~~~
E {u (k ,t)v(i ,j)} = 3-2

if k = i  or ~~= j

The observation of the field is corrupted by noise: y(k,-Q )

is the observation :

y ( k ,~~) = x(k,2.) + v(k,24. 3—3

where :

122

-5-—---- -.-—— ---~~~~~--— - 5 -  -~•5-~ _~~~.~~~~
5-

~~~ =~
5-5- 5-



(0 if m~~~ i or n~~~ j

E {v ( k ,~~) v ( i , j ) }  = 3-4

if n = i  and n = j

The problem is to find the “best” estima te for x (k ,.Q) and

the so-called x(k,Z), from a set of noisy measurements

y(i,j), i = 1, ... k , j = 1, ... Z.
3. In Section B, the criteria for an estimator to be

the “best” (optimal) are defined .

- Section C defines the “Linear Estimator ” .

- Section D defines the most common estimator : the

linear estimator with the quadratic-cost criteria. The

recursive and non-recursive estimators are discussed .

The orthogonality princ.iple is also explained .

This chapter explains the concepts of optimal

estimation. Some of these concepts will be used in the

next chapter to solve a few particular problems.

B. ESTIMATION CONCEPTS AND CRITERIA

In this section “optimal criteria ” will be defined.

1. Baysian Estimation

The problem is to estimate a state X, from a set

of measurements Y.

P(x) - is called “a priori” probability density

function .
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$ 1
P(x/y ) - is called “a posteriori” probability

density function. Knowing the density function P(x ,y),

various types of estimators can be determined . Fig. 29

will be used to define them :

~(X/Y)

X , X 2 X 3

Fig. 29: The Various Types of Estimators

a) The most probable estimate is x{ ( the x

- that is most likely to happen).

b) The estimator is x2, the solution of

minimizing a conditional mean. The problem is to find

mm I q (x - .~ ) P (x/y ) dx 3-5
-~~~

•(x- .x) is called the cost function. The following are

typical examples.

1) t~(x-x) = I x - x I  = absolute value.

2) ~ ( x — x )  = (x — x) 2 
= square error.
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Both types are the go-called equal risk estimators. The

probability of x being larger or smaller than x2 is the same .

The quadratic form is the most commonly used cost

function.

c) The minimax estimate is - the estimate that

minimizes the maximum probability of error, I x - x 3 L This

is simply the median.

The Bayes Rule:

Bayes rule is :

P (x/ ) — 
P (x,y) 

= 
P (y/x)P(x)y P(y) P(y)

P(x) = a priori density function of x

P (y ) = density function of the measurements

P(x,y) = joint density function.

P(y/x) = conditional density function of the

measurements y.

2. Maximum Likelihood Estimation

The fundamental idea is to define a “likelihood

function ” and to maximize this function.

The estimation problem assumes the form of the

probability density function of y, ~ (y), is known :

P(y) = P ( y , x )
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where :

x is unknown parameter

y is a set of measurements.

Therefore , one can ask what is the best estimate of x based

on these measurements? To f ind the answer it has to be

found what is the set of parameters x , that will cause the

set of measurements y = (y
1 ... y~ ) most likely to occur.

The following procedure of computa tion is done :

a) Set up a likelihood function-

L (y, x) = P (y/x)

b) Find the parameter x which maximizes this

likelihood function . Hence the solution must satisfy the

condition :

- < 0

C. LINEAR ESTIMATION

Optimal estimation theory is the subject of finding an

estimator that minimizes a given “cost function ” , or that

is “most likely ” to occur. It is very common to add an

additional requirement to the estimator : The requirement

of linearity. The linearity requirement will be introduced

here in two ways : Non—Recursive and Recursive .
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1. Non-Recursive Estimation

If Y is a given set of measurements, then the

estimator will be a linear combina tion of this measurement:

* = E ct~y. 3—6
1~

As a particular example , assume .an image that is scanned top

to bottom, lef t to right, and that a causal estimator is

required. In that case:

2 ( k , Z )  = y(p,q) 3—7p1q
(p,q) e.~~ (k ,~ )

The region c21(k,Z) is seen in Fig. 30.

2 3 f- I I L+ I

I + + + + + +

2 + + + + + +

- . . -
k + + + .

~~
. + .

~
.. t ( k ,1)

+ + + + +

Fig. 30: Definition of Region c21(k,~~)
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The problem is to find the coefficient c& (p,q) that will

make the estimator optimal in the sense that was described

in the previous section.

2. Recursive Estimation

For easy implementation it would be desirable to

express x (k ,9~.) in terms of previous estimators. For

example:

x(k,Z) = E dk ~(p~
q);(p~q) + Gk ~~~~~~(p,q)cD(k ,Z)

3—8

The region D (k ,l) is seen in Fig. 22. Now the problem is

to find the d ’s and G(k,t ) for each po int in the image ,

satisfying an optimal solution (with a given cost function).

It is easy to see that 3-7 could be expressed in the form

of 3— 8 (the ci ’s in 3— 7 could be expressed in terms of the

d’s and the G’s).

There is no doubt that the non-recursive estimator

is the best that could be done , simply because it includes

the whole set of given data in the “best” way. The recur-

sive estimator also uses the whole set of data to estimate

a point x(k,2j. It’s only done in a recursive way. There-

fore the best recursive estimator that can be found is the

one in which the “cost” is equal to the non—recursive

counterpart.
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Of course one can ask if such a recursive

estimator (whose cost is equal to the non—recursive

counterpart) exist ? The answer to this question empha-

sizes the difference between one—dimensional estimation

and two dimensiona l estimation .

In the one dimensional case, if the model of the

process is linear and the cost has a quadratic form , both

ways of estimation have the s~ rr.e cost (same variance of

error). In that case the recursive estimator is the well

known Kalman filter.

In the two dimensional case , under the same condi-

tions, there is no way to find a recursive estimator that

is as good as the non-recursive estimator . It will be

proven in the next chapter. On the other hand it will be

shown that one can find a recursive estimator whose variance

of error is almost as low as the variance of the non—recursive

counterpart. Therefore the recursive estimator will be a

good candidate for estimation of two dimensional random

fields.

The next section will define the most commonly

used estimator.

D. LINEAR ESTIMATI ON COMBINED WITH QUADRATI C COST FUNCTI ON

1. Definition Of The Estimator

Let the cost function ~p (x-x) in 3-5 be a quadratic

function (or “quadratic form ” ) of (x - x) . The optimal
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estimate is obtained by minimizing the cost:

E{(x(k ,Z) — x(k,Z)]2} 3—9

Now , this cost is combined with another restriction : The

estimator should be linear.

2. The Non Recursive Case

The linear estimator is given in 3-6

~ (k,Z) = ci y(p,q)
(p,q)ec2 1(k,-Z.) p,q

The error:

~~(k , 2 L )  = x(k,Q) — ~ (k , 9~) = x(k,Z) — ci y(p,q)
( p , q ) € . c 21(k , Z)  p ,q

and the variance of the error:

EC~
2(k,Z)} = E((x(k,2.) — ci y(p,q)]2}

(P,q)~~ 1(k,.Z) 
p,q

Now, differentiating with respect to cip~q~ p = 1, ...
q = 1, ... ~~~, and letting the derivative equal to zero. the

following set of orthogonal conditions must be satisfied

for optimal solution:

EC(x(k ,1.) — ~(k,L)] y(p,q)} = 0

-5- 5 —  - - - 5 .  -
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or

T~{(x(k,Z) — ci y(p,q)] y(k,j)} = 0
(p1q)c~21(k,2~) 

p,q

(i ,j)cc2 1 (k ,~.) 3—10

This is the “orthogonal principle ” in optimal estimation .

The meaning of 3—10 is that the estimation error x(k,2~) - *(k , 2.)

is uncorrelated to the set of data that is used to estimate

the value x (k,Z)

To summarize: An optimal estimator will be only the one that

satisfies the orthogonality principle.

3. The Recursive Case

It is clear that the qptimal recursive estimator will

be the one that satisfies the orthogonality principle . The

problem is that it is impossible to find a two-dimensional

recursive estimator that does it. In the next chapter it

will be shown that such an estimator does not exist.

Therefore , the approach in this thesis is to define

a structure for the filter , say as in 3—8 [it will be shown

that the definition of the structure itself leads to a
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conclusion that the estimator is not optimal], and then

to find the parameters of the filter to minimize the variance

of the error.
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IV. RECURSIVE ESPIMATION OF
TWO-DIMENSIONAL FIELDS

A. INTRODUCTION

1. Problem Definition

In this chapter the general description of the prob lem

will be:

a) x(k,Z) is a stationary random field. The

autocorrelation function Rxx (n,m) is known.

b) From the autocorrelation-function one can find

a dynamic model (state var iable representation ) of the

field.

c) The measuremen t of the f ield includes noi se :

y(k,9.) = x(k,Z) + v(k,Q~)

x(k,~.) is the correlated image. v(k ,94 is white noise.

y(k,t) is the measurement.

d) The problem is to estimate x ( k ,9..) from the

measurement, using a linear recursive f i l ter that min imizes

the quadratic form

ENx — x) 2 }

x is the estimate of x.
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2. General Remarks About The Solution

1) As a consequence of Chpt . II I one thing has to

be kept in mind: Tha t the optimal solution is def ined only

in a non-recursive form, by Eq. 3-7, to minimize the mean

of the square error (3-9). This definition leads to the

orthogonal principle. Therefore the optimal recursive filter

will be only the one that is proved to satisfy  the orthogona 1it~
principle (the estimation error is uncorrelated to the data

that is used to find the estimator]. In the one—dimensional

case , a recursive filter that satisfies the orthogonal

principle exists [this is the well known Kalman Fil ter ) .

But in the two-dimensional case, if one def ines a structure

for a f ilter that is equivalent to the one dimens ional

counterpart, the orthogonal principle cannot be satisfied.

2) The conclusion is tha t it is impossible to

find an optimal recursive filter, and we have to look for

an sub-optimal solution [in the two-dimensional problem).

3) In a sub-optima l solution , the way to work is

to define a reasonable structure for the filter , and then

to find the gain in the filter structure to minimize the

mean of the square error.

3. Previous Work in Two-Dimensional Recursive Estimation

There are two earlier works in this subject [Ref.

10 and 13]. The appr -’ach in these algorithms was to assume

that the orthogonality condition is satisfied for all

points (i ,j) where i < k , j < ~~, and then to find the gain
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for point k , 2. , ~y5- induction. These algorithms are

incorrect because the assumption of the induction is

incorrect: the orthogonal principle cannot be satisfied

for point (k ,2.) in a recursive f i l t e r .

4. The Primary Difficulty of the Solution
That is Suggested in this Thesis

The algorithm that is suggested in this thesis is

not “clear ” from difficulties. As in the Kalman Filter , the

suboptimal gain is found by using a recursive set of

equations [these equations calcu late the vari ance of error

and the gain]. But the problem was that it was impossible

to f ind a complete “closed” set of recursive equations, and

one approx imation had to be done. In genera l , it is

dangerous to make an approx imation in a recurs ive algorithm;

a small error in one step can go through an “integration

process ” , and the solution might “blow up ” to an incorr ect

solution . The approximation that was done in this thesis was

tested carefully and was found to lead to excellent results.

B. A RECURSIVE FILTER FOR THE PROCESS R ( n ,m) =

1. Introduction

First, let’ s summar ize the details from prev ious chapters

about this process (using the definit ion of sys tem coordinates

in Fig. 26].

1) The autocorrelation function is

R
~~~

(n,m) = c 2p~~~~ p tm J (Eq. 2—78)
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2) The “model” of this process :

x(k+l,Z-i-l) = p
1x (k+1,

2.) — p
1
p
2~~ 1~,2.) + p

2x(k ,Z+l) + u(k ,2.)

[5- variance of 
1 = var u (k,2.)} = ~ 2 ( l p  2 ) ( 1_ Q 2 )

modeling errorj s 1 2

(eq’s. 2-81, 2-82). x(k+l,2.+l) depends on his neighbors

in region D(k+l,9A-l). [Fig. 27.1

3) Each line and column of the field has a one—

dimens ional model :

x(k - l - l )  = p 2x ( k )  + u2 (k) for any 2.

• x ( Z + l )  = p 1x ( Z )  + u1(2.) for any k

var {u
2
} 1/

/i - p2
2

var(u
1
} = jJl - p

1
2 

=

(eqs. 2—51 , 2—53 , 2—54)

2. Statement of the Problem

Given: a discrete, random , two dimensional process:

x(k+1,Z+l) p
1
x(k+1,Z) — p

1
p2x(k,2.) + p2x(k , 2.+1) + u(k,2.) 4—1
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and the noisy observation , starting at (k,Z) = (1,1)

y(k+1,2.+l) = cx(k+1,Z+l) + v(k+1,Z+l) 4-2

where :

E~u (k, 2.)} = E{v(k,2.)} = 0 for all (k,2.) 4—3a

E {u (i ,j)v(k,Z)} = 0 for all i,j,k,2. 4—3b

if k = i  and t j
E C u Q c , 2 4 u (i , j ) }  = 4—4

L o  if k � i  or

E{x (k,Z)v(i ,j)} = 0 for  all k , 2.,i,j 4—5

E{x (k ,0) = E~x(0,9j} 
-
~~ ~ for all k ,L 4—6a

E{ (x (k ,O)—~~]
2} = E{[x(0,.Z) ~~~~~ = ~ 2 for all 4— 6b

S

fR 
if k = i  and 2 . = j

E {v (k ,2.)v(i,j)} 4...7

Lo if k~~~ i or

It is convenient to define:

e ~ (p 1 —p ip 2 p 2 ) 4—8
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x(k+l, 2.)

x (k,Q) x(k ,2.) 4-9

x(k, L-4-l)

using 4—1 , 4—9 , 4—10 : 
-

x(k+1,2.+l) = p x(k,Z) + u (k,2.) 4—10

Prob lem: Find an estimate of x (k ,e ), denoted x(k ,e )  which

is a linear function of all observ ations y (i,j),

minimizing the quadratic-form

ECx (k ,2.) — x (k,Z)} 4—il

The estimate should be done in a recursive filter.

3. The One-Step Predictor

In the one-dimensional filter , the one-step predictor

is defined :

x(k~k—l) = x (k—l Ik— l)

x (klk-l) means the estimate of x (k) given k-l points

x (k-lIk-l) means the estimate of x(k-1) given k-l points.

Therefore , it will be reasonable to define the one

step predictor in the two-dimensional case:
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(k-s-1,L+l) = p
1*(k+1,

2.) - p
1
p
2*(k,

2.) + ~2*(k1 Z-iif
4—12

where:

*
(l) (k+l z÷l) is the estimate of x(k+l,2.+l) by using the

data of c~1(k+1 ,2+l)

is the estimate of x (k+i ,Z) by using data
of ~2(k+1 ,t)

is the estimate of x (k ,2.) by using data of
(k , 2. )

*(k,2.-s-l) is the estimate of x(k,Z+l) by using data of
~c , Q+1)

Defining:

*(k+l, 9.)

2(k,2.) = *(k,2.) 4—13

*(k,Z+1)

and by using 4—9 , 4—12 , 4—13:

(k+1 ,2.+l) = p 
~~

(k , 2. ) 1  4-14

But there is a fundamental difference between the one

dimensional and the two dimensional one-step predictor. This

difference is emphasized in the next theorem.
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Theorem: 1) The one—dimensional one—step-predictor is

optimal if *(k) is optimal.

2) The two dimensional “one-step predictor” is

not optimal, even if ~ (k+l ,2.), ~ (k,Z), *(k,Z+1)

in equation 4—12 are optimal.

Proof: See Appendix A.

Conclusion : The recursive filter cannot be optimal.

4. Estimator

When one has the measurements of the point (k+l,Z+l)

then the estimator *(k+1,9.+l) will be:

~ (k+l ,2.+l) = *~
‘
~~(k+l,Z+l) + G(k+1,Z+l) [y (k+l ,2.+l) -cx~~~ (k+l ,2.÷l)J~

4—15

The effect of the GAIN , G(k,2.)1 is to weight the correction

term [y(k,.Q) — Cx (k+l,Z+l)J.

Remark: Because the Estimator and the one step predictor are

recursive in their nature , it is easy to see that the value

x(k+l,9..+l) is actually formed by the measurements in

and (k+l,t+i) is formed by the measurement

in
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~ (l) (k+l,Z+l) = ~~~~. .y(i,j)
(i ,j)ec2 1

(k+l ,2.+l) 1.,)

x(k+l,t+l) = ~~~~. y(i,j)
(i,j)~~c22 (k+l,2.+l) 

i ,J

Let us define :

I 
F (k + l , Z -s- l) = 1 — C~ G(k-4-l,9.+l) 

J 

4—16

Using 4—16 , 4—15:

~ (k+l ,Z+l) = F(k+l,2.+l)XW (k+l,2.+l) +G(k+l ,2.+l)y(k+1,Z+1)

4—17

Now, because the one step predictor cannot be optimal, the

estimator is also not optimal (there does not exist a value

G(k+l,9.+l) to make x(k+l,Q+l) optimal). Of course one can

minimize the variance of error of the filter that is defined

in 4-12, 4-15 and get a suboptimal estimator.

5. Estimation Error

Define:

[Estimation] ~ E(k+l,2.+l)Error
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= x(k+l,Z+l) — x(k+l,9.+l) 4—18

and : -

2. )

= ~(k,2.) 4—19

~ (k, 2.+l)

substituting 4—1 , 4—2 , 4—9 , 4—15, 4—19 into 4—18:

‘~ (k+l,Z+1) = F(k+l,2.+l)p€(k,Z) —F(k+1 ,2.+l)u(k,Z)

+ G(k+l,9+l)v(k+1,2.+l)) 4—20

In the situation at hand , the estimate is a random process

and so is the estimation error. Next, we shall discuss the

statistics of the estimation error.

6. Unbiased Estimator

Using 4—20 , let us compute the mean of € (k+1,2.+l):

EC~~(k+l ,L+l )} = F (k+l ,2.+1)E{p~~(k,9.)} — F(k+l,2.+l)E{u(k,Q)}

+ G(k+1,Z+l)E (v(k+l ,2.+l)}

The last two terms in the above equation are zero (using

4—3a). Therefore:
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E(~~(k+l,2.+l)} = F (k + l , 2.+ l ) E C p ~~(k , Z ) }

= F(k+l,&+l)(p1&(k+l,
2.) — p 1

p
2~~(k,9.) +p 2~~(k,L—1)]

Now: we noticed tha t the estimates of points x (0,9.), x(k,0)

are not based upon measuremen ts (recall that measuremen ts

are given for k ,Z > 1). These are arbitrary choices.

Therefore let us choose :

— mean o f thex (o, Z) = x(k,0) = ‘C = 
~random field 1

In this case:

~ (k,0) = — x(k,0)

= — x (0,2.)

and using 4-6a

&(k,0) = ~~(0,k) = 0

Because 4-20 is a recursive equation, it is easy to see :

E(~~(k,9.)} = 0 for all k,Z.

This is the case of an unbiased estimator.
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7. Var iance of Estimation Error

Definitions :

P (k+l ,2.-4-l) ~ E(~
2(k+1,Z+l)} 4_23

E([x(k+l,Q+l) _ i~~
U (k4-l,2.-1-l)J 2} 4—24

P(k,2.) ~ E(~~(k , Z )  ~ T (k 2 . ) }  4 — 2 5

~ E(~~(k,9.) ~ (k+i ,2.+j)} 4—26

One has to be careful : 4-23 is a definition of a scalar

P(k+1,9.+l). 4—25 is a definition of a matrix P (k+1 ,9.+l).

The sign (.JT(k,.Q) is the transpose of (.)(k,2.). P(k+1 ,Z+1)

is the variance of the estimation error at point (k-i- l,.Q÷1).

~ (l) (k-4-1,9.+1) is the variance of the “one step predictor ”

error at point (k+l,Z+1). P(k,2.) is a 3x3 symmetric matrix.

Three of its values are the variances of the estimation

errors of region D (k+1,.Q+l). Three other values of the

matrix are correlations between the estimation erros of

points in region D (k+l ,2.+l). For better understanding

see also Eq. 4-27. P~~~~(k~ 2.) is the correlation between

the estimation errors of points (k,Z) and (k+i,2.+j).
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Remark: The definition in Eq. 4-23 is a special case of

Eq. 4—26 ;

P(k,Z) = P0 0 (k,2.).

8. Variance Calculations

Using the definitions in 4—23 , 4—24, 4—25 , 4—26 ,

one can derive recursive equations as follows :

P (k,2.) calculation

P(k,2.) = E{ &Ck ,Z) ~
T(k j)}

ç ~(k+l,2.)e(k+l,2.) ê(k÷l,Z)~~k,Z)

= E ~~~(k,2.)~~(k+l,Z) ~ (k,2.)€(k,2.)

L ~.(k,Z-s-i)€(k-i-l,2,) €.(k,2A-l)€ (k,2.) €‘(k,2.+l)-e(k,2.+l)

using 4— 26, 4—23:

P (k+l ,.Q ) p (k,2.) P1,0 1,—
P(k,9.) = P1 0 (k,Z) P(k,2.) P
— , 0,

P1 ~~~~~~~~~ 
P 1

(k,Q) P(k,Z+l)0,

4—27
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~ (l) (k+l,9.+l) calculation

~ (l) (k+l,t+1) = E{[X W (k+l ,t+1) - x(k+1,2.+1)]2}

= EC (px(k ,Z) pX (k,2.) U(k,Z)] }

Because the term in the rectangular brackets is a scalar

we can rewrite:

PW (k+l,2.+1) = E~~[p~~(k,Z) -u (k,Z)][p~~(k,2.)-u(k,Z)]
T}

= Efp&(k,2.)~~
T(k ,Z)pT _ u (k,-Q )~~

TpT _ p € (k ,2.)u(k,Z)+u 2 (k ,Z)}

The expectation of the two middle terms in the last expression

is zero [see Appendix B]. Therefore,

= pE~~~(k,Z)&
T(k,Z)}pT +ECu 2 (k,2.)}

By using 4—4, 4—25:

(k-s-l,2.+i) = pP (k,L)pT + Q 4-28

P(k+l, 2.-s-l) calculation

By substituting 4—20 in 4—23 and noting that

~
T(k+l, z+l) = ~~k+l ,2.+1), since it is a scalar :
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P(k+1,2.+l) = E~c
2(k+l,2+1)}

= E{[F(k+l,2.+l)p~ (k,9.) —F (k+1,2.+1)u(k,2.) +G(k+l,2.-4-l)v(k+1,Z+l)]

-1~
(F(k+1,9.+l)p~ (k,Z) —F(k+l,2.+l)u(k,~ +G(k+l,t+l)v(k-4-l,2.+l)J}

The last equation includes the three next terms that are

zero:

E~~ (k ,2.)v(k+l,L+l)} = 0 (see Appendix B)

E~€ (k,.Q )u(k,L)} = 0 (see Appendix B)

E~u(k,9,)v(k+l,2.+l)} = 0 (by using 3-3b)

Therefore :

P(k+l,2.+1) = F2 (k+l, 2.+l)p &(k,Z-)~~
T(k, 2.) p +F 2 (k+l,Z+l)u2 (k,2.)

+ G2 (k+1 , Z+l)v2 (k-s-l.2.+l)

and by using 4—4, 4—25, 4—7 , 4—28:

LP
k + 1, 2 .+1  = F2(k+l ,L+l) PW (k+l ,2.+l) + G2 (k+l72.+l)’R

4—29
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I
P0 1 (k,2.), P

1,0
(k ,2.) calculation

From 4-26:

A Efé(k,2.)é(k+i+1,Z+j+l)

substituting ~ (k+i ,t+j) from 4—20:

P
~+i~~+i

(k
~
Z) = E~~~(k,Q)F(k+i+l,Z+j+1)p~~(k+i ,Z+j)

+ E {~~(k,Z)G(k+i+l,Z+j+1)v(k+i+l ,Z+j+l)

• 

— E {~ -(k,UF(k+1+l,2.+j+1)n (Jc+i ,2.+j)}

The last two terms are zero [see Appendix B]. Now, by using

4—26 , 4—20, 4-19 and 4—9 , the last term becomes:

= F(k+i+ l , 2 . + j +1) ~~~~~~~~~ (k , 2~) — 

~~~~~~~~~ 
(k , L )

+

Substituting in the last equation the obvious identities:

P .  
—

• (k,Q) = P. . (k—i ,Z—j)
1, J 1,)

= P~ ,...~~
(k_i~ Z+i)
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we arrive at:

= F(k ,Z+l) (p
1
P0 0 (k ,Z) -p

1
p
2
P1 0 (k-l ,Z )

4—30

= F(k+l,2.)[p1P1 1(k,Z) -p 1p2P0 1(k,9.-s-l) +p 2P00 (k,Z)J 1
4—31

calculation of P 1 1(k
,.Q)

It is not possible to f ind a recursive equation

of P_1 ,1(k,2.) that includes just previous values of

P(i,j), P0 1(i , j ) ,  P1 0 (i , j ) .  Trying to evaluate P (k ,2.)—1 ,1
leads to expressing P 1 1

(k,Q ) in terms of correlation

of points farther removed from the region D(k,2.). This

problem is solved by an approximation. But first let’s

see some special cases :

a. P1_ 1 (0,1) -

P1 1 (0,l) = ~(0,l)•C(1,0)

= (~~~(0 ,l)  — x(0,l)] (x(1 ,0) — x(0 ,l)]

and using 2-78
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= P_ 1 ,1 (l ,0) = ~~~ 2 

~~i~~2

b. p
1 1 (0,9.)

= E~~&(l, —l)c&(0,Z)

= E{€(l ,L— l )  [x(0,2.) — x(0 ,2. )]} 4—33

Using 2—53, 2—54 , and 4—21:

= EC~~~(l ,2.-l) [p 1x(0,2.—l) +u 1(0,Z-l) 
-

Now , using the same procedure as in Appendix B it can be

shown :

E{~~(l ,9.—l)u1(0,Z—1)} = 0

and using Eq. 4-22:

E~~~(l,2.—l) 
— = 0

Therefore:

= E{€ (l,Z—l) p1x(0,2.—l)}

= E (l , &—l)é-.(0,2. l)’P
1
} 4—34
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using 4— 26:

P (0,2.—1)P (0,2.—i)
P ‘0 2.’ — P ‘0 Z—l’ — 1,0 0 ,1
1,—i ’ ‘ / — 

~
‘1 1,0’ ‘ ‘ — 

P(0,Z—l )

4—35

C •

In the same procedure :

P (k,0) P0 1(k,0)
= p

2
P0 1 (k ,0) = 1,0 

P(k,o)’
4—36

d. ifl The General Case

Comparing Eq. 4-1 and 4-20 one can see that the

error is a random field that has the same nature as the

original field x (k ,Z). Therefore one can assume that the

autocorrelation function of the error has a similar form to

4—1.

Ree (n,fll) = ~e
2

i
m n
~~2

lm
~ 4_37

This autocorrelation function is correct only in the

steady-state, when F(k,&) is constant. Therefore Eq.

4-37 is an approximation that is correct in steady state.

From 4—37 it is seen that in steady state:

— P(k,L) .p 2 4—38a
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= P(k,2.),p1 4—38b

= P ( k ,Z).p
1
p
2 

4—38c

From 4028a,b ,c:

p
1 ~ (k,2.) P0 1(k,

2.)
p
1 1 (k,Z4-l) = P ( k ,2.)

Note that this equation is accurate for f i rs t line and

coluine (e.g. 4—35 , 4—36).

9. Minimum Variance Condition

We have found the condition for an unbiased estimator.

This condition doesn ’t require any constraint upon the gain

G(k,~
’). Thus we wish to minimize the value of

with respect to G (k+i,2.+l). Differentiating the expression

for P (k+1 ,L+u, set the result to zero and solve for

G(k+l,Z+i). From 4—29:

0 = 
~G(k ,2.) 

P (k ,9.)

= 
aG(k~~~~~ 

( ( 1  - G(k,2.)C]2 PW (k ,2.) + G2 (k,L) R }

• G(k,L) = PW (k ,t ) C ( C 2
P
W (k ,2.) + R] 1 4-40
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And substituting 4-40 into 4-29:

P(k,2.) = (l-G(k ,2.) p~~~ (k , Z ) j  4—41

10. Initial Condition

To start the recursive process of Gain calculation ,

we need the next initial conditions:

1. x(0,2.) 0 < 2. < N

2.  x ( k , 2. )  0 < k < N

and then we are able to calculate :

3. P(0,2.) 0 < 2 . < N

4. P(k,0) 0 < k < N

5. P0 1 (0,Z) 0 < 2. < N—i

6. P1 0 (k,0) 0 < k < N—l

7. P1,_1 (0,l)

Fig. 30 shows what is meant by ‘~nitial condition.”

For an unbiased estimator :

x ( 0 ,L) = x ( k , 0) =
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By using 4—16 , 4—21, 4—23:

P(0,Z) = E {c 2 (0 ,2.)} = EUx(0 ,2.) —x(0 ,Z)) 2 }

E {[~ — x ( 0 , Z ) ] 2

by using 4-6b:

P(0,2.) =

and similarly for P(k , 0):

P (k, 0) =

For

P0 1 (0,2.) =

E~~(x(0 ,2.) -x(O ,2.)) (x(O ,2.+1) -x(0 ,2.+l))

— x ( 0 , 2 . ) )  (~ — x( 0 , & ) )

~2 a 2 4_ 44

and in the same form:
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P1 0 (k,0) = 
~~l 

a 5 4—45

= a 5
2 p ip 2 4—46

11. Summary

The proposed filter for the process that is defined

in 4—1 , 4—2 is given in 4—12 and 4—15. The recursive

equation for GAIN calculations are

G ( k , 9. ) = ~ (U 
(k,2.)C[C2P(U (k,2.) + R]~~

~ (l) (k,Z) = p P(k—l,2.—l) ~T + ~

P(k ,2.) = , (1 — G(k ,Z)) ~ (U (k,2.)

where :

P(k+1,2.) P1 0 (k,2.)

P(k ,2.) = P 
0

(k ,2.) P(k ,2.) p 1 (k,2.)
- 1, 0 ,_I.

P1,_1 (k,~~~~
) P0 1 (k,2.) P(k,2.+l) /

— 
~~~l 

~~l~~2

and :
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P1 ,.,(k—l ,2.) = F ( k ,Z) [p1P1 1(k—l ,Z) — p 1
p
2P (k—l ,2.—1) i-p 2P(k—1 ,2.)],~~ , 0,1

~ ~~~~~~~ 
= F(k,2.) (p1P(k

,Z—1) — p
1
p
2P1 0(k—l ,2.—1) + p 2P1 1(k—l) ,Z)]0, I

P (k,2.) P0 (k,2.)
P (k 2.+1) — 1,0 ,1
1,—i ‘ 

— p (k,2.)

Actually it is impossible to find a complete set of recursive

equations. The equation for P1,_1 (k,2.) is only an approxima-

tion for the ~~se where 2. > 2 and k > 1. Therefore we have

an algorithm that is correct for the first line and column

and converges to a correct suboptimal solution in steady

state.

Fig. 35 helps to understand the procedure of the

recursive calculation. Assume , we have finished the calcu—

lations rfor point (k+l ,9.) and we wish to calculate the gain

G(k+1,L+l). In order to do this we need to know P~~~ (k+l,2.-i-1)

• [variance of one step predictor]. Now :

- The value (k+l ,2.+l) depends on six values

that are seen on the boundaries of triangle I in Fig. 29:

P(k,L+1), P(k,2.), P(k+l,2.), P 1(k,Z), P1 0(k,2.), P1 1(k,2.4-1)0, ,

- The value P0,1(k,t) depends on three values that

create the boundaries of triangle II in Fig. 29:
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P 1(k ,2.1 ), P(k,2.), P 1(k,
2.)

0, 1,

— The value P1 0 (k,2.) depends on the three values

that create the boundaries of triangle III in Fig. 29:

P11 _1
(jc ,2.), P0 1 (k,2.—1), P0 0 (k ,2.).

The value of P 1 1 (k,L+l) is given in Eq. 4-39. As one

moves along a line , this structure is also moving .

11. Results

Figures 36 , 37, 38 show typical results. Steady

state is reached after 4—5 points. The steady state for

the first line and column is hi gher than for points in the

middle of the field. The reason for this fact is that

points in the f i rs t  line are estimated only by their neighbors

to the left. It was found that tne results for the first

line and column are exactly the same as one finds from the

one—dimensional Kalman Filter, using the model in Eq. 2-53,

2—54.

12. Checking Of The Results

Two things must be checked : First , it should be

checked if the algorithm developed above is correct. Recall

that it was impossible to develop a complete accurate

algorithm and an approximation had to be used . In any

recursive calculation an approximation can “blow up ” the

results. Therefore it is very important to check if this is
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Fig. 31: Definition of
System
Coordinates

I 2 .( L i t

I + + + + +
2 + + + + +

+ + + + +

K -I  + + + + +

K ÷ + + + +1+0(K+1, +1)
K+I~~~ + + + +1 +

Fig. 32: Definition of Region D(k+l ,2.+l)
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I ~
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+ + 4 ~ ~~~~ +

2 ~~~~+ + + +
3 1 +  + + + + +
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+
k-I  : +  + + + + +
k : ÷  + +

k + I  : +  + + +~~~+ +
k + 2  + + + + + +

I-1 !

Fig. 33: Definition of Regions c21(k+1 ,2.+1),c~2 (k+l ,2.+l)

00 0 1 02 03 04

710 I I  12 13 14

20 2 1 22 23 24

Fig. 34: Initial Conditions. A black point ~n a cell
(i,j) represents the initial value x(i,j) and
the value P(i,j). A line between two black
points represents the correlation between the
estimation error of the two pixels:
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(Right) Fig. 35: The
values that are needed kiI ,L ~~~ ~~

‘ 
~~~~~~~~~

to calculate G(k+l,2.+l) ~~~
P(K )  

~~~~~~~~~ 

k+I ,t +1

E l  I 
______________

0.3

p (Left) Fig. 36:
÷ — ( k , k )  Estimation Error for

0.2 
~l 

= p
2 

= 0.96

R = 0.5lk,I)

_ _ _  
=

/
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Fig. 37:
Variance of “One
Step Predictor”
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-
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not the case here. It was found that the results for the

first line and column are the same as the one dimensional

Kalman filter. Now, we want to check the steady state,

after MxM points. In order to solve this problem , the

next procedure was done:

1) An image, of size 128 x 128 with autocorrelation

function

R
~~

(n,m) =

was created .

2) White noise with variance /~ was added to

the correlated image.

3) The filter developed above was used in order

to estimate the correlated process. The gain of the filter

was found by substituting p 1, p 2, R1irito the recursive

algorithm of gain calculation.

4) The variance of error of the simulation was

compared with the theoretical variance of error.

This procedure is described in Fig. 39.

The basic assumption here is that if thc simulated

variance of error is similar to the theoretical variance of

error, then the algorithm is correct. A mathematical

justification for this assumption was not proved . Still

one can ask if the mean square error is minimum . But the

theoretical variance of error is an inherent result of
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gain calculation , and part of the algorithm. Therefore

if it is equal to the simulated result, it is reasonable

to assume that the algorithm is correct.

u FILTER TO / 
V(k L)

. 
(k
~

z)
~~ AT ED1 + 

~
‘(k,fl 

FtLTER 
ERROR

- 

X
( k L )  £ (k ,L)

SIMULATION OF AN IMAG E

Fig. 39: Experiment to Check the Algorithm for Estimation
by Using a Simulated Image

The second question arises from the knowledge that

the two—dimensi.~nal filter is not ootimal. Therefore it is

imp’ rtant to compare the optimal non—recursive estimation

error to the sub—optimal recursive filter.

Results:

Fig. 40 shows three types of results:

- optimal non—r cursive estimation error (in

steady state).

- theoretical steady state variance of error of

the recursive filter.
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- experimental steady state variance of error of

the recursive filter.

This experiment was carried out for p
1 = p

2 
= 0.96 , a 2 =1.

The variance of random noise varies from 0.1 to 0.8.

It was found excellent coincidence (less than

5%) between the theoretical estimation error and the

simulated error . The recursive filter shows variance of

error not bigger than 2% than the optimal non-recursive .
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V. APPLICATIONS: DETECTION OF TARGETS
IN PRESENCE OF CORRELATED NOISE

A. INTRODUCTION

Assume a problem of detecting an infrared target. In

this case one has interest in the location of the target

and the intensity of the target. In infrared detection

the intensity has a special importance , because the target

intensity is proportional to the temperature , and by

knowing the intensity one can conclude whether the target

is a missile, or an aircraf t, etc. The target detection can

be interfered by two types of noise:

1. Correlated Noise. An example for • correlated noise

is clouds.

2. White Noise. An example for white noise is

measurement noise.

Now , the prob lem is to f ind the location and intensi ty of

that target.

B. STATEMENT OF THE PROBLEM

In this chapter the next problem is solved :

Given: A set of measurements of a two dimensional field ,

y(k,L). These measurements are composed of three

types of signals:

1) A target that has an intensity function T(k,Z).

2 ) The target is corrupted in a correlated background

x ( k , t ) .  The autocorrelation function is, for

example :
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2 m l  m lR~~~(n,m) = a p1 
p
2 5—1

3) White noise, v(k ,.Q), that is uncorrelated to

the background or target, so that:

y(k,t) = x ( k , Z)  + T(k,t) + v(k ,Z) 5—2

Find:

1) The location of the target.

2) The intensity of the target.

C. BASIC CONCEPT

Assuming the autocorrelation of the background is known ,

one can build an estimator for the background [see Chpt. IV).

The f i lter is applied wi th steady state gain. We use the

“one step predictor ” and compare it with the actual

measurement.

Af ter subtracting the estimated back ground from the

measured image, the residual image includes mainly the

noise and the target. If the target ’s intensity is higher

enough from the noise , the detection can be done in the

residual image.

A further improvement can be achieved if one knows the

shape of the target. In that case classical methods like

matched filters will increase the processing gain. Figure

4]. shows the basic concept.
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/
ft /f /

Fig. 41: Basic Concept of Target Detection

D. DETECTION OF A POINT TARGET

1. The Two Hypotheses

From Fig. 41 it is seen that the “residual

image” is composed of white noise and the target. As a

consequence one can see that a point target is detectable

with a low probability—of—error only if its intensity is

signif icantly higher from the white noise , say three times

more than the variance of the noise.

The point target detection is done as follows:

When arriving at a new point, say (k+1, 9.i-1), during the

scanning process , the situition at hand is that there are

two estimators of the same point:

One - is the “one step predictor” ,

that does not include the measurement at the point.
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The Second is the measurement itself , y(k+1,9A-1).

Now, if y (k+l ,Q+l) is significantly higher than the “one

step predictor ” , it is most likely due to a target. The

target detection is , therefore , a resu lt of comparing the

measurement at a point to the prediction of the value at

that point, by using all of the neighbors near the point.

It is clear that this difference can be due to the measurement

noise v (k ,25). Therefore a reasonably good ~1etection will

be if the target is three times higher than the var iance

of the noise.

- Now, the procedure will be explained mathema tically:

Assume a specific problem :

1) The autocorrela tion function of the

background :

2 m l  m lRxx (n,m) = a 9 p 2

2) The measurement noise has a Gaussian , white

noise statistic :

f 
R if n = m = 0

R
~~~

(n,m) =

if n # O  or m # 0

3) The target has a Gaussian probability

density function with mean T0 and variance
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Note: It is more reasonable to assume a Rayleigh distribution.

The Gaussian assumption is done because it simplifies

the discussion .

p
4 1 ( 1 )

Iii
I

target intensity

Fig. 42: Probability Density Function
Of the Target

The estimation of the background is done by

using the filter that is described in Chpt. Iv. Also assume

that the procedure of estimation/detection is finished for

point (k+l,t ) and now it is repeated for point (k+l, Z+l).

Recall:

(k+l ,9~+l) = one step predictor.

x(k+1 , L+ 1) = estimator of pointrk+1,e+],).

using Eq. 4-15, assuming C — 1:
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;(k+1 ,~ +1) ~/~
1(k+l,~ +l) #G(k+l ,~~+1) (y(k+l ,Z+1) -x~~(k+l ,~ +l)]

(1 G(k+1,~~+l))~i~(k+l,Z+l) +G(k+l ,L+l)y(k+l,~ +1)

= F(k+1,L+1)x~~(k+l,Z+l) + G(k+l,~~+l)y(k+l,L+l)

The residual image :

r1(k+l ,Z+l) = x (k+l ,Q
~+1) — y- (k+1 ,~~+1)

= F(k+1,~~+1) (
j1)(k+l~~ +l) - y(k+l,Z+1))

• 5— 1

Define:

1. r (k+l ,Q+l) 
~ 

~~~~~~~~ 5—2

= (k+1 ,2.+l) — y(k+l,2~+l)

2. x~~~ (k+l , ’+l)  = x(k + l , 9..+l) + (k+l ,Z+1)

5—3

• (k+l ,t+l) = (error of one step predictor).
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3. The variance of the one step predictor

E1 (~~
U )2} = ~~( l)  5 4

4. H1 
- represents hypothesis no. 1, the

presence of the target at point (k+ l,Z+l).

H2 
- represents hypothesis no. 2, the

absence of the target at point (k+l ,Z+l).

Due to these hypotheses :

f T  when H1
y(k+l,9.+l) = x(k+l,2.+1) + v(k+l,9.+l) +

L 0 when H2

5—5

and:

r(k+l ,Z+1) = —y (k+1,~~+l) -
~ x~~(k+l ,~~+1)

T when H
1

= ~~~(k+l ,&+l) + v(k+ l , - ~+l)  +-

L 0 when H2

5—6
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r (k+l, 9~+l) is a random variable with the following

statistics:

when H1 when H2

mean [r(k+l ,9~+l)] = T
0 

mean [r (k+1,Z-i-l)] = 0

var [r(k+l,9.+l)] = ~~~ + R + R ,r var [r(k+l,2~+l)J = ~~~~~~ + R

It is shown in Fig. 43.

p
C r )  

~: 
TH RESHOLD 

1 

~~~~~ 
H 2 

r (k+t ,t +I )

TR 
1:0 intensity of residual

~moQe

Fig. 43: Statistics of the Residual Due to the
Two Hypotheses
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The Processing Gain

Definition :

(processing) = 

(S/N) out 5 7gain (S/N)in

In our case: The intensity of the target, T, as

the residual image is equal to the intensity at the input

(at the measurement device).

S = S.out in

and therefore :

(processing) = 

Nout
gain Nm

The variance of the input noise :

= /c
2 

+ R

a = variance of the correlated field.

= variance of the white noise.

The variance of the output noise: 
-

N = PW + Rout
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= variance of “one step predictor ” error.

(processing) = 
a2 + R 5-8gain (1)p + R

The Threshold Device

Finally , one has to define two regions on the

r (k+l ,9+l) axis:

- a region of values where the decision will be for

presence of a target.

- a region of values where the decision will be

for absence of a target.

The input to the threshold device is the “one step predictor ”

Case 1: The mean T is not known.

-In th is case the threshold has to refer only to the variance

of r when H2 occurs. A reasonable threshold is , for

example

r
threshold = 3/P m + R

~~~Cr)

~
_!_~—“1_ ~~~~~~~~~~~~~~

THIS AREA IS THE (k~~I +1)
1’ PROBABILITY OF intsnsity of resi du ol image

• 2%7p~’~+R FALS E ALAR M

Fig. 44: Threshold for case 1 (T is unknown).
if r > TR -. decide fo~ “target”
if r < TR -

~~ decide for “ no target”

-
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Case 2: The mean T is known.

In this case the threshold has to refer to T . In thi s
0

case one can use a “window threshold ” . See Fig. 45.

pr obability density functi on

H

— 
~~~~~~~~~~~ r (  k + I, 1+ I )

PRO~~~8IL IT y~~ 
— J ,Ip( ’ )* R+ R r. 

int ensity of
FAL SE ALA R M _________ 

r esi dual

WINDOW
THRESHO LD

PROBABILITY
OF “ MISS ’

Fig. 45: Threshold for Case 2 (T0 
is Known).

B. DETECTION OF LINES

1. The Problem

There are many algorithms to detect lines. Most of

them suffer from one disadvantage : that to detect a line,

an a-priori assumption must be about the direction of the

li-xe. Therefore , in order to detect lines in several

directions , the image has to be scanned several times or ,

during one scan many calculations must be done for each point
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in the scan. Ther e is no doubt that, for “real time” appli-

cations , all of those algorithms have a great disadvantage .

The goal here is to develop an algorithm that will detect

lines , regardless of their direction .

2. The Algorithm

The f i r st, intuitive , f eeling is that t~ie algorithm

of Section D, for point-detection , is correct for line

detection. But, if this algorithm is used , only diagonal

lines and the edge points of vertical and hor izontal lines

can be detected . Therefore , it was necessary to improve

the algorithm for line—detection . The problem lies in the

estimator-equation :

x(k+l,Z+l) = x1 (k+1,~~ +l) + G~~k+1 ,~~ +1) [y ( k + l ,Z+l)

correction term —i

where the correction term depends on the measurement,

y(k+l,~ +l). The “correction term ” causes an error in a

point where a target is present (because in this case

y = x + v + T’, .

From another point of view , looking on Fig. 41,

one can see that the basic assumption is that the output of

the f i lter includes the background alone. In that case, the

subtraction of the measured image, y(k+1,Z+l), from x (the

output of the f i lter) will result wi th a residual image

that is T + v. But it was shown that part of the target

intensity appears in the output of the filter. Hence, af ter

subtraction , the residual image doesn ’t include the target.
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This discussion indicates the improvement required .

Recall that the one step predictor is used in the threshold

device to decide whether or not a target is present. This

decision is used to improve the estimation procedure. The

new algorithm will be a combination of the detection and

filtering process. 
-

measured i 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. 46: The Combination Of Detection And Estimation
For Improved Line Detection

The improved estimator equation will be

x~~~ (k+l ,Z+l) if r(k+l,2~+1) > threshold

x(k+l,2+1) =

( x ~(k+l ,~ +1) (k+l ,~ +1) jf r(k+l, +1) < threshold
— x (k+1 ,Z+l))

5—9

where , again

r(k+1 ,Z+1) — y(k+1,Z+l) — (k+l ,Z+1)
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The idea behind this improvement is that if the residual

is greater., than a certain threshold we know that this is

due to a target, and therefore it is wrong to include the

measurement y (k+l,9~+l) in the estimation of that particular

point. In this case the best one can do is to use the

one—step-predictor as the estimator of the point.

In the case where the mean of the target, T0
, is

known, the equation for x (k+l ,Z+1) will be:

(k+l,Z+l) +G(k+l,9,+l) if r(k+l,2.+l) > threshold

.((y(k+l,Z+].) — T )  _ x W (k+l,Z+l)]

x (k+l,i+l) =

(k+l,2.+l) +G(k+1,2..+1) if r(k+l,~+l) < threshold

[y(k+l, Z-s-1) — x~~ (k+1, Z-i-l)]

5—10

F. SUMMARY OF EXPERIMENTS

1. The Simulated Image

In order to check the algorithm of line detection ,

a simula ted image was created (the size: 128 x 128).

a) According to the autocorrelation function -

R
~~~

(n,m) = a 2 ~~l n l ~~lm l

the correlated background was created by passing white noise

through the f i lter ,
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x(k+l,2+l) = p
1x (k+l ,Q) — p

1
p2x(k,94 ÷ p2x(k,~,+l) +u(k ,9)

where

u(k,2.) is Gaussian white noise, zero mean , and

variance of ~~~ where

Q = (1 - p
1
2) (1 -

b. A Gaussian white noise with zero mean and

variance a (a = v’~ ) was added to the correlated field .n n
c. A target that has the shape:

N .  P .  G .  S .

was added to the image of b).

d. The simulated image will be -

y(k+l,~ +1) = x(k+l,2~+l) + v (k+l ,2~+l) + T(k+l , 2~~+l)
~~~~~ ~~___—__) L~—~~~--~~~j  ~~~~~~~~~~~

I I I
Background white noise target

2. Detection Of The Target

a) The background was estimated by the fi l ter :

—(1) A
x (k+l , 9 .+ 1 )  = p 1x(k+1,

Z) — p 1
p2x(k,t) +p 2x(k,~ +l)
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with

J x W (k+l ,~ +l) - .  if r(k+l,~ +l) > TR

x(k+1 ,Z+l) =

) x W (k+ 1,Z+1) + if r(k+1,~ +l) <

G[y(k+l,~ +l) (k+l ,~ +l)1

where :

r (k+l ,~ +l) = y ( k + l ,~~+l) — x~~~ (k+l ,~ +l) .

b) The residual image r (k+l,2.+l) was passed through

a half-wave rectifier, and then displayed . The reason for

the rectification was the fact that it is known that

negative values in the residual image are only noise.

The display used a line-printer with letters representing

eight gray levels.

c) The residual image was fed into the threshold

device to decide if there is a target at point (k+l ,2.+l).

if r (k+l,9+l) > TR -~~~~~ presence of target

if r(k+l,Z+l) < TR — -~~~~~ absence of target

This decision was fed back to the filter that estimates the

background . Fig. 47 summarizes the procedure of simulating

an image and target detection .
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4~ V (I’ 1) + T ( k L )

TARGET

I CORRELATED IMAGE
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SIMULATION OF AN IMAGE I

DETECTION OF THE TARGET 

I

Fig. 47 : Simulation of An Image and Detection of Targets

Results are given in Table 4 , and Figs. 48-53.

Table 4

_ _ _ _ _ _ _ _ _
I Case l Case 2 Case 3

a 1 1 1

p
1 

= p
2 0.96 0.96 0.96

= a 0.0 0.2 0.33n

T 1.0 1.0 1.8

TR 0.6 0.6 0.9

G (gain) 1 0.46 0.32

Results Are
Shown In 43 ,44 45 ,46 47 ,48
Figures
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187

0 -S — — 
‘



11715*010 NO I .7500 7

~~~pil ~~~~~~~~~~~~~~~ i~W~~~1~ ~‘i1~ ~~fl Ji~1 I?~2T 1~~~ 14 2?!fl~~~~ 1.701 -
— 

I414%47$~ Si tS1~~ 67IIP ISlIhe lSS 1431461111 113406760 11341671* 1214114710 1234*4710 12341.160 453146754 123404714 13)436714 
—

— - -S ~ . is. P4.54 - isif ls- 51111501 - . - - - -— —

-- I - -- 55- 55- 
- 

5-5-___ ~ __5___ _7~ - —— -5—--— _ _ _ _ _

— 

—. 1 S1Zl~~~ 
— 

— 

— 

—
-5 

1 
— —

- 
, .

-
~~ .‘: ;i 

_ _ _ _ _ _ _

— 0 - il1iIPli.”Ii1.~ .1l4ilL”1SMI110I— - — . -

- S - - ~ fl Pt0

.400 II 11544.  0 .14 ?

Ill 4 Ul45. 4.046

Fig. 53: Target Detection Case 3: The Residual Image

188

- 5 ! 
- - -.~~~ - — —:-—

~ —4



VI. FURTHER IDEAS IN THE SUBJECT OF
RECURSIVE IMAGE PROCESSING

The purpose of this chapter is to suggest some

additional topics in this research.

A. PROBLEMS IN RECURSIVE FILTERING

It is our belief that the f i lter that was developed

in Chpt. IV is the best suboptimal filter in the structure

of (4-12 , 4-15). It is so because our approximation is

assumed to be correct in steady state. But it is still an

open question to prove that this filter is really the best.

In recursive estimation of more complicated structures

the “state space structure ” , as in (2—116), should be

developed. A proposed filter might be:

MW (k+l,~) A1 A2

= - -- ~~~~~~~~ - -

(k,&+1) A.) A
4 

N(k ,~~~~ )

and

M(k+1,~ ) ~
(l)(k+1,t) Gm(k~~

) MW (k,L)

= + (y(k,~.) — (C1 C2) ]

A 1% (l)N(k+1,L) N (k , 21+l) G~(k1 Q.) N (k,2.)

6—2
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or:

(k+l,2.-i-l) A1 
M(k,Z+l)

— — - 5  = . . . .‘ 
. - —--5 6—3

NW (k+l,L+l) A.3 
A4 N (k+1,

~~. J l

and

A A (l)M (k+l, 9~+1) M (k+l, 2~ i) G (k+l, 2.+l) 

- - = - - • -  - — - - — + — - - — — - (y (k+l,2.+l) — (C1 C2)

N(k+l,9.+l) N (k-4-l,~.-4-l) G~(k+1~2~-4-l)

~ (l) (k+l,9..+1) 

] 6—4

~(l) (k+l L+l)

Following the procedure of Chpt. IV the gains Gm (ki~
s) t

G
n

(k i s Q )  can be calculated using recursive equations.

Recall that the problem with the filter of Chpt. IV was

— , - the non~e1d gtance of a “closed set” of recursive formulas

for gain calculation (an approximation had to be done).

— The proposed filter that is suggested in this chapter suffers

from the same difficulty. Therefore it is our belief that

formulas for the general case cannot be found. Two dimen—

sional filters with the proposed structure above should be

derived and checked for specific cases.
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The next topic for additional research is sensitivity

analysis of the algorithm to changes of the field parameters.

In order to improve the estimation in the case where the

parameters of the field are not known , one can use an

adaptive system as follows.

y(k,R~) I 2(k,2.)
Filter 

~

- ,
~ ~~~~

I gain G(k ,U

_ _ _ _ _ _ _  

I
I I I
I J Parameter
- - Identification -

One can apply the target detection algorithm on images

with an autocorrelatiori function from (2-9) of the form

ni m lR ( n ,m) = p
1 cos (01

n)p2 cos (e2m)

This can be done only after developing a filter for this

case (see proposed structure of the filter in Section A

of this chapter).

The approach to target detection in this thesis was to

use a feedback line from the output of the threshold device

back to the filter (see Fig. 41). It was found that for

low values of thresho ld, this approach is unstable . The

19].

— - --— 5 - ~~ ~~~~ , — — ‘~~.-



*D-Afl 5 In NAVAl. POSTSRAC4JATE SCHOOL NOWTERCY CAIJF Fm ISa
ESTIMATIO N 0 tWO DIPCN SIONA4. RAPCO% FZE—ET C(U)

3o~3

__ 
__



II i.c :!~~

______________ 

2 2

1 .1

ll~ll 
25 1.4 110 16



question of stability criteria for this two—dimensional,

non—linear operation remains unsolved . Using a feedback

from the threshold device to the filter has other disadvan-

tages. A solution to this problem might be to estimate

x (k ,9.) without a feedback from the threshold device. The

residual image will then be

A
r(k+l,L+l) = y (k+l ,Z+l) — cLx (k+l,94 — B x(k,&+l)

where

~,8 have been found by some optimization criteria.

Detection may be improved by processing more than one frame

or alternatively tracking in time domain from frame to

frame by a regular Kalman filter.

An improvement may be achieved using the algorithm of

(5—10), and assuming the intensity of the target is known.

If the intensity of the target is not known, one can use

this algorithm by adding a “tracking loop” on the target

intensity in order to estimate this intensity level on—line.

At last all these ideas should be checked on “real

life” images.
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APPENDIX A

THE ONE STEP PREDICTOR

Here we compare between the recursive filter and the

optimal non—recursive estimation (by direct use of the

orthogonality principle). It will be seen that the one—

step-predictor is not optimal. In order to prove it a

specific case will be shown and then we will extend the

result.

Part 1: A Specific Case.

The recursive procedure of gain calculation by the

algorithm of Chpt. IV, leads to optimal estimators for the

first line and column. That fact is obvious because the

first line and column could be treated as a one dimensional

case , using Kalman Filtering. Now assume the measurement

starts at (0,0). Then, the f irst place where a difficulty

appears is in the calculation of the “one—step—predictor ”

of point (1,1). We shall calculate P~
1
~~(1,l) using two

methods: (1) optimal non—recursive form , and (2) by using

the recursive form, in order to compare the results.

Given:

R ci2 fl~ Im !
xx p

1 
p2

a — i

p
1 

p2 — 0.96
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y(k,Z) = x(k , Q .) + v(k,2~)

[o , n~~~ 0 or m # 0

R~ 7(n,m) = 1
L R = 0.64 , n = 0 and in = 0

Find: The estimator of point (1,1) by using its three

neighbors (0 ,0), (0,1), (1,0).

~.1

Fig. 43: The one step predictor. The Fig. shows
the pixels that take part in the
one—step—predictor of pixel 1,1

Solution By Using the Orthogonal Principle

By using Eq. C-i (Appendix C) the next set of equations

is obtained.

(R,~~oi o + R  R~~(l,0) R~~(0~l)
\

\ ~~~

R,~~(—i,0) R,~~(0,0) +R R~~(—1,1) ) ~~~~~~ ( R,~~(O,—1)
\ R,~~(0,1) R,~~(1,—1) R,~~(O,0)+ F~/ \R,~~_i~o
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and , for p
1 

= p
2 =

(2

~

P P 
~o,o 

p

0 )p l+R 
~~ ) I ~~~~~~~~~~~ J —

2 1
ip p l+R

and:

(l+R) 2p2 + 2p 4 — (1+R) (2p 2+p 6)
= 0.22500,0 

= 
(1+R) 3 + 2p 4 — (l+R) (2p2 + p

4
)

(l+R) 2 + p 5 — (].+R)2p3 0. 29254 =
~0,l 

= 1,0 (l+R) 3 + 2p 4 — (l+R) (202 + p )

Now, using Eq. C-2, the error is calculated :

:Li)optimai = E{é2(1,l)}

= E~x
2(l,l) — (Zc~p,qy(piq))x(l,l)} ,

where:

(p,q) — {(0,.0), (0,1), (l,0)}

21 — — 

~~~ 
— 
~3P

~
l
~~
Uoptima1 — 0.2360
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Solution By Recursive Filtering

To simplify the calculations, the G’s and P’ s

for points (0,0), (0,1), (1,0) will be calculated from the

Kalman filter equation. (Recall: the results for the

first line and column by using the algorithm of Chpt. IV

are the same as in the Kalman Filtering results.)

P(0,0) = 1 (Initial Condition)

G(0,0) = (1) 
‘ = 0.6098

P (0,0) +R

1
P (.l,1) = 

P (0,0)R 
= 0.3902

P (0,0) +R

P1(l,2) = P1(2 ,l) = p 2 P(1,1) + Q = 0.4380

G(l,2) = G(2,1) P1(l,2) 
= 0.4063

P (1,2) + R

P(1,2) — P(2,1) = 
P1(l,2)R = 0.2601
P (1,2) + R

Also the calculations for the ~~fl ~ 
(1,1) and P (1,1) can1,0

be done in a simplified way .

Equivalently to Eq. 4-20, in the one-dimensional

filter , one can write :

~~(k +l) — F ( k + l ) p 2 € ( k )  — F ( k + 1 ) u ( k )  + G ( k + l ) v ( k + 1)  - for 9. — 0
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~.(L+1) = F(9.+l)p1~~
(L) —F(Z+1)u(L) +G(2.+1)v(Z+i) — for k = 0

therefore :

P0 1 (0,0) = E{~~(0,0) &(0,1)}

= P(0,0)(1—G(0 ,1))p1 = 0.2224

P1 0 (0,0) = E{~~(0,0)~~~(1,0)}

= P(0,0)(1—G(1 ,0))p 2 = 0.2224

P1,_ 1(0 ,l) = E(€ (0,1) &(l,0)}

= ( 1— G ( 1 , 0 ) ) ( l — G ( 0 , 1) ) P ( 0 , O ) p 1p 2

= 0.1268

Now, the equation for the one step predictor is:

P1(1,l) = ~ 
~ (0 0)~ T + Q

• 

7~~
i~o P1,0(0,

0) P1,_1(0~l)\/ ~1

~
‘1 ~~1~2 ~~ 

( P1,0(0,0) P(0,0) P0,1(0,0) ~/ ~p1
p
2 + (l~p]

2) (1_p 2
2)

\ P1,_1(0 ,1) P0,1(0 ,0) P(0 ,1) / p2
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P1(1,l) = 0.2634

C,)
P1(1,1) is not far away °‘ ~‘~~ optimai

’ but anyhow

• different.

Part 2: Proof of the General Case

First, prove that the optimal solution requires the

estimation error of the predictor to be uncorrelated

(orthogonal) to the estimators that take part in the

equation of the predictor:

“(1)x (k+1,9.+1) = c~1x(k+i ,L) + cL2x(k ,2) + c& 3x ( k, .~*1)

and the error , &1) (k+1 ,2~+1) is given by

(k+l ,9.+l) (k+l ,Z+l) — x (k+ 1,~~+l)

+ ct2x(k,L) + ct 3x(k ,L+l) 
— x(k+l,9.+l)

we want to minimize

— E ((ci1x(k+1,L)+cz2x(k ,L)+a 3x(k ,9.+1)—x(k+1 ,L+1)1 2

which requires

,~
-

~~-- E{[&’~ (k+l, L+1)J 2 } — 0. i 1,2,3.
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We obtain

E{~~~~ (k+l ,t+1) ~ (m ,n) 
} 0

(m ,n) = {(k+1 ,9.), (k,t), (k,Z+1)}

in the one dimensional case:

~~ 

E{~~~~ (k+1).~~(k)} = 0

Now check if this orthogonality condition can be satisfied.

1) In the one dimensional case:

E{~~~
1
~ (k+l) ~ (k)} 

= E{ (k+l) — x(k+1)] c c ( k ) }

substituting : x(k+1) = px(k) + u (k)

E(&1) (k+l) x(k) } EC (p~~(k) — px (k) — u (k)] ~ (k) }

= E([ p~~(k) - u(k) ] x(k)}

assuming ~ (k) is optimal , we know that:

E{E~-(k) ~ (k)} = 0
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also:

ECu (k) x (k)} = 0

Therefore :

(k+l) x(k) } = 0

Conclusion: The condition is satisfied in the case of the

one-dimensional one-step-predictor.

2) In the two dimensional case:

Check if E{&(U (k-4-1,9.+1) x(k,9.+l)} can be made zero.

(k+l,2.+1) x(1c 9*l)}

= EC f (p 1x (k+1 ,~~)—p 1p2x(k,L)+p2~~(k,Q+l))—x(k+l,l+l)]~~(k,9.+l)}

= E{[(p
1~~

(k+l,.Q)—p
1p2x(k,9.)+p2~~(k,2.+l))—(p 1~~(k+1 ,Z)

—

= E([p1~~(k+l,Z)—p 1p2 (k,9.)+p2~t(k,9.+1)].~~(k,Z+l)}

Now, because ~ (k+l ,9.), x(k,9.), (k,Q+l) are based on different

sets of data, and so are also the corresponding errors, the

only way to make the last expression zero for each k, is

to make each part of it zero.
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E {~~(k,9.+l) x(k,L+l)} = 0

E {~’(k,9.,) x(k,Z+1)} = 0

EC&~(k+1 ,2.) ~ (k,9.+l)} = 0

But the last expression, E{&(k+l ,.Q) ~ (k,t+l)} cannot

be made zero. Note that ~ (k+1 ,Z) is a result that is

obtained from a different set of data than ~ (k,9.+l).

For example one cannot require ~ (l ,O) and x(0,l) to be

orthogonal, knowing that:

x (O ,l) = function of y (0,0~, y(0,1)

~.(l,0) = function of y (0,0),1 y(1,0).

Q.E.D.
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APPENDIX B

Let us show how one can wri te nonrecursive equations for

x(k+1,2.+1), y(k+1,9~+1), x(k+l,Q.+1) and (k+1,2~+1) and then

show some properties of the correlation between these vaiues.

From the recurs ive equation:

x (k+l ,2 -s-l) = p
1x (k+1,

Z)— p
1
p 2x(k,Z )+p 2x(k,9.+1)+u(k,~~)

one can wr i te:

ini tial conditions
x (k+1,~ +1) = Za(0 ,24x (0,2.) + Ea(k,0)x(k,0)

+ Z c t( i , j ) u ( i, j)
(i,j)E~c22

(k,2~)

= M + cL (i,j)u(i ,j) B—i
(i,j)~~22 (k,9.)

Now, using Eq. 2:

y(k+l,Z+l ) = ((M + (i,j)~~c22 (k,~~) 
+

v(k+l,9~+l) B—2

Using 2, 12 , 15, A—l , A— 2:

L •~~~~ V



~ (k+1 ,9+l) = N + ~ (i,j)u(i ,j)
(i,j)cc~2 (k,c~)

+ y(i ,j)v(i,j) B—3
(i,j)c~ 2(k+1 ,9.+l)

Theorem: E { u (k ,~~)~~T(k,2)} = E{~~(k,9..)u(k,9.)} = 0

Proof: Using ‘/-/9,q.iq, 3-1, 5-3 we see that é~(k,2~) does not

include the value u (k ,9.). Therefore by using 4-4f we have

completed the proof.

Theorem: ECv (k+l ,Z+1)~~
T(k,9.)} = EC~~(k,9.)v(k+1,Z+l)} = 0

Proof: The proof is in the same procedure as Above.

By substituting B-l, B—3 into the expression for ~ (k,2.)

we see that ~~(k,t ) does not include the va lue v (k+1,2.+1),

and therefore, by using Eq.4’.7, we have completed the proof.

In the same way one can s how that:

E{é(k ,.Q) u (k+i,2~.+j)} = 0

EC~~(k,L) v(k+i+1,L+j+1)

if i > O

i l o
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APPEND IX C

NON-RECURSIVE ESTIMATION

1. Motivation For The Non-Recursive Estimation

The goal of this thesis is recursive es timation in

image processing . Chpt. IV derived a recursive “leas t

square error ” estimator that was not optimal (the error was

not orthogonal to the data). So, the motivation to

this section is to compare the recursive f i l ter to the

optimal solution .

2. The Basic Procedure

The non recursive estimation is based on the or thogonali ty

pr inciple , which is given in Eq. 3-10:

E([x(k ,L) — E y(p,q)J y(i,j)} = 0
(p,q)cc21

(k,Q) p,q

C-l

and wri ting i t in the form :

E([x(k,9.) — Z ~ (x(p,q) +v(p,q))]
(p,q)cc2 1

(k,9.) p,q

•(x (p,q) +v(p,q)]} = 0

~e is the noise that is added to the state x.
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Let us cla±ify the procedure with an example ;

• I n !  f m ~Given: 1) R
~~

(n,m) p1 
p
2

(o if n~~~ O or m~~~ 0

2) R~~~(n,m) =

L R if n = 0  and

v(k,9.) is uncorrelated to any of the random-

field values , x (i,j).

3) y(k,9.) = x(k,2) + v(k,9.)

Find: the four optimal coefficients to estimate the value

x(0,0) by the set of measurements in a 2x2 area:

y(O ,O), y(0,l), y(l,0), y(l,l)

— 

) ‘~o,o) YO , I I  
—

y(,,o) )
~
,,,)

~“ ~ ‘~7o) *~~~~~/(a,i) ~~ ~3Y~ °“ ~ 
ø(’4 p,,,-

Fig. 55: Non Recursive Estimation

• Solution: If the noise is uncorrelated to the signal

x (k ,L), then the set of equations that follows

from the orthogonality condition is:
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3
,

/R
(_l~

_l
)\ /

~~~co~o)+R R~~(1,O) R~~(0,l) R ( 1,l)

R(0,—l) R,~~(—1,0) R~~(0,0)+R R~~(—l,l) R,~~(0,—l)

R(—l,0) R,~~(1,l) R,~~(l,—l) R~~(0,0)+R R,~~(l,0)

R(0,0) R~~(—1,—1) R~~(0,—l) R~~(—l,0) R~~(0,0)+R cz1,1

or:

p
l
p2 /l+R p

2 
p
1 

p
i
p2 ~

f
c&
0 0\

p 2 Pl 1+R 
~2 ) ~ 0 ,1

p
1 

= 
p

2 P1P2 l+R P1 J
1 ~‘l~2 ~2 

1+R/ cx l , ]J

From this four equation system, one can find the ct’s.

3. The Estimation Error (variance)

x(k ,9.) — = x(k ,Z) — ~ ct y(p,q)p,q

2
= (x (k,Z) — Ectp~q 

y (p,q)]

E{c2} = ECx 2 (k,L) — 2x(k,R.)Ectp q y (p,q)

$ + (Zcsp ,qy(p,g))
2}
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2 2EC } E(x (k,9.) ~ x(k~9•)~ ctp q Y (p~q)

+ E ct y(p,q)(~ cx y(p,q) - x)}p,q p,q

The zero was set due to the orthogonality principle.

P(k,9.) = EC 2 (k,9.)} = E (x2 (k,Z) — (Ect y(p,q))x(k ,Z)}

C-2

Example: If we continue the previous example (the estimation

of a point by a 2 x 2 area):

EC 2} = 1-a 0 0p1p2 ~~~0 1 p
2 -a1 0p1 ~~~~~

Theorem: If the measurement y (k,~~) is included in the

estimation of the point x(k,Z), then:

P(k,9.) = EC 2(k,L)} = ctk 9 .  R C—3

Proof: Assume the estimation of the point x(k,Z) is done

without the point (k,L), by using a set of measurements Y.

• Let’s call this estimator ~~ (p = Prediction).

~ (k,L) = a .  •y(i,j) (i,j) ~‘ (k ,L)p (i,j)e~ 
1,)
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is the “predictor” of x (k,2).

Also assume that the variance of the error of the predictor

is P .  Now assume another estimator that Uses the

set Y and the measurement yf’k,94. In that case we can say:

~c(k,&) = 

~l 
x~~(k~ 2~) + ctk,9. y(k ,9).

x(k,L) is supposed to be an optimal combination of
x(k ,.Q) and y(k,.Q) . Because there is no correlation

between v(k,~~) and other values, this is a case of a com-
bination between two estimators that have uncorrelated
errors (see Ref. 4, Chapter on optimal smoothing).

estimator A: x~~(k1 2 ) with variance P .

estimator B: y(k,9.) with variance R.

The optimal combination is [due to Ref. 4]:

P
x(k ,L) = 

R + 
~~~ 

x~~(k~ 9.) + R + P ~ 
y(k,&)

with variance:

P (k, 9.) 
R~~ ~R 

.~?pr ) R c&k ~ 
R

Q.E.D.
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4. Unbiased Estimator

Given: A random field x(k,~~) with mean

A noise measurement y (k,2.) = x(k ,Z) + v(k,t).

We wish to find an unbaised estimator for this case.

Define: x (k,Z) ~ x’(k,2.) +

x~~(k,9.) is a random field with mean zero. Suppose

we want to estimate x ’(k ,9.). To do that define

y ’(k,Z) ~ x ’(k,.9.) + v(k,2.)

• = y(k,2) -

the estimation of x ’(k,2.) is:

x(k ,L) = Z ct p,q y ’(p,q)

x(k,L) is unbiased because x ’(k,Z) is unbiased.

And now, the estimation of x(k,Z) is:

x(k,L) = x ’(k ,L) + = 
p,q y

’ (p,q) +

— (Zctp,q (y(p,q) - ~ ) ]  +

x(k ,L) — Ectp,q Yp,q + ~ (1_ Zctp,q]

—~~~~~~~~- 
_
~

:9 
-~~~ -~~~ - -~~~~~~~~~ 

-



Conclusion: The estimator can be done unbaised regardless

what the coefficients a are. Therefore, the calculationp,q

of the a ’s is the same as before. One has only to add one

term to the estimator equation. This term depends on the

mean.
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