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\ ABSTRACT

\
{

2\

by difference equations (Markov process) was undertaken.

First an investigation of modeling stochastic processes

The starting point of the modeling procedure is the knowledge
of the spectrum of the process. Two methods are discussed.
One is based on optimal estimation theory and leads in most
cases to a high-order (perhaps infinite) Markov process. The
second method, based on linear system theory, leads to a
first order Markov process (in matrix representation). Both
methods have been extended to two-dimensional processes.
Secondly, recursive estimation (filtering) of two-dimensional
random fields was addressed. It was shown that a two-
dimensional recursive filter cannot be optimal. Therefore,
only a sub-optimal solution is available. This solution
minimizes the mean square error for a specific structure of 1
a filter. Finally, applications of modeling and recursive
filtering are discussed. An image that includes a target,
correlated noise and random noise was processed. Some

methods of target enhancement (also called "restoration”

are discussed.
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I. INTRODUCTION

1. The goal in this thesis was to solve the problem

described in the following paragraphs. Consider an image
sensing device that has an array of NxN sensing elements.

The images that are sensed by the device include some

targets that suffer from degradation due to background

(for example, clouds). The background noise eliminates the
possibility of direct detection of the target. The background

is assumed to be a correlated noise source.

Further interference to the output of the imager might
be the internal noise of the device. It is assumed that
the noise of each sensing element is uncorrelated to the
others (white noise). Therefore, the output of the imager,
y(k,2) includes three types of processes:

1. the target T(k,%)
2. The correlated background x(k,2%)

3. The white noise «v(k,2%)

y(k,2) = T(k,2) + x(k,L) + v(k,2) .

A typical image is seen in Figure 2. The problem in this
thesis is to detect the intensity and location of the target
by using recursive techniques that are applicable for

real-time hardware.




2. The solution to this problem is carried out in three
steps:

a) Mathematical modeling of the background.

b) Estimation of the background.

c) Detection of the target.

The main idea was to eliminate the background by subtraction

of the estimated background from the original imager‘'s output.

Then the residual image includes only the target and the

white noise. The detection is, therefore, easier. Still,
for detection with small errors (false alarms and misses)
the target must have an intensity higher than the white

noise. The detection procedure is shown in Fig. 1.

YEX + T+ Esms?__now
BACKGROUND

DELISION
| THRESHOLD [—

Fig. l: Target Detection from a Noisy Image

In each of the three steps, some original ideas have been

developed.
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3. In the "mathematical modeling of the background" the

starting point is that there is a correlation between points
of the background. The two dimensional autocorrelation
function was assumed to be known. Only stationary random
fields were treated.

The main idea of the mathematical modeling is to repre-
sent the image by difference equations that are forced by
white noise. The conventional way of representing a process
whose autocorrelation function is given is by using a
"Markov Process." The value of a point, x(k,2), is

represented by its neighbors:

x(k,2) = I '
x(k,2) ap’qx(p q)
{(p,g)} is a group of "neighbors" near the point (k,%2). And:
x(k,2) = x(k,2) + u(k,2)

= Zap'qx(Prq) + uk,?).
u(k,2) is called "modeling error."
The weighting coefficients ap q are chosen to make the
’
variance of the modeling error minimum. This is done by

using the well known "orthogonality principle" in optimal

estimation theory [see ch. II section H]. This technique

suffers from some difficulties as follows:

10




- The weighting coefficients o have no simple
expressions. p.q

- The number of neighbors one has to use is theoretically
infinite for some types of processes.

- The coefficients are found by solving many algebraic
equations, especially in the two-dimensional case.
The number of equations is equal to the number of
coefficients.

- It is difficult to describe the two-dimensional
difference equation in a "state~vector structure".

The optimal-estimation approcach to linear modeling is
summarized in Ch. II section H.

The method of modeling that was derived in this thesis
is to find a recursive, linear, invariant filter H(zl,zz)
such as:

- when forcing the input with whitenoise, the output
of the filter will be a random process that has the
same autocorrelation function as the given field.

So, instead of deéling with the spectrum of the process,
one has to deal with white noise and a linear filter. This
is well known.

Rosser [Ref. 12], in 1975, suggested a state-space-
structure for two dimensional fields and also derived some
of the properties for this structure [see Ch. II Section G].
All of the examples that were chosen in this thesis led to
a filter, H(zl,zz), whose state-space-structure fitted
easily into Rosser's structure.

Moreover, this method of modeling doesn't suffer from
any of the disadvantages of the previous method. It should
be emphasized that this method is limited only to separable,

two-dimensional autocorrelation functions and to causal models.

11




This method is called "Filter Response Method" and

is summarized in Ch. II Section F.

4. The estimation of the background is actually an exten-

sion of the one dimensional Kalman Filter. The problem is

roughly defined: "Given a noisy measurement

yk,2) = x(k,2) + v(k,2)

where x(k,%) is a correlated field and v(k,%&) is white
noise. The filter should estimate x(k,%), denoted x(k,2).
It was shown that a recursive, two dimensional filter cannot
be optimal in the sense that the error cannot be made
orthogonal to the measurements, as some researchers have
tried to do (Ref. 10]. There is a distinct difference
between one dimensional processing and two dimensional
processing. Therefore the method in this thesis is to

define a reasonable structure for the recursive filter, and

then to calculate the parameters of the filter to minimize
the mean of the square error. Recursive equations for
calculating the filter parameters (gain) and variance of
error were developed.

The results were checked in two ways: .

1) By comparing with the optimal, non recursive
estimator.

2) By simulation. A correlated image was added
to a field of white noise. Then the correlated
part of thé combined image was estimated by
using the recursive filter. The variance of error
was compared with the theoretical variance of error.

AT A

The results for all cases that were checked show good coincidence.
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5. In the study of target detection, the problem was to

detect lines. Most of the algorithms suffer from one
disadvantage. When detecting a line, an a-priori assumption
must be made about the direction of the line. Therefore,

in order to detect lines in several directions, the image
has to be scanned several times, or during one scanning to
do several calculations for each point. No doubt that for
real time applications all of those algorithms have a great
disadvantage. The algorithm developed in this thesis
detects lines, regardless of their direction. The key

peint in this algorithm is feedback from the detection
(which is a decision process) to the filter. Most algorithms
of filtering and detection do it in two separated steps.
Fig. 3 shows the target that was detected from the original

image in Fig. 2.

6. Outline Of Chapters

Chapter II discusses the problem of two dimensional
random fields. In order to make this chapter "stand alone"
for reading, some background material was included in Sections
B and C. This background material includes information on
two-dimensional operations and random processes. Section E
describes models for a one-dimensional random process.
Section F extends the methods of modeling for two dimensional
processes.

Chapter III is a review of estimation theory. It explains

the "position" of recursive, linear estimation, with quadratic

form, in estimation theory.

13




Chapter IV solves the problem of estimating a two-
dimensional process, when, originally, this process is
combined with white noise.

Chapter V shows the application of Ch. II and IV
(modeling and estimation) to the specific problem of

target detection.
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II. LINEAR MODELING OF TWO-DIMENSIONAL
RANDOM FIELDS

A. INTRODUCTION
1. This chapter contains the basic principles of modeling

a random process by linear equations. The basic assumption

will be that the statistical relationship between each two

measurements is known. This relationship is the so-called

autocorrelation-function. The techniques that will be used

are mainly extensions of the principles that are used in the
one-dimensional case. Terms like "Markov Model", "state

variables"”, "FPactorization" will be used.

2. In the one-dimensional case the state-equations have the

form:

#(k+l) = g-f(k) + g-g(k)

The words "one-dimensional" refer to the variable k (but the

state vector x(k) can be a multidimensional vector). It will

be shown how to use state-equations for a two dimensional

random field, in which the variables are k and & .

Note: When a random variable depends only on one dimension,
k, it is called a "stochastic process". When the

dimensionality is two or more, as k,&, it is called

a "random field".




3. What is the philosophy behind describing a random process
by state equations? The answer; it is difficult to deal with
random fields in which there is correlation between adjacent
points. Therefore, the main idea is to show how a correlated

field can be described as an output of a linear system which

is driven by white noise. So, instead of handling a

correlated field, one has to handle white noise and a linear
system. The last problem is well known from system theory.
Figure 4 illustrates the concept of modeling by the "filter

response method".

> LINEAR >
FILTER

INPUT (S OUTPUT IS THE GIVEN

WHITE NOISE CORRELATED FIELD

Fig. 4: Concept of "Modeling" a Random Field as an
Output of a Linear-Filter

4. Although this thesis mainly delas with discrete fields,

continuous models will be described also, in some cases.

5. 1In order to make this chapter "stand alone" for reading,

some background material was included in sections B, C.

6. Section D describes the "Filter Response Method" of

modeling a random process.

18
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7. Section E describes the one dimensional processes, and
Section F is its extension to two dimensions. The Markov-
Process is the key to the modeling procedure. It will be

shown that from the same starting point (the given auto-

correlation function) two models can be developed.

8. The modeling by the "Filter Response Method" leads to

models that have the structure

M(k+1,2) A A | Mk, ) r s ]
|

N(k,2+1) As « A, |N(k,2) i_ B, J

Roesser [(12] described the properties of that structure and

section G is a summary of those properties.

9. Section H summarizes another method of linear modeling,
using optimal estimation theory (the orthogonality principle).
This method leads to different results than the filter response

method with the exception of one case.

10. So, two methods of modeling will be shown (sections F, H).
Section I is a summary of this chapter. It also compares

the two modeling methods.

19
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B. BACKGROUND MATERIAL:
TWO DIMENSIONAL OPERATIONS AND FILTERS

This section is a summary of two dimensional operations
as Fourier transformation,ﬁ? transformation, two dimensional
filters, etc. Some of these operations are used in the next
sections.

1. Fourier Transformation

Definition: given a function h(x,y), the Fourier

transformation H(wx,wy) is

s -ijx -jw Yy
H(wx,wy) = f I hilx,y) - e .e dxdy

-—Q0 =0

-F 2' h(x,y)f 2-1

and the inverse transform

iy ijx jwyy
hix,y) = 7 fH(wx,wy)'e -e ‘dwx dwy 2-2

-—Q0 -

-1
=
;— H(%dgyd
The two dimensional Fourier Transformation is mostly used in

spatial operations, and W ,wy are called spatial frequencies.

The properties of the Fourier transformation are:

Linearity ;T{a-fl(x.y) + b-fz(x,yﬂ

= a-Fl (“’x'“’y) +b-F2 (wx,wy)

=3




MYt

SRR

Scaling

T{f(ax, by)} =
Shift Operation

r{f(x-a,y-b)‘g =

Convolution

,T'if (x,¥) *h (x,y)}

Parsaval Theorem

o« o

f J £i{x,¥)+g*(x,y) dx Ay

- =00

Autocorrelation

-} @

F ! 5 s £E-x,n-y)

-00 «=C0

-j(&xa+wyb)

e . F(wx,wy) 2-5
= F(wx,wy)'H(wx,wy) 2-6
o @

‘ (% .
ok F(wx,wy) G (wx,wy) dwxdwy
-0 =00 2

=

"

2
IF(wx,wy)l 2-8




Gradient

faf(x, R B ks
?‘1_33__X.§ = Ju, F(wx,wy) 2-9

af (x, )z O ‘
;~{ e e LS L LS e

Inversion

7"'{7'-’ {f(x,y)} T/-Ilr{f(x,)/){

f(xtY)

Rotation

T{]‘{f(x.y)%i = £(-x,-y) 2-12

Equation 2-9 will be useful in the next sections and the

proof for this equation is given as follows:

S -jw_x =jw .y
4 Flegal o 77 e .
b
? wof o -jw 2 -’ -jwy
; . f!fef—g:—'ﬂ-e xd:j/'e Y ay

e e G e B I W I WA i e 1 i
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Using integration by parts:

>}
o

| .
3FG,Y) -jw_x
1’{ & PR (f(x,y)-e x)

ax
) -00

—c0

“Ju_x -jw y
*ju, S flx,y)-e - e Y. gy
£ fix.y) =0 s mwiem . ¥y g
{ e ju x  -juy
= =i
Tlaf();:) = Ju- F JEny-e T e T.ay

= ij-F(wx,wy)

Note: In the one dimensional case most equations
"t" as the variable. 1In order to make the
in the two dimensional case similar to the

dimensional case, the notations x, y, Wer

be replaced by tl' t2' Wyr Wy -

appear with
equations
one

i1l
Wy wi
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2. Two Dimensional Z Transformation

Definition: Given a discrete field X(n;,n,), the !

two dimensional z transformation is defined:

= ik = . -nl -nz
ZZ'{x(nl,nz)} - X(z),2,) . : x(apn,)-z, "z,
2-13

An important property of the transformation which will be

used later is
1 3 = l = o
3£ 2?{x(nl,nzh X(zl,zz) 2-14

then:

=1
2?{x(nl-l,n20 - 2, X(zy,2,) 2-15
—_—— —— e »:— - _*—l——— —— 5
Z {x(ny,ny=1)f = 2, “RiE; . %,) 2-16
Proof: {x(nl,nz)} = I [ x(ny=l,n,) 2, "2,
00 =00
5 Lo =(mel]) s
) P %x(m ,nz) zl 22
-00 ==
-1 e
= Z1 o I xim ,n?_)-zl -22
24
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@ o]

=i

2 z1 =Ny 2 -nz

£ I x(nl,nz)'zl B

=00 =00

Zl—l-ﬁz {x(nl,nz)}

3. PResponse of a Linear System

TE h(tl'tz) is the "point spread function" of a two
dimensional system, then the response to a given input x(tl,tz)

will be the two dimensional convolution:

< [
Y(tl'tz) = f T h(tl-Tl,tz—Tz)-x(tl,tz)‘drzdr1 2-17

-0 -0

and the transfer function is defined:

Y(ml,wz)
H(wl,wz) = ﬂw—l,w—z—)— 2-18a
In the discrete case, the convolution has the form:
@ o
yk,2) = L I h(n,m)-.x(k=-n,2-m) 2-19
== =00 =2 =00

where h(n,m) is the discrete "point spread function" and
the discrete transfer function:

Y(zl,zz)

H(zl,zz) = iTEITE;T 2-18b




4. Separable Functions

Definition: f(tl'tz) 1S called "separable" if there

are two one-dimensional functions fl(t), fz(t) such as:

E(ty,ty) = £(8)) £, (%)

Theorem

If: £ltt,) = £ (k) E,08,)

Then: F(wl,wz) = Fl(wl)-Fz(wz) 2-20
x 5 e
where: Fl(wl) = i fl(tl)-e -dtl
: B
Fz(wz) = f fz(tz)-e -dt2

- CO

In the discrete case:

I£s x(ny,n,) = ¥X,(ny)-x,(n,)
Then: Z{x(n;,ny)} = Zix(n))}-Zix(n,)} 2-21
26




| C. BACKGROUND MATERIAL:
TWO DIMENSIONAL LINEAR SYSTEMS WITH RANDOM INPUTS

In this section expressions for the response of two
dimensional filters to random inputs are developed. It will
be shown that the expressions are very similar to the one
dimensional case. First, a brief review of analysis of
random signals (in two dimensions) is introduced.

Given: A "brightness function" of a two dimensional field,

X(tl’tz) [see fig. 5].

T ———
X (tl tz)

t- X Is the Intensity at
point (tltz)

:

Fig. 5: The Two Dimensional Field

1. The probability that x(tl,tz) lies in a finite range
a < x(ty,t,) < bat a point in the field, (t;,t,), is given

by the integral

Pr(a < x(ty,ty)) <b) = [ £ (x,t;,t,) dx 2-22




fl(x'tl’tz) is the "probability density function."

2. The first moment is the expected value (or mean) and
is defined by the integral:
@
xitl,tzl = E{x(tl,tzl} = -J' x-fl(x,tl,tz)-dx
2-23

3. The second order moment (variance) of a point in the

field is:
E{xz(t t,)} = xz(t () .sz-f (x,t,,t,)-dx
1% ki i S e
2-24

4. The autocorrelation function, between points (tl'tz) and

' ' : : -
(tl ,tz ) is defined as:

i b e L e S MR M N ORI
= _J’_:’x-x ,fz(xlttl,tg,xl'(tl',tz'» dxdx' 2-25
28




Fig. 6: The Parameters That Take Part in
the Autocorrelation Equation

fz(') is the "joint probability density function".
Fig. 6 shows the parameters that take part in the

autocorrelation equation.

5. Stationary Fields.

The assumption that the field is stationary means that
the statistics of a point in the field is not dependent
on the location of the point.

In this case the mean and variance have the form

- 2 = 2 i
E{x(tl,tz)} o E{x (tl,tz)} - e 2-26
and the autocorrelation function:
- ' - ! =
@ [ -]
= J v vyt 'fz(x ,x',rl,tz)dx-dx' 2-27




Such a field is called (in the two dimensional case) a

"Homogeneous Field."

6. Ergodicitx

A further simplifying assumption which is usually done
during the analysis of stationary signals is the ergodic
property. This hypothesis states that under certain con-

ditions, present in many cases, the statistical averaging

of x at a given point is equal to the spatial averaging

of all points. That means:

- = \
E(x(tl’tz)) = X = <:x/> 2-28

where by definition:
1 - Qo -
<<‘:> llm Tl'TZ -mf °°f x(tl,tz).dtl-dt2 2-29

<(x>> is the spatial averaging.

The autocorrelation function will be:

Rox(t1r7y) = E{x(tl,tz) X (£+T,t4T,)} 2-30
= %lm IT—-,F— / F X(tl,‘t ] ¥ +Tl,t )dt dt
-+00 - 00 - 00
1
Tz-rw

30

PEREEREAIS e N e e
-




7. Power Spectrum Density Function

In the study of random signals the concept of power
spectral density function takes place. For the purpose of
this review the spectral density of two dimensional fields
is defined as the two dimensional Fourier transofrmation

of the autocorrelation function. It is called Pxx(wl,wz):

A
Pox(@1rup) SFIR (1),75))
S e i W e
= _mf -mf Rxx(Tl,Tz)-e e vdrl-dTZ 2=31
and the inverse transform gives the result:
[ ]
S o e O e

From the last expression, Pxx(wl,wz) gives the density of
mean square value of the variable over the spectrum of the
real frequencies.

8. Response Of A Linear System To Random Inputs

Given: A linear, two-dimensional linear filter
with a transfer function H(jwl,jwz). The input to the
filter is a stationary process x(tl,tz) with an autocorrelation

function Rxx(Tl,Tz).
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X H y(ﬁgz)

2
Pu(‘"l.“’z) P!Y(wl.wz)ngx'|H|

Fig. 7: Response Of A Filter To Random Input

Question: Find the autocorrelation of the output signal.

The answer will be presented in néxt theorems.

Theorem: The mean of the output is given by

Yooi=utnn e H(le,jwz) 2-33

Proof:

% @

yztlltzj e E{ mf wf X (tl-alltz_az) 'h(allaz) ’dal'daz}

o -]

i onf E{x(tl~a1,t2-a2)}-h(al,az)-da 'da2

- - 1

[}

and because the process is stationary:

E{x(t =a,,t,=a,)} = E{x(t;,t,)} = X

32




o oo

y = g I % h(a;,a,) - da,-da,

- 00 -0

20 o

= X /5 mf h(al,az)-dal-da2

-0 -

T e A o S S
= X if f h(al,a2)°e - e . dal -daz

-0 -0

Theorem: The cross-spectra of x,y is given by

ny(wl,wz) = Pxx(wl,wz) . H(jwl,sz) 2-34

Proof:

ny\tlrtz) o E{Y(tl""fl,tz"’l’z)'x(tlltz)}

E{Y(tl,tz) © Xt =T tymT,)

33




(e} [}

ny(tl,tz) = E{x(t)=T;,ty)=T,) - f f x(t) =0, t, ~a,) *h(a, ,a,)da,da,y }
g E{_wf _mf X (=11 1857T,) s x (8 =0y, £5ma,) *hiay a,) daldaz}
o« o«
= _mf _mf E{x(tl-rl,tz—rz) x(t al,t 2)}-h(al,a2)dalda2}
o <] N
= _mf ‘mf RxX(Tl-al,rz-az)-h(al,az) . dal . duz
R y(1:1,1'2) = Rxx(rl,rz) * h(rl,rz) 2-35

The last expression is a convolution. Therefore, taking

the Fourier transform leads to:

XY(wl’wz) - xx(wl’wz) b H(]wlljwz)

Q.E.D.

Theorem: The spectral density of the output is given by:

yy(wllw ) = Pxx(wl,wz)'ﬂ(yﬁjjmz) 'H*(jwl.jwz)

2-36

2
Pxx(ml,w2)°lﬁ(jw1.jw2)l

34




Proof:

Rpy (T10Tp) = Ely(t),£)) -yt 4, ,t41,) }

= E{y(tl+rl,t2+12) --i -i X(ti°a1't2-°2)°h(al'a

-0 =00

B
t
g
I
&

-] o]

= [ [R -8, , T~ - —

=00

= * - - -
Ryy(rllrz) Ryx(Tl,Tz) h( Ty To) 2-37
Taking the Fourier transform of 2-37:

Pyy(wl,wz) = Pyx(wlpwz) 'H(-jwll-jwz)

But:

Pyx(ml’w2) %) Pxx : H(jwl’ij)

33

2)-dalda2}




and:
(wl,wz) = Pxx(wl,mz) . H(jwlljwz) 'H(-jwlr‘jwz)

P
YY

ok = . . L . .

Q.E.D.

The Discrete Case:

In the discrete case, a stationary, two-dimensional

field has an autocorrelation function defined as:
Rxx(n,m) 4 E{x(k,2)x(k+n, 2+m) } 2-38

Equivalent to the power density function in the continuous

case, we define:
= -
P (zl,zz) EZ{R x(n,m)} 2-39

Since it is known that the z transformation is related to

the Fourier transform by:
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jew.T
e_j.w.T
It is, therefore, clear that after passing a random process

through a two-dimensional discrete filter, the statistics

of the output are:

Pyx(zl’ZZ) Pxx(zl’zz) H(zl,zz) 2-40

& 1 N -1
Pyy(zl’zz) = Pxx(zl'zz) H(zl,zz) H(zl 12, )

The last two expressions can be proven exactly in the same
way as in the continuous case, by starting from the
discrete convolution.

9. Isotropic Fields

The homogeneous (stationary) field was defined as
the case where the statistics of the field do not depend
on the location. If the statistics are not only independent
of the location, but also independent of the direction,

the field is called isotrogic.

37




Example:
If:

'0.2'1'2

-0, T
A i i
Rxx(Tl'TZ) = e -
the field is not isotropic. The correlation is greater in

the directions of the system axis, than in other directions.

But if:

Rxx(Tll Tz) = e

the field is isotropic. The correlation between two points

depends only on the distance between these two points and

does not depend on the direction.

D. BACKGROUND MATERIAL: THE CONCEPT OF MODELING BY
"FILTER RESPONSE METHOD" AND THE FACTORIZATION PROBLEM

1. ggntinuous, One Dimensional Case

Given: A covariance function of a process, Rxx(t,r).

Find: A linear system (differential equation model)

such as:

- when the input is white noise

- the output has an autocorrelation function
Rxx(t,r).

Fig. 8 defines the problem:

38
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A LINEAR SYSTEM

u () X = AX +BU X 45
WHITE NOISE IN FREQUENCY DOMAIN R, (T,T) is given
H Ciw) > 2

Fig. 8: Definition ofrthe Modeling Problem
in the Continuous Case

Solution:

First, the solution exists only if x(t) is

stationary, say:

Rxx(t,r) = Rxx(r)
In this case, by using Eq. 2-36 and by assuming that the
transfer function of the required filter is H(jw), the power

spectral density of the output is:

Pxx(w) = Pagyle) * H{jw) ~B*(juw)
u(t) is assumed to be white noise, therefore:
Puu(w) = 1 2-42

and:

(w)

: given power
H(jw) *H* (jw) spectrum

2-43

Pxx

39




In this problem Pxx(w) is given. Therefore, the solution

for the required filter is to find a function H(jw) that

satisfies Equation 2-43.

Such a solution exists for symmetric autocorrelation
functions (then Pxx(w) is a real function of w).

2. Discrete, One Dimensional Case.

In this case Rxx(n) is given.

It is required: to find a discrete filter, H(z2),
so that when the input is white noise, the output will
have the given autocorrelation function ny(n).

Here, the solution is by using the equation:

1

P_ . (z) = va(z)°H(z)-H{z').

XX

If the input is white noise then:

wu

Therefore the solution for the required filter is to find

a function H(z) that satisfies:

P _(w) = H(z) - H(z™!

XX )

where Pxx(w) is given in our problem.
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u
(k) B e X (k) >
WHITE NOISE (z) R x () is given

Fig. 9: The Modeling Problem in
the Discrete Case

2. The Two-Dimensional Case

In the two dimensional case the extension of this

3 1 H*
method requires factoring Pxx(wl,wz) to H(wl,wz)H (ml,w

-1 -1 .
and Pxx(zl’zz) to H(zl,zz)~H(zl 12, ). The problem is

2!

that there is no factorization technique in the two-

dimensional case. Therefore this modeling method is

limited to separable autocorrelation functions. Section

H shows another method of modeling (optimal estimation
approach) that does not suffer from this limitation, but

has other disadvantages.

E. BACKGROUND MATERIAL: MODELING OF ONE DIMENSIONAL RANDOM

PROCESSES (BY "FILTER RESPONSE METHOD")

There is a special class of stationary random processes,
which is very common. The basic assumption of these random
processes is that the correlation between two points decreases
exponentially with respect to the distance between the two
points.

This section considers the one-dimensional case. The

next section will be an extension of these processes to the

two dimensional fields.

e e . 7l A A, A B 5 MY




P 1. Markov Process (continuous)

| This is a stationary random process with an

autocorrelation function:

XX

m is the mean of the process, and will be taken zero without

any loss of generality:

XX

and the power spectrum density function

2
2 s g v 0
P (w) = f(R_At}} = 2-46
XX ;J XX w2 " a2
Fig. 10 is a plot of Rxx(r) and Pxx(m).
Wxx(T/ 1&.(-'/

Fdb ¢
272 /a , Poin

MARKOV N....df/
PROCESS . :
. @

2 -qir P 200'2 s
" 2. a8
w+B

Ryx(t)e xx *

Fig. 10: Markov Process
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Theorem: The process in 2-45 can be generated by passing

white noise through a simple filter. The spectral density

of the white noise is:

N = 2 a02
o
and the filter is:
. = L
BiJe) = 5oy
See Fig. 1ll.
U(y)= WHITE NOISE T | X() = MARKOV PROCESS
Jw atlw 2
Py (w) =Ng 26" P (@) =N [H(w)|

Fig. 11: The Linear System, H(jw), for
Generating First~Order, One-
Dimensional Markov Process

Proof:

Using 2.36 for one dimensional case:

spectral density
at the filter
output

]
X

XX (0) =

43




spectral density 2
at the filter
output

"
)
3

o
G
£

= 20‘2 ._l—'_ . ..1—
a + jw a - jw
LA e e 02
5 p———
Ctz -+ W

o given spectral density of
the Markov Process

Q.E.D.

The filter in Fig. 11 can be represented by a differential

equation, which will be associated with the process:

x(t) = - a-x(t) + u(t) 2-47

where y(t) is white noise with autocorrelation function

Ruu(r) ® 2 ¢ 0" ¢« aé(t) 2-48

If a restriction is added, that the probability density
function of u(t) is Gaussian, the process is called %auss‘
Markov processt and is completely described by the auto-

correlation function. In this case x(t) is also Gaussian.
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Another term which is used in connection with the
Markov Process is the "correlation time" (é point). This
time is l/a.

2. Markov Sequence (Discrete)

Define:

|
Q
=
>

The autocorrelation will exist only for discrete points:

| R T i
lRxx(n) = a o) ,n=20,1,2, ... 2=-31
and taking the z transform of 2-51:
2 2
Fwr my = 2 -2 2-52
(L=p*8 T)+(1=p-2)

Theorem: The discrete process of Eg. 2-51 can be generated
by passing white noise through a discrete filter. The
"discrete spectral density" P(z) of the noise is 02(1-02).

Fig. 12 shows the filter:

W(k) = WHITE NOISE e s X (k)
"uf T —»
P (2)ea?(1-p?) P Ry (M= o2p(m)

Fig. 12: Discrete Filter - The First Order Markov Sequence
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Proof:

Using 2-41 for one dimensional case:

oy
| 2 transform of -
| the filter = wa(z)'H(z)-H(z )
' output
H 02‘(1_02% 1 g - 3
l-p2 i = D%

[? transform of the given
Markov Process
The difference equation that describes the filter is:
X(k+l) = pX(k) + W(k+l)
It is convenient to define
uk) £ wik+l)

U(k) is also white noise with the same statistics as w(k),

From the last definition it follows:

46
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f 02-(1-02) if n=20

Ruuk1) - 2-53
0 if n#0

x(k+1) = p-x(k) + u(k) 2-54

The meaning of equation 2-54 is that the value x(k) depends
only on the value of the last step in the past, x(k-1).

3. The "Band-Limited", Continuous Case

Another typical autocorrelation function is:

SRS BN, L] O u
Rxx(r) = g e cos (wor) 2-55
The spectral density will be:
R (w) = TR _(T)} = =2 2-56
XX < TN 2 2
(w-mo) + Q

This is the case of a "band limited" signal. The process

x(t) is limited in a frequency band that is seen in fig. 13.
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Fig. 13: "Band-Limited" Markov Process

In this thesis, the interest is mainly in discrete cases.
The continuous case is given here because one can easily see
in the continuous case the frequency band of the random
signal and to understand that the autocorrelation function
in 2-55 represents an important class of random signals.

In order to make a complete summary, the dynamic equations

or this case are:

E‘c (t) 0 1 xq (£) i
= + x (t) 257

(t) -8° =20 x, (£) 8 - 2

48
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R _(t) = 20026(t) 2-59

Now, the discrete case will be discussed in detail.

4. The "Band-Limited" Discrete Case

By using the definitions of 2-49, 2-50:

[
H
fic>

fic>

and define:

e

Equations 2-55 has the form:

XX

and the Z transform of 2-61:
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P (2) = Z{Rxx(n)}

(l-oz) e [=Z-p cos 6 + (1-+p2) - z'l + cos 6]02

(1L -20Z cos 9 + DZZZ)(l-ZDZ-l cos 6 + 022-2)

2-62

In order to find a set of different equations that will
describe the given autocorrelation function one has to use
the procedure that is described in section D.

The first step is to find a factored expression for

Therefore Pxx(z) is assumed to have the form:

=

P (2) = a2 (1-0%)( az_ - b )
1l-2pz cos 6 + p“z
a*z + b

)
l-2pz cos O + ;722

The comparison of 2-62 to 2-62a leads to a pair of algebraic

equations:

& + B ® 4+ p

a*b = =p cos 0




and the solution for a,b:

=
5w L AR
2—64
b= e @ L oM
where:
2
4 = 1 = pscas 8 + p
2-65
= 2
e = 1 4 p*co8 0 + p

Next, by using 2-41, one can see that the random
signal discussed here can be generated by passing white noise

through a discrete filter:

-
W () L X_(2)
WHITE NOISE 1-2p 27" c0s® 4 o 72 X o) Nas the given auto correlation
function of e¢. 2.61

Fig. 1l4: Filter for One-Dimensional "Band Pass" Process

where

(1 - 0%)c ifneo
R _(n) =
0 i a0
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It is convenient to define:
W(z) = Z ~ U(z) 2-66a

u(k) 1is also white noise with the same autocorrelation

function.

and the filter will be:

=1

X(z) _ a - 2 + b *-§6°
W(z) 1-202-lcose + pzz:?
define
TR I
Xl(z) = P2 xz(z)
By’ W(z)
XZ(Z) i 2

l-z-lzpcose-+ozz-

From the last definition

2
Xl(k) -p xz(k-l)

xz(k)

xl(k—l) + 2pcos Goxz(k-l) + u(k-=1)

52




i In matrix form:

[
fxl(k) 0 -p xl(k—l) 0
- . + *M(k-1)
x2(k), 1 2p cos 6 xz(k-l) i
and:
X(z) = Xz(z)(a-z"l + b)
x(k) = a-Xz(k-l) + b'xz(k)
-2 :
} = =p -a-xl(k) ~ b-xi(k)
x(k) = (-p~2.a b) - 2-68
ﬁz(kﬁ

An Approximated Model

Using the following procedure one can derive an approxi-
mated model, which is simpler than the previous model.
Define:

-

(a:2”1 + b)-Wz) & z7leu_(z)

53
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From the last definition:

ua(k-l) = beW(k) + a*W(k-1)

The autocorrelation of ua(k) is

A 1+02) (1-02) 5 o

=0
R (n) = E{u_(k)-u_(k+l)} = { SX~pcos 8) (1-p%) if n =1  2-69
v Y, a a
0 ifn > 2
Because R (1) # 0, u_ is not white noise. Actually, u
u uy a —_— a
is a linear combination of white noises.
Now, an approximation is done
R (1) = 0
e
In this case:
‘ 2 2.2
(T - o) 0 R o ) - if n=20
Ru - (n) = 2-70
aa
0 i€ n » 0O

and now ua(n) is white noise.

Figure 15 shows the correct and the approximated

noise.
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(1+p2)(1-p%)
log2
Peos 8 " :
*————Pp S >
-3 =2 =i 0 | 2 3 n - =i O | 2 n
CORRECT APPROXIMATED
AUTOCORRELATION AUTOCORRELATION
Fig. 15: The Autocorrelation of Ur Ryy (n)

The filter that generates the "band limited" random

signal is (compare with 2-66)

Z-l-ua(z)
WERE (8 =1 . o=
1l - 2p2 cos O + p 2
Define:
A 2
x = — - -
1 (k) p%+ X, (k-1)
x,(k) & x(k)
il & ]
xl(k) 0 o) xl(k 1) 0 ’
= + - ua(k-l) 2-71
xz(k) 1 2p cos 8 xz(k-l) IJ




x) = [0 1] - S 2-72

x, (k)

This model is simpler than the one previously described.

5. Second Order Markov Process

In the continuous case, the process is defined by

e —a|T|
R lt) = ¢ » @ (L + alt])
define:
e-aT é 5
- £ o
aT = fnp = 8

It leads to the discrete autocorrelation function:

Re.fa) = ozo'nl(l + 6[n|)

The z transform of this process is

P (z) = Z{R ()} = P (2) + P,(2)

where:




P (z) = ~o%80l4p - (2 + 27H (1 + 0?))
A (1-02"1)%(1-02)°
2 2
P g {1l = p")
Pz(z) =

(1 =022y (1~ p2Z)

This process can be generated by a combination of two filters,

that are forced by two uncorrelated white noises:

X, (k)
a
ul(k)—— H, (z)

X =
T Ll T

u e— H2 (z) 27
2 (k) X

Fig. 16: Filter to Generate Second
Order Markov Process

xa(k) and xb(k) are uncorrelated (because ul(k) uz(k) are
uncorrelated). Therefore the spectrum of x(k) is the sum
of the spectrums of xa(k) and xb(k).

Now: Pl(z) can be written:

_ g®ep(az”t - 'b)(aZ - b)
(L=-p2 ") (1 -p2)
where:
&
a2 + b2 « 4 a = 3(c+ 5% e = dptlept
e
ab = 14p° b=-§@7-57) §w dpelwp®

e . A Bt o S s il 1 TGIR T  CAAR




the filter Hl(z) is:

=1 X_(z)
(az - b) a
H, (z) = - -
* (L-p2 ") v, iz
s
| -gpo? if m=0
)
R (m) =
hie k=" \
S if m# 0

(X) 0 _02. = (k+l; ( 0 ]
| X1 1
= i + u(k-1)
x2(k) 1 2p x2(k—l) R
£ R | I |

x4 (k)

x. (k) = (-02a -b) .

a
xz(k)

and for Hz(z):
X, (2)
L b
(Z) = =
Hy T W, (2)

define:

uz(k) - Wz(k+1)

R
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then:

g% (1=p%) if m=0
Ruzuz(m)-
0 if m# 0
and
X, (k1) = Xy (k) + up(k)
xb(k) = x3(k)

The combination of x , X, :
a b
' ~ = 1 -
rxl(kﬂ 0 -p2 0] X, (k-1) [0 0
‘ ul(k)
X, (k) = |1 20 0f « | %X, (k=-1)] + |1 0
Y, (k)
Lx3(kb Lp 0 0 _x3(k-1ﬂ _9 %J
(k=1)
4 ™
(k) - [-p a -b 1] - |x,(k-1)
X, (k-1)

6. Conclusions

1) It was shown in this section that some stochastic

processes can be generated by passing white noise (or a .
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combination of white noises) through a linear filter of
order P.

2) Also it is seen that the order P is a finite
number [in the first two examples P was 1, in the last
two examples P was 2].

3) Py, the order of the process, tells the number
of "neighbors" near the point k, upon which the value X(k)
depends.
F. STATE VARIABLE MODELING OF TWO DIMENSIONAL FIELDS BY

"FILTER RESPONSE METHOD"

1l. Introduction

The starting point of the modeling procedure will
be an extension of the Markov Process to a two dimensional
case.

It is emphasized that the technique used in this
section is good only for separable autocorrelation functions.
In Section H another modeling method which is valid for
any homogeneous random field will be discussed. [A compari-
son between the two methods is given in Section I].

2. Model For First Order, Continuous, Markov Process

Given a two dimensional field, with an autocorrelation
function:

2 -allrlle'azlrzl

Rxx(rl,rz) = og°e 2-73
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al is the correlation factor in the t, direction

j
a, is the correlation factor in the t2 direction.

t
- —’ |
emmmmeeteeeeecee 2@ X

sec® X,
72 _-—"‘-— ("»'2)

-
‘--
-

X @ -~~~

Fig. 17: System Coordinates For
The Field in 2-73

The power spectral density function (using 2-46, 2-20):

(Zal)(2a2)02

P (., = 2
X 1" 2 2 2 2 2
(wl +or.1 ) (w2 +a2 )

74

This autocorrelation function might be generated by passing

white noise through a two dimensional filter:

U= WHITE NOISE H - 1
* ( X
Pole w)vds a.0t “'l,"'z’ lwy +a)- (jwptay) »
W) vy 172 P“ (ul uz)- GIVEN pll
' OF £q. 2-74

Fig. 18: Generation of First Order, Two
Dimensional, Markov Process




The proof is by using 2-36. One can see that the spectral

density at the filter-output is the same as in 2-74.

Therefore:
&y isig) 1
(§] Wy rwy .(]ml-Fal)(imz-kaz)
Define:
U(UJ r W )
1 i
M(w, ,w,) e e
1’72 jw2-+a2
N(wl,wz) = X(wl,wz)
Then:
dM(tl,tz)
RSOSSN - ¥¢
dtz azM(tl,tz) + (tl,tz)
M(w,,w,)
L2
N(w, ,w,)
1772 ay +le
dN(tl,tz)
e -alN(tl,tz) * M(tl’tZ)

1

and in matrix form:
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~ 1 e l - = T
dN(tl,t2 I 3 i
_T__—tl - % 5 +1 N(tl’tZ) 0
I
———————— = - - - - — - 'u
!
g 0 P - M‘tl'tz’ 1
- - . . J’b J 3 -
2-75
N(tl,tz)
x(tl,tz) = (1 0 .
M(tl.tz)
2-76
u(tl,tz) is white noise:
2
Ry (1) = 40,0,076(1;)8(T,) 2-77

3.

Model For First Order,

Discrete, Markov Sequence

Define:
-aT
Dl e
-a,T
% 2
02 e
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1
t2 = &' k = 0'1,2'
.Tl = nT n= 0'1’2'
T2 = mT m= 0,1,2,
Eq. 2-73 has now the form:
Rxx(nrm) % 0,2 pllnl ozlml n = 0,1,2,
m=20,1,2, ...

2-78

and the two dimensional z transformation of 2-78:

2 2 2
gL = g, ) (1 = £y}

P__(2.,2.)
=12 =X -

=79

This discrete autocorrelation function can be generated by
passing white noise through a two-dimensional discrete

filter:
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N
o=

]
N
=

]
-
re
+

e

2 + ++ + + + +
k-1 B e e T
K + + + + + + +
k+! + + + + + + o+
K | A SAMPLE INTERVAL.
—-» 1
X(k,) .
m
(k+m, +n)
R (n,m)=E{x X }
e (k,2) (k+m,L+n)
v
i

Fig. 19: The Discrete Area
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W= WHITE NOISE 1

H(z, z) = " i
wa(z"zz)=(1-f12)(1-!§] L 2’ (1°/1'2i )(1-1’2 z )

Fig. 20: The Filter to Create First Order,
Two Dimensional, Markov Field

The proof is, again, by using 2-41. One can see that

Pxx(zl,zz) at the output of the filter will be as in 2-79.

The filter expression is, therefore:

X(zl'zz) 1

Wia,.5,) °
i (1-0,2,"Y) (1-p,2,"1
S 2%2

It is convenient to define:

-1, -1

4
W(zl,zz) = Z Z2 U(zl,zz)

|

and the filter has not the form

-1 -1
X(zl,zz) / z

)

Ule, 5.7 ™ 2o S ST
b e (1 2, ol)(l Z, Py)

One can continue in two directions:
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Direction 1: (Model 1)

From 2-80:

-1 -1 -1 = o -1 -1
x(zl,zz)'[l -2y TPy T2z, o, + oz Tz, 0102] = 2y Tz, -u(zl,zz)

and a difference equation can be written:

Li(k+l,z+l) = prx(k+l,l)-ploéx(k,2)-+ojx(k,1+l)-+x(k,2)‘l 2-8L

02(1-012)(1-022) i 5E0 spd  wed

va(n.m)
0 if n#0 eor m#0

2-82

The point k+1,2+1 is connected to its three nearest neighbors

left and above:

Fig. 21: The Neighbors that are Connected
to Point k+1,%+1
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Direction 2: (Model 2)

Define
-1
vA U(z,,z,)
N(z,,z,) = -—= d 2-83
3 Gl 1 -3 -lp
1 il
M(zl,zz) = x(zl,zz) 2-84
From 2-83
N(z,,2,) = 2 ~'lp N(z,+2,) + 2 =1 Uz 7z
"2 il 1 It =2 1 NS
2-85
N(k,2) = olNl(k,2~l) + u(k,2-1)
Note: from Eg. 2-78 it is obvious that z, corresponds to
the k direction and zq corresponds to the 2 direction.

Substituting 2-83, 2-84 into 2-80:

-1
Zz N(Zlfzz)

M(z.,2.)
L7 2 -1
1=2 "9y
M(z,,2,) = =z =1, M(z.,z.) + z “IN(z.,2.)
1772 2 2 32 2 1774
M(k,L) = pzM(k—l,l) + N(k=1,2) 2-86
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By changing indices of 2-85, 2-86 one can write these two

equations in a state vector form

f‘ ‘[ r 7] f’
M(k+1,2) 0, 1 M(k,?) 0
= ¢ + . M(k,R)
N(k, 2+1 0 Nk, 2 1
] (k,2 )J Ol_‘ i ( )J J
M((k,2)
X(k,2) = ( 1 0 )
N(k,2)

By comparison 2-87, 2-88, to 2-81l:

M(k,L) = X(k,2)

N(k,L) = X(k+1,%) - oz-X(k.R)

It is obvious that model 1 and model 2 describe the same

field.

An interesting property of this model :

E{M(k,2)N(i,j)} = o_J

for any k,%,1i,3.

2-90a




Proof:

E{M(k,2)N(i,j)} E{x (k,2) [x (i+1,3) - p,x(i,3)1}

E{x(k,l)[QZX(i,j)-+u(i,j) ‘Ozx(i,j)]}

u(i,j) is white noise and therefore it is uncorrelated to

X(k,2). Therefore:

E{M(k,2)N(i,3)} = O.

4. Model For "Band Limited", Discrete Case

Equivalently to the previous discussion, the two-
dimensional, "band limited." discrete Markov Process is

defined by the autocorrelation function:

=0,1,2
- ot o |m]| ) Aggap
Rxx(n,m) =0 [pl cos(eln)][o2 cos(ezmﬂ

]

o
~
[
-

N
-~

.

m

The z transform of this autocorrelation function:

2 2 g, Bty
g b o e S Wy R o = s
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where

A(zl,zz) = [—zlcosel+(1+plz)-zl-1cosel][-zzcosez+(l+022)-zz'lcosezl
2-93
B(zl,zz) = [(1—2plzlcosel+012212)(l-Zolzl-lcosel+ozzl-2)]
[(l—2p222c0562+022222)(l—2pzzz-lcose2+02222-2)J
2-94
A(zl,zz) can be written in a form:
A(z),2,) = [(@z) +b)) (ayzy+b)) 1 [ (8,2, +b,) (ay2,+b,) ] 2-95
where:
2,2 +b,% = 140)° 2-96a
8,° ¢ b," = 1%, 2-96b
albl = -plcosel 2-96¢

a b2 = ~pzcosez 2-964




The solution for the a's and b's:

I ! 1/2 1/2
by oW T T
R TR 1/2
a, = 2(62 + 62 )
2-97
St TG . R, ¥
by = =5, .
N SO VL SRR T
b, = 3(§, Sg !
where:
$ = I 6. + 2
T RyseRGy Py
o) = ] = p.co88, + p .
2 2 2 2
2-98
€ = 1 + p,cosf8, + o 2
3} ) 1 1
= 1 + p,cosf, + p 2
ot 2 2 2

Now: This random process can be generated by passing white

noise through a discrete filter of the form:
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-
“'(ZI.IZ) (0 Z | *b')(azzz +b,) x(zlzz)
WHITE ( -1 252 =3 -2 :
NOISE "2p, 2, COS @ +p2Z50-2 PaZ, COS 8,+,22 )

Fig. 22: Filter to generate "Band Pass" random field.

where:

G}(l = 012)(1 - 022) ifn=0andm=0

wa(n,Z‘R) = ) 2“99
0 ’ ifn#0 or m#O0

It is convenient to define:

W(zl,zz) = Z

u(k,%) is also white noise with the same statistics as w(k,%).

2 2

kal -0 )y (1 - fs ), if n=0and m= 0
Ruu(n,m) =

0 ", ifn#0 or m# O

2-100
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the filter has the form:

-1 -1 -1 -1
s (alzl + bl)(azg2 + b2) z, "z, U(zl,zz)
i o Ry e e S S SRR,
& e Mol s B Pofy COR B *0'%,
2-1cCl
Now the following definitions are done:
" SRR S
Nl(zl,zz) = pl zl Nz(zl,zz)
-1
B G e LR e T R R
P12 “cos 8, Py %4
X 02 2.5 4 (a,2z -1 + b, )W, (z,,2,)
172 3 i ) el i
From the last three definitions one can write a set of
difference equations:
= & = i - "
2 _
= 0 + ‘U(k,l"l)
Lﬁz(k,zl _} 2p1cos eL _yz(k,l—ly _1 ]

2-102




-2
xl(k,l) il -alNl(k,l) + blNz(k,l) 2-103

Now, other definitions are done:

= - 2. -ll
-1
z, -Xl(zl,zz)
M,(2,,2,) 1 - 2y Y, 5 + p 2.5 2
e S -
From these definitions it follows:
aj o g g :
X(zl,zz) = (a2 z, + b2) Mz(zl,zz) 2-104
. (k 2; (o w2 1 e oa 2) 0
l ’ pz l ' 4
= + .xl(k-l,z)
M, (k,2) 1 2p,co8 8 M., (k=1,2) 1
> Sty y B 2 q L 2

2-105

x(k,8) = -pz'z-az-ml(k,z) + by+My (k, 1) 2-104a

e B B Bt o el WL T -




Equations 2-102, 2-103, 2-105 can be written together:

- r . 2
Ml(k+l,l) 0 02 .0 0 Ml(k,l)
Mz(k-o-l,l) 1 Zozcos 62 0 0 Mz(k,z)
. 2
Nl(k,2+l) 0 0 0 =Py Nl(k,l)
Nz(k,2+l) 0 0 1 ZQlcos el Nz(k,z)
(o] [0
1 0
+ . xl(k,fL) + « uk,2)
0 0
L 0 | 1
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Using 2-103

M, (e, 2) 0 it 0 rMl(k,z) [o
- 2 3
e -
Mz(k+l,£) 1 szcos 62 | 0, 3y bl Mz(k,l)
e I I B e I T S NI d IO bbb A o L4
- 2
Nl(k,2+l) 0 0 : 0 o Nl(k,z) o
N, (k,JL+l)J 0 R T 2p,cos 8, N, (k, %) 4
k . ;O S 3k
2-106
MODEL
3
and using 2-104a:
Ml(k,l)
-3 : M, (k, 2)

x(k'g’) = —pz -az bz : 0 of -~ e i 2—107
Nl(k,ﬂ.)
sz(k,l)-

77




Approximated Model

One can derive for the "band limited" case an approximated

model, which has a simpler structure. The starting point is,

again, 2-101.

Define:

g -1 -1 3
ua(zl,zz) = (alzl + bl)(azz2 + b2) u(zl,zz) 2-108
From eq. (2-87) one can see that ua(k,Z) is the noise-
input to the filter that creates the "band limited" random
field. Now, what are the statistics of ua(k,l)? Equation

Z2-1o¥
(2-108) tells us that ua(k,l) is a linear combination of

white noises:

ua(k,2J = alazu(k-l,l-l) + blazu(k-l,z) + albzu(k,z—l) + blbzu(k,l)

2=109

Using eq. (2-108), together with the definitions of the a's

and b's in eq. (2-96), the autocorrelation of ua(k,Z) can be

calculated.
2 2 2 2 : L %
(l+91 )(l+02 )(l-ol ) (1 ") ifm=0andn=20
Ruaua(n,m) (a number that is not zero) ifm<landn<1l
0 ifm>1l orn>1

2-110




For example, the calculation for Ru - (0,0) is shown:
a a

- 2
Rhaua(0,0) - E{ua (k,2) }

)2

2 2 2 2 2
[(alaz) + (blaz) + (alb2 + (blbz) 1 - [(l-o1 )(1-02 )]

2 2 2 2 2 2
(al +bl )(a2 +b2 )(l°ol )(1-02 )

2 2 2 2 7 /

Here is the place to make an approximation: One can see that

Ru W is not white noise, because Ru u (n,m) # 0 when n or m
a a a a

are equal to one. Now, arbitrarily, it is decided to let
this value be zero(for n or m equal on@. In that case u, is

white noise:

b 2 2 2 2 |
(1+p,7) (1+p,7) (1=0.7) (1=p,°) ifn=0andm=0
1 2 1 2"
Ru o (n,m) = 2-112
e 0 ifn#0 er m#0

/

The filter to create the random field will be:

-1 -1
z) "z, -Ua(zl.zz)

1 2 =2
cos 61+ pl zl )-(1—2;3222

MRZs iy Zn) W 2-113
1 2 i - -1 2 -:2
(1 20121 cos 62-0-92 22 J
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B iR

Comparing 2-113 with 2-101, one can write for 2-113 a state

variable model that will be similar to eg. 2-106:

Define:
- - 2. -10
Nl(zllzz) - Ol Zl Nz(zllzz)
-1, :
v zl Ua(zl,zz)
1- 2912l cos el + °2 -zl
N e
Ml(zl,zz) = -0,"2z, Mz(zl,zz)
-1
R Tl el o
L et S SR
From these definitions it follows:
2-114
2
Ml(k+1,2) 0 Py : 0 1 Ml(k,z) 0
|
Mzaai,m 1 ngxs 8, : 0 0 Mzﬂgl) 0 MODEL
....... = --_——-———'———-——-—-2— = 'ua(k'g') 4
Nl(k,1+l) 0 0 I 0 -ol Nl(k,l) 1
|
]
M&(k,l)
. Mz(klg‘)
x(k, 2) =|o el R 0 |-2---. 2-115
N2(k,1)
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| By comparing the difference equation that follows from 2-113

J to the structure of 2-114, 2-115, it is found:

My(k, ) = x(k,8)
Nz(k,l) = x(k,2+1l) - 2p2~cos ez-x(k,l) + pz-x(k,l—l)
M. (k,8) = =p.-x(k-1,2)
1 ’ 2 ’
Ny (k,2) = -plz-x(k,z) ~ 2p,-cos 8,-x(k,2-1) + p,-x(k,2-2)

5. Model for Second Order Markov Process

The extension of the one dimensional case to the two

dimensional case is:
2 (n] [m]
R (nm = o, (1 + 61|n|) P (1L + ezlml)

and following very similar procedures to all previous cases,

the state space model in this case has the form:




i |

M) (k+1,2) 0 -, 0, 0 0 0 M, (k,2)
: 2
M, (k+1,2) t 2, 0 !-p;%a; b O M, (k, L)
My (k+1,2) g0 B& 0 0 3 My (k,2)
B e = .-......_.-:~..--- .é.‘ - @ o0 BE g &
N, (k,2+1) o : 0 -p, 0 N, (k,2)
N, (k,2+1) 8 a8 0 1 oy O N, (k,2)
Ny (k, 2+1) g 6 6 : B 0 oy N, (k,2)
0 0
0 0
0 0 ul(k,l)
+ .........
0 0 uz(k,ﬂ)
1 0
0 g
M, (k, 2)
M, (k, 2)
; , | My (k, 2)
xk,1) = -02 -a2 -b2 i i 0 0 0
N, (k)
N, (k, 2)
N, (k, 2)
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PASE—

T T ——

NS
N

5~ B |
El = 401 + 1 + pl a; > (el + 61 )
oy
= 2 =£
€y = 492 + 1 + Py a, > (62 + 62 )
;2
o = £ 2 & i | s 2
51 = 491 1 Py bl 5 (el 61 )
1 %
i i - -5 2
S3 = 4p; -1 -0, By * % le, " = 6,7)
0.0.0,0 02 ifm=n=20
R e 28] 5D
ulul(m,n) =
0 ifm#Z 0 or n # 0
(1-p,%) (1-p,%)06%® if m=n = 0
R (mln)=
b

0 ifn#0 or m#E O

G. THE STATE SPACE STRUCTURE

l. Introduction

Section F showed that one can arrive at a Discrete-

Space-Model for linear Image Processing, that has the form:
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|
g(k+l,2) Al : A2 M(k,2) Bl
SPSE S PSS PR PR PR + -4+ ux,0)
g(k,1+l A3 . A4 N(k, %) 82
M(k,2)
x(k,2) = Cl ; C2
N(k,2)

where:

k: An integer valued vertical coordinates

£ An integer valued horizontal coordinates

M: A vector which conveys information vertically

N: A vector which conveys information horizontally

W A vector that acts as an input

X A vector that acts as an output.

Al’ Az, A3, Bl' 82, Cl, C2 are matrices of appropriate
dimensions. Boundary conditions N(k,0), M(0,%) are also

inputs. u(k,%) is specified externally.

This section will summarize the properties of the State-

Space model. The discussion is based on Ref. [12].
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2. Realization of a Discrete Filter By The State
Space Structure

The following realization result has been demonstrated:
Given an arbitrary two dimensional digital filter whose 2-D

z transfer function is:

n(z;,z,) 2-117

< Z + alo'zl 2 ve B

then matrices Al, A2, A3, A4 and vectors Bl’
dimensions Al'— mxn, A2 — mxn, A3 — nxm, A4 — nxn, Bl - mx1,

B2 exist with

B2 - nxl such that Eg. 2-117 may be put into the form of
Egq. 2-116.

In addition, the following canonical form for Eq.
2-116 has been developed: If the denominator d(zl,zz) of
Eq. 2-117 factors as follows @uch a factorization is
denoted "doubly factorableﬂ:

& il P 2 .

d(zl,zz) = dl (zl) dz (22) + dl (zl) d2 (22)

then the canonical form for the Ai (i = 1,...4) of Eq.

2-116 is:
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where the coefficients ajs bi' c; and di are determined

from d(zl,zz) by

B m m-1 m-2 n
d(z,,z,) = (z, +a_ 2 ta 1% +...a;) (2,7 +d 2z, +...44

m-1 m=-2 n-1
- (bmzl +bm_lzl + ...bl)(C,,zl + cl)
2. The State Transition Matrix
Definitions:
| A A
1 2
a & 2-118a
o B
E
FAY Bl
B = 2-118b
Bs
c 2 c c 2-118¢
5 11 2
M(k,2)
o
T(k,2) = 2-1184
N(k, %)
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M(k+1,2)

Tk, = 2-118e
N(k,2+1)
Then:
T'(k,2) = AT(k,%) + Bu(k,) 2-119
y(k,2) = CT(k,2) 2-120

Now, for k > 0, & > 0, the next definitions are done:

al:0 _ B 2 2-121a
0 0
0 0

Pl L 2-121b
Ay Ag

akel o a0 ik=1,2 0,1 Kk, 2-1 P

AO,O = I

A-kll - Ak,-l » o
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A(k,%) is called "State Transition Matrix". Examination

of these definitions leads to formulas of system-response

that are similar to the one-dimensional discrete case.
Table 1 compares the formulas for the one

dimensional case to the two dimensional case.

3. Properties Of Ak'l
B TS 0 0
l. A = = +
B g 0 0 A, A,
A = at0 4 0.1 2-122
2, ake0 . /0 k-1,0 0,1 k-1 <
Al,o Ak"l,O
k,0 1,0y % 2-123
Thus, | a%'% = (a''?)
| )
and Al t o [a%1) 2-124
I 0
R
0 I
89
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ONE DIMENSION TWO DIMENSIONS
[f‘.‘.':_u_l)} . [.ﬁ'_i-f‘.a_} Fss,.t.)},,[i] 3
N A N B (k,1)
k,L+1) 3! ¥ | ¥
MODEL X =AX,£ _+BU s ' Bss ZJ
(k+1) (k) (k) : M
X(k 1) = C| Ecz Lkad),
; i Nik,0
STATE K * k, ? g
TRANSITION || ®ek) =4%= ' A" Al g0 gkhl L ponl gkt
MATRIX Poy=A%= I a%° =1
DEFINE:
M
- (k,2)
i [ 2 | seseacusie
s ’ (k,l)}
RESPONSE
FOR ZERO 7!
INPUT : (x,2) & _.&‘_".:'1152
U= 0 | (ke 0)
THEN:
' -
1’(n,u s T(k,!) o Bu(k.x)
Xt =€ T
Kk k?
oo X =AX T = A
(k) ¢(k) (o) (o] (k,1) (0,0)
Table 1: Comparison Between the Response of Two

Dimensional Systems to One Dimensional
Systems

I ——— i




where I is the identity matrix with appropriate dimensions.

Thus,
I 0
SE
& 0
0o 0
ik
0 I
P8 B e B &
4, Il'O‘A = =
0 0 TR & B
il
or:
10 o & 7140 1,0 _ ,1,0 2-125a
91 o 10:1,0.1 a0rl 2-125b
| S e T
| s, 1001 51.0 -k
| 0 I 0 0
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Briefly,

al:0 _ ;1,0 ,0,1 _ 2-126

In the next discussion we shall use some figures
for better understanding. The figures include arréws that
are going from one pixel to its neighbor. For example:
The arrows in Fig. 23 means that the values M(k,%), N(k,%)

contribute the values N(k,2+1l) and M(k+1,2%).

k,2 k,t +1

N—-@
(k,2+1)

;gkﬂd)

k41,2

Fig. 23: The Propagation of the States M and N.
[The values M(k,%), N(k,2) contribute
the values N(k,2+1l) and M(k+1,2%)].

4. General Response Formula

Lemma: Let u(k,2) be zero for all (k,%).

M(0,2) = N(k,0) = 0 for (i,j) # O
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(only M(0,0), N(0,0) are not zero).

Then: T(k,2) = a%% 7(0,0) 2-127
Proof: (By induction)
_ el = 0,0
$(04;0)= I:T(0,0) = A T(0,0)

Now assume it is correct for any (0,0) - (e, < (k,2) , then:

M(k,2)
T(k,2) =

N(k,2)
Al M(k-llz) -+ Az N(k-llz) + Bl‘O
A3 M(k,2-1) + A3 N(k,2-1) + Bz-O
Al A2 0 0

= PlR=1L, %} +* T(k,2-1)
0 0 A3 A4

- A1,0 Ak—l,!?, T(0,0) + A0,1 Ak,l-l T(0,0

= a%% 10,0

o 0 ) o 8

Figure 24 shows the propagation of the field due to

M(0,0) and N(0,0).




M=o n=o0 M=o
N’ N’ N
vM 'M vM vM
N. N’ N'
N=o
M M M M
v ¥ v ¥
N’ N’ N,
N=o0
M M M M
IN=0¢ ~’¢ , N’V ~’¢

Fig. 24: The propagation of states due to M(0,0) N(0,0).

Equation 2-127 will be used for the next two cases:

Effect of M(0,3):

Assume: M(0,j) is the only non-zero boundary condition
and that all inputs are zero.
Using Eq. (2-118d):
M(0,]3)

T(0,3) =




S

VEE

Therefore T(0,j) can be used as initial condition for

2-128:
, ' M(o,j)|
ok, 2) = a¥d.pre.qp = aFtd, 2-128
0
Effect of N(i,0):
Similarly to M(0,j) the effect of N(i,0) is:
i o
T(k,2) = ak it 2-129
N(i,0)

Effect of u(k,):

Assume: u(i,j) for some (i,j) < (k,&) is the only

non-zero input. All boundary conditions are

zero.
Then:
M(i+l,])
T(i+l,3j) = : =
N(i+l,3)
AlM(i,j) + I\ZN(l,j) + Biu(l,])
A3M(i+l,j-l) . A3N(i+1,j-1) - Bzu(i+l,j-l)
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A*0 + A,-0 + By-u(i,j)
T(i+l,3j) =
0
By
= u(i,j)
0
and:
0
T(i,j+1l) = e )
B,

T(i+l,j), T(i,j+1) might be substituted in 2-127 as boundary

conditions. Therefore, by using superposition:

L, pkmist-j-1, u(i,j)
Plk,2) = | &

2-130

Fig. 25 shows the effect of u(i,j).
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‘;_-L)___ ____;(i,jﬂ) _’N
6
.Qitbjl____arLr ___SE;“
*f" {'M
— >

FPig. 25.

Effect of u(i,j)

Superposition:
Theorem: for all (k,2) > 0:
M(o,3) 0
2 a k .
Pik,8) = £ X0h3 + ¢ akier
j=0 i=0
0 N(i,O0
-
4 : 5 ak-i-1,2-3 4 ak=k,2=3-1

(0,0)<(1,3)<(k,2)

e e———— e

-

2-130




Proof: By superposition of the effects of all inputs and

boundary conditions.

Q.E.D.

5. Characteristic Function

In the one dimensional case the eigen values of

the system

x(k+1l) = Ax(k)

are defined as those values which satisfy the algebraic

equation:

or the characteristic equation

[xT - A = 0

Now, for the "State Space Structure" let's define in the

same way: given:

M(k+1,2) A M(k,2)

N(k,%+1) A A N(k,2)
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define operators E, F such that:

Ay a, M(k,2) EM(k,2)
A,y A, N(k,2) FN(k,2)
or:
E-I-A, a, M(k,2)
; = 0 2-131
2y FI-A N(k,?)

To have a nontrivial solution of this equation we require
that the matrix in 2-131 is singular. Therefore the

determinant should be zero.

1'0-+f 0§

2-1313

6. Stability
The stability criteria of Huang [24] can be generalized
in a straightforward manner to systems represented in state
variable form. This generalization allows the use of
standard one~dimensional routines in the determination of

two dimensional system stability.
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The stability criteria will be:

1) The eigenvalues cof the matrices Al, A4 are
less than one in magnitude.

2) The eigenvalues of the complex matrix:

=1

a 2-132

A, + A3(z1 I-A 5

4 1)
are all less than 1 in magnitude as zy varies
about the unit circle (lzll = 1). If any
eigenvalues of Eq. 2-132 has magnitude greater

than one for |z = 1, then the system is

1
unstable.

H. MODELING BY USING OPTIMAL ESTIMATION THEORY
So far we have seen a technique for modeling random

fields that uses z transformation, properties of linear

filters and special types of correlation functions (separable).

That method was called "Filter Response Method". In this

section optimal estimation theory is used to solve the modeling

problem. The advantage of this method is that it is not

limited. For comparison between the two methods (see Section

I).
1. The Basic Principle
Suppose a discrete random field x(k,%) is given and
assumed to be homogeneous (stationary). Given the values

x(k,2) at all points Q(k,%), the problem is to estimate the
value x(k,2). In other words, if R(k,%) is the optimum

estimate for x(k,%), then:
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A W, > oy X(k=i,2-3) 2-133
for all (i,3) J
so that
(k-i,n-j)eQ(k,Z)
& 1 4!
- A iy [
® (] [ ) ] [ ] ® [ ]
® [ ] ® ] [ ] ( ] [ ]
4
QKD
k-1 ® ® ° . e ® ®
[ ] ®
@® @

26:

Fig.

The coefficients of ay

"mean square érror"

e(k,2) = E{

Definition of Q(k,%)

: must be determined so that the
14

(x(k, %) - x(k,2)1%) 2-134
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is minimized. ;(k,l) will be the "linear least square
estimate" of x(k,%).

Substituting 2-133 in 2-134, differentiating with
respect to each ai,j' and setting each derivative equal to

zero, we obtain the following set of simultaneous equations

for the unknowns a. .:
Sl

BL [k, 4) ~ (011 wli 50 = 0 e wly
(i,3)eq

2-135

which says that the coefficients o, 4 must be such that
the estimation error x(k,%) - x(k,2) is statistically
orthogonal to each x(i,j) that is used to form the linear

estimate. This is known as the orthogonality principle, in

linear least square estimation.
Let D represent the following collection of pairs

(ilj):

p = {(,, (1,1, (1,0)} 2=136

Now comes the definition of a first order process.

Definition 1:

A random field will be called first order Markov if

the coefficients a, 3 in 2-133 are such that x is of the
r’

form:
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<+—%
]

Fig. 27: Definition of Reg D

x(k,2) ) & . Xilk=1,2-7) 2-137

(i,3ran{k, L} *

(all other a's are zero).
That is, the least square estimate of x(k,2) in terms of
2(k,2) is the same as that in terms of only the three
immediate neighbors left and above the point (k,%).

Substituting 2-137 in 2-135, the foliowing conditions

for the Markov field must be satisfied:

E{[x(k,) = L a; x(k=-i,2-3)] x(p,q)} =0
(i,9)eD(k,2) *¢J

2=138

for all (p,q) ¢ Q.
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For a Markov field the coefficients a. 3 must be such that
’

2-138 is satisfied for all (p,q) € Q(k,2). In particular,

2-138 must be satisfied for the following values of (p,q):
(k'l,l), (k-l'z_l)r (kpl-l).

Substituting the values of (p,q) in 2-138, the following

equations are obtained, for oy j:
4

Rxx(0,0) = Rxx(O,-l)

2-139
where Rxx(a,B) = E{x(k,2) X(k+a,2+B8)}. For system coordinates
in this problem see Fig. 19.

Example 1

Given

R (n,m) = ol[“l pzl“‘I 2-140

by substituting 2-140 into 2-139, the solution for the

8, 4 it
i3
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and by substituting into 2-137:

®(k, L) o = Py x(k=17)

= PP, % (k=1,0-1) + Py x(k,2-1).

2=-141

Note: The discussion in this section will be limited main-
ly to "one-side process" (causal difference equation)
in order to compare it tc the method of modeling that
is described in Section F. 1In the end of this section
there will be some examples of non-causal models.

2. The Modeling Error

Definition 2: The modeling error is the difference

between the true value, x(k,2) and the estimate, x(k,2).

~

x(k,2) - x(k,2)

>

u(k,2)

= x(k,2) - z x(k=i,2-3) a, . 2-142
(i,3)eQ i.]
It is obvious that:
x(kll) Ly X(kr L) + U(k' L)
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x(k,2)

7 a, . xX(k=i,2-3) + u(k,) 2-143
(i,3)eq *+J

The error u(k,f) creates also a random field. The question
is what kind of random field? We are concerned in the
variance and the autocorrelation-function of this error.

a) The Variance (of the modeling error)

Using 2-137:

e

E{u?(k,2)}
= E{[x(k,2) - x(k,2)}

= E{x?(k,2) - 2x(k,2)-x{k,2) + x2(k,2)}

o

o Elxlth, U} - ik, 2} -nlk, 2] + 2kl [z )1}

The zero in the last term is set by using the orthogonal
principle (Eq. 2-138).

Therefore:

Q = E{x%(k,2) - [ 7
(1,5)eQ

a(i,j)x(k-i,l—j)] x({k,L})}

and recall that:

R(i,j) = E{x(k=-i,2-j) x(k,2)} = autocorrelation function




g ¥

o = ©elu’(k,0)} = R(0,00 - I &, . R(,j)
(i,j)eq *r3

2-144

b) The Autocorrelation (of the modeling error)

Theorem: The modeling error creates a random

field that is white noise, e.g.:

Q if m= 0 and n=20
R (n,m) =

0 if m# 0 or n#a0

Proof: By using 2-143, Eg. 2-137 can be written in a
non-recursive way as follows:
k J

k,L) = % )3 n
x(k,2) e n=16m,nu(m. )

| B e IR
N o=

+ YO x(0,2-3) +
1 i

5 5 i X(ly
éii.lnitial conditions 2-145

But using the orthogonality principle:

Bluik2) 2ld,;33} =~ O (1,3} = 8 2~-146

and especially:

107




E{u(k,2) ;(k,l)} = 0 2-147
substituting 2-145 into 2-147, the result is obvious:
E{u(k,%2) u(m,n)} = 0 (m,n) € 9
Q.E.D.

Note: As previously determined, this discussion concerns
causal models. 1In this case we proved that the
random process is forced by white noise. That is

not the case in a non-causal model.

Example 2

Problem: Find the variance of the modeling error for the

model of Example 1.

Solution:

QO = 1 = aO,l R(O,1) - al,l R(1,1) - al,O R(1,0)
2 2 2
1 Py * (oloz) - fy
2 2

Conclusion: For the autocorrelation function of 2-140




the model is:

x(k+1,2+1) = plx(kfl,z) +p (e, L] +pzx(k,2+l)-+u(k,z)

1°2

2

- e S R N e
E{u®(k,0)} =Q = (1 oy ) (1 Py )

2-149

Now, comparing 2-149 to 2-81, 2-82 it is seen that:

For the First Order Markov Field the orthogonality
principle (Minimum Mean Square Error) leads to the

same model as the "filter response method".

3. Advantages Of The "Orthogonality Principle" Method

There are three distinct advantages of this method:

a) This method can be applied to non-separable autocorrela-
tion functions. This is impossible to do with the
Linear Filter Response method.

b. This method can be extended to non-causal models. The
technique is very similar to the causal-modeling tech-
nique. The only differences are that the modeling
error is not white any more and that the solution
doesn't exist for all cases.

c. It is optimal in the sense that the modeling error,
u(k,2), is minimum. It was not proved that the method
of Section F, Linear Filter Response, leads to an

optimal model. [(We see it only for one special case,
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the first order Markov field.] For further discussicn
of this point see Ref. 23.
The next examples will highlight these three advantages.
Example 3 (for advantage a):
2.2
Given: R = o % *® 2-150
—_— XX
Find: A linear model for the field that uses region

D (defined in Eg. 2-136 and described in Fig.

27)
Solution: As in Example 1, the set of three algebraic

equations of 2-139 has to be used:

o < f_T T G ‘3 z
Rxx(olo) + Rxx( llol * R (=L,L) 1,0 RXX( 110)

Rxx(l,O) + Rxx(0,0) + Rxx(o,l) P al,l = Rxx(-l,l)
Rxx(l,-l) + Rxx(O,-l) 1 Rxx(0,0) aO,l Rxx(O,-l)
and by substituting 2-150:
1 P 0/7 al'o o
o 1 p ey, - 0’2
o'/f P 1 B2 P
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The a's are solutions of these three equations.

Note:

The process in Eg. 2-150 is not first-order, if we
use definition 1. There is not a finite set

of elements on which the point x(k, %) depends.
Therefore the choice to model the process by region

D was arbitrary in this example.

Example 4: (for advantage b):

WA m
DN Q\\.é\\

AR ' ' \
AN MNNN
k k,!
L-2 L-1 2 L+ L+2

Fig. 28: A Non-causal Regio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>