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Abstract

I

The purpose of these notes is to survey the recent literature on
dependence between two randan variables and to stimulate research which
will extend (sane of) these concepts and relations to the case of 3 or
more variables .

Key words: bivariate distributions ; F~4 distributions; multivariate depen-
dence; Hoeffding ’s lenina ; multivariate hazard rates ; correlation
ratio; copulas; association; infotmation theory; reliability.
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~~ 1 Dependence and genera lizations of correlation.

II Introduction.

In these notes we are concerned mainly with bivariate distributions .

The connection between dependence and the theory of multivariate hazard

rates is also briefly discussed. Extensions of positive dependence to

association and other notions of dependence as well as applications and

interrelations are included in Part 2 of these notes .

~fl Positive dependence. (Lehmann, 1966) .

Two even t8 A and B are called dependent if P (AnB) = P (A) P (B)

is violated. We say that there exists positive dependence if

P(AnB) � P(A)P(B).

Two random variables are said to be positive l~j dependent if

P(XEA, Y€B) � P(X€A)P(X€B) for any two Borel sets A and B on the

real line. Negative dependence is defined by reversing the appropriate

inequalities . The former case often occurs in reliability theory (parts

of a machine usually have a longer life when they are “put together”).

The latter case is prevalent in biological populations cai~eting for

limited resources. (See Barlow and Proschan (1975).)

Fran Ie)inann (1966) we have the following definitions :

Def. 1. (X,Y) or P~~(x,y) is positively quadrant depandent if:
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P (X�x , Y�y) � P (X�x) P (Y�y) or
(1.1)

F~~(x ,y) > F~(x)F~ (y) V x,y.

Lot F1 be the family of distributions (two-dimensional) for which (1.1)

is valid , G1 be the family of distributions for which (1.1) is valid

with reversed inequality. Notation (X,Y) e F1(G1) means F~y € F1(F~çy E G1) .

Lenina 1: (i) (X ,X) E F1
(ii) (X ,Y) € F1 <—> (X ,-Y)

(iii) P(X�x , Y�y) � P(X�x)P(Y�y) V x,y <=>

P(X�x, Y<y) > P(X�x)P(Y<y) V x,y <=>

P(Xcx , Y<y) � P(Xcx)P(Ycy) V x,y.

Proof: (i) P(X�x , X�x) = P(X�x) � P(X�x)P(X�x).

(ii) => P(X�x, -Y�y) P(X�x, Y�-y)

= P (X�x) - P(X�x, Yc-y) =

= P(X�x) - lim P(x �x, Y�-y -

� P (X�x) - J im P (X�x) • P(Y �-y -

P(X �x) - P(Xsx) • P(Y <-y)

- P(X�x) (l - P(Y�-y)) - P(X�x)P( -Y �y).

for <— the proof is similar .

(iii) Since P (X�x, Ycy) 
- 

- Urn P (X�x, Y�y - j~) and also

P (X�x , Y�y) - lim P (X�x, Y cy+i) ,  we proceed as in (ii) .n

it is easy to verify the following.

— 
- ~~~~~~~~~~~~~~~~~~~~~~~
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Leema 2: (X,Y) F 1
<~~ > P(X�x , Y�y) � P(X�x)P(Y�y) V x ,y

<~~> P(X�x , Y�y) � P(X�x)P(Y�y) V x ,y

<~~~> P(X�x, Y�y) � P(X~x)P(Y�y) V x ,y.

Remarks : 1. The signs � and � can be replaced by > and < re-

spectively .

2. The last inequality is called G-depend ence by Lehmann (1966)

and Johnson and Kotz (1975) , and is frequently used in

reliability theory where X and Y are interpreted as

life-lengths of cc*nponent parts of a machine. The validity

of the last inequality follows from the simple relation:

F~~(x ,y) - F~(x)F~ (y) G~ ,(x ,y) - G
~

(x)Gy(y)

where G~~(x ,y) - P(X>x , Y>y) and G
~
(x) P(X>x) and

G~(y) — P(Y>y).

We conclude this section by proving that (X ,Y) E F1 ~~ E(XY) � EXEY

provided the covariance and expectations exist .

Lemna 3: (Hoeffding 1940) : If F denotes the joint and Fx and F~

denote the marginal distributions of X and Y, then

E(XY) - EXEY - 
~~~~~ 

EF(x ,y) - P~(x)F~(y)]dxdy -

• I I (G
~~(x,y) - G~(x)G~(y) ) dxdy ,

provided the expectations on the 1.h.s. all exist.

j  
-~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~- --_~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof: Define I(u ,x ) = 1 if U<X and C) otherwise .

Let (X 1, Y 1), (X2, Y2) be independent , each distributed according

to F. Then

2 Cov(X1Y 1) 2(E (X 1Y1) - EX1EY1) = E(X1 - X2) • (Y1 - Y2) =

= E [I(u ,X1) - I(u,X2)][(v ,Y1) - I(v ,Y2) ]dudv .

(Details of the last step are given in Appendix 1.) Using Fubini ’s theorem

we can take the expectation inside the integral sign thus obtaining:

2 Cov(X1,Y 1) = f° J~ 
(E I ( u ,X1)I(v ,Y1) - B I(u ,X2) • E(v ,Y~) -

B I(u,X1) E I(v ,Y2) + E I(u ,X2)I(v ,Y2))dudv

( = 2 
~~ 

iCo~~
I(u ,Xi), I(v ,Y1)) 

)

J~ f fGx1,y1
(u ,v) - - G~~(u)Gy (v)

+ Gx ~~

, (u,v)ldudv
2 ’ 2

• 1° 12(Gx y (u ,v) - Gx (u) • G~~(v))du dv .

Us ing the Remark 2 following Lenina 2 we complete the proof. 0

L.eevna 3 implies:

Theoran 1: If (X,Y) F1 and EXY, EX , EY exist , then EXY � EXEY

or Cov(X ,Y) � 0. Moreover , if (X ,Y) € F1 , Cov(X,Y) • 0 -
~ X ,Y are

—t.
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Some additional properties of positive quadrant dependence.

Given :

(i) P[X~cx, Y�y) � P[X�x)P[Y�y) V x,y E R ’

The following is valid:

(ii) : P[X>x, Y�y] ~ P[X>x]P[Y�y ]

(iii) : P[X�x , Y>y) ~ P(X�x]P[Y>y]

(iv): P[X’x, Y>y] ~ P[X>x]P[Y>y], and

(v): (i) does not imply

P[x1<X�x2, y1<Y~’2) � P[x1<X�x2)P[y1<Y�y2] (-c <x1,x2,y1,y2<o ).

Proofs:

(ii): P(X>x, Y�y) = P(Y�y) - P(X�x , Y�y)

� P (Y�y) - P(X~x)P(Y~y)

= (1 - P(X�x))P(Y�y)

= P(X>x)P(Y�y).

(iii) : Follows fran (ii) by synlnetry .

(iv) : Prom (iii)

P(X>x , Y>y) - P(Y>y) - P (X�x, Y y )

� P (Y>y) - P(X�x)P(Y>y)

— (1 - P(X �x))P(Y>y)

• P(X>x)P(Y>y)

Note that (iv) is just the Remark 2 above .

Cv) : C~ a~terexau~~le: Let (X ,Y) be distributed according to

the following table .
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X 1 2 3

I ~~- ~ P[X�a, Y�bJ � P[X �a]P[Y�b ] for a=1 ,2 ,3
and b=1 ,2,3.

1 1 52 0 ~~
- 

~~~ P[X~1, Y�1J~~~~ �~~~x~~~

3 ~ 
1 2 P[X�2, y�i] = -~~~ 

+ 
~~- � -

~~
- (

~
)

1 1 1 
P[X�2 , Y�2] = �

X ~ 1 P[X�1, Y�2 ] = ~~~�~~- x ~~~~, and so on .

However P[l.5�X �2.5 , .5�Y�l.5J c . 
~~~~~= P[1.5�X�2.5] • P[ .5<Y <i.5 J .

Indeed, P[X=a , Yb] cannot always be � P[X a)P[Y=b] (excluding the

independent case) since both 
~ ~ 

P[X=a , Y=b] = 1 and ~ ~ P[X=aJP{X=bJ = 1.
b a  b a

N(YFE : Inequalities (i) and (ii) imply that there must be Borel sets

A1, B1 such that P[X cA1, Y€B 1] � P [X.CA1)P [YEB 1] and sets A2, B2
such that P[X€A2, YEB 2] � P[XEA2IP[Y EB 2] (with a strict inequality

for at least one pair) . For example we may choose

A1 = [X>x) , A2 [X�x]

and B1 = B 2 = ( Y�y] .
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!1JJ Measures of dependence from i nformation-theoretic ~~pects.

The following discussion develops a measure of dependence based on

the concept of entropy suggested ‘Dy C. E . Shannon (1948) nearly three

decades ago.

Let X be a discrete random variable with a finite number of out—

comes, i.e. P(X=x1) p~ , i = 1,2,.. .N. Shannon def ines the entrop~i

or the measure of uncertainty (or information) as:

N N
h(Q) = - 

~ 
p~ log p1 , ~ = 

~~~~~~~~~~~~~ ~ p1 
= 1.

i=1 i=1

h (12) assumes maximum log N iff p~ 
= 

~~
- , i = 1,. . .N.

The proof of this assertion as well as some other properties of h( Q)

are presented in Appendix 2. Here we take the particular case N 2 .  In

this case:

I: h(p , l-p)

log 2

h(p, l-p) = -p log p - (1-p)log(l-p); h(½,½) = log 2.

We def ine h( 0,1) = u r n  h(p, l-p) = 0, h(1,O) = u r n  h(p, l-p) = 0.
p÷0 p4l

These limits exist by the L’Hospital rule . (Observe that an unbiased

coin yields a higher uncertainty than a biased one.) Consider discrete

r.v.’s X,Y with

— ~~~~~~~ ‘ — ~~~‘~~ - - - ‘ ~~— - -
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P(X x~ , Y=~~) = (i = 1 , . .  .n; j —1 ,.  .

P(X x~
) - , P(Y=y

3
) = q~ . We have

q
3 

— 
~ 

= 
~ Pj~ and

by the lenina in Appendix 2 ,

- p~q~ lo~(P~~~) � - 

~ ~~ log -

This inequality suggests that we have a higher uncertainty when X and

Y are independent. This fact is employed to define the logari thni c index

of correlation r0

= 

~ 
(p~~ log ~~ 

- p1q
3 

log p.q
3 ) .

Note that r0 � 0 , and r0 = 0 iff ~~ 
— ~~~ V i ,j. If (X ,Y), X , Y

possess densities p(x ,y) , p (x) and q(y ) respectively , we define r0
as: 

r0 - if [p(x ,y) log p(x ,y) - p(x)q(y) log p(x)q(y) ]dxdy .

We prove in Appendix 3 that r0 � 0 also in this case .

Exanpie: Consider the bivariate normal distribution :

p(x ,y) — v~ib~hz e~~~~~~
2 1 ’

~~~~ , a’O , ab-h2 
> 0.

The classical correlation coefficient is:

r -  EXY EXEY
War ’X vYar Y /ãE

The i~~rgInals are

— .fl - 
~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~* ~~~~_ , _ _ _.  ~~~~~~~~~~~~~~~~~~~~ ______ ~~, r 7 — t  ~~~~~~
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p(x) = p (x,y)dy =~/~~e~ X ; q(y) = f0 p(x,y)dx = yI~~e~~~

ci • (ab - h
2)/2b ; B = (ab - h2)/2a.

(See also the next Section.)

Computing r0 , we obtain

r 0 = -log 2ii~ + log + log

= ½ l o g  ~‘ 2 = ¼ l o g  ~~ 2 = ½ l o g  1
2 .

ab-h 1-i— 1-r

J -2r ~Thus : r =Vl -e

111 Correlation coefficient 
~~~ 

correlation ratio.

Let X, Y be r.v.’s with finite variances; define correlation coeffi-

cient R(X,Y) = 
E(~Y~~~~~E(Y) , where DCX), D(Y) are the standard

deviations of X , Y , i.e. positive roots of Var(X) and Var(Y). Assune

Var(X) , Var(Y) > 0 , i.e. X and Y are non-degenerate . By the Catchy-

Schwartz inequality [E (X - E(X))(Y - Em)] 2 E(X-EX)2E(Y-EY)2 I R(X ,Y) I  < 1;

R(X ,Y) = 0 —> Cov(X,Y) - 0.

In the latter case we say that X and Y are uncorrelated ; this

implies that X and Y are independent if (X Y) is bivariate normal;

R(X Y) • ±1 if X and Y are directly proportional. Kolmogorov (see

Renyi, 1959) def ines corre lation ratio — as a measure of dependence —
as follows:

- .-J—-_ ~—‘ 0~~~~~~~~~~~~~ 0~~ 
__~0~0~ — ~~~ 0~ ____~ -~~~
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Kx (Y) D(E~~~X))

The relationship between R(X,Y) and KX (Y) is given by

Theorem 2: If X and Y are random variables and Var(Y) exists , then:

Kx(Y) 
= sup jR (Y , g(X))l, where g runs over all Borel-measurable real-

g
valued functions y = g(x) such that the variance of g(X) exists.

Moreover, Kx(Y) R (Y, g(X)) I iff g(X) = a E(Y I X) + b (a.s.), where

a,eO , b are constants.

(Remark: Notice that the theorem implies that 0 � Kx(Y) ~ 1 .)

Proof: Observe that R(X,Y) and Kx(Y) are both invariant under linear

trans format ions. We thus may assume that E (Y) = 0, E (g (X)) = 0 and

D(Y) = D(g(X) ) = 1. Now R (Y, g(X)) = E (g(X)Y) and since

E(g(X)Y~X) = g(X)E(Y~X),

E(g(X)Y) = E[E(g(X)YIX)) 
= E (g(X)E(Y J X)),

we have

R2 (Y , g(X) ) E2 (g(X)E( Y~X)) � (by the C.S. inequality)

� E(g 2 (X))E(E2 (Y IX) ) • E(E2(YIX)].

Hence R2 (Y , g(X)) � E(E2 (YI X)).

Since 0 - E(Y) - E(E(YI X)), we obtain:

R2 (Y , g(X)) � E(E
2

(YIX) ) - E
2

(E (YIX) ) - var (E(YIX))

••~ R (Y, g(X)) � D(E (Y I X)) ,  or
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sup IR(Y , g(X) )~ � D(E(Y I X) ) .
g

Now let g0 be a real function, such that g0(X) = E(Y(X). (Recall

that E(Y) = 0, D(Y) = 1 .) In this case

E(Yg0(X)) -E(Y)E(g0
(X))

R(Y , g0 (X) ) = D (Y)D(g0(X)) =

- 

E fE (Yg0 CX) (x ) J — 

E (g0 (X) F (Y X)) - E (F
2 
CY X) -

- 

D(E(YIX)) 
- D(E(YIX) ’) D(E(Y X) -

Var~~(Y
1
X)) = D (E(YI X)).

Thus D (E(Y I X)) = sup I R (Y , g(X) ) 
~~
, where g runs over all real functions

such that var (g(X) ) exists . Since

I R( ~, g(X)) J = J E (Yg(X)) J = ) E [E(Y g(X) I X) )~ =

= I E ( g(X)E (Y I X)) i  � [~g2
(X)~ (E2 (Y~X)) ]½

= (EE2 (YI X))~ = D (E(YJX)),

the equality

Kx(Y) = D(E(Y(X)) = (R(Y , g(X)) I holds iff

g(X) = aE (YIX) + b (a.s.) for some a�0 and b.

yj Max imal correlation.

We haVe ICx(Y) — sup IR(Y , g(X) ) I if Kx(Y) - 0 , then R(Y , g(X)) = 0

for all g such that ~(g(X)) 2 
< ~~. This implies that Y and g(X) are

uncorrelated , but does not yet assure that Y and X are independent.

However ,

S(X Y) — sup R(f(X) , g(Y)) implies
f ,g

~p2 (X) <oc
Eg2(Y)<x

- -  -
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that X and Y are independent if S(X,Y) = 0.

Remark: S(X ,Y) also equals sup R f(X) , g(Y) by the fact
f,g

~p2 (X)=Eg2 (Y)—l
Ef(X) -Eg (Y) 0

that R(•, .) is invariant under linear transformations .

~

- - - -  -—~~~~~ - — - - — —— ~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -  .-
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Theorem 3: S1) 0 � S(X ,Y) � 1.

S2) S(X ,Y) S(Y ,X) .

S3) If ct(x) and 8(y) are strictly inonotonic , then

S(X ,Y) = S(cz(X), 8(Y) ) .

S4) IR(X ,Y)I � min(K
~

(Y) , K.~(X)) � max (K~
(Y) , Ky (X) ) � S(X ,Y).

S5) S(X ,Y) 0 if f X and Y are independent .

S6) If there exists an arbitrary functional dependence between

X and Y , i .e.  if there exists Bore l measurable functions

f0
(X) and g0

(Y) such that f 0 (X) is not constant with

probability 1 and f0 (X) g0(Y) then S(X ,Y) = 1 .

Proof: S1): 0 ~ S(X ,Y) � 1 since -1 � RIf(X) , g(Y)J � 1. The non-

negativity of sup R(f(X), g(Y)) comes from the fact that if
f ,g

E f(X)g(Y) - Ef(X)Eg(Y) < 0, we then consider f ’ = -f to yield

R(f’ (X) , g(Y) ) > 0 .

S2) :  S(X ,Y) = S(Y ,X) in view of the syninetry of R(X ,Y).

S3): Note that in general Ef2 (x) < 1~> Ef 2(c&(X)) < ~~, i.e.

R(ct(X), 8(Y)) may not exist.

However if a and B are strictly monotonic ‘-U> and 8 1

exist and

R (f(X), g(Y)) = R(fct~~(czX) , g8 1(BY))

Thus sup R (f(X), g(Y)) � sup R(f’(ciX), g ’(BY)).
• f ,g

Also sup R(f’(ctX), g’(BY)) � sup R (f(X), g(Y)).
f’ ,g ’ f ,g

Thus S(X ,Y) • S(aX , LW) .
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S4) Since Kx
(Y) = sup (R(Y , g(x) ) ( ,  K.~,(X) = sup 1R (f(Y), X )l ,

g f
we have

Kx(Y) � IR C I’,x ) l ,  K~(X) � R(Y,X)l.

Hence, IR(Y,X)! � min(K
~
(Y), K~(X)) � max(K

~
(Y), K~(X)).

S(X ,Y) = sup R(f(X), g(Y)) � sup R(X , g(Y))
f,g g

and S(X ,Y) � sup R (f(X), Y).
f

Thus IR(X ,Y) I  � min(IcA(Y), K~(X)) � inax(K
~

(Y) , K~((X)) � S(X ,Y).

S5) Define indicator functions on R1: fA (x) = 1. x€A;
= 0 otherwise

g8(y) = 1 ycB ,.where A and B are arbitrary Borel sets on

0 otherwise

the real line such that 0 < P(XEA) < 1 and 0 < P (YcB) < 1.

By definition:

R(fA(X), ~~~~~~~~~ 
= 

P (X€A ,Y€B) -P(X €A)P(Y € B)
,‘POkA) (1-P(XeA))P(Y€B) (l-P(Y€ B)J

Hence S(X,Y) - 0 ~=> P(X A, YeB) - P (XEA) P (YEB) => X and Y are inde-

—t.

S6) If f 0(X) g0(Y) , consider

f0 (X) g0 (Y)
f1

(X) — l+1f0(X) I — 
1+1g0(Y)I 

— g1(Y).

(Note that f 1(X) ( - g1(X) ) are bounded, the variances exist and are

* 0,)

Ef 1 (X) g1 (Y) -Ef
1 

(X)Eg
1 
(Y)

We have R(f 1(X), g1(Y) ) — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — 1, i.e. S(X ,Y) — 1.
I’V’áI Var g1(Y)

— -p - — -a ~~~~~~~ - -  —-
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Remark: S6 is a oufficient condition for S(X ,Y) = 1.

\~JJ Mean-square contingency.

Let X, Y be arbitrary r.v.’s on ffl,F ,P). The distribution of

(X,Y) denoted by P~~ is defined on the pl ane by P~~y (C) = P ( (X ,Y) C ) ,

C c B2 ~ 
being a two-dimensional Borel o-algebra . When

C = (-°~‘, x] x (~~oo ,y] we have the “usual” distribution function :

F~~(x ,y) = P~~, ( ( - o - ’,x) x (_ oc ,y]) = P(X~x , ‘i �y) .

I f is absolutely continuous w .r . to PX 1 
x PY~~ , the product

measure induced by (X ,Y) ,  we have according to the Radon-Nikodym theorem,

P~ ,(C) = K(x,y)dPX 1dPY 1 
, (1)

where K(x,y) a Borel measurable function. The R-N derivative K(x,y)

is expressed symbolically as

/~px~~du’y 1

We now define

dP 2 1q ( X ,Y) I 2 1
XY 

-l - 1 dPX dPY (2)
LJR dPX dPY J

as the mean equare contingency of X, Y.

“Historical” motivation for this definition:

Let X and Y be discrete r.v .’s with P(AK) = P(X K) , K = 1

P(B~) = P(Y—j), j — l,...,r. Then:

- -
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r (p (A .B .)~ p (A. ) p (B. ) ) 2 1½
1)  1 3

‘ ‘ ‘ 
— 

Lf j !  P(A.)P(B
J J

If we have the rxs contingency table :

1 2 3 • . . .  s

1 ‘)
~~~ 

V12 “is ~l.
2 v21 V22 “2s “2’
3

r “ri Vr2 S Vrs Vr

v V v n
‘2

and we estimate P(A1B
J

)~ P(A~) ,  P(B~) by —
~~~~

- , —j
~
-- , ~j 1 , resp.

then the estimated •
2 will be:

~ 

~Vj j / -V j / V i /
}

2

1,j 1•/~ • •~‘r&

This is the statistic for the x2 test of independence ~ is asymptotically

distributed with (s-i) x (r-1) degrees of freedom) . Returning to

(2),  we have
dP~~

•(X,Y) — 0 —> 
-1 

- 1 — 0 a.s.
dPX dPY

with respect to x PY~~ . In other words 1C(x,y) 1 a .s. w.r .

to PX ’x P Y 1 . Prom (1) we have in this case

P~~(C) — 1 dPX 1dPY~ - PX~~ x PY4(C) for all C € 82

This bnplies that X, Y are independent . We thus have

- - -.  - — - --—---- — — —
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Theorem: •(X ,Y) - 0 <‘=> X, Y are independent.

Definition: If X , Y are such that the measure P(X ,YY1 is absolutely

continuous w • r . to P)C 1 
~ py

1 (i.e . the mean square contingency exists),

it is said that X , Y are regularly dependent.

Theorem: If X , Y are regularly dependent , then

S(X ,Y) � $(X,Y).

Proof: Since 0 � S(X,Y) � 1 we can assume that •(X,Y) < 1. Take

measurable f and g such that

Ef(X) Eg(Y) = 0 and Var f(X) = Var g(Y) 1.

Direct calculations show . that

S Indeed

R(f(X), g(Y)) J 2 f(x) g (y)dP (X,Y~~
1 

=

- 
1

R 

f(x)g(y)d (P(X,YY~ - px4~~
1) =

- 1
R 

f(x)g(x) ~~~~~~~ - 1
R dPX dPY

(Observe that both J d(P(X ,Y) -PX 1PY4) 
&~ -1~~~

-l
C dPX dPY

~ ‘~ (~jp~(.]~ py.1 - 1)d u’~’~ — P((x,Y)cC)

P(XcC)P(YcC), for CcB2 )

Hence R(f(X), g(Y))2 ‘ J 2 f2(x)g2(y)dPX~ dPY 1 j’ 2 - 1
R R dPX dPY

- ~
2
~~ ,Y) (by C. -S. inequality) .

- — - - -~~~~ ~- -~~~~~~~~~ -- - -~~~ 
_
~ r ~~~~~~~~~~

-
~~~~~~~

- - - - -  .. -~~ 
- ; — 

I 
-
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R(f(X ) , g(Y)) 2 
� •

2 (x ,Y)

Hence sup IR (f(X), g(Y) ) I ~ ~~X ,Y)
f ,g

or S(X,Y) � 4 (X ,Y).

VII ] Pai rw ise loosel y dependent random variables.

Definition: We say that {X~} is a sequence of pair~,~ee loosely depen-

dent r.s.’s with coefficient C>0 if

I nL m~i 
S (xc, xm) %u~ � C u~

for each sequence {u } such that ~ u~ <~~~~.n i—i

Theorem: {X~} is an independent family of r .v • ‘5 iff C-i.

fi n=m
Proof: S(X~. X.~) = if {X~} is independent. We thus can take

~0 n�m
C-i in S.

Suppose C-i, define - and assume ~ u~ < ~~.

We have:

U~ i1 s(X~, ~n)u~t~I ~ ~ ~ 1” J~ 
u~}.

Since O�S(Xn~
Xm) and S(X~~ X~) - l ~~and

‘I- ~ • - - — -~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Ji m~i 
S(Xn~ u~u~ n~i 

~,
2

we have 
n~l 

~~2 + 

~ 

S(X~, Xm)U~Ui~ 
~ n~i 

uf ~~> S(X~~ X~) = 0, nsm —> {X~)

is an independent family.

The coefficien t of dependence C has another property as well.

Theorem: Let {Xn) be a sequence of loosely dependent r .v • ‘s with co-

efficient of dependence C. If Y is an arbitrary random variable such

that ~~2 exists. Then

- 

~~4 �c.
n=1 ~‘n

For the proof of the theorem the following lenina is required :

Lenina: Let {X~) be a sequence of square integrable r .v. ‘s with bound

0>0, i.e.

m n~1 Ji 
E(X~X~

)u
~%I ~ e

for every sequence {
%

} such that ~ u~ <~~~~. Then we have for any

random variable Y with EY2 <~~~

~ E2 cY)ç~) � e E ~
2 .

n—i

Proof: Consider

E(Y -~~~~Z B(YX~)X~)
2 � 0 ,

then E (y
2 

- 

~ n~i 
X~ Y E (YX~) + E (YX~)) 2) ~ 0

~ n~i 
E2(YX~) - !2. B(~ Z E(Yxn)xnxmE (YXm))



—1 9-

> j ~y
2
~~~

2 
~~~ ~~~~~ -

~~~~~~~~
- 

~~ E (YX )E(YX )E( X X )

~ n~i 
E2 (YX11) 

- 

~~ J1 E(YX~)
2 

~ n~i 
E2 (YX~).

(Remark: In Hilbert spaces theory, for any orthonormal system of r .v. ‘s

i.e. EXnXm = 0, n�m (
~~~)(~~~

)
½ 

= 1, we have 0=1 and EY2 

~ n~i 
E2YX~

(the so-called Bessel inequality) . The last leiiina can be viewed as a

generalization of the Bessel inequality.)

To prove the theorem observe that

D (E(YIX~))Iç,~~(Y) D(Y) = sup R(Y, g(X~)).

Eg2 (X~) <~~

Let {g~} be a sequence of measurable functions such that Eg~(X~) < ~~.

If (X ) I
(Such a sequence can always be constructed by choosing g~(X~) = 

1+1 f )I
g~(X )-E(ç(X~))

for any measurable f .) Define g1 (X~) - , n = 1,2 ...

Since {x~} is loosely dependent with coefficient of dependence C we have

~

�~~~ SOc~,X~) I %I I%I � C ~~~~i~

Using the Lenu with Y’ - Y  - E~, we have:

~ ~~~~2 - ~~2~~)

If we choose g~(X~) in a special way to be equal to

g~ (X~) • E CY ’IX~),

- - -
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we obtain

~ 2 E(Y ’ I X~)-EY ’ 2E [~‘ D(E(Y’ lX~))] � ~~~ (Y);

~ E2[Y’E(Y’IX~)] 2or 2 � CD (Y). S

n-i D (E(Y’ IXn))

Note that:

E(Y’E(Y ’ IXn) ) = E[E(Y?E(Y ? IXn) Ix~))

= E(E(Y’ IX~)E(Y ’ X~)) - E(E2 (Y’ I X~)) = D2(E(Y ’ IX~))~

since E2E(Y ’ IX~) E2Y’ — 0.

Therefore the 1. h.s. of e becai~ s:

~ D2 (Ecy ’ I X~)) ~ ~~2 ~~ be
n-i

t-kwiever,

E(Y’ I X~) = E(Y - EY IX~) - E (YIX~) - EY.

Thus

D2(E(Y’IX~)) = D2(E(YIX~)).

We finally obtain fran be

D2 (B (Y I X~)) � (Y)

~ D2 (B(YIX~)) ~ ,or I - I Ic ( Y ) � C .  0
n-i D (Y) n’4 “n

We Imow that C can be chosen to be 1 provided {X~) is a sequence

of pairwise independent r.v. ’s.

- - -

~

- - -

~
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Corollary: If I X~} is a sequence of pairwise independent r.v.’s, and

Y is an arbitra ry r .v . such that EY2 
< ~~, th en

~ JC~ (Y) � 1.
n-i ‘n

VIII ) Posi tive dependence and multivar late hazard rates.

Given an n-dimensional random variable ~~ = (X1,. . ,X~) ,  denote by

Fx (XJ = Pr( fl (X. � x .)] the joint c.d.f. and by
-~ ~— i ~

Gx (
~

) = Pr [ fl (X. > x .)] the joint survival function.
j=1 3 1

We assune that Fx (
~) and Gx(

~
) are absolutely continuous .

Definition.

If hx (&3 
is an increasing (decreasing) function of x3 , 

for

j  = i ,2 , . . . , m, for all ~~ € , then the distribution Fx (
~) is a (vector)-

nultivariate inareasing hazard rate EIHR] (decreasing hazard rate [DI-1R] )

distribution , where hx(
~) is the j-th component of -grad log G~(~).

Lenina 1: If X1,. . . are nutually independent i.e.

m
Gx(

~
) - II G~ (x.)

then ~~(x) 
~ 

- ~~ (x~~ whe:e ~~ (x
i

) - log 
~~ 

(x
i

) - f~ (x~ ) / 1 -F~~ (xi
)

is the univariate hazard of the j  -th component.

Laimia 2: If h~(~) - ~ where ~ - (ci . . . , cm) is an absolute constant ,

then ~ - (X1,.. . X~) are iaatually independent exponential random variables

-L
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and conversely.

Proof: Given hx(~) 
= c , this implies that:

a log Gx(x)

ax. = 
~~~~j  

= 1,. ‘~~

i.e. Gx(& = 
~~~ 

~~~~~~~~ 
~~
, Xj#i~•.•Xm)~ 

V j = 1,... ,m ,

i.e. )ctexp (- ~ c~x~).

The boundary conditions on Gx(~
) imply that

Gx (
~.

) = exp (- ~ c~x~)~ x~ 0. 0

Recall from Section II that the variables X = (X1,X2,... ~
Xm) are G-

positive ly quadrant dependent if

m
RG(x) Gx(X)/ IT G

~~
(x1) � 1.

— i—i 1

Observe that RG (x l, .  . . ,x~) — R c(x2,.. . ,x~). In particular RG (xl,x2) = 1

a log R6()~(for m—2 ) . ~breover — h~ (x)) - hx(~) ~ 
, j 1, • .  .m.

Theorem: For m-2 , if hx (x
~
) > h~~~(~~~L

, 
(j - 1,2) for all ~~, then

3
� 1- for all ~~, i.e. the variables X1 and are G-poei tively

quadrant dependent

a log R~(&Proof: Observe that > 0 for all ~ and j  - 1,2 together
3

with ijin RG(x) —l end u r n  R,~(x) • 1, implies that Rc(~) 
� 1 for all ~~. 0

X2~~-~~

~

•

~

• - - — . ______ — — H
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The converse of this theorem is in general not true .

Consider the survival function:

G12 (x1,x2) = G1(x1)G2(x2)[l 
+ ae~~~~~’~~] (a>0)

-co<X 2 <~

It is a survival function for some choices of G1(x1) and G2(x 2) and certain

values of a. Indeed, first we have to assure that

2 
_____________ = ax1~~2 

> 0 for all x1 and x2

Now ax1ax2 
= 

~~1~~2 
= f1(x 1)f2(x2) 

+ ~~-½ (x~~x~)

[f1(x1) + x1G1(x1)][f2 (x2) + x2G2(x2)]

� f1(x1)f 2(x2) - aIx ix2 te~~~~
’
~
”
~

a2F -½x .
ihere 

~x~
2 

= , ~ = 1:2. Taking f~ (x3
) = ½ I x~ e , we have

ax 1ax2 
(¼~a) Ix 1x2 Ie~~~ 1 x2) > 0 if 0 < a < ¼ . Also: G12 (x1,x2) 

-,- 0

as x1 
-
~ 

+
~~; 0 as x2 + + G~(x1) as x3 j  - . For this

1=1 ,2
survival function we have :

(i) ~~~ 
- 

____ — i + ~~-½ (x~~x~) > 0 , so we have C-positive quadrant

dependence, but

(ii) R,~ is an increasing function of x1 for x1 > 0 and decreasing

function of x1 for x1 > 0 , so h~ (~~) ~ 
- hx (x1) changes sign as x

— 1
increases. However for a family of bivariate survival distributions of

the foim :

- Gx (xi)G~~cx2)[i + °~x1 i~ x2~ 2~11, 
I a I � 1,
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(note that the distribution in the counterexample above does not belong

to this family). We have R
~ 

> 3 <
~

-
~
> h~ (x3

) - hx(x). > 0, j = 1,2.

The proof is presented in Appendix 4.

jfl Measures of dependence via “copu las ”.

~ Definition and prop erties of “ copu las ” .

The quadrant dependence measures the deviation of the bivariate dis-

tribution from its marginals.

A more general problem is to relate (explicitly) a multivariate

distribution function to its marginals. The FQ~ family (discussed at

the end of the previous section) expresses the joint bivar iate distri-

bution as an explicit function of the marginals:

F~ (x ,y) — Fx(x) F~ (y) [1 + a (1 - Fx(x)) (i - F~ (y))], ci i � 1.

Other examples of this situation are :

F~,(x,y) - max(O , Px(x) + F~(y) - 1) (the lower Frechét bound)

F~~(x,y) - min(F~ (x , Fy (y))) (the upper Frechét bound)

(or any linear combination with positive weights adding up to 1 of

F~~(x,y) and F~~(x ,y) ) and of course the independent case

F~~(x ,y) - Fx(x) F~ (Y) .

The definition and the theorem below present an answer to the fol-

lowing two questions:
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1) Can a given multivariate distribution function be represented

as a function of its marginals?

2) What are the characteri~tics of this function if the answer to

1) is affirmative?

Definition: A copula C is a real-valued function of n variables

(n�2) defined on a subset of 10,1] x [0,1] ... x [0,1], with the range

being a subset of the interval [0,1], satisfying the following properties:

(C1) C(1,...,l, x~, 1,...,l) — x~ , m�n, X
m 

[0,1],

(C2) C(x1,x2,...,x~) — 0 if = 0 for any m n,

(C3) C is non-decreasing in each variable.

Theorem: For n�2, let F be an n-dimensional distribution function

with inarginals F1,F2,. .. ,F~ . Then there exists a copula C such that

I F(x1~x2~...x~) = C(F1(x1),... ~
Fn (x

~))

for all n-tuples (x1,x2~...,x~) .
-

Proof: To show that F is a function of Fi~F2~•••~Fn , consider any

twe points ~ - (x1 ,x2,.. . , x~) and x - (y1,. . .y~) ~ R”
We have

F(x1~x2~...~x~) - F(y1~y2,...,y~)I �

� IP
~ 

(x1) - F1(y1) j + I F2(x2) - F2(y
2) I + ... + IF~(x~) - F~ (y~) J .  •

This inequality shows that the set of points 
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[(F 1(x1), F2(x2) Fn(x_n))~ 
F(x1~x2~...~x~)]Ix € Rn

is a graph of a function C (if each F
2 

is continuous then C is

unique) . Inequality • implies that C(x1~x2~...~x~) is a jointly con-

tinuous function of x1,x2,. . . ,x~ . Utilizing the basic pro perties of

distribution functions it can be easily verified that the function C

satisfies the properties (C1), (C2) and (C3). 0

P1 Copu las and dependence.

Let F
~
.
~
,(u,v) C~y(F~(u), F~(v)).  From Freché t ‘s bour~is we obtain:

max(x+y-l, 0) � C~~(x ,y) � min(x,y) x,y [0,1].

If X and Y are independent, we have

C~~(x ,y) = xy x,y E [0,1].

These observations suggest that the volume between the two surfaces

2 - C~~(x ,y) and Z - xy may serve as a measure of dependence between

X and Y. This measure is formally defined (Schweizer and Wolff (1976))

by
4 4

o(X,Y) - K J J xy - C~~(x,y)~dxdy,0 0

where K is chosen in such a manner that a(X,Y) � 1 for all X and

Y. (Observe that o(X,Y) - 0 :: X and Y are independent. Also

a(X Y) — a(Y X) .)

Direct computations yield:

1 ,lJ J0 0
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J f Ixy 
- min(x,y)~dxdy =

The normalizing constant IC therefore equals 12 and a(X,Y) 1

for the Frechet’ s upper bound mm (Fx(x), F~(y)). Thus , finally,

a(X ,Y) - 12 f1 f’ 1x ’ - C~~(x,y)~dxdy .

According to this measure the i~.zximal dependence between the variables

is whefl F~ y (x ,Y) - min(F~(x), F~(y)), i.e. when the joint distribution is

given by a diagonal -type surface over the “Fx(x), F~(y) “-plane.

Part 2 Positive dependence revisited.

!j Introduction.

Recall the corollary of Theorem 1 Section II of Part 1 which states

that if (X,Y) € F1 and EXY, EX and EY exist , then Cov(X ,Y) � 0.

Esary , Proschan and Walkup (1967) define association of X and

Y by requiring that Cov(f(X,Y), g(X ,Y)) � 0 for all non-decreasing

real-valued functions f and g. They also present a multivariate ver-

sion of this definition:

Cov(f(~),  g(~)) � 0 for non-decreasing real-valued

f and g where ~~- (X1,X2 , . . . , X~) .

In nuner~is reliability situations, the randc~n variables of interest

are usually r~t independent, but often satisfy the association property.
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(See Barlow and Pi’oachan (1975).)

Regression dependence, likelihood ratio dependence were discussed

by Lehmann (1966). The TP2 property of Karlin (1968) is analogous

to Lelinann ’s likelihood ratio dependence, which is useful for determi-

nation of the hazard rate behavior in univariate models.

L.~ 
Assoc iation of random variables.

Definition 1: Random variables (X1,X2,. . . ,X~) are called aesociated

if Cov(f(~), g(~)) � 0 for all non-decreasing functions f and g

such that Ef(~), Eg(~), and Ef(~)g(~) exist.

Remark: f, g are non-decreasing if they are non-decreasing for each

variable when the rest are hel.d fixed.

Property 2: Any subset of associated random variables forms a set of

associated variables.

Property 3: If two sets of associated r.v • ‘s are independent of one another,

then their taLion is a set of associated r .v. ‘s.

Proof: Let ~ — (X. 1,.. .,X~) and X - 

~
‘i’ ””~

’m~ 
be two sets of asso-

ciated r.v.’s, let ~ and ~ 
be independent and f and g be non-

decreasing functions . We have:

Cov (f(~ ,X) , g(~ ,~)) Ef(~,~ )g(~,~,) -

- 
‘R~ 

I~ ~~~~~~
- - f1~ J~ 

f(~,x~~~~dpX~
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• f~ J~ 
g(~,~)dpX 1dpY 1

- J1~ 1IL~ ~~~~~~~~~~~~~ 
- 

‘R~ 
~~~~~~~ J~ g(~,x)

dP~~JdpY~

+ I~n [J~ 
f(~,~)dpX~ IRn g(~~~)dp~~1]dP(1

- 

~ 1R” ~~~~~~~~~~~~ fRm f~ 
g(~,y)dp~~ dp)~~ =

= I + II - III.

Now I�0 since X1,. . . ~~ are associated ; also, II - III =

Coy f (
~ X) dp~~

1 g(~ ,~)dp~ ~} � 0, because J f(~ ,~
) dP~~

1

J~ g(~
,y)dP~~

1 are non-decreasing in y1,y2,. . . ,y~ , and the variables

= (Y1,. Y~) are associated. 0
Property 4: A set consisting of a single variable is associated.

Proof: It is required to show that Cov(f(X) , g(X) ) � 0 V non-decreasing

f and g.

Recall (Section II in Part 1) that Hoeffding ’s l~mna yields

Cov(X,Y) - J~ J~ (G~~(u,v) - G~(u)Gy (v))dudv

- I I Cov(I(uM, I(v ,Y))dudv,

where I (u,x) - 1 if usx and 0 otheiwise

I(v ,x) — 1 if v~x and 0 otherwise ,

and GXY(u,v) - P(X>u , Y>v) , G
~

(u) - P(X>u) ,

G~(v) - P(Y>v) .

Define now

- - w _
• 

- — -- —-- -S - --— —
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I(u , f(x)) = 1 if f(x) � u and 0 otherwise

I(u , g (x)) = 1 if g(x) � v and 0 otherwise.

Then as in the proof of Hoeffding’s lenua (Lenina 3, Part 1):

Cov(f(X), g(X)) = i i0 v(~~
(u , f(x)),  I(v , g (X)))dudv .

Observe that I(u, f(x)) and I(v , g(x)) are two-valued non-decreasing

functions of x. There are two possibilities, either I(u, f(x)) � I(v , g(x))

for all x, or I(u , f(x)) < I(v , g(x)) for all x.

In the first case:

Cov(f(X), g(X)) = 
~~ i~ {~

ti (u , f(X))I(v, g(X))] - E{I(u , f(X))}

E[I(v , g(X)))}dudv

= 
~~ 

E[I(u, g(X))] - E(I(u , f(X)))E(I(v , g(X)))dudv

- i~ i~ 
EfI (v , g(x)))[l - E(I(u , f(X))))dudv � 0.

In the second case:

Cov(f(X) , g(X) ) - f~ 
E(I(u , f(X))) 1 - E(I(v , g (X))Jdu~ � 0

and Prop. 4 is verified. 0

Property 5: Non-decreasing functions of associated random variables

are associated .

Proof: Let X1,X2 , . . .,X~ be associated random variables ; h1 
(i —

be non-decreasing functions of n variables . To show that Y~ - h
~ 

(i) ,
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i = 1,... ,m , are associated it is sufficient to show that Cov(f(YJ, g(~~) � 0

for all non-decreasing f and g of in variables.

However, Cov(f(X) , gQ)) — cov[fQ~(x)), gLh(~))) and the latter is

non- negative since X1, . . .  ,X~ are associated. 0

Property 6: Independent random variables are associated.

Proof: Let X1, X2 , .  .. ,X~ be independent random variables .

By Prop . 4 X1 is associated and X2 is associated.

By Prop. 3 (X1 ,X2) are associated , and the result follows by in-

duction . 0

1111 PosItive regression dependence.

Recall that (X ,Y) € F 1 , i.e. X and Y have positive quadrant

dependence (notation PQD(X,Y) ) ,  if P(X�x , Y�y) � P(X�x)P(Y�y) for

all x ,y € R1 . If P(X�x) > 0, this condition can be restated as

P(Y~yIX�x) � P(Y�y), V x ,y. This observation motivates the following

two notions :

Definition 2: If P (Y�yI X�x) + as x 4 for all y, we say that Y

is Z..f t  tai l di.or.a.ing in X (notation LTD(Y I X) ) ,

Definition 3: If P(Y~yI X— x) + as x + for all y, we say that Y

is positive ly regrenion dependent an X. (Notat ion PRD(Y I X) or (X ,Y) € F 2 .)

Example 1 (Lelmmnn 1966) : Let Y - a + BX + U, where X and U are

independent r.v. ’s. In this case: 

~~~~~~~~~~~ — . - — - — — — - - — — — _—_-s-- -.—--_—--_ —-— - —j— —C—- 
-
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P(Y�y~X”x) = E(I(y~y] I X = X) E( I [a+Bx+U�y] I X=X)

E(I[+B +u~,,]
IXX) = El~ + B +u�y] = P(a + Bx + u � y) .

Thus , P(Y �y~X—x) + as x 4 if 13 > 0 [PRD(YIX) ]

P(Y~yt X— x) + as x 4 if B < 0 [NRD(Y~X)]

and P(Y �yIX’.x) = P(cz + U ~ y) if 3—0.

Theorem 1: PRD (YIX) ~~ > LTD (YJX) =~> PQD(X,Y).

Proof: From Def. 2 , P(Y�y~X~x) � P(Y�y I X�x ’), x < x ’ .

Let x ’ 4 ~~~, then

P(Y �yIX �x) � iiin P(Y~~ X~x
’) 

= P(Y �y) .x)

Thus LTD(YIX) =->  PQD(X ,Y).

Now, if LTD(YIX) holds then

P(Y�y I X�x) � P(Y�ylX�x ’) for all x<x ’
and all y.

1~JO~~~IX’~i)c1I’O~~i) f~~P(Y�y l X”u)dP(Xsu)
i.e. P(X�x) P (X�x’)

with x c x’. If P(Y�yIX—u) is a decreasing function of u (i.e.

pRD(YjX) holds) then the last inequality is valid . Thus PRD (YJ X)  =~>

LTD(YIX). 0
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~yj Relationships between some notions of bivar late posi tive (negative )

~!P!ndence.

In addition to the three definitions of bivariate dependence intro-

duced in Section 3) we define :

Definition 4: Y is right tail increasing in X (RTI (YIX)) if

P(Y>y J X>x) + as x 4 for all y.

Definition 5: Y is atochastically increasing in X (S1(YfX)) if

P(Y >yIX—x ) 4 as x + for all y.

Definition 6: If X , Y have joint density f(x ,y) , we say that f(x ,y)

is TP2 or TP2 (X ,Y) if

f(x1,y1) f( x1,y2) 
� 0 

for all x1 < x2 and y1 < y2
f(x 2,y1) f(x 2 ,y 2) in the domain of X and Y.

In addition to the relations — due to Lehinann (1966) —
PR]) ~=> LTD —> PQD

which was proved in the previons section, the following has been shown

by Esary and Proschan.

Theorem 2 (Esary and Proschan 1972) :

—> SI(YIx) -> RrI(YIX) -~ PQD(X ,Y) .

Proof: If TP2 (X,Y) is valid, then by definition

I
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f(x 1,y1
) f(x 1,y2) � ~ 

x
1 

< x
2

f(x2,y1) f(x2,y2) y
1 

< y~

or f(x 1,y1
)f(x 2,y2) � f(x1,y 2

)f(x 2 ,y1).

Integrat ing over the variables y1 and y2 we have :

f(x1,y1)dy1 f(x2,y2)dy2 � f(x2,y1)dy1 f(x~,y2)dy2

or f(x~,z)dz f’ f(x2,z)dz~ 
� ~~.

f f(x~,z)dz f f(x2, z)dz

Adding the 1-st row of the last determinant to the second we obta in

f0 f(x 1,z)d z f(x 2, z)dz 

~
f1(x1) f 2 (x2)

~ ff(x2,z)dz
f1(x1) f2(x2)

or P(Y>yIX-x1) � P(Y’y~X~1x2), x1 < x2 i.e. SI (Y I X) is valid. Thus

—> SI (Y IX) . Now let X and Y satisfy SI(YjX).

By definition:

P (Y>yjX-x1) � P(Y>yjX-x2) for x1 <

and all y.

Equivalently,

çf(x1,z)dz ff(x2,z)dz
f1(x1) ~ f1(x2)
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f1(x 2) f(x 1,z)dz � f1 (x1) f(x 2,z)dz � 0.

Integrating • from S1 to 
~2 

(with S1 < S2 ) over x1 , from

to ~ over x2 , we have:

f(x~,z)dzdx~ f1(x2)dx2 
~ ~~~~ 

f(x 2,z)dzdx 2 f1(x1)dx1

(the inequality • remains valid as long as the ranges of integration satisfy
x � x  )

or 1s~?(x1 
,z)dzdx 1 1 f f ( x 2 ,z)dzdx 2

S �0.

~s~~l 1 ~~’l 
1 f 1(x2)dx2

Mding the second colunn to the first we have

‘
i
’
~~~~

l ,z)dzdx1 f1f(x 2 , z)dzdx2

f f 1(x1)dx1 f f 1(x2)dx2

This implies that

f1f(x 1 ,z)dz dx1 1 1f ( x 2 ,z)dzdx 1

1 f 1(x1)dx1 f~~f1(x2)dx2

i.e. P(Y>y~X>S1) � P(Y>y~X>S2), S1 < S2 which means that RTI(YIX)

is valid. To complete the proof of Theorem 2 we must establish that

RTI(YIX) ~ PQD(X,Y).

It is easy to show that A(X ,Y) (associa tion between X and Y ) implies

_  -.-- .- - -  -. -~~~~~~-~~~~~~~~~~~~~~~~~~~~~ -- --- - - ~~~~~~~~~~~~~~~~~~ ---~~~ -~~~~~~--
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PQD(X,Y).

Indeed:

A(X ,Y) => Cov(f(X), g(Y)) � 0

S

for all non-decreasing f and g. Now let

f(u) = 1 if u > x and 0 otherwise
g(v) = 1 if v > y and 0 othe rwise .

Since these particular f and g are non-decreasing we have

0 < Cov(f(X), g(Y)) = E(f(X)g(Y)) - Ef(X)Eg(Y)

= P (X>x , Y>y) - P(X>x)P(Y>y) = P(X�x , Y�y ) -

P(X�x)P(Y�y).

In other words PQD(X ,Y) is implied .

The missing part involves verification of the implication

RTI(YI X) ~-> A(X ,Y). The proof of this proposition is quite long and

constitutes the major proof of Esary and Proschan’s 1972 paper in the

Ann. of Math. Statist.

Final remark. If the variables X and Y take on values 0 and 1

only, all the above conditions of dependence are equivalent :

Indeed in this case PQD(X,Y) => TP
2

(X ,Y).

Consider 

—-- —-——~~~~~~~~~ - ~~~— ______ - - - - - - - — - — -  _____________
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P(X=0, Y=0), P(X=0, Y=l) (adding the bottom
D = = row to the top one

P(X= l , Y=0), P(X— 1, Y=l) and the second
colimin to the first)

- 
1 P(Y=1) 

=

P(X=l) P(X.l, Y=l)

= P(X= l, Y~l) - P(X=l)P(Y=l).

PQD(X,Y) ~=> P(X = l , Y=l) - P(X=l)P(Y=1) � 0 => D � 0 =~> TP2(X,Y).

-- - -

~

.-

~ 

- -.~~~~~~~~~~~~~~~~~~ -
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~ppend1 ces

Appendix 1.

Details of the proof of I-loeffding’s leiiina (Lema 3, Part 1).

Define :

I(u ,x) = 1 if u < x

= 0  if u � x .

Auxiliary 1e~tina.

1. If X is a random variable then E I(u,X) = P(X�u) .

Pf: E I(u ,X) = 1 • P(I(u,X) = i) + 0 • P(I(u,X) = 0)

= 1 • P(X>u) + 0 = P (X>u).

Auxiliary lonna.

2. Let X1, X2, Y1, Y2 be random variables defined on the same

probability space (Q ,F ,P). Then,

(X1 
- X2)(Y 1 - Y

2) 
= f (I(u ,X1) - I(u ,X2))(I(v,Y1) - I(v ,Y2))dudv.

Proof:

Both sides of the equality are random variables , and the double

integral is interpreted as a two dimensional Lebesgue integral. The

integrability of the integrand on the right hand double integral is jus-

tified by Fubini ’ s theorem. This theorem assures that if

I(u X1) - I(u,X2)du and f° (I(v,Y1) - I(v,Y2))dv exist so does
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fD [I(u,X1) - I(v,X2)][I(v,Y1) - I(v,Y2)]dudv.

Now f [I(u , X~°~) - I(u, x~~~)Jdu is proved to be equal to

X1(w) - X2 (w) for each wd~.

Consider the case X1 (w) < X2 (w).

u-X1 (w) u-X2 (w)

u<X 1 (w) X1 (w) <u<X2 (w) X2 (w) <u

I I —‘.u

X1(w)

In this case:

I(u, X1(w)) - I(u, X2(w)) 1 - 1 = 0 if u < X1(w)

I(u , X1(w)) - I(u , X2(w)) — 1 - 1 — 0 if u — X1(w)

I(u , X1(w)) 
- I(u, X2(cas)) 0 - 1 = -l if X1(w) < u < X2(w)

I(u , X1(w)) - I(u , X2(w)) — 0 - 1 = -l if u - X2 (w)

I(u, X1(w)) 
- I(u, X2(w)) — 0 - 0 — 0 if X2(w) < u.

We thus have only to consider the integral

X (w)
[i (u , X1 (w)) 

- I (u , X~ (w))) du. This integral in interpreted as:

urn  J (I(u , X1(w)) - I(u, X2 (w) ) ]du with t~,c2 > 0. (We may
e1’O X1(w)+c1
£240

handle this integral as a R.temann integral, since Riemann sense and Lebesgue

sense coincide in this case for the function I(u, X1(w)) - I(u, X2(w)) on
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the set (x1 (w) , X2 (w)) .) The last integral equals

(-1) X2 (w) - £2 
- (X1(w) + c~) (-l)(X2(w) 

- X1(w) ) = X1(u) - X2(w).

£
2 

‘~~~~

In a similar manner

~~ {~(v
, Y1(w)) 

- I(v , Y 2 (w)) }~~ Y1(w) - Y2(w) .

Therefore :

~~ 
(I(u,X~) - I(u ,X2)) = - X2 and

f~ 
(I ( v ,Y1) - I(v ,Y2)) = -

I I (I(u,X1) 
- I (u ,~~)) • (I(v,Y1) 

- I (v ,Y2) ) d*~~

(by Ftbini’s theorem) as

— I(u,X1) - I(u ,X2)du f (I(v,Y1) - I(v ,Y2))dv

— (X1 
- X2) (Y1 - Y2).
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Appendix 2.

Theorem (Jensen (1971))

Let p 2 (x ,y) be a two-dimensional distribution function which admits
the series expansion

dii2(x,y) 
a [1 + 4~in the functions and ~i1

(.) .  Then a sufficient condition that

the equality

‘AxA 
dp 2 (x ,y) 

~ ‘A 
dii1(x) 

‘A ~~~~

holds for every measurable set A is that the sequence {ar} be non-

negative.

Remark: Note that both marginals of u2 ( ’)  are ii 1(y) . If all ar - 0 ,

r a . ,  we obtain the independent case.

Proof: J dp2 (x ,y) — f du~(x) J’ dii1(y) +

AxA A A

+ 

~ 
a~ 

‘A ~~~~~~~~~ ‘A 
$~ (y)d~1(y)

- 
‘A 

di~1(x) ‘A 
d~i1(y) + 

~~ 
a
~r.fJ r ) l(~~)

‘A ~~i
(X) 
‘A ~~i

(’)

Example: In the bivariate normal the well Imown expansion is:

du2(x ,y) — (1 + ~ pT 
~ (x)~ (y)]dii1(x)dia1(y)

L
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where (t’r~~ 
are the Hermite polynomials and p is the correlation

coefficient .

Appendix 3.

Theorem 1 (Shannon (1948))
N

The function h(2) - - 

~ 
p1 log r 1 ~ log N with the equality

i—i
uf p

~ 
— i a l ,2 , . . .N .

Lemna 1. Let p1,p2,. . . ‘p q1,q 2 , .  . . ,q~ be arbitrary positive nunbers
N N

with ) and ~~q . -l. Then,
i—l i”l 3

— 

i~1 
~~‘ 

log 
~~ 

— ii ~~~ 
log ~ 

,
...~~~~~

with the equality iff p1 — l~ , i — 1, . . . , N.

Proof: Consider the function y - log x.

Elementary observations show that

l o g x � x - 1  for all x > 0 .

Hence log q1/p~ � q1/p1 - 1, i — 1,2 ,.  . .N.

P
1 

log qj  - 
~i 

log 
~~ 

q~ -

N N
Simning ~ç, ~ p1 log qj - ~ p. log p1 � 0

i—i i—i

N N
Or - X Pj log Pj ‘ - ~ ~~~ 

log qj  •
i—l i—i
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The equality will hold iff log q~/p~ - - 1 for all i , i.e. iff

~~~~~~ V i — l ,2 , . . . N .

Applying this l~ irna with q1 = , we obtain

N N
- ~ p1 log p~~~~- ~ p~~log~~~’.N

i—i i—i

with equality iff p1 — q1 = , i — 1,2 ,... ,N . U

Theorem 2 Let X and Y be discrete r .v • ‘s with joint entropy

- 

~~ 
log p~ . and marginal entropies - 

~ p1 
log 

~i—i 3 i—i
m

- q. log q. , where P(X”x., Y-y .) - p . .  ; P(X-x.) = p . and
i—i

i =

P(Y-y.) - q.
3 ~ j — 1,2 ,.. .,m.

Then:

- log 
~~ 

� - p1q~ 
log P~~3 

.

Proof:
n n m

Let h(E) - - I i~~~ 
log 

~~~~~ 

- - I ‘~ 
log p~i—i i—i j—l ~

m m n
h(q) — - ~ q4 log q4 — - Z P1~~ 

log q.
— j—i ~ i—l i—i ‘

h(j~) + h(q) - - 

~ ~ij 
log p1q � - I p~. log p~.— i—l j —i i—i ~—i ~

However , - Pjqj log pjqj 
- - 

~ 
pjqj (log p~ + log q~)

— h(p) + h(q).
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i = l ,...n
(Equality is attained in . iff p . .  = P~~•

~ j = l ,...m

Appendix .~~~

Continuous and multivariate extensions of the information-theoretic measure
of dependence.

Let (X ,Y) be a random vector with joint density f(x ,y) , marginals

f(x) = f f(x,y)dy and g (y) = f f(x ,y)dx . Assune that f(x,y) > 0 a.e.

with resp ect to two-dimensional Lebesgue measure , f ( x) > 0, g(y) > 0

a .e. with respect to Lebesgue measure and

E log f(X ,Y), E log f(X) , E log g(Y)

exist.

Larnna 1. - J g(y)log g(y)dy � - J g(y) log f(y)dy

or - E log g(Y) � - E log f(Y)

with equality iff g(x) — f(x) a.e. with respect to Lebesgue measure.

Proof: From the basic inequality

l o g x � x - 1  for all x > 0

we have

log ___ ____ - 
1

or log f(y) - log g(y) � ____ - 1

or g(y) log f(y) - g(y) log g(y) � f(y) - g (y) ,

hence: — J g(y)log g(y)dy � — J g(y)log f(y)dy



(since J f(y)~~ - g(y)dy - 1 ). The equality part follows from the fact

that l o g x = x -  1 only iff x = 1 .

Lciivna 2. (Bivariate version of Lemm a 1):

- J J f(x ,y)log f(x,y)dxdy � - J J’ f(x y)log f(x)g(y)dxdy

with equality iff f(x,y) — f(x)g(y) a.e. w.r. to Lebesgue measure on

Proof: Using Lemma 1:

lo f(x)g(y) ~ f(x)g(y) 
- 1g f(x ,y) f(x ,y)

or f( x ,y) log f(x)g(y ) - f(x ,y)log f(x,y) � f (x)g(y) - f(x,y)

or if f(x ,y)log f(x)g(y)dxdy - if f(x,y)log f(x ,y)dxdy ~ o

or - f(x ,y)log f(x ,y) dxdy � - f(x,y)log f(x)g(y)dxdy. 0

(The equality part follows from the basic inequality in Lamna 1.)

Remark. Lemma 2 is a particular case of a more general result.

In fact we can prove that:

- if f(x ,y)log f(x ,y)dxdy � - if f(x ,y)log h(x ,y)dxdy

where h(x ,y) is another bivariate density with the same support as f(x ,y) .

This can be derived by considering the inequality

1 h(x ,y) ~ h(x,y 
- 1og f(x,yJ f(x y

We are now ready to prove.

Theorem 1. Under the assumptions above,

- if f(x ,y)log f(x ,y)dxdy � - if f(x)g(y)log f(x)g(y)dxdy,

with equality iff f(x ,y) - f(x)g(y) a.e w.r. to Lebesgue measure on

R2 ,or X, Y independent.
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RHS = - if f(x)g(y)[log f(x) + log g(y))dxdy

= - f f(x) log f(x)dx - g(y)log g(y)dy

= - if f(x ,y)log f(x)dxdy - if f(x,y)log g(y)dydx
= - fJ f(x,y)log f(x)g(y)dxdy.

The interchange of integral signs is justified by Fubini ‘5 theorem

(in the second double integral) since

if Jf(x ,y)log g(y)l dxdy - if If(x ,y)Idxllog g(y)~dy
— f f(y)I log g(y)Idy = E~log g(X)~ <

by assumption .

Now applying Lemma 2:

1 
- if f(x ,y) log f(x ,y)dxdy � - JJ f(x ,y)log f(x) g(y)dxdy . 0

Corollary 1. In a denunerable discrete case, we have

- 

~~ 

log pj~ ‘ 
- 

~ 
Pj~5 

log p1q)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~j—l ‘~ i—i ‘~~

Remarks: A denunerable discrete version of Lemma 2 is:

- 

~~ 
Pjj log Pjj ‘ - 

i~J ~
ij log Pj~j

where Pi
.
~~}1

Pij and (5
i
Z
1
PjJ

•~ L
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A special case of the Remark to Lemma 2 is:

- 

~~ 
p.,. log p]~ ~ 

- j •  ~~ 
log h1~

where h
~3 

is another bivariate discrete distribution with some proba-

bility support as p~~

14iltivariate extensions of the above cases can be summarized by the

following two theorems. The first is an extension of Leimna 2, while the

second is that of Theorem 1.

Theorem 2.

Let (
~ X) be on m~n dimensional vector .

Then f . . . f 
f(x ,~)log f(x,y)dxdy � - f . . .f f(x ,~)log f(x)g(~)dxd~m+n m+n -

or - E log f(~,)) � - E log f(~)g(YJ.

(With equality if f X , Y are independent.)
Theorem 3.

- J...J f(x ,~)log f(x,X)dxd~ � - J . . . J  f(x)g(~)log f(x) g(~)dxd~.m+n ‘ — — m+n — —
(With equality iff X, Y are independent.)

Appendix S

Theorem. For the bivar iate FQ4 (Farlie-Qinbel-?.brgenstern) family of

bivariate distributions given by

— Gx1
(xi)G~~(x2)(l + a(l - G

~1
(xi))(l 

- G~~(x2)) ]  ; lu(14i
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or equivalently

Fx1,~~
(xi,xz) = Fx (x1)Fx (x2) [1 + ct(l - Fx (xi) ) ( 1  -

the G-orthant positive dependence is equivalent to the property

hx (xj)

Proof: For this family R.~(x1,x2) � 1 iff Ct � 0.

Moreover for this family:

hx ~, 
(x) . — h

x 
(x.) - cz{l - G

~ 
(x~~.) } f~ (x . ) / E l  + aF~ (x1)F~ (x2))

l’~’2 ~ j ~ 3-~ 
.‘ 

~‘l

= [1 - f 8 ( G~~
(x

~) i’ -

where B — 1 + [ci F~ (X3 .  ~)) 1 
, j  — 1,2.

3~ 
3

Since B has the same sign as a, h
~ 

(x ) 
. 

~~ x (x) . has the same
l ’2  ~

sign a; thus hX (x)) > h
~

(x)
3 

<— a > 0 <—> R,(x1,x2) ~ 1. 0
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