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Abstract

The purpose of these notes is to survey the recent literature on
dependence between two random variables and to stimulate research which

will extend (some of) these concepts and relations to the case of 3 or

more variables.
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Part 1 Dependence and generalizations of correlation.

I) Introduction.

In these notes we are concerned mainly with bivariate distributions.
The connection between dependence and the theory of multivariate hazard
rates is also briefly discussed. Extensions of positive dependence to
association and other notions of dependence as well as applications and

interrelations are included in Part 2 of these notes.

II) Positive dependence. (Lehmann, 1966).

Two events A and B are called dependent if P(AnB) = P(A)P(B)

is violated. We say that there exists positive dependence if
P(AnB) = P(A)P(B).

Two random variables are said to be positively dependent if

P(XeA, YeB) > P(XeA)P(XeB) for any two Borel sets A and B on the
real line. Negative dependence is defined by reversing the appropriate
inequalities. The former case often occurs in reliability theory (parts
of a machine usually have a longer life when they are 'put together').
The latter case is prevalent in biological populations competing for

limited resources. (See Barlow and Proschan (1975).)
From Lehmann (1966) we have the following definitions:
Def. 1. (X,Y) or ny(x,y) is positively quadrant dependent if:
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P(Xsx, Ysy) 2 P(X<x)P(Ysy) or
(1.1)
Fyy(x,y) 2 Fy(X)Fy(y) ¥V x,y.

Let F 1 be the family of distributions (two-dimensional) for which (1.1)

is valid, G1 be the family of distributions for which (1.1) is valid

with reversed inequality. Notation (X,Y) € FI(GI) means FXY € Fl(FXY € Gl).

Lemma 1: (1) XX) € Fy
(i1) (X,Y) € Fy <=> (X,-Y) € G,
(iii) P(Xsx, Ysy) 2 P(Xsx)P(Ysy) V x,y <>
P(Xsx, Y<y) 2 P(X<x)P(Y<y) V x,y <=
P(X<x, Y<y) 2 P(X<x)P(Y<y) V x,y.

Proof: (1) P(Xsx, X=<x) = P(Xsx) = P(X<x)P(X=x).
(ii1) = P(X=x, -Ysy) = P(Xsx, Ys-y)
= P(Xsx) - P(Xsx, Y<-y) =

P(Xsx) - lim P(xsx, Ys-y-;ll-)
nse

< P(Xsx) - lim P(Xsx) + P(Ys-y - 3)
N0

P(Xsx) - P(Xsx) « P(Y<-y)

P(Xsx) (1 - P(Ys-y)) = P(Xsx)P(-Ysy).
for <= the proof is similar.

(iii) Since P(Xsx, Y<y) = lim P(Xsx, Ysy-%-) and also
N0

P(Xsx, Ysy) = lim P(Xsx, Y<y*%), we proceed as in (ii).
) 1 Sand

It is easy to verify the following.

|
i




Lemma 2: (X,Y) € Fl
<=> P(X<x, Y2y) < P(Xsx)P(Y2y) V x,y
<> P(X2x, Ysy) s P(X2x)P(Ysy) V x,y
<> P(X2x, Y2y) 2 P(X2x)P(Y2y) V x,y.

Remarks: 1. The signs > and < can be replaced by > and < re-
spectively.

2. The last inequality is called G-dependence by Lehmann (1966)
and Johnson and Kotz (1975), and is frequently used in
reliability theory where X and Y are interpreted as
life-lengths of component parts of a machine. The validity

of the last inequality follows from the simple relation:

Fyy(X,¥) - Fy(X)Fy(y) = Gyy(x,y) - Gy(x)Gy(y)

where ny(x,y) = P(X>x, Y>y) and Gx(x) = P(X>x) and
Gy() = P(Y>y).

We conclude this section by proving that (X,Y) ¢ Fl = E(XY) 2 EXEY

provided the covariance and expectations exist.

Lemma 3: (Hoeffding 1940): If F denotes the joint and Fy and Fy

denote the marginal distributions of X and Y, then
E(XY) - EXEY = r r [F(x,y) - Fy(x)Fy(y)Jdxdy =

" j: j: (Gyy (x,y) - Gy (x)Gy (y)) dxdy,

provided the expectations on the 1.h.s. all exist.
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Proof: Define I(u,x) =1 if u<X and 0 otherwise.
Let (XI’YI)’ (XZ’YZ) be independent, each distributed according

to F. Then
2 Cov(X,Y;) = z(E(xlyl) - EXlEYl) =B, - X)) - (Yy -Y,) =
= Er r [I(u,Xl) - I(u,XZ)][(v,Yl) - I(V,YZ)]dudv.

(Details of the last step are given in Appendix 1.) Using Fubini's theorem

we can take the expectation inside the integral sign thus obtaining:
2 Cov(X,Yy) = Jf: [; (E I(u,X)I(v,Y;) - E I(u,X;) * E(v,Y;) -

E I(u,X;) E I(v,Y,) + E I(u,X))I(v,Y,))dudv

r rCov(I(uX) I(v,Y))))
r r [C‘X Y, (u,v) - (u)CY ) - (lix (U)GY EV)

+ ze ’YZ (u,v)] dudv

Using the Remark 2 following Lemma 2 we complete the proof. a

Lemma 3 implies:

Theorem 1: If (X,Y) e F1 and EXY, EX, EY exist, then EXY > EXEY
| or Cov(X,Y) 2 0. Moreover, if (X,Y) ¢ F, , Cov(X,Y) = 0 => X,Y are
independent.
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Some additional properties of positive quadrant dependence.

Given:

(i) P[Xsx, Ysy] 2 P[X<xJP[Ysy] V x,y ¢ R' .

The following is valid:

(ii): P[X>x, Ysy] s P[X>x]P[Ysy]
(iii): P[Xsx, Y>y] < P[X<x]P[Y>y]
(iv): P[X>x, Y>y] 2 P[X>x]P[Y>y], and

(v): (i) does not imply

P[x,<Xsx,, y1<Ysy,] 2 P[x1<sz2]P[y1<Ysy2] (-oo<Xy ,X9,¥715Y9<) -

Proofs:

(ii): P(X>x, Ysy) = P(Ysy) - P(Xsx, Ysy)
P(Ysy) - P(Xsx)P(Ysy)
(1 - P(Xsx))P(Ysy)
P(X>x)P(Ysy).

(iii): Follows from (ii) by symmetry.

A

(iv): From (iii)
P(X>x, Y>y) = P(Y>y) - P(Xsx, Y>y)
> P(Y>y) - P(Xsx)P(Y>y)
= (1 - P(Xsx))P(Y>y)
5 = P(X>x)P(Y>y)
Note that (iv) is just the Remark 2 above.
(v): Counterexample: Let (X,Y) be distributed according to
the following table.




¥ Aoy gty
I T e e P[X<a, Y<b] > P[Xs<a]P[Y<b] for a=1,2,3
3 3 g Tg. i -3 % == y&y
and b=1,2,3.
2 6 F sk R R
¢ 1B PlX<1, Ys1l = 32 3 x 13
g g
3 s o5 1 2 P[X<2, Y<1] = T+E2 3-(13)
9 (18 P[X<2. Y<2] = 2 2 (16)
1 1 1 SO - 373 I8
S Y. 4 P[X<1, Y<2] = 1, %-x %g-, and so on.

However P[1.5sXs2.5, .5<Y<1.5] < & « 3 o p[1.5¢x<2.5] « P[.5<¥<1.5].
. S |

Indeed, P[X=a, Y=b] cannot always be > P[X=a]P[Y=b] (excluding the

independent case) since both ] ) P[X=a, Y=b] =1 and [ ] P[X=alP[X=b] = 1.
ba ba

NOTE: Inequalities (i) and (ii) imply that there must be Borel sets

A, B; such that P[XeAl, YeBl] < P[X<A1]P[YeBl] and sets A,, B

 lig e
such that P[XeAZ, YeBz] > P[XeAz]P[YeBZ] (with a strict inequality

for at least one pair). For example we may choose

A = [x>x], A, = [x<x]

and B, =B, = [Ysyl.
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I1I1) Measures of dependence from information-theoretic aspects.

The following discussion develops a measure of dependence based on
the concept of entropy suggested by C. E. Shannon (1948) nearly three
decades ago.

Let X be a discrete random variable with a finite number of out-
comes, 1.e. P(X=xi) =Py » i=1,2,...N. Shannon defines the entropy
or the measure of uncertainty (or information) as:

N N

h(R =- § p;logp; » R= (PsPps--sby)s 1

i=1 i=
h(p) assumes maximum log N iff Py - %—, = LN
The proof of this assertion as well as some other properties of h(p)

are presented in Appendix Z. Here we take the particular case N=2. In

this case:

hp, 1-p) |

{

log 2 -

o
4
—
g

h(p, 1-p) = -p log p - (1-p)log(l-p); h(%,’%) = log 2.

We define h(0,1) = lim h(p, 1-p) = 0, h(1,0) = 1lim h(p, 1-p) = 0.
p1
These limits exist by the L'Hospital rule. (Observe that an unbiased

coin yields a higher uncertainty than a biased one.) Consider discrete

r.v.'s X,Y with




-

P(szi, Y=yj) = pij @G@=1,...n; j=1,...m);

P(X=xi) =P;» P(Y=yj) = qj . We have
qjggpij’ pitgpij and
by the lemma in Appendix 2,
- Zpiqj log(pin) o Zpij log Pij -

This inequality suggests that we have a higher uncertainty when X and
Y are independent. This fact is employed to define the logarithmic index

of correlation LN

g * iZj (pij log Pij - Pi9 log Pin)'
’

Note that 1o 20, and 1) =0 iff p; ; Vi IfE (XY, X, Y

possess densities p(x,y), p(x) and q(y) respectively, we define Ty

= p;a
as:

g * [ J [p(x,y) 1og p(x,y) - p(x)a(y) log p(x)q(y)ldxdy.
We prove in Appendix 3 that ro 2 0 also in this case.
Example: Consider the bivariate normal distribution:

P(x,y) = 77 abR” o li(axt+Zhxysby®) o g2 5 g,
The classical correlation coefficient is:

EXY - EXEY -h

Tr= =

Nar X Nar Y +ab

The marginals are




G-
= ol 2
p(x) = r pcy)dy =2 e ™ 5 q) - r pi,y)dx =B e
a = (ab - h%)/2b ; B = (ab - h%)/2a.
(See also the next Section.)

uting r, , we obtain
g Ty

2 s 2e ﬁ fre
T, loga- +loga+1og/g_

ab 1 1
o Nlog—»=4 log =75 log — .
ab-h 1- A JZ 1-r

vab,

’ '21'
Thus: r =Vl-e 0

IV) Correlation coefficient and correlation ratio.

Let X, Y be r.v.'s with finite variances; define correlation coeffi-
cient R(X,Y) = EQOY) -E(X)E(Y , where D(X), D(Y) are the standard
deviations of X, Y, i.e. positive roots of Var(X) and Var(Y). Assume

Var(X), Var(Y) > 0, i.e. X and Y are non-degenerate. By the Cauchy-
Schwartz inequality [E(X - E(X))(Y - EM)1? s E-ENZE(-EN? ,  [RX,Y)| < 1;
R(X,Y) = 0 => Cov(X,Y) = 0.
In the latter case we say that X and Y are uncorrelated; this
implies that X and Y are independent if (X,Y) is bivariate normal;
R(X,Y) = 1 if X and Y are directly proportional. Kolmogorov (see
Renyi, 1959) defines correlation ratio — as a measure of dependence —

as follows:
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K () = D(E%Y!X)l.

The relationship between R(X,Y) and KX(Y) is given by

Theorem 2: If X and Y are random variables and Var(Y) exists, then:
Ky(Y) = sup |R(Y, g(X))|, where g runs over all Borel-measurable real-
valued fuﬁctions y = g(x) such that the variance of g(X) exists.
Moreover, Ky (Y) = [R(Y, g(X))| iff g(X) = a E(Y|X) + b (a.s.), where

a=0, b are constants.

(Remark: Notice that the theorem implies that 0 < KX(Y) < 1 .)

Proof: Observe that R(X,Y) and KX(Y) are both invariant under linear
transformations. We thus may assume that E(Y) = 0, E(g(X)) =0 and
D(Y) = D(g(X)) = 1. Now R(Y, g(X)) = E(g(X)Y) and since

E(g(X)Y[|X) = g(XE(Y|X),
E(g(X)Y) = E[E(g(X)YIX)] = E(g(NE(Y|X),

we have
R2(Y, g(X) = EX(g(ME(Y|X)) <  (by the C.S. inequality)

< E(g2(0)E[EX(Y|%)] = E[EZ(Y|0)].

Hence RZ(Y, g(X)) s E(E2(Y|X)).

Since 0 = E(Y) = E(E(Y|X)), we obtain:

R(Y, g0) s E(EZ(Y|X) - EZ(ECY|X) = Var(E(Y|X)

.*. R(Y, g0)) s D(E(Y|X)), or
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sup |R(Y, g(X))| < D(ECY|X)].
g

Now let g, be a real function, such that go(X) = E(Y|X). (Recall
that E(Y) = 0, D(Y) =1 .) In this case

E(Ygy (X)) -E(Y)E (g, (X))
R(Y, gyM) = — gm0~

ElE(YgOcX)lx)l E(gy(VE(Y X)) E(Ez(y‘x)]
= = __ﬁm—_ = D E x =
& Var!E(Y’X)[ 5 D(E(YIX)).

Thus D(E(Y|X)) = sup |R(Y, g(X))|, where g runs over all real functions

such that Var(g(X)) exists. Since

IR(Y, g(X))] = |E(Yg(X0)]| = IE[E(yg(x”x)]l E

= |E(@OE(Y|0)| = [Eg?(OEES(Y]X)]*
- (EE*(Y[0))*% = DE(YIX),
the equality
Ky(Y) = D(E(Y|X)) = |R(Y, g(X))| holds iff
g(X) = aE(Y|X) + b (a.s.) for some az0 and b.

V) Maximal correlation.

We have Ky(Y) = sup [R(Y, g(X))| if Ky(Y) = 0, then R(Y, gX)) =0
for all g such that %(g(x))2 < ». This implies that Y and g(X) are
uncorrelated, but does not yet assure that Y and X are independent.

However,

|
s VAL T —

5%Y) = =p R(£(X), g(Y)) implies

'8
EF? (X) <
Eg?® (Y) <
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that X and Y are independent if S(X,Y) = 0.
Remark: S(X,Y) also equals sup R £(X), g(Y) by the fact

£,
B2 (X)=Fg? (V) =1
E£(X)=Eg(Y)=0

that R(e,°) 1is invariant under linear transformations.
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Theorem 3: Sl) 0 < S(X,Y) =< 1.

S(X,Y) = S(Y,X).

3) If a(x) and B(y) are strictly monotonic, then

S(X,Y) = S(a(X), B(Y)).

$) IR,V | < min(Ky (Y), Ky (X)) < max(Ky(Y), Ky (X)) < S(X,Y).

S(X,Y) =0 iff X and Y are independent.

86) If there exists an arbitrary functional dependence between
X and Y, i.e. if there exists Borel measurable functions
fO(X) and go(Y) such that fO(X) is not constant with
probability 1 and fo(X) = gO(Y) then S(X,Y) = 1.

Proof: Sl): 0 s S(X,Y) <1 since -1 s R|f(X), g(Y)] s 1. The non-

negativity of sup R(f(X), g(Y)) comes from the fact that if
f,g
Ef(X)g(Y) - Ef(X)Eg(Y) < 0, we then consider f' = -f to yield

R(f'(X), g(¥)) > 0.
SZ): S(X,Y) = S(Y,X) in view of the symmetry of R(X,Y).

S;): Note that in general Ef2(X) < = #> Ef(a(X)) < =, i.e.

)
3
R(a(X), B(Y)) may not exist.

However if a and B are strictly monotonic = a'l and 8-1
exist and
R(£(X), g(V)) = R(fa '(ax), g8™1(8Y))
Thus sup R(f(X), g(¥)) s sup R(£'(aX), g'(BY)).
f,g £,8'
Also sup R(f'(aX), g'(BY)) s sup R(£(X), g(¥)).
f',8' f,g
Thus S(X,Y) = S(aX, BY).




| 13-

S,) Since K (Y)

we have

sup [R(Y, g0 |, KX = i IR(£CV), X) 1,
4

v

Hence, |R(Y,X)| < min(K(Y), K, (X)) < max(Ky(Y), K, (X)).

S(X,Y) = = R(£(X), g(Y)) = sup R(X, g(Y))
3 g

and S(X,Y) = sup R(f(X), Y).
f

Thus  |R(X,Y)| < min(Ky(Y), K (X)) = max(Ky(Y), Ky(X)) s S(X,Y).

SS) Define indicator functions on Rlz fA(x) =1 XxeA;
i = 0 otherwise

? gB(y) =1 yeB ,-where A and B are arbitrary Borel sets on
i = 0 otherwise
\

the real line such that 0 < P(XeA) <1 and 0 < P(YeB) < 1.
By definition:

R(£,(0, gy(M) = P (XeA,YeB) -P(XeA)P (YeB)

€ - £ € e €

Hence S(X,Y) = 0 => P(XeA, YeB) = P(XeA)P(YeB) => X and Y are inde-
pendent.
S6) If fo(X) = go(Y), consider
£,(X) N
00 = WM " PG - ab:

(Note that fl(X) (= gl(X) ) are bounded, the variances exist and are
=z 0.)

Ef) (X)g, (¥)-Ef, (X)Eg; (Y)

We have R(f,(X), g;(V)) =
War fllX) Var gliYi

=1, i.e. S(X,Y) =1.

!
!
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Remark: 56 is a sufficient condition for S(X,Y) = 1.

VI) Mean-square contingency.

Let X, Y be arbitrary r.v.'s on (Q,F,P). The distribution of

(X,Y) denoted by P is defined on the plane by Py (C) = P((X,Y) € C),

XY

Ce8B B, being a two-dimensional Borel c-algebra. When

R
C = (-»,x] x (-»,y] we have the 'usual" distribution function:

Fyy (X,y) = PXY((-m,x] x (-»,yl) = P(Xsx, Ysy).

If Py, is absolutely continuous w.r. to pX'!x Pyl | the product

measure induced by (X,Y), we have according to the Radon-Nikodym theorem,
1 [ |
Pa© = | Kexyapc eyt (1)
C

where K(x,y) a Borel measurable function. The R-N derivative K(x,y)

is expressed symbolically as
o R §
dPXY/dPX @& "

We now define

dp 2 : 21 |
$(X,Y) = DRZ [E&Tﬁ? . 1] arx” Lapy 1] 2)

as the mean square contingency of X, Y. 4

"Historical' motivation for this definition:

Let X and Y be discrete r.v.'s with P(AK) = P(X=K), K=1,...S,

P(Bj) = P(Y=j), j=1,...,r. Then:
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(P(AB,)-P(A,)P(B,)) > "
o(X,Y) = [ZZ TP ET J :
1) i J

If we have the rxs contingency table:

1 2 B A 8 |
LT S T Yis | M
4. . ¥y N Yag | V2.
3 . .
% Yr1 Vr2 ¥ ta ST Mg Yre
V.y V., o n
gty ool
and we estimate P(AiBj), P(A)), P(Bj) by ol e T
then the estimated ¢° will be:
vi. ‘V-./ 'V.-/ 2
) J/n */n I/n
Lb, V. % ¥
1,) 1./11.\).]/11 1
This is the statistic for the xz test of independence ( ¢2 is asymptotically

xZ distributed with (s-1) x (r-1) degrees of freedom). Returning to

(2), we have

¢(X,Y) '0*———?;)&-;1-- 1=0 a.s.
dPX “dpY
with respect to Px! x Y’ . In other words K(x,y) =1 a.s. w.r.
to X1xpy'l. Prom (1) we have in this case

Pyy(©) = [ 1aPx lary e pxlxpylc) forall Ce B, .
c

This implies that X, Y are independent. We thus have
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Theorem: ¢(X,Y) = 0 <= X, Y are independent.

Definition: If X, Y are such that the measure P(X,Y)! is absolutely

1

continuous w.r. to PX 1 x py’l (i.e. the mean square contingency exists),

it is said that X, Y are regularly dependent.
Theorem: If X, Y are regularly dependent, then
S(X,Y) < ¢(X,Y).

Proof: Since 0 < S(X,Y) <1 we can assume that ¢(X,Y) < 1. Take
measurable f and g such that

Ef(X) = Eg(Y) =0 and Var £(X) = Var g(Y) = 1.

Direct calculations show ¢ that

e Indeed
R(EK), g(Y) = [RZ £x)gaP,Y L =
” IRZ 'f(x)tz(y)d(l’(x,Y)'1 - Px‘lpy'l) -
1

dP(X,Y)” =1 -1
= f( ) - 1}dPX “dPY .
[Rz x)g(x [——gr")‘“rm- v ]

Bk
(Observe that both [ ﬂpQ‘JY)_T‘P X B ) apx-tapy !
c  apx lapy

and Ic [;’-—;-(ﬁ-:y)—; - 1]dpx‘1dw‘1 = P((X,Y)<C) -

P(XeC)P(YeC), for CeB, )

-1 2
2 2 2 “1.pv-1 dP(X,Y 11
Hence R(f(X), g(Y < f dpPX “dpY - 1| dPX "dPY
e R(E0, 80)7 < [ 5 F0g") J2 [—%—Hm- - ]
= ¢2(X,Y) (by C.-S. inequality).
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R(£0, gN)? < o?X,1)
Hence i IR(EX), gN)| < ¢(X,Y)
Y4

or S(X,Y) < ¢(X,Y).

VII) Pairwise loosely dependent random variables.

Definition: We say that {X } is a sequence of pairvise loosely depen-

dent r.s.'s with coefficient C>0 1if

oo o o 2
I ) Sex,xguuwisC J W ®
nelmel M W mn i=1 *
for each sequence {u } such that ) ui < =,

i=1
Theorem: {Xn} is an independent family of r.v.'s iff C=1.

1 n=m
if {X;} is independent. We thus can take

Proof: S(X,, X,) = {

C=1 in e.

0 n=m

Suppose C=1, define u; = |u | and assume Zurzl < o,
We have:

LI IS0 xpul = T ow? (- T o).

n=1 m=1 n=1

Since 0 < S(Xn, Xh) and S(Xh, Xn) =1, and
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Z ):S(Xn Xunur < ): u'

n=1 m=1

T .2 & 4
we have L SX_, X)u'u' < u'“ = sX, X) =0, nem=> {X }
nzl un an xn m n"m nzl n Xn xm xn
is an independent family.

The coefficient of dependence C has another property as well.

Theorem: Let {Xn} be a sequence of loosely dependent r.v.'s with co-
efficient of dependence C. If Y is an arbitrary random variable such

that EY2 exists. Then

2
ZIK)%SC.

For the proof of the theorem the following lemma is required:

Lemma: Let {)gl} be a sequence of square integrable r.v.'s with bound

>0, i.e.

|°{° af E()glxm)unuml <0 2 u

n=1 m=1 n=1
for every sequence {u.} such that ) \.\’2l < w, Then we have for any

random variable Y with IEY2 < o,

E BEY
nzl (Y)S‘)s

Proof: Consider

E(Y - %n§1 BOX)X) % 2 o,
then E[Y Z )g,YB(Y)g,)+—7(Z)g,B(Y)g,))]

1 m=1

- B2} 7 B ) - —ze[nz 1 5%)&&13%)]

n=1




1
B 2%2 7 E2rR) - S I EQX)EOX)E(X X))
nzl 6" n,m
8 v e |
P E x.) - E( = E D
§n§1 X 02 nzl Y)gx ) z %,

(Remark: In Hilbert spaces theory, for any orthonormal system of r v.'s

(X}, ie. EXX =0, nem (EX)? =1, ve have 6= and EY’ > 7 EAYX_

n=1
(the so-called Bessel inequality). The last lemma can be viewed as a

generalization of the Bessel inequality.)

To prove the theorem observe that

_ D(ECY|X))

K&‘ ——m)——- S\gq) R(Y, g(xn)].

Egz (X)) <=

Let {gn} be a sequence of measurable functions such that Egrzl()gl) < o,

If(X )l
(Such a sequence can always be constructed by choosmg gn(x ) = -—RW

for any measurable f .) Define g;‘(xn) Wgn(&” R (i [ S

Since {)S'n} is loosely dependent with coefficient of dependence C we have
PR CICS TR IR R DRI SEE S
T .2
< rzug S (X, Xp) [uy | lup| < C ngl u, -

Using the Lenma with Y' = Y - EY, we have:

I Frg 2. @,

nzl g (X)) s CEY )
If we choose gn()g‘) in a special way to be equal to

g, (%) = EQY'[X),
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we obtain

5,70 o] - oron

= ES[Y"
g = EICRCR) o, .
nl D*(EQY'|X))

Note that:
E(rEQ- %) = (B 1) X))
= B(EQY IXECY' X)) = BE QX)) = D (B (X)),
since EE(Y'|X) = EY' = 0.

Therefore the 1.h.s. of & becomes:

21 p*(B(Y' X)) < cof (V). 00
n-
However,
E(Y'|X ) = E(Y - EY|X)) = E(Y|X)) - EY
Thus

p?(BCY' X)) = DX (BOYIX,).

We finally obtain from ée :

3 DE0IXY) < ')

= DA(ECrIXD) '
o (Y) s C. 0
5 I D (Y) n=1 K’zgx

We know that C can be chosen to be 1 provided {X } is a sequence
of pairwise independent r.v.'s.
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Corollary: If {Xn} is a sequence of pairwise independent r.v.'s, and

Y is an arbitrary r.v. such that EYZ < o, then

n=1 KXn(Y) < 1.

VIII) Positive dependence and multivariate hazard rates.

Given an n-dimensional random variable X = (Xl" - ,Xm) , denote by

Fx(y Pr( n (X sx )] the joint c.d.f. and by
j=1

Gy (x) = Pr[_ﬂ ()(j > xJ.)] the joint survival function.

=1

We assume that Fy(x) and Gy(x) are absolutely continuous.
Definition.
If h (~) is an increasing (decreasing) function of x.

b)
j = 1,2,...,m, for all x e " , then the distribution Fx(g) is a (vector)-

, for
multivariate increasing hazard rate [IHR] (decreasing hazard rate [DHR] )
distribution, where hx(§)3 is the j-th component of -grad log Gx(g).
Lemma 1: If X;,...X~ are mutually independent i.e.

0 m

(x) = 1 (x.)

G.’S. j=1 ij J
= = - d

then hx(x)j hxj(xj), where hxj(xj) = FJ log ij(xj) )S(x .)/1- F (x )

is the univariate hazard of the j-th component.

Lemma 2: If hl(;_t) = c where ¢ = (cl,....cm) is an absolute constant,
then X = (Xl,...)g‘) are mutually independent exponential random variables
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and conversely.

Proof: Given hy(x) = ¢, this implies that:
9 log Gy(x)
T= "<y G=1,..m

-C.X.
i.e. GX()Q =e JJ gj(xl,...xj_l, xj+1,...xm), ) . B

i.e. Gl(g)aexp(- g: c5%;) -

The boundary conditions on Gx(g) imply that
m
GX~(5) = exp(- g: cjxj), x; 2 0. 0

Recall from Section II that the variables X = (Xl,Xz,... ,)Sn) are G-

positively quadrant dependent if

m
Rs(x) = Gx(;)/_n1 Gy (x;) 2 1.
i 1= 1

Observe that RG(xl,...,xm) = RG(XZ"”’)Sn)' In particular RG(xl’XZ) =1
X
1

+>-00 b'e 1+-oo

9 log R;(x)
(for m=2 ). Moreover e rumeat hx.(xj) - hx(;g)j st )= Los. om
) J =

Theorem: For m=2, if hx.(xj) > hx(g_c)j ( =1,2) for all x, then
RG(E) 2 1 for all x, i.e. the variables )(1 and XZ are G-positively

quadrant dependent

3 log R;(X) ;
Proof: Observe that S — 0 for all x and j = 1,2 together
with 1lim RG(x)-l end lim PnJ(x) = 1, implies that Rc(g) *}l foralX g 0O
xl-b-u xz+-¢o




2R

The converse of this theorem is in general not true.
Consider the survival function:
= -5 (x3+x2)
Glz(xl,xz) = Gl(xl)GZ(xz)[l + oe 27 -£2;?Zm.
-<X , <
It is a survival function for some choices of Gl(xl) and Gz(xz) and certain

values of a. Indeed, first we have to assure that
2 2

7 W
= >0 for all x, and Xx, .
axlaxz Bxlaxz 1 2
2 2
3°F 3°G 242
2 g 15 (x7+x3)
N axpax, T axpx, £1(x)fp(xp) + o A
x [£0x)) + x,6; (x) (£, (%) + x,6,(x,)]
oW
2 £, (x)f,(xp) - alxllee (X +x3) :
2°Fy, 15,
where ——==f, , i=1,2. Taking fj(xj) = %llee J | we have
i
a21:12 35 (x2+x3) :
axlaxz > (%- a)|x |e 134 >0 if 0<a <% Also: Glz(xl,xz) +0

88 By » e T 0 as X, .-> 40 > Gi(xi) as Xz i * -i=°1° < . For this
survival function we have: 3
G el Zau
(1) R;= C—l-é— =1+ ae80¥X3) 0, so we have G-positive quadrant
178
dependence, but
(ii) RG is an increasing function of Xy for Xy > 0 and decreasing
function of Xq for Xy > 0, so hx(g) 1 hX (xl) changes sign as x1
increases. However for a family of b1var1ate survival distributions of

the form:

le’xz(xl,xz) - le(xl)ﬁxz(xz) [1 + anl(xl)sz(xz):l, la| s 1,

st . e e e e e e




|
|
i
!
:

-24-

(note that the distribution in the counterexample above does not belong
to this family). We have RG > 1 <= hXj(xj) - hx(l()j >0, j=1.2.

The proof is presented in Appendix 4.

IX) Measures of dependence via "copulas".

a) Definition and properties of "copulas".

The quadrant dependence measures the deviation of the bivariate dis-
tribution from its marginals.

A more general problem is to relate (explicitly) a multivariate
distribution function to its marginals. The FGM family (discussed at
the end of the previous section) expresses the joint bivariate distri-

bution as an explicit function of the marginals:
Fy(%,y) = Fy()Fy([1 + a1 - ) (1 - {)],  [of s 1.

Other examples of this situation are:

Fiy(x,y) = max(0, Fy(x) + Fy(y) - 1) (the lower Frechét bound)
FR$(x,y) = min[Fx(x, FY(y)]] (the upper Frechét bound)

(or any linear combination with positive weights adding up to 1 of
Fiy(x,y) and F)*&(x,y) ) and of course the independent case

Fyy(%,y) = Fy(x) + Fy(y).

The definition and the theorem below present an answer to the fol-
lowing two questions:
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1) Can a given multivariate distribution function be represented
as a function of its marginals?
2) What are the characterisgtics of this function if the answer to

1) is affirmative?

Definition: A copula C 1is a real-valued function of n variables

(n22) defined on a subset of [0,1] x [0,1] ... x [0,1], with the range

being a subset of the interval [0,1], satisfying the following properties:

(€ CQlyvnsly Xy Loue, 1) mx,  man, /x e [0,1],
(CZ) C(xl,xz,...,xn) =0 if X ™ 0 forany m<n,
(C3) C 1is non-decreasing in each variable.

Theorem: For n22, let F be an n-dimensional distribution function

with marginals Fl,Fz,. oo ,F Then there exists a copula C such that

b s
F(X),Xp,e00X ) = C(Fl(xl),...,Fn(xn))

for all n-tuples (xl,xz,...,)sl) "

Proof: To show that F 1is a function of Fl’FZ""’Fn , consider any
two points x = (xl,xz,...,xn) and y = (yl,...yn) € i
We have

Ip(xltxzo-":xn) = F(yln)'2o“-syn)| s

< IFy(xp) - FO| + [Fy0p) - B + .ov + |E (x) - E ).

This inequality shows that the set of points




ué
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LF Oy By(xp) won FLOG)) s Flxp,%p,e00,%) )% € RY

is a graph of a function C (if each FJ. is continuous then C is
unique). Inequality e implies that C(xl,xz,...,xn) is a jointly con-
tinuous function of X19Xgse e Xp Utilizing the basic properties of
distribution functions it can be easily verified that the function C

satisfies the properties (Cl)’ (CZ) and (CS)' 0

b) Copulas and dependence.

Let Fyy(u,v) = Cyy(Fy(u), Fy(v)). From Frechét's bounds we obtain:
max(x+y-1, 0) < Cyy(x,y) < min(x,y) x,y ¢ [0,1].

If X and Y are independent, we have

Cy@sy) =xy x5 € [0,1].

These observations suggest that the volume between the two surfaces
Z= ny(x,y) and Z = xy may serve as a measure of dependence between
X and Y. This measure is formally defined (Schweizer and Wolff (1976))
by
1,1
o060 = K [ [ 1y - Cyyx)laxy,

where K is chosen in such a manner that o(X,Y) <1 for all X and
Y. (Observe that o(X,Y) = 0 <=> X and Y are independent. Also
a(X,Y) = o(Y,X) .)

Direct computations yield:

I: f: |xy - 0|dxdy = %;




O ——

L

1,1 1
I f |xy - min(x,y)|dxdy = 5 -
0’0

The normalizing constant K therefore equals 12 and o(X,Y) =1

for the Frechet's upper bound min(Fx(x), FY(y)). Thus, finally,

1 .1
o(X,Y) = 12 fo [0 Ixy - Cplxy) dxdy.

According to this measure the maximal dependence between the variables
is when Fy y(x,y) = min(Fx(x), FY(y)) , i.e. when the joint distribution is
given by a diagonal-type surface over the " x(x), FY(y)"-plane.

Part 2 Positive dependence revisited.

I) Introduction.

Recall the corollary of Theorem 1 Section II of Part 1 which states
that if (X,Y) € Fl and EXY, EX and EY exist, then Cov(X,Y) 2 0.

Esary, Proschan and Walkup (1967) define association of X and
Y by requiring that Cov(f(X,Y), g(X,Y)) s 0 for all non-decreasing
real-valued functions f and g. They also present a multivariate ver-
sion of this definition:

Cov(f(X), g(X)) 2 0 for non-decreasing real-valued
f and g where X = (X;,X;,...,X).

In numerous reliability situations, the random variables of interest

are usually not independent, but often satisfy the association property.
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(See Barlow and Proschan (1975).)

Regression dependence, likelihood ratio dependence were discussed
by Lehmann (1966). The 'I'P2 property of Karlin (1968) is analogous
to Lehmann's likelihood ratio dependence, which is useful for determi-

nation of the hazard rate behavior in univariate models.

I1) Association of random variables.

Definition 1: Random variables (xl,xz,. - ,Xn) are called associated
if Cov(f(X), g(X)) = 0 for all non-decreasing functions f and g
such that Ef(X), Eg(X), and Ef(X)g(X) exist.

Remark: f, g are non-decreasing if they are non-decreasing for each

variable when the rest are held fized.

Property 2: Any subset of associated random variables forms a set of

associated variables.

Property 3: If two sets of associated r.v.'s are independent of one another,

then their union is a set of associated r.v.'s.

Proof: Let X = (xl,...,)gl) and Y = (Yl""’Ym) be two sets of asso-
ciated r.v.'s, let X and Y be independent and f and g be non-
decreasing functions. We have:

Cov(£(X,Y), 8(X,Y)) = Ef(X,DgX,Y) - Ef(X,Y)Eg(X,Y)

- [ P | 3 £(x,1)8 (5 Y)dpX Yapy

£(x,y)dpX apy! -

'meIRn
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R |
,y)dpX “dpY " -
g g(x,y)dpX “dp

J
UR" £05, g )dpX T - JRn £G0dpK J

.
J e g(x,Y)dpX’ 1:]de'1

. f URH £(x,y)dpX ! L{l g(z.vdpz'ljdl’x'l

R

R
/ IRm IR" £(x,y)dpX “apy ™! [Rm f U i T

R"

I+ II - III.
Now I20 since )(1,...,)S1 are associated; also, II - III =

Cov“Rn f(g,i)dp{l, JRn g(g,l)dpz'l] 2 0, because ] *

o f(x,Y)dPX

J 4 g(zg,x)dPg'l are non-decreasing in y;,y,,...,y, , and the variables
R m
Y = (Yl""’Ym) are associated. 0
Property 4: A set consisting of a single variable is associated.
Proof: It is required to show that Cov(f(X), g(X)) 2 0 V non-decreasing
f and g.

Recall (Section II in Part 1) that Hoeffding's lemma yields

Cov(X,Y) = r; [; (GXY(u,v) - Gx(u)GY(v))dudv
= [:, J: Cov (I(u,X), I(v,Y))dudv,

where I(u,x) =1 if wusx and 0 otherwise

I(v,x) =1 if vsx and 0 otherwise,

and Gyy(u,v) = P(®u, Y>v), Gy(u) = P(X>u),
GY(V) = P(Y>v).

Define now
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I(u, f(x)) =1 if f(x) 2u and 0 otherwise
I(u, gx)) =1 if g(x)2v and 0 otherwise.

Then as in the proof of Hoeffding's lemma (Lemma 3, Part 1):
Cov(£f(X), g(X)) = r r Oov[I(u, £(X)), I(v, g(X)) |dudv.

Observe that I(u, f(x)) and I(v, g(x)) are two-valued non-decreasing
functions of x. There are two possibilities, either I(u, f(x)) 2 I(v, g(x))
for all x, or I(u, f(x)) < I(v, g(x)) for all x.

In the first case:
Cov(£(X), g(0) = j: j: {Et1(w, €00)1(v, 200)1 - 1o, £00) | =
x E[I (v, g(X)]]}dudv
& J: fw E[1(u, g¥))] - E[I(u, f(X))]E[I(v, g(X)]]dudv

= [; j: E[I(V, g(x))][l - B[I(u, f(X))]]dudv 2 0.

In the second case:
Cov(£(X), g(X)) = r r E[I[u, f(X))] - E[I(v, g(X))]dlﬂv =0 { ]
and Prop. 4 is verified. 0

Property 5: Non-decreasing functions of associated random variables

are associated.

Proof: Let )(1,)(2,...,)g_I be associated random variables; hi i=1,...,m)
be non-decreasing functions of n variables. To show that Yi = hi(p,
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i=1,...,m, are associated it is sufficient to show that Cov(f(!), g(!)] 20
for all non-decreasing f and g of m variables.
However, Cov(f(Y), g(Y)) = cov|f(h(X)), g(}g(g))] and the latter is

non-negative since Xl,... ,xn are associated. O
Property 6: Independent random variables are associated.

Proof: Let xl’XZ” S ’)S\ be independent random variables.

By Prop. 4 X, is associated and X, is associated.

By Prop. 3 (xl,xz) are associated, and the result follows by in-
duction. 0

II1) Positive regression dependence.

Recall that (X,Y) € Fl , i.e. X and Y have positive quadrant
dependence (notation PQD(X,Y) ), if P(Xsx, Ysy) 2 P(X<x)P(Ysy) for
all x,y e Rl . If P(Xsx) > 0, this condition can be restated as
P(Ysy|Xsx) 2 P(Ysy), V x,y. This observation motivates the following

two notions:

Definition 2: If P(Ysy|Xsx) + as x + for all y, we say that Y
is left tail decreasing in X (notation LTD(Y|X) ),

Definition 3: If P(Ysy|X=x) + as x + for all y, we say that Y
is positively regreseion dependent on X. (Notation PRD(Y|X) or (X,Y) € Fy o)

Example 1 (Lehmann 1966): Let Y =a + BX + U, where X and U are
independent r.v.'s. In this case:
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P(YSY'X'X) = E(I[Ysy]|X5X) = E(I[(!"‘BX+US)’]IXBX)
= E(I[G"BX*US‘)’JIXRX) = EI[G*BX"’US}'J = p((l + Bx + U< )’).

Thus, P(Ysy|X=x) + as x+ if B >0 [PRD(Y|X) ]
P(Ysy|X=x) + as x ¢+ if B <0 [NRD(Y|X)]

and P(Ysy|X=x) = P(a + U <y) if B8=0.
Theorem 1: PRD(YIX) => LTD(YIX) => PQD(X,Y).

Proof: From Def. 2, P(Ysy|Xsx) = P(Ysy|Xs<x'), x < x'.

Let x' 4 «», then

s P X<x'
P(Ysy|Xsx) = 1lim J;-S&;—q—l = P(Ysy).
X' 4 %

Thus LTD(Y|X) => PQD(X,Y).
Now, if LTD(Y|X) holds then

P(Ysy|X<x) 2 P(Ysy|Xsx') for all x<x'
and all vy.
/X p(Ysy|X=u)dP(Xsu)  SX_P(Ysy|X=u)dP(Xsu)
PIXEx) y POEX") '

with x < x'. If P(Ysy|X=u) is a decreasing function of u (i.e.
PRD(Y|X) holds) then the last inequality is valid. Thus PRD(Y|X) =
LTD(Y|X). 0
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1V) Relationships between some notions of bivariate positive (negative)
dependence.

In addition to the three definitions of bivariate dependence intro-

duced in Section 3) we define:

Definition 4: Y is right tail increasing in X (RTI(Y|X)) if
P(Y>y[X>x) 4+ as x + for all vy.

Definition 5: Y is stochastically increasing in X (SI(Y|X)) if
P(Y>y|X=x) 4+ as x 4+ for all y.

Definition 6: If X, Y have joint density f(x,y), we say that f(x,y)
is 'I'P2 or 'I'PZ(X,Y) if

f(xl,yl) f(xl,yz) g for all X; <X, and Y1 <Y,
f(XZ’yl) f(xz,yz) in the domain of X and Y.

In addition to the relations — due to Lehmann (1966) —
PRD => LTD => PQD

which was proved in the previous section, the following has been shown

by Esary and Proschan.
Theorem 2 (Esary and Proschan 1972):
TPZ(X,Y) => SI(Y|X) => RTI(Y|X) => PQD(X,Y).

Proof: If TPZ(X,Y) is valid, then by definition

4 S R




-34-

f(xl’yl) f(xl’yz) X, <X

1 2
y1<YZ’

20

f(x,,y))  £(xp,¥;)

or f(xl'yl)f(XZ’yz) 2 f(xlvyZ)f(xzpyl)-
Integrating over the variables Y1 and Y, we have:

y Y
I £(x,,y1)dy, r £(xy,y,)dy, 2 f £(x;,y,)dy, r £(x;,y,)dy,
- Yy = y

or Jm f(x,,2)dz Im f(x,,z)dz
y 3 y 4

ffm f(xl,z)dz Iym f(xz,z)dz

> 0.

Adding the 1-st row of the last determminant to the second we obtain

[w f(xl,z)dz Im f(xz,z)dz
y b

s 0
£, (x,) £,(x,)
ol f;f(xl,z)dz > f;f(xz,z)dz
fl(xl) f:(xz)

or P(Y>y|X-x1) < P(Y>y|X-x2), X, < x, i.e. SI(Y|X) is valid. Thus
TP,(X,Y) = SI(Y|X). Now let X and Y satisfy SI(Y[X).
By definition:

P(Y>y|x-x1) < P(Y>y|x-x2) for x; <x,
and all Y.
Equivalently,

f;f(xl,z)dz f;f(xz,z)dz

L 7% SR T "
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or

fl(xz) f: f(xl,z)dz < fl(xl) f: f(xz,z)dz < 0.

Integrating ® from S, to S, (with §; <S8, ) over x, , from S,

to « over x, , we have:

S S
f‘z fm £ (x,,2)dzdx, Iw £, (x,)dx, Im fw £(x,,2)dzdx, f 2 £,(x)dx,
sl y S2 S2 y S1

(the inequality e remains valid as long as the ranges of integration satisfy
X; € Xy )

or fsif;f(xl,z)dzdx1 I;Z.f;f(xz,z)dzdx2
SZ 4 < 0.
fslfl(xl)dx1 fszfl(xz)dx2

Adding the second column to the first we have

fslfyf(xl,z)dzdx1 fszfyf(xz,z)dzdx2
% X < 0.
fslfl(xl)dx1 fszfl(xz)dx2
This implies that
fslfyf(xl,z)dzdx1 fszfyf(xz,z)dzdx1

<
lefl(xl)dxl fngl(xz)dxz

i.e. P(Y>y|X>Sl) < P(Y>y|x>52), S; < S, which means that RTI(Y|X)

is valid. 'Tb complete the proof of Theorem 2 we must establish that

RTI(Y|X) = PQD(X,Y).

It is easy to show that A(X,Y) (association between X and Y ) implies
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PQD(X,Y).
Indeed:
A(X,Y) = Cov(f(X), g(Y)) 20

for all non-decreasing f and g. Now let

f(u) if u>x and 0 otherwise

g(v)

1 if v>y and 0 otherwise. !

Since these particular f and g are non-decreasing we have

o
IA

Cov(£(X), g(¥)) = E(£(0g(Y)) - EfCEg(Y) |
P(X>x, Y>y) - P(X>x)P(Y>y) = P(X=x, Ysy) - ‘

P(X<x)P(Ysy).
In other words PQD(X,Y) is implied.

The missing part involves verification of the implication
RTI(Y|X) => A(X,Y). The proof of this proposition is quite long and
constitutes the major proof of Esary and Proschan's 1972 paper in the

Ann. of Math. Statist.

Final remark. If the variables X and Y take on values 0 and 1

only, all the above conditions of dependence are equivalent: i

Indeed in this case PQD(X,Y) = TP,(X,Y). |

Consider




~ BT

P(X=0, Y=0), P(X=0, Y=1) (adding the bottom
D = = row to the top one
P(X=1, Y=0), P(X=1, Y=1) and the second
column to the first)
i P(Y=1)
P(X=1) P(X=1, Y=1)

P(X=1, Y=1) - P(X=1)P(Y=1).

PQD(X,Y) => P(X=1, Y=1) - P(X=1)P(Y=1) > 0 => D > 0 = TP,(X,Y).
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Appendices

Appendix 1.
Details of the proof of Hoeffding's lemma (Lemma 3, Part 1).

Define:

Auxiliary lemma.

1. If X is a random variable then E I(u,X) = P(X>u).

Pf: EI(,X) =1+ P(I(u,X) =1) +0 « P(I(u,X) =0)
=1 e P(X>u) + 0 = P(X>u).

Auxiliary lemma.

2. Let Xl, XZ, Yl, Y2 be random variables defined on the same
probability space (Q,F,P). Then,

(X - XY - Y,) = fiw fiw (I(u,Xl) - I(u,X)) (I(v,Y;) - I(v,Y,))dudv.

Proof':

Both sides of the equality are random variables, and the double
integral is interpreted as a two dimensional Lebesgue integral. The
integrability of the integrand on the right hand double integral is jus-
tified by Pubini's theorem. This theorem assures that if

f” I(u,X,) - I(u,X;)du and [ﬂ (I(v,Yl) - I(v,YZ))dv exist so does
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f:o J‘:o [I(u’xl) 3 I(v’xz)][l(stl) ¥ I(Vyyz)]dUd‘h

Now r [I(u, ng)) - I(u, ng))]du is proved to be equal to

Xl(m) - Xz(“’) for each wef.
Consider the case Xl(w) < Xz(w).

u-Xl(w) u-Xz(w)
u<)(1 (w) X1 (w) <u<X2 (w) x2 (w)<u
J‘ + —~— u
)(;l (w) XZ (w)

In this case:

I{u, X;(@) - I(u, X,(w) =1
I{u, X;@) - I(u, X,(w)) =1
I{u, ;@) - I{u, X,(w)) =0
I{u, ;) - Ifu, X,(w)) =0

I(u, Xl(w)) - I(u, Xz(m)) =0

1=0 if u < Xl(m)

1=0 if u= Xl(w)

1=-1 if Xl(w) <uc< xz(m)
1=-1 if u= Xz(w)
0=0 if Xz(w) < u.

We thus have only to consider the integral

53
+
(
)_(2 )(z(m)-e2

1im f (1(u, xl(w)) - Iu, xz(w))]du with €;,e, > 0. (We may
e1+0 )(1(4»)+e:1

-
handle this integral as a Riemann integral, since Riemann sense and Lebesgue
sense coincide in this case for the function I(u, Xl(w)) - I(u, Xz(m)) on

)
“’) [I(Uv X; () - I(u, Xz(m))]dlz. This integral in interpreted as:
w

+0
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the set (X;(w), Xz(m)) .) The last integral equals
lim (-1) Xz(w - €y - [Xl(w) + 61) = (-1)(X2(w) - Xl(m)) = Xl(w) - Xz(w).

€,40
1
ez+0

In a similar manner
Im [I(v, Yl(w)) - I(v, Yz(w)]]dv = Yl(w) - Yz(w).

Therefore:

fiw (I(u,xl) - I(u,XZ)) =X - X, and

r (1v,Y)) - I(V,Y)) =Y, - Y, .

[ owx - rwx) - @wrp - v
(by Fubini's theorem) as
= r I(u,X,) - I(u,xz)dur (T(v,Yy) - I1(v,Y,))dv

= (X - X0y - Yp).
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Appendix 2.
Theorem (Jensen (1971))

Let u,(x,y) be a two-dimensional distribution function which admits

the series expansion
du, (x,y) = [1 + Zl a 6, (x)¢..(y) Jau; ()u; ()
t‘-

in the functions (¢r(-)} and ul(-). Then a sufficient condition that
the equality

[ o = | age [ ayom

AxA A A

holds for every measurable set A is that the sequence {ar} be non-

negative.

Remark: Note that both marginals of uz(--) are ul(y). If all . 0,
r=1,..., we obtain the independent case.

Proof: ijA dy, (x,y) = fA du, (x) IA du, (y) +
+ rgl a, fA ¢, (x)du, (x) [A ¢, (7)du, ()
o 2
- ]A dy, (x) IA du, () + rgl arUA ¢r(X)du1(XJJ
[ a0 [ ano. o
Example: In the bivariate normal the well known expansion is:

Mplxy) = [ e § o" 6,.(x)4,.(y)Jdu, (x)du, (y)
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where @r(x) are the Hermite polynomials and p is the correlation

coefficient.

Appendix 3.
Theorem 1 (Shannon (1948))
The function h(p) = - ] P; log p; s log N with the equality
121
i = : 4 = -
iff P; "R 1 X,2,.::Ns

Leima 1. Let pl,pz,...,pN ;
N

N
with } p; =1 and J q;. =1. Then,
i=1 i=1

N N
— 1 pjlogp; s~ § p; logaq
ju1 % 1 P 1 /////z’

with the equality iff p; = 1i g Aim Yoo d N 1%

Q15955 -Gy be arbitrary positive numbers

Proof: Consider the function y = log x.

Elementary observations show that

log xsx-1 forall x>0.

Hence log qi/pi < qi/Pi B A= 1.32...N
Therefore, P; log q; - P4 log P; Sq; - P; -
; N N
Summing up, ,lei losqi-iilpi log p; s 0
i= -

N N
or - ] pjlogp;s- ] p; loggq, .
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94 b
The equality will hold iff 1log qi/pi B e 1 for all i, i.e. iff
i
q; =Pp; Yi=1.2,..N

Applying this lemma with q; = we obtain

1
N‘ ’
'f ] by tog §
- p; log p. s - p; log =N
j=1 1 R LE S

TS L A ) 0

Z| -

with equality iff P; =q; =
Theorem 2 Let X and Y be discrete r.v.'s with joint entropy
n
2 p.. log P; and marginal entropies - J p. log p. ,
ij ij js1 1 i

- Z q; log q; , where P(X=x;, Y=y;) = pj; ; P(X=x;) = p; and

i=1 ij
1® 3. 25000500
P(Y=y.}) = q. ,
] j=1,2,
Then
) 3
p;; log p P;d; log p.q, @
ij i) i3 7 i’
Proof:
n
let h(p) = - igl p; log p; = Z ng P;; log p;
1 7.3
h(qQ) =- ) q; logq, = - P; .
e J'l j J J.l i=1 lJ J

n n m
h(p) + h(@) = - Z Z , Pij 108 P39y = - Z Zl ij 108 pyj -

n,m n,m
However, - itj Pi9; log pja; = - itj P39 (log p; + log q;)

- h(p) + h(@.
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a1 l..n
(Equality is attained in e iff Pij " Pid5 » «)
J

n
—
8

Appendix 4.

Continuous and multivariate extensions of the information-theoretic measure

of dependence.

Let (X,Y) be a random vector with joint density f(x,y), marginals
f(x) = f f(x,y)dy and g(y) = I f(x,y)dx. Assume that f(x,y) >0 a.e.
with respect to two-dimensional Lebesgue measure, f(x) > 0, g(y) >0

a.e. with respect to Lebesgue measure and

E log £(X.Y), B log £(X), E log g(Y)

exist.

Lemma 1. - f g(y)log g(y)dy < - J g(y)log f(y)dy

or - E log g(Y) < - E log f(Y)

with equality iff g(x) = f(x) a.e. with respect to Lebesgue measure.
Proof: From the basic inequality

logxsx-1 forall x>0

we have
log g—g} < g-g%- 1
or log £(y) - log g(y) < £ - 1
or g(y)log £(y) - g(¥)log g(y) < £(y) - g(¥),
hence: -f g(y)log g(y)dy < -I g(y)log £(y)dy
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(since [ f(y)dy = J g(y)dy = 1 ). The equality part follows from the fact
that log x = x - 1 only iff x = 1.
Lemma 2. (Bivariate version of Lemma 1):

- | [ £exvog fexraxay s - [ [ £oxydtog £o0gtriaxey
with equality iff f(x,y) = f(x)g(y) a.e. w.r. to Lebesgue measure on Rz .
Proof: Using Lemma 1:

log i}’%f%l < i}’(‘%ﬂ%)- .
or f(x,y)log f(x)g(y) - f(x,y)log f(x,y) < £(x)g(y) - f(x,y)
or [ foxrtog sty - [[ £xyiog £oxyaxay < o
Ot [ [ £(x,y)1og £(x,y)dxdy < - ] [ £(x,y)log £(x)g(y)dxdy. 0

(The equality part follows from the basic inequality in Lemma 1.)
Remark. Lemma 2 is a particular case of a more general result.

In fact we can prove that:

G f f £(x,y)1og £(x,y)dxdy < - ” £(x,y)log h(x,y)dxdy

where h(x,y) is another bivariate density with the same support as f(x,y).
This can be derived by considering the inequality

h(x h(x
We are now ready to prove. :

Theorem 1. Under the assumptions above,

- [[ fexivrnog £exmraxdy < - [ £0gtritog £OgmIEEY,

with equality iff f(x,y) = f(x)g(y) a.e. w.r. to Lebesgue measure on
, or X, Y independent.

R?
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RHS = - ” £(x)g(y)[1og £(x) + log g(y)Jdxdy

- f f(x)log f(x)dx - f g(y)log g(y)dy

g ” f(x,y)log f(x)dxdy - ” £(x,y)log g(y)dydx

: [] £(x,y)log £(x)g(y)dxdy.

The interchange of integral signs is justified by Fubini's theorem

(in the second double integral) since
[[ recxrtog g laxay = [[ 1y laxit0g gt lay

= f £(y)|1og g(y) |dy = E|log g(X)| < =
by assumption.
Now applying Lemma 2:

- ” £(x,y)log f(x,y)dxdy s - ” f(x,y)1log f(x)g(y)dxdy. o

Corollary 1. In a denumerable discrete case, we have
- Y p;ilogp.: s- I p.q; log p:q.
iy ij i) i il 1 .
-] (-
whe . = o5 = i
el jzl - S izl Pij

Remarks: A denumerable discrete version of Lemma 2 is:

. igj Pjj 108 Py S - i);j Py 10g Py »

g pi.jZl pij - qj -izl pij ;
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A special case of the Remark to Lemma 2 is:

-Ip

108 P3a 5~ 1 Py loghy, ,
.3 - "

. R
where hij is another bivariate discrete distribution with some proba-

bility support as pij .

Multivariate extensions of the above cases can be summarized by the

following two theorems. The first is an extension of Lemma 2, while the

second is that of Theorem 1.

Theorem 2.
Let (X,Y) be on m+n dimensional vector.
Then [f f(i,z)log f(z,z)dfdz < - ff f(§,x)log f(i)g(x)di(‘dz
m+n m+n
or - E log f(X,Y) < - E log £f(X)g(Y).

(With equality iff X, Y are independent.)
Theorem 3.

- ..] foepon fxpaxay < - ... | fegios FRAXy.
m+n

m+n

(With equality iff X, Y are independent.)

Appendix §
Theorem. For the bivariate FGM (Farlie-Gumbel-Morgenstern) family of
bivariate distributions given by

le,xz("l”‘z) - °x1("1)Gx2("z)[1 +a(l - le(xl)) £ B ze(xz))]

laj< L
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or equivalently
F (x{,x,) = Fy (x;)Fy (x,)[1+ a1l - F, (x;))(1 - Fy (x,))]
X)X, 1172 X, 1K, 2 ( X;t 1 X, 2
the G-orthant positive dependence is equivalent to the property

th(xJ) e h~(£)J .

Proof: For this family RG(xl,xz) 21 iff a 2 0.

Moreover for this family:

|

xz(s)j - hxj (x;) - ofl - st_j(XS_j)}ij (x;)/[1 + anl(xl)sz(xz)]

- [1- (8(6 (x) 7" - 11y (xp),
J J

19

where 8=1+[aF (x5 0170, j=1,2
o Bl

Since B has the same sign as a, (x,) - (x); has the same

sign a; thus hy (x;) > hy(x); <> a > 0 <> Rgx;,xp) 2 1. 0
J ~
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