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The 93rd Meeting of the Acoustical Society of America Invited Paper KK3,

2 P.M., June 9, 1977. Directional Patterns of Transducer Arrays.

Paul M. Kendig, Applied Research Laboratory, Pennsylvania State University,
University Park, Penna. 16802

In order to locate objects under water by means of sound waves, it is
desirable to transmit sound in - or receive sound from - one principal
direction. This is usually accomplished by employing an array of electro-
acoustic transducer elements. If the object to be located is itself a
source of sound, then only a receiving array (hydrophone) is required. If
the object is not a self radiator of sound, then the array must transmit a
sound pulse and determine the direction of the object from the direction
of the returned echo. For this (the active case) the same array usually
serves both functions, i.e., sound projector and receiving hydrophone. The
range of the object may also be determined with the active system by
measuring the travel time of the sound pulse to the target and back.

One characteristic of a reciprocal electroacoustic transducer (the
type most commonly used) is that the directional responses or patterns are
the same for both the transmitting and receiving modes. This is convenient
because in the following discussion, it is not necessafy to distinguish
between the two modes because every thing that follows applies to both.
The following discussion is given in greater detail in Reference 1.

A typical arrangement of transducer elements in a planar array is
shown in Figure 1 where the small circles represent the locations of the
centers of the radiating faces of the transducing elements. These are
usually square or rectangular surfaces. The spacing of columns and rows
are uniformly spaced but not necessarily equal to each other.

The directional pattern in a plane containing the x-~axis is identical

v
to that of a line parallel to the x-axis and with strengths equal to the

sums of those in the respective columns. We can then determine this
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specific pattern by reducing the problem to that of determining the pattern
of a line of equally spaced sources. Of course, the same applies to a
pattern in a plane that contains the y-axis.

A slight modification to the pattern obtained by treating the elements
as point sources is due to the directional characteristics of the radiating
faces of the elements themselves which are all assumed to be identical.

The actual pattern is then the product of the pattern of one of the identical
eleqenté and the pattern of the line array of point sources (first product
theorem).

For the same reasons that the pattern of the planar array in a plane
parallel to either lines or rows reduce to that of a row of sources, the
pattern of a rectangular source in a plane parallel to a side reduces to
that of a line. Consequently, we shall first determine the pattern of a
line source. Parenthetically, one should be reminded that directional
patterns are simply diffraction patterns and as such are similar to much
that we have learned in optics.

Figure 2 helps describe the terms used to determine the pattern of a
line source in a plane that contains the line. It shows a plane wave
approaching the line at an angle of 6 with the normal to the line. The
signal received at the incremental portion of the line dx 1leads the
signal (reference phase) received at the origin by an angle { which is
shown to be

Y = Z%E sin 6 = kx sin 6

v

where A 1s the wavelength of the sound wave and x is the distance of

the element mcasured from the origin.
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The pattern response Po is given by
L1z i k x sin ©
P = Q e dx
-2/2
where Q 1s the source strength per unit length and £ 1is the length of

the line. Integrating, we get

i k&/2 sin 6 -i k&/2 sin 6
e - e

i k sin 6

B, = Q

which, from an identity expressing the sine of an angle in terms of exponentials,

becomes
sin %; sin 6
i e
-E-sin 6
1
Let u' = L sin 6 . Then P_ = 9&—§1¥—5— (1)
2 o u

which is just the same as the diffraction of a slit in optics.
An important relationship for a plane rectangular radiating surface is
obtained in the case where the source strength F(x,y) = f(x) g(y) . In

this case

o~
n

i k(x cos o + y cos B)
IIF(x,y) e dx dy

i k x cos a i kycosB
[If(x) e dx}[TB(y) e dy1 (2)

v
where o, B, Vv are angles between direction of observation and the

x, vy and 2z axes, respectively.
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This very important theorem states that if the source strength for a
plane rectangular surface may be expressed as the product of a function
f(x) and a function f(y) , then the directional pattern is the product
of two patterns in planes containing the normal to the surface and parallel
to the x and y axes, respectively. The full significance of this theorem
will appear later when we discuss rectangular arrays of elements.

Since we have already shown that patterns in the principal planes of
a rectahgular array of point sources can each be given by a line of point
sources, we shall consider an equally spaced, in-phase line of sources.

The symbols that shall be used for such arrays are shown in Figure 3. The
incident sound wave meets the line array at the angle 6 as shown. All
phases shall be referenced to that of the signal received by an element at
the origin whether one is actually there or not. Note the right-left
symmetry of the signal amplitudes.

Figure 4 is a representation of the signals recieved by each of the
elements in a six element line array where u = %S sin © . The vectors
above the axis represent the signals received from the elements on the
right and those below the axis, the signals from the left.

It is easily seen from Figure 4 that the sum pattern of the six element

line source is given by,

= + -
Po6 Al cos u A2 cos 3u A3 cos 5Su (3)
and that over the major lobe the phase of the entire line array is the
same as'that of the reference signal. As O and consequently u increases,
P06 will at one point become zero (a null in the pattern) and then the

phase suddenly reverses to 180°. Further increases of © and u produce

more nulls and phase reversals.
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Figure 4 also shows that the difference pattern is given by,

= i + -
P6,6 A1 sin u + A2 sin 3u A3 sin 5u
In this case, we note that for small angles of incidence on the right the
phase leads by 90° and on the left lags by 90°. Whereas the sum pattern
is a maximum for 6 = 0 , the difference pattern is a null.

Corresponding pattern functions for odd number of elements are:

= + .
P0n A0 + A1 cos 2u A2 cos 4u +
= + En G neE
PGn A1 sin 2u A2 sin 4u
The characteristics of P and P are illustrated in Figure 5. The

0,6 §,6

combined use of these patterns give the necessary information for locating
underwater targets. Note that over a range of incident, angles near 0°,

the difference between the magnitudes of the sum and difference patterns
increases nearly linearly with © . If the difference pattern leads the
sum pattern by 90°, the target is on the right and if it lags by 90°, the
target is on the left. In practice, the difference pattern is usually phase
shifted 90° so that it is in phase for targets on one side and out of phase
for the other.

It must be emphasized that those phase relationships hold only over a
relatively small range of incident angles on both sides of the normal. In
the mingr lobe regions we noted earlier that phase reversals occur as 0 is
varied and where they occur are not the same for both patterns. Consequently,

minor lobes, unless drastically reduced, will give false information. For
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these reasons and others, methods for reducing minor lobes have been developed
which are known as tapering or shading the array. It consists of a systematic
variation of the signal amplitude coefficients of the elements. The process
will be illustrated by an application to the six element array illustrated
above.

Note that the pattern function was given by

P06 = Al cos u + A2 cos 3u + A3 cos 5Su (3)
which is a Fourier series. This suggested the use of a Fourier transform
relating the source strengths of the array to the pattern

function. In one application, an amplitude distribution was derived to
provide the Gaussian pattern. In this case, the Fourier transform is itself
a Gaussian function.

However, the most common method of tapering is that developed by
Dolph (Reference 2) and generally known as the Dolph-Chebyshev method because
it sets the pattern function above equal to an appropriate Chebyshev poly-
nomial.

In Equation (3) above, we let x = cos u and then express the cosine

functions in powers of x using Chebyshev polynomials. Thus, Equation (3)

becomes
P = Ax+ A (lox3 - 3x) + A (l6xS - 20x3 + 5x)
ag,6 1 2 3
= 16A,%50 + (4A, - 20A)x> + (A, - 3A, + SA)x ()
i3 3 2 37" 1 2 ¥
v
The use of Chebyshev polynomials above is somewhat trivial compared to the

really significant use which is to set the array polynomial above equal to
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_ 55 33
Ts(xox) = 16xo x - 20xo x + 5xox (5)
where x> 1 and is given by x = cosh{% coek x] (6)

jor
where r = ﬁ%ﬁg; lobe ratio.

The amplitudes Al’ A2 and A3 are now easily calculated by equating
coefﬁicients of like powers of Equations (4) and (5).

Figure 6 illustrates the properties of the fifth degree Chebyshev
polynomial which applies to the six element array. Over the range of
-1 f_xox < 1 , the Chebyshev polynomial function ranges between +1 because
in this range the function is limited to the cosine function. However, by
extending the independent variable X X beyond +1, the Chebyshev polynomials
can take values to + infinity. Thus, we can make X X and consequently
Ts(xox) as large as possible.Ts(xox)willthencorrespond'to the peak or
maximum of our response. On the other hand, the minor lobes will all be
the same and equal to unity.

This design method is optimum in the sense that, for a given minor lobe
reduction, one obtains the narrowest possible beamwidths for the equally
spaced, in~phase elements at a given frequency. We design so that at
6 = 90°, the Chebyshev polynomial is of unity magnitude just beyond the
last null.

There are relatively narrow limits on the range of element spacing.

If the spacing is too large, e.g., greater than X , a second major lobe
would appear before 6 = 90°. Also, the method does not work if the spacing

is much less than A/2 . For smaller spacings, a slightly different method
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was introduced by Riblet (Reference 3) and extended by Pritchard (Reference 4).
In this method which can be applied to an odd number of elements, a Chebyshev
polynomial in terms of an angle ¢ = 2%2 sin 6 1s used instead of u = %g sin 6 .
This analysis leads to narrower patterns than those given by the Dolph-Chebyshev
technique and are called super-directive arrays. However, as the spacing
becomes smaller, some of the excitation amplitudes become negative, that is,
out of phase with the others. For very small spacing, the sum is considerably
less than the sum of absolute values. Smaller tolerances on the amplitudes
are then generally required and over-all efficiency is decreased.

Some characteristics of the Dolph-Chebyshev patterns can be determined
directly from the values of X d and A . Of course, the latter depends
on the frequency. These characteristics are (1) maximum allowable spacing,
and (2) beam width at any specified levels below the peak. These results
are shown in Figure 7. Our experience with transducer elements cemented to
a rubber pad and mounted in a housing showed that since there is a baffle
effect that significantly reduces levels at incident angles beyond 70°, it
was possible to design for the last minor lobe to occur around 70°. The
dashed line indicates the extension of this tolerance.

We shall now illustrate the caiculations of the excitation amplitudes
for our six element array. If we design for a 30 dB minor lobe reduction,

20 log r will be set equal to 30, which gives r = 31.6 . From Equation (6)
we get a value of 1.35 for x . From Equations (4) and (5) we obtain the

following values for AN ¢

@1 = 15.60 A2 = 10.70 A3 = 4.66
normalized A] = 1.000 A2 = 0.685 A, = 0.298
D
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Figure 8 illustrates how these values are used to extend the line array
design to that for a two dimensional array using Equation (2). Due to the
symmetry, only one quadrant of the array is necessary. Figure 9 gives the
normalized values for these elements. Frequently the outside corner element

is deleted so as to confirm to a circular housing. The pattern deterioration

is generally small but in any case its effect 1s easily calculated. The
numbers in parentheses give one possible set of turns on magnetostrictive
stacks Qr on the transformer secondaries used with electric coupled transducer
elements.

The coefficients that provide an optimum sum pattern are unsuitable for
an optimum difference pattern. In fact, they degrade the difference pattern.
Consequently, the difference pattern must be independently optimized.

With a slight modification, the Dolph technique may be employed to
optimize a difference pattern, i.e., where the two halves are in phase

opposition. The difference pattern function,

P6,6 = A1 sin u + A2 sin 3u + A3 sin 5u

may be expanded in terms of sin u as follows:

PG L Al sin u + A2(3 sin u - 4 sin3 u) + A3(531n u - 20 sin3 u+ 16 sin5 u)

Now, if we divide by sin u , we get,

PG 6 2 2 4
gI:_E - Al + A2(3 - 4 sin” u) + A3(5 - 20 sin” u + 16 sin u)

2 2 -
If we substitute 1 - cos™ u for sin'u and x for cos u , the expression
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above becomes,

%

P,
§,6
L -
(A1 A 3%

sin u

. 2
2 + A3) + (4A2 - 12A3) X + 16A

We now equate this relationship to a 4th degree Chebyshev polynomial and
proceed as before with the sum pattern. Please recall, however, that we
used a 5th degree polynomial for the sum pattern. Also, note that since
PG,G = sin u T4(xox) , it 1s zero at 06 = 0 and then the absolute value
increases rapidly for moderately small values of 6 on both sides of zero.

The use of Equation (2) to extend the line array to a plane is shown
in Figure 10. Here, the B factors are just the excitation coefficients
for an optimum sum pattern. In fact, if all elements were connected in
phase, we would obtain an optimum vertical sum pattern, but when the right
and left halves are connected in phase opposition, we obtain the optimum
horizontal difference pattern.

Figure 11 gives relative source amplitudes for the optimum difference
pattern. The distinct difference between these coefficients and those for
the sum pattern is quite evident by noting that the elements in the second
column now have the greatest excitation instead of the first column as in
the case of the sum pattern.

No direct method of finding X, was available for the difference pattern
but minor lobe reductions could be calculated for assumed values of X,
(see Reference 1) and plotted as shown in Figure 12. Thus, these plots
permit us to select the appropriate x0 for a given minor lobe reduction.

Fﬂgure 5 presents a linear plot of the optimum sum and difference
patterns. When this method for the optimum difference pattern was developed,
it appeared that it would apply only to an even number of array columns.

However, Geoffrey Wilson (Reference 5) has shown that it can be applicd to
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an odd number of columns, in which case the central column simply is not
used to form the difference pattern.

Figufe 13 is of academic interest. It represents the locus of the
resultant signal from 1/2 of a transducer designed for (a) an optimum sum
pattern and (b) an optimum difference pattern. It is the resultant of the
vectors shown in Figure 4. The sum pattern response is the projection on
the x-axis and that of the difference pattern is the projection on the y-axis.
It clea?ly shows why the minor lobes are so small.

Tilted beams and end-fire arrays are obtained by introducing delay lines
or phase shift networks into the circuits of each element or maybe column
or row of the array so that for a given specified direction, the outputs
of signals (including delays or phase shifts) will be in phase. The

tapering procedures are generally similar to those described earlier.

Most of the development for end-fire arrays (beam tilted to 90°)

resulted in superdirective arrays with some characteristics similar to

those of Riblet (Reference 3) and Pritchard (Reference 4). [
A somewhat different approach to the production of tilted sum and

difference patterns was developed by W. J. Hughes and W. Thompson, Jr.

(Reference 6). I shall demonstrate its use by an application to a tilted

sum pattern which may be written,

P = A, cos(u - ¢) + A

& 1 cos 3(u - ¢) + A

cos 5(u - ¢) + . .

2 3

where ¢ 1is the required phase delay for elements on one side of center
and phase advance for elements on the other side. Using the trigonometric
identity for the cosine of the difference of two angles, the equation above

becomes,




July 7, 1977
PMK:cdn

=12~

P = [A1 cos $ cos u+ A, cos 3¢ cos 3u + A, cos 5¢ cos S5u+ . . .]

ag 3

2

+ [A sin ¢ sin u + A_ sin 3¢ sin 3u + A_ sin 5¢ sin 5u + . . .] .

2 3

Now for a given tilt angle ¢ , the sines and cosines involving ¢ are

constants. Therefore, the pattern function becomes

L ' ' ' +
Po [Al cos u + A2 cos 3u + A3 cos 5u+ . . .]

+ [AI sin u + Ag sin 3u + Ag sin Su 4+ . . .l
where A' = A cos ¢ , and A" = A sin ¢ , etc.
n n n n
We note that Po is now the sum of a sum pattern and a difference
pattern. Since the latter is in phase quadrature with the former, it must
be shifted 90° before combining the two. Although the method is applicable

to any values of Am , tapering is easily achieved. The unprimed An

A A B

coefficients are determined as before by using Chebyshev polynomials. The

Hughes - Thompson technique is also applicable to tilted, difference patterns

and end fire arrays. It is interesting to note that all pattern tapering
techniques discussed so far have used Chebyshev polynomials.

An array tapering for an entirély different purpose was developed by
W. J. Trott (Reference 7). Its purpose was to provide plane waves in a
region of the near field of a relatively large array in crder to calibrate

transducers in the near field.

It is well known that the intensity along the axis of a circular
radiating piston whose diameter is large compared to the wavelength has
numeroyg maxima and minima (actually nulls) in the near field. It is also
known that the total number of side lobes appcaring in the far field is

just twice the number of maxima which occur directly in front of the piston.
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The above remarks suggest that if minor lobes are eliminated or greatly reduced,
this axial variation should likewise be eliminated or reduced. Indeed this
is the case. Applying these principles, Trott adjusted the excitation
amplitudes of a large array of elements in order to provide an essentially
plane wave region directly in front of the array. In his example, a 100 cm
diameter array provided a cylindrical space in front of the array about 50 cm
in diameter and about the same in length wherein there were plane waves.

Alfhough it was not expressly stated, all the previous discussion was
based on linear acoustic waves. When very intense, so-called finite sound
waves are projected, non-linear or distorted waves are produced with a whole
host of interesting properties. For example, if two pure tones are projected
into the same medium, harmonics of the waves are produced, as well as sum
and difference frequency waves. The highly directive character of these
difference frequency beams was first recognized by Peter J. Westervelt
(Reference 8).

In the following discussion we are primarily interested in the difference
frequency that develops in the projected acoustic field. Usually the
frequencies of the high intensity primary waves are close together so that
the difference frequency is much smaller, say one-tenth or less.

When the near field primary wave absorption is quite small, the inter-
action zone will extend beyond the mean Rayleigh distance A The inter-
action zone is that region in front of the transducer face where wave

distortion occurs and acoustical energy is pumped from the primary waves

into the distortion waves, including the difference frequency wave. Since

this lagter is of much lower frequency than any of the other waves and

consequently attenuated much less than the others, it usually will be
transmitted to greater ranges than the others even though its equivalenc

field pressure is much below that of the primary waves. The so-called
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pumping occurs until the spreading loss of the primary waves reduce the
intensity to such a level that distortion no longer exists. Since the
virtual sources that produce the difference frequencies are essentially
limited to the main beams of the primary waves, the low frequency difference
pattern will be essentially the same as those of the much higher frequency primary
patterns or even a little sharper. In fact, its far field directivity
response is essentially equal to the product of the directivity responses
of the ﬁrimary patterns. One very important consequence of this is the
almost total absence of minor lobes in the difference frequency pattern.

In order to achieve the same directivity with a conventional source
operating at the difference frequency, the source diameter would have to
exceed the diameter of the parametric array by the ratio of the mean

primary frequency to the difference frequency.

The bandwidth of the difference frequencies may be very broad because

it is really determined by the Q of the transducer that projects the
primary waves.

Somewhat similarly, difference frequency waves can be produced which
have a constant beam width over very wide frequency bands (e.g., greater
than two octaves). Of course, sum, difference and tilted beams can be
produced.

When the absorption coefficient of the primary waves is large, the
attenuation may be so great that all of the interaction may take place

within the near-field of the transducer, i.e., at ranges less than r,

In this case, the interaction is essentially confined to a cylinder whose
diametar is that of the transducer radiating face and of length roughly

determined by the absorption coefficient. This interaction zone is really

an extension of the source itself. Indeed, the beam~width of this virtual
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end-fire array is given by the same relationship as that for an end-fire

array and is always less than that for the 'spreading-loss-limited" case.
Parametric receiving arrays are formed in a fluid by projecting a

finite-amplitude "pump wave'" into the medium to serve as a 'carrier" for

the weak incoming signal whose frequency equals the difference frequency

of the transmitted waves.
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Figure 5 - Sum and difference responscs
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Figure 10 - Use of second-product thcorem to determine source amplitudes
for the difference pattern of a plane array.
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The 93rd Meeting of the Acoustical Society of America Invited Paper KK3,

2 P.M., June 9, 1977. Directional Patterns of Transducer Arrays.

Paul M. Kendig, Applied Research Laboratory, Pennsylvania State University,
University Park, Penna. 16802

In order to locate objects under water by means of sound waves, it is
desirable to transmit sound in - or receive sound from - one principal
direction. This is usually accomplished by employing an array of electro-
acoustic transducer elements. If the object to be located is itself a
source of sound, then only a receiving array (hydrophone) is required. If
the object is not a self radiator of sound, then the array must transmit a
sound pulse and determine the direction of the object from the direction
of the returned echo. For this (the active case) the same array usually
serves both functions, i.e., sound projector and receiving hydrophone. The
range of the object may also be determined with the active system by
measuring the travel time of the sound pulse to the target and back.

One characteristic of a reciprocal electroacoustic transducer (the
type most commonly used) is that the directional responses or patterns are
the same for both the transmitting and receiving modes. This is convenient
because in the following discussion, it is not necessafy to distinguish
between the two modes because every thing that follows applies to both.
The following discussion is given in greater detail in Reference 1.

A typical arrangement of transducer elements in a planar array is
shown in Figure 1 where the small circles represent the locations of the
centers of the radiating faces of the transducing elements. These are
usually square or rectangular surfaces. The spacing of columns and rows
are uniformly spaced but not necessarily equal to each other.

The directional pattern in a plane containing the x-axis is identical
to that'of a line parallel to the x-axis and with strengths equal to the

sums of those in the respective columns. We can then determine this

_
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specific pattern by reducing the problem to that of determining the pattern
of a line of equally spaced sources. Of course, the same applies to a
pattern in a plane that contains the y-axis.

A slight modification to the pattern obtained by treating the elements
as point sources is due to the directional characteristics of the radiating
faces of the elements themselves which are all assumed to be identical.

The actual pattern is then the product of the pattern of one of the identical
eleQenté and the pattern of the line array of point sources (first product
theoremn).

For the same reasons that the pattern of the planar array in a plane
parallel to either lines or rows reduce to that of a row of sources, the
pattern of a rectangular source in a plane parallel to a side reduces to
that of a line. Consequently, we shall first determine the pattern of a
line source. Parenthetically, one should be reminded that directional
patterns are simply diffraction patterns and as such are similar to much T
that we have learned in optics.

Figure 2 helps describe the terms used to determine the pattern of a
line source in a plane that contains the line. It shows a plane wave
approaching the line at an angle of 6 with the normal to the line. The

signal received at the incremental portion of the line dx 1leads the

signal (reference phase) received at the origin by an angle { which is

shown to be

p = 2%5 sin 6 = kx sin 6

v

where X 1s the wavelength of the sound wave and x 1is the distance of

the element mecasured from the origin.
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The pattern response P0 is given by
ki2 i k x sin 6
P = Q e dx
-2/2
where Q 1s the source strength per unit length and & is the length of

the line. Integrating, we get

i k2/2 sin 6 ~i k&/2 sin 6
e - e

i k sin 6

which, from an identity expressing the sine of an angle in terms of exponentials,

becomes
sin %% sin 6
Po S kS
— sin 6
1
Bot uf =L agn 6 . Thew P = S BEE (1)
2 (o] u

which is just the same as the diffraction of a slit in optics.
An important relationship for a plane rectangular radiating surface is
obtained in the case where the source strength F(x,y) = f(x) g(y) . In

this case

o~}
]

1 k(x cos o + y cos B)
JJF(x,y) e dx dy

i k x cos a ikycosB
[J f(x) e dx}[}g(y) e dy1 (2)

v
where a, B, VvV are angles between direction of observation and the

X, ¥y and 2z axes, respectively.
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This very important theorem states that if the sougée strength for a
plane rectangular surface may be expressed as the product of a function
f(x) and a function f(y) , then the directional pattern is the product
of two patterns in planes containing the normal to the surface and parallel
to the x and y axes, respectively. The full significance of this theorem
will appear later when we discuss rectangular arrays of elements.

Since we have already shown that patterns in the principal planes of
a rectahgular array of point sources can each be given by a line of point
sources, we shall consider an equally spaced, in-phase line of sources.

The symbols that shall be used for such arrays are shown in Figure 3. The
incident sound wave meets the line array at the angle 6 as shown. All
phases shall be referenced to that of the signal received by an element at
the origin whether one is actually there or not. Note the right-left
symmetry of the signal amplitudes.

Figure 4 is a representation of the signals recieved by each of the
elements in a six element line array where u = %g sin 6 . The vectors
above the axis represent the signals received from the elements on the
right and those below the axis, the signals from the left.

It is easily seen from Figure &4 that the sum pattern of the six element

line source is given by,

= + -
P06 Al cos u A2 cos 3u A3 cos 5u (3)
and that over the major lobe the phase of the entire line array is the
same as.that of the reference signal. As 0 and consequently u increases,
P06 will at one point become zero (a null in the pattern) and then the

hase suddenly reverses to 180°. Further increases of © and u roduce
y p

more nulls and phase reversals.
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Figure 4 also shows that the difference pattern is given by,

= + .
P6,6 A1 sin u + A2 sin 3u A3 sin 5u
In this case, we note that for small angles of incidence on the right the
phase leads by 90° and on the left lags by 90°. Whereas the sum pattern
is a maximum for 6 = 0 , the difference pattern is a null.

Corresponding pattern functions for odd number of elements are:

POn = A0 + A1 cos 2u + A2 cos 4u + .
= + R
Pdn A1 sin 2u A2 sin 4u
The characteristics of P0 6 ana PS 6 are illustrated in Figure 5. The
b} ’

combined use of these patterns give the necessary information for locating
underwater targets. Note that over a range of incident, angles near 0°,

the difference between the magnitudes of the sum and difference patterns
increases nearly linearly with © . If the difference pattern leads the
sum pattern by 90°, the target is on the right and if it lags by 90°, the
target is on the left. In practice, the difference pattern is usually phase
shifted 90° so that it is in phase for targets on one side and out of phase
for the other.

It must be emphasized that those phase relationships hold only over a
relatively small range of incident angles on both sides of the normal. In
the mingr lobe regions we noted earlier that phase reversals occur as 68 is
varied and where they occur are not the same for both patterns. Consequently,

minor lobes, unless drastically reduced, will give false information. For
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these reasons and others, methods for reducing minor lobes have been developed
which are known as tapering or shading the array. It consists of a systematic
variation of the signal amplitude coefficients of the elements. The process
will be illustrated by an application to the six element array illustrated
above.

Note that the pattern function was given by

P06 = Al cos u + A2 cos 3u + A3 cos 5u (3)
which is a Fourier series. This suggested the use of a Fourier transform
relating the source strengths of the array to the pattern

function. In one application, an amplitude distribution was derived to
provide the Gaussian pattern. In this case, the Fourier transform is itself
a Gaussian function.

However, the most common method of tapering is that developed by
Dolph (Reference 2) and generally known as the Dolph-Chebyshev method because
it sets the pattern function above equal to an appropriate Chebyshev poly-
nomial.

In Equation (3) above, we let x = cos u and then express the cosine

functions in powers of x wusing Chebyshev polynomials. Thus, Equation (3)

becomes
P . = Ax+A (4x> - 3x) + A (16X - 20x> + 5x)
0,6 1 2 3
= 168.%° + (4A, - 20A.)x> + (A, - 3h, + 54.)% %)
= 3 2 < 1 2 - ol
v
The use of Chebyshev polynomials above is somewhat trivial compared to the

really significant use which is to set the array polynomial above equal to
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the Chebyshev polynomial
= 55 3 3
Ts(xox) = 16xo x - 20xo x + 5x°x (5)
1 -1
where X > 1 and is given by X = cosh{;'cosh r} (6)

ajor
where r = 2219 1.be ratio.
minor

The amplitudes Al’ A2 and A3 are now easily calculated by equating
coeﬁficients of like powers of Equations (4) and (5).

Figure 6 illustrates the properties of the fifth degree Chebyshev
polynomial which applies to the six element array. Over the range of
-1 f_xox <1, the Chebyshev polynomial function ranges between 11 because
in this range the function is limited to the cosine function. However, by
extending the independent variable X X beyond +1, the Chebyshev polynomials
can take values to + infinity. Thus, we can make X X and consequently
Ts(xox) as large as possible.Ts(xox)willthencorrespond‘to the peak or
maximum of our response. On,the other hand, the minor lobes will all be
the same and equal to unity.

This design method is optimum in the sense that, for a given minor lobe
reduction, one obtains the narrowest possible beamwidths for the equally
spaced, in-phase elements at a given frequency. We design so that at
6 = 90°, the Chebyshev polynomial is of unity magnitude just beyond the
last null.

There are relatively narrow limits on the range of element spacing.

If the spacing is too large, e.g., greater than X , a second major lobe
would appear before 6 = 90°. Also, the method does not work if the spacing

is much less than A/2 . For smaller spacings, a slightly different method

T A T
e A P

ot
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was introduced by Riblet (Reference 3) and extended by Pritchard (Reference 4).
In this method which can be applied to an odd number of elements, a Chebyshev
polynomial in terms of an angle ¢ = Z§Q sin 6 1is used instead of u = %g-sin S
This analysis leads to narrower patterns than those given by the Dolph-Chebyshev
technique and are called super-directive arrays. However, as the spacing
becomes smaller, some of the excitation amplitudes become negative, that is,

out of phase with the others. For very small spacing, the sum is considerably
less than the sum of absolute values. Smaller tolerances on the amplitudes

are then generally required and over-all efficiency is decreased.

Some characteristics of the Dolph-Chebyshev patterns can be determined
directly from the values of xo ,d and X . Of course, the latter depends
on the frequency. These characteristics are (1) maximum allowable spacing,
and (2) beam width at any specified levels below the peak. These results
are shown in Figure 7. Our experience with transducer elem~nts cemented to
a rubber pad and mounted in a housing showed that since there is a baffle
effect that significantly reduces levels at incident angles beyond 70°, it
was possible to design for the last minor lobe to occur around 70°. The
dashed 1ine indicates the extension of this tolerance.

We shall now illustrate the caiculations of the excitation amplitudes
for our six element array. If we design for a 30 dB minor lobe reduction,
20 log r will be set equal to 30, which gives r = 31.6 . From Equation (6)
we get a value of 1.35 for X, From Equations (4) and (5) we obtain the

following values for AN .

& 15.60 A, 10.70 A, = 4.66

I

L}
0

0.685 A3 = 0.298

i




July 7, 1977
PMK :cdn

Figure 8 illustrates how these values are used to extend the line array
design to that for a two dimensional array using Equation (2). Due to the 3
symmetry, only one quadrant of the array is necessary. Figure 9 gives the
normalized values for these elements. Frequently the outside corner element
is deleted so as to confirm to a circular housing. The pattern deterioration
is generally small but in any case its effect is easily calculated. The 3
numbers in parentheses give one possible set of turns on magnetostrictive
stacks br on the transformer secondaries used with electric coupled transducer
elements.
The coefficients that provide an optimum sum pattern are unsuitable for
an optimum difference pattern. In fact, they degrade the difference pattern.
Consequently, the difference pattern must be independently optimized.

With a slight modification, the Dolph technique may be employed to

optimize a difference pattern, i.e., where the two halves are in phase

opposition. The difference pattern function,

P6,6 = Al sin u + A2 sin 3u + A3 sin 5u

may be expanded in terms of sin u as follows:

P = A sin u+ A_ (3 sin u - 4 sin3 u) + A_Gsin u - 20 sin3 u + 16 sin5 u,
6,6 1 2 3

Now, if we divide by sin u , we get,

T

PG 6 2 2 4
-g;#—; = Al + A2(3 - 4 sin” u) + A3(5 - 20 sin” u + 16 sin u) .

2 2 =
If we substitute 1 - cos”™ u for sin'u and x for cos u , the expression
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above becomes,

P

§,6

—_—2 = =
sin u (Al A

4

¢ 2
+ A3) + (4A2 - 12A3) x + 16A3x

2
We now equate this relationship to a 4th degree Chebyshev polynomial and
proceed as before with the sum pattern. Please recall, however, that we
used a 5th degree polynomial for the sum pattern. Also, note that since
PG,G = sin u Té(xox) , it 1s zero at 6 = 0 and then the absolute value
increases rapidly for moderately small values of 6 on both sides of zero.
The use of Equation (2) to extend the line array to a plane is shown
in Figure 10. Here, the B factors are just the excitation coefficients
for an optimum sum pattern. In fact, if all elements were connected in
phase, we would obtain an optimum vertical sum pattern, but when the right
and left halves are connected in phase opposition, we obtain the optimum
horizontal difference pattern.
Figure 11 gives relative source amplitudes for the optimum difference
pattern. The distinct difference between these coefficients and those for
the sum pattern is quite evident by noting that the elements in the second
column now have the greatest excitation instead of the first column as in
the case of the sum pattern.
No direct method of finding X ~was available for the difference pattern
but minor lobe reductions could be calculated for assumed values of X
(see Reference 1) and plotted as shown in Figure 12. Thus, these plots
permit us to select the appropriate X for a given minor lobe reduction.
Fﬂgure 5 presents a linear plot of the optimum sum and difference
patterns. When this method for the optimum difference pattern was developed,
it appeared that it would apply only to an even number of array columns.

However, Geoffrey Wilson (Reference 5) has shown that it can be applicd to

——————
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an odd number of columns, in which case the central column simply is not
used to form the difference pattern.

Figufe 13 is of academic interest. It represents the locus of the
resultant signal from 1/2 of a transducer designed for (a) an optimum sum
pattern and (b) an optimum difference pattern. It is the resultant of the
vectors shown in %igure 4. The sum pattern response is the projection on
the x-axis and that of the difference pattern is the projection on the y-axis.
It clea?ly shows why the minor lobes are so small.

Tilted beams and end-fire arrays are obtained by introducing delay lines
or phase shift networks into the circuits of each element or maybe column
or row of the array so that for a given specified direction, the outputs
of signals (including delays or phase shifts) will be in phase. The
tapering procedures are generally similar to those described earlier.

Most of the development for end-fire arrays (beam tilted to 90°)
resulted in superdirective arrays with some characteristics similar to
those of Riblet (Reference 3) and Pritchard (Reference 4).

A somewhat different approach to the production of tilted sum and
difference patterns was developed by W. J. Hughes and W. Thompson, Jr.

(Reference 6). I shall demonstrate its use by an application to a tilted

sum pattern which may be written,

PO = A1 cos(u - ¢) + A2 cos 3(u - ¢) + A3 cos 5(u - ¢) + .

where ¢ 1s the required phase delay for elements on one side of center
and phase advance for elements on the other side. Using the trigonometric

identity for the cosine of the difference of two angles, the equation above

e ——

becomes,
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cos 3¢ cos 3u + A_ cos 5¢ cos Su+ . . .]

2

= +
P [Al cos ¢ cos u + A 3

g

+ [A sin ¢ sin u + A, sin 3¢ sin 3u + A_ sin 5¢ sin Su+ . . .] .

2 3

Now for a given tilt angle ¢ , the sines and cosines involving ¢ are

constants. Therefore, the pattern function becomes

PU = [Ai cos u + Aé cos 3u + Aé cos Su+ . . .]
o+ [AI sin u + A; sin 3u + A; sin S5u+ . . .]

where A; = An cos ¢ , and A; = An sin ¢ , etc.

We note that PO is now the sum of a sum pattern and a difference
pattern. Since the latter is in phase quadrature with the former, it must
be shifted 90° before combining the two. Although the method is applicable
to any values of Am , tapering is easily achieved. The unprimed An
coefficients are determined as before by using Chebyshev polynomials. The
Hughes - Thompson technique is also applicable to tilted, difference patterns
and end fire arrays. It is interesting to note that all pattern tapering
techniques discussed so far have used Chebyshev polynomials.

An array tapering for an entirély different purpose was developed by
W. J. Trott (Reference 7). Its purpose was to provide plane waves in a
region of the near field of a relatively large array in order to calibrate
transducers in the near field.

It 1s well known that the intensity along the axis of a circular
radiating piston whose diameter is large compared to the wavelength has
numeroyg maxima and minima (actually nulls) in the near field. It is also

known that the total number of side lobes appearing in the far field is

just twice the number of maxima which occur directly in front of the piston.

e R

St far ol it
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The above remarks suggest that if minor lobes are eliminated or greatly reduced,
this axial variation should likewise be eliminated or reduced. Indeed this

is the case. Applying these principles, Trott adjusted the excitation

amplitudes of a large array of elements in order to provide an essentially
plane wave region directly in front of the array. In his example, a 100 cm
diameter array provided a cylindrical space in front of the array about 50 cm
in diameter and about the same in length wherein there were plane waves.

Alfhough it was not expressly stated, all the previous discussion was
based on linear acoustic waves. When very intense, so-called finite sound
waves are projected, non-linear or distorted waves are produced with a whole
host of interesting properties. For example, if two pure tones are projected
into the same medium, harmonics of the waves are produced, as well as sum
and difference frequency waves. The highly directive character of these
difference frequency beams was first recognized by Peter J. Westervelt
(Reference 8).

In the following discussion we are primarily interested in the difference
frequency that develops in the projected acoustic field. Usually the
frequencies of the high intensity primary waves are close together so that
the difference frequency is much smaller, say one-tenth or less.

When the near field primary wave absorption is quite small, the inter-
action zone will extend beyond the mean Rayleigh distance r, - The inter-
action zone is that region in front of the transducer face where wave
distortion occurs and acoustical energy is pumped from the primary waves
into the distortion waves, including the difference frequency wave. Since
this lagter is of much lower frequency than any of the other waves and
consequently attenuated much less than the others, it usually will be
transmitted to greater ranges than the others even though its equivalenc

field pressure is much below that of the primary waves. The so-called
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pumping occurs until the spreading loss of the primary waves reduce the

intensity to such a level that distortion no longer exists. Since the

virtual sources that produce the difference frequencies are essentially

limited to the main beams of the primary waves, the low frequency difference
pattern will be essentially the same as those of the much higher frequency primary
patterns or even a little sharper. 1In fact, its far field directivity

response is essentially equal to the product of the directivity responses

of the primary patterns. One very important consequence of this is the

almost total absence of minor lobes in the difference frequency pattern.
In order to achieve the same directivity with a conventional source

operating at the difference frequency, the source diameter would have to

exceed the diameter of the parametric array by the ratio of the mean

primary frequency to the difference frequency.

The bandwidth of the difference frequencies may be very broad because

it is really determined by the Q of the transducer that projects the

primary waves.

Somewhat similarly, difference frequency waves can be produced which
have a constant beam width over very wide frequency bands (e.g., greater
than two octaves). Of course, sum, difference and tilted beams can be
produced.

When the absorption coefficient of the primary waves is large, the
attenuation may be so great that all of the interaction may take place
within the near-field of the transducer, i.e., at ranges less than ro
In this case, the interaction is essentially confined to a cylinder whose
diametaxr is that of the transducer radiating face and of length roughly
determined by the absorption coefficient. This interaction zone is really

an extension of the source itself. Indeed, the beam-width of this virtual

: mm”._d- —
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end-fire array is given by the same relationship as that for an end-fire
array and is always less than that for the "spreading-loss-limited" case.
Parametric receiving arrays are formed in a fluid by projecting a
finite-amplitude "pump wave'" into the medium to serve as a 'carrier" for
the weak incoming signal whose frequency equals the difference frequency

of the transmitted waves.




July 7,1977
-16- PMK:cdn

REFERENCES

1. V. M. Albers, Underwater Acoustics Handbook ITI, The Pennsylvania State
University Press, University Park, Penna., 1965.

2. C. L. Dolph, Inst. Radio Engrs. 34, 335-348, 1946.

3. H. J. Riblet, Proc. Inst. Radio Engrs. 35, 489-492, 1947.
4. R. L. Pritchard, J. Acoust. Soc. Am. 25, 879-891, 1953.
5. G. L. Wilson, J. Acoust. Soc. Am. 34, 915, 1966.

6. W. J. Hughes and W. Thompson, Jr., J. Acoust. Soc. Am. 59, 1040-1045,

7. W. J. Trott, J. Acoust. Soc. Am. 36, 1557-1568, 1964.

8. P. J. Westervelt, J. Acoust. Soc. Am. 32, 934, 1960.




July 7, 1977
cdn

PMK

*SuUWNTOD puUB SMOI UT
Juowolueiae ay3 Surmoys sooanos jurtod jo Leaae dueld- T 2an3Tg

&

=17~




w,“.n Z 2an8T1jg
HIONITIAYM X AT T
ISYHd *h Pt IS Yu7 =4
Xp
e :
i AT 0 Uis X
i O |« 0 fe—
- X —>

304N0S 3NIT!




July 7, 1977
cdn

PMK

*$921IN0S JO IvquNnu ppo (g) ‘S9danos jo Jaqunu uaad (V)
{so0anos jurod jo sdvaae apaur] podoeds ATTenbs 1037 sToquis - ¢ @2an81jg

(=)}
~ 8 &
I
2
z iz o o 20 2 2Rl SR e z
ﬂulq Ty v % W Ty 037 Ty T W v v oW Yy Ny
O © o ° © O G O o . ° ° © ~————4#0
G ———s 6 —»f




sosuodsay °oUL1933FQ PuE UMS 3O uojaeaussaiday 103934 Y 2an3TJ

July 7, 1977

PMK:cdn

=20~

.

/
a:
ng i SR




July 7, 1977
-21- PMK:cdn

OPTIMUM SUM PATTERN RESPONSE
i | i {

l 1 l ]
-0 -60 -30 0 30 60 90
ANGLE OF INCIDENCE (deg)

OPTIMUM DIFFERENCE PATTERN RESPONSE
[ [ [ [

| | l $a.
=90 - <60 =30 0 30 60 90
ANGLE OF INCIDENCE (deq)

Figure 5 -~ Sum and difference responscs i3
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Figure 10 - Use of second-product tiicorem to determine source amplitudes
for the difference pattern of a plane array.
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