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I. INTRODUCTION

Consider the multiple linear regression model

where

~ is an n x 1 vector of observations,

X is an n x p matrix of full rank,

8 is a p x 1 vector of unknown parameters,

and C is an n x 1 vector of errors.

In addition to the usual assumptions that E(c) = 0 and V(E) =

it will also be assumed from the onset that c is Normally distributed .

The most common estimator of 8 is the ordinary least squares (OLS)

estimator 8 which is given by

A = (X ’X)~~X’~~ .

Under the stated assumptions ~3 has the following five properties :

(1) 8 minimizes C ’C = (
~ 

— Xj3)’(~ 
— X8). That is, 8 is the value

of 8 which minimizes the error sum of squares (the sum of the

squared deviations of the observations from their expected

values).

(2) ~ is the best linear unbiased estimator of 8. That is, of

all linear unbiased estimators , 8 is the one with minimum

variance.

—1—
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(3) 8 is the maximum likelihood estimator of 8.

(4) 8 is Normally distributed with mean 8 and covariance matrix

a2
(X ’X)

1.

A

(5) The mean square error (MSE) of 8 is

MSE(~ ) = E[(~ — 8) ’(~ 
— 8)] = cl2E(l/X i),

where the A
1
’s are the eigenvalues of X’X.

It should be noted that if X’X has any very small eigenvalues, MSE(8)

will be extremely large. Thus, because MSE(8) is equivalent to the
A

expected squared distance between 8 and 8, the OLS estimator is likely

to produce estimates which are quite far away from 8. Small eigenva1 ues

will result, for example, when the X matrix is highly collinear , that is,

when one column is close to being a linear combination of other columns.
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II. RI DGE REGRESSION

With the objective of reducing MSE , Hoerl and Kennard [7 , 8]

suggested the use of what they termed “ridge regression” , so named

because of its relationship to ridge analysis [3,6], a technique

used in investigating fitted quadratic response functions. Ridge

regression involves the use of an estimator which depends on the

choice of a number k > 0. This ridge estimator , given by

= 
~~~~~ + kI)~~X’~.

has the following five properties :

(1) For k = 0, = 8. That is, the OLS estimator is a special

case of the ridge es t imato r.

(2)  For k > 0, (~~
)‘(

~~
) < 8’8. That is , is shor te r than 8.

(3) is Normally distributed with mean W X’X~ and cova r iance
2

mat r ix a ~~~~~~~~ Thu s , if k ~ 0 , 
~ k 

is a bia sed es t imator

since its mean is not equal to 3.

( 4) The MSE of is MSE (~~ ) = o2
~

[A
i
/(A . ÷ k)

2 ] + k28’W~8.

Because B is a biased est imator , i ts MSE includes a bias

term in addition to the variance term.

(5) There always exists a value k > 0 such that the ridge

—3—
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estimator ~ has smaller MS E than the OLS estimato r 8.

In other words, this last property states that although is biased

for k > 0, there does exist a value of k > 0 such that the resulting

bias is more than offset by a reduction in variance. Thus, the cor-

responding ridge estimator does provide a reduction in the MSE of the

OLS estimator. The proof of this by Hoerl and Kennard [7] has been

the basis of the excitement over the use of ridge regression. The

statistical literature Is now well—represented by articles discussing

various aspects of ridge regression, for example [2, 4, 5, 9, 10, 11,

12, 13, 14, 15, 16, 17].

A. A SIMPLE EXAMPLE

For illustrative purposes , consider the problem of estimating the

mean of a univariate Normal distribution. For this problem, the regres-

sion model ~ = X~ + c is, of course, appropriate. However , 8 is a

1 x 1 vector (i.e., a scalar ~ which denotes the population mean) and

the X matrix is equal to 1, an n x 1 column vectors of ones. Thus,

the ridge estimator of the mean ~ Is given by

= (1’.L + k11
) 1

1’Z

= (n + k)
1Ey

1

= n~ / ( n + k)

From proper ty  (4) on the preceding page ,

MSE (~~ ) = na 2
/ ( n  + k) 2 + k 2

~
2 / ( n + k) 2 .

-4-



By differentiating with respect to k, it can be verified that the

value k = a2/B2 yields the minimum MSE.

Unfortunately , the optimum value of k involves not only the

unknown variance a2, but also the unknown parameter B which is to be

estimated . This is also true for the general regression situation.

Thus, the problem of how to choose the value of k must be considered .

B. CHOOSING THE VALUE OF k

In their original papers [7,8], Hoerl and Kennard discuss the use

of a device they termed the “ridge trace”, which is a plot of each

component of against k. Their primary guideline is to choose a

value of k where the system stabilizes , that is, where the components

come together and more or less flatten out. However , relying on an

“eyeball” judgement like this means that my choice of k and your choice

of k may be completely different . In fact , your choice of k tomorrow

may be different from your choice today , even for the same problem .

Thus , there is no objective way to evaluate the performance of a ridge

estimator chosen in t h i s  manner.

To overcome the objections to using a subjective estimate of k,

a number of reop le have suggested various estimators For k. For example ,

Hoerl , Ke nnard , and Baldwin [9] proposed the estin..~

k

MacDonald and Galarneau [13] suggested an estimator t~iich has the “correct

length.” Since

—5— 
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A A  2
E(B’B) = ~~~~~ + a E ( l / X  )— —  — —  i

the quantity

= A’A — 
2
~ (l/A )

is an unbiased estimator of 8’8. Therefore, for Q > 0 MacDonald

and Galarneau suggested using the estimator ~~~~~, where is chosen

such that

For Q < 0, they suggested choosing k equal to some prespecified con—

stant k
0
. Two specific choices are:

(1) k0 = 0 (the OLS estimator)

(2) k
0

=~~~(~~~= 0).

Both sets of authors carried out simulations to evaluate the

performance of the proposed ridge estimators. In general, the ridge

estimators did well in some portions of the parameter space and not

too well in other portions .

It should be noted that when k is not a constant , the distributional

and MSE properties previously listed for a ridge estimator do not hold ,

since these properties are conditional on k. Therefore, there is no

guarantee that a value of k chosen by examination of the ridge trace

or by application of some rule will yield an MSE which is smaller than

that provided by the OLS estimator.

As an aside , it should be noted that in a Bayesian framework if ~

—6— 
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has a prior Normal distribution with mean 0 and covariance matrix

then the posterior mean of 8 has the same form as a ridge estimator

with

k = a2 /a~ .

So, In a sense, by choosing k from the data rather than before the

data is taken, ridge regression involves an a posteriori selection of

the prior distribution.

C. TRANSFORMATIONS

With the usual regression model which includes a constant term,

a problem may be considered in a number of different forms. For

example, the original independent variables X , centered independent
Ii

variables (x1~ — X ) ,  or standardized independent variables

— 2 1/2
(x. . — x .) / [ E (X .. — 

~~~ I

may be used. In addi t ion , the dependent va riable may be cente red

or standardized .

In any event , all of these t ransformations result  in the same

least squares estimator B. Usually the standardized form is used in

calculations , since it is less susceptible to round—off error . In

this situation the X’X matrix is given in correlation form . Most

papers devoted to rid ge regression have also assumed X’X in correlation

form , but this is not required by any of the underlying theory . How-

ever , unlike the least squares situation , ridge regression will produce

different results for each transformation on the independent variables.

That is, a ridge estimator is not invariant to the form of the model.

— 7 —
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III. THE PURPOSE O1’~ A REGRESSION INVESTIGATION

All regression investigations do not have the same purpose. Four

possible purposes are:

(1) Estimation of 8

(2) Prediction of ~ (i.e., estimation of

I (3) Hypothesis Testing

(4) Optimization and Control.

For (4) the warning of Box [1] should be recalled . He pointed out that

“... to find out what happens to a system when you interfere with it

you have to interfere with it (not just passively observe it).” So, if

at all possible, multicollinearity should be avoided by means of a well—

designed experiment. Otherwise, the experimenter may be out on a limb.

For (3) the experimenter is left floundering without adequate distribution

theory if a ridge estimator is used instead of the OLS estimator.

It should be noted that even if the OLS estimator does not result

in a very accurate estimate of B [pu rpose (1)], this does not necessarily

mean that it will do badly in predicting ~ [purpose (2)], as the following

example illustrates .

Figure 1 summarizes a regression problem discussed by Marquardt [10].

Because the regression model includes two independent variables but no

constant term, a two—dimensional plot is adequate for disp lay ing the

problem. As can be seen from the figure , the variables X
1 

and X
2 

are

highly correlated .

In general , an X ’X matrix may be expressed as

—8—
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p
X ’X = EX v v~— —

where

A >...> A > 0 are eigenvalues of X’X1 p — —

and

v ,.. . ,v are the corresponding normalized eigenvectors.

This representation of X’X indicates how well the data space is
—l

covered, while a similar representation of (X’X) indicates how well

the parameter space is covered. As indicated in Figure 2, for this

example 99% (1.98/2.00) of the variability in the data space is along

the line X
1 

= X
2
, while V(~ + B

2
) is approximately 1% (0.51/50.51)

of the total variance in the parameter space.

It should be noted that although V(B
1
) and V(B2) are large

(25.25302), V(y1) < .750
2 

for any predicted mean value withIn regio n

I , the region defined by the data. Even some distance from this data

region , things aren ’t too bad along the first principal component

axis [for example, at point A V(yA) = 1.0102], but aren ’t too good

alo ng the other axis [for example, at point B V(y~) = 19.120 2 ].

Points A and B are equidistant from the center of the data region I

The moral of this is that if the concern is with predicting values

of ~ within the region covered by the data , the results of using the

OLS estimator are reasonable even if the estimate of 8 is not very

accurate. In general , multicollinearity does not prevent good predic-

tions of mean responses or of new observations , so long as these

-10— 

-~~~~~~~~~~ -~~~~~-. 
. - --— - - - ----- -  

~~-



.~ x
—

/
/ \

\\
~~ 

I
i i i I I I I I I I I

O J ô  0x —
S

I. 
0

—..,. —.—...-. _

___
~~

_% —.....— —  — — —— — —....— .ll ., —.~- •.=_.~~ 
.___j_

N -

~ 0 8 <~~~~ <‘I.c . _ _ _

> > >
-V

XI_
XI XI

XI

— 11—

--

~

-- .--

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~~---- -_ _ _ _



predictions are made for points within the data region. Of course,

for points outside this region it must be realizee that extrapolation

may be dangerous regardless of whether an OLS estimator or a ridge

estimator is used.

—12—
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IV. SOME QUESTIONS

This report began with the question “Is ridge regression a

panacea?” and will end with a number of other questions.

(1) Is ~~~ = + c the true model or an approximation?

Most research establishing the usefulness of ridge estimators

is based on the explicit or implicit assumption that ~~ is the true

model, even outside the data region. En many cases this may not be a

reasonable assumption.

(2) Is the OLS estimator deficient or is the data deficient?

There are two ways of viewing the results in a situation where

there is a high degree of multicollinearity. The first is that the

OLS estimator gives bad results. The second is that the data is

inadequate for the estimation task at hand.

(3) Is there a structural relationship in the data?

If, for example, flow rate is always reduced as temperature is

increased because of physical constraints, a high degree of collinearity

will be present. In this type of situation, it might be well to

incorporate this relationship directly into the statistical analysis.

(4) Can more data be obtained?

If predictions are to be made outside of the data region and if

data can be observed there, the best bet may be to observe data there

before attempting any estimation.

(5) Assuming that a ridge estimator may be useful sometimes, why

not always use it?

—13— 
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It should be recalled that despite the degree of multicollinearity

(even if there is complete orthogonality), there always exists a value

of k > 0 such that MSE(~~) < MSE(~).

(6) What about the lack of invariance?

If an experimenter does decide to use ridge regression , he or she

must then consider the invariance problem , i .e . ,  the form of the regres-

sion model to be used in actually carrying out the •~stimation process.

—14— 
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V. CONCLUSION

The potential user of ridge regression would be well—advised to

consider seriously the questions listed in the previous section. In

addition, he or she must remember that the use of a ridge estimator

involves a trade—off between the chances of gains in certain regions

of the parameter space and the chances of losses in certain other

regions.

Although ridge regression may offer promise, its use as a routine

analysis method is not without severe shortcomings. Therefore, the

question in the title of this report is answered in the negative.

—15—
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