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SINGULARITIES IN THE DISTRIBUTION OF THE

INCREMENTS OF A SMOOTH FUNCT ION

Donald Geman
Department of Mathematics and Statistics
University of Massachusetts at Amherst
and

Department of Statistics
University of North Carolina at Chapel Ilill

§1, By the "distribution of the increments" of a Borel function F: |0,1] » R,
~~
I mean the measurc
I
AB) = [ [ 1,(F(s)-F(t))dsdt ,
B

00

B a Borel set in IR. A is the convolution o ! occupation measure' j(B)

m{F_l(B)} with u(-B); here m in Lebesgue measure. When j << m, wyite o(x)
for the Radon-Nikodym derivative %ﬁ-(x) (the "local time'" of F at x). Of course
B << m implies A << m and

(x) = [ a(y)a(x+y)dy

-0

dA

(1 A(x) an

: . N
Although this paper treats only smooth F’s (at lcast C ), the relevant backpround

consists of two gencral results from [3]. Throughout, § will denote a nonnegative s
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Borel measurable function. Define

11
LW 8) = [ [ W(F(s)-F(t))dsdt = [pdr « « .
00
Then (a) if ¢ is ceven, decrecasing on (0,«) and nonintegrable on (0,1), then

-
[(p;F) =« for any [I; (b) u << m with ael.™ if and only if I(Y;F) < = V. I,I.

Now for F differentiable a.e., p << m if and only if l)“ = Aleg B2 )

has Lebesgue measurce 0.  Suppose FeC™ (i.e. has a continuous derivative, with

the usual conventions about the endpoints) and I)() 0, m(ll()) = 0. Then,k6 as

the Theerem states, lim A(x) = .  (The additional assumptions made on I
x>0 |

below are not nceded for this.) Hence L(y;F) = « for some ¢ l.” (and so

i 1.7) because A << m implies

(2) A ey = f MNox)P(x)dx

So, the question arises: for which ’s - in particular, which monotonc oncs

"

is 1(y;F) < «©? This depends on the nature of the singular points of
5

Assume now l)“ £ @, P is € and that F"(t) # 0 for all t«l)“. I'hen Dy i

finite, say D, = {;n.ﬁf < a

0 b e it a . Let ;\i = I-(;li) and let

WG Ll N
{“i}rx"l denote the (distinct) celements of ‘.A\i—v\i'r for which there exist
tl,t,xll( with I"'(flll""(t o 2 0" and! Bt )=F{ts) = A.=N.. {I%.} 1s symmetric

) 1 L) 1

about 0 and contains 0. For the version of A(x) given by (1):

: s Iy
THEOREM. N(x) is continuous on IR\/{ Hi } o and

1
=9 & s "16'/}%}({[' e "1’,’;?‘(}'1)4’7 e
X)Bi R e i x)Bi -log|x- i
Conscquently, for (el
1 I
(3h) L3ty < o <> el {F [1og|x-8,]|dx}
i=]

In particular, if |y is cven and docreasing on (0,%), then

b e




1
L(W;F) < @ <=> [ Y(x)log 1/x dx < = ,
0

§2. The fact that the singularities of A occur among the points {Ai—Ai} is
LVEN /
fairly obvious. Indeed for F as above ([4])

(4) gifm) = o sl
seF T ({x}H

(Since F(DO) has measure zero, it doesn't matter how a is defined there.)
Clearly a is well-behaved off {Ai}’ and, in turn, A off {Ai-Aj}. (Actually,
(4) is valid for any F such that F' exists a.e., although "seF-l({x})" must
be replaced by "scF-l({x}) n {F' exists, finite}" and neither F({|F'| = =})
nor F({F' doesn't exist}) nced have measure 0.)

The Co-Area Theorem [2], applied to the Lipschitz function s,t » FF(s)-lI'(t),

lcads to this cxpression for A:

-1/2

(5) M =l ) ? e e T Auasay
X

here Ux = {(s,t): F(s)-F(t) = x} and H is one-dimensional lausdorff measurc in
le. This shows clearly where A might explode. Nonetheless, [ will not refer
again to (5), but instead work with the version of A given by (1) with « as

in (4).

That the singularities of A are logarithmic is perhaps not as evident, and
emerged in a curious way. To get an idea of when [(;F) is finitce, WeL' y
choose a convenient rggggm_function X(t,w), 0 t < 1, wefl, with smooth
trajectories and compute the expected value E{T1(y;X(*,w)) of the random variablce

w > [(pyX(*,w)). For instance, let X(t,w) be Gaussian, mean 0, 07 (s,1)

I".(X(sl~,\'(t))'3. Then

|
|




11w 2
ECL X)) = [ [ [ v (2mo(s,t)] texpl- —*——1 dxdsdt
00 - 200 (fSyt)

For simplicity, and to insure the differentiability of the sample functions,
suppose there are constants 0 < €, < C, < @ 2 Clls—tl £ g(s,t) < Cls-t] ¥s.t.
(For cxample, X(t,w) is stationary, r(t) = nxtxo £ (), tf 0, and

-T'"(0) < ) A straightforward computation yields (for ¢ even):

o
. e b
I,{[(\D,X(',m))} < oo <= j c Y l f (l)(x)dxdy < o
0 Y0
g1, 3
W(X) = f P (u)du is integrable around the origin, say over [0,1].
0
If ¢ is decreasing on (0,*), then Mw(x) is the usual maximal function:

31}

equivalently, M

\Y

e : ol o :
() 2 istup Ve Fldy ;0 4 x <1 ;

M
0<u<x<v<l u

b

hence MltLl[O,]l if and only if YecLlogl, i.c.

b
1

+
[ v(x)log P(x)dx < o
0
Whether or not { is monotone, Fubini's theorem shows
1 1
1
I M (x)dx = [ ¥(x)log — dx
P X
0 0
o o . : 1 Il
Consequently, T(P;X(*,w)) < @ a.s. for any 0 = YelL” with |(x)log ‘1L 6
and likewise for any stochastic process which satisfies several mild conditions
concerning the distribution of its derivative X'(s,w). This is a "stochastic
version' of the real-variable theorem above: only the "fixed'singularity of
A at 0 is picked up; the others - at {Bi}\n - depend on the specific function
and will generally occur at any fixed point X, With probability 0.
Rounding out the picture, it follows from a theorem of Bulinskava

|1] that the hypotheses of the theorem are valid tor almost every sample funct ion

of a stochastic process X(t,w) for which: (1) X(*,w) is C vSs




L

(i1) for each 0 = t < 1, X'(t,w) has a density pt(x) which is bounded in
t and X.

Condition (ii) guarantees that {t: X'(t,w) = X"(t,w) = 0} is empty a.s. Our
earlier statement "I (YP;X(°,w)) < ® a.s. for any Y¥ in LlogL'" can then be strength-
ened to "I(P;X(*,w)) < « for all Y¥ in Llogl, a.s.," i.c. the exceptional w-set no
longer depends on the particular V.

§3. Here is the proof of the theorem, which uses little else than ordinary

VN
calculus. Recall that A is the version of d\/dm given by

(e8]

Ax) = f . [ |t T Ry Ty, e < x <o
- geF~ ({x+y}) sel ({y})

(i) A is continuous off {Bj}% . I will show that A is continuous on

N 0y
i, ge1 VPBg Hys

{Ai-Aj} the proof of continuity at xcﬂ{\{Ai-Aj} goes about the

same, except is casier.
Let AO = inf F(s]), A
g

Card{DO} < o, Jirst, notice that a is continuous off {Ai}r:)+1 because ¥

N+ SUP F(s), and v(x) = Card{s:F(s)=x} <1 +

and F—l (defined piecewise) are continuous, and because v(x+€) = v(x) ftor all

N+1
g °

B L , P 2 : 2
Now fix Ai-Aj¢{Bk}l, 1 i,j <N, and let (k,,1,), & = 1,...,q, be thosc

small € if xgiA,}

kg ry i

F“(aij <0 < F”(aj); then F"(ak) < 0 (resp. F"(uk) > 0) for each 1 < k < N

pairs of integers among {1,2,...,N} for which A, -A = A.-Ai. Assume

with Ak = Ai (resp. /\k = Aj). It follows that u(Aj-)= :im u(Aj—t) and

a(A.*)= lim a(A.+€) exist , finite. The same argument applies to cach Ay WA
€40 . ] ¢ T

and yields:

*) a(A,¥) € », afA -) < = 1£4%<aq.
k r

2 ')

Since A(x) is an cven function and fAi-Ai}N j-l\{Bi}? is svmmetric about

’

Lm—"




(¢

0, it will be enough to check that A is right-continuous at A.-A.. Set
1)

K@, y) = a(y)a(y+x+Ai-Aj) and let

B = =
S
1 8 o 4y W

(1 =g b

q
" (Ak—d’Ak+6)’ W, = l: (AI‘ -G,Ar +(S) s

also, let >0b i 2 - -
n e the distance from A Aj to {An Am}, (n,m) # (kg’rq)'

Then A +6
Ty
AGxshs-A) = L! KGoyddy + [ K(xy)dy RZI fdkcx,y)dy
C c ,.C e A -
WénTa wéfﬂd rl

=P (x) +Po(x) + ) P, (x)
1 2 QT 3,8

where the A 2el<{1,...,q}, are distinct and § is small enough that the

TQ’
intervals (A_ -6,A_ +06), Rel', are disjoint.
Bl
% : e R Sy el AT
[f 0 <x<§8/2and § < n/2, yeWnTg => y+A, Ajcr6 > y+x+A, Ajfld/z' In

particular, s up u(y+x+Ai—Ai) < o for such x's. Consequently, rccalling
yeWgnT ¢ =
1 §
that acL” and @ 1is continuous a.e., Pl(x) > P1(0)< © as x¥0 (dominated

convergence theorem). Similarly, P,(x) < « V¥x > 0 and

o«

|P2(x)—P2(0)| < supca(y)f |u(x+y)—a(y)|dy + (0 as x¥0.

y(,_'ré 0
Finally, A
rQ Akq+5
P, o(x) = f K(x,y)dy +  [7 a(y-A +A)a(y+x)dy
3,877 A L8 A £
r k
'3 '3

which converges to l’3 2(0) < o as x¥0 by using (*) and arguing as above with

Pl and Pz.




Next, F'°F—1 satisfies upper and lower Holder conditions of order 1/2 at each

Ai’ 1 < i < N. lor convenience, assume () < ag <ay - 1; the other cascs only

need some additional notation. For each aieDO and sc[0,1] there are numbers

= . . . 1., .+ 2
i e - o) = " S e 2 = = " —
&S,CS between s and a with F'(s) F (gsj(s ai) and F(s) Ai 2l (&S)(s di) -
[t follows that there are constants 0 < CI’CZ’C3’C4 < ® and a 50> 0 such that
for each 1 < i < N and § < EO’
(6a) C2|s—ail < |F'(s)] < C,ls-a; |, se(a;-6,a;+0)
(6b) €,|s-a |2 = [F(s)-A.] = ¢.|s-a Iz se(a,-6,a, +8)
4 i 1k e S L e
Let ﬁ; denote the inverse of F on .li = [ai’ai+lJ’ 1 €1 < N-1. From (6b)
an continuity of the ﬁi’s, there is a 60 > 0 such that, for each 1 < i < N-1,
j
TR U SR S e 1/2 i :
(7) E:——'I_\—Ail < 'Fi(")‘dil C—‘y-l\il > ye (A, (S,/\i+6)ul Ui)
3 4
1. 1/2 2 3 1 1/2 ~8,A. ASYnk(Js
(‘.;l)-Al'f]l I'l(y)-d1+1! < qu—l\]+1! ,)'t(/\i.] "\.Ifl J b ( l"

Let D(i,6) = (Ai’Ai+6) if F”(aj) 2N (= (Ai-G,Ai) if F”(ai) <0, 1 =3 s N.
Combining (6a) and (7), and reducing 60 if necessary, there are constants

0 < Cey €. <% such that foxr each s a s N=1, 0= S,
5% =6 0

II/Z

T . yeD(i,)

(8) Cely-A s [EYF, ()] = e ly-A,

and likewise (in case a, = 1) with Ai, D(i,8) replaced by Ai D(i+1,8).

N

+]1°
We can assume that for each i,j and each small 6, cither D(i,8) = D(j,8) or
(i, 8)nb(j,8) = p. Defining JO = [0,a]|, JN = [uN,ll and the corrcesponding

A

inverses FO’ ﬁN’ it is clear that (8) extends to F'°ﬁ0 and F'o?N at the
appropriate places. (By the way, both inequalities in (8) depend on F'" # 0 on

l)n.)




(ii) lim A(x)/-log|x-B.| > 0, 1 < i < L. Suppose B, = Aj-Aj, 1 &, k © N,

x*B. %
i

and F"(ak) <0, F”(ul) < 0; the other case, namely F”(ag), F”(ak) > 0 is the same.

Nx+B.) = [ a(y+x+A )a(y+A,)dy
-[x|
> f u(y+x+A2)a(y+Ak)dy, lx} = ¢
-€

Now for € small, the conditions |x| < & and -e < y < -|x| together imply that

y+x+AQ€D(Q’60) and y+AkeD(k,60). Consequently,
2 -|x e
Ax+B) 2 CC [ |y*x] Iyl " “dy

&

2 2/E2-Cx + 2e-Xx
= C5 log

2“&2-|x|x + 2|x|-x

. 1
= € log—lx—l v

for all small x, for some C > 0.

(iii) A(x) < const. X[1 + 2?]10g|x-8i|||Vx. (This is equivalent to the "lim"

part of (3a).) Evidently,
N+1 = £
aly) = ) 1, (y)|F'oF. (y)| ™ .
izo "1y :

Off T(, a is bounded. Let YLTG, say Ai—é <y« Ai+6, yelF[0,1].  Keeping (8) ?

in mind and that non-identical D(j,8)’s are disjoint:

T o) <] ; 5 -1

afy) = ¥ b, <UyiEFY] T 2 1 1y (y) [Pl . (y) ]

ek wh, Tiog) J T TR O Y j

).Ai—Aj j J.AifAj J

N
V(Y)C5|Y'Ai|-l/2 + v(y)sup|F'(s)|_l, Hy = F_ll n (Ai—G,A.+ﬁ)‘|
S(”G ]_—] .
N

S const. x[1 + X ly-Ai'_l/z]
i:

1




N
Let V = F[0,1] and U = U V-A, o, which is bounded.
i=1

A(x) = [ aly)a(x+y)dy

vV
N N :
< const.x[1 + 2} f ly—AiI_\/zdy w0 IY-Ai!'I/ZIy*x-Ail"/zdyl
i=1V il | =LY i
. -1/2 -2/2
< const.x[1 + ; C pap. - | y+x| “dy]
PR ety
i,j=1U
N
< const.x[1 + ) lloglx-(Ai-Ai)lll
i,j=1 .
. -1/2 -1/2 i “
S N P , r = 0(log as > 0
since {J|)+£| |)[ dy (log [ET1 as ¢

As for (3b), let H(x) = 1 + Zli‘_l|log|x-8i|| . Then 1(P;F) < o Wi L ()

if and only if

[ ¥ pgdx <o wper) (dx)

s H(x)
Fal . A(x) - :
it and only if ess sup ﬁf;_'< <, Since A, H are continuous from IMto M =},
: s A(X) . "yt > Z <
this is the same as Syp 0 < o , In other words, the "lim" part of (3a) is

equivalent to "I(Y;F) < o vngl(”dm)-” Now if I(y;F) < = and w(Ll(dx). then
it is easy to see, using the "lim'" part of (3a) that ¢l is integrablc. The
last statement of the theorem follows from (3b) and the atorementioned fact

that [(Y;F) < « and ¥ imply wcLl[U,lJ.

§4. Let F(t) = t". Then D, = {B.} = {0} and
Ma i

i
1 1 + vl-[)&]
A = 3 top{=2E0 , [x] <1
= /Tx]
For F(t) = sin 2nt, A(x) is an elliptic integral (of the first kind). 1 would give
more examples, especially in "closed form" and with L > 1, 1t 1 could; the compu-

tations (even for F a third degree polynomial) are formidable.
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