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Nomenclature

angle between a streamline and a reference line
dummy variable of integration in n direction
ordinate parallel to reference line

streamline curvature = (radius of curvature Rk)_1
ordinate normal to a streamline

static pressure

angle between streamline and axis of rotation
meridional velocity = (u2.+ vz)l/2
fluid density

ordinate along a radial line

ordinate parallel to a streamline
rotor rotational velocity

velocity parallel to axis of rotation
velocity normal to axis of rotation
radius

tangential velocity

total velocity at reference conditions
ordinate parallel to axis of rotation
ordinate normal to axis of rotation

coordinate location on n axis

Subscripts

denotes partial differentiation W.R.T. X
denotes partial differentiation W.R.T. Y
denotes inner boundary

denotes outer boundary
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denotes a function of n

denotes a property of a particular streamline corresponding to
a value of £ on n

blade row inlet

blade row exit
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The Streamline Curvature Method (SCM) has been developed over many
years to solve various classcs of axisymmetric and quasi-three dimensional
turbomachine through flow problems. The method relics on the ability to
define accurately the streamlines on a meridional plane and to determine
radial and convective accelerations based on their geometry. In the past,
the SCM has been successfully applied to axial flow pumps and compressor/
turbines, this being performed with the equations written in orthogonal or
intrinsic coordinate systems. Except for the cumbersome quasi-three dimensional
analysis (the direct problem), approximations are often made which limit the
accuracy of the analysis, particularly with regard to the blade rows. Blade
rows are usually treated as thick actuator disks with chordwise loading,
blockage, and radial body forces ignored.

Computationally, many of these programs are inefficient and limited
in the types of cases they can handle. This paper documents a computer
analysis which addresses the problems described. The program is capable
of modeling axial, mixed and radial flows with multiple blade rows and
can solve an approximately direct as well as the indirect problem. Blade
to blade effects are incorporated as a circumferentially averaged radial
body force. Particular attention to stability of convergence makes this
analysis suitable for problems which are usually very difficult to solve.

In order to improve the usefulness of the SCM, equations were written
such that refcrence stations may take an arbitrary path through the machine.
This allows the complete modeling of the leading and tvailing edges of the
blade rows. The option of intrablade computing stations models the blade
loading and blockage distribution, and radial body forces. The use of
specialized curve fitting routines allows radial as well as mixed flow
and axial flows to be analyzed. The stability of the program allows very
high station aspect ratios to be used. Pseudo-strecamlines and the ability
to define streamline locations improves the accuracy and speed of the program
and allows concentration of data in regions of interest.

To date, the program has been used to analyze axial flow and radial
flow pumps and has performed the direct analysis of an open propeller in
an infinite medium, all with good success. Examples of these cascs will
be presented in this report. Documentation of the actual program will
appear in a later report.

Development of the Equations of Motion

In the axisymmetric inviscid analysis, Euler's momentum cquation is
recast into a radial equilibrium equation. Conservation of mass, total
energy and angular momentum complete the analysis. The equations must
be solved by successive approximations, with necessary data and derivatives
taken from the iteratively approximated velocity field and streamline
geometry.

Let x and y be rectangular coordinates in a meridional plaae as
illustrated in Figure 1. Fuler's equations in these rectangular
coordinates, for a two-dimcasional incompressible flow are:
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v, 8 13F

9x ay p oy
(1)

du, Bu_ _13P

Y x ay p 0x

Figures (1) and (2) represent the meridional plane of the solution:
and geometric quantities used in the following equations are shown on
these figures.

The pressure gradient between points a and b, Figure 2, is represented

by:
: b b b
dp P P
an ot ds + = dn . (2)
a a a
To the pressure gradient along mn requires the partial deriva-
tives | determined.
1. Luce streamwise direction one has
P _ 9P . P |
3s 9y sin ¢ + 3y COS (o] ‘ (3)

Combining (1) and (3) we have

188 _ . Bv By du du
= T [u N + v 8y] sin ¢ + [u o 4=y By] cos ¢ . (4)
Note that
v = V_ sin ¢
and i (5
u = Vm cos ¢ =

The following derivatives are determined by the chain rule:
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s Vm cos ¢ ¢x + sin ¢ me
BN cindh b ocos oy
BX M1 X UIX
oW V cos ¢ ¢+ sin ¢ v,
ay m y y
G b cas g
dy m ¥ ey

The quantities deteirmined in (5) and (6) are substituted into
Equation (4) and after reduction the result is:

=V cos ¢ me & ‘

5 sin ¢ me

Equation (7) reduces to

which is seen to be the differential form of the steady Bernoulli's
equation for an incompressible flow,

The streamwise normal component of Equation (2) is developed in a

similar manner by noting that

LN §£-cos (3 Qz-sin (]
on  dy Ox ’
and
B L P 4 av R duy
> on [u Ny + v ay] cos ¢ [u x + v By] sin ¢

After combining (5), (6) and (10), we obtain the following result:

(6)

7

(8) ]

(9

(10)
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SHR 2 2
= s b ] © si
5 on Vm cos ¢ dx + \m sin ¢ ¢y (11)
which is equivalent to
19P _ 2 03x, 4 9y,
1 Vm = ch P Qy 5 (12)

The quantity in the brackets in (12) is recognized to be equivalent to
9¢/9s, the curvature (k) of the streamline.

Finally, Equation (12) becomes
oP 2

= 3
o k Vm S (13)

1
o [+

Combining Equations (2), (8) and (13), we determine the radial equilibrium
equation for nonswirling flow to be

P 9P 95 OP 9n

—— e —e e e

an ds 9n 9n an

and finally,

oV
D
1 =k V . sin o + V —l® o8 @ . (14)
on m m ds

1
P

The pressure gradient due to swirl is determined in a similar manner and
leads to the term,

199 1,2 (A5
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where there are no circumferential derivatives, i.e., the flow is assumed to
be uniform in the circumfccential direction. The computational form of the
radial equilibrium equation is

av

P 20 el B ST m
e k Vm sin o + R V0 sin(¢+a) + Vm s €Os o A (16)

i
O |-
le

The three terms on the right hand side of Equation (16) :epresent
the meridional curvature, the radial and the convective accelerations
respectively. Integration of the equation will yield the static pressure
difference between any two points in the flow field.

From Equation (16), the static pressure difference relative to .ome
point, say N., in the flow, to another point, §, along the reference line
may be found. To satisfy conservation of mass and energy across the
reference line, an absolute value of static pressure must be found at the
reference point, ny. The following direct solution for this value is an
improvement over other procedures which are iterative in nature.

A continuity equation may be written for every station in the problem:

o

P Vm(n) () sin(an) dn = const : a7z)
ThE

In words, the mass flow across a reference line regardless of its path
between two streamlines, is constant, assuming an incompressible fluid.
The energy equation may be written for a particular point, £, on the
reference line (along a strcamline) as

1 ]
P b R/ = =5 \ - P ~ {- —~~—Jdn ==pV S ]

The first two terms on the left hand side represent the totail energy

(static plus dynamic) available at the point, &. The term P, . contains all head
loss and rotor energy changes between the reference COﬂdJ!LOﬂ and the

station of interest. The third torm is derived from the conservation of angular
momentum and it is the rotational kinctic energy. The quantity RVg is

assumed constant in the absence of losses or mementum changes due to a

rotor or stator. The sum of the fourth and fifth terms is the static

pressure at £. The term in the intcgral is the static pressure difference

from Equation (16).
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Equations (17) and (18) may be combined and integrated:

No 1/2
1 25 % 2 1 ap y !
[ POon + 7 P an -5 Ven - Pni - [- b DB]dB rn sln(an) dn =
nl ni
o
S sin(on) d (19)
2 P Vmpy Ty an) dn .
Ny

Because-Pn is a constant, Equation (19) may be rearranged to give

i
o Mo :
2 1 2 2 1 9p
P, Wdn = P +35pV " ~zpvy " =All-=S0apt -
pet l SR 20 ey e By {035}8
1 Zalle
5P an Wodn (20)
where,
W= r sin (an) 5
and finally;
by n
2 2 2 1 9P 2
P, b5 p N, =V ) - p V. [— —--Jd8 wod
n 2 n Bn 2 Ty B
n n.
P, =1 : . (1)
T
o
de”
ng

The static pressure anywaere along a reference line is then:
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= . Lo
PE"P”i !J [ pan] dan . (22)

The velocity profile which satisfies angular momentum, continuity and
total energy is given by rearranging (18):
1/2 i

2 2
e Veg ko= Py

Q
15a)

QO

i -

[- %- ] dn 3 (23)

The flow field is solved by marching downstream to each station in turn and
integrating Equation (16). The static pressure is then obtained from lLguation
(22). The improved velocity profiles are generated by Equation (23) until

the changes in the profiles are small between two successive passes.

n

= —

i

Computational Procedure

Certain data are necessary to start the iterative computation cycle.
Data specifying the design, i.e., the gcometry, blade location, loading
and thickness, and reference fluid conditions are input. Initial one-
dimensional approximations of all the velocity profiles and the streamline
pattern are made. From the initial guess for the velocily profiles and
streamline geometry, derivatives necessary for the terms in Equation (16)
can be determined. This equation is integrated and the pressure differcence
as a function of n is saved. This information is used to solve Equation
(21) for Pni. Once solved, Equation (23) is used to generate improved |
velocity profiles. The improved velocity profiles are integrated to give |
the mass flow as a function of n and by specifying percentages of the total |
mass flow, new strecamline locations are determined. This data is fed back
into the program and the cycle is repeated until convergence is met.

- aesalA i il s il

All of the major program variables such as streamline location, radius
of curvature at every point, velocities and other derivatives are severly
damped against their previous values to prevent instabilities from growing
during the computations. As a result of this treatment, problems with the
ratio of radial distance to axial spacing (station aspect ratio) that are
large can be solved. This feature is important when problems such as
propellers in an approximately infinite medium are to be anaivzed. The
computational aspects of the SCHM analysis will be fully reported in a later
document, along with a complete problem solution.

Effects of Rotors and Stators

In an inviscid solution, the effect of a rotor or stator is to change
the angular momentum of the fluid passing through a blade row and in the
case of a rotor to change the total pressure, the term (P + 1/2p V :) it
Equation (21). 1In bothb cases the term 1/20 Vg 2 {s  changed, i

'ri
1]

o
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A rotor changes the total head in proportion to the change in angular
momentum of the fluid passing through the rotor. The total pressure is
increased (or in the case of a turbine, decrcased) in accordance with the
equation,

il
APch = p(U2 V02 - Ul Vel) 5 (24)

where Ve is positive in the direction of rotation.

Losses

Frictional and secondary flow losses play an important role in deter-
mining the performance of any fluid handling machine. Our ability to predict
these losses theoretically for a generalized turbomachine in nonexistant,
therefore correlational data must be used if the effects are to be included
in the analysis. To obtain these data, a machine must be analyzed for
inviscid flow. Comparison with experimental results then indicates the
magnitude and distribution of the losses encountered. These data can be
incorportated into the analysis as a distributed total pressure loss and
the program 'tuned' for a particular machine. Tt must then be assumed
that the losses are similar for other machines of the same general type.
Data exist for a variety of pumpjet configurations and have been used
successfully in predicting the performance of new machines.

Examples

In this section we present several examples of the uses of the Streamline
Curvature Method as described in this report. The first example is of a
counterrotating set of open propellers on a body of revolution. The outer
boundary streamline is defined by a potential flow around the body shape.

The effect of the rotors on this streamline are small enough to be neglected.

The plotted streamlines for this configuration are shown in Figures (3) and
(4) demonstrate the more significant results. Tirst, there is a streanline
contraction through the rotors as the flow is accelerated near the body.
The velocity profiles exhibit the characteristic bulge or jet behind the
rotor and in this case the average jet velocity is about 1.6 times the free
stream velocity. The plot also demonstrates the ability of the program
to use curved reference stations and to solve problems with high station
aspect ratios (in this case, AR=25). The analysis is able to determine
either the tip radius of the propellers for a giver mass flow rate, or,
given the tip radius as in the direct solution, to determine the mass flow
and powering requirements for the configuration.

The second example is of a Francis-type turbine with wicket gates and
a simulated inlet volute. This particular problem demonstrates the ability
of the analysis to describe axial, mixed and purely radial flows. A

streamline plot is presented in Figure 5.
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The third example is the direct solution of the flow through an open
propeller. In this case only the angularity distribution in the rotor
exit plane is specified, rather than the usuval tangential velocity distribution.
A tangential velocity distribution is iteratively determined that satisfies
the angularity while at the same time all other equations of motion are
satisfied. Figure (6) shows the theoretical velocity profile obtained from
this procedure and corresponding experimental data for one typical case.

Summary

A method of through-flow analysis for turbomachinery has been developed
which has proven successful for a variety of types, including axial, radial
and mixed flow machines. The equations of motion are solved by a different
approach than is commonly used, in that a differential equation for the
pressurc gradient rather than the velocity gradient is used. Additionally,
the energy and continuity equations are satisfied by a direct integration
rather than by iterative approximations.

Refinements to the numerical method permit more accurate modeling of
the streamlines, allowing mixed and radial flows to be analyzed. Multiple
blade rows with intrablade computing stations allows modeling of the blade
spanwise and chordwise loading distributions and the blade thickness
distribution. Selection of streamline Jocation and density improves accuracy
in regions of interest.

Particular attention to the stability of the numerical proccdure allows
very high station aspect ratios to be used and allows problems such as
propellers in an unbounded medium to be analyzed, as well as the standard
internal flow problems.

Friction losses and secondary flow effects may be included in an
empirical fashion when a particular machine type is prescribed.
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Figure 3 - Overall View of the Streamlines Through
a Counterrotating Open Propeller Set
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