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ABSTRACT

A general procedure for building static models of interfaces,
which involves a change in phase-~specific construction rules at the
boundary plane, is outlined. Its application to tetrahedrally coordinated
materials shows that an amorphous-crystalline interface model can be
created by replacing the 'chair'-type sixfold rings (typical of the
crystal) by a mixture of different ones (typical of the amorphous phase).
The interface consists of two crystalline and two amorphous layers.
The detailed topologies, bond angle distortions and radial distribution
functions for each of the four layers are reported. The surface tension
has a large energetic component due to the excess strain energy in both
the amorphous and crystalline interface layers. For Ge the estimated
surface tension is 0.235 J m~2, This is used to show that the model,
which contains no dangling bonds, represents a state of minimum
energy. Application to the problem of creating a model for amorphous
Ge by connecting randomly oriented crystallites with a random network
matrix shows that such a model consists of more than 80% random
network. Finally it is pointed out that the interface model is a starting

point for a detailed description of the crystallization process.




INTRODUCTION

The crystallization of amorphous Si and Ge is a phenomenon of
considerable scientific and technological interest. Recent investigations
have shown that amorphous Ge crystallizes in the range 300-400°C, and

the reported activation energies range from 1.4 eV - 3.5 eV (Barna,

Barna and Pocza, 1972; Germain, Squelard, Bourgoin and Gheorghiu,
1975; Chik and Lim, 1975). Since specimen contamination in evaporated
samples has a strong effect on the crystallization temperature and
kinetics, special attention should be paid to results obtained from re-
growth in amorphous Ge and Si layers produced by ion implantation of
single crystals, since this technique produces very clean samples. The
activation energy for crystallization in such samples is 2.0 eV for Ge
(Csepregi, Kullen, Mayer and Sigmon, 1977) and 2.3 eV for Si, which
crystallizes in the range 500-600°C (Csepregi, Mayer and Sigmon, 1975).
All investigators agree that the magnitude of the activation energy must
be explained by the formation of some intermediary defect in the
amorphous-crystalline boundary during crystallization. The proposals
on the nature of this defect vary from monovacancies (Csepregi, Kullen,
Mayer and Sigmon, 1977), divacancies (Bourgoin and Germain, 1975),

to extended divacancies (Chik and Lim, 1975). The major problem in

sorting out the exact nature of this defect is the lack of knowledge about
the topology of the interface structure. Therefore, in this paper a model
for the amorphous-crystalline boundary in these materials will be
proposed which allows detailed insight into the interface topology. As {

yet, no attempt will be made to describe the crystallization process




using this model, but it will provide a useful starting point to explain not only

the observed activation energy but also the prefactor of the process.

GENERAL REMARKS ON THE CONSTRUCTION OF

STATIC MODELS FOR INTERFACES

The interface between two phases of a one-component system is, at
any given temperature and pressure, inherently unstable: the system can
always lower its free energy by removing the interface and by converting to
the more stable or, at equilibrium, either one of the two phases. This is
obviously a problem when one wants to construct a structural model of the
interface. The only completely rigorous, but cumbersome and expensive,
approach to the problem is a mo_lecu.lar dynamics calculation on a steady
state system in a small temperature or pressure gradient which stabilizes
a different phase on the opposite sides of the system. (The steady state
requires that a continuous flow of heat or matter is maintained.) Such a
calculation would provide a complete model of planar interface in dynamic
equilibrium.

An alternative approach is that of building static models by hand or
with the aid of the computer. This method does not produce an equilibrium
system (a static model can be considered to be at OOK), and hence lacks the
rigor of molecular dynamics. Its advantages, however, are inexpensiveness,
ease of construction, and the simple physical insight it provides into the
topological problem of connecting the two phases.

One way to obtain a static model of a planar interface is by first ' 1
building one of the bulk phases to one side of a geometrical plane (or

in other words: imagine a planar cut through the homogeneous bulk




phase, and removal of the material on one side). The construction is

then continued on the other side of the plane, but a new set of con-
struction rules, related to the structure of the bulk second phase rather
than the first one, is used. If the construction rules from the second
phase can be used with a plane boundary condition determined by the
first phase, the structure of the subsequently added interfacial layers
will gradually change, until finally the structure of the bulk second
phase is reached. Such a match between the two structures should
produce, if necessary after some additional local relaxation, an inter-
face with a minimum excess energy.

It must be emphasized that this change of phase-specific con-

struction rules at the boundary plane is an absolutely necessary feature
in the construction of the static interface models. The use of more
general construction principles, e.g., energy based rules, such as
density maximization or distortion minimization, just leads to a conti-
nuation of the first phase beyond the boundary plane, since such general
principles are common to construction of both phases. The main
problem, therefore, is the choice of the appropriate phase-specific
construction rules.

The most straightforward case is that involving only crystalline
phases, since they are characterized completely by their lattice trans-
lation vectors. For an interface between two identical crystals of
different orientation, the phase-specific rule which changes across the
boundary plane is simply the orientation of the lattice vectors. It can
be seen that in this case the approach outlined above leads to the con-
struction of the symmetrical coincidence grain boundary (Gleiter and

Chalmers, 1972).
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When one of the phases is amorphous, the choice of the phase-

specific rules is less obvious, and is in fact only possible if detailed

structural information about the amorphous phase is available. The
dense random packing (DRP) of hard spheres, for example, is an
amorphous system, the structure of which has been thoroughly in-
vestigated (Bernal, 1964; Finney, 1970). This structural information
was the basis of a recently developed static model for the interface
between a DRP and a close packed crystal of hard spheres (Spaepen,
1975; Spaepen and Meyer, 1976). The construction was started with the
crystalline phase, since its structure is fully known and it can conveniently
be terminated on a well-defined crystal plane, e.g. (111). It was then
observed that the interstices in the crystal are tetrahedra and octahedra,
perio .rranged according to a ratio 2/1; the DRP, on the other
ha: s mostly tetrahedral interstices and very few octahedral
ones (ratio 15/1). The occurrence of octahedral interstices was there-
fore taken as a phase-specific rule for the crystal, and their disappear-
ance, together with the preponderance of tetrahedra, as a phase-
specific rule for the DRP. Further construction, following the earlier
described procedure and using this change of rules, resulted in the
disappearance of the crystal symmetry and a gradual decrease in the
localization of the subsequently added interfacial layers, until finally
the DRP structure was reached.

Since this approach to modeling the crystal-amorphous interface 1
for a hard sphere system seemed to be successful, in the sense that it
explained the available direct and indirect experimental observations,
an attempt will be made here to use the same basic approach to model the \

crystal-amorphous interface for directionally bonded, tetrahedrally coordi-

nated systems.
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SELECTION OF THE PHASE-SPECIFIC CONSTRUCTION RULES

At ambient temperature and pressure, Si and Ge crystallize into
the diamond cubic structure. It is convenient to describe this structure
as a stacking of layers perpendicular to a [111] direction, as shown in
Fig. 2c. Each atom has 4 nearest neighbors (tetrahedrally arranged,
i.e., the angle between adjoining nearest neighbor bonds is exactly
109028'), 12 second-nearest neighbors at 1.63 times the nearest neighbor
distance (N.N.D.), and 12 third-nearest neighbors at 1.92 N.N. D., as
indicated on the radial distribution function of Fig. 1. Each atom has
one nearest neighbor bond parallel to the particular [111] direction
chosen. The three other bonds form topologically two-dimensional
networks, perpendicular to this direction. These layers are not quite
planar, but puckered: atoms whose fourth bond connects to the layer
above are located 1/3 N.N. D. above those whose fourth bond connects
to the layer below. It is easily seen on Fig. 2c¢ that the layers are
composed of puckered six-fold rings in these ''chair'' configurations.

In fact, the crystal can be thought of as composed entirely of these
chair-type rings, since it is also the only type that is formed between
successive layers. The longest distance between atoms in one particular
ring is the third-nearest neighbor distance (1.92 N.N. D.). The abundance
of these chair-type rings, therefore, results in a strong peak at this
distance in the radial distribution function (Fig. 1).

The structure of amorphous Si and Ge has been the object of
thorough investigation for the first half of this decade. By now, it has

become clear that the structure can be most satisfactorily described by




[ @Ind1g
(ANN)J
4

- gu—

/L

. 7

<

"

(s#tun Kupajiquo) 40







a continuous random network model (Moss, 1973; Moss and Adler,
1973; Paul and Connell, 1974). The basic feature of a random network
is the total absence of translational symmetry, combined with a nearest
neighbor environment for each atom close to that of a crystal of the
same composition, i.e., for Si or Ge: 4 nearest neighbors at 1 N,N.D,,
and the bond angles as close to the ideal tetrahedral angle as possible.
Several models of this type have been built, either physically using
plastic tetrahedral units (Polk, 1971; Steinhardt, Alben and Weaire,
1974; Connell and Temkin, 1974), or with the aid of a computer (Boudreaux,
Polk and Duffy, 1974; Shevchik and Paul, 1972). Their properties are in
agreement with the experimental observations: density close to that of the
crystal, no dangling bonds, bond angle distortion less than 20° (r.m.s. ~ 109),
and a radial distribution function similar to the one shown in Fig. 1.

The first and second peaks of the amorphous radial distribution
function are similar to those of the crystal: 4 nearest neighbors at
I N.N.D., and 12 next-nearest neighbors at distances spread around
1. 63 N.N.D. depending on the bond angle distortion. The striking
difference between the two distributions is the third peak at 1,92 N, N, D, ,
which is very strong in the crystal but almost totally smeared out in the
amorphous structure. As pointed out above, this distance corresponds to
the diagonal distance in the chair-type sixfold rings which make up the
crystal. The amorphous structure, on the other hand, is made up of a
mixture of five-to eightfold rings, in various proportions, shapes or
degrees of distortion depending on the particular model. Despite these
differences in ring statistics, all the random networks constructed have f

similar radial distribution functions, which indicates that replacing most




of the chair-type sixfold rings by any mixture of different ones will
result in a disappearance of the third-nearest neighbor peak.

Based on these observations, the following phase-specific con-
struction rules can be identified:

(i) the chair-type sixfold ring which makes up the diamond cubic

structure is characteristic of the crystalline phase;

(i1) the virtual disappearance of these chair-type rings and their

replacement by a mixture of different ones in characteristic of the

amorphous phase.

CONSTRUCTION OF THE INTERFACE MODEL

The model has been constructed with the same plastic units used
for bulk random networks (made by Rinco Instrument Co., Greenville,
111.). The bonds made by these units have some flexibility which allows
bond angle distortion, but are rigid enough to prevent distortions
above ~25°.

The description of the diamond cubic structure as a stacking of
(111) layers shows clearly that the crystal can be terminated conveniently
between two of these layers. Therefore, following the general procedure
outlined above, it was decided to start the interface construction with
the crystalline phase. A crystal consisting of two (111) layers was
constructed and was terminated such that the atoms nearest to the
boundary plane had one unsatisfied bond out of the plane, parallel

to the [111] direction. The two layers will be designated

from here on as the ''lst'' (closest to the boundary plane) and ''2nd'’

G
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crystalline layer (see Fig. 2c). They contain 64 and 62 atoms, |
respectively. |

At this point, the following construction rules were used in order
to make the transition to the random network amorphous phase. Most
important is the change in the phase-specific construction rule, which,
as discussed above, consists of making the chair-type sixfold rings
disappear. Specifically, this was done here by:

(i) giving preference, as much as possible within the strain
limitations, to the construction of any other type of ring over a chair-
type sixfold one.

Furthermore, a number of other construction rules, common to
both phases were also used:

(ii) satisfying all the bonds;

(iii) keeping a unique nearest neighbor distance;

(iv) minimizing the bond angle distortion.
Since bending a bond is much easier than breaking ¢r stretching it, these
last three rules form a simple energy minimization procedure. They
were the criterion for choosing one type of ring over another when
replacing a chair-type ring.

Since half the atoms in the first crystalline layer had at this
point still one open bond, perpendicular to the plane, it was decided to
cont nue the construction by satisfying all these bonds first. This
resulted in the creation of what will be called from here on the ''lst
amorphous layer'' (see Fig. 2b). Topologically, it is a two-dimensional

structure: each of the 67 atoms, except for the layer edges of course,

has three bonds with atoms in the 1st amorphous layer and a fourth bond
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connecting it either downwards with the lst crystalline layer, or upwards
with the 2nd amorphous layer (to be built later).

It consists of a mixture of five-, six- and sevenfold rings. Only a
few of the sixfold rings approach the ''chair'' configuration. Most of
them have either a ''boat'' or a distorted configuration. It is clear from
Fig. 2b that the new layer has no translational symmetry and is thus
truly ""amorphous''. So, it seems that the particular choice of phase-
specific rules made above was indeed sufficient to make the transition
from crystalline to amorphous. It is interesting to note that after a
few non-chair type rings have been constructed (~ 15 atoms) it was no
longer necessary to pay special attention to rule (i), i.e., keep avoiding
chair configurations. Once amorphousness was introduced by creating
a few noncrystalline rings, adherence to the general rules (ii) - (1v) was
sufficient to prevent the reappearance of crystallinity.

The second amorphous layer, formed by satisfying all the loose
bonds of the first amorphous layer out of its topological plane,mcontains
73 atoms and is shown in Fig. 2a. Again, there was no problem
keeping the structure amorphous by simply using rules (ii) - (iv).
Topologically, this layer is also three-connected, except for one atom
near the edge which has all four bonds in the topological plane.

Based on our previous experience with physical model building, it
was felt that at this stage the construction had become qualitatively
similar, in terms of the number of choices available and the amount of
strain introduced, to that of a bulk random network. Therefore, it was
deemed unnecessary to add any more layers. Suffice it to point out that
the model can be extended in all directions without any problem.

Figure 3 shows two views of the completed structure.
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MEASUREMENTS AND OBSERVATIONS

The coordinates of the 266 atoms were measured by a triangulation
method, using a laser mounted on a surveying transit. With the aid of
the computer, using an algorithm similar to that of Polk and Boudreaux
(1973), the coordinates were refined to make all the nearest neighbor bond
lengths exactly equal.

The bond angle distortions could then be calculated. To illustrate
the variation of the distortion with distance from the boundary plane,
Fig. 4 shows the deviations (Ag§) from the ideal tetrahedral angle of the
bond angles associated with the atoms in each of the four layers parallel
to the boundary. There are six angles between the four bonds of each
atom; however, bond angles with an unsatisfied bond (at the model's
outer surface) have obviously not been taken into account. The mean
bond angle deviation Ap is close to zero in all four layers and the
distributions are roughly symmetrical about the origin. The standard
deviation A—ze_ , which is a measure of the bond angle distortion, is
10.0° and 8. 2° for the 1lst and 2nd amorphous layer; 8. 6° and 4. 8° for
the 1st and 2nd crystalline layer, respectively. Since this value for the
bulk crystalline and amorphous phase is 0° and 9. 10, respectively, it
becomes clear that the creation of the interface results in an excess
distortion of the bond angles near the boundary plane. The excess
strain energy associated with this distortion contributes to the surface
tension. The 2nd crystalline layer is less distorted than the lst one and
it seems plausible that the excess distortion will keep decreasing with

increasing distance from the boundary. The lst amorphous layer is more

.
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distorted than the bulk amorphous phase. The 2nd amorphous layer,

however, seems to be less distorted; there is no obvious physical
explanation for this, and it is probably an artifact caused by the large
number of unsatisfied surface bonds in this layer; enlarging the model
would probably result in a slight increase of the distortion. Suffice it
to point out that also in this respect the 2nd amorphous layer, in
agreement with the observations during the construction of the model,
is quite similar to the bulk amorphous phase.

To illustrate the variation of the structure with distance from the
boundary; Fig. 5 shows the radial distribution functions of the four
interface layers. Since only distances between atoms in the same layer
are used, these R.D. F.'s are close to two-dimensional and should be
defined as 27r p'(r). The average distribution is 27r po' | (i. e., linear
in r), where pb is the average number of atoms per unit area of the
layer. Since the nearest neighbor distances and nearest neighbor
coordination are nearly the same for all atoms in the model, their
atomic volumes, defined e.g., by a Voronoi construction, are expected
to be almost identical. (The difference between the bulk crystalline and
amorphous atomic volume is only ~1%). Therefore, pb was taken to
be . 866 atoms (NN D)-Z, which is the planar density of the crystalline
(111) planes. Since p'(r) is defined for an infinite layer, it was
necessary to correct for the finite size of the layers by introducing a
size factor F(r, size), which is defined as the ratio between the number
of pairs at a distance between r and r + dr per atom in a layer of

finite size (measured on the model) and the number of pairs at the same

distance per atom in an infinite layer (= 27r p'(r)). Expressions for
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F(r, size) are available only in three dimensions, but it is easy to
derive an expression in two dimensions using the same basic approach.
It is assumed that the shape of the finite layers can be approximated by
a circle with effective outer radius R. Formally, this means that the
expression for the atom positions in a finite size layer can be obtained
by multiplying the expression for an infinite cluster by a shape factor
S(r) =1 for r< R; S(r) = 0 elsewhere. It is straightforward to show

that the size factor F(r,R) is the autocorrelation function of the shape

[ e |

After this correction was made, the R. D. F.'s do indeed approach the

factor S(r,R) or:

F(r,R) =

R =

linear average distribution at large distances and the number of nearest
neighbors, obtained by integrating the first peak, is indeed very close
to 3.

The R.D. F. of a perfect, undistorted crystalline (111) layer
consists of a series of deltafunctions with positions and area as indi-
cated at the top edge of Fig. 5c. The peaks in the R.D.F.'s of the lst
and 2nd crystalline layers have been broadened by the bond angle dis-
tortion, but they are in the right positions and have the right integrated
peak area. The peaks of the 2nd crystalline layer are sharper than
those of the lst layer, which reflects the lower bond angle distortion.
To compare the structure of the two-dimensional 2nd amorphous layer
to that of the three-dimensional bulk amorphous phase, their respective

pair distribution functions w'(r) = p'(r)/p(') and wi(r) = p(r)/po are

| 4
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shown on Fig. 6. Because of the difference in their normalization the

two functions can only be compared qualitatively, but their similarity
is clear. The absence of a strong peak at 1.92 N.N. D. in w'(r)
reflects the phase-specific construction rule which forbids the chair-
type configurations on the amorphous side of the boundary.

A final observation is concerned with the degree of localization,

perpendicular to the boundary, of the amorphous layers near the inter-
face. The layer localization can be characterized by the maximum
distance normal to the boundary plane between any two of its atoms.
For example, for the crystalline (111) planes, this is simply the

puckering height: 1/3 N.N.D. For the lst and 2nd amorphous layers

this was measured, after correcting for a slight overall bend in the model,
to be 0. 74 N.N.D. and 1.03 N. N. D., respectively. This means that the
degree of localization decreases with increasing distance from the 1
boundary, i.e.: the structure becomes more ''random'' in the direction
normal to the boundary. The 2nd amorphous layer, however, is still
more localized than a totally random distribution of the atoms would be,

as can be seen from the following argument: since it is possible to
establish a one-to-one correspondence between the atoms of subsequent
layers, the planar density of all the layers must be the same, i.e.,

equal to that of a crystalline (111) plane. Since all the atoms, because

of their identical nearest neighbor distance and coordination, have the
same atomic volume, the spacing normal to the boundary between
subsequent layers must on the average be the (111) spacing, or 4/3 N. N. D.
If the atoms in the 2nd amorphous layer were not localized at all, one

would therefore expect this value to be the maximum normal distance
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between any two of its atoms. Whether or not the localization of sub-
sequent layers would disappear if the model were enlarged is open to
speculation. It would not be totally surprising, however, if a certain
degree of localization persisted all through the bulk of the amorphous
phase. Several workers (Chaudhari and Graczyk, 1974; Alben, Cargill
and Wenzel, 1976) have pointed out that the bulk random networks, although
totally free of translational symmetry, contain localized planar corre-
lations (with spacing 4/3 N.N.D.) which extend throughout the whole
model. A similar observation has been made in bulk dense random
packings of hard spheres (Alben, Cargill and Wenzel, 1976), and here
the indications are that the correlations are induced by the initial
boundary conditions of the construction. Therefore, one might
speculate in this case that the planar boundary condition presented by
the initial crystalline layers could induce long range planar correlations
into the bulk amorphous phase. This seems to be supported by a
similar observation in a bulk hard sphere dense random packed phase,

when it is interfaced with a close packed crystal plane (Spaepen, 1975a).

CALCULATION OF THE SURFACE TENSION

The surface tension is the excess free energy associated with the
creation of a unit are interface. To calculate the energy component of
the surface tension, it is instructive to analyze the structural origin
of the energy difference between bulk crystalline and amorphous Ge.

The enthalpy of crystallization (AHc) of amorphous Ge is

2. 75 kcal/mole or 29.8 meV/valence electron (Chen and Turnbull, 1969).




As discussed by Polk (1971la), there are three possible contributions

to the higher energy of the amorphous phase: strain energy due to bond

stretching (Es)’ strain energy due to bond bending (Eb), and the
energy associated with the relative orientation of neighboring tetra-
hedra (Ed).

The first contribution (Es) is zero for random network models
with a unique nearest neighbor distance equal to the crystalline one.
The second contribution has been claculated by Moss, Alben, Adler

and de Neufville (1973) to be

Eb = %kd2 (A79) per electron (1)

where

AZO: the mean squre bond angle deviation

= (9.1%° = (0.16)% for the Polk-Boudreaux model
d : the nearest neighbor distance

=2.43x10%m for Ge
k : the force constant for bond bending

= 2.4 Nm-l for Ge, derived from phonon-dispersion

curves.

This gives
E = 17.05 meV/electron
The third contribution comes from the difference in relative

rotation between neighboring tetrahedra; in the crystal, all neighboring

tetrahedra are in the 'staggered' configuration, which is the one of
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lowest energy; in the amorphous phase there exists a continuous
distribution of all orientations between 'staggered' and 'eclipsed’,
which results in a higher energy. It is difficult to calculate this
energy independently, and therefore it will be assumed that it simply
is the balance to make the energies add up to AHC, or Ed = 12, 75
meV/electron.

The energy contribution to the surface tension can be calculated
using the same approach. The results for Ge are summarized in
Table 1, which shows the contribution of each of the four layers of the
model. The strain energy associated with the bond angle distortion,

Eb’ is calculated with £quation(l). N, is the average number of

d
electrons per atom participating in a bond that connects two tetrahedra
whose relative orientation is not the crystalline 'staggered' one. In
the two amorphous layers, all four of each atom's electrons are in
this case, while in the 2nd crystalline layer there are none. In the lst
crystalline layer, each atom has 3 electrons participating in bonds
within the layer; the fourth electron participates in a bond with either
the 2nd crystalline or lst amorphous layer; since only the bonds to the

1st amorphous layer connect tetrahedra which are not in the 'staggered'

orientation and since half the atoms in the layer are connected this way,

Nd = 0.5 for this layer. If it is now assumed that the distribution of
the relative orientations of the neighboring tetrahedra which are not in

the 'staggered’ configuration is the same as in the bulk amorphous 1

phase, the resulting contribution to the energy is E, = Nd Ed(bulk)

d
= Ny x 12.75 meV/atom. Both contributions are added up to give the

total energy: E = 4Eb + Ed' The excess energy AE is the difference
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between the energy of the interfacial layers (E) and the energy of the
.espective bulk phases. For the crystalline layers, the bulk value is
of course zero, so that .AE = E. For the amorphous layers, the

bulk value is AHC = 119,31 meV/atom and AE:= E - AHC. For the
2nd amorphous layer, this results in a negative value due to a bond
angle distortion (8. 2°) which is apparently lower than the bulk value
(9.1°). However, as discussed in the previous section, this unphysical
result is probably an artifact that would disappear if another layer were
added to the model. Therefore, because the 2nd amorphous layer is
quite similar to the bulk amorphous phase in many other respects, its
excess energy is simply set equal to zero. Adding up the contributions
of the four layers gives the energy part of the surface tension:

100.47 meV/atom in the boundary plane. The area per atom in a Ge
(111) plane is 6.82 x 10-20 mz, which means that the surface tension

can be written as:

20,238 Tm-®

This value for the surface tension is a lower limit. If more crystalline
and amorphous layers were added to the model, they would probably
also have some bond angle distortion, but their contribution to the
strain energy would be small since the energy depends on the square of
the distortion which decreases with increasing distance from the
boundary. Another possible contribution to the surface tension is the
entropy due to the localization of the amorphous layers near the
boundary. However, the configurational entropy of these random net-

works is so low (0.2 k per atom is an upper limit (Spaepen, 1974))
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that even if one complete amorphous layer would lose all its
configurational entropy, the resulting change in the surface tension

at room temperature would be at most 5%.

DISCUSSION AND CONCLUSIONS

1. It has been demonstrated that an interface can be constructed
between the amorphous and crystalline phases of tetrahedrally
coordinated materials by following the general procedure of changing
the appropriate phase-specific construction rules.

2. The resulting interface has no broken bonds and this
corresponds to a state of lowest energy. Breaking a bond in Ge costs
1.63 eV (Pauling, 1960), while the energy associated with forming the
interface without broken bonds is . 100 eV/atom in the boundary plane.
This means that breaking a bond in the interface would be energetically
favorable if it would relieve the strain in approximately 60 atoms
around it; it was clear from the model building experience that this
could never be the case. Whether or not the interfaces in crystallization
experiments resemble this ideal lowest energy model depends on the
extent to which loose bonds have been annealed out after preparation of
the samples. It seems probable that the model would be most
applicable to slow crystal growth processes, or growth in pre-annealed
samples.

3. The surface tension is mainly energetic in origin. When
normalized in terms of the heat of transformation per atom Ahc, the

surface tension can be written as o 2 0. 84 Ahc/atom in the boundary
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plane. This value is comparable to that calculated for the surface
tension between a monatomic hard-sphere like crystal and its melt at
the melting point o = 0.85 Ahf/atom in the boundary plane. The
crystal-melt surface tension, however, is negentropic in origin, which
means that the surface tension scales with absolute temperature, while
the amorphous-crystalline surface tension never falls below the value
of its energetic component. This value is large enough to suppress
homogeneous nucleation of Ge crystals in the amorphous covalent
phase (Turnbull, 1969). It is difficult to check this experimentally,
since most amorphous films have many impurities which can act as
heterogeneous nucleation sites. The fact that other network formers
(SiOZ, Se) where one would expect a similar energetic surface tension,
are good glass formers is consistent with this calculation, although in
these cases it is difficult to separate the effects of jump frequency and
surface tension on homogeneous nucleation.

4. The model makes it possible to be more specific about the
problem of putting together an assembly of randomly oriented micro-
crystallites or other regular microclusters ('amorphons') by connecting
them with a random network matrix (Hoare, 1976). Replacing part of
a random network with a spherical crystallite of diameter d results
in a lowering of the energy, since the crystallite is initially unstrained,
by 1rd3Ahc/67 (v is the atomic volume), and an increase in energy
due to the surface tension of the newly created interface (assumed
isotropic) by ﬂdZ(O. 84 Ahc)/(7)2/3. The new system will have the
same energy avs the random network if the two contributions are equal or:

d-= 5(;)1/3. Therefore, if one were to construct a microcrystalline

M
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composite model that is energetically equivalent to the random network
model for amorphous Ge, the crystallite size would be 14 A. The
interface model shows that the 2nd amorphous layer begins to resemble
the bulk phase; therefore, in order to make the transition between two
randomly oriented crystallites at least three amorphous layers must be
constructed between them; the middle one of those three layers

approaches the bulk structure and can therefore be shared by both

crystallites as their 2nd amorphous interface layer. The spacing of

the interface layers is the crystalline (111) spacing dlll‘ The distance

between the centers of two adjoining crystallites is therefore at least

d+ 3d1“. In the case of Ge, this means that the amorphous matrix

necessary to join the crystallites takes up more than 80% of the volume.

The only way to decrease this amount substantially is by arranging the

crystallites or microclusters in a highly correlated way (Gaskell, 1975).
5. The model can be a starting point for understanding the

topology and energetics of the crystallization process. It is clear that

in order to make any topological changes in the model at all, it is

necessary to break and reconnect the bonds. Preliminary investigations

seem to indicate that it is possible to make major topological rearrange-

ments by breaking one bond and propagating the resulting loose ends

through the network; some of the intermediate configurations necessary

for propagation of the loose bond require local extra strain. This

strain energy could explain the difference between the energies required

for bond breaking (1.63 eV for Ge and 1.82 eV for Si (Pauling, 1960))

and the activation energies of the crystallization process (2.0 eV for Ge

(Csepregi, Kullen, Mayer and Sigmon, 1977) and 2.3 eV for Si (Csepregi,

Mayer and Sigmon, 1975)). This question obviously needs further investi-

gation.
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FIGURE CAPTIONS

Radial distribution function of the Polk-Boudreaux (1973)

tetrahedrally coordinated random network structure. The
number and positions of the neighbors in the diamond cubic
lattice are indicated by the vertical lines.

Topology of the four layers in the interface model. The
circles and dots represent atoms whose fourth bond connects,
respectively, to the layer above or below.

(a) the 2nd amorphous layer;

(b) the lst amorphous layer;

(c) the lst crystalline layer; the position of the 2nd
crystalline layer is indicated.

Top and side view of the completed interface model; the
four layers are indicated.

The distribution of the bond angle deviations for the four
interface layers.

The radial distribution functions for the four interface layers.
The dashed line corresponds to the average density. The
number and positions of the interatomic distances in an
undistorted (111) layer are indicated on the top edge of (c).

Comparison of the pair distribution functions of a bulk random
network and the 2nd amorphous layer.
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