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ABSTRACT

A decentralized many-person decision problem is one where
each decision maker has different information. If one decision maker's
information depends on what another decision maker has done, the
information is called ''dynamic.'' In the past, problems involving
dynamic information have been very difficult, if not impossible, to
solve. Two specific examples which have been solved, one from
economic theory and the other from classical information theory, will
be investigated. It will be shown that they can be formulated as two-
person decision problems with the type of dynamic information structure
called ''signaling. "' The first example involves a model of the job
market as a nonzero-sum game. New equilibrium solutions are found
and properties of these solutions, such as stability, multiple solutions,
and threshold effects of signaling cost and noise, are studied. The
second example models the Shannon problem as a team theory problem.
The concept of real-time information theory is introduced, where
source and channel sequences are of a fixed length, and general results

about real-time solutions are proved and demonstrated.
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CHAPTER 1

INTRODUCTION

Information available to a decision maker (DM) not only influences
his actions, but also determines whether a solution to the decision
problem exists at all. The role of information becomes particularly
complicated when there is more than one DM, especially if each DM
has different information. In order to study how information influences
decision making in many-person decision problems, two specific
examples, one from economic theory and one from classical info;mation
theory, will be examined. It will be shown that they can be formulated
as two-person decision problems. This formulation provides a frame-
work for studying each problem's information structure, that is, ''who
knows what. '' The reason these particular examples have been chosen
is because they both exhibit a special type of information structure
called ''signaling.'' In the past (see [1], [4], and [7]), problems in-
volving this type of information structure have been very difficult, if not
impossible, to solve. However, these two examples can be solved (in
a sense to be defined). Thus, they provide new insights into possible
new solution techniques.

Before going on to the two problems in detail, we first will define
more precisely what is meant by a many-person decision problem with
''signaling. "

Suppose there are N decision makers, with the i-th DM denoted

as DMi. First of all, let x € 0 be a random variable representing the

1-1
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state of the world (or state of nature) that each DM would like to know,
with probability density p(x). Secondly, for i=1,...,N, DMi's
information z; € Zi is a function of x, written as z, = hi(x). % When
h, # hj for i # j, then we say the problem is ''decentralized, '' since
each DM is making decisions based on different information. Thirdly,
DMi's action, or decision, u, & Ui is a function Y; of his information,
expressed as u, = Yi(zi)’ where Y; is called a ''strategy'' or ''decision
rule.'' Lastly, DMi's objective, or payoff, function Ji is the
expectation of a function ji of x and all of the DMs' strategies. Each
DMi now faces the following problem: choose a strategy Y from a
class of specified admissible strategies (usually taken to be the class of

measurable functions from Zi to Ui) to minimize

Ji(vps oo ¥y) = ELZGG Y] -

The information to DMi can be modified to include not only z;, a
a measurement of the state x, but also the actions of the other decision
makers. For example, suppose DMi's information also includes u,,
the action of DMj, j# i. Thus, a sense of order is conveyed in that
DMj acts before DMi, and DMi observes this action. When this
happens, that is, when DMi's information depends on what another
person has done, we say that DMi has a dynamic information structure

[2], [3]. Otherwise, the information structure is called static. or

*
This is not the most general definition of information, but is sufficient
for our purposes at this time.

*x
We are considering only nonclassical information in that each decision
maker has different information [8].
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The former is the type of information structure that occurs in the two
examples to be studied. i

Sometimes a dynamic information structure can be reduced to a
static one [2]. However, one example where this is not the case is the
type of dynamic information structure we call '"'signaling.'' For the
case of N =2, let DMl's action be denoted as u and DM2's as v.
Then signaling is defined as the type of dynamic information where
DM1l's information is just x and DM2's information isjust u. In
other words, DMI ''signals'' his knowledge of x to DM2 through his
action u = yl(x). DM2 must now infer x from u and choose
v = Y,(u).

Chapter II examines an economic a.pplicafion of signaling based on
a model of the job market by Spence [6]. Although Spence used the
term ''signaling'' to describe the type of information transfer in the
job market, Chapter II extends the model by formulating the problem as
a two-person decision problem. The reason for this is twofold: first
of all, we immediately see that Spence's model is an example of a
problem with (nonclassical) dynamic information that can be solved.
For this reason, it provides an excellent vehicle for studying this type
of information structure. Secondly, this set-up allows us to find new
solutions and investigate different properties of the solutions. Although
the lack of detail in the model prevents us from asserting the absolute
validity of the economic issues raised, the decision- and control-
theoretic framework provides qualitative insights into modeling the

transfer of information.

*
The reason problems with a dynamic information structure are difficult
to solve is because the underlying probability distributions needed to find

the solution are themselves solution-dependent. See [8] and [3] for details.




Chapter III deals with problems in Shannon theory, also some-

times referred to as classical information theory, which addresses

the problem of coding a message and sending it through a noisy
communication channel [5]. At first glance, this may sound unrelated
to the economics-oriented Spence problem of Chapter II, but we will
show that this problem also can be modeled as a two-person decision
problem with a signaling information structure, only now the DMs

form what will be described as a ''team.'' To correspond more
accurately to the Spence problem, the formulation will be modified to
introduce the concept of ''real-time information theory.'' This provides
decision and control theorists with an understanding of information

theory in their own terms. On the other hand, it provides information

theorists with an entirely new way of looking at Shannon theory.
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CHAPTER II

MARKET SIGNALING AND THE SPENCE MODEL

1. Introduction

In the job market model of Spence [1], [2], an employer must hire
someone for a job without knowing how productive that individual will be.
In other words, the employer has imperfect information about an
individual's ability, Spence suggests that the employer can improve his
information by looking on the job application for some signal, such as
educational level. The employer offers wages based on the signal he
sees; that is, a person with more education is offered higher wages,
because the employer believes that the higher education indicates higher
ability, The individual applying for the job, on the other hand, knowing
he will receive wages based on his educational level, must decide how
much education to get, taking into consideration that education is costly.
When the employer's beliefs about the relationship between ability and
education are confirmed by what the individuals actually do, then we
have what Spence calls an equilibrium.

An interesting feature of this model is that there are multiple
equilibrium solutions. In this chapter, we explain why this is true and
prove new results about the Spence model. In order to do this, the
model is formulated as a two-person nonzero-sum noncooperative
decision problem with imperfect and dynamic information. The purpose
of this is to clearly display the decision and control theoretic nature of

the problem, in particular the role played by the dynamic information

2-1
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structure. Under this formulation, new classes of multiple equilibria
can be found and an explicit method for computing these new equilibria
is given. Also, different properties of the solutions are investigated,

such as stability and threshold effects.

2. Problem Statement

All potential employees will be considered together as decision
maker one (DM1) and the employer as decision maker two (DM2). DMl's
information is natural ability, denoted by the variable x. That is, each
person makes a decision based on knowledge of his own true ability.

This can be expressed as a mapping from ability to educational level,
denoted by yl(x) = u, where u is the variable representing educational
level. (We assume x>0 and u2 0 to rule out the meaningless notions
of ''negative'' ability and ''negative'' amounts of education.) The
employer's information is the signal u, and hi§ strategy is to offer
wages as a function of education, denoted yz(u) = v, where v represents
wages. We immediately see that this is the type of dynamic information
structure defined in Chapter I as ''signaling,'' where educational level

u is the signal.

In Spence's model, signaling costs c(u,x) and productivity s(u,x)
are functions of education level and ability. g Each individual applying
for a job chooses the educational level to maximize his net profit, the

difference between his wages and costs. For DMI, the entire employee

*
Thus, educational level u not only serves as a signal about x, but
also affects productivity directly when s(u,x) is an explicit function
of u.
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population, the goal is to maximize the expected net profit, with

expectation taken over the variable x. We assume that everyone,
including the employer, knows the distribution of ability types through-
out the population. Thus, the payoff function J, for the individuals

is written
J10vp5¥p) = Ely,y(v () - ely;(x),x)] .

This is the same criterion that Spence proposes although he does not
consider it in the context of a two-person decision problem.

Assuming utility units are appropriately defined, the employer
would like to pay people no more than what they are worth; that is, he
wants wages v to be less than or equal to productivity s. However,
if v is strictly less than s, another employer could come along and
offer wages greater than v but less than s, attract employees away
from the first employer, and still make a profit. We will combine this
idea of competition with the original proposal that wages not be greater
than productivity in a single loss function for the employer by penalizing
any deviation from s. Hence, the employer wants to choose a wage

schedule Yy to minimize the quadratic loss function
1,001, %) = Elvy(y,(0) - sy (), %))
21 Yy YolY, Y X), .

J2 is a mathematical device to allow us to (1) reproduce Spence's
result under our setup, and (2) focus on the equilibrium under compe-
tition without bringing in competition explicitly, thus avoiding the

complication of a three-person decision problem. In Section 6 we will,
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however, discuss the issue of competition directly, as was done in
[3] and [4].

The problem is now in strategic form; i.e., the goal is to find
the '"'optimal'' strategies Y, 2and Y2 where by optimality we mean
finding the noncooperative Nash equilibrium, sometimes referred to as
person-by-person optimality. This is defined as follows: (y:, y;) is
a Nash equilibrium pair for the objective functions J, (maximize) and

JZ {minimize) if and only if
* % * jonth
Ty ¥p) 2 J4(vp, Y,) ¥ admissible y,
* % * e
T4 ¥5) s J5(vp,¥5) ¥ admissible v,

That is, neither DM has the incentive to unilaterally deviate from the
equilibrium solution. By standard manipulations [5], the first order

necessary conditions for the Nash equilibrium are:

>

m:x E/x [yz(u) - c(u,x)] = Y5 = -g—ﬁ

mjn E/u [(v - s(u,x))Z] = yz(u) &Y. E/u (s)

where ' denotes d/du, and E/x(-) denotes E(- Ix).* It is clear that
the second order sufficient conditions for the second equation hold, since

J2 is quadratic.

*
That is, instead of solving for the strategies y* and y* in function
space, we fix the arguments x and u and solve for thé variables u
and v, respectively.
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The difficulty now is that p(x|u), the underlying probability
density function in the determination of yz(u), is solution-dependent;
that is, it cannot be evaluated until vy, is specified. A way out of this
predicament is to guess that vy, is a one-to-one function. Then
knowledge of u implies knowledge of x, so that y,(u) = E /u[s(u, x)] =
s(u,x = ‘yil(u)). Spence proves in [1] and [2] that the second order

conditions for the first equation, namely, Y5' s
2 - €uu < 0, are satisfied

in this case under the assumptions
i >
i) €y 0
15y ¢ <0
ux
iii) s_> 0.
X

A particular example from [2] in which Yp =8 is as follows:

EXAMPLE 2.1:

0

n
s

@

I

®

Then, Y} = 1/x and Y, = X, or

| =
YZ—YZ .

This is a differential equation in Yy, and has the one-parameter family

of solutions

yz(u) = "Zu + 2k (2. 1)

where k is the parameter. Since Yy = X,

2

v® = u=gx-k . (2.2)
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Since x> 0, then y, in(2.2)is, in fact, one-to-one, and our original
assumption is verified. Equations (Z. 1) and (2. 2) are tke equilibrium
solutions derived in [1]and [2], so that the two-person model recaptures
Spence's original results.

An important property of the solutions is that varying k produces

a continuum of multiple equilibria. Since

*
dJ 1(k)

st gl 1
dk 15 E[x]>o

(where J)(k) = J;(y;(K),Y,(K)), y; and Y, asin (2.1)and (2.2)), the
equilibria parameterized by larger k give larger expected net profit
to DM than those with smaller k. For DM2, varying k does not
matter, since Y, always equals x and Jz remains zero. When one
equilibrium solution is better than another solution for at least one DM
without harming the other DM, the former solution is called ''Pareto-
superior'' to the latter. Thus, solutions (2.2) with larger k are
Pareto-superior to those with smaller k.

Spence also works out an example where x and u are discrete

random variables [2]:

EXAMPLE 2.2: Let x€{1,2}. Let

q = fraction of population of type x =1
l-q = fraction of population of type x =2
c = u/x 8=x

Suppose the employer guesses a relationship between ability and
education that results in the following conditional density function and

wage schedule:




T

Pr{x=1{0su<u’}=1 = y(w=1 for u<u

Pr {x=2|u 2 u*} = 1 = yy(u) =2 for uzu

Y, is a two-level step function as shown in Figure 2.1. Since the cost

of education is a monotonically increasing function of u for fixed x,

the net profit y,-c will be maximized only at the education levels

* *
u=0 or u. Thus, the individuals will choose either u=0 or u.

For x=1,
%k
max{yz—c] = max {1,2 - u}

For x =2,

*
ma.x{yz-c] = max{l,z ~22~—

Therefore, in order to have consistency with the employer's beliefs,

we must have:

Yl(x:l): 0 < l>2-u*, or u >1
* b *
Yy(x=2) = u e 2-%—>1, or u <2

Inequality (2.3) is the equilibrium condition for this discrete example.

%k
Varying the parameter u between 1 and 2 again results in a

continuum of multiple equilibria. Also,

<> 1<u*<2

(2.3)
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WAGE SCHEDULE FOR EXAMPLE 2.2
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As u* decreases, J’; increases. Therefore, solutions with smaller
u’ are Pareto-superior to those with larger u*.

Because the information structure is dynamic, the employee has
complete control on what the employer can infer from his observation
u about the underlying state of nature x. Thus, it is not too surprising
that by allowing the employer to make different kinds of inference on
the functional relationship between x and u, different functional

forms for the equilibria can be obtained.

3. Comparison of Equilibria

In Example 2.1, Y, is a one-tc-one mapping from a continuous
set of abilities to a continuous set of educational levels. In Example
2.2, vy, is also bne-to-one, but this time the sets are discrete. In
both of these examples, the employer can precisely determine ability
from merely looking at the signal. In our model, we will obtain
equilibria somewhere between these; our equilibria involve a continuous
range of abilities but a discrete, finite number of given signals. Thus,
our mappings from ability to signals are many-to-one. . We believe our

equilibria are intuitively appealing for several reasons. Fii it of all,

*
Our equilibria are actually many-to-one solutions for Example 2. 1. The
available range of signals remains continuous, but only a finite number
of signals are actually chosen by the employees.
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in actuality, there are only a discrete number of educational levels at
which wages are offered, for example, bachelor, master, and doctorate
degrees. 5 Secondly, many different types of people choose the same
signal, suggesting a many-to-one mapping. Lastly, employers are
limited in the amount of information processing they can do, so that
they can handle only a discrete number of signals.

Another property Spence's discrete example has in common with
his continuous one is that there are multiple equilibria, in fact, a
continuum of multiple equilibria. As mentioned earlier, some are
Pareto-superior to others in the sense that they give a higher expected
net profit J, to DM1. Spence points out that the Pareto-inferior
solutions are inefficient in the sense that people are overinvesting in
the signal by purchasing more education that is necessary to signal
their ability levels. Spence [3] and Riley [4] have discussed how to
choose the Pareto-optimal solution, if possible, that is, the solution
which has no other solutions Pareto-superior to it, in order to
eliminate or reduce the inefficiencies. However, théy assume that the

employer has the power to manipulate both the wage schedule Y, and

the signal levels u by changing the parameters of the problem, in the
first example by varying k, and in the second by varying u*. In effect,
this is equivalent to changing the signals already existing in the market.
In our equilibria, we assume that the parameters, and hence the

signals, are fixed exogenously. This reduces the multiple equilibria

%
Although ''pseudo'' educational levels, such as ''master's degree with
two years experience,'' have been created over time, they are still
discrete.
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to a single equilibrium, in general. The justification for this
assumption is that when the employer comes into the market, the
educational levels used for pay scales are already determined. Only
after a long period of time can new levels be established. Table 2. 1

summarizes the differences between our solutions and Spence's.

TABLE 2.1

Comparison of Equilibrium Classes

Ability Signal (e. g. Education)
Spence Discrete Discrete-not fixed
Spence-Riley Continuous Continuous-not fixed
Ho-Kastner Continuous Discrete-fixed
4. New Multiple Equilibrium Classes

In Example 2.1, we began by guessing y; Wwas one-to-one,
determined Y, from this Yy» and then found that the resulting
solution was consistent with the original guess. In the second example,
we guessed Y, asa function of a parameter and then through Y
determined the values of the parameter that would give consistency.
Thus, as mentioned in the introduction, an equilibrium can be described
as the solution to an implicit equation resulting from a mathematically

self-consistent loop, as shown in Figure 2.2, where p(x|u) is the




L 5

u=y,(x)

FIG. 2.2 SELF-CONSISTENCY LOOP ILLUSTRATING
IMPLICIT EQUATION
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conditional probability density of x given the signal u, which is

determined by v,. To find the new equilibrium classes, we guess Y,

in terms of some parameters and determine the conditions on the

parameters so that the resulting vy, from circling the loop is the

original guess Y,

g s Figures 2.3 and 2.4 show the kind of equilibria we are looking
for. We assume ability x lies in some fixed range [xo,xN]. Let ‘

1

L% X)) Xpy eees XN be points inside the interval such that
€ X 3y £ X (2.4)

x0<x1<x2--~ N-1 N . s

Let uc¢ [uo, uﬁ], and assume that ability types within each subinterval
[xi’xi+1) choose the same signal u.. The endpoints x, of these sub-
intervals, except for x, and xp, will be called ''breakpoints''. No
single person chooses the breakpoints; they just reflect how the entire

employee population divides itself. More precisely, DMl's strategy

is as follows (see Figure 2. 3):

Qi ok

u, , xe[xi,xH_l) ¥, =200y N<2 ]
! Yy (%) = |
un.pr X € [xN-l’xN]

1t is clear from J; that we must have uj<uy<:c: <uy 4, for
otherwise, wages (yz) would be a decreasing function of education

*
level, an intuitively unappealing result. Since Yy; assumes discrete

%
We are assuming here that Y, is a monotonically increasing function
of educational level.

SRS SSRGS SIS X




FIG. 2.3 STRATEGY FOR EMPLOYEE POPULATION
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values over a finite number of intervals, the assumptions for this
problem will be a discrete version of the first two assumptions above,
that is, i') Ac/Au>0 and ii') Azc/AxAu< 0. The third assumption
will not be needed to prove the sufficient conditions for this class of
solutions.

The employer can now compute his strategy, after he computes

the conditional density function (as shown in Figure 2.2):

p(x) ; o
Fix ) - Fx,)’ x € [x,x ) ([xy_),xy] for i=N-1)

p(x[u,) =

0 otherwise

(p is the probability density function and F is the distribution function)

and

f;‘”‘ s(ui,x)p(x) dx
2 £ i
Yz(ul) i E/ui [S(ui,X)] e F(xi+1) & F(xi)

>

V.
1

>

gi(xi’xi+l) % . (2.5)

The variables v, Trepresent the actual wage values, and the functions

g; show the dependence of wages on x, and X .1

defined only for the discrete signals u., i=0,...,N-1. In order to

So far, Y, is

have our equilibria be many-to-one solutions for Example 2.1, Y,

must be a Nash solution in the strategy space of measurable mappings
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defined over the entire interval [u, uN]. We arbitrarily define vy,

completely as

v uE[ui,uH_l), i=0,..., N-2

Y,(u) =
vN-p @€ [ayopruy]
Thus, the employer's strategy also looks like a step function (Figure
2.4). As will now be shown, this particular form for Y, gives us the
results we need for a simple equilibrium condition.

Given the wage schedule Yz DMl can continue around the loop

and compute a new strategy ‘?1:

y"l(x) = arg max [yz(u) - c(u,x)]
u

As shown in Figure 2.4, assumption i') that c > 0 implies that DM1

will only consider choosing among Ugs« e, Up - Therefore,

A

Yl(x) = arg max [gi(xi’xi"l"l) = c(ui,x)] .

uié{uo, oiny uN-l}
In order to attain self-consistency and have ?1 £ Y;, we want, for all
i=0,...,N-1 (omitting the arguments of g; for simplicity)

g.

;- clu,x)> g; - c(uj,x) ¥ j#i and x E[xi,xi+1)

The following proposition states that if people whose ability levels
are at a breakpoint x, are indifferent between the educational levels

u, and w g then \?l =y; for all x except the breakpoints.




PROPOSITION 2.1: If

g - c(ui,xi) = 1" c(-ui_l,xi) ¥ i=1,...,N-1 (2.6)

then

g - c(ui,x) > gj - c(uj,x) (2.7
for all j#i andfor all x € (x;, %, q) -
Proof. From assumptions i') and ii'),
clu;,x) - clu;,4,%) <cly,x; g) - clu g,x,,) ¥ x<x., .
From (2. 6),

B = 8, - Migpum ) Rl X g

Then

g - c(ui,x) >841 - c(ui+l,x) ¥ox< X, .
For all x € (xi’xi+l) P

g - clu,x)>g;, - clu, X >g;, - clu,,x) ...

so that

g - c(ui,x) > gj - c(uj,x) ¥ j>i
Similarly,

g - c(ui,x)>gi_1 - c(ui_l,x) ¥ x> x




et Y

implies

Q.E.D.

g - c(ui,x)> gj - c(uj,x) ¥ j<i, ¥ x €(xi,xi+l) -

The following corollary states that the indifference condition (2. 6)
implies that at the breakpoint x., u, and u _, are preferred over all

other signals.
COROLLARY 2.1. Given (2, 6),

g, - clu,x;)> g - c(uj,xi) ¥ j#i-1,i, i=1,...,N-2
(2.8)

Proof. Suppose there exists j Zi-1,i such that

g; - c(uj,xi) ¥ i c(ui,xi). If j> i, then by assumptions i') and ii'),

-c(ui,xi) + c(uj,xi) > - c(ui,x) + c(uj,x)

so that

gj - c(uj,x) >g; - c(ui,x) ¥ xE€ (xi’xi+l) -
which contradicts (2. 7). Similarly, if j< i - 1, then
gj - c(uj,x)> g_1- c(ui_l,x) ¥ x € (xi_l,xi)

which also contradicts (2. 7). Q.E.D.

Therefore, if (2.6) holds, and if we define ?l at the breakpoints

as

y‘l(xi) =u, is= 0,...,N-1 and ?l(xN) = uy (2.9)
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then ?1 =y, forall x¢€ [xo,xN] .
Thus, for fixed levels of education (u), ''optimizing'' means
choosing the breakpoints { xi}, what the employee population as a
whole should do, and wage levels {vi] , what the employer should do. i
We have shown that the necessary and sufficient conditions for opti-
mality reduce to the set of equalities (2. 6) and inequalities (2. 4)
involving the xi's and vi's. "~ The inequalities say that the break-
points should be ''in order''. The equalities say that if the people whose
ability level is a breakpoint, say x,, are indifferent between choosing
educational level u, and receiving wage v

0 0

receiving v,, then the system is in equilibrium and people are paid

, and choosing u, and

equal to the expected productivity of their particular signaling group.
We have reduced the Nash equilibrium of a two-person decision

problem to a feasible solution of equalities and inequalities. Equations
(2. 6) provide an explicit method for computing the equilibria. If the

ui's are varied or if the number of signals N is changed, then there
are multiple equilibria. But, if as mentioned earlier, the signals are

fixed, then there are, in general, no multiple solutions.

*This problem is different from those of Section 2. In Examples 2.1
and 2.2, u was found for each individual x. Here, the entire
employee population is considered in determining where the break-
points should be, and thus, what signals should be chosen.

ke
These conditions are clearly sufficient for optimality. However, they
are necessary for optimality only in the class of solutions we have
guessed, namely, many-to-one in the manner of Figures 2.3 and
2.4,
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EXAMFLE 2.3: Let

c(u,x) u/x p(x) uniform over [x,,x,]

s(u, x) N=3

|
L

From the definition of y, at equilibrium given by (2. 5),

x. +x,
vy = St o0, 1,2 .
From (2. 6)
u, -u,
X, = -‘-r-l——'_'—vl—-:-l' s i=1, 2 5
k 1 "%

Combining these, we have the equilibrium conditions

2(u, - u,)
x, - 3 .x_O (2. 10a)
2 0
2(u, -u,)
. TR S (2. 10b)
X3 b xl

Conditions (2.10) depend on u only through the differences u, - u,
and u, - u;, since ¢ is linear in u and s is independent of u.

If x, = 1, %x3=2.5 u- uy =u, -y, = 1, then the pair
(x1,%,) satisfying (2.10) and (2.4) is”

*The pair (-3.1, .36) also satisfies (2. 10) but not (2.4). In every
example we tried, only one of the pairs satisfying (2. 6) also satisfied
(2.4), but we have not ruled out the possibility that both pairs might
be solutions.




(%(\,8—9 ? 3) : ILO(\[s—g + 13))~ (1.6, 2.24)

The title of this section promises multiple equilibria, but here we have
a unique equilibrium. This occurs because, as mentioned above, we
assume u,, u,, and u, are fixed.

Table 2.2 gives numerical results for the cases N = 2,3,4.
Figures 2.5 and 2. 6 illustrate that for N = 4, Y, and Y, are already
beginning to look like the square and square root functions,
respectively, which are the solutions to Example 2.1, Spence's
continuous one-to-one case.

Other functions of c¢ and s, and other probability densities
p(x), such as the Gaussian distribution, also produce new classes of
multiple equilibria for different values of N, but the details are

omitted here.

TABLE 2.2

Numerical Examples for the Uniform Distribution

N X5 Xqse oo Ugs Upseee VgrVy c--

2 1, 1.33, 2.5 o, 1 1,07, 1.92

3 i, 1.6, 2.24, 2.5 g, 1, 2 1.3, 1.92, 2.37

4 1, 1.6, 2.23, 2.6, 3 0, 1, 2, 3 1.3, 1,92, 2,42, 2.8

aceialni o wonidlis i
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FIG. 2.5 EQUILIBRIUM EDUCATION LEVELS FOR N=4
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FIG. 26 EQUILIBRIUM SCHEDULE FOR N=4
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5. Adjustment Procedure and Stability

An important question to ask about these new equilibrium
classes is whether they are stable. That is, if the system is not in
equilibrium, will it return to equilibrium. In order to answer this
question, an adjustment procedure must be outlined for each decision
maker, describing how he would react if the system were in disequi-
librium. Then we can see if these actions bring all of the DMs back
to the equilibrium.

A reasonable adjustment scheme for the employer is the one
Spence proposes in his definition of equilibrium. He states that the
employer always pays wages equal to the expected productivity, based
on the statistical data revealed by the previous employee population.
The data the employer observes after the employees are hired are
just the breakpoints, that is, which range of abilities choose which
signal. Thus, he uses the data he observed in the past stage to make

his estimate in the current stage. This is written

vi(t) = g (x(t), x, ,(t) = E/“i [s(u,,x)]
x;41(t)
s(u,, x)p(x) dx
xi(t) i
¥ (2.11)

Fx;, (1) - Fix,(t)

We call this ''full equilibrium adjustment'’', because (2.11) is just the

equilibrium condition (2.5). That is, the objective function J'z is

minimized at each stage.
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The adjustments that the employee population makes to the
change in wage schedules can be argued, on the other hand, to be
more gradual or infinitesimal. After the employer has adjusted his
wage schedule, the individuals at the breakpoints, who were once
indifferent, now have a clear choice as to which signal they prefer.
This is reflected in the shifting of the breakpoints. People on one
side of the breakpoint slowly drift over to the other side as they learn
how to respond to the wage schedule. The net result can be modeled

by a set of steepest ascent equations for the breakpoints,
:'ci(t) = G g (2. 12)

where €> 0 is a constant defining the infinitesimal incremental step.
In other words, no single individual changes x5 the shift is due to the
combined action of the entire employee population. We call (2. 12)
'"partial equilibrium adjustment'' because, although each step moves
in the direction of maximizing Jl, Jl is not actually maximized at
each stage. This defines the other half of the adjustment procedure.

Substituting (2. 11) into (2. 12) results in a set of differential
equations

:'r.i 4 6 (xyyeee,xyg y)y i=1,...,N-1

This has reduced the problem of adjustment of individual actions to the
question of stability of a set of differential equations. The stability
result we need is a version of a Lyapunov-type stability theorem due to

Malishevskii [6]. His study of stability of individual actions in
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goal-vriented behavior is in the same spirit as our problem. His

theorem, restated in general terms, is as follows:

THEOREM (Lyapunov-Malishevskii): Let i:i = bi(x), where

x = (xl, s ,xn)T is an element in some domain Dc R™. Define the

A = b e .
bxj
oF

I A+ AT< 0 forall x in D and if the equilibrium point x

matrix

(where x* satisfies 6i(x*) =0 for all i) exists in D, then any
trajectory x(t) which remains in D converges to x* (uniform
asymptotic global stability).

The following example is an illustration of how this theorem can

be applied to the job market model. From the definition of J,,

N-1 +1
¥y = E[yz- e] = ]:L—:o [vk- c(u.k,x)] p(x) dx
E k

and

a7,
A T bl P e R T U

EXAMPLE: Consider Example 2.3 above, and let €' represent

ep(xi) = e/(xN—xo). Then

x + X
S % i i+l

i 2

G
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Let D= {(xl,xz) txy > 0, x, > 0}. By inspection, it is clear that the

trajectory x(t) = (xl(t), xz(t)) defined by 61 and 62 remains in D.

<
e
32
TR o Y ! <0 in D .
; e

Therefore, in D, x(t) ax = (1.6, 2.24), independent of €'. This
is as it should be, since one cannot in general be certain of the value

of €. The above procedure, in fact, also holds for arbitrary discrete

levels of signals; that is, it is independent of N.

This is not the whole story, however, because the breakpoints

still must satisfy (2.4), that is, be ''in order''. The previous example
can serve to describe what might happen before the equilibrium is
reached. The stability result says that x(t) will converge to

(x:;,x;). But the extra constraint of order defines a region where

Xy <x) <x, < x5 which we call the ''feasible region'' (FR), as shown

0
in Figure 2. 7. Even if a trajectory starts inside this region, it may

leave the region before it reaches the equilibrium point, as illustrated

by the dotted curve in Figure 2.7. If this happens, it means that two

breakpoints, or a breakpoint and an endpoint, have coalesced. One of

ey

A
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FIG. 2.7 STABILITY FOR EXAMPLE 2.3
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the breakpoints has disappeared, meaning that one of the signals is no
longer being chosen by any individuals. The system then drops back
down to the next lower number of signals. However, there is always
a circle of initial points where convergence is guaranteed, because
Malishevskii proves that the norm of the vector x(t) monotonically
decreases. This circle is defined as follows:

Let d* = minimum disﬁnce (in the Euclidean lz norm) between
x* and the boundary of FR. Then the circle of guaranteed conver-
gence = {x € FR : ||x-x* I| = d*}. Thus, what started out as a global
stability result is actually a sort of local stability result, since con-
vergence for this problem is guaranteed only locally.

Another possibility is that the equilibrium point itself is not

in FR, as shown in the next example.

EXAMPLE 2.4: Consider Example 2.3, but with N =4, and

Xy = 1 u, = 1
X, = 25 u, = 2
u, = 0 u3 =y

Then the solution to the equilibrium equality conditions with all

positive components

W
(%95 x5, x3) = (2.8, L9, 3.3)

does not satisfy the ''order'' condition (2.4). This phenomenon does

not depend on N, the number of levels. Table 2.2, Figure 2.5 and
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Figure 2.6 demonstrate an example where the equilibrium break-

points for N =4 do lie inside the feasible region.

6. Competition and Specialization

6.1 Specialization

So far, we have assumed that the employer hires people of all
abilities in [xo,xN]. Spence [3] and Riley [4] show how specialization;
i.e., hiring people of only some abilities, can lead to nonexistence of
an equilibrium when competition from other employers is brought in
explicitly. In particular, Spence states that with specialization (1) a
one-step wage schedule (N =1 inour notation) definitely cannot be
an equilibrium, and (2) if this one-step schedule is preferred by all
employees to multistep (or continuous) schedules, then there is no
equilibrium in the market. We will show that this last conclusion also
holds for our equilibrium classes. However, we will also show in
Section 6. 2 that the nonexistence of an equilibrium can be partially
resolved through use of the criterion function Jz.

The argument for (1) proceeds by way of Example 2.3 summarized
as the N= 3 case in Table 2.2. The only available signals are
u=0, 1, 2. Suppose an employer ignores the last two signals and

offers the one-step schedule

yz(u) = Blx] = _1122_5_ = 1.7 w»u20

as shown in Figure 2.8. Let
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optimal net profit of individual of type x

v,(u") - c(u’,x)

arg max [y,(u) - c(u,x)]
u

=1
"

To express c(u,x) as a function of u for fixed x, we use instead the

notation cx(u), where
u :
cx(u) = 5, for this example.

If yz(u) = 1,75 for all u, then u" =0 and Py 1.75 for all x.
Figure 2.8 shows the cost curve (line, in this case) <, and the cost
curve shifted by the optimal net profit, c; + p;. The line c, t Py
is the indifference line for a person of ability x; that is, any wage
offered along this line gives net profit Py = 1.75. Thus, any wage in
the region above the line is preferred to the original one-step schedule
since the net profit is greater than Py

Suppose an employer who was able to specialize offered the

schedule in Figure 2.8 shown by the dotted line; that is,

0< u<ll
Yz(u) - .
2.23, u=1

Then, by the previous argument, all persons of ability types
x € [2.1, 2.5] will prefer this new schedule. Since their average
productivity is 2.3, which is greater than the wage 2.23, the employer

The original one-step equilibrium is destroyed, and

makes a profit.




Ty

Spence's first statement is demonstrated for this example. Whereas
Spence demonstrated this by allowing the employer to change the
discrete signaling levels u, we have demonstrated this without
creating new signals, just ignoring some of the already existing
signals.

To demonstrate the second statement, we must show how it can
happen that all individuals prefer the one-step (N = 1) wage schedule.
For this example, since there are three signals, there are three
possible equilibrium wage schedules, corresponding to N = 1, N= 2,
and N = 3. Figure 2.9 shows the N =3 and N =1 wage schedules.
Wages in region R are preferred over the N = 3 schedule by those
people whose abilities are at the endpoints of the ability interval,
namely x = 1 and 2.5. The following argument shows that this
region is also preferred by all abilities inbetween as well. All other
shifted cost lines are also indifference lines and so must, by con-
struction, pass through one of the points A, B, or C in Figure 2.9
with slopes between that of c,t Py and S5 o Py 59 namely, 1
and 2/5. Thus, none of these cost lines will intersect the region R,
so that the one-step wage schedule is preferred by everyone to the

N = 3 schedule. Thus, everyone chooses u, = 0 and signaling

0
ceages. Graphically, we see that this is true when the intersection of
the expected productivity line given by v = E(x) = (x, + xN)/Z with the

v-axis lies above that of the line ¢. + p_ . More precisely, this
™. . N

condition can be stated as:
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PROPOSITION 2.2. Consider the equilibrium N-step schedule
of Example 2.3. If

*x. +tx u
o " *N 0 N-1
i s ol — A +[VN-1' ]’

2 XN XN

then the one-step equilibrium schedule

v = y,(a) = ﬁ;—y- ¥ u
is preferred to the N-step schedule.

A simple calculation shows that the N = 2 case in Table 2.2
also satisfies this condition. Therefore, the one-step schedule is
preferred to all possible N >1 equilibrium schedules with the given
signals and parameter specifications. If specialization is allowed, we

can then conclude that, for this particular example, there is no equi-

librium in the class of multistep solutions.

6.2 Competition

The whole problem of nonexistence of equilibria from the
previous section rests on the premise that an employer will offer a
one-step wage schedule when it is preferable to the employees, in
order to compete with other employers. However, in analyzing this
competition, we have considered .'I1 , but have totally neglected Jz.
The outcome is the rather nonintuitive result that people of the
highest ability would sometimes prefer to be paid the same as people

of the lowest ability. This, it would seem, would lead to much job




dissatisfaction. Of course, if the number of signaling levels were
fixed, or there were no other employers, then the individual would

have no choice but to maximize J; over the available signals. But

in the situation described above, neither of these is the case. The
3 actual signals are exogenously given but the number of signals to be
used is not. A persuasive case might be made that an employer
3 offering a more differentiated wage schedule (e.g., N = 3) might very
well be preferred by the employee population than one who offers the
: one-step schedule, even though the latter schedule makes more pure
‘ economic sense to the employees from the viewpoint of J 1 However,
r people are also concerned with being paid nearer to what they are
worth. We submit that our Jos the mean square criterion, is an
attempt to capture this effect. To justify this conclusion in our decision-
theoretic framework, we must show that the value of Jz for the one-
step schedule is larger than the value for the multi-step schedule;
that is, the one-step schedule is less preferable to the employer by
B being less competitive. This is, in fact, the case for the example in i

Figure 2.9 where J,(N=1)= .1875 and J,(N=3)=.0278." In other

words, if additional signals are available, then there is, in general,
an incentive for an employer to offer a finer schedule when it leads to

a better J,. A logical consequence of this argument is that the

sk
: 6 A simple calculation shows that for ¢ = u/x, s = x, and p(x) uniform
1 N-1
J = (x. -x.)3 .
2 iZ(xN-xo) <0 g S
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employer would prefer more and more signals to differentiate people
of different abilities until Spence's continuous equilibrium is reached
(as in Example 2. 1), where every ability level is paid its productivity,
and I, = Elly, - 8)%]= 0.

If this is true, then why don't we see employers constantly
creating new signals in hopes of attaining the continuous one-to-one
equilibrium, First of all, we argued above that it is very difficult to
create new educational levels, and assumed that the signals were fixed
exogenously when an employer entered the market. Secondly,” adding
new signals does not necessarily improve JZ’ since we have the
constraints that the old signals cannot be easily discarded and the
breakpoints must be in order. For example, if the new signal up = 2.25
is introduced for the case N = 3 in Figure 2.9, and if the employees
and employers adjust so as to settle down at a new equilibrium at the
N = 4 level (see Section 5 on adjustment and stability), then
Jo(N = 4)=.0355> ,0278 = J,(N = 3). In fact, it can be shown that any
uz > 2 which produces an equilibrium solution in the feasible region
yields a J2 value greater than JZ(N = 3). Thirdly, for each new
signal there are attendant costs of transmission and administration. In
a sufficiently differentiated wage schedule, these second order costs
must be accounted for and traded against the advantages of new

signals. Consequently, we do not see the constant creation of new

signals in the short run nor the eventual infinite differentiation of wage

schedules in the long run.
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7. Threshold Effects

7.1 Introduction

In Section 5 we observed that, under certain circumstances,
signals disappeared. This phenomenon leads us to the question of
whether changing the parameters of the problem also causes signals
to disappear. In this section, we show that not only do signals dis-
appear, but also signaling ceases altogether when the parameters
cross threshold points. Three types of parameters will be studied
to see if they exhibit threshold effects. We will investigate whether
signaling ceases when 1) signaling costs get too high, 2) the variance

of the unknown state of the world x gets too small, and 3) signaling

noise gets too large.

7.2 Signaling Cost

The first type of parameter to be studied is one affecting the
cost of signaling. To illustrate this, we modify the payoff function for

the employee population to

J; = Ely, - ac] , (2.13)

where o >0 is a scalar cost parameter. For simplicity, the argu-
ment will proceed by way of Example 2.3 for N 2 3. With the new

payoff J, from (2. 13), equilibrium conditions (2. 10) become

2a(u.-u, ,)
i SRR T e N (2. 14)

X, =

. e Ty DG

A

i NSRS (A NS I Sk




Since 0< e < X 1 < X1 < XN

and so

o ety )

- ; i=1,...,N-1 (2. 15)
1 xN xo

As « increases, condition (2. 15) will eventually be violated for Qome
i. This implies that a breakpoint has coalesced with another break-
point or an endpoint (x, or xN). As a particular illustration of this,
consider the case of N = 3, as shown in Figure 2.10. It can be shown
explicitly for this example that as o increases, the breakpoints 3
and x, move away from each other towards the endpoints. More and
more people choose the signal uy. At first it may seem strange that
as signaling costs increase, fewer people choose the cheapest signal

u To understand this, we must also look at how the wages are

0.

changing. First of all, (2. 15) can also be written as

afa, - u; )

e o s R N
i i-1
since
A o = %y
Wl 2
and
Ay T oy
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Thus, when x, decreases and x, increases, both v, - Yo and
vyt V) also increase. We can deduce from (2. 16) that costs «
increase faster than v, - v, but slower than v, - Vo Therefore,
higher ability people switch to u,; because their costs are rising
faster than their relative wages, and lower ability people switch to u,
for the opposite reason.

Going back to Figure 2. 10, it can be shown that X, reaches
XN=3 before x; reaches X0 This means that no one chooses the
signal u, anymore, and the system drops down to the next lower
level, namely, two signals and one breakpoint. This is the eventual
outcome from increasing o, regardless of how many signals there
were at the start. (2. 14) now becomes

N 0

where the two remaining signals are labeled u, and - As o«
increases, x, clearly increases until it coalesces with X\ at which
point everyone chooses the cheaper signal u, and receives the wage
equal to the unconditional expected productivity (x in this example).
Therefore, signaling disappears when the cost parameter o exceeds
a certain threshold. This result agrees with the intuitive notion that .
as signaling costs rise, it is no longer worthwhile to invest in the |
higher educational levels.

Another threshold effect occurs if o is decreased. In this case,

the breakpoints will move in the opposite directions and coalesce in the

opposite order as before. The N = 2 case will again eventually be




X

reached, but now x, will coalesce with X9 not X\ Signaling costs

get so low that even the lowest ability types choose to pay a little more

for u, and receive the higher wage v,. We still have ''no signaling, '

but this solution is inefficient because the employees are overin-
vesting in the signal. If they all signaled u,, they could stil; receive
e x but a higher Iy However, this solution can be considered an
equilibrium if we assume that each individual maximizes his own net
profit based on the current wages, and that there is no central force
(e.g., a union) deciding what is best for the employee population as a

whole.

7.3 Variability in the Unknown

Another type of threshold occurs when the variability of the
unknown x, the underlying signal, changes. One such parameter is

the variance of x, which is proportional to x,, - x, in the uniform

N

distribution case of Example 2.3. Since XN - Xg

denominator of the expressions in (2.15) and (2. 17), decreasing

0

occurs in the

N~ %o for fixed o has exactly the same effect as increasing o« for
fixed xN - %o Again, the breakpoints shift and coalesce until every-
one chooses Uy,

intuitive explanations. First of all, it means that as people become

and signaling disappears. This result has several

more homogeneous, it becomes less important to differentiate them.
In other words, the information to be sent through the signal is less

worthy of much effort. To see the second meaning, we muec observe

how the wages are changing. Since

N T L e
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the difference in wages also decreases. The wages would eventually be
close enough so that even the individual of highest ability might just as
well take the lower (and cheaper) signal 4y since he cannot receive
a significantly higher wage by choosing the higher signal.

However, changing xN - %o is more complicated than changing
o« because not only do the breakpoints move, but so do the endpoints.

If x,. increases, then it may catch up with x, before x, coalesces

0
with x. In this case, everyone would choose the higher signal u,.
To understand the circumstances under which all people choose the
more expensiv : signal, even though the difference in wages is still

decreasing, we must analyze three separate cases where XN - %o

is decreased by shrinking the interval [xo,xN] .

CASE 1: fixed and XN decreased

*o
Since X, is fixed, it cannot catch up with x,, so that x,

coalesces with xN -

CASE 2: x0 increased and XN decreased at the same rate*

If every time x, is decreased by A, XN is increased by A,
then x stays constant and always equals (x0 + xN)/Z. Then from
(2.18), Vi~ V= x - Xg In order for x, to prefer ug (and thus

maintain two-level signaling), we must have

T ;
Similar analyses can be done if x, 18 increased and x,, decreased
at different rates. o




u u
vo - -—g- > vl - -!'- ’
*o0 *o
or
uy - Uy > Xg(vy-vg) = xglx-xg) - (2.19)

A graphical description of the right hand side of (2. 19) is shown in
Figure 2.11. If u; -u,> i2/4, or if u; - uy< i2/4 and the initial
X > x(')',* then (2.19) holds and x, eventually coalesces with XN

as x, increases. If, “on the other hand, u; - u;< i2/4 and x, < xp,
then the right hand side of (2. 19) increases until (2. 19) is violated and
X, coalesces with Xqe **  The intuitive reasons for this are twofold.
First of all, u, - u, must be small enough so that there is not so
much difference in cost between the signals. Secondly, X must be
sufficiently small, so that the average productivity (also wage) for the
lower group, namely v,, is then much smaller than v,, so that by

the time vy comes close to v,, the lowest ability group has already

decided that vy is enough of an inducement to choose ug.

CASE 3: x. increased and XN fixed

0

From (2. 18), two-level signaling continues if

Z(ul - uo) > xo(xN - xo) . (2.20)

*As shown in Figure 2. 11, x(') and x(')' are defined as

Wig.w!ty = Ufse_sel) = & ’ "
X (x xo) xo(x xo) uy 4y xo< xq' -

sk
If x5 < x('),

When x catches up with x; at the value x('), x, cannot have

then initially x; = (ul-uo)/(i-xo) <xp= (ul-uo)/(i-x').

coalesced already with x,, because xg < x < Xy

Bt
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A graphical description of the right hand side of (2.20) is shown in
Figure 2.12. By an analysis similar to that of Case 2, x, coalesces

with x.. unless Z(ul-uo) < xlz\l/4 and xo< x('). The same intuitive

N
arguments hold as in Case 2.

The conclusion from the preceding discussion is that decreasing
the range [xo,xN] by increasing X decreasing XNy ©OF both results
in '"'no signaling.'' The parameters of the problem determine whether
the employees chose the higher or lower signal.

A similar analysis in Appendix II-A describes what happens
when x. - x

N 0

resulting in ''no signaling.'' However, depending on other

increases. In general, x, will decrease and coalesce
with X0
parameters, x, may decrease faster than xy, 8o that x| never

catches up to x4 Differentiated signaling continues until xq reaches

zero (recall that x, was assumed to be positive).

0

7.4 Signaling Noise

The third type of parameter we want to investigate is signaling
noise. Suppose now that the employer has a noisy measurement of
education and observes y = u+ ¢ instead of u, where ¢ is the noise.

Then his strategy is a function of a noise-corrupted signal:
v = yz(y) = Yylut e) = yz(yl(x) + ¢€)
The equilibrium condition remains the same as before, that is

YZ(Y) = E/y(s) . (2.21)
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It is difficult to give an economic interpretation to e. If we assume
that ''educational level'' reflects a ranking of a composite measure
of years of education, performance, courses, and quality of the school,
and we assume that this ranking is known to employer and employees
alike, then it appears that ''noise'' can only mean interference in the
communication link between what the individual does and what the
employer observes. But if the job application form is complete enough
and the individuals do not lie, then noise, in this sense, should be
eliminated. However, we can still treat ¢ as a purely mathematical
entity. (In the next chapter, noise will play a more important role. )
Continuing to use Example 2.3 to illustrate the main ideas, we
assume € has a uniform distribution between some -b and b. For
the case of N = 2, the employees' strategy Y, remains a step function
with two signaling levels, as in the case of no signaling noise. However,
as will be shown next, the employer's strategy Y, does not remain a
two-step wage schedule. To see this, refer to Figure 2. 13, where Y,
is plotted vs. y, not u. Assuming u, and u, are fixed signals, any
y in an interval of +b around u, and uy could be observed by the
employer. Ifa y between u, - b and u, - b is observed, the

employer knows that u, was signaled, so that x must be between x

0
and Xy The wage Yo is the average productivity for that interval,
namely, (x0 + xl)/Z for this example. Similar arguments can be made

to determine v, and vy a8 shown in Figure 2.12, Therefore, the

two-step wage schedule becomes a three-step schedule if the noise is
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R e

uniformly distributed and there is a central overlap region of un-

: *
certainty.

Given the three-step wage schedule, the individuals now want to
maximize expected net profit, where the expectation is taken over both

x and y. This means

u,
max E (u. +€)] - = ’

so that the equilibrium condition of indifference at the breakpoint x,
is
SR R
0 X, 1 X ; (2. 22)

the same as before but with wages o and vy replaced by expected

wages Gi = E/x[yz(ui+e)]. More precisely,

b o+b
'r voP(y|x) dy + f‘ v ply|x) dy
u,-b

uo-b 1

S = Eplvslugre)]

5 Au 2b-Au
= Vo >b + Vl >b s (2.23)
where Au = uy-u,. Similarly,
e 5 2b-Au Au
v, = E/x[yz(ul+e)] = ¥ SEEt v, S (2. 24) ]

*
For the case of Gaussian noise, the wage schedule is a continuous
function, not a step function. However, the breakpoint equilibrium
conditions can still be determined. The details are complicated, and
so are omitted here.

Sy v
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Thus, the expected wage ‘-'i is just a weighted average of wages v,

From (2.23) and (2. 24), (2.22) becomes

and Vitl®
&E v - E - A—u v - 3
2b 0 x) G Y Xy
= x - e 4b, : (2. 25)
w2 Y% 2%
(Also, we must have X < x< xz.)
EXAMPLE 2.5. Let
b= .6 Xy 1, x, = 2.5
Then
Yy = 1.33
i ik 1. 75
K ¥ 1.92
and
x = 1.6

It is easy to see from (2. 25) that as the signal becomes noisier
and b increases, x, increases and, in general, coalesces with x,.
Everyone chooses the cheaper signal ugy- Therefore, as we would

expect, if the signal is too noisy, signaling will cease. However, xy

may not coalesce with X, Referring to Figure 2. 13, we see that as

b increases, the interval of y's which are paid vy = x expands. The




other intervals remain constant in size, but the left interval shifts
to the left and the right interval to the right. Eventually, negative
values of y will appear. Since negative signals do not make sense from
an economic point of view, we stop increasing b when uy - b= 0.
If b increases to u, before x) reaches X5) then u, - b =0, and
differentiated signaling remains in effect.

If b decreases, x, decreases and coalesces with X This
result is surprising, since it says that when the noise is small enough,
everyone chooses the more expensive signal. To understand this, we

must again look at how the difference in the wages is changing:

Thus, as b decreases, ;’l - Vo increases. Eventually, the expected

i wage ;’1 will be large enough, so that choosing the higher signal

becomes worthwhile.

7.5 Summary of Threshold Effects

The results of this section will now be summarized. i First of
all, if the signaling cost parameter « is increased, then the cost of

education gets too high, and everyone chooses the cheapest signal. If >4

e i

@ is decreased, then the opposite happens: cost of education becomes
so low that it becomes worthwhile to pay a little more for the higher >3

signal and receive the higher wage.

s
All of the statements are in reference to Example 2. 3.

o il el
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Changing the variability of the unknown state of the world x is
more complicated than changing «. The parameter in the former
case is the length x - x, of the interval [xo,xN]. The results are
summarized in Table 2.3. In general, if the variability is too small,
then the individuals are not differentiated enough to make it worthwhile
for them to signal, so that everyone chooses the cheaper signal ugy-
However, if the difference in the wages decreases slower than the
difference in the costs for the lowest ability group x,, then the higher
wage is enough of an inducement for all individuals, even the lowest
ability types, to choose the more expensive signal. If the variability
increases, " we would expect people to continue signaling, since they
are becoming more dissimilar. However, again the results depend on
how the difference in the wages is changing. If it is increasing
faster than the difference in costs for the lowest ability group, then
eventually everyone will choose the higher signal in order to receive
the higher wage. Therefore, the threshold effects for the variability
of x parameter depend on other parameters of the problem.

The last parameter is signaling noise. It was shown that if the
noise is too high, then it becomes too difficult for the employer to
determine the ability from the signal, so that everyone chooses the
cheaper educational level. If the noise is small, then the signal is a
better indication of ability, but a secondary effect takes over. The
expected wage from the more expensive signal is sufficiently high to

induce everyone to choose that signal.

*'I‘he details for increasing Xy - %o are discussed in Appendix II-A.




Threshold Effects from Changing x

Case 1:

X fixed

Case 2:

same
rate

Case 3:

fixed
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TABLE 2.3

-X

N 0
Decreasing Increasing xN"%o (see Appen-
*N"*0 dix II-A for details)
xl e XN xl - xO
All choose ug. All choose u,;
X)Xy Differentiated signaling con-

unless u)-ug and

x, are sufficiently

0

small so that vl—vo

decreases slower

than
b
%0

in such a way that

X catches up with

X before X,

reaches N Then

--------------------

Same argument as

in Case 2.

tinues as x, - 0,

0
unless u,-u, sufficiently
small and x, sufficiently

0
large so that V1 Yo increases

faster than

o

*o0

in such a way that X catches

up with X Then X~ xo.

- . e e e e e e e e e e e

Same argument as in Case 2.

s
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APPENDIX II-A

THRESHOLD EFFECTS FOR INCREASING VARIABILITY OF x

Increasing [xo,xN] for c = u/x, p(x) uniform :

The arguments in this section are completely analogous to those
in Section 7.3 and will refer to equations and figures from there.

(See Table 2.3 for a summary. ) It is easy to see from (2. 17) that if

TN

X\~ % is increased, then x, decreases and, in general, coalesces

with Xq Everyone chooses the more expensive signal u,- This is

because, from (2.18), vy = ¥y increases. As v, becomes signific-

antly higher than Vo> it eventually becomes worthwhile for even the

lowest ability group to choose the higher signal. However, this result

again depends on u; - Uy It may be that v, can never be sufficiently

large to attract all employees. This means that even though X,
decreases as X - X, increases, x decreases faster than X). Xy
can never catch up to Xs SO that differentiated signaling continues.

Again, we must consider three cases:

CASE 1A: fixed and XN increased

%0

Since X is fixed, x; can catch up to it.

CASE 2A: X, decreased and XN increased at the same rate

Referring to Figure 2.11, in a manner completelyanalogous to

Case 2 in Section 7.3, we see thatif u; - uy > ;(2/4, or if u, - uo<i2/4

*Since e >0, the system must be stopped before X reaches 0.
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but the initial x, < x('), then the breakpoint x, decreases but never
catches up with Xg The employees continue to signal at different
2 ' 1"
levels. If u; - u,<x /4 and x,> xj',
right hand side of (2.19) increases until (2. 19) is violated, X coalesces

then as X0 decreases, the

with X0 and signaling disappearé.. Intuitively, if uy - u, is
sufficiently small, then as ¥y * v0 increases, it will eventually be
worthwhile for the lowest ability groﬁp'to pay a little more for u, and
receive the much higher wage v;. If-\tl}e initial x, is sufficiently
large, then c = u/x0 will not be too lar éé, so that it will again be

worthwhile to purchase u,.

CASE 3A: %, decreased and XN fixed

Figure 2.12 describes the situation here. §igna.1ing continues
unless 2(u, - uo) <x12\'1/4 and x,> x(')', in which case x, coalesces

with x4 The same intuitive arguments hold as in Case 2A.

Thus, in the case of increasing the range [xo,xN], signaling may

or may not disappear, depending on other parameters in the problem.




CHAPTER Il

SIGNALING AND INFORMATION THEORY

1, Introduction

In the previous chapter, an examp: of a signaling problem was
analyzed in the context of economic theory. This chapter will analyze
signaling in the context of Shannon theory, also sometimes referred to
as classical information theory. This theory forms the foundation for
the following standard communication problem: send a message, or
signal, 'through a noisy channel so as to minimize the amount the signal
is distorted. We will show how the main components of this problem
can be captured in a team theory formulation (to be defined below)
with a signaling information structure. Figure 3.1 summarizes the
connection between this problem and the Spence problem.

Before going on to the next secticn, we need to describe what
a team problem is and how it relates to the Spence problem. A decision
and control problem is called a ''team'' problem when there is more
than one decision maker, each DM has different information, but all
DMs have the same objective function J. The Spence problem was
not a team problem, since Jl # J’z, but was an example of a ''nonzero-
sum (NZS) game'' (called ''nonzero-sum'' because J, +7J, Z0). An
"optimal'' solution in the Spence problem was characterized as a Nash
equilibrium, as defined in Section II. 2. On the other hand, a ''team
optimal'' strategy pair (y:, y;) is defined as (where J is to be
minimized):

3-1
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As shown by Radner [7], the first order necessary and sufficient
conditions are the same as for a Nash equilibrium, but the second
order convexity conditions are not. However, the second order
conditions in [7] are only for the case of static information structure,
and cannot be carried over to dynamic information. This is because
Y, is a function of Yy» SO that the convexity of J(yl, Yz(yl)) in both
Y; and y, cannot be determined until Yo is specified. Therefore,
""convexity'' of an objective function when the information is dynamic

is yet to be defined.

2. Communication System as Team Problem

The major problem in comimunication thedry is to send information
from a source through a channel to a receiver in the most ''reliable'’
way, where ''reliability'' is yet to be defined. Wyner [14] says that,
in general, there are two limitations on the reliability of -the" SR
communication system. First of Falwl‘,rt‘:i;e channel may have noise,
such as static in a radio channel. The second limitation is what Wyner
calls ''source-channel mismatch.'' For example, the source may emit
binary symbols, as with a computer, whereas the channel may be able
to accept only continuous data, as with a radio. Also, the rate at which
the source emits data may be different from the rate at which the

channel can process it. To combat these limitations, an encoder is

placed between the source and channel, and a decoder between the

s




channel and receiver. Figure 3.2 illustrates these ideas for the
standard model of a communication system* (see [8], [14]). First of
all, a (memoryless**) source emits source symbols, or messages,
denoted as x, at a rate p_ symbols/second, which go into the
encoder and come out as signals, or codewords, u. The functional
relationship between x and u as defined by the encoder is denoted as
u= yl(x). Next, the signals u are transmitted through a (memoryless)
channel that processes inputs at a rate P, symbols/second, and may be
corrupted by noise €. We will be concerned with additive noise, so
that the received signal y coming out of the channel will be expressed
as y = u+e¢. Lastly, the decoder converts y to symbols v, and
sends them to the receiver. Since the goal of the decoder is to deter-
mine which message x was originally sent, we will also write v as
%, so that the decoder is, in some sense, the inverse of the encoder.
As with the encoder, the decoder is defined by some function Yp, SO
that v = yz(y) = yz(u + €)= YZ(Yl(x) + €). We immediately see how
similar this looks to the Spence problem, where Y, is a noise
corrupted function of y;. More will be said about this below.

To complete the description of the channel, p(y|u), the transi-
tional probability density of y given u, and a cost function ¢(u)
must be specified; for example, ¢(u) = uz. To complete the description

of the source, p(x), the probability density for the source output, and

*In order to relate this problem to the Spence problem later on, we
will use notation that matches the notation in the previous chapter,
not the notation that necessarily occurs in the information theory
literature.

*k
The memoryless assumption means, in general, that current behavior
does not depend on the past.
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D(x, v), the distortion function, must be specified; for example,

D(x, v) = (x - v)z. Distortion is a measure of how v differs from x,
regardless of whether the signal has been sent through a channel or not.
An example of where nonzero distortion occurs without the presence of
a channel is in data compression, where less significant information is
deleted or condensed in order to transmit more significant information
more reliably.

The notion of reliable transmission of information can now be
defined more precisely. The basic problem in communication theory
is to find an encoder and decoder so as to minimize average distortion

E[D(x, v)] subject to
Efg(u)] s « , (3.1)

where o is some fixed constant. Inequality (3. 1) is a constraint on the
amount of signal power, where by ''signal'’' we mean the channel input
variable u. Since minimizing distortion is the single goal, the problem

lends itself naturally to the following team formulation:

min J = E[D(x,v)] = E[D(x,v,(y;(x)}te)]s.t. E[8(y,(x)]s o,
distortion signaling power constraint
(3.2)

that is, minimize average distortion subject to a power constraint as
the encoder and decoder are varied. Thus, DMI is the encoder with
strategy yl(x) = u, and DM2 is the decoder with strategy yz(y) = v,

Since v = yz(u +e)s= yz(yl(x) + ¢), this problem exhibits precisely




what we set out to show, namely, signaling with noise, since Y, is a

function of a noise-corrupted Yy,. This particular notation shows how
similar this problem is to the Spence problem. In fact, if

D(x,v) = (x - v)z, then J = E[D(x,v)] is precisely J, from the Spence
problem.

Wyner [14] posed the communication problem in language which
easily transfers to the team problem in (3.2), although he does not
explicitly mention team theory. Witsenhausen [12], however, recognized
that the communication problem could be formulated as a team problem*
with a dynamic information structure, but did not investigate this further.
Whittle and Rudge [10] took the opposite point of view. They started
with a team problem and showed that it could be interpreted as a
communication problem. Their team problem was a more general
version of (3.2), where x, u, €, etc. represented infinite time
sequences, e so that they could use the results of information theory to
solve for the optimal value of (3. 2).

Now that the communication problem has been reduced to a team
problem, several questions from a decision and control point of view
arise. First of all, an obvious question is: what is the team optimal
strategy pair (y’;, y;) for the problem in (3.2)? Once this pair has
been determined, a second obvious question is: what is the value of the

* * %
optimal objective J = I(vy, yz)? Our immediate response might be to

*
He called it a ''nonclassical stochastic control problem. '’

%
It will be shown later why the assumption of infinite sequences is
important in information theory.
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despair of ever answering these questions because of all the difficulties
associated with team problems with dynamic information, as discussed
in Section 1. In fact, Witsenhausen [11] extensively studied a similar
team problem without answering these questions. Fortunately, since
our team problem was motivated by a communication system, we can
take the same approach as in Whittle and Rudge, and use the results of
Shannon information theory to answer some, but not all, of these
questions.

If y,; and y; cannot be found, or if they are very complicated

i el N N lin A aimi

functions, then a next question to ask might be whether there are

suboptimal strategies whose objective J does not differ too much from
%

J

* *
, but which are easier to compute than vy, and Y, For example,

when are linear strategies, which are simple to express, optimal, and

when are they not optimal?
In the team formulation of (3.2), y; and Y, could be mappings
between scalar variables. However, if the admissible strategy spaces
for vy, and Y, Wwere expanded to include mappings between vectors,
then increasing the dimensions of x, u, €, etc. might result in lower
distortion than if the variables were restricted to being just scalars.
! Certainly, by increasing the strategy space, we cannot do worse and
may, in fact, do better. Therefore, this observation leads us to ask -
how the dimensions of the variables x, u, etc. affect the solutions
i (y,;, y;) and J*. As mentioned above, in information theory, these
P variables represent infinite sequences, so that they can be thought of
as infinite-dimensional vectors. Thus, information theory might be

able to tell us something about the affect of dimensionality on the

solution.
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To summarize, the questions we want to answer are:

QUESTIONS:

1. What are the team optimal strategies (y;;, Y;)?

2. What is the value of the optimal objective J* = J(y’;, y;)?

3. Are there suboptimal strategies that are easy to implement,
and how does their objective J differ from J 7

4. How do the dimensions of the variables x, u, etc. affect the

. B
solutions (yﬁl‘,y;) and J ?

Before we address them, we momentarily digress from our team theory
point of view to defin ‘he basic concepts and results from Shannon

information theory. (For more detail, see [1], [2], [8], [14], and [6].)

3. Shannon Theory*

3.1 Basic Concepts

Shannon theory provides the theoretical foundation for communi-
cation theory by establishing an upper bound, called ''channel capacity"
(C), on the amount of information that can be transmitted through a
channel. It also provides a quantitative measure of information that can
be used in characterizing not only the channel capacity, but also the rate

at which the source produces information, called the ''source rate (R). "'

*Those familiar with information theory may wish to skip this section,
since its purpose is solely to educate people, such as economists and
control theorists, who have little or no knowledge of information
theory. The intent is not to shed new light on Shannon's results, but
rather to define terminology and concepts for later use.
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Intuitively, if R, the rate at which the source produces information,
is less than C, the maximum rate the channel can process inform-
ation, we would expect that the source and channel could be joined in
some way to produce a communication system that transmits in-
formation at a rate R. This is exactly what Shannon's Coding
Theorem says, namely, that if R <C, then there exists an encoder
and decoder joining the source-receiver pair to the channel such that
information can be transmitted at a rate as close to C as desired
with arbitrarily small probability of error, in the limit as the length
(or duration) of the encoded messages gets sufficiently large. If
R > C, then the source is producing information faster than the channel
can process it, so that a certain amount of error isunavoidable. These
intuitive ideas will be made more precise later on when we return to
the Coding Theorem in more detail. Before we define what is meant by
""rates of information,'' we must define the concept of ''information''
first. Shannon's abstract measure of information, to be described
next, is interesting, but, by itself, does not provide any new results.
Its real importance lies in the fact that, with this measure, the
important Coding Theorem could be proved.

The randomness inherent in the messages and signals of a
communication system implies that information is statistical, so that
any measure of it must involve probabilities. As mentioned in the

%k
previous section, the particular probabilities required are the source

*The discussion and definitions to follow will all be for the case of a
discrete source and channel, so that probabilities instead of densities
will be used. The information measure for the continuous case can be
similarly defined, but is more complicated to interpret and so will be
omitted here.

i
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output and channel transition probabilities. Therefore, these
probabilities will play a role in the definitions to follow.

Since information can be defined in a purely statistical sense, the
definitions will first be stated in terms of abstract sets of events and
then interpreted in terms of a source and channel. To simplify matters,
think of a source generating symbols a, from a discrete, finite set A,
which are then input directly into a channel, emerging as output symbols
bj from a discrete, finite set B. In an abstract sense, A and B are
just random variables characterized by probabilities {p(ai)} and

{p(bj)}, respectively. Then we have the following definitions:

1.  Information: I(a,) = log l/p(ai) = - log p(a,)
= amount of information received if told event ai has

occurred.

Intuitively, if p(ai) is small, then a lot of information is received if
the unlikely event a, has occurred. If the log is in base 2, then the
unit of I(ai) is called a ''bit. "' If it is in base e, then the unit is a
""nat.'' We will be using the ''bit'' notation in the rest of this chapter.
The particular choice of ''log'' comes about because it satisfies certain
desirable axioms. See [8] for a detailed discussion of these axioms,

and [15] for alternatives to log as the information measure.

2. Entropy (bits/symbol): H(A) = E[I(A)] = Z, p(a,)(a,)
= average amount of information received after being told

what the source emitted

= average prior uncertainty regarding what the source will

emit




T ———————

= average number of ''yes-no'' questions to be answered
to determine output
= rate at which source produces information subject to

no distortion (to be explained later).

3. Conditional Entropy: H(Albj) = E, /bj[I(Aij)] =_,Zi.P(.?.i-| bj)I(ai[bj)

= average information from A given observation bj . :

4. Equivocation: H(A|B) = E,E_ /b[I(AIb)] =z p(bj)H(Aij)

= average information from A given output is observed 3

= average uncertainty of what source emitted after ob-
serving an output signal

= average amount of information missing in the received
signal

= average amount of additional information that mast be

supplied per second at the receiving point to correct the

received message.

5. Mutual Information: I(A,B) = H(A) - H(A|B)

Tha - e ‘ |
zi:P(ai) og p(a;) ? P(bJ) izp(aile) log m

p(a;[b.) p(b,)
4

* 21: : p(ai,bj) log p(ai,bj)/p(ai)p(bj)




= average information provided by observing one output

= rate of transmission of information through the channel

= measure of statistical dependence between A and B
(the more dependent they are, the more information we

get about A from observing B).

The important consequence of these concepts is that now the source
rate R and channel capacity C can be expressed as solutions to a
pair of optimization problems involving mutual information. For a
general channel with power constraint (3.1), capacity can be written

as (using the notation from Figure 3.2)

C

Cla) = P. sup I(u,y) s.t. E[g(u)] s o, (3.3)
p(u)

where the supremum is taken over all input probabilities satisfying the

constraint, and C(«) is in units of bits/second. As mentioned earlier,

C(o) is defined as the maximum rate that information (in bits) can be

sent through the channel essentially error-free (''essentially'' in the
sense that the probability of error can be made arbitrarily small).

Similarly, for a general source, the rate can be expressed as

R 2 R(p) - p, inf I(x,v) s.t. E[D(x,v)] < B , (3.4)
p(v/x)

where

E[D(x,v)] < B

is called the fidelity criterion and R(B) 1is called the rate distortion
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function, with § a nonnegative constant. At first it might seem
strange to talk about minimizing a rate, since we always talk about
maximizing the transmission rate. But as Berger [2] points out, with
rate distortion functions, it is the source-receiver pair that is given,
not the channel. What is being minimized is, in some sense, the
time and effort it takes to code a message. Thus, as proved by
Shannon, R(B) can be interpreted as the minimum number of binary
digits per second required to represent a message, subject to dis-
tortion no more than . If the source-receiver pair is to be linked to
a channel, then R(B) can also be interpreted as the minimum capacity
that channel must have. R(B) is a decreasing function of P, since a
higher distortion allowed means fewer binary digits needed tc represent
the message. This is easy to see mathematically, since larger B
means expanding the set of admissible p(v|w) over which the infimum
is taken. Since entropy is the rate at which information is generated
subject to no distortion, the rate distortion function is just 2 generali-
zation of the concept of entropy. For discrete sources, R(0) = P H(w).
For continuous sources, such as Gaussian, R(0) = @, since a real
number would require an infinite number of bits to represent it
perfectly.

The following are some examples of C(a) and R(B) from
Wyner [14], derived directly from the definitions (3. 3) and (3.4),

respectively.

EXAMPLE 3.1: Suppose we have a binary source such that

Pr{X = 0] = Pr{X =1} = 1/2, and the distortion function D(x,v) = 0




if x=v and D(x,v) =1 if x # v (this implies that E[D(x,v)] = P,
where Pe is the probability of error). Then
1-h), O0sps3
p (1-h(B)), P=3

R(B) = (3.5)
0 ; B =2

N =

where h(p) = -p log, B - (1 - B) log, (1-B), 0<B=s1/2 and

h(0) = lim h(B) 4 0. From the definition of entropy and h(p), we

B0
see that h(1/2) = H(x) = 1, and R(0) = p, (see Figure 3.3). The
reason R(B) =0 for B=1/2 is because distortion B = 1/2 can be
attained by always guessing v = X = 0. That is, the decoder output is

a stream of zeros, regardless of the input, so that no information is

being produced.

EXAMPLE 3.2: Consider now a Gaussian source where x has
a Gaussian density function with zero mean and variance cz, and the

distortion function is D(x,v) = (x - v)z. Then

2
p o 2
s ———
w i EE R

R(B) = (3.6)

(See Figure 3.4.) The reason R(B)=0 for B =2 UZ is because

B = 02 = variance (x) can be attained by guessing that x is the
prior mean; i.e., v =%= 0 for this example. Again, this means
that the decoder output is all zeros, and no information is being

produced.
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EXAMPLE 3.3: Consider a Gaussian channel where noise ¢
has a Gaussian density with zero mean and variance cz, and the cost

function is ¢@(u) & uz. Then

Cly) = ﬂ?_‘i log (1 + %’ ) ; (3—;-._‘3)
o} %

where c«/cr2 can be considered the signal-to-noise ratio. Figure 3. 5-‘:';;.

shows that C is an increasing function of «; that is, capacity can be ;;”-‘

increased if more channel input power is allowed. “‘1.:‘
Although R(B) and C(a) were defined in terms of single input i

and output symbols, actual coding does not, except in rare circum-

stances, involve immediately sending each source symbol through the

channel, even if By = P In order to combat noise limitations and

source-channel mismatch (such as when Pq # pc), the encoder waits

for many source symbols and then codes them altogether. A wider

range of codes is then available to the encoder, so that cleverer codes

can be constructed. Similarly, the decoder waits for many channel

outputs before it decodes. For example, if Py 4 P> then the source

and channel are not synchronously compatible. In order to match them,

let the encoder wait T seconds until n = psT symbols have been

emitted. In this time, the channel can process N = ch symbols.

Thus, let x be an n-vector and u an N-vector; this is called block

*
coding. The new vector source is called the n-th extension of the

original source, and the N-th extension of the channel can be similarly

*
Block coding is used not only for synchronization, but also to combat
noise.
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defined. The ''new'' source symbol rate is now ps/n (in units of n-
vectors per second), which equals the ''new'' channel rate pc/N (N-

vectors/second). Assuming that the vector components are independent,

we define

n
1
i=1

p(x) p(x;)

N
nl p(Yilui) e

i=

ply|u)

Also, D, the distortion of the n-th extension of the source, is

1 n
B s B v (3.8)

i i=1

and @y > the cost of the N-th extension of the channel, is

oo
¥ =R El B(u,) : (3. 9)

As previously mentioned, block coding arises in consideration of
actual coding techniques to minimize distortion and increase reliability
in a communication system. One naive approach to encoding might be
to just repeat each scalar source symbol many times through the
channel. In other words, for each source symbol x, construct a vector
u whose components are x's. As the number of repetitions increases,
the dimension N of u increases for a fixed dimension n of x. In
the limit, this scheme will drive the probability of error to zero [4],

but will pay a price. As N increases, the channel is taking longer and
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longer to transmit the same amount of information being emitted from
the source. Therefore, the source rate is decreasing relative to the
channel rate. This means that the channel is being used inefficiently,
since the rate at which it can handle inputs is much larger than the
rate at which information is being produced. This tradeoff of rate and
reliability was thought to be the best one could do, until Shannon came
along. His theorem says that one can do much better; that is, for any
fixed rate R, the probability of error can be driven to zero in the

limit (and thus minimize distortion) by simultaneously increasing N

and n and choosing clever encoders and decoders. This is the really
crucial point of Shannon's theorem. Thus, both methods of block
coding, i.e., repeating and the coding scheme referred to in Shannon
theorem, are limiting results. As N and/or n increases to «, so
does the delay T, the time it takes to emit one n-vector from the
source or transmit one N-vector through the channel. In the case of
repeating, this delay T is incurred every time a source symbol is
emitted. However, in Shannon's theorem, the delay is incurred just
once, at the beginning, when the first n-vector is emitted. Then the
source and channel are matched synchronously, so that while a source
vector is being produced, the previous source vector is simultaneously
being sent through the channel. It takes T seconds to accomplish
both these tasks, so that no more delay is incurred. In practice, the
initial delay is not significant, relative to the entire time the
communication system is in operation.

We are now ready to state the major result of classical in-

formation theory.
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Shannon's Coding Theorem: Suppose a source and channel with

« and B specified are given. If
R(B) = Cl) (3. 10)

then for arbitrary €, >0 and €, >0, there exists a T sufficiently
large and an encoder-decoder pair such that average cost satisfies

E(¢]< o+ ¢, andaverage distortion satisfies E[D]<p + ¢,.

Proof: See [1]and [4]).

Thus, R(B) and C(x) are not exactly the source rate and
channel capacity, respectively, but are approximations which become

more exact as the delay T becomes large.

Converse to the Coding Theorem: If

R(B) > C(a) : (3.11)

then there does not exist an encoder-decoder pair such that

E[p)=a and E[D]= B.
Proof: See [1], [5], and [14].

In other words, (3.10) is the best we can do, for if (3. 11) holds,
then even in the limit, average distortion § cannot be attained.
Another way of stating the converse is that if E[D]= B can be attained
(approximately) at a cost E[p]=a, then o and B must satisfy (3. 10).
Then p*, the solution to (3. 10) with equality for given qa, is a lower

bound (called the Shannon bound) for attainable distortions. However,

the really important result is the Coding Theorem itself, which states

*
that B is actually attainable (in the limitas T increases).
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3.2 Discussion

Several points can now be made about these results. First of all,
as surprising as Shannon's theorem is, it has one major drawback:
it is an existence theorem and, thus, does not provide a technique for
actually constructing the encoder and decoder. The solutions to the
optimization problems (3. 4) and (3.3) for R(B) and C(x), respectively,
are not coders, but optimal probability density functions. They have
limited usefulness in finding the optimal coders. For example, if an
arbitrary coding scheme is constructed, its densities can be computed
and compared against the solutions to (3. 3) and (3. 4) to see if the
scheme is optimal. However, this seems to be about as far as one can
go using only the Coding Theorem.

When we consider the rate distortion function together with the

channel to find the minimum distortion, we can re-express R(p) as

(see [2])

= inf E{bDlx,v)] s.t. o, Ix,v)s Cl) . (3.12)
p(v|x)
This formulation is appealing because it seems more natural to mini-
mize distortion rather than rate. Suppose p*(le) is the probability
density that attains p*, and I*(x, v) is the corresponding mutual

inforn .ion evaluated with p*(le). Then
* *
RB) = p,1 (x,v) = Cla) . (3.13)

This illustrates the close connection between the Coding Theorem and

minimizing distortion.

SIFUNTE TP ERITNE SAP s £
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4, Optimal Payoff and Strategies

Now that the fundamentals of Shannon theory have been established,
we can return to the five team theory questions posed in Section 2.
This section will address the first two questions. First of all, since
the Coding Theorem holds only when infinite sequences of source and
channel symbols are allowed, we must modify the team formulation to
account for vectors x, u, etc. of arbitrarily large dimension. Then

the team problem becomes

min J=E |lim D s.t. E|lim ¢ < o (3. 14)
YI’YZ [n—‘my n} [N—w N] ’

3
where Yi and Y, are now mappings between infinite vectors. Since
the objective is to minimize distortion, the optimal value of J, call

< *
it J, is just B , which satisfies

R(") = Cl) ,

since R(B) is a decreasing function of B bounded from above by
C(a@). Therefore, Shannon's theorem immediately gives us the optimal
payoff for the team problem (3.14), and so answers Question 2 in the
limit as n, N+ = (or, equivalently, T - =).

As a graphical interpretation of 1% = (3*, recall Example 3.1, a
discrete, binary source. Suppose we turn the problem around and ask

the following question:

-
Wyner [14] formulated the problem this way, but not in the context of
team theory.

bt 0§ s i
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Question: If we want to send data through a channel of capacity
C (for fixed o) with distortion no more than B, :

what is the maximum possible rate at the source.

Answer: Set R(B) = C and solve for ps(p).

From (3.5), this gives

i
P = iy (3. 15)

A plot of p_ vs. B is shown in Figure 3.6. It shows that when dis-
tortion is allowed, the data rate will be faster than the channel
capacity, a somewhat nonintuitive result, since capacity is thought of
as a maximum rate.

There is another way of getting this curve which illustrates the
idea of (3.10). First plot R(B) as a function of B for different values

of p (see the solid curves in Figure 3. 7). Then draw the line C.

Shannon's result that R(B) < C defines the forbidden and attainable
regions. The best bound, namely, the minimum attainable B for a
given p_, is indicated by the circles, the points at which R(p) = C.
Matching these optimal B's with their corresponding ps's, we get

. the dotted ;:urve, which is precisely the same curve as in Figure 3. 6.
Therefore, given the entire communication system, the points on the
curve ps(B) are attained in three steps:

1. Fix P, and solve for C(a) = C in (3. 3).

2. Fix Py and solve for R(B) in (3.4).

3. Set R(B) = C and solve for ps(p).
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If we solve (3. 12) instead of (3.4), then we get (3.13) and can skip step
3 entirely.

This procedure for finding the minimum distortion can be thought
of as a kind of ''separation principle.'' The two-person team problem
with dynamic information is replaced by two one-person control
problems ((3.3) and (3.4)) with static information. Whittle and Rudge
recognized this when they said: ''Control and communication are both
required but the controls operate on separate parts of the system, so
that joint control is not required'' (see [10], p. 366). However, as
Witsenhausen [12] noted, this procedure is still not general enough to
be applied to other team problems.

For fixed Pg» if the team problem could be solved, then it would
yield p(ps). Inverting this function yields pS(B), precisely the same
curve as in Figure 3.6 and the dotted curve in Figure 3.7. Thus, the
condition R(B) < C(w) is buried inside the team formulation. It is not
yet clear whether this inequality can be derived from the viewpoint of
team theory alone. However, it can be desrived from team theory
together with rate distortion theory, which yields the solid curves in
Figure 3.7. For example, in Figure 3.7, suppose that the rate curves
R(B) and ps(ﬂ) are shown, but the line C(y) is not. We will derive
this lines in another way, without reference to R(B) < C(x). Consider
the points where a vertical line drawn through ﬁi intersects
R(B;p,;) (let P, 4 R(B;;P4;) i=1,2,3). The interpretation of B, from
ps(ﬁ) is that, given Pgi» it is the minimum attainable distortion. Thus,
for B such that R(p;psi)s Pi’ B is attainable, and for R(p;psi)> Pi’

B is not attainable. If we do this for all i, then we will find that the
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P.'s are all equal; that is, the points of intersection lie on a horizontal
1

line. Let P, = P ... 2 C. Then we immediately have the

2 =
condition R(B) < C defining the attainable region.

Since the solutions of (3.3) and (3.4) yield only the optimal -
probabilities p(u) and p(v|x), the optimal encoder and decoder are
still not known. In fact, C(o) and R(B) are computed on a ''per-
symbol basis, '' that is, with regard to a single input-output pair, 1
whereas the Coding Theorer is a statement about transmission of z
information when there are infinite sequences. Thus, in the language :.
of decision and control theory, Shannon's theorem provides the optimal 3

payoff (in the limit as T - =) but not the optimal strategies. It is

purely an existence theorem. Its nonconstructive nature has

frustrated information theorists to this day. Therefore, Question 1

cannot, in general, be answered by Shannon theory.

5. Real-Time Information Theory

5.1 Introduction

In this section, the problem of suboptimal strategies (Question 3)

will be raised in the context of a new approach toward solving

communication problems. In the previous two approaches discussed in

Section 3.2--simple repeating and the cleverer coding scheme whose

F i Al il alaei

existence is proved by Shannon's theorem--it was assumed that

sequences could be infinitely long, and thus incur an infinite delay. If

BTy g

the dimension of x is large, then the encoder must wait for the

entire vector x before it starts to code. If the dimension of u is
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large, the decoder must wait for the entire vector u to go through
the channel, symbol by symbol. A third approach, which is the one to
be discussed in the rest of this chapter, is what we call ''real-time
information theory.'' In this approach, both N and n are fixed.
That is, we consider block codes with a fixed block length. This
situation might occur if the receiver is another DM who must make
decisions in real time, i.e., without arbitrary delay. The team
problem (3. 14) now becomes

min J = E[Dn] s.t. E[¢N] < « ; (3. 16)
Y1» Yo

where Y, and Y, are mappings between finite vectors. With this
extra restriction of fixed length, the optimal encoder and decoder in
(3.16) may not attain the Shannon bound in (3. 14). That is, they are
suboptimal in the infinite delay problem. However, the formulation in
(3.16) is actually closer to traditional team theory, which does not
deal with infinite or arbitrary delays. This assumption of fixed
dimensions also brings us closer to the Spence problem, which can
now be looked upon as a NZS version of real-time information theory
where n= N-=1. Since dimensionality is at issue, Question 4 will
also be answered, which completes our list of team theory questions.
The Shannon bound is the best we cando if n and N are
allowed to become arbitrarily large; that is, the admissible strategy
space contains mappings between vectors of arbitrary lengths. The

mappings between vectors of fixed length n and N constitute a subset

of this space. Since its strategy space is more restricted than in the
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Shannon problem, the real-time team problem for fixed n and N
cannot have a distortion less than ﬁ*. Thus, ﬁ* is a lower bound for
the real-time problem. Witsenhausen [12]also pointed this out, and
noted that the bound may be quite loose. He refers to a paper by Ziv
and Zakai [15] that proposes a way to find tighter bounds by replacing
""log'' by some other convex function in the definition of an information
measure. However, these bounds are, in general, difficult to
compute.

In the next section, we will investigate a particular example of a
communication system and will show under what circumstances linear
strategies for fixed n and N attain the Shannon bound. When this
happens, the strategies are, therefore, team optimal. When this does
not happen, the performance of the suboptimal linear strategies can be
compared to [5*. If the performance is close to [3*, then the easy-to-

implement linear strategies might be desirable.

5.2 Linear vs. Nonlinear Strategies

In order to provide a basis for comparison of optimal and sub-
optimal strategies, we will assume that, for all examples discussed in
this section, the communication system in question has a Gaussian
source and channel, as described in Examples 3.2 and 3.3 but with
variance (x) = 1. Then for fixed o, the minimum distortion p*,

derived from equating R(B) from (3.6) and C(a) from (3.7), is

(3.17)

e bl el e S b sl e b Wi




Then Dn and ¢N from (3.8) and (3. 9) become

. e e (3. 19)
: n n Fos | *5 i 2
* N
, e = % 21 ui2 . (3. 20)
i=

First consider the special case of n= N = 1. Then the source and

channel are matched synchronously, so that P.=Pgs OF k = 1. The

F' team formulation in (3. 16) reduces to the simple form

min J = Elly,-%°] st E . =a . (3.21)
Y10 Yp

Since J is the same as J2 from the Spence problem, and the

constraint does not depend on Yo and the first order conditions for

’ the unconstrained team optimal are the same as the first order

conditions for a Nash equilibrium [7], then the optimal decoder is the

t same as in the Spence problem, namely,

%= v = Yl = E . (3.22)

We cannot evaluate this conditional mean until we specify vy,, since

y = yl(x) + ¢. Suppose we let Yy be linear; that is,

B u = yl(x) = ax . (3.23)
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where ''a'' is a scalar. Since x and € are Gaussian random

variables, Y, is also linear, and (3.22) becomes

P T e PRTGES B

= vz s i O (3.24)

and the constraint in (3.21) becomes
az < « . (3. 25)

For a =\,a , the constraint is satisfied and

(221 5]
7 [ | -1 x + €
cr+oz a+cz

- ¢ (. (3. 26)

This linear scheme attains the Shannon boun., so that we immediately

have the solution to the team problem in (3.21). Therefore, for the

special case of N = n = 1, the linear strategies

V1(x) = qfa x (3.27a)
o

Yly) = ——5 y = & (3.27b)
ato

are optimal. This result is at first very surprising, because, as
mentioned earlier, Witsenhausen [11] showed that for a similar team
problem with signaling, the optimal linear solution was not the team
optimal. However, the result (3.27) was also noted by Witsenhausen in

a later paper [12], by Gallager [5], and by Whittle and Rudge [10].




T

For other cases of fixed n and N besides n= N =1, linear
%*
strategies could again be tried and compared against B (k). To make
the source and channel synchronously compatible, choose n and N

such that

s81Z
©
o

N o SRR (3.28)

as described in the discussion of block coding in Section 3.1. The
communication system now considered will involve an n-dimensional
memoryless Gaussian source x with zero mean and covariance In
(n-dimensional identity matrix), and an N-dimensional additive
Gaussian channel whose noise € has zero mean and covariance czIN

and is independent from x. For the encoder, a linear strategy means

u = Hx, (3.29)

where H is an N x n matrix. It will be assumed to be of maximal
rank, since this is required in the proof of Theorem 3.1 below. This
assumption has the interpretation in equation (3.29) of requiring the
components of u to be uncorrelated. Since we know from Shannon
theory that the Shannon bound is attained when the inputs u to the
channel are uncorrelated (see [5]), H having maximal rank is a
reasonable assumption.

From (3.22), v canalso be expressed as a function of H. The

version of the team problem in (3. 16) with Dn and ¢N as in (3. 19)

and (3.20), respectively, now becomes:

st
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min I = E[l tr(x-v(H))(x-v(H))T] 5. t. E[-ﬁl tr Hxx© HT] 5o s
HEXN =

(3.30)

where ''tr'' stands for trace and superscript ''T'' for transpose, and .

H is the set of N xn matrices of maximal rank.

THEOREM 3.1, Let H' be the optimal solution to (3.30). Then

for k=1

2

Ty o e S (3.31)

F‘ ak+02

Proof. See Appendix III-A.

*
In the proof of Theorem 3.1, H is derived in term ; of its
] eigenvalues, not the matrix itself. However, as will now be shown,
%
a particular H , with a simple interpretation, can be found. For

k 2 1, that is, the chanunel dimension is greater than or equal to the

source dimension, a particular linear encoder is the one which

corresponds to repeating; that is

k times

r
5
L




where N/n = k. The particular H that corresponds to this is (call

it H):
1 0 o i s
1
: K
. O
o .
0 1 0 LN ]
- 3 k
W odde 7§ kn = N (3.32)
Vo § e
R 01
1
g K
0 :
1
L -

COROLLARY 3.1, For k=21, JH) = JH).
Proof. See Appendix III-A.

Therefore, for k > 1, repeating is as good as the best linear
encoder.

An immediate consequence of Theorem 3.1 is

COROLLARY 3.2. For the communication system described in
Section 5. 1, linear encoders and decoders are optimal if the source

: ’ ; : *
dimension n and channel dimension N are equal.

*Whittle and Rudge [10] prove a more general result for the case of
channels with memory.

et ot bl e o
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* *
Proof. If n = N, then k=1 and JH ; k= 1) = g (1).
Figure 3.8 shows how J(H*) deviates from [3* as k increases, Q.E.D.

*
Since ﬁ* is calculated assuming infinite sequences, but J(H )

is not, the converse of Corollary 3.2 cannot automatically be asserted. .

3 It may be true that if the dimensions n and N are fixed, linear
strategies are the best we can do. However, in Section 5.3 counter-
examples for k > 1 and k < 1 will be described, where certain

nonlinear coders give lower distortion than the best linear ones.

Sk ooy o0

Before presenting the counterexamples, we first give the
heuristic interpretation as to  why linear is best for N = n but not
necessarily for N ¥ n that was first proposed by Shannon [9] and later ]

by Wozencraft and Jacobs [13]. Consider Figure 3.9 for n= N= 2

and Figure 3.10 for n= 1, N= 2. Figure 3.9 illustrates the linear
case. The idea here is that a linear transformation maps the entire
space of x's (RZ) to the entire space of u's (RZ); that is, it fills the
u-space. To understand the significance of this, we mist compare it

with Figure 3.10. First we perform a transformation on the Gaussian

random variable x so that it falls within a finite interval. This
simplifies the explanation and is an important step in one of the
counterexamples. Now, Corollary 3.1 says that the best linear
transformation on x is as good as just repeating x twice, which
implies that the optimal linear coder maps the finite x interval to the
diagonal u) =u, = x in the u-space. However, this does not take
advantage of the higher dimensionality of u; that is, it does not

''fill the space.'' A transformation that results in a curve that fills the
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By
l = =g? =
2 a=g2:=]
T
\.\ J(Hik)-k.ﬂ
(REPEATING)
E
4
~
B*(k)' g
~
(SHANNON BOUND)
| | | ] > p
0 1 2 3 4 k=1:-=—-c

(7]

FiG. 3.8 COMPARISON OF SHANNON BOUND AND REPEATING
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* FIG. 3.9 LINEAR MAP FILLS THE SPACE FOR n=N

2|2 LINEAR MAP:
J U= uUx=x
»]

/
NOISE BALLé

FIG. 3.10 STRETCHED CURVE BETTER THAN LINEAR FOR n #N
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; space more than the diagonal is better than linear, as illustrated by ﬁ

| the twisting curve in Figure 3. 10. A Now, when the signal (as repre-
sented by the curve) goes through the channel, it is corrupted by noise.
The advantage of the longer curve is that we can pack in more little
"'noise balls, '' assuming that the variance 02 of the noise is very
small in order to prevent accidentally jumping to the wrong part of the
curve when the noise is added. e In fact, Shannon points out that
there is a threshold effect where the increased benefits by extending
the curve are outweighed by the greater chance of committing a large
error. Now, define the ''stretch factor'' S (see [13])as:

change in length along curve
change in x

If S is constant all along the curve and the noise is small, then,

locally within the balls, the curve looks linear. If we straighten out

the curve and compress it to fit in the original interval in x, then we
have also compressed the noise balls. The net effect is that we have
reduced the noise for the whole system, so that we get a lower dis-

’ . Xk
tortion than linear.

5.3 Counterexamples

We now describe the counterexamples that show that linear

strategies are not necessarily optimal when n and N are fixed, and

*Shannon [9] calls this idea the ''snake-in-the-box. "

ey
Although Gaussian noise extends beyond the boundaries of the noise
balls, almost all of the probability density falls within a ball of radius
30. Thus, packing in balls captures the conceptual idea.

{ b [13] this is called ''twisted modulation. '




TR

ool ors

ko M h e e L b B 2

i

3-38

k # 1. These examples utilize the ''stretched curve'' idea to construct
nonlinear encoders and decoders that are better than linear. For

simplicity, we assume that the random variable are normalized so

that o = 1,

COUNTEREXAMPLE 3.1.7 k>1,

Let n=1 and N= 2, sothat x ~ N(0,I,) and € ~ N(O,ozlz).
Divide x into four regions such that the probability density of each

region is 1/4 (see Figure 3.11); thatis,

2
x
P 1 § T
j p(x) dx = p(x) dz = 1 for pix) = — e
o N \N2n

> Ax.67.

Since N = 2, the encoder must take x to some two-dimensional

vector

The particular encoder used in this example is to let u; represent the
region x is from, and let u, be a linear transformation of x ina
stretched out version of this region. Figure 3.11 gives a graphical
interpretation of this scheme. More precisely, let r(x) = region
number of x. Then it can be verified that u, can be expressed as

B (—2-’-‘- $5-2 r(x)), (3. 33)

2 A

*See Appendix III-B for details.

bl i s ' St L
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n=1, N=2 » P(X)

A N i o i e el

=67
‘ 1\ r
- y 4
4
o 3 . —e
P— L A 3 -
< ] -
o + —> UZ
-B 0] B

FIG. 3.11 STRETCHED MAPPING OF x TO TWO DIMENSIONS
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(see Figure 3.11 for illustration of B) and the stretch factor S is

constant for all x within a given region:

. N :
S = e for fixed r.

uz = yz = u2+ez -

Now, u, = cr, where ¢ 1is a constant chosen to satisfy the power

constraint, so that

= ply,lr) ~ Neer, o?)

Let T = maximum likelihood estimate, that is,

Lo}
n

e ply|r)p(r)
arg max p(r|y S —
r 1 p(yl)

arg max ply;|r) ,
r

since

p(!‘):ji‘ M r

Figure 3.12 shows graphically how T is chosen from an observation

of Y1 Finally, let

<
"
W
1
(N
_—
>
] o
]
(8, ]
+
o
">
N—
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=2)

ply, Ir

- —

Ml

FIG. 3.12 ESTIMATING r
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(just invert (3.33)). Then it can be shown that the expected distortion

can be bounded from above:

E[(x-:‘c)z] < -(1; 02 + 6F (- '—;—8) 2 (3. 34)
where
2
y e
F(y) =S A e & dx .
17 \[2'11

For o= .0022, the right hand side of (3.34) equals .00097. The

distortion value for the best linear scheme, given by

2
g

2+0

JH%2) -

from (3.31), for the same oz, is .0011, Therefore, the nonlinear
scheme gives lower distortion than just repeating. Since the error
function F decreases very rapidly as o decreases, the nonlinear
scheme becomes even better with smaller o. For example, for

% = .001, (3.34) equals .00017, and (3.31) equals .00052.

COUNTEREXAMPLE 3.2." k<l

Let n=2 and N=1, It can be shown that an optimal linear
encoder is u = (x, + xz)/ﬁ , Wwith expected distortion

1 2
*2_-2-+o

JL(o' )

l+o‘2

*See Appendix III-C for details.
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(In general, linear distortion is

n-1 2
__—+o'

n

__-_.._2__ _)
l1+o

N o e Ve

Graphically, this scheme amounts to projecting all points in the Xy
x,-space to the diagonal x, = X, One way to ''fill the space'' better,
suggested by Shannon [9], is to construct a real number u by alter-

nating the digits of x; and X)) that is, if

x, = a) a,a,
X, = bl b2 b3
then
u = 'albl azb2a3b3...

This nonlinear scheme fills the X)) X,-space much more than linear,
but it is difficult to deal with analytically. {
A simpler nonlinear scheme that fills the space more than linear

is shown in Figure 3. 13, where 6, and §, are transformations f

of x; and X,y respectively, to the interval [-1,1]. All points are

mapped to the dotted lines in the following way:

A0y 50 3 ol v Bpe) - (el’a_?) ’

where

(1)}




r=4 o v e e e g o e iow w he pe uf  rn: r¥ie e

FIG. 3.13 TRANSFORMATION OF SQUARE TO DOTTEUL LINE

9'=-l 9] =] 8] =-] 91 =] 9|=-l
I ) } } t —>u
- N 1 0 P 1
Mol i o G "
r=4 r=3 r=2 r=1

FIG. 314 TRANSFORMATION OF DOTTED LINE TO u

‘i:
| &
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Let 3‘2 = 3/4 correspond to row number r = 4, ‘52 =1/4 to r =
etc. Straighten out the dotted line and compress it to fit into the
interval [-1,1], and call the variable u, as shown in Figure 3. 14,

Then it can be shown that

o= g [-DF 6, +5 - 2r]

3,

(3. 35)

Next u is sent through the channel. Let i =y = u+ €. Then let

4 if G<-1

3 if -%saso
|
2 if Os“sl
1 u 2
: s
1 if 2su

(-1)f 48-5+2%), -l1s<ts< 1 (justinvert (3.35))

°1= =1 ’ ‘l‘l( b |
1 v 'l
= 616[_1711
_ 5-2r
32 2 ey
R el
%, = £ (8

">
o~
I
L)
1
[
—
D>
N
~
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Let f(x) = 2/7 tan” ! x, and let expected distortion be defined as

2,

JNL(O ):

Iplo? 2 %E[(xl-il)z + (xz-iz)z]

Then it can be shown that

Tgplo®) = Ble®) .

where

B(GZ) & _;_ { [% 1'2 1602 + '354](1_Pe) + [IO%ﬂZ]Pe; (3. 36)

and P_ = Pr[f # r]= probability of error. P_ is a complicated
expression because it involves the probability density of G, a difficult
thing to compute. However, Pe is a continuous increasing function of
0% 1 o’ = 0, then P_=0 and B(0) =.177= I (0). If o is
sufficiently small, then B will still be less than J;(oz), as shown in
Figure 3.15. However, as cz sl N -1, so that B -oS% 1!2. (The
B(cz) curve is qualitative and not based on numerical calculations. )

Therefore, for sufficiently small cz, the nonlinear scheme is better

than linear.

5.4 Asymptotic Effects

In Chapter II it was shown that the equilibrium solutions for
Example 2.3 of the job market model exhibited threshold effects.
Since the solutions to the n = N case of the Shannon problem are

known, we might ask whether they also exhibit threshold effects.
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A
________ e e e 5%#2 (out of scale)

— — — — — m— — e—

FIG. 315 OPTIMAL LINEAR PAYOFF VS. NONLINEAR BOUND
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However, as expressions (3.27) and (3.26) for the n=N = 1 case
indicate, asymptotic, not threshold, effects occur. That is,
signaling ceases in the limit as the parameters o and oz approach
0 or »., For example, both DMs still feel it worthwhile to signal
even if signaling is very costly (tighter constraint on signal power,
i.e., small @) or very noisy (large oz).

With no noise, v= x as in Example 2. 1, demonstrating that
asymptotic effects can occur in the Spence problem as well, unless
there are extra constraints, such as a minimum ability level and a
maximum educational level. Therefore, we cannot state any general
results as to which effects, threshold or asymptotic, will occur in
any given problem. The payoff structure (team vs. NZS) and restrictions
on the random variables (continuous vs. discrete, and infinite vs.
finite range) are prime candidates as the factors which determine the

type of parameter effects.

5.5 Summary

In general, real-time information theory solutions are sub-
optimal as compared to ''infinite-time"' (Shannon) theory solutions.
However, if the dimension n of a Gaussian source with a mean
square error distortion function is equal to the dimension N ofa
memoryless Gaussian channel with a square cost function, the source
and channel can be directly connected, with appropriate scaling of the
channel inputs, so as to satisfy the power constraint. The distortion

incurred is the best one can do, since it equals the Shannon bound. If
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N>n (k= N/n> 1), then repeating each source symbol k times is a
simple suboptimal strategy. For small values of k, its performance
is close to optimal. If N<n(k< 1), Theorem 3.1 does not apply, so

that little, in general, can be said. However, counterexamples with

k=2 and 1/2 are described where nonlinear encoders are better

than the best linear ones.
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APPENDIX II-A

PROOFS FOR RESULTS ON OPTIMAL LINEAR CODERS

Before going on to prove Theorem 3.1, we digress to note that
for the linear solution (3.27), X = v = y;(y) is the estimate of x that
would be produced by a Kalman filter. Expected distortion E[D(x, v)]
is simply the error covariance, referred toas P in the control
literature (see Bryson and Ho [3] for derivation of Kalman filter
formulas). This fact makes it very easy to evaluate x and P from
linear encoders and decoders for arbitrary values of N and n, using
the standard formulas from Kalman filters for the special case where
X is time-invariant. In general, if x ~ N(x,M), where M is
the nx n covariance of x, €~ N(O,R), and y= Hx+ ¢, H an

N x n matrix, then from the Kalman filter

A
X

% ¢ PUR g - HE)L (3A. 1)

el | -1 1

P MsElRTH (3A. 2)

In the special case of n = N = 1, it is easy to check that for our model,
H = yJa, and % reduces to Equation (3.27b) and P to (3.26). If we
restrict ourselves to linear encoders vy, that satisfy the power con-

*
straint with equality, then the constraint

%
We always assume equality in the constraint, because the rate of
transmission increases with power. Thus, it is advantageous to use
up all the power available.
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becomes

tr E(HxxTHT)

|
2|~

tr (HIHExx )

|
AL

S ; (3A. 3)

N

From (3A.2) and (3A.3), (3.30) becomes:

min J(H) = -lﬁtr(ln +—1-ZHTH)'1 s.t. xtr (HTH) = a,
HeA o (3A. 4)

where H# is the set of NX n matrices of maximal rank.

THEOREM 3.1, Let H' be the optimal solution to (3. 30).

Then for k=1

% gz
JH ;k) = > (3. 31)
ak+o

Proof. Since In >0 and HTH > 0, then

1 T
In+-a—z H H>0,

and from (3A. 4)




1 <« 1
IR M v
1= 1

where the \. are the eigenvalues of I + l/czHTH and X\, > 0 for

all i. It is trivial to show that
Xi= 1+|.I.i, AR s e

where the p, are the eigenvalues of I/GZHTH. Then the constraint

(3A. 3) becomes

n
> ol Nl
i=1 1!

So the problem is now:

min

(r)

where r is the Lagrange multiplier.

i )\i

* 1 " it ;
N, = ? ¥i (positive square root because eigen-
r

values positive).




%* *
In order for all \; to be equal, we must have all u =\ -1 equal

This means we must have HTH> 0. Since k=1 and H is of
maximal rank, then HTH is, in fact, positive definite (see [3],
p. 444). (If k<1, then HTH can only be assumed to be positive

semi-definite.) Then

n ]
2xf=—"—=n+-N—g
i,:].1 V; le]

2 2

4
B
1"

§
1
Q

no'z + Ny 02 + ok

B
o
_*
1]
Bl
M=
-:'-I""
1]
8-
™s
5
"
9

i=1 )\.— i=1
1
2
O ENEC SRR
02 + ak
Q.E.D.
COROLLARY 3.1. For k=21, J(H) = JH").
Proof. With H as in (3. 32), then
J(H) = S P -l-tr<1 +—1§ ul )“1
n n n
g
1 1 -1
= ‘; tr(ln+—2- ak In)
g
c,Z
B ey . Q.E. D.
ak + ©

Therefore, within the class of linear encoders H, none gives

~

lower distortion than H,
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APPENDIX ULI-B

COMPUTATIONAL DETAILS FOR COUNTEREXAMPLE 3.1

Referring to Figure 3.13, for

2=, let u, = B(%+3)

2 - pl2x
r=2, let u, = B(A +1)
2x
r=3, let u,-= B(T\--l)
2
r=4, Ilet u2=B(Tx-3)
or
a, = BEEE | steis) (3B. 1)
2 A ' E ¢
where
g(r) = 5 -2r i (3B. 2)

Since o = 1, the power constraint has been normalized to

%E(ui + uz) %

Let u) =cr for some scalar c. Then a special case of the constraint

is:

%
As in Appendix III-A, we assume equality in the constraint.
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Y= Eui = cZIE:rz = -122 c2
= c = -%—5— = 36
Also
2 2l 4a® 4 2
1 = Euz = B°E —;2- + - 4 g(r(x)) + g(r(x))
21 4 4
— 3 [—'—2'+z E(xg)+5] 2
» A
where
A @
E(xg) = -2 [L x p(x) dx+3I xp(x) dx | = - 2.08.
A
Therefore
1Son e gt
or
e £, Bem . (3B. 3)

Figure 3. 14 shows graphically how t is chosen from an observation of
y)- Transform vy, to ?r'l =ly,-cr/o ~ N(0,1). Then the cut-off
points (3/2)c, (5/2)c,(7/2)c in Figure 3. 14 are transformed to * c/25.

Let F be the error function

2
X
e2 dx

y
Fly) =

I &
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Then for Pe = probability of error,

np

Pr(t #r]

4
;l Pr(t  r|r=i] Pr[r=i]

[rl-2) e (- 8)vor(5)e e )]

"
N
e

Note that as o decreases, Pe decreases. Now, let

~
X =

A
2

a
( 2 - s(f(xn)

(just invert (3B. 1)). Then

">
!
b

E[%-x)%]

%[% (8, +€,) - g(f)] - x

L) - BN+ 35 ¢,
2 2

A o2+ A Elel) - )]

4B

LA 2

- + A“E[(r-2)7], from (3B. 2) and (3B. 3)
2

96— + A% E[(r-$)° | ¢ £2]P,

c~|°N

+A%(3)? P_ , since max |r-#| = 4-1=3,

1 2 .18
57 +"F("&")
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APPENDIX III-C

COMPUTATIONAL DETAILS FOR COUNTEREXAMPLE 3.2 3

A general linear scheme for this example is

Power constraint:

E[uz] =21k = E[(a.x:l +bx2)2] = a2+i:>2 (3C. 1)
Then §
y = ut+e ‘
e axl + bxz + €
= ax, +(bx, +€)> %, = E, (x,) = <
1 2 1 P4 & +b2+02
- b y
= bx, +t(ax, +€)>%x, = E, (x,) = ———nr ;
2 1 2 Ate T w7 d !
4
A o~ l 2 - 2 ¥ 4
E[D(x,v)] = D = s E [(xl-ﬁl) + (xz-xz) ]
s~ [a2-1-0%)% 4 22202 + (b2-1-g2)?
2(a +b 40 )
+ (az+bz)02] :
i

SRRARTRSETG SR vr WD
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Substituting in the constraint (3C. 1), this becomes

1

4 2
—33 [20 +30 +1]
2(1+07)

Ol
"

1 2

Sl AR 1

.—_——2 =JL(U) ’
) l+o

(3C.2) !

which is independent of a and b. Therefore, any a and b satisfying

4 (3C. 1) will be an optimal linear solution.” For example, consider

] a=b=-l— :
\'H3
so that
- = (xy +x,)
u = — (x) +x,

For the nonlinear scheme described in Counterexample 3. 2, ]

recall that ¢ = f(x). For the case of f(x) = 2/7 tan-l x,

e B .
ez = & 2 " X < t 2.4
3 = i -l > %, = % .41
; 2 4 2 ¥
E )
ez . - E > xz = +1 -

B~ PRI T

A ~
If oz = 0 (no noise), then 8, = ) and 62 = 0,, 80 that

*
| That is, the constraint is rotationally invariant.
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J’NL(02=0) i %E[(xl-il)z+(xz-i2)2]

1
S (xz—.4l)zp(xz) dxz+ Jt (x2-2.4)2p(x2) dxZ
0

= 177

*
From (3C. 2), JL(O) =D JNL(O). Therefore, since the nonlinear
coding gives lower distortion than the linear when there is no noise, it

must do the same for sufficiently small noise. In fact, we can bound

JNL(GZ) for small cz.
Let
& -1
g(ei) = g(f(xi)) = x, (i.e., g=f ) A (3C. 3)
Then
glfx ) £t = 1, sothat gllflr) = ?,-:;—) . (3C.4)
i
Let
61= 91 = 91 .
Then
; 16(8-u)? = 16> if F=r
< 4 if ##r, since
max|§1-91| = 1-(-1)=2
Let
4 | 62 & ez b 92 .
Then

WM‘%;«MM At S0 PR H IS
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(,-0,)° if #=r (or E[(x,-%,)2|#=1] = .354 = 27 (0)

2 2 a ? 2
Ee_z-ez)zs(l%) ~3 if t#r, since maxlez-ez|=%-(-l)=l%

-

1 i ’

-
7. between 6., and 0.
1 1 1

1
=~ xi + f_'(_f;) 6i
from (3C. 3) and (3C. 4) (for very small éi, i.e., small noise*)

o e _L__ 6
e T Pl flx) i

JNL(OZ) = % E[(xl-i‘:l)2+(xz-iz)z]

1 1 \2.2 ( 1 )2 2
. EE[( f'(xl")) O\rey) %2
1 1\ ., 2 i
< E E -f-;-(;F l6e + .354 Pr[r = r]

1 2 1 2 .
+ E[(m) (4)+(F(—£z—)-) (3)]Pr[r;!r]}

*See end of this appendix for bound on

g''(r)
| =t




t
.
£
.
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Let P_ 4 Pr[f # r] (probability of error). Also, since

then
E(?lm)z e
Thus Q
Iype®) = Be?) |
where

B(c?) = %{[%nz 1602+.354] (l-Pe)+[10%1rz] PJ G

Bound on |g''(1)]: Let rt€ [9,3] and 6= -89.

g(e) tan .725 ]

g'(e) = —g—(l+tan2 z e)

g'0) = 7 tan 7 0 g'(e)
112 .1 2 7
:-Z-—tanie(l+tan 79)
‘.
2
= 12- tan% 9(sec2 % 9)
L, §
or
g''(e) = mg(e) g'(e) . (3C.5)
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Thus, we see from Figures 3C. 3 and 3C. 4 that

np

lg(r)| = max {[g(e)], |g(®)]]

lg'(r)] < max {|g'(8)], |g'(®)]}

From (3C. 5),
lg"(1)| < 7 A(8,8) B, 8)

Therefore, |g''(r)| will not blow up as

B do not blow up as & gets smaller.

A(9,8)

B(9, 6)

& gets smaller, since A and
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v
9 as. oW
5 ?g(e)-sec ?9
| g(9)=ton5-9 I «
I | | I
' | | |
; | | |
| | ! |
+ - 6 | _
-3 8T8 1 | 1
| | | +——9
[ I -1 1
| I I I
| |

FIG. 3.C.1 BOUND ON Ig(T)I FIG. 3.C.2 BOUND ON Ig(T)!1
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CHAPTER 1V

CONCLUSION

The main features of the Spence problem of Chapter II, from a
decision and control point of view, are the dynamic information
structure (i.e., signaling) and the multiple equilibria. Multiple Nash
equilibria in a noncooperative NZS game are undesirable, because

DM1 may choose one equilibrium strategy, say but DM2 might

.},?’
not choose the corresponding y;, but some other eguilibrium yg.

The pair (yi’, yg), in general, is not an equilibrium. By assuming
certain parameters were fixed instead of variable, we avoided this
problem and obtained a unique equilibrium.

As a vehicle for insights, the model was set up as a two-person
decision problem. This allowed us not only to find new solutions, but
also to handle modifications of the problem more easily. For example,
we defined an adjustment procedure for each decision maker and
proved sufficient conditions for stability. We also investigated
threshold effects and found that, under certain circumstances, signaling
ceases when different parameters in the problem are varied. The
main results were that if signaling cost or signaling noise are too
high, or if the variability of the underlying unknown signal is too low,
then signaling is not worthwhile. Therefore, from what originally
appeared as a very simple example, a tremendous richness of detail

and insight have emerged.

4-1




Extending the decision theory framework, we saw in Chapter III
how Shannon information theory can be modeled as a two-person team
problem with signaling. This set-up allowed us to discuss coding
problems in which the delay between emission of source symbols and
transmission of coded signals was fixed. This was called ''real-time
information theory, '' suggesting applications where coding precedes
actions which must be taken within a specified time. Since Shannon's
theorem states the best we can do with no delay restriction, it provides
a bound against which we can judge the performance of the real-time
scheme. General results about performance were also derived; for
example, repetition of source symbols as an encoding scheme is as
good as the best linear encoder. However, if the block lengths of the
source and channel are equal, then for both variable and fixed delay,
linear encoders and decoders are optimal; that is, they attain the
Shannon bound. If the block lengths are not equal, then for fixed delay,
linear may not be optimal.

The major contribution of this work is not to prove significantly
new results, but rather to unify the disparate fields of team theory,
market signaling in economics, information structures, and classical
information theory. Hopefully, the general conceptual framework

presented here will encourage joint efforts among researchers in these

separate fieids.
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