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ABSTRACT

A decentralized many-person decision problem is one where

each decision maker has different information. If one decision maker ’s

information depends on what another decision maker has done , the

information is called “dynamic. ” In the past, problems involving
t

dynamic infor mation have been very difficult, if not impossible, to

solve. Two specific examples which have been solved, one from

economic theory and the other from classical information theory, will

be investigated. It will be shown that they can be formulated as two-

person decision problems with the type of dynamic information structure

called “signaling. ” The first example involves a model of the job

market as a nonzero-sum game. New equilibrium solutions are found

and properties of these solutions , such as stability, multiple solutions,

and threshold effects of signaling cost and noise, are studied. The

second example models the Shannon problem as a team theory problem.

The concept of real-tirm information theory is introduced, where

sour ce and channel sequences ar e of a fixed length, and general results

about real-time solutions are proved and demonstrated.
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1.T 11IU..
CHAPTER I

INTRODUC TION

a 
Information ava ilable to a decision maker (DM ) not only influences

his actions , but also determines whether a solution to the decision

problem exists at all. The role of infor mation becomes particularly

complicated when ther e is more than one DM, especially if each DM

has different infor mation. In order to study how information influences

decision making in many-person decision problems , two specific

examples , one fr om economic theory and one from classical infor mation

theory, will be examined. It will be shown that they can be formulated

as two-person decision problems. This formulation provides a fr ame-

work for studying each pr oblem’s information str uctur e, that is , “who

knows what. “ The reason these partic ular examples have been chosen

is because they both exhibit a special type of information str ucture

called “signaling. “ In the past (see [1], [4 ], and [71), problems in-

volving this type of information structur e have been very difficult , if not

impossible , to solve. However , these two examples can be solved (in

a sense to be defined) . Thus , they ~rovide new insights into possible

new solution techniques.

Before going on to the two problems in detail , we first will define
more precisely what is meant by a many-person decision problem with

“signaling.

Suppose there are N decision maker s, with the i-th DM denoted

as DMi. First of all , let x E C~ be a random variable representing the

1— 1

1
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state of the world (or state of nature) that each DM would like to know,

with proba bility density p(x). Secondly, for I = 1, . .  . , N , DM1’s

information z. E Z. is a function of x , written as z. = h .(x) . * When
1 1 1 1

h1 ~ h. for i / j, then we say the problem is “decentralized , ” since

each DM is making decisions based on different information. Thirdly,

DMi ’s action, or decision , u1 E U1 is a function of his infor mation ,

expr essed as u1 = y1(z 1), where is called a “strategy ” or “decision

r ule. “ Lastly, DMi ’s objective , or payoff, function J~ is the

expectation of a function of x and all of the DMs ’ strategies. Each

DMi now faces the following problem: choose a strategy y1 from a

class of specified admissible strategies (usually taken to be the class of

meas urable functions from Z. to U.) to minimize
1 1

= E[J~(x, y1,. .. ~

The information to DM1 can be modified to include not only z1, a

a measurement of the state x, but also the actions of the other decision

makers. For example, suppose DM1’s information also includes

the action of DMJ, j / i. Thus , a sense of or der is conveyed in that

DMj acts before DMi , and DM1 observes this action. When this

happens , that is , when DM1’s information depends on what another

person has done, we say that DMi has a dynamic information str ucture

[2], [3]. Otherwise , the information structure is called static. **

*This is not the most general definition of information, but is sufficient
for our purposes at this time.

**We ar e considering only nonclassical information in that each decision
• maker has different information 181.

1~
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The former is the type of information str ucture that occurs in the two

*examples to be studied.

Sometimes a dynamic information str uctur e can be reduced to a

static one [2]. However , one example where this is not the case is the

type of dynamic information str uctur e we call “signaling. ” For the

case of N 2 , let DMI ’s action be denoted as u and DM2 ’s as v.

Then signaling is defined as the type of dynamic information where

DM 1’s information is just x and DMZ ’s information is just u. In

other words , DM1 “signals” his knowledgt of x to DM2 through his

action u = y1(x). DM2 must now infer x 
from u and choose

=

Chapter II examines an economic application of signaling based on

a model of the job market by Spence [6]. Although Spence used the

term “si gnaling ” to describe the type of infor mation transfer in the

job market , Chapter II extends the model by formulating the problem as

a two-person decision problem. The reason for this is twofold: first

of all, we immediately see that Spence’s model is an example of a

problem with (nonclassical) dynamic information that can be solved.

For this reason, it provides an excellent vehicle for studying this type

of information structure. Secondly, this set-up allows us to find new

solutions and investigate different properties of the solutions. Although

the lack of detail in the model prevents us from asserting the absolute
4

validity of the economic issues raised , the decision- and control-

theoretic framework provides qualitative insights into modeling the

transfer of information.

*The reason problems with a dynamic infor mation structure are difficult
to solve is because the underlying probability distributions needed to find

• the solution are themselves solution-dependent. See [8] and [31 for details.
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Chapter III deals with problems in Shannon theory, also some-

times referred to as classical information theory, which addresses

the problem of coding a message and sending it through a noisy

communication channel [5]. At first glance, this may sound unrelated

to the economics-oriented Spence pr oblem of Chapter II, but we will

show that this problem also can be modeled as a two-person decision

problem with a signaling information str uctur e, only now the DMs

form what will be described as a “team. ” To correspond more

accurately to the Spence problem, the formulation will be modified to

introduce the concept of “real-time information theory. ” This provides

decision and control theorists with an understanding of information

theory in their own terms. On the other hand , it provides information

theorists with an entirely new way of looking at Shannon theory.

- ~~~~~~~~~~~~~~~~~~ ~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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CHAPTER II

MARKET SIGNALING AND THE SPENCE MODEL

a

1. Introduction

In the job market model of Spence [1], [2], an employer must hire

someone for a job without knowing how productive that individual will be.
• In other words, the employer has imperfect information about an

individual’s ability. Spence suggests that the employer can improve his

• infor mation by looking on the job application for some signal, such as

educational level. The employer offers wages based on the signal he

sees; that is, a person with more education is offered higher wages,

because the employer believes that the higher education indicates higher

ability. The individual applying for the job, on the other hand, knowing

he will receive wages based on his educational level, must decide how

much education to get , taking into consideration that education is costly.

When the employer ‘s beliefs about the relationship between ability and

education are confirmed by what the indi viduals actually do, then we

have what Spence calls an equilibr ium.

An interesting featur e of this model is that there are multiple

equilibrium solutions. In this chapter , we explain why this is true and

prove new results about the Spence model. In order to do thi s, the

model is formulated as a two-person nonzero-sum noncooperative

decision problem with imperfect and dynamic information. The purpose

of this is to clearly display the decision and control theoretic nature of

the problem, in particular the role played by the dynamic information

2-1

a.,
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str ucture. Under this formulation, new classes of multiple equilibria

can be found and an explicit method for computing these new equilibr ia

is given. Also , different properties of the solutions are investigated,

such as stability and threshold effects.

• 2. Problem Statement
I

AU potential employees will be considered together as decision

maker one (DM1) and the employer as decision maker two (DM2). DM1 ‘s

information is natural ability, denoted by the variable x. That is , each

person makes a decision based on knowledge of his own true ability.

This can be expressed as a mapping from ability to educationa l level,

denoted by y 1(x) = u, wher e u is the variable representing educational

level. (We assume x >  0 and u � 0 to r ule out the meaningless notions

• of “negative ” ability and “negative” amounts of education. ) The

employer ‘s information is the signal u, and his strategy is to offer

wages as a function of education, denoted y2(u) v, where v represents

wages. We immediately see that this is the type of dynamic information

structure defined in Chapter l a s  “signaling, ” wher e educational level

u is the signal.

In Spence ’s model, signaling costs c(u ,x) and productivity s(u ,x)

are f unctions of education level and ability. * Each individual applying

for a job chooses the educational level to maximize his net pr ofit, the

difference between his wages and costs . For DM1, the entire employee

*Thus educational level ii not only serves as a signal about x , but
also affects productivity directly when s(u,x) is an explicit function
of u.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~--— .
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population , the goal is to maximize the expected net pr ofit , with

expecta tion taken over the variable x. We assume that ever yone,

including the employer , knows the distribution of ability types through-

out the population. Thus , the payoff function J~ for the individuals

is written

= E[y2(~y 1(x )) - c(y 1(x), x) ]

This is the same criterion that Spence proposes although he does not

consider it in the context of a two-person decision problem.

Assuming utility units are appropr iately defined, the employer

would like to pay people no more than what they are worth; that is , he

wants wages v to be less than or equal to productivity s. However ,

if v is strictly less than s, another employer could come along and

offer wages greater than v but less than s , attr~~ t employees away

fr om the first employer , and still make a profit. We will combine this

idea of competition with the original proposal that wages not be greater

than productivity in a single loss function for the employer by penalizing

any deviation from s. Hence, the employer wants to choose a wage

schedule y2 to minimize the quadratic loss function

212(y 1, ~~~ 
E[y2(y 1(x )) — s(y1(x), x)]

is a mathematical device to allow us to (1) reproduce Spence ’s

result under our setup , and (2) focus on the equilibrium under comnpe-

tition without bringing in competition explicitly, thus avoiding the

complication of a three-person decision problem. In Section 6 we will,

• •.•.—•••••• .•-•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



however , discuss the issue of competition directly, as was done in

[3] and [4].

The problem is now in strategic form; i. e .,  the goal is to find

the “optimal” strategies y 1 and y2, where by optima lity we mean

finding the noncooperative Nash equilibrium, sometimes referred to as

• person-by-person optimality. This is defined as follows: (y~, y~) is

a Nash equilibrium pair for the objective functions J 1 (maximize) and

• J2 (minimize) if and only if

• J 1(~4,y~) � J1(y1,y~) admissible

J2(.y~ , y ~ ) � J2(’~~,y 2 ) admissible

That is , neither DM has the incentive to unilaterally deviate from the

• equilibrium solution. By standard manipulations [5], the first order

necessary conditions for the Nash equilibr ium are:

m:x E
,~ 

[y2(u) - c(u,x)] = c

m m  E
/~ [(v - s(u,x)) ] y2(u) = v = E/~ (s)

where ‘ denotes d/du, and E
/~
(.) denotes E(. )x). * It is clear that

the second order sufficient conditions for the second equation hold, since

is quadratic.

*That is , instead of solving for the strategies and in functionspace , we fix the arguments x and u and solve for the var iables u
and v, respectively.
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The difficulty now is that p (xtu) ,  the underlying probability

density function in the determination of ‘12(u), is solution-dependeflt

that is , it cannot be evaluated until is specified. A way out of this

predicament is to guess that ‘~l 
is a one-to- one function. Then

knowledge of u implies knowledge of x , so that ‘12(u) = E/u[B( u
~

X)] =

s(u,x = .1j’( u)). Spence proves in [1] and [2] that the second order

conditions for the first equation , namely, Y~’ 
- c~~ < 0 , are satisfied

in this case unde r the assumptions

i) c > 0
U

ii) c < 0
‘Ix

iii) s > 0 .x
A particular example from [2] in which = s is as follows:

EXAMPLE 2. 1:

Uc = —  s = xx

Then , ‘~~~ = l/x and ‘12 = x, or

1

This is a differential equation in and has the one-parameter family

a of solutions

‘12(u) = ~ 2u + 2k 
(2. 1)

where k is the parameter. Since = x ,

= u = ~ x2 
- k . (2.2)
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Since x> 0, then in (2. 2) is, in fact, one-to-one, and our original

assumption is verified. Equations (2. 1) and (2. 2) are the equilibr ium

solutions derived in [1] and [2], so that the two-person model recaptures

• Spence ’s original results.

An important property of the solutions is that varying k produces

a continuum of multiple equilibria. Since

dJ~(k) 1 1 1
= E I — I > 0dk x i

(where J~(k) J 1(’11(k), y2(k)), ‘11 and as in (2. 1) and (2. 2)), the

equilibria parameterized by larger k give larger expected net pr ofit

to DM1 than those with smaller k. For DM2, varying k does not

ma~ter , since ‘1~ 
always equals x and J2 remains zero. When one

equilibr ium solution is better than another solution for at least one DM

without harming the other DM, the former solution is called “Pareto-

superior ” to the latter. Thus , solutions (2 .2)  with larger k are

Pareto-superior to those with smaller k.

Spence also works out an example where x and u are discrete

random variables [2]:

EXAMPLE 2. 2: Let x E C 1, 2] . Let

q = fraction of population of type x = 1

l-q = fraction of population of type x = 2

c = u/x 5 X  .

Suppose the employer guesses a relationship between ability and

education that results in the following conditional density function and

wage schedule:

I

-4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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Pr Cx= ijO � u < u’
~) = 1 ~ y2(u) = 1 for u <

• Pr [x=21u � u~
C
J = 1 ~~ ~y2(u) = 2 for u ~ u~

a 
is a two-level step function as shown in Figure 2. 1. Since the cost

of education is a monotonically increasing function of u for fixed x,

the net profit ‘12 
- c will be maximized only at the education levels

u = 0 or u~ . Thus , the individuals will choose either a = 0 or u~. 9

For x = i ,

max 
~~~ 

- c] = max f 1, 2 - u~ )

For x = 2 , •

*

max - cJ = max 1, 2 -

Therefore, in order to have consistency with the employer ’s beliefs,

we must have:

= 1) = 0 ~~ 1 > 2 - u*, or u >  1

* 
~~~ l < u ’~ z 2

= 2) = u*~~~. 2 - 
~~~~

— > 1, or u~ < 2

(2.3)

Inequality (2. 3) is the equilibrium condition for this discrete example.

Varying the parameter u between 1 and 2 again results in a

continuum of multiple equilibria. Also,

—•
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FIG. 2] WAGE SCHEDULE FOR EXAMPLE 2.2
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J~ (u*) = 1 •q + (z  
- 

~~~~~~ 
) (1 - q)

= 0

As u’
~ decreases , J’

~ increases. Therefore , solutions with smaller

u* are Pareto-superior to those with larger u~.

Becaus e the information structure is dynamic , the employee has

complete control on what the employer can infer from his observation

u about the under lying state of natur e x. Thus , it is not too sur prising

that by allowing the employer to make different kinds of inference on

the functional relationship between x and u, different functional

forms for the equilibria can be obtained.

3. Comparison of Equilibria

In Example 2. 1, y 1 is a one -tc -one mapping from a continuous

set of abilities to a continuous set of educational levels . In Example

2. 2 , ‘11 is also one - to -one, but this time the sets are discrete. In

both of these examples , the employer can precisely determine ability

fr om merely looking at the signal. In our model , we will obtain

equilibria somewher e between these; our equilibria involve a continuous

rang e of abili ties but a discrete , fini te number of given signals. Thus ,

our mappings from ability to signals are many-to-one. * We believe our

equilibria are intuitively appealing for several reasons . Fi ~t of aU ,

*Our equilibria are actuaU y many-to-one solutions for Example 2. 1. The
available range of si gnals remains continuous , but only a fini te number
of signais are actually chosen by the employees.

-4

~— . .~~
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in actuality, there are only a discrete number of educational levels at

wh ich wages are offered, for example , bachelor , master , and doctorate

degrees. * Secondly, many different types of people choose the same

signal, suggesting a many-to-one ma pping . Lastly, employers are

limited in the amount of information processing they can do , so that

they can handle only a discrete number of signals.

Another proper ty Spence ’s disc r ete example has in common with

his continuous one is that there are multiple equilibr ia, in fac t , a

continuum of multiple equilibria. As mentioned earlier , some are

Pareto-superior to others in the sense that they give a higher expected

net profit J 1 to DM1. Spence points out that the Pareto-inferior

solutions are inefficient in the sense that people are overinvesting in

the signal by purchasing more education that is necessar y to signal

their ability levels . Spence [3] and Riley [4] have discussed how to

choose the Pareto-optimal solution , if possible , that is , the solution

which has no other solution s Pareto-superior to it , in order to

eliminate or reduce the inefficiencies. However , they assume that the

employer has the power to manipulate both the wage schedule and

the signal levels u by changing the parameters of the problem, in the

first  example by varying k, and in the second by varying u*. In effect ,

this is equivalent to changing the signals already existing in the market.

In our equilibria , we assume that the parameter s , and hence the

si gnals , are fixed exogenously. This reduces the multiple equilibria

*Although “pseudo” educational levels, such as “master ’s degree with
two years experience,” have been created over time, they are still
discrete.

-S

_ _ _ _  - 
•
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to a single equilibr ium, in general. The justification for this

assumption is that when the employer comes into the market , the

educationa l levels used for pay scales are already determined. Only

after a long period of time can new levels be established. Table 2. 1

summarizes the differences between our solutions and Spence ’s

TABLE 2. 1

Comparison of Equilibrium Classes

Abili ty Signal (e. g. Education)

Spence Discrete Discrete-not fixed

Spence-Riley Continuous Continuous-not fixed j
Ho-Kastner Continuous Discrete-fixed

4. New Multiple Equilibrium Classes

In Example 2. 1, we began by guessing ‘1i was one-to-one,

determined from this ‘11, and then found that the resulting

solution was consistent with the original guess. In the second example,
I i

we guessed ‘12 as a function of a parameter and then throug h y
~

determined the value s of the parameter that would give consistency.

Thus , as mentioned in the introduction, an equilibr ium can be described

as the solution to an implicit equation resulting from a mathematically

self-consistent loop, as shown in Figure 2.2 , where p(x l u) is the

2 —~ — - - - .  • 
— -
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p (xlu;y1) V y 2(u )

u = y~ 
(x)
)

FIG. 2.2 SELF-CONSISTENCY LOOP ILLUSTRATING
IMPLICIT EQUATION
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conditional probability dens ity of x given the signal a, which is

determined by ‘11. To find the new equilibrium classes , we guess y
~

in terms of some parameters and determine the conditions on the

pa r ameter s so that the resulting 
~~ 

from circling the loop is the

original guess Y1~

Figures 2. 3 and 2. 4 show the kind of equilibria we are looking

for. We assume ability x lies in some fixed range [xO, xNJ. Let

x 1, x2, . . .,  X
N , l  

be points inside the interval such that

x0 < x 1 < x2 
... < •XN 1  < X

N 
(2.4)

Let a E [a0, uN ], and assume that ability types within each subinterva l

[x
~,
x1+1

) choose the same signal a1. The endpoints x1 of these sub-

• intervals, except for x0 and XN, will be called “breakpoints ”. No

single person chooses the br eakpoint s they just reflect how the entir e

employee population divides itself . Mor e precisely, DM 1’s strategy

is as follows (see Figur e 2. 3):

a. , x E [x. , x1+i ) ~ i 0,... ,N-2

=

uN i ,  x E [xN l , xN]

It is clear from that we must have u0 < a1 < < for

otherwise, wages (‘1z ) would be a decreasing function of education

level, an intuitively unappealing result. 
* Since ‘11 assumes discrete

*We are assuming here that is a monotonicälly increasing function
of educational level.

- • -  • -• • • • 

~~~~~~~~~~~~~
--
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u y ~(x)
(signal — c ( u ,x )
education)

UN_i

.
.

.

U1
..

• U
0

- .

I I I I I ~ x
x 1 • • • X N _ l  X N (ability)

FIG. 2.3 STRATEGY FOR EMPLOYEE POPULATION

v

(wa ges)
VN_ l -

.
.

VI .

V
0

.

I I I I 1’u
U0 U1 U2 • • • U N_ i UN

FIG. 2.4 EMPLOYER ’S STRATEGY
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values over a finite number of intervals, the assumptions for this

problem will be a discrete version of the first two assumptions above ,

that is , i’) Ac/ a u >  0 and ii ’) L~
2c/~ x O u <  0. The third assumption

will not be needed to prove the sufficient conditions for this class of

solutions.

The employer can now compute his strategy, after he computes

the conditional density function (as shown in Figure 2. 2):

~‘ i = 0, . . . , N—I ,

) F(x.) ‘ 
x E [x. , x. +1 ) ([XN_ 1’ XN] 

f  or i = N - 1)

p(x [u 1) =

0 otherwise

(p is the probability density function and F is the distribution function)

and 
s(u ~, x)p(x) dx

= E/ui 
[s( u1, x)] = 

1 
F(x.41) - F(x.)

= v.
1

A -
= g1(x~, x~+i ) . (2.5)

The variables v
~ 

represent the actual wage values, and the functions

show the dependence of wages on x1 and x~4~1. So far, y2 is

defined only for the discrete signals u~ i = 0,... ,N-i. In order to

have our equilibria be many-to-one solutions for Example 2. 1, Y~
muFit be a Nash solution in the strategy space of measurabLe mappings

hriiriri~L’ ~
. . • .~

_ ,1 •1. . ~~~~~~~~~~~~~ -
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defined over the entire interval [u0, UN]. We arbitrarily define ‘12

completely as

~ 
V. ,  u E [ui, u~+1

), i = 0, . . . , N— 2

~2( u ) =  ~( ~~~~~~~ u E[ uN..l,uN]

Thus , the employer ‘s strategy also looks like a step function (Figur e

2.4). As will now be shown, this particular for m for ‘1~ 
gives us the

results we need for a simple equilibrium condition.

Given the wage schedule DM1 can continue around the loop

and compute a new str ategy ‘Q1:

= arg max [y2 (u) - c(u ,x)]

As shown in Figur e 2 .4 , assumption i’) that c~~ > 0 implies that DM1

wil l only consider choosing among uO , . . . , UN_ 1. Therefore ,

= arg max [g1(x. , x.÷ 1) - c(u. ,x)]
u .Ef u0, . . . ‘uN- l 1

In order to attain self-consistency and have 
~ i ‘y~ , we want , for all

i = 0,. . . , N-i (omitting the arguments of g. for simplici ty )

g1 
- c(u~, x ) >  g~ - c(u~~x) 

~‘ 
j ~ i and x E [x.,x.+i)

The following proposition states that if people whose ability levels

are at a breakpoint x1 are indifferent between the educational levels

a. and u1~ 1, then 21 ‘11 for all x except the breakpoints.
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PROPOSITIO N 2. 1: If

-

~ 
- 

g1 
- c(u~, x~

) = g1 1  
- c(u 1 1 , x1) ~~ i = 1,... ,N- 1  (2. 6)

then

g1 - c(u 1, x) >  g~ - c(u
3 , x) (2 . 7)

for all j ~( i and for all x E (x.,x
~÷i)

Proof. From assumptions i’) and ii’),

c(u1,x) - c(u1+ i, x) < c(u 1, x1+j ) - c(u1+ i, x1+i ) ~ x <

From (2. 6),

= 
~1+1 - c(u 1÷ l, x1÷l ) + c(u1, x1+1 )

Then

- c(u
~,
x) >

~~1f ~ 
- c(u1+i,x) ‘# x<

For all x E (x~,x1+i)

g1 - c(u~, x ) > g 1~~1 - c(u 1÷ 1, x ) > g 1÷ 1 - c(u1+2,x)

so that

- c(u1, x ) >  g~ - c(u3
,x) 

~~
‘ j > i

Similarly,

- c(u~, x) > g . . 1  - c(u 1_ 1 , x) ~~‘ x> x1

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .—~~ 
- •

• ~~~~~~~~~~~~~~~~~~~~~~~~
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implies

- c(u 1, x )>  g~ - c(u3
,x) ~~ j < i , ~‘ 

xE(x1,x1+i ) . Q.E.D.

The following corollar y states that the indifference condition (2. 6)

implies that at the breakpoint x1, U. and u~~1 are preferred over all 0

other signals.

CORO LLAR Y 2. 1. Given (2. 6),

g1 - c(u 1, x~) >  g
3 

- c(u~~x~
) 

~~
‘ j / i-1, i, i = 1 , . . ., N- 1

(2. 8)

Proof. Suppose there exists j / 1 - 1, i such that

g~ 
- c(u

3
, x1) >  g1 - c(u~, x1). If  j >  i , then by assumptions i’) and ii’),

_ c ( u1, x~) + c( u
3
,x1) >  - c(u1, x) + c(u.

3
,x)

so that

g
3 

- c(u
3 , x) > - c(u~, x) ~~‘ x E  (x1,x~÷1

)

which contradicts (2. 7). Similarl y, if 5 < 1 - 1 , then

g
5 

- c(u5, x ) >  g1 1  - c(u 1_ 1, x) ~ xE (x1 i , x~
)

0

which also contradicts (2. 7). Q. E. D.

Therefore, if (2. 6) holds, and if we define at the breakpoints

as

~i (x~) u~, i = 0, . . .  , N-l and 21(XN) = UN_l (2.9)

— - ~~~~~~ • 
- ‘~~~~~~

- - ‘--~~r 
— — 

-
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then 
~ 

Y1 for all x E [x0, XN ]

Thus , for fixed levels of education (u), “optimizing” means

choosing the breakpoints [x1J, what the employee population as a

whole should do, and wage levels [v13 , what the employer should do. 
*

We have shown that the necessary and sufficient conditions for opti-

mality reduce to the set of equalities (2. 6) and inequalities (2. 4)

involving the xi’s and vi’s. 
** The inequalities say that the break-

points should be “in order ”. The equalities say that if the people whose

ability level is a br eakpoint , say x1, are indifferent between choosing

educational level a0 and receiving wage v0, and choosing u 1 and

receiving v1, then the system is in equilibrium and people are paid

equal to the expected productivity of their par ticular signaling group.

We have reduced the Nash equilibrium of a two-person decision

problem to a feasible solution of equalities and inequalities. Equations

(2. 6) provi de an explicit method for computing the equilibria. If the

u. ’s are varied or if the number of signals N is changed , then there

are multiple equilibria. But , if as mentioned earlier , the signals are

fixed , then there are , in general, no multiple solutions.

*This problem is different from those of Section 2. In Examples 2. 1
and 2. 2, u was found for each indi vidua l x. Here, the entire
employee population is considered in determining where the break-
points should be , and thus , what signals should be chosen.

**These conditions are clearly sufficient for optiniality. However , they
are necessary for optimality only in the class of solutions we have
guessed, namely, many-to-one in the manner of Figures 2. 3 and
2.4.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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EXAM ?LE 2 . 3 :  Let

c(u,x) = a/x p(x) uniform over [xo,XN]

s(u,x) = x N=3

From the defi nition of at equilibrium given by (2. 5),

x. + x.
1 1+1

V
1 

= 2 i = 0, 1, 2

From (2. 6)

~1. - U.
~ i— lx. = i = l  2

1 v. — v.
1 1—

Combining these, we have the equilibrium conditions

2(u - a )
x = (2. Oa)

1 x2 - x 0

2(u - u 1)
= . (2. lOb)

2

Conditions (2. 10) depend on u only through the differences u1 - a0
and u2 - a1, since c is linear in u and s is independent of u.

If x0 = 1, x3 = 2. 5, u1 - u0 = a2 - a1 = 1, then the pair

(x 1, x2) satisfying (2. 10) and (2.4) 18* P

*The pair (-3. 1, . 36) also satisfies (2. 10) but not (2.4). In every
example we tried , only one of the pairs satisfying (2. 6) also satisfied
(2.4), but we have not r uled out the possibility that both pairs might
be solutions.

Hi.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(
~ (~p J •g~ - 3), ~~~~~~~~ + 13)) 

(1 .6 , 2. 24)

The title of this section promises multiple equilibria , but here we have

a unique equilibrium. This occurs because, as mentioned above , we

assume u0, u1, and u2 are fixed.

Table 2. 2 gives numerical results for the cases N = 2 , 3, 4.

Figures 2. 5 and 2. 6 illustrate that for N = 4, vy~ and are already

beginning to look like the square and squar e r oot functions,

respectively, which are the solutions to Example 2. 1, Spence’s

continuous one-to-one case.

Other functions of c and s, and cther probability densities

p(x), such as the Gaussian distribution, also produce new classes of

multiple equilibria for different values of N , but the details are

omitted here.

TABLE 2 . 2

Numerical Examples for the Uniform Distribution

N x0, x1, . . . a0, u1, . . . v0, v 1 . . .

2 1, 1.33, 2.5 0, 1 1. 17, 1.92

3 1, 1.6, 2.24, 2.5 0, 1, 2 1.3, 1.92, 2.37

4 1, 1.6, 2.23, 2.6, 3 0, 1, 2, 3 1.3, 1.92 , 2.42, 2.8 

-~~~~~~-- - - - - - - •~~- 
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• 1

U: y1 (x)

FiG. 2.5 EQUILiBRIUM EDUCATION LEVELS FOR N 4

I

-‘U

FIG. 2.6 EQUILIBRIUM SCHEDULE FOR N~ 4 - 
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5. Adjustment Procedure and Stability

An important question to ask about these new equilibrium

classes is whether they are stable. That is, if the system is not in

equilibrium, will it return to equilibrium. In order to answer this

question, an adjustment procedure must be outlined for each decision

maker, describing how he would react if the system were in disequi-

libriurn. Then we can see if these actions bring all of the DMs back

to the equilibrium.

A reasonable adjustment scheme for the employer is the one

Spence proposes in his definition of equilibrium. He states that the

employer always pays wages equal to the expected productivity, based

on the statistical data revealed by the previous employee population.

The data the employer observes after the employees are hired are

just the breakpoints, that is , which range of abilities choose which

signal. Thus, he uses the data he observed in the past stage to make

his estimate in the current stage. This is written

v1(t) = g~(x1(t) , x.÷ 1(t)) = E,~ [s(u1, x) ]

x1+i (t)

f 

s(u.,x)p(x) dx
x.(t)

(2.11)
F(x1÷i (t)) — F(x (t) )

We call this “full equilibrium adjustment”, because (2. 11) is just the

equilibr ium condition (2. 5). That is , the objective function J2 is

minimized at each stage. 

--‘ ________ 
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The adjustments that the employee population makes to the

change in wage schedules can be argued, on the other hand, to be

more gradual or infinitesimal. After the employer has adjusted his

wage schedule , the individuals at the breakpoints, who were once

indifferent, now ha ve a clear choice as to which signal they prefer.

This is reflected in the shifting of the breakpoints. People on one

side of the br eakpoint slowly dr ift over to the other side as they learn

how to respond to the wage schedule. The net result can be modeled

by a set of steepest ascent equations for the breakpoints,

~J lc (2. 12)

wher e e>  0 is a constant defining the infinitesimal incremental step.

In other words, no single individual changes x.; the shift is due to the

combined action of the entir e employee population. We call (2. 12)

“partial equilibrium adjustment” because , although each step moves

in the direction of maximizing J 1, J 1 is not actually maximized at

each stage. This defines the other half of the adjustment procedure.

Substituting (2 . 11) into (2. 12) res ults in a set of dif ferential

equations
A .x. = ôj (X 1, . . ., XN_ 1) , i =  l , . .. , N—l  .

This has reduced the problem of adjustment of individual actions to the

question of stability of a set of differential equations. The stability

result we need is a version of a Lyapunov-type stability theorem due to

Malishevskii [6]. His study of stability of individual actions in
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goal-oriented behavior is in the same spirit as our pr oblem. His

theorem, restated in general terms, is as follows:

THEOREM (Lyapunov-Malishevskii) : Let x~ = 61(x) , where
T . . . n

x = (x 1, .. , Xn) is an element in some domain D C R . Define the

matrix

0- Iso .

A = I— .~\ ~~~

If A + AT < 0 for all x in D and if the equilibr ium point

(where x* satisfies 61(x
*) = 0 for all i) exists in D, then any

trajectory x(t) which remains in D converges to x~ (uniform

asymptotic global stability).

The following example is an illustration of how this theorem can

be applied to the job market model. From the definition of

N-l ~~ +1
= E[’12 - c] = 3 [Vk 

- c(uk,x)] p(x) dx
k=0 Xk

and

aj i [v. 1 — c(u. 1 , x~) — (v1 — c(u1,x1))] p(x~
)

EXAMPLE : Consider Example 2. 3 above , and let € ‘ represent

ep(x1) = eAxN~
x

~
)
~ 

Then

x. + x .
V - ~ i+1
i 2

• _
~.• -z__ . ~•,, ~~-T” 

-
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. I-i 

1_X
Z \ A

x = € ‘ I — +  I 61 ~x 1 2 /

‘1 x -2. 5\
x = c ’ ( — +  ~ 1~ a2 ~ x2 2 ,‘ 2

Let D = C( x 1, x2) :x 1 
> 0, x2 > 0) .  By inspection, it is clear that the

trajectory x(t) = (x1(t), x2(t)) defined by ö
~ 

and 62 remains in D.

2
- 0

TA + A  = e ’ < 0  m D .
20
x2

Therefore, in D, x(t) -.x*~~ (1 .6 , 2. 24), independent of e ’. Thi s

is as it should be, since one cannot in general be certain of the value

of e. The above procedure , in fact , also holds for arbitrary discr ete

levels of signals; that is , it is independent of N.

Thi s is not the whole story, however , because the breakpoints

still must satisfy (2.4), that is, be “in or der ”. The previous example

can serve to describe what might happen before the equilibrium is

rea ched. The stability result says that x(t) will converge to

(x’
~,x~ ). But the extra constraint of order defines a region where

x0 < x 1 < x
2 < x3 which we call the “feasible region ” (FR ), as shown

in Figure 2. 7. Even if a trajectory starts inside this region, it may

leave the region before it reaches the equilibrium point, as illustrated

by the dotted curve in Figure 2. 7. If this happens , it means that two

breakpoints, or a breakpoint and an endpoint , have coalesced. One of

- • 
—

•
. • ——-
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FIG. 2.7 STABILITY FOR EXAMPLE 2.3
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the breakpoints has disappeared , meaning that one of the signals is no

longer being chosen by any individuals. The system then drops back

down to the next lower number of signals. However , there is always

a circle of initial points where convergence is guaranteed, beca use

Malishevskii proves that the norm of the vector x(t) monotonically

decreases. This circle is defined as follows :

Let d* = minimum distance (in the Euclidean norm) between

x~ and the boundary of FR. Then the circle of guaranteed conver-

gence = (x E FR : IIx~x*lI � d~J .  Thus , what started out as a global

stability result is actually a sort of local stability result , since con-

vergence for this problem is guaranteed only locally.

Another possibility is that the equilibrium point itself is not

in FR , as shown in the next example.

EXAMPLE 2.4: Consider Example 2. 3, but with N = 4, and

x
0 

= 1 1

x
4 

= 2.5 a2 = 2

a0 = 0 a3 = 3

Then the solution to the equilibrium equality conditions with all

positive components

(xi, x~ , x~ ) = (2.2, 1.9, 3.3)

does not satisfy the “order” condition (2.4). This phenomenon does

not depend on N, the number of levels. Table 2. 2, Figure 2. 5 and

- • . 
-
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Figure 2. 6 demonstrate an example where the equilibrium break-

points for N = 4 do lie inside the feasible region.

6. Competition and Specialization

• 6. 1 Specialization

So far , we have assumed that the employer hires people of all

abilities in [xO, XN ]~ 
Spence [3] and Riley [4] show how speciali zation;

i e., hiring people of only some abilities , can lead to nonexistence of

an equilibrium when competition from other employer s is brought in

explicitly. In particular , Spence states that with specialization (1) a

one-step wage schedule (N = 1 in our notation) definitely cannot be

an equilibrium , and ( 2) if this one-step schedule is preferred by all

employees to multistep (or continuous ) schedules, then there is no

equilibrium in the market. We will show that this last conclusion also

holds for our equilibrium classes. However , we will also show in

Section 6. 2 that the nonexistence of an equilibrium can be partially

resolved through use of the crit’~ ion fun ction J2.

The argument for ( 1) proceeds by way of Example 2. 3 sumn~ari zed

as the N = 3 case in Table 2. 2. The only available signals are

a = 0, 1, 2. Suppose an employer ignores the last two signals and

offers the one-step schedule

= E[x] = = 1. 75 ~,‘ a � 0

as shown in Figure 2. 8. Let 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •- 
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= optimal net profit of individual of type x

* *
= y2

(u ) - c(u ,x)

where

= arg max [y
2

(~i) - c(u,x)]

To express c(u,x) as a function of a for fixed x, we use instead the

notation c (u), where

c~
(u) = ~~~, for this example.

~ ~~~~ 
= 1. 75 for all u , then u~ = 0 and = 1. 75 for all x.

Figure 2. 8 shows the cost curve (line, in this case) c 1 and the cost

curve shifted by the optimal net pr ofit , c1 + p 1. The line c~ +

is the indifference line for a person of ability x; that is , any wage

offered along thi s line gives net pr ofit 
~x = 1. 75. Thus , any wage in

the region above the line is preferred to the original one-step schedule

since the net profit is greater than

Suppose an employer who was able to specialize offered the

schedule in Figur e 2.8 shown by the dotted line; that is,

( 0 , 0 � u < l

y2(u)

~ 2.23 , u � l

Then, by the previous argument, all persons of ability types

X E  [2. 1, 2. 5] will prefer this new schedule. Since their average

productivity is 2. 3, which is greater than the wage 2. 23, the employer

makes a profit. The original one-step equilibrium is destroyed, and



r ~~~~~~~

Spence’s first statement is demonstrated for this example. Whereas

Spence demonstrated this by allowing the employer to change the

discrete signaling levels a, we have demonstrated thi s without

creating new signals , just ignoring some of the already existing

signals.

To demonstrate the second statement, we must show how it can

happen that all individuals prefer the one-step (N = 1) wage schedule.

For this example, since ther e are three signals , there are three

possible equilibrium wage schedules , corresponding to N = 1, N 2,

and N 3. Figure 2.9 shows the N = 3 and N = 1 wage schedules.

Wages in region R are preferred over the N = 3 schedule by those

people whose abilities are at the endpoints of the ability interval,

-namely x = 1 and 2. 5. The foUowing argument shows that this

r egion is also preferred by all abilities inbetween as well. All other

shif ted cost lines are also indifference lines and so must , by con-

struction, pass through one of the points A, B, or C in Figure 2. 9

with slopes between that of c1 + p1 and c2 ~ 
+ p2 ~~

, namely, 1

and 2/5. Thus, none of these cost lines will intersect the region R ,

so that the one-step wage schedule is preferred by everyone to the

N = 3 schedule. Thus , ever yone chooses a0 = 0 and signaling

ceases. Graphica lly, we see that thi s is true when the intersection of

the expected productivity line given by v = E(x) = (x0 + xN)/2 with the

v-axis lies above that of the line ~~ + . More precisely, this
N N

condition can be stated as: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _ -
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FIG. 2.9 ONE-STEP VS. THREE-STEP WAGE SCHEDULE
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PROPOSITIO N 2. 2. Consider the equilibrium N-step schedule

of Example 2. 3. If

xO + x N U
0 [ uN i l

> —  + 1 V 
~ 

I ,
X

N [ 

- X
N J

then the one-step equilibrium schedule

X + X
Nv y2(u) = 

0
2

is preferred to the N-step schedule.

A simple calculation shows that the N = 2 case in Table 2. 2

also satisfies this condition. Therefore , the one-step schedule is

prefer red to all possible N > 1 equilibrium schedules with the given

signals and parameter specifications . If specialization is allowed, we

can then conclude that, for thi s parti cular example, there is no equi-

librium in the class of niultistep solutions .

6. 2 Competition

The whole problem of nonexistence of equilibria from the

previous section rests on the premise that an employer will offer a

one-step wage schedule when it is preferable to the employees, in

order to compete with other employers. However , in analyzing this

competition, we have considered J1, but have totally neglected J2.

The outcome is the rather nonintuitive result that people of the

highest ability would sometimes prefer to be paid the same as people

of the lowest ability. This , it would seem, would lead to much job

_  -
• --~~~ - ---.‘-~~~~~ ——- -~~~~~~-- -~~~~_ - • •
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dissatisfaction. Of course, if the number of signaling levels were

fixed, or there were no other employers, then the individual would

have no choice but to maximize over the available signals. But

in the situation described above , neither of these is the case. The

• actual signals are exogenoasly given but the number of signals to be

• used is not. A persuasive case might be made that an employer

offering a more differentiated wage schedule (e. g., N = 3) might very

well be preferred by the employee population than one who offers the

one-step schedule, even though the latter schedule makes more pur e

economic sense to the employees from the viewpoint of J1. However ,

people are also concerned with being paid nearer to what they are

worth. We submit that our J2, the mean square criterion, is an

attempt to capture this effect. To justify thi s conclusion in our decision-

theoretic framework, we mast show that the value of J2 for the one -

step schedule is larger than the value for the multi-step schedule;

that is, the one-step schedule is less preferable to the employer by

being less competitive. Thi s is , in fact , the case for the example in

Figure 2.9 where 32(N = 1) . 1875 and J2(N 3)= .0278 . * In other

words, if additional signals are available, then there is, in general,
an incentive for an employer to offer a fine r schedule when it leads to

a better J2. A logical cons equence of this argument is that the

simple calculation shows that for c = u/x, s x, and p(x) uniform

N-i 3
= 12(x N-XG) 

~~~ 
(x~~ 1-x. )

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
• -

~~~~ -~~ •_ -- - • -



employer would prefer more and more signals to differ entiate people

of different abilities until Spence ’s continuous equilibrium is reached

(as in Example 2. 1), where every ability level is paid its productivity,

and = E[(y 2 - ) 2 ] = 0.

If this is true, then why don’t we see employers constantly

creating new signals in hopes of attaining the continuous one-to-one

equilibrium. First of all , we argued above that it is very diffi cult to

create new educational levels , and assumed that the signals were fixed

exogenously when an employer entered the market. Secondly, adding

new signals does not necessarily improve J
~
, since we have the

constraints that the old signals cannot be easily discarded and the

breakpoints must be in order. For example, if the new signal a3 = 2. 25

is introduced for the case N = 3 in Figure 2. 9, and if the employees

and employer s adjust so as to settle down at a new equilibrium at the

N = 4 level (see Section 5 on adjustment and stability), then

J2(N = 4) = .0355 > .0278 = J2(N = 3). In fact , it can be shown that any 
- •

> 2 which produces an equilibrium solution in the feasible region

yields a value greater than J2(N = 3). Thirdly, for each new

signal there are attendant costs of transmission and administration. In

a sufficiently differentiated wage schedule , these second order costs

must be accounted for and traded against the advantages of new •

signals. Consequently, we do not see the constant creation of new

signals in the short run nor the eventual infinite differentiation of wage

schedules in the long run .
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7. Threshold Effects

7. 1 Introduction

In Section 5 we observed that, under certain circumstances,

signals disappeared. This phenomenon leads us to the question of

whether changing the parameters of the problem also causes signals

to disappear. In this section , we show that not only do signals dis-

appear , but also signaling ceases altogether when the parameters

cross threshold points. Three types of parameters will be studied

to see if they exhibit threshold effects. We will investigate whether

signaling ceases when 1) signaling costs get too high, 2) the variance

of the unknown state of the world x gets too small , and 3) signaling

noise gets too large.

7.2 Signaling Cost

The first type of parameter to be studied is one affecting the

cost of signaling . To illustrate this, we modify the payoff function for - 
—

the employee population to -

= E[y2 -cr c] , (2. 13)

where c t >  0 is a scalar cost parameter. For simplicity, the argu-

ment will proceed by way of Example 2. 3 for N � 3. With the new

payoff J1 from (2. 13), equilibrium conditions (2. 10) become

2ct(u. -a. )~x. = 
~~ 

‘
_

~~~

‘ i = 1, . . .  , N — l  . (2. 14)
i+l i— l

_ ~ -- 

—-
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Since 0 < x0 < x ~~ 1 < x~~ 1 < X N ,

1 1>
x
1~ 1 

- x~~~ X
N 

-

and so

2~ (u. -u .
x. > , i = 1, . . .  , N- l  . (2. 15)

1 X
N 0

As ct increases, condition (2. 15) will eventually be violated for some

i. This implies that a breakpoint has coalesced with another break-

point or an endpoint (x0 or XN ). As a particular illustration of this,

consider the case of N = 3, as shown in Figure 2. 10. It can be shown

explicitly for this example that as ct increases, the breakpoints x1
and x2 move away from each other towards the endpoints . More and

more people choose the signal a1. At first it may seem strange that

as signaling costs increase, fewer people choose the cheapest signal

a0. To understand this, we must also look at how the wages are

changing. First of all, (2. 15) can also be wr itten as

ct(u. - u.
= v.’- ~::1 

(2. 16)

since
x2 - x 0

=

and
x3 - 

x1
2

~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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FIG. 2.10 EFFECT OF INCREASING SIGNALING COST
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Thus , when x1 decreases and x2 increases , both v1 - v0 and

v2 - v1 also increase. We can deduce from (2. 16) that costs cr

increase faster than v2 - v 1 but slower than v 1 - v0. Therefore ,

higher ability people switch to a1 because their costs are rising

faster than their relative wage s, and lower ability people switch to a1
for the opposite reason.

G oing back to Figure 2. 10, it can be shown that x2 reaches

X
N 3  

befor e x1 reaches x0. Thi s means that no one chooses the

signa l u2 anymore , and the system drops down to the next lower

level, namely, two signals and one breakpoint. Thi s is the eventual

outcome from increasing ct , regardless of how many signals there

were at the start. (2. 14) now becomes

- u0)
x1 = (2. 17)

xN 
- xO

where the two remaining signals are labeled u0 and a1. As ~
increases , x 1 clearly increases until it coalesces with XN~ 

at which

point everyone chooses the cheaper signal u0 and receives the wage

equal to the unconditional expected producti vity (i in this example).

Therefor e, signaling disappears when the cost parameter a’ exceeds

a certain threshold. Thi s result agrees with the intuitive notion that

as signaling costs rise , it is no longer worthwhile to invest in the

higher educational levels .

Another threshold effect occurs if a ’ is decreased. In this case ,

the break points will move in the opposite directions and coalesce in the

opposite order as before. The N = 2 case will again eventually be

-—— - -~~~~~~~~~~ -~ -~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
_
~__Ii 

- - -~~~~~~~~
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reached , but now x 1 will coalesce with x0, not X
N
. Signaling costs

get so low that even the lowest ability types choose to pay a little more

for a1 and receive the higher wage v1. We still have “no signaling,”

but this solution is inefficient because the employees are overin-

vesting in the signal. If they all signaled a0, they could still receive

= i but a higher J~ . However , this solution can be considered an

equilibrium if we assume that each individual maximizes his own net

profit based on the current wages , and that there is no central force

(e. g . ,  a union) deciding what is best for the employee population as a

whole.

7. 3 Variability in the Unknown

Another type of threshold occurs when the variability of the

unknown x , the underlying signal , changes. One such parameter is

the variance of x, which is proportiona l to X
N 

- x0 in the unifor m

distribution case of Example 2. 3. Since xN - x0 occ urs in the

denominator of the expressions in (2. 15) and (2. 17), decreasing

xN - x0 for fixed a ’ has exactly the same effec t as increasing a’ for

fixed X
N 

- x0 . Again, the breakpoints shift and coalesce unti l every-

one chooses a0, and signaling disappears. This result has several

intuitive explanations. First of all , it means that as people become

more homogeneous , it becomes less important to differentiate them.

In other words , the infor mation to be sent through the signal is less

worthy of much effort. To see the second meaning, we mu~c obser\.’-e

how the wages are changing. Since 
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X
N - 

X
0

V 1 
v0 = 2 ‘ 

(2.18)

the difference in wages also decreases. The wages would eventually be

close enough so that even the individual of highest ability might just as

well take the lower (and cheaper) signal u0, since he cannot receive

a significantly higher wage by choosing the higher signal.

However, changing XN 
- x

0 
is more complicated than changing

a ’ because not only do the breakpoints move, but so do the endpoints .

If x0 increases , then it may catch up with x1 before x 1 coalesces

with xN. In this case , everyone would choose the higher signal a1.

To understand the circumstances under which all people choose the

mor e expensiv signa l, even though the difference in wages is still

decreasing , we must analyze three separate cases where xN -

is decreased by shrinking the interval [XO,XN].

CASE 1: x0 
fixed and XN decreased

Since x0 
is fixed, it cannot catch up with x1, so that x1

coalesces with xN .

CASE 2: x0 increased and X
N 

decreased at the same rate*

If every time x0 is decreased by ó , xN is increased by O ,

then i stays constant and a lways equals (x0 ÷ xN)/2. Then from

(2. 18), v1 - v0 = i - x0. In or der for x0 to prefer u0 
(and thus

maintain two-level signaling), we must have

*Sixnilar analyses can be done if x is increased and x decreased
at different rates. 0 N 

~~~~~ —-—-—-- - -— -



_ _ _ _ _ _ _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~
2-43

a~ a1
v - --~~~~~ > V - —

0 x0

or

a1 - u0 > x0(v 1-v0 ) = x0(i-x0
) . (2. 19)

A graphical description of the right hand side of (2. 19) is shown in

Figure 2. 11. If a1 - u0> ~
2/4, or if a1 - a0 < i2/4 and the initial

> ~~~~ then (2. 19) holds and x1 eventually coalesces with XN

as x0 
increases. If , on the other hand, a1 - a0 < i2/4 and x

0 ~~~~

then the right hand side of (2. 19) increases until (2. 19) is violated and

x1 coalesces with x0. 
** The intuitive reasons for this are twofold.

First of all, u1 
- a0 must be small enough so that there is not so

much difference in cost between the signals. Secondly, x0 must be

sufficiently small, so that the average productivi ty (also wage) for the

lower group, namely v0, is then much smaller than v1, so that by

the time v0 comes close to v 1, the lowest ability group has already

decided that v1 is enough of an inducement to choose a1.

CASE 3: x0 increa sed and ZN fixed

From (2. 18), two-level signaling continues if

2(u 1 - a0 ) > xo(X N - x
0
) . (2. 20)

*As shown in Figure 2. 11, x~ and x~’ are defined as

x~’(i-x~’) = x~ (i-x~ ) = u~ - u0, x~ < x~’ . 
-

**jf x~ < x1~, then initially x1 = (a 1
-u
0
)/(i-x0

) < x~ =

When x0 catches up with x 1 at the value x~ , x1 cannot have

coalesced already with XN, because x~ < i < XN .

I

-- - ~~~~~
-- — - —  -- -  _______ 
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- x0(~ — x 0 )

FIG. 2.11 CASE 2 FOR CHA NGINGLT xO, XN]
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A graphical descri ption of the right hand side of (2. 20) is shown in

Figure 2. 12. By an analysis similar to that of Case 2 , x1 coalesces

with ZN unless 2(u1-u0) < 4/4 and x0 < x~ . The same intuitive

arguments hold as in Case 2.

The conclusion from the preceding discussion is that decreasing

the range [XO, X
N

] by increasing x0, decreasing ZN, or both results

in “no signaling. ” The parameters of the problem determine whether

the employees chose the higher or lower signal.

A similar analysis in Appendix fl-A describes what happens

when - x0 increases. In general, x 1 will decrease and coalesce

with x0, resulting in “no signaling. “ However , depending on other

parameters , x0 may decrease faster than x 1, so that x1 never

catches up to x0 . Differentiated signaling continues until x0 reaches

zero (recall that x0 was assumed to be positive).

7.4 Signaling Noise

The third type of parameter we want to investigate is signaling

noise. Suppose now that the employer has a noisy measurement of

education and observes y a + e instead of u, where e is the noise.

Then his strategy is a function of a noise-corrupted signal:

v = y 2(y) = y2(u ÷ c) = y2(y1(x) ÷ e) .

The equilibrium condition remains the same as befor e, that is

= E~y(8) (2.21)

-- 
—

~~~~--~- .— --..--~ ---- - .-—- -—-----.-- - -
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It is difficult to give an economic interpretation to c .  If we assume

that “educational level” reflects a ranking of a composite measure

of years of education, perfor mance , courses , and quality of the school,

and we assume that thi s ranking is known to employer and emp1oye~ s

alike , then it appears that “noise” can only mean interference in the

communication link between what the individual does and what the

employer observes. But if the j ob application form is complete enough

and the individuals do not lie , then noise, in thi s sense , should be

eliminated. However , we can still treat € as a purely mathematical

entity. (In the next cha pter , noise will play a mor e important role. )

Continuing to use Example 2 . 3 to illustrate the main ideas , we

as sume c has a uniform distribution between some -b and b. For

the case of N = 2, the employees ’ strategy 
~ i remains a step function

with two signaling levels, as in the case of no signaling noise. However ,

as will be shown next, the employer ‘s strategy y2 does not remain a

two-step wage schedule. To see this , r efe r to Figur e 2. 13 , where

is plotted vs. y, not a. Assuming a0 and a1 are fixed signals , any

y in an interval of ± b around u0 and a1 could be observed by the

employer . If a y between u0 - b and u1 - b is observed , the

employer knows that a0 was signaled, so that x must be between x0
and x1. The wage v0 is the average productivity for that interval,

namely, (x0 + x 1)/2 for this example. Similar arguments can be made

to determine v1 and v2, as shown in Figure 2. 12. Therefore , the

two-step wage schedule become s a three-step schedule if the noise is 

- --—~~- -~~~ 
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uniformly distributed and ther e is a central overla p region of an-

*- 

- 
certainty.

Given the three -step wage schedule , the individuals now want to

maximize expected net profit , where the expectation is taken over both

x and y. This means

iEfO , i) ~ E
/~ [~ Z(aI + € ) ]  - -

~~~~

so that the eq uilibrium condition of indifference at the breakpoint x1

is

- 
a0 a1

V
0 

- — - v 1 - 

, (2. 22)

the same as before but with wages v0 and v1 replaced by expected

wages ‘

~~~~ 

= E
/~ [-~2(u.+c)]. More precisely,

p0+b

= E
1 ft~(u0+€ )]  = 

~ -b 0 dy + J b 
v1p(y~x) dy

u0

2b-~~u
= v0 -~g + V 1 2b (2. 23)

where ~ u = u 1-u0. Similar ly,

- 2b-~~u
= E

/ [Y 2(u1+c) J  = “1 Zb + v 2 
-

~~~~~ . (2.24)

*For the case of Ga ussian noise , the wa ge schedule is a continuous
function, not a step function. However , the breakpoint equilibrium
conditions can still be determined. The details are complicated, and
so are omitted here.

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-
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Thus, the expected wage 
~ 

is just a weighted average of wages v1

and v1~ 1. From (2. 23) and (2. 24), (2. 22) becomes

u a0
- 2b V2 x1

1 4b
~ x1 = = . (2. 25)

x2-x0

(Also, we must have x0 < x1 < x2 . )

EXAMPLE 2. 5. Let

b = .6 , x0 
= 1, x2 = 2.5

Then

v0 = 1.33

v1 = 1.75

= 1.92

and

= 1.6

It is easy to see from (2. 25) that as the signal becomes noisier

and b increases , x1 increases and, in general, coalesces with x2.

Everyone chooses the cheaper signal u0. Therefor e, as we would

expect , if the signal is too noisy, signaling will cease. However , x1

may not coalesce with x2. Referring to Figure 2. 13, we see that as
— 

b increases , the interval of y ’s which are paid v1 = i expands. The

~~~~~~~~~ - -
~~~~

-
—~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _
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othe r intervals rema in constant in size , but the left interval shifts

to the left and the right interval to the right. Event ually, ne gative

values of y will appear . Since negative signals do not make sense from

an economic point of view , we stop increasing b when a0 
- b 0.

If b increases to a0 before x1 reaches x2, then u0 - b 0 , and

differentiated si gnaling remains in effect.

If b decreases, x 1 decreases and coalesces with x0. This

result is surprising , since it says that when the noise is small enough ,

everyone chooses the more expensive signal. To understand this, we

must again look at how the difference in the wage s is changing:

- -v1 - v0 = -
~g (v2 - v0 )

Thus , as b decreases , 
~ i - 

~o increases. Eventually, the expected

wage 
~ i will be large enough , so that choosing the higher signal

becomes wor thwhile.

7. 5 Summary of Threshold Effects

The results of this section will now be summarized. * First of

all, if the signaling cost parameter a’ is increased, then the cost of

— education gets too high, and everyone chooses the cheapest signal. If

a ’ is decreased , then the opposite happens: cost of education becomes

so low that it becomes worthwhile to pay a little more for the higher

si gnal and receive the hi gher wage.

C
All of the statements are in reference to Example 2. 3. 

—- T T ~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Changing the variability of the unknown state of the world x is

more complicated tha n changing a’. The parameter in the former

case is the length XN 
- x0 

of the interva l [x0, XN
I. The results are

summarized in Table 2. 3. In general, if the variability is too small,

then the individuals are not differentiated enough to make it worthwhile

for them to signal, so that everyone chooses the cheaper signal a0.

However , if the difference in the wages decreases slower than the

difference in the costs for the lowest ability group x0, then the higher

wage is enough of an inducement for all individuals , even the lowest

abili ty types , to choose the more expensive signal. If the variability

increases, * we would expect people to continue signaling, since they

are becoming more dissimilar . However , again the results depend on

how the difference in -the wages is changing. If it is increasing

faster than the difference in costs for the lowest ability group, then

eventually everyone will choose the higher signal in order to receive

the higher wage. Therefore , the threshold effects for the variability

of x parameter depend on other parameters of the pr oblem.

The last parameter is signaling noise. It was shown that if the

noise is too high, then it becomes too difficult for the employer to 
—

determine the ability from the signal, so that everyone chooses the

cheaper educational level. If the noise is small, then the signal is a

better indication of ability, but a secondary effect takes over. The

expected wage fr om the more expensive signal is sufficiently high to

induce everyone to choose that signal.

*The details for increasing xN - x0 are discussed in Appendix U-A. 
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TABLE 2.3

Threshold Effects from Changing ZN 
-

Decreasing Increasing X
N~~

X
O 

(see Appen-
X
N~~

X
O dix fl-A for details)

Case 1: x
1 

X
N 

x1 x
0

fixed All choose u0. All choose u1

Case 2: x 1 Differentiated signaling con-
tinues as x — 0 ,same 0

rate
unless u1-u0 and unless u1-u 0 sufficiently

are sufficiently small and x
0 

sufficiently
small so that v1-v0 large so that v1-v0 increases

decreases slower faster than

than u 1-u 0
U -x1 0 x0

0 in such a way that x 1 catches
in such a way that up with x0. Then -. x0 .
x0 catches up with

befor e x 1
reaches XN. Then

x l 
— XO

Case 3: Same argument as Same argument as in Case 2. . 

-

X
N 

in Case 2.
fixed

~ 

-~~:~~~~ -~~~~ ~~~-:
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APPENDIX Il-A

THRESHOLD EFFECTS FOR INCREASING VARIABILITY OF x

Increasiz~g [xO, xN ] for c = u/x , p(x) uniform

The arguments in this section are completely analogous to those

in Section 7. 3 and will refer to equations and figures from there.

(See Table 2 .3  for a summary. ) It is easy to see from (2. 17) that if

ZN - x
0 

is increased, then x1 
decrea se s and , in general, coalesces

with x0 . Everyone chooses the more expensive sig:ial a1. Thi s is

because , from (2. 18), v 1 - v0 increases. As v 1 become s signific-

antly higher than v0, it eventually becomes worthwhile for even the

lowest ability group to choose the higher signal. However , this result

again depends on u 1 - u0. It may be tha t v 1 can never be sufficiently

large to attract all employees. This means that even though x~

decreases as XN - x0 increases , x0 decreases faster than x 1. x1

can never catch up to x0, so that differentiated signaling continues. *

Again, we must consider three cases:

CASE 1A: x0 fixed and X
N 

increased

Since x0 is fixed , x 1 can catch up to it. ‘

CASE 2A: x0 decreased and XN increased at the same rate

Refer r ing  to Figure 2. 11, in a manner completely analogous to

Case 2 in Section 7.3 , we see that if a1 - u0 > i2/4, or if a1 - u0<i2/4 —

*Since x0 > 0 , the system must be stopped before x0 reaches 0. 

~~- - - - --- --- -- 
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but the initial x0 < x~~, then the breakpoint x1 decreases but never

catches up with x0. The employees continue to signal at different

levels . If a1 - a0 
-( i2/4 an4 x0 > x~’ , then as x0 decreases, the

right hand side of (2. 19) increases until (2. 19) is violated, x1 coalesces

with x0, and signaling disappears. Intuitively, if u 1 - a0 is

sufficiently small, then as v 1 - v0 - 
incr eases , it will eventually be

wor thwhile for the lowest ability group to pay a little more for a1 and

receive the much higher wa ge v1. If the initial x0 is sufficiently

lar ge , then c = u/x0 will not be too lar ge., so that it will again be

worthwhile to purchase a1. -

CASE 3A: x0 decreased and ZN fixed -

Figur e 2. 12 describes the situation here. Signaling continues

unless 2(u 1 - u0 ) < 4/4 and x0 > xi’, in which case x1 coalesces

with x0. The same intuitive arguments hold as in Case 2A.

Thus , in the case of increasing the range [x0, ZN ], signaling may

or may not disappear , depending on other parameters in the , problem.

~

- - - - 
-

- - - ,  ~~~~~~ 
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CHAPTER UI

— SIGNALING AND INFOR MATION THEOR Y

1. Introduction

In the previous cha pter , an exampi of a signaling problem was

analyzed in the context of economi c theory. Thi s chapter will analyze

— signaling in the context of Shannon theory, also sometimes referred to

as classical information theory. This theory forms the foundation for

the following sta ndard communication problem: send a message, or

signal, through a noisy channel so as to minimize the amount the signal

is distorted. We will show how the main components of this problem

can be captured in a team theory formulation (to be defined below )

with a signaling information str ucture. Figur e 3. 1 summarizes the

connection between this problem and the Spence problem.

Before going on to the next sectftn , we need to describe what

a team problem is and how it relates to the Spence problem. A decision

and control problem is called a “team ” pr oblem when there is more

than one decision maker , each DM has different information, but all

DMs have the same objective function J. The Spence problem was

not a team problem, since J 1 / ~2’ but was an example of a “nonzero-

sum (NZS) game ” (called “nonzero-sum” because + / 0) .  An

“optimal” solution in the Spence problem was characterized as a Nash

equilibrium , as def ined in Section II. 2. On the other hand , a “team

optimal” strategy pair (y ~ , y~ ) is defined as (where J is to be

minimized):

3-1
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� J (y ~ , ’y2 ) ~,‘ admissible (‘y1,y 2)

As shown by Radner [7], the first order necessary and sufficient

conditions are the same as for a Nash equilibrium, but the second

order convexity conditions are not. However , the second order

conditions in [7] are only for the case of static informa tion structure,

and cannot be carried over to dynamic information. This is because

is a function of y 1, so that the convexity of J(y 1, y2(y 1)) in both

and cannot be determined until y2 is specified. Therefore ,

“convexity” of an objective function when the information is dynamic

is yet to be defined. -

2. Communication System as Team Problem

The major problem in corximunication theory is to send information

fr om a source through a channel to a receiver in the most “relj able”

way, where “reliability” is yet to be defined. Wyner [14] says that,

in general, there are two limitati ons on the reiabilit~rof -the ’ - -

communicatiozi ’system. First of all , the channel may have noise,

such as static in a radio channel. The second limitation is what Wyner

calls “source-channel mismatch. ” For example, the source may emit

binary symbols , as with a computer , whereas the channel may be able

to accept only continuous data , as with a radio. Also, the rate at which

the source emits data may be different from the rate at which the

channel can process it. To combat these limitations , an encoder is

placed between the source and channel, and a decoder between the

— -— - - 
~~~~~~~~~~~~~~~~~~~~~~~~~ 
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channel and receiver. Figure 3. 2 illustrates these ideas for the

standard model of a communication systern * (see [8], [14]). First of

all , a (memory less ** ) so urce emits source symbols , or messages ,

denoted as x, at a rate p5 symbols/second, 
which go into the

encoder and come out as signals, or codewords, a. The functional

r elationship between x and u as defined by the encoder is denoted as

a = ~y 1(x). Next , the signals a are transmitted through a (memoryless)

channel that processes input s at a rate p~ symbols/second, and may be

corrupted by noise c- . We will be concerned with additive noise, so

that the received signal y coming out of the channel will be expressed

as y = a + c. Lastly, the decoder converts y to symbols v , and

sends them to the receiver . Since the goal of the decode r is to deter-

mine which message x was originally sent , we will also write v as

~~, so that the decoder is , in some sense , the inverse of the encoder.

— As with the encoder , the decoder is defined by some function

that v = sy2(y) = -‘y 2 (u + c)  = y
2

(y 1(x) + e). 
We immediately see how

similar this looks to the Spence problem , where is a noise

corrupted function of y 1. Mor e will be said about this below.

To complete the description of the channel, p(y~u), the transi-

tional probability density of y given u , and a cost function ~ (u)

must be specified; for example , 0(a) = a2. To complete the description

of the source , p(x), the probability density for the source output , and

*In order to relate this problem to the Spence problem later on , we
will use notation that matches the notation in the previous chapter ,
not the notation that necessarily occur s in the information theory
literature.

**The memoryless assumption means , in general, that current behavior
does not depend on the past.

-- --S.-- —- - -~~~~~~~~~~~~~ - ~~~~~~~~~~~~ -_-
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- -~~~~~ - - - - 

-



r 
- - - - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ e—NOIS E

ISOURCE ] ~ 
~I 

ENCODER I ~ ~I CHANN EL I 
y =u+E~1 DECODE R I~ x 1S~REC E$V ER I

~ 1

FIG. 3.2 COMMUNICAT ION SYSTEM

- — -

-- - - -  
__________ ______________



3-6

D(x , v), the distortion function, must be specified; for example,

D(x , v) = (x - v)2 . Distortion is a meas are of how v differs from x,

regardless of whether the signal has been sent through a channel or not.

An example of where nonzero distortion occurs without the presence of

a channel is in data compression, where less significant information is

deleted or condensed in order to transmit more significant information

more reliably.

The notion of reliable transmission of information can now be

defined more precisely. The basic problem in communication theory

is to find an encoder and decoder so as to minimize average distortion

E[D(x , v)] subject to

E [Ø(u)] � , (3. 1)

where ~ is some fixed constant. Inequality (3. 1) is a constraint on the

amount of signal power , where by “signal” we mean the channel input

variable a. Since minimizing distortion is the single goal , the problem

lends itself naturally to the following team formulation:

n-tin 3 = E[D(x,v )]  = E[D(x ,y 2(y 1(x)+€ )) ] s.t . E[O(y 1(x))]~ ~~~~ ,

distortion signaling power constraint

(3. 2)

that is , minimize average distortion subject to a power constraint as

the encoder and decoder are varied. Thus , DM1 is the encoder with

strategy -y 1(x) = a, and DM2 is the decoder with strategy y2(y) v.

Since v = y2(u + e) ~y2(’y1(x) + e) , this problem exhi bits precisely

- - -S
~~~ 

~~~~~~~~~~~~~~ .-~~ 
—,
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what we set out to show, namely, signaling with noise , since is a

function of a noise-corrupted y 1. Thi s particular notation shows how

similar this problem is to the Spence problem. In fact , if

D(x , v) = (x - v)2, then J = E[D(x, v)] is precisely J 2 fr om the Spence

problem.

Wyner [14] posed the communication problem in language which

easily transfers to the team problem in (3. 2), although he does not

- explicitly mention team theory. Witsenhausen [12], however , recognized

that the communication problem could be formulated as a team problem*

with a dynamic information structur e, but did not investigate thi s further .

- Whittle and Rudge [101 took the opposite point of view. They started

with a team problem and showed that it could be interpreted as a

comxnunication problem. Their team pr oblem was a more general

version of (3. 2) , where x , a, € , etc. re presented infinite time

sequences, ** so that they could use the results of information theory to

solve for the optimal value of (3. 2) .

Now that the communication problem has been reduced to a team

problem, several questions from a decision and control point of view

arise. First of all, an obvious question is: what is the team optimal

- 
strategy pair (y

~, 
-y~ ) for the problem in (3. 2)? Once this pair has

- been deter mined, a second obvious question is: what is the value of the

- 
optimal objective = J(-y~ , y~ )? Our immediate response might be to

*He called it a “nonclassical stochastic control problem. ”

will be shown later why the assumption of infinite sequences is
— important in information theory. 
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despair of ever answering these questions because of all the difficulties

associated with team problems with dynamic information, as discussed

in Section 1. In fact , Witsenha usen [11] extensively studied a similar

team problem without answerhlg these questions. Fortunately, since

our team problem was motivated by a communica tion system, we can

take the same approach as in Whittle and R udge , and use the res ults of

Shannon information theory to answer some, but not all , of these

que stions.
*If 

~ l and y 2 cannot be fo und , or if they are ver y complicated

functions , then a next question to ask might be whether there are

— 
suboptimal strategies whose objective J does not differ too much from

J~ but which are easier to compute than and y~ . For example,

when are linear strategies , which are simple to express , optimal, and

when are they not optimal?

In the team formulation of (3. 2) , -y 1 and 
~2 could be mappings

between scalar variables. However , if the admissible strategy spaces

for and 
~2 were expanded to include mappings between vectors,

then increasing the dimensions of x , u, c , etc. might re sult in lower

distortion than if the variables were restricted to being just scalars.

Certainly, by increasing the strategy space , we cannot do worse and

may, in fact, do better. Therefore , this observation leads us to ask

how the dimensions of the variables x , u, etc. affect the solutions

(
~~, —y~ ) and J~ . As mentioned above , in information theory, these

variables represent infinite sequences, so that they can be thought of

as infinite-dimensional vectors. Thus, information theory might be

able to tell us something about the affect of dimensionality on the

solution.

________________________________________________ ____
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To summarize, the questions we want to answer are:

QUESTIONS:

* *1. What are the team optimal strategies (y 1, y2)?

2. What is the value of the optimal objective 3* _ J(~ * •y~ )? —

3. Are there suboptimal strategies that are easy to implement,

and how does their objective J differ from 3*?

4. How do the dimensions of the variables x, u, etc. affect the

solutions (‘y~ ,~y~ ) and 3*7

Before we address them, we momentarily digress fr om our team theory

point of view to deftn- he basic concept s and results from Shannon

information theory. (For more detail , see [1], [2], [8 ], [14], and [6]. )

3. Shannon Theq~y

3. 1 Basic Concepts

Shannon theory provides the theoretical foundation for communi-

cation theory by establishing an upper boun d, called “channel capacity ’~

(C) , on the amount of information that can be transmitted through a

channel. It also provides a quantitative measure of infor mation that can

be used in character izing not only the channel capacity , but also the rate

at which the source produces information, called the “source rate (R).  “

*Thoee fami liar with information theory may wish to skip this section ,
since its purpose is solely to educate people, such as economists and
control theorists, who have little or rio knowled ge of infor mation
theory. The intent is not to shed new light on Shannon ’s results, bat
rather to define terminology and concepts for later ase.

-

~~~~~~~~~ ~~~~~~~~ 

- 
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Intuitivel y, if R , the rate at which the source produces information ,

is less than C, the maximum rate the channel can process inform-

ation , we would expect that the source and channel could be joined in

some way to produce a communication system that transmits in-

formation at a rate R.  This is exactly what Shannon ’s Coding

Theorem says , namely, that if R � C , then there exists an encoder

and decoder joining the source-receiver  pair to the channel such that

infor mation can be transmitted at a rate as close to C as desired

with arbi t rar i ly small probability of er ror , in the limit as the length

(or duration) of the encoded messages gets sufficientl y large . If

R > C, then the source is producing information faster than the channel

can process it , so that a certain amount of error is unavoidable . These

intuitive ideas will be made more precise later on when we r eturn to

— the Coding Theorem in more detail. Before we define what is meant by

“rates of ~~~~~~~~~~~~~~~~~~ we mast define the concept of “information”

— f i rs t .  Shannon ’s abstract measure of info r mation , to be described

next , is interesting, but , by itself , does not provide any new results.

Its real importance lies in the fact that , with thi s measur e, the

important Coding Theorem could be proved.

The randomness inherent in the messages and signals of a

communication system implies that infor mation is statistical, so that . -

any measure of it must involve pr obabilities. As mentioned in the

previous section , the particular probabilities* required are the source

‘
~The discussion and definitions to follow will all be for the case of a
discrete source and channel, so that probabilities instead of densities
will be used. The information mea sur e for the continuous case can be
similarly def ined , but is more complicated to interpret and so will be
omitted here. 

—----~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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output and channel transition probabilities. Therefore , these

probabi lities will play a role in the definitions to follow.

Since information can be defined in a purely statistical sense , the

definitions will f i rs t  be stated in terms of abstract sets of events and

then interpreted in terms of a source and channel. To simplif y matters ,

think of a source generating symbols a. fr om a discrete, finite set A,

which are then input directly into a channel , emerging as output symbols

b~ from a discrete, finite set B. In an abstract sense, A and B are

just  random variables characterized by probabilities [p(a .)} and

respectively. Then we have the following definitions:

1. Information: 1(a 1
) = log 1/p(a 1) = - log p(a.)

amount of information received if told event a. has

occurred.

Intuitively, if p(a.) is small, then a lot of information is received if

the unlikely event a. has occurred.  If the log is in base 2 , then the

unit of I(a.) is called a “bit. ” If it is in base e, then the unit is a

“nat. ” We will be using the “bit” notation in the rest of thi s chapter.

The particular choice of “log ” come s about because it satisfies certain

desirable axioms . See [8] for a detailed discussion of these axioms ,

and [15] for alternatives to log as the information measure.

2. Entropy (bits/ symbol): H(A) E [I(A) ] = E . p(a .) I (a.)

= average amount of information received after being told

what the sour ce emitted

= average prior uncertainty rega r ding what the source will

emit
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= average number of ~t yes_no i f  questions to be answered

to determine output

= rate at which source produces information subject to

no distortion (to be explained later) .

3. Conditional Entropy : H ( A I b ~
) Ea/b [I (AIb j )] = ;P(a 1.I b ~)I(a~1Ib ~)

3
= average information from A given observation b~

4. Equivocation: H (A I B )  = EbE 
~~~~~~~~~ 

= 
~~~

.

= average information from A given output is observed

= average uncertainty of what source emitted after ob-

serving an output signa l

average amount of information miss~~~ in the received

signal

= average amount of additiona l information tha t must be

supplied per second at the receiving point to correct the

received message.

5. Mutua l lnformation: I(A , B) = H(A) - H ( A I B )

= E p(a.) log 
-

- ~~~ p (b .)  E P(a . I b ~) log p ( a . [b . )

E E p(a ., b .) log —--
~

--1 f-

= E p(a ., b.)  log p(a , b . )/p(a .)p (b .)

- -5-
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= average infor mation provided by observing one output

= rate of transmission of information thr ough the channel

= measure of statistical dependence between A and B

(the more dependent they are , the more information we

get abo ut A from observing B). —

The important consequence of these concepts is that now the source

rate R and channel capacity C can be expressed as solutions to a

pair of optimization problems involving mutual information. For a

general channel with power constraint (3. 1), capacity can be written

as (using the notation from Figure 3. 2)

C ~ C(~~) = p sup I(u , y)  s.t .  E [Ø(u)] � , (3.3)
~ p(;j)

where the supremum is taken over all input probabilities satisf ying the

constraint, and C(a~) is in units of bits/second. As mentioned earlier ,

C(~~) is defined as the maximum rate that information (in bits) can be

sent through the channel essentially e r ro r - f ree  (“ essentially ” in the

sense that the probability of error can be made ar bitrarily small).

Similarly, for a general source , the rate can be expressed as

R ~ R(~~) = p5 inf I(x , v) s.t .  E[D(x , v)] ~ , (3.4)
p(v/x)

where

E[D(x,v)] �

is called the fidelity criterion and R(~ ) is called the rate distortion

-S _ -~~~~~~~~~ -~~~~~~~~~~~~~~ -~~ --
_ - - -5- -  _ _ _  — - - - -.- -~~~ -
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function , with ~3 a nonnegative constant. At f i r s t  it might seem

strange to talk about minimizing a rate , since we always talk about

maximizing the transmission rate. But as Berger [2] points out , with

rate distortion functions , it is the source-rece iver  pair that is given ,

not the channel. Wha t is being minimized is , in some sense, the

time and ef for t  it take s to code a message. Thus , as proved by

Shannon , R(~3) can be interpreted as the minimum number of binary

di gits per second required to represent a message, subject to dis-

tortion no mor e tha n 3. If the source-receiver  pair is to be linked to

a channel , then R(~~) can also be interpreted as the minimum capacity

that channel must have. R(~3) is a decreasing function of ~3 , since a

higher di3tortion allowed means fewer binary digits needed to represent

the message. This is easy to see mathematically, since larger ~3

means expanding the set of admissible p ( v (w )  over which the infimum

is taken . Since entropy is the rate at which information is generated

subject to no distortion, the rate distortion function is just  ~ generali-

zation of the concept of entropy. For discrete sources , R(0 )  p5 H(w) .

For continuous sources , such a~ Gaussian, R(0 ) = ~~, since a real

number would require an infinite number of bits to represent it

perfectly.

The following are some examp les of C(c~ ) and R(~3) from

W yner [14 ], deri~ ed directly fr om the definitions ( 3 . 3 )  and (3 .4) ,

respectively.

EXAMPLE 3. 1: Suppose we have a binary source such that

Pr(X oJ Pr(X = 1) = 1/2 , and the distortion function D(x, v) = 0
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if x = v and D(x , v) = 1 if x / v (thi s implies that E [D(x , v) J  =

where P is the probability of er ror ) .  Then

0- �
R( ~~~~ ) = (3. 5)

• 0 ,

• wher e h(~ ) = -~~~ log2 ~~ - (1 - ~) log2 (1 - ~
), 0 < ~ 1/2 and

h(0) = lim~~,0 h(~~) ~ 0. From the definition of entropy and h(p), we

see that h( 1/2) = H(x) = 1, and R(0) = p
5 

(see Figure 3. 3). The

reason R(~~) = 0 for ~ � 1/2 is because distortion p 1/2 can be

attained by always guessing v = = 0. That is , the decoder output is

a stream of zeros , regardless of the input , so that no information is

being produced.

EXAMPLE 3. 2: Consider now a Gaussian source where x has

a Gaussian density function with zero mean and variance a~~, and the

distortion function is D(x , v) = (x - v) 2 . Then

2
I P  a z
I f  

log -
~~

— ,

R(f3) = (3.6)

(See Figure 3.4. ) The reason R(~~) = 0 for ~ cr 2 is because

= a2 
= variance (x) can be attained by guessing that x is the

prior mean; i. e., v = = 0 for this example. Again, this means

that the decoder output is all zeros , and no infor mation is being

produced.

- - -5- — - .- -—-— -----~ -- ---—_----S— 
— 

- -
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R($) R ( / 3 )
PS

HG. 3.3 R (13) FOR BINARY FIG. 3.4 R(/3 ) FOR GAUSSIAN
SOURCE SOURCE

C(a)

a 
. -

FIG, 3.5 C(a)  FOR GAUSSIAN CHANNEL
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EXAMPLE 3. 3: Consider a Gaussian channel where noise c

has a Gaussian density with zero mean and variance a2
, and the cost

function is 0(u) U
2
. Then - 

-

P 1

C(~
y )  = -f log + 

~~~~~~ 
) , (3 .V)

where c~/a
2 can be considered the signal-to-noise ratio. Figure 3. 5

shows that C is an increasing function of a ;  that is , capacity can be

increased if more channel input power is allowed.

Although R(~~) and C(s ) were defined in terms of single input

and output symbols , actual coding does not , except in rare circum-

stances , involve immediately sending each source symbol through the

channel , even if = ~~~ In order to combat noise limitations and

source-channel mismatch (such as when p8 / p ) , the encoder waits

for many source symbols and then codes them altogether. A wider

range of codes is then available to the encoder , so that cleverer codes

can be constr ucted. Simi larly, the decoder waits for many channel

outputs before it decodes. For example , if p5 / p~ , then the source

and channel are not synchronously compatible. In order to match them,

let the encoder wait T seconds until n = p5T symbols have been

emitted. In this time , the channel can process N = PcT symbols .

Thus , let x be an n-vector and u an N-vector; thi s is called block

coding. * The new vector source is called the n-th extension of the

ori ginal source , and the N-th extension of the channel can be similarl y

*Block coding is used not only for synchronization, but also to combat
noise.

—-—55- --  . _ ____55____  -
- -
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defined. The “new” source symbol rate is now p5/n (in units of n-

vectors per second), which equals the “new ” channel rate P a/ N  (N-

vectors/second). Assuming that the vector components are independent ,

we define

n
p(x) = fl p(x.)

i= l 1

N
p ( y (u )  = fl p ( y . (u .)

i=l 1

Also, Dn~ 
the distortion of the n-th extension of the source , is

D = E D(x., v .) , (3.8)
n n • l  1 1

and 0N the cost of the N-th extension of the channel, is

i N
= ~~ E 0(u1

) (3 .9)
i=l

As previously mentioned, block coding arises in consideration of

actua l coding techniques to minimize distortion and increase reliability

in a communication system. One naive approach to encoding might be

to j ust r epeat each scalar source symbol many t imes through the

channel. In other words , for each source symbol x , construct a vector

u whose component s are x ’s. As the number of repetitions increases,

the dimension N of u increases for a fixed dimension n of x. In

the limit, this scheme will drive the probability of error to zero ~4],

t but will pay a price. As N increases, the channel is taking longer and

- ~~~~~~~~~~~~ — ~~~~~~~~~~~~~ ~~~~~ 
- - a — . -  -: 

- 

-—
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longer to transmit the same amount of info rmation being emitted fr om

the source. Therefore , the source rate is decreasing relative to the

channel rate. This means that the channel is being used inefficiently,

since the rate at which it can handle inputs is much larger than the

rate at which information is being produced. This tradeoff of rate and

r eliability was thought to be the best one could do , unti l Shannon came

along. His theorem says that one can do much better ; tha t is , for any

fixed rate R , the probability of error can be driven to zero in the

limit (and thus minimize distortion) by simultaneously increasing N

and n and choosing clever encoders and decoders. This is the really

cr ucial point of Shannon ’s theorem. Thus , both methods of block

coding, i. e.,  repeating and the coding scheme referred to in Shannon

theorem, are limiting results. As N and/or n increases to ~~ , so

does the delay T , the time it takes to emit one n-vector from the

source or transmit one N-vector through the channel. In the case of

repeating , this delay T is incurred every time a source symbol is

emitted. However , in Shannon ’s theorem, the delay is incurred just

once, at the beginning , when the first  n-vector is emitted. Then the

source and channel are matched synchronously, so that while a source

vector is being produced , the previous source vector is simultaneously

being sent through the channel. It takes T seconds to accomplish

both these tasks , so that no more delay is incurred. In practice , the

initial delay is not significant, relative to the entire time the

communication system is in operation.

We are now ready to state the major result of classical in-

formation theory.

_____ ___ S___._J_5__ -=--~- S.— 
- - —— 
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Shannon ’s Codin~~Theorem: Suppose a source and channel with

~ and f3 specified are given. If

R((3) ~ C(c~) , 
(3. 10)

then for arbitrary 
~~ 

> 0  and c
~~> 0 , there exists a T sufficiently

large and an encoder-decoder pair such that average cost satisfies

E[0] � ~~+ and average distortion satisfies E[DJ~~ (3 +

Proof: See [1] and [4].

Thus , R( (3 )  and C(c~) are not exactly the source rate and

channel capacity, respectively, but are approximations which become

— more exact as the dela y T becomes large .

Converse to the Coding Theorem: If

R(~3 ) >  C(a.) , (3. 11)

then there does not exist an encoder-decoder pair such that

E[Ø] = ~ and E[D] = (3. —

Proof: See [1], [5], and [14~.

In other words , (3. 10) is the best we can do, for if (3. 11) holds ,

then even in the limit , average distortion (3 cannot be attained.

Another way of stating the converse is that if E[D) (3 can be attained . 

-

(approximatel y) at a cost E[0 ] = a~, then ~ and (3 must satisf y (3. 10).

Then (3’~, 
the solution to (3. 10) with equality for given ~~, is a lower

bound (called the Shannon bound) for attainable distortions. However ,

the r eally important result is the Coding Theorem itself , which states

that is actually attainable (in the limit as T increases) .
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3. 2 Discussion

Several points can now be made about these results. First of all,

as surprising as Shannon ’s theorem is , it has one major drawback:

it is an existence theorem and , thus , does not pr ovide a technique for

actually constructing the encoder and decoder . The solutions to the

optimization problems (3. 4) and (3. 3) for R( ( 3)  and C(~ ), respectively,

are not coder s , but optimal probability density f unctions. They have

limited usefulness in finding the optimal coders. For example , if an

arbitrary coding scheme is constructed, its densities can be computed

and compared against the solutions to (3. 3) and (3. 4) to see if the

scheme is optimal. However , this seems to be about as far as one can

go using only the Coding Theorem.

When we consider the rate distortion function together with the

channel to find the minimum distortion, we can re-express R (( 3)  as

(see 12])

(3* = i f  E[D(x , v)] s. t. p5 I(x, v) � C(a ) . ( 3 .  12)
p(vlx)

Thi s formulation is appealing beca use it seems more natural to mini-

mize distortion rather than rate. Suppose p (v l x) is the probability

density that a ttains (3~~, 
and I*(x, v) is the corresponding mutual

infor n - .ion evaluated with p*(vt x) .  Then

R ( ( 3

’

~~~) = p5 I*(x , v) = C(o~) . ( 3 .  13)

This illustrates the close connection between the Coding Theorem and

mini mizing distortion.

- - 
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4. Optima l Payoff and Strategies

Now that the fundamentals of Shannon theory have been established,

we can return to the five team theory que stions posed in Section 2.

Thi s section will address the first two questions. First of all, since

the Coding Theorem holds only when infinite sequences of source and

channel symbols are allowed , we must modify the team formulation to

account for vector s x, u , etc. of ar bitrarily large dimension. Then

the team--problem becomes

miq J = E lim D~ s. t. Ef  lim 
~Nl ~~ 

( 3 .  14)
~l’ 2 l5 r1-”’~ J IN-~~ I

where and are now mappings between infinite vectors. * Since

the objective is to minimize distortion, the optimal value of J , call

it J~~, is just (3*, which satisfies

R((3*) =

since R((3) is a decreasing function of (3 bounded from above by

C(a~). Therefor e, Shannon ’s theorem immediately gives us the optimal

payoff for the team problem (3. 14), and so answers Question 2 in the

limit as n, N --. ~ (or , equivalently, T -.

As a graphical interpretation of = (3 * recall Example 3. 1, a

discr ete, binary source. Suppose we turn the problem around and ask

the following question:

*Wyner 1’4] formulated the problem this way, but not in the context of
team theory.

55. - ‘~~L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Que stion: If we want to send data through a channel of capacity

C (for fixed c~) with distortion no more than (3,
what is the maximum possible rate at the source.

• 
Answer: Set R((3) = C and solve for p5w).

From (3. 5), this gives

= 1-h((3) 
(3. 15)

A plot of p5 vs. (3 is shown in Figure 3. 6. It shows that when di s-

tortion is allowed , the data rate will be faster than the channel

capacity, a somewhat nonintuitive result, since capacity is thought of

as a maximum rate.

There is another way of getting this curve which illustrates the

idea of (3. 10). First plot R((3) as a function of (3 for different values

of p5 
(see the solid curves in Figure 3. 7). Then draw the line C.

Shannon ’s result that R((3) � C defines the forbidden and attainable

regions . The best bound , namely, the minimum attainable (3 for a

given p5, is indica ted by the circles , the points at which R (( 3) = C.

Matching these optimal (3’s with their corresponding p
5

’s, we get

the dotted curve , which is precisely the same curve as in Figur e 3. 6.

Ther efore , given the entire communication system, the points on the

— . curve p
5((3) 

are attained in three steps :

1. Fix and solve for C(~~) = C in (3. 3).

2. Fix p and solve for R( (3) in (3.4).

3. Set R( (3) = C and solve for p5~~).

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ __._ _~~ 
-~~~~~ 7 -  
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If we solve (3. 12) instead of (3. 4), then we get (3. 13) and can skip step

— 
3 entirely.

This procedure for finding the minimum distortion can be thought

of as a kind of “separation principle. ” The two-person team problem

with dyna mic information is replaced by two one-person control

problems ((3. 3) and (3. 4)) with static infor mation. Whittle and Rudge

recognized this when they said: “Control and communication are both

required but the controls operate on separate parts of the system, so

that joint control is not required” (see [101, p. 366). However , as

Witsenhausen [12] noted , thi s proced~ire is still not general enough to

be applied to other team problems.

For fixed p5 , if the team problem could be solved , then it would

yield 
~~~~~ 

Inverting thi s function yields p5((3), precisely the same

curve as in Figur e 3. 6 and the dotted curve in Figure 3. 7. Thus, the

condition R((3) � C(~~) is buried inside the team formulation. It is not

yet clear whether this inequality can be derived from the viewpoint of

team theor y alone. However , it can be derived from team theory

together with rate distortion theor~r , which yields the solid curves in

Figure 3. 7. For examp le , in Figure 3. 7, suppose that the rate cur ves

R((3) and p ((3) are shown, but the line C(~~) is not. We will derive

this line in anzther  way, without reference to R( ( 3)  � C(a,). Consider

the points where a vertical line drawn thr ough (3~ intersects

R ((3; p5~ ) (let P. ~ R (p . ;p .) , i = 1, 2 , 3). The interpretation of J3~ f rom

is that , given p51, it is the minimum attainable distortion. Thus ,

for (3 such that R((3 ; p . )  � P~, (3 is attainable, and for R((3 ; P 81 ) >  P
1
,

(3 is not attainable . If we do this for all 1, then we will find that the 

--.-~~-~~ ----~~~~~ - - —--
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PS ’s are all equal; that is , the points of intersection lie on a horizontal

line. Let P1 
p

2 
...  C. Then we immediately have the

condition R((3) � C defining the attainable reg ion.

Since the solutions of (3. 3) and (3. 4) yield only the optimal

probabilities p(u) and p ( v lx ) , the optimal encoder and decoder are

— 
still not known. In fact , C(o’) and R( ( 3)  are computed on a “per -

symbol basis , ” that is , with regard to a single input-output pair ,

whereas the Coding Theorem is a statement about transmission of

information when there are infinite sequences. Thus , in the language

of decision and control theory, Shannon ’s theorem provides the optimal

payoff (in the limit as T -. ~) but not the optimal s tra tegies. It is

purely an existence theorem. Its nonconstr uctive nature has

fr ustrated information theorists to this day. Therefore, Question 1

cannot , in general , be answered by Shannon theory.

5. Real-Time Infor mation Theor1

5. 1 Introduction

In thi s section, the problem of suboptimal strategies (Question 3)

will be raised in the context of a new approach toward solving

communication problems. In the previous two approaches discussed in

Section 3. 2--simple repeating and the cleverer coding scheme whose

existence is proved by Shannon ’s theorem- -it was assumed that

sequences could be infinitely long , and thus incur an infinite delay. If

the dimension of x is large , then the encoder must wait for the

entire vector x before it starts to code . If the dimension of u is 

~~~~~~~~~~~~~~~~~~~
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large , the decoder must wait for the entire vector ~.i to go throug h

the cha nnel , symbol by symbol. A third appr oach, which is the one to

be discussed in the rest of thi s chapter , is what we call “real-time

infor mation theory. ” In this approach , both N and n are fixed.

That is , we consider block codes with a fixed block length . This

situation might occur if the receiver is another DM who must make

decisions in real time , i. e. , without ar bitrary dela y. The team

problem (3. 14) now becomes

mm J = E[D ] s.t. E[Ø N ] � 
~ , (3. 16)

wher e and are mappings between finite vectors. With this

extra restriction of fixed length , the optimal encoder and decoder in

(3. 16) may not attain the Shannon bound in (3. 14). That is , they are

suboptimal in the infinite delay problem. However , the formulation in

(3. 16) is actually closer to traditional team theory, which does not

deal with infinite or arbitrar y delays . This assumption of fixed

dimensions also brings us closer to the Spence problem, which can

now be looked upon as a NZS version of real-t ime information theory

where n = N = 1. Since dirnensionality is at issue , Question 4 will

also be answered , which completes our list of team theory questions.

The Shannon bound is the best we can do if n and N are

allowed to become arbi t rar i ly large; that is , the admissible strategy

space contains mappings between vectors of a rb i t ra ry  lengths. The

mappings between vectors of fixed length n and N constitute a subset

of this space. Since its strategy space is more restricted than in the

- - 5 5 -- —-.~~~~~~~~~~~ ~~~~~--~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - 5-- ~~~~~~~~~~~~~~~~ -
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Shannon problem , the real- t ime team problem for fixed n and N

cannot have a distortion less than 3~~. Thus , is a lower bound for

the real- t ime problem. Witsenhausen [121 also pointed this out , and

noted that the bound may be quite loose. He refers  to a paper by Ziv

and Zakai [15] that proposes a way to find tig hter bounds by replacing

“log ” by some other convex function in the definition of an information

measure.  However , these bounds are , in general , difficult to

compute.

In the next section , we will investigate a particular example of a

communication system and will show under what circumstances linear

strategies for fixed n and N attain the Shannon bound. When this

happens , the strategies are , therefore, team optimal. When this does

not happen , the perfor mance of the suboptimal linear strategies can be

compared to If the performance is close to 13*, then the easy-to-

implement linear strategies might be desirable.

5. 2 Linear vs. Nonlinear Strategies

In order to provide a basis for comparison of optimal and sub-

optimal str ategies , we will assume that , for all examples discussed in

this section , the comm~inication system in question has a Gaussian

sour ce and channel, as described in Examples 3. 2 and 3. 3 but with

variance (x) = 1. Then for fixed ~~, the minimum distortion 13~,
derived from equating R( 13) from (3. 6) and C(~~) f rom (3. 7) , is

p*(k) = ( ~
:

~~
2 ) -k 

(3. 17)

— —~-— —~~~~-~ — __i_~ ___~ -~~~~-~~—
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wher e

p
k = —

~~~ 
. (3. 18)

P S

Then D and 0N from (3.8) and (3.9) become

= 

~ 
E (x. - )2 (3. 19)
1=1

0N 1 ~ 
. (3. 20)

First consider the special case of n = N = 1. Then the source and

channel are matched synchronously, so that 
~ c = p5 , or k = 1. The

team formulation in (3. 16) reduces to the simple form

mm J = E[( y 2 
- x) 2 ] s.t. E . (3 .21)

Y1, Y 2

Since J is the same as J2 from the Spence problem, and the

constraint does not depend on y2, and the first order conditions for

the unconstrained team optimal are the same as the first  order

conditions for a Nash equilibrium [7], then the optimal decoder is the

same as in the Spence problem, namely,

= v = y2(y) = E, (x) . (3. 22)

We cannot evaluate this conditiona l mean until we specify y 1, since

y = y 1(x) + c. Suppose we let be linear ; that is ,

u = y 1(x) ax , (3. 23)

I 
— — - .. , .  — —..-~~ . — —

- 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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wher e “a ” is a acalar. Since x and C are Gaussian random

variables , 
~~ 

is also linear , and (3. 22) becomes

V = j (~,~) = 
a 

2 y , (3.24)

and the constraint in (3. 21) becomes

a2 � o r  . (3. 25)

For a =tJ~, the constraint is satisfied and

J = E[( 
~ 2 - i)  ~ + £ ] 2

2

2 = p*( l )  (3. 26)

This linear scheme attains the Shannon bouz~~, so that we immediately

have the solution to the team problem in (3. 2 1). Therefor e, for the

special case of N = n = 1, the linear strategies

y 1(x) = i J~~ x (3. 27a)

= 2 y = i (3.27b)

V

are optimal. This result is at fir st very surprising, because, as

mentioned earlier , Witsenhausen [11] showed that for a similar team

problem with signaling, the optimal linear soluti on was not the team

optimal. However , the result (3. 27) was also noted by Witsenhausen in

a later paper [12), by Gallager [5], and by Whittle and R udge [10].

— 
m~~~~~-~~~~~~~~ -—- -‘—— ——-—- —
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For other cases of fixed n and N besides n = N = 1, linear

strategies could again be tried and compared against p*(k). To make

the source and channel synchronously compatible , choose n and N

such that

N
— =  ~ — = k , (3. 28)

as described in the discussion of block coding in Section 3. 1. The

communica tion system now considered will involve an n-dimensional

memoryless Gaussian source x with zero mean and covariance ‘n
(n-dimensional identity matr ix), and an N-dimensional additive

Gaussian cha nnel whose noise C has zer o mean and covariance O r I
N

and is independent from x. For the encoder , a linear strategy means

u =  Hx , (3. 29)

wher e H is an N x n matr ix. It will be assumed to be of maximal

rank , since this is required in the proof of Theor em 3. 1 below. Thi s

assumption has the inter pretation in equation (3. 29) of requiring the

components of u to be uncorrelated. Since we know from Shannon

theory that the Shannon bound is attained when the inputs u to the

channel are uncorrelated (see [5]), H having maximal rank is a

reasonable assumption.

From (3. 22) , v can also be expressed as a function of H. The

version of the team problem in (3. 16) with and 0N as in ( 3. 19)

and (3. 20), r espectively, now becomes:

- . ... . 
~~~~~~~~~~~~~~~~ ~~-‘.~———.~~——. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ .~,.



-- . - —‘----w.-,—-..-. - --.~--wm—~~ ., ~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

3-32

mm J Ef! tr (x~ v(H))(x~ v(H)) T] s. t. tr M T HTj  ~
HEJr

(3. 30)

where “tr” stands for trace and superscript “T” for transpose, and

~r is the set of N x n matrices of maximal rank.

THEOREM 3. 1. Let H* be the optimal solution to (3. 30). Then

for k � 1

* 
2

J(H ;k) = 
a 

a • (3.31)
a

Proof. See Appendix IU-A~

In the proof of Theorem 3. 1, H* is derived in tern- of its

eigenvalues , not the matrix itseLf. However , as will now be shown,

a particular H*. with a simple interpretation , can be found. For

k � 1, that is , the channel dimension is greater than or equa l to the

sour ce dimension, a particular linear encoder is the one which

corresponds to repeating; that is

~~ k tiznes

x
x ii F u l l

I I =4J
x i  ~

••

u
NJ ~

C2 )

h 
:: }k
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wher e N/n = k. The particular H that corresponds to this is (call

it H):

1 0 0 . . .  0

. k

V 1 0
0 1 0 ... ‘1

= 
: : kn = N (3. 32)
0 1 0 . . .  /

0 ... •
0 l

1

o k

1

COROLLARY 3. 1, For k � 1, J(H) = J(H*)

Proof. See Appendix Ill-A.

Therefore, for k � 1, repeating is as good as the best linear

encoder.

An immediate consequence of Theorem 3. 1 is

COROLLAR Y 3.2. For the communication system described in

Section 5. 1, linear encoders and decoders are optimal if the source

dimension n and channel dimension N are equal. *

*Whltrle and R udge [10] prove a more general result for the case of
channels with memory.

_ _ _ _ _ _  
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Proof. If n = N, then k 1 and J(H *; k =  1) =

Figur e 3. 8 shows how J(H*) deviates from as k increases. Q. E. D.

Since is calculated assuming infinite sequences , but J(H*)

is not , the converse of Corollary 3. 2 cannot automatically be asser ted. V

It may be true that if the dimensions n and N are fixed, linear

strategies are the best we can do. However , in Section 5. 3 counter -

examples for k > 1 and k < 1 will be described , where cer tain

nonlinear coders give lower distortion than the best linear ones.

Before presenting the counterexarnp les , we f i rs t  give the

heuristic interpretation as to why linear is best for N = n but not

necessarily for N / n that was f i rs t  proposed by Shannon [9) and later

by Wozencraft and Jacobs [13]. Consider Figur e 3.9 for n = N = 2

and Figur e 3. 10 for n 1, N = 2. Figur e 3.9 illustrates the linear

case. The idea here is that a linear transformation maps the entire

space of x’s (R2) to the entire space of u’s (R2); that is, it fills the

u-space. To understand the significance of thi s, we must compare it

with Figur e 3. 10. First we perform a transformation on the Gaussian

random variable x so that it falls within a finite interval. This

simplifies the explanation and is an important step in one of the

counterexamp les. Now, Corollary 3. 1 says that the best linear

transformation on x is as good as just repeating x twice, which

implies that the optimal linear coder maps the finite x interval to the

diagonal u1 = ti
2 

x in the u-space. However , this does not take

advantage of the higher dimensionality of u; that is , it does not

“fill the space. ” A transformation that results in a curve that fills the

i t 
.
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/ 3

- a c T 2 = 1

(REPEAT I NG )

A

1

t-, ‘~ r% ,  I-2w
(SHANNON BOUND)

I I I 
~ N P c0 1 2 3 4 k~—=—n p5

FIG. 3.8 COMPARISON OF SHANNON BOUND AND REPEATING

- ~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~ ~
-
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71 -ENCODER 

I 

~~~~~~~~~~~~~~~~~~

FIG. 3.9 LINEAR MAP FILLS THE SPACE FOR n = N

V

U2 LINEA R MAP:

_________  _________  
u1= u 2= x

x I- - 

~~~~~~~~~~~~~ 

.

~~~~~~~~~~~~~~~~~~~~~~~ —“ U

NOISE BALL.~ 
V

FIG. 3.10 STRETCHED CURVE BETTER THAN LINEAR FOR n * N
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space more than the diagonal is better than linear, as illustrated by

the twisting curve in Figure 3. 10. * Now, when the signal (as repre-

sented by the curve) goes through the channel, it is corrupted by noise.

The advantage of the longer curve is that we can pack in more little

2
“noise balls , ’ assuming tha t the variance ~ of the noise is very

small in order to prevent accidentally jumping to the wrong part of the

curve when the noise is added. ** In fact , Shannon points out that

there is a threshold effect where the increased benefits by extending

the curve are outweighed by the greater chance of committing a lar ge

error. Now, define the “stretch factor ” S (see [13]) as:

- 
change in length along curve

- change in x

If S is constant all a long the cur ve and the noise is small, then,

locally within the balls , the curve looks linear. If we straighten out

the curve and compress it to fit in the original interval in x, then we

have also compressed the noise balls. The net effect is that we have

reduced the noise for the whole system, so that we get a lower dis-

tortion than linear.***

5.3 Counterexamp

We now describe the counterexamples that show that linear

strategies are not necessarily optimal when n and N are fixed, and

*Shannon [9] calls this idea the “snake-in-the-box.”

**Although Gaussian noise extends beyond the boundaries of the noise
balls, almost all of the probability density falls within a ball of radius
3o. Thus, packing in balls captures the conceptual idea.

~~~ E 13] this ~s called “twisted modulation.”
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k / 1. These examples utilize the “stretched curve ” idea to construct

nonlinear encoders and decoders that are better than linear. For

simplicity, we assume that the random variable are  normalized so

that ~~ = l .

COUNTER EXAMPLE 3. 1. * k> 1.

Let n 1 and N = 2, so that x N(01 11
) and € ‘~~

- N(0 ,a
212).

Divide x into four regions &uch that the probability density of each

region is 1/4 (see Figure 3. 11); that is,

2
A -

~~~~~
--1 1 2

~ 
p(x) dx = 

~ 
p(x) ~~~ for p(x) = — e

Jo ~A

~ A~~~. 67.

Since N = 2, the encoder must take x to some two-dimensional

vector

f u r ]

u = 1 u
2 j

The particular encoder used in this example is to let u1 represent the

region x is fr om, and let u2 
be a linear transfor mation of x in a

stretched out version of this reg ion. Figure 3. 11 gives a gra phical

interpretation of this scheme. More precisely, let r(x) region F
number of x. Then it can be verified that u2 can be expressed as

B (
~ 

-~- 5 - 2 r(x)) , (3. 33)

*See Appendix Ill-B for details .
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n~ 1, N=2 p(x)

-A ~~~~~~~~~~O~~~~~~~~~ A
~ .67

4

3

2

1

I .

-B 0 B

FiG. 3.11 STRETCHED MAPPING OF x TO TWO DIMENSIONS

.-.

-~ -,~~~~~ -.~~ -- m-.-- A
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(see Figur e 3. 11 for illustration of B) and the str etch factor S is

constant for all x within a given region:

2BS = — — for fixed r .A

For algebraic simp licity, let

ti
2 

- =

Now, u 1 cr , where c is a constant chosen to sati sfy the power

constraint, so that

y 1 = u 1 + € 1 = cr + € 1

~ p(y 1( r )  ‘~~~ N(cr , ~ 2 )

Let i~ = maximum likelihood estimate, that is ,

j p(y 1J r)p(r)
r ar gm a x  p(r~~y 1) =

= ar g max p(y 1~ r)

since

p(r) = ~~~r •

Figure 3. 12 shows grap hically how ? is chosen from an observation

of y 1. Finally, let

~~~~~~ = ~~~~= ~~(~~~_ s ÷ 2 ~)

a-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
- .- - 

. .- - - . -- -—.- - - ________

- - —~~~~~~~~~~~~~~~~~~~~~~~~ -. --~~~~~~ ---~~ -“~~~~—----
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— p(y1~ r 2 )

~~~~~~~~~~~~~~~~~ I l t I I ”y
c 2c ~ic 3c ~.Ic 4c

1 ~=2
[

FIG. 3.12 ESTIMATING r
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(just invert (3. 33)). Then it can be shown that the expected distortion

can be bounded from above :

E[(x-~ )2 } � a~ + 6F (
~ ~~~

) , (3 .34)

where
2y

C 1 2F(y) =~~ — - e  dx .
J~0 ~f2~ir

For a2 
= . 0022 , the right hand side of (3. 34) equals . 00097. The

distor tion value for the best linear scheme, given by

2
• J(H *;2)  = 2

fr om (3. 31), for the same a~ , is .0011. Therefor e, the nonlinear

scheme gives lower distortion than just  repeating. Since the error

function F decreases very rapidly as a decr eases , the nonlinear

scheme becomes even better with smaller o. For example, for

a2
= .001 , (3. 34) equals .00017, and (3.31) equals .00052.

COUNTEREXAMPL E 3.2.* k < l

Let n = 2 and N = 1. It can be shown that an optima l linear

encoder is u = (x 1 + x2)/a , with expected distortion

J

~~

(a 2 ) = _ _ _ _  

.

*See Appendix 111-C for details.

i t  
_ 

_ 
:--- 

-•  -—-~~~ — - - - • -~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
~
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(In general, linear distortion is

n-I  2
—

1+ a 2

Graphically, this scheme amounts to projecting all points in the

• x2 -space to the diagonal x 1 x2. One way to “fill the space ” better ,

suggested by Shannon [9], is to constr uct a real number u by alter -

nating the digits of x 1 and x2, that is , if

x 1 = . a 1 a2 a3 ...
= • b 1 b2 b3 ...

then

a • a 1 b1 a
2
b
2 a

3
b3...

This nonlinear scheme fills the x1, x2 -space much more than linear ,

but it is difficult to deal with analytically.

A simpler nonlinear scheme that fills the space more than linear

is shown in Figure 3. 13 , where and are transformations f

of x 1 and x2, respectively, to the interval [-1, 1]. All points are

mapped to the dotted lines in the following way:

a � 8
2
�b 

~ ~° i’~ z~ ~ l’~ 2~ 
= (e 1, ~~ ,

where

(a , b) E 
~ (

~ i , - 

~
), (- ~, o), (o , 

~
), (

~
, l) } . 

- - •- - -~~~
— — ——— — ~~~~~~~~~~ -~- -•----—•~~~~ ,—-•-———- .__ ~_••__ __•_____ •_•_ - _~

_ _
~;f______ _ •—• .-—- •-.~-———-—— ----•—•- • -~-~—-—..- — . - •-
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0
2

t t~~~~~~~~~~~~~~~~~~

i

~~~~~~ 

‘01~~~~~~~

FIG. 3.13 TRANSFORMATION OF SQUARE TO DOTTEL LINE

I

i1 
e~=-i e~=1

• ~~~~~~~~~~~~~~~~~~ 2 _~~~~~~~~~~ 
_. .  2

r = 4  r:3 r 2  r = 1

FIG. 3.14 TRANSFORMATION OF DOTTED LINE TO u
I

- -  -——- _ _~~~__~~~ _ _  L _ _ . ~~~~~~ - - —
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Let = 3/4 correspond to row number r 4, 
~ 

= 1/4 to r = 3 ,

etc. Straighten out the dotted line and compress it to fit into the

interval [-1, 1], and call the variable a, as shown in Figure 3. 14.

• Then it can be shown that

u = ~ [( 1)r e 1 + 5 - Zr]  . (3. 35)

Next u is sent through the channel. Let ~ = y = u + c .  Then let

4 if ~~� - 1

• 1 ~3 if
r =  

2 if

1 if

( - 1 ) ? (4 ti - 5 + 2 ?) ,  -1 � ti � 1 (just invert (3.35))

-1 , t i < - 1

1 , t i • > 1

[-1, 11

~ 5-2
~2 4

= f (~ 1)

A — 1x2 = f  
~~~ 

.

I I  P

— ~~~~~ ~~~~~~~~~~~~~ -~~=-- —- — _____

-~-~~ -~~~~~—-~~--- — -—---
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Let f(x) = 2/17 tan ’ x , and let expected distortion be defined as

JNL(0 ) :

JNL ( a )  ~ 4~;~ E[(x 1-i1)
2 + (x 2 -~c2 )2 J

Then it can be shown that

2 2JNL( 0 ) � B ( 0 )

where

B(a 2) = 

~ 
[3 17

2 16 2 
3541( 1~ Pe) + [l0~~ 172]P ~ (3. 36)

and = Pr [? / r] = probability of error .  ‘~e is a complicated

expression becaus e it involves the probability density of ~x , a difficult

thing to compute. However , 
~ e is a continuous increasing function of

If ~r 2 
= 0 , then 

~
‘e = 0 and B(0) = . 177 = 

~ NL~
°

~ 
If ~

2 is

sufficiently sma ll, then B will still be less than J~~(a 2 ) , as shown in

Figur e 3. 15. However , as az -. 
~~ ~~~~~~ 

so that B- .5-~ 17
2~ ( The

B(~
2) curve is qualitative and not based on numerical calculations.)

Therefore, for suff iciently small c12 , the nonlinear scheme is be tter

than linear .

5.4 Asymptotic Effects

In Chapter II it was shown that the equilibrium solutions for

Example 2. 3 of the job market model exhibited threshold effects.

Since the solutions to the n = N case of the Shannon problem are

known, we might ask whether they also exhibit threshold effects.

•
.1 -~~ —-- ~~~~~~ - 

• a. - -
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• 
PP

— — — — — 5!~~
2 (out of scale) 

.177 -

t
FIG. 3.15 OPTIMAL LINEAR PAYOFF VS. NONLINEAR BOUND 

____________ 
Ii 
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However , as expressions (3. 27) and (3. 26) for the n N = 1 case

indicate, ~~ y~mptotic , not threshold ,- effects occur . That is,

signaling ceases in the limit as the parameters o’ and ~ 2 appr oach

0 or ~~~~. For example , both DMs still feel it worthwhile to signal

even if signaling is very cos tly (tighter cons traint on signal power ,

i. e., small ~) or very noisy (large 02 ).

With no noise , v = x as in Example 2. 1, demonstrating that

asymptotic effects can occur in the Spence problem as well , unless

there are extra constraints , such as a minimum ability level and a

maximum educational level. Therefore , we cannot state any general

results as to which eff ects, threshold or asymptotic , will occur in

any given problem. The payoff str uctur e (team vs. NZS) and restrictions

on the random variables (continuous vs. discrete , and infinite vs.

finite range) are prime candidates as the factors which determine the

type of parameter effects.

5.5 Summary

In general, real-time infor mation theor y solutions are sub -

optimal as compared to “infinite-time ” (Shannon) theory solutions .

However , if the dimension n of a Gaussian source with a mean

square error distortion function is equal to the dimension N of a

memoryless Gaus sian channel with a square cost function, the source

and channel can be directly connec ted, with appropriate scaling of the

channel inputs , so as to satisfy the power constraint . The distortion

incurred is the best one can do , since it equals the Shannon bound. If

s——----- ~~ ~_ __ _ _ .~~~~ 
- - —-- • - —
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N >  n (k N/n > 1) , then repeating each source symbol k times is a

simple suboptima l strategy. For small values of k , its performance

is close to optimal. If N< n (k< 1), Theorem 3. 1 does not apply, so

that little, in general, can be said. However , counterexaniples with

k = 2 and 1/2 are described wher e nonlinear encoders are better

than the best linear ones .

A

~-~~ - - ~~~~ ~~~~ 
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APPENDIX 111-A

PROOFS FOR RESULTS ON OPTIMAL LINEAR CODERS

Before going on to prove Theorem 3. 1, we digress to note that

for the linear solution (3. 27), ~c = v = y~ (y) is the estirrate of x that

would be produced by a Kalma n filter . Expected distortion E[D(x , v)]

is simply the error covariance , referred to as P in the control

literature (see Bryson and Ho [3] for derivation of Ka].man filter
A

formulas) . Thi s fact makes it very easy to evaluate x and P from

linear encoder s and decoders for arbitr ary values of N and n, using

the standard formulas from Kalman filters for the special case where

x is time-invariant. In general , if x N(i , M), where M is

the n x n covariance of x, £ ‘ ~- N(0 , R ) ,  and y = Fix + € , H an

N x n matrix , then from the Kalman filter

= i + PHTR~~ (y - Hi)- (3A. 1)

P~~ = M~~~ + H
T

R
I
H . (3A. 2)

In the special case of ii = N = 1, it is easy to check that for our model,

H = ~~ and ~ red uces to Equation (3. 27b) and P to (3. 26). If we

restrict ourselves to linear encoder s v 1 that satisf y the power con-

straint with equality, * then the constraint

*We always assume equality in the constraint , because the rate of
transmission increases with power. Thus , it is adva ntageous to use
up all the power available.
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- I N  1
E [~

becomes

• - 1 T
• ~~~= j ~j tr E uu

• = tr E(HxX TH T)

= tr (H THEX,cT)

tr (H TH) . ( 3A.3 )

-
• 

From (3A. 2) and (3A. 3), (3. 30) becomes:

I min J(}I) !t r ( I  + _ ~~ H TH ) 1  s.t. ~~ tr (H TH) = ~~,
0 (3A.4)

where j~’ is the set of Nx n matrices of maximal rank.

THEOREM 3. 1. Let if be the optimal solution to (3. 30).

Then for k � 1

2
J(H *;k) = —

~~ (3.31)

Proof. Since I~ > 0  and HTH � 0, then

~~~~~~~ HTH > O ,

and from (3A.4) 

- •-•—•-~•--•— — .— -~~-- 
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J(H) =~~~ E 3 ’-

where the are the eigenvalue s of ~~ + l/0ZHTH and X 1> 0 for

all i. It is trivial to show that

x i = ~~~~~~~~ 
~~~j = 1 , . . . , fl

where the are the eigenvalue s of 1/r ZHTH. Then the constraint

(3A. 3) become s

Z n
0

W .  ~~~~~~~~~i= 1

But

X . = 
~~~~

( 1 +
~~~j

) = n + ~~~~

So the problem is now:

mm E ~~~~
- s. t. x . = n +

[x.) 1=1 i=l 0

Let

U n
L = 

~~~~ 

~~~~
- + r ( E 

~~~ 

- “- - 
~~~~ 

)

where r is the Lagrange multiplier .

1
• ~~~~~~~ 

= - —~~ + r  = 0 , 1 =  l , . . ., n
I

1

* 1 .

~~ 
= — (positi ve square root because eigen-

r values positive).

- — - - - ---~~ 
-
~~~~

- - - -- - - ____
- ~ _._S .. p 

- • 
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In order for all to be equa l, we must have all u~ = - 1 equal.

This means we must have H
TH> 0. Since k � 1 and H is of

maximal rank , then H TH is , in fact , positive definite (see [3 ],

p. 444). (If k < 1, then HTH can only be assumed to be positive

semi-definite.) Then

~~~~~~~~~ =~~~+ i~

2 2
I.— ncr a

~ v r =  2 = 2ncr + N y  a

.
.
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i= 1  x .
1

2
0•

a
Q. E. D.

COR OLLAR Y 3. 1. For k � 1, J(H) = J(H *).

Proof. With H as in (3.32 ) , then

• A 1 / 1J(H) = — t r P = — t r ~~ I +— ~ Hn n n a

= tr (i ÷ -.~~~ ~k I )  
-1

2
F = -~~~~~~~~—~~~- . Q. E. D.

• ~~•

Therefore , within the class of linear encoders H , none gives

lower distortion than H.

_.— —~~~~~~~~~ ~~~~~~~~ • -z~~~~~~~~~~ -~~ .- —..-•~~— 
•
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APPENDIX W-B

- 
- COMPUTATIONAL DETAILS FOR COUNTEREXAMPLE 3. 1

Referring to Figur e 3. 13 , for

S r = 1, let u2 = B(~~~ + 3)

r = 2, let u2 = B(~j~ + i)

r = 3 , let u2 = B(~~~ - i)

r = 4 , let u2 B(~~ - 3)

or 

u2 B(~~~ ÷ g(r(x))) (3B. 1)

where

g(r ) = 5 - Zr . (3B. 2)

Since ~ = 1, the power constraint has been normalized to

4 E(u~~+ ~4) = 1 .
~~~~

Let u1 = cr for some scalar c. Then a special case of the constraint

is:

*As in Appendix Ill-A, we assume equality in the constraint.

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — -

~~~~~~~
-•—

~ 
- - - —_-— 
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2 2 2  1 5 21 =  Eu 1 = c E r  = - ~— c

~ c = ~~~ -~~~~~~ .36

Also

1 Eu~ B2E [ ± _  + g(r(x)) + g(r (x)) 2j

B2 
~~~~ +~~ E(xg) + 5]

where

E(xg) = ~2 [~~ x p(x) d x + 3 f  x p(x) dxl  
~~ 

- 2. 08.

Therefor e

I = 1. 5 B 2,

B2
= ~ , B~~~.82 . (3B.3)

Figur e 3. 14 shows graphically how ~ is chosen from an observation of

y 1. Transform y 1 to 
~~ 

=(y 1-cr Vcr N(0, 1). Then the cut-off

points (3/2)c , (5/2)c , (7/2)c in Figure 3. 14 are transformed to ± c/2cr.

Let F be the error function
2

F ( y ) = f  ~~~~~~~~~~ e Z dx .

I

I ’ 

_ _   

__ 
_ _

- —~ • - •-. — 

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• • - — • — • 
.- 

•—
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Then for 
~e = probability of error ,

~ pr [~~/ r ]  = Pr[~~/ r I r = i ]Pr [r~ i]

: ~~~~~~~~~~~~ 

ZF (~ 
.~c_) + z F(~~~~ )+  F( .  ~)J

Note that as a decreases , P decreases. Now, let
e

a

= ~~ (~~~~~
_ g(i~(x)))

(j ust invert (3B. 1)). Then

- x = (u~ + 
~~~ 

- - x

= ~. (g(r) - g(2~) ) + ~~~ ~Z

2 2
E[(~~-x) 2 ] = ~~~~ a~ + ~~~~~

- E[(g(r ) - g(~ ))2 ]
4B

= + A2EI(r~~ )Z J ,  from (3B. 2) and (3B. 3)

2
• = + A2 E[(r -~~)2 f ? / r ]  P5

2

+ A2(3) 2 
~ e since max I r - ~ I = 4- 1  = 3 ,

= ~~a2 ÷ 6 F (~~~~~~)
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APPENDIX Ill-C
- 

- COMPUTATIONAL DETAILS FOR COUNTEREXAMPLE 3.2

A general linear scheme for this example is

[x li
I I - . u =  ax +b x
~x2 J  1 2

Power constraint:

E [u2 ] = 1 = E [(ax 1 + bx2 )2 ] = a2 
+ b2 (3C. 1)

Then

y = u + c

= ax 1 + bx2 + C

= ax 1 + (bx2 + e) = E
,

(x
1) 

a
2
+b
2
+a
2 ~

‘

= bx2 + (ax1 ÷ €) = E
/

(x2 ) 
a Z+b Z+cr 2 y

E [D(x , v ) ]  ~ = ~~ E [(x1~~~l ) 2 + (xz~~ 2)2 ]

1 2 2 2  2 2  2 2 2
= — z-.— -~z-~ 

-

~~~~

-

~~~ 

[(a -i-cr ) + 2a b + (b - i -cr  )
2(a +b +cr

+ (a 2+b 2)cr 2 ] .

__________ • 
-
~~~~~~~~~~ 

•
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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Substituting in the constraint (3C. 1), thi s become s

= [2cy ’
~ + 3cr 2 + 1]

2(I+o )

1 2
* 2

= ~ ~~~~ ~ , (3C.2)
I

which is independent of a anc~ b. Therefore , any a and b satisfying

(3C. 1) will be an optimal linear solution.* For example, consider

• 1
a = b =

so that

1 z

For the nonlinear scheme described in Counter example 3. 2,
1

recall that e f(x). For the case of f(x) = 2/n tan x ,

= ± 
~ 

± 2.4

• A l

If a2 0 (no noise), then = and = 1~
, so that

*Tha t is , the constraint is r otationally invariant.

I __________________

~~~~-- ~~-~~~~~~~~~~~~ -• •-.•- •--  _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
- -- ._ .

~~ ~~~~~~~~~~~~
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~~~~.~~~ I_~~~~
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= ~ EI(x 1-5t1)2 + (x2-~ 2)2 ]

= (x 2- . 4 1)2p(X2) dx2 + ç (x 2-2 .4) 2P(X2) dx 2

= . 177

From (3G. 2), J (0) . ~~ > 
~NL~°~ 

Therefor e, since the nonlinear

• coding gives lower distortion than the linear when there is no noise , it

must do the same for sufficiently small noise. In fact , we can bound

J NL( a )  for small a2 .

Let

g(e 1) g(f(x1)) x1 
(i.e. , g = f~~~) . (3C. 3)

Then

g ’(f(x 1)) f ’(x~
) = 1 , so that g’(ftx 1)) = f’(x1) (3C. 4)

Let

6
1

= ~1 — e 1

Then

( i6( t i -u)2 
= 16 if ~ = r

2 2
= (°

~~~~

-

~~~~O 
=

I ~~~ 4 if ~~/ r , since

‘¼. 
max l e 1 9 11 = l— ( - i )  = 2

Let
A

Then

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•-
~~~~~~~~~~~~~

-—-
~~~ 

•
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= 

(~2-e 2) 2 if ~ = r  (or E[(x 2-~ 2)2 I~~= r ]  = . 354 = 2J ~~~j O))

if ~ /r , since maxIe 2-e 2 1 = f ( _ 1) = 1~

‘‘I
A 

g~~ T. a
= g(e1) = g(81) + g ’(6 1)ó~ + 21 6 ,

A

~~ . between and

~ Xi + f’ (x1) 6i

from (3C. 3) and (3G. 4) (for very small o~, i. e., small noise*)

I
. A _ _ _x. - x. , 6 .

i i f ( x 1) 1

JNL( a )  = ~ E[(x~ -~c1)2 +

= E 
~~~~~ 

)2 ~~ )2 6
~ 1

~ 
E~~(~~~~~~ ) l6€ 2 + Pr[~ = r ]

• + E 
I1(

’ )2 + ( f ~(~a
))2 (3)] Pr [

~ / 
r ]

• *See end of this appendix for bound on
g ’’( r 1)

2!

4

- —~~~~~~~~~ - -~~~~~~~•--——• ~~~~~~~~~~~~~~~ - --— •-••— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ____________
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Let Pc ~ Pr[~ / ri (probability of error). Also, since

2 -1f(x) = tan x = 9 ,

then
/ l \ 2  3 2E~~11~~~

J 
- IT .

Thus

JNL(a 2) � B(a 2) ,

where

B(a 2) = IT2 16cr 2 ÷ . 

~~ e’ + [10 
1 

~~~ ~ e

Bound on ~g ”(T)~ : Let T E [e ,~ ] and 6 = - 8 .

g(9) = tan~~~~8

g ’(e) = ~~ (i  + tan2 
-
~~~ e)

g ”(e) = 71 tan B g ’(e)

= tan -
~~~ 9 (i  + tan2 

~ e)

= tan e ( sec 2 

~)
or

g ”(e) g(e) g ’(e)  . (3C.5)

~

- -: ~~~~• • ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—-~~~~-
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Thus , we see from Figures 3G. 3 and 3C.4 that

Ig(~) I  max (~ g( e ) I ,  Ig(~)t 1 A(e ,~ )

- 

g’(T)I~~ max [~gt(e)~, Ig~~ )l1 ~ B(e, &) .

From (3C. 5),

* *
~ ,T A(G , 8) B(e , e) .

Therefore , f g ” ( r ) (  will not blow up as 6 gets smaller, since A and

B do not blow up as 6 gets smaller.

P - i  
-- • 

-

_ _
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g(6)=tonf- 9

4 !~ 
-1

~

FIG. 3.C.l BOUND ON Ig( r)I FIG. 3.C.2 BOUND ON t g
S( T) I

q

- - - - ~— —-- ——— —
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CHAPTER IV

CONCLUSION

The main features of the Spence problem of Chapter U, from a

decision and control point of view , are the dynamic information

structure (i. e .,  signaling) and the multiple equilibria . Multiple Nash

equilibria in a noncooperative NZS game are undesirable , because

DM 1 may choose one equilibrium strategy, say ~~, but DM2 might

not choose the corresponding y~ , but some other eçuilibrium

The pair (~~, ‘~~ ), in general, is not an equilibrium. By assuming

certain parameters were fixed instead of variable , we avoided this

problem and obtained a unique equilibrium.

As a vehicle f or  insights , the model was set up as a two-person

decision problem. This allowed us not only to find new solutions, but

also to handle modifications of the problem more easily. For example,

we defined an adjus tment procedur e for each decision maker and

proved sufficient conditions for stability. We also investigated

threshold effec ts and found that, under certain circumstances , signali ng

ceases when different parameters in the problem are varied. The

main results were that if signaling cost or signaling noise are too

high , or if the variability of the underlying unknown signal is too low,

then signaling is not worthwhile. Therefor e, from what orig inally

appeared as a very simple example, a tremendous richness of detail

and insi ght have emerged.

4- 1 
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Extending the decision theory framework, we saw in Chapter UI

how Shannon information theory can be modeled as a two-person team

problem with signaling. This set-up allowed us to discuss coding

problems in which the delay between emission of source symbols and

transmission of coded signals was fixed. This was called “real-time

information theory, ” suggesting app lications where coding precedes

actions which must be taken within a specified time. Since Shannon ’s

theorem states the best we can do with no delay restriction, it provides

a bound against which we can j udge the performance of the real-time

scheme . General results about performance were also derived; for

example, repetition of source symbols as an encoding scheme is as

good as the best linear encoder . However , if the block lengths of the

sour ce and channel ar e equal, then for both variable and fixed delay,

linear encoders and decoders are optimal; that is , the y attain the

Shannon bound. If the block lengths are not equal, then for fixed delay,

linear may not be optimal.

The major contribution of this work is not to prove significantly

new results , but rather to unif y the disparate fields of team theory,

market signaling in economics, information structures, and classical

information theory. Hopefully, the general conceptual framework

presented here will encourage joint efforts among researchers in these

separate fie~.ds. -•
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