

RESEARCH REPORT

DOC FILE COPY

Industrial & Systems
Engineering Department
University of Florida
Gainesville, FL. 32611

DISTRIBUTION STATEMENT A

Approved for public released
Distribution Unlimited

CONDENSED OPERATING MANUAL FOR NARE SAMPLING SYSTEM.

9,

Research Report, 77-8

by

Richard S. Leavenworth
Zoran/Lekic
Henri/Lorberbaum

74) RR-77-8

11 Aug 1977

12/31p.

Department of Industrial and Systems Engineering
University of Florida
Gainesville, Florida 32611

DDC

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(15)

This research was supported by the U. S. Department of the Navy, Office of Naval Research, under Contracts Number N00014-68-A-0173-0021 and N00014-75-C-0783.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE NAVY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

404 399

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. JOYT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
77-8	
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
Condensed Operating Manual for NARF Sampling System	Technical
Sampring System	6. PERFORMING ORG. REPORT NUMBER 77-8
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
Richard S. Leavenworth Zoran Lekic Henri Lorberbaum	N00014-68-A-0173-0021 N00014-75-C-0783
PERFORMING ORGANIZATION NAME AND ADDRESS Industrial & Systems Engineering University of Florida	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Gainesville, Florida 32611	Process Control Sampling
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	August, 1977
800 N. Quincy	13. NUMBER OF PAGES
Arlington, VA 22217 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS, (of this report)
14. MONITORING AGENCY NAME & ADDRESQUE MINERAL INSERTIONS	10. SECONT CEASE (or and report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block ; ent from Report)

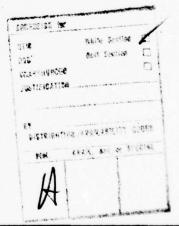
N/A

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Process Control Random Sampling **AOQL**

29. ABSTRACT (Continue on reverse side if necessary and identify by block number)


This report contains an abbreviated set of plans and procedures from Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling (Research Report 76-4, Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611). It is intended as a "shop floor" operating manual for quality assurance inspection personnel and contains those plans and procedures most used by the Naval Air Rework Facility, Jacksonville, Florida. Procedures have been abbreviated

linc]	as	S.1	Ť٦	ea

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20

from the above mentioned source document. This report is intended to supplement the source document, not to replace it.

TABLE OF CONTENTS

ABST	RACT						•			•									٠.		•	i
SECT	IONS																					
	Introduct	ion				-	•			•	•										•	1
	Operating	the Samp	ling	Sys	tem	•																3
	2.1	Instruc Veri	tion: fica	s fo tion	r Co Rep	mp	let t (1	ing MVR	tl)	ne •	Мо •	nth •	11y		•			•		•	•	3
	2.2	Instruc Veri	tion: fica	s fo tion	r Co Rec	omp	let d (ing DVR	tl)	ne •	Da •	ily •	· .	•		•				•		9
	2.3	Instruc Veri	tion: fica	s fo tion	r Cor	mp ¹	let ol	ing Cha	tl rt	he (S	Sh SVC	op C)	Da	ta			•			•		11
	2.4	Instruc Veri	tion: fica	s fo	r Co	omp ntro	let	ing Cha	tl rt	he (S	Sh	op C)										13

Abstract

This report contains an abbreviated set of plans and procedures from "Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling" (Research Report 76-4, Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611). It is intended as a "shop floor" operating manual for quality assurance inspection personnel and contains those plans and procedures most used by the Naval Air Rework Facility, Jacksonville, Florida. Procedures have been abbreviated from the above mentioned source document. This report is intended to supplement the source document, not to replace it.

INTRODUCTION

This document contains a condensed version of the instructions for operating the sampling system contained in <u>Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling</u> (hereafter referred to as the "Procedure Manual." [Ref. 1]). These instructions are essentially those contained in Section 2, of the Procedure Manual titled "Determining a Sampling System," and Section 3, titled "Operating the Sampling System."

The Composite Tables on pages 17 through 35 have been organized from Tables I, II, and III of the Procedure Manual for selected values of AQL. They are not intended to be complete or exhaustive.

Definitions, discussions, and operating characteristics have been specifically omitted in order to provide the user with a quick reference guide. The user will need to become familiar with all aspects of the Procedure Manual in order to become proficient at using the sampling system.

3-12-76 CERTIFIER Shop No. 9 XXXX JONES CERTIFIER NO 86 87 STUDIES 2 Period 2-15-74 SPECIAL SAMPLING SEQUENCE QA Specialist CERTIFIER NO 55 56 57 59 62 63 B&C MANDATORY CERTIFIERINO 29 36 39 43 40 28 30 32 33 34 38 45 9.0 9 M Mandatory inspection 10 8 6 4 MONTHLY VERIFICATION REPORT 2 Sample verified, l or more defects 2.0 800 5.0 O Sample verified, no defects CONTROL LIMIT Sample skipped (OVER) A00L 2.5 AVERAGE UNITS/MH | 0.28 (OVER) ナー SAMPLE SIZE × 2 AQL 1.5 Iotal 49.8 7 3.4 Hr 12.5 SAMPLE HOURS UNITS MH EXPENDED 141.80 195, 26 INSPECTION LEVEL # 782.06 351.24 195. \$ 250 ADDITIONAL ACTIVITIES Σ Sample Hrs. Wk 54.2 % Completed 99 82 Completed 5-77 Required REMARKS TOTAL Avg. Prod. 4 RSL Sampling Level (R, N, T, M)

- 2. OPERATING THE SAMPLING SYSTEM
- 2.1 Instructions for Completing the Monthly Verification Report (MVR)
 - (1) Enter the following data in the upper right hand corner:
 - (a) Shop number.
 - (b) QA Specialist's name.
 - (c) Recording period.
 - (2) Enter the following data in the upper left hand corner:
 - (a) Designated inspection level.
 - (b) Designated AQL.
 - (3) To Determine Production Interval:
 - (a) Remove duplicate link numbers from "Weekly Completion Reports."
 - (b) Insert grand totals of units and man-hours expended in WK1, WK2, WK3, and WK4 boxes.
 - (c) Total the column of units and man-hours expended.
 - (d) Determine the average of units and man-hours expended.
 - (e) Convert the average of man-hours expended to the nearest whole number. This value is normally used as the Production Interval.
 - (4) To Determine the Sample Size:
 - (a) Calculate the average units per man-hour by dividing the total units produced by the total man-hours expended. Enter this figure in the Average Units/MH box.
 - (b) Go to the composite tables (pages 17 35) for the designated Inspection Level and AQL. For the appropriate Production Interval:
 - (i) Find the sample hours for Reduced, Normal, and Tightened inspection and enter these values in H_r , H_n , and H_t , respectively.
 - (ii) Find the control limits for Reduced, Normal, and Tightened inspection and enter these values in CL, CL, and CL, respectively.
 - (iii) Enter the value for the Limiting Quality (LQ) in the LQ box.
 - (iv) Find the AOQL value from the top of the table and enter the value in the AOQL box.
 - (c) Multiply the value of Average Units/MH times the Sample Hours H_r , H_n , and H_t , to obtain the sample sizes N_r , N_n , and N_t , respectively. If the value for the sample size is 5 or less, round off to the next higher digit; otherwise round off to the nearest digit.
 - (5) Determine the order of sampling:
 - (a) Prepare a list of certifiers (and "sole artisans") to be sampled, including apprentices as appropriate, and number this list in sequence

Shop No. 9 X X X X	QA Specialist JONES Period 2/15/76 To 3/12/76	SAMPL ING SEQUENCE	CERTIFIERING CERTIFIER NO CERTIFIER	9		27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	51	1469 0 52 75	1 282 53 76		×	56	A1444 0 57		1 467 59 82	83 09 5272	61 84	62 85	98 89	64 87	65	68 99	67 90	68	26 69	Y B&C - SPECIAL STUDIES			
19.0	70 94	SAN	LIFIER NO	Aldel 24A	0 2 3 4	4 15 15 15 A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X LAN X	6 A 1469 29 A	7 14 1 4 W 0 30 A	2633	9 4 1467 X 32	10 4 4 6 5 0 33	A 2633 34	A 447 35 A	X 59h1 H	A14310	15 A 282 X 38	A 4723 0	17 9 465 40	118 H 282 41	19 A 405 MAZ	20 A 24 C3 X 43	21 A 282 M 44	22 A4 65 X 45	23 A 14 KM 146	MANDATORY			
AQL [7.5] AQQL [2.5] LQ [AVEDACE HATTS/MH	AVERAGE UNITS/FIN C. C.	12.5 Y	Hn 31.4 Nn 9 CLn 80.0	06/7		O Sam		X lor more defects	tanani di manani	3 4 Total Sample skipped	0 49.8 332.6	533	0) (0)		3	0,		81 71 51 4			12 12 67 72 12		25 31 32					(OVER)	
INSPECTION LEVEL TT	2 2 6 6 6 7	MX 4 96 00000	217 782.06	Avg. 54.2 195,5	Prod. Interval 250	E	CALIBERTION ACEIT	A CONTRACTOR OF THE CONTRACTOR		Sample Hrs. Wk 1 2	3.43.4	324 34.2	ed 103 115		S		-	22 13	1			3	2 (2 11/13	-	Sam	REMARKS			DCI 5-77

- beginning with one (1).
- (b) Drop a pencil over the Table of Random Numbers (page 37). The point of the pencil marks the starting place.
- (c) Reading in one of the directions (right, left, up, or down) match the numbers from the Table of Random Numbers with the sequence number of certifiers.
- (d) Enter the certifier's stamp number in the boxes provided on the MVR according to the sequence of selection from the Table of Random Numbers.
- (e) Certifiers are now listed on the MVR in the preferred sequence in which verification should be performed. However, Verifier's time should not be wasted; a certifier may be passed over temporarily.
- (f) Record verification action and findings in the box to the right of certifier's number.
- (6) Symbols to be used in recording verifications are listed on the MVR.
- (7) List the row number for the certifier verified on the calendar area of the MVR whenever a verification is performed.
- (8) Record significant actions taken, such as shifts in levels of sampling or special problems encountered, in the "Remarks" area of MVR. If the reverse side of the form is used to extend remarks, place an "X" in the "over" box in Remarks area.
- (9) Record the following information in the "Additional Activities" box:
 - (a) Based on the appropriate sampling level, enter the value for the sample hours $(H_r, H_n, or H_+)$ in the columns marked Wk/1, 2, 3, and 4.
 - (b) From the Shop Verification Control Chart Summary Form (page 10), obtain the values of the "∑MH" column for each Production Interval and enter these values in the row labeled "Completed."
 - (c) To obtain the "% Completed," divide the sample hours completed by the sample hours required and multiply by 100.
 - (d) Total the weekly values in the "Required" row and in the "Completed" row and enter these values in the column labeled "Total."
 - (e) To obtain the "% Completed" for the total, divide the total completed hours by the total required hours and multiply by 100.
- (10) Report leave time in the calendar area. Other significant comments or remarks may be entered in the calendar area or in the remarks area.
- (11) Record in the designated spaces any additional activities performed.

 If more space is required, enter on back of MVR and place an "X" in the

 "over" box at the bottom of the "Additional Activities" area.

	9 x x x x	NONES SONES	26 To 3/12/76).E	CERTIFIER NO CERTIFIER	70	71	72	73	74	75	92	7.2	78	[62]	80	81	82	83	84	85	98	87	88	63	90	[6]	
	Shop No.	ialist	Period 2/15/76	SAMPLING SEQUENCE		<u>1</u>	48	49	09 X	51	0.52	53	O 54	X 55	56	0 57	58	59	29	191	29	63	99	69	99	29	39	69
	S	QA Specialist	Period	SAMPL IN	CERTIFIER NO	A1431	1911V	A2423	7441 61	BAYDS	P941A		_	AISIH	3 A 1431	PHPI	AYDS	1971X 3	182423									
	ı				TERING	1	0	126	-	X 28	. 29	1030	3	X 32	0 33		35	X 36	0 37	X_38	3 0 39	40	X 41	X 42	X 43	W 44	X 45	W46
5	9.0				NO CERTIFIER NO	\$	2 A 1514	_	_	5 4447	91189	7 A 1444	8 A2633	19K1A 6	10 A 40S	11 A 2633	12 A 447	13 A1469	14 1431	15 A 28 2	16 42 423	17 A 1 05	18 A 2 5 2	30 44 61	20 A 2 423	21 A 282	22/4405	23 41469
REPOR	70	_	. [0	00	(•		icts						1	7			T			-0		T		7
ICATION	5.5	CONTROL OF THE PROPERTY OF THE	LIMIT	CLy 12.0	<u>ہ۔</u> ∞	CL.			no defects		l or more defects		(1 pped		M Mandatory inspection			S				4		CLE 22	10+	-		
VERIF	AOQL [82.0	Γ	<u>ی</u>	0	Τ	7	, C	mple ve	o deler	or mon	,	Sample skipped		ndatory			F	0/		a,	A W		12		*	,	
MONTHLY VERIFICATION REPORT	A	UNITS/MH	SIZE	Nr 4	N _C	N. IL		1000		-	×	[Sa		Ма	T (OVFR)		-	0		17/			2		32	_	-
	15.		To the	7		1~				T		T	Total	332.6	305.9	(0)		-	_		1	,	+	22		150	_	-
	AQL	AVERAGE SAMPLE	HOURS	2	1 31.4		_		-				4 1	00	_	(0)		3				•		N				
	_		, [:	<u></u>	±_	=			LACA			-	3	42	_	-	and the second	_	4		hi			12		62		
	EVEL Z	UNITS MH EXPENDED	1	197.70		195.5	022 la	ACTIVITIES		1			WK 1 2	31.431	3	_		Σ	~		~	,	1	6/	92	27		-
	INSPECTION LEVEL	UNITS 1	+	300	+	545	d. Interva	TIONAL	ALLEBION	X			Sample Hrs.		Completed	Completed		S	5		72	1		52		1 =	1	
	INSI	3	1	*	-	Avg.	Prod	ADD	00				Sam	Reg	Com	\%	8	t		1	N'	1 (R		64		ui	du	Sar

WIDGET ON MANDATORY B.
TO MANDATORY A 428. GENERAL SHOP PROBLEM.

FOREMAN ACTION. CLEARED TO T ON 3/6 (OVER)

REMARKS # A & REMAINS ON MANDATORY C. CLURRED 2/24

- (12) Indicate Mandatory A inspection in the calendar and "Remarks" areas.
- (13) Mandatory B and Mandatory C inspections are to be recorded in the table in lower right corner. Data from Mandatory B and C inspection is kept separated from the sample data and is not used for control charting.

2.1.2 <u>Instructions for "Sole Person" Shops</u>

For those shops in which only one artisan works consult $\underline{\text{Procedure Manual}}$, Section 3.1.2, Page 20a, for special instructions.

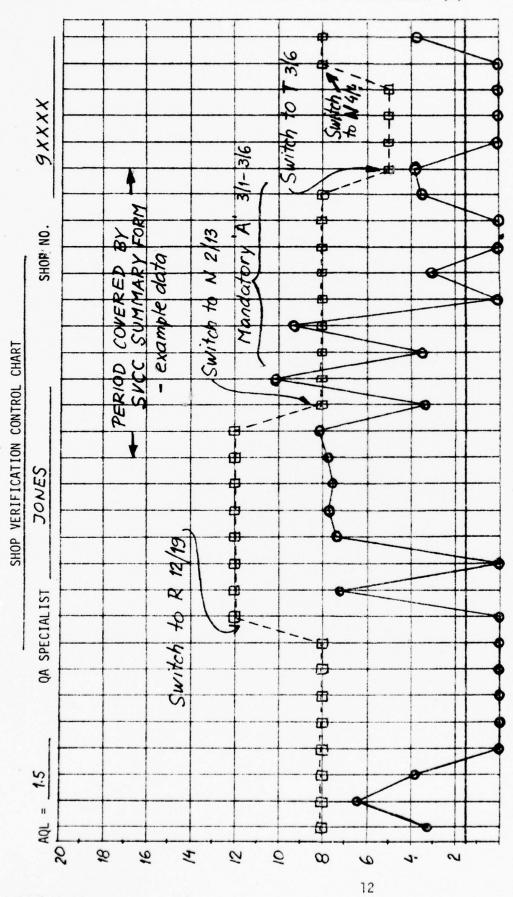
	D	ATE		S	PE	C.																																				
1	2	3	I	5	I	6																•																				
4	1	6	9	14	1	8												'	/ER	IFIC	CAT	ON	REC	ORL	(0)	AILY))															
	,	нон	•		T	(CER	eTII	FIE	R	T	P	ROC	RA	м	T			DOC	CUM	ENT				LINI	E	I	St	ERIA	L	10.		DIS.	9	¥	PR	oc.	1	ADDA	RES	s	
7	8	9	10	1	, ,	2	13	14	15	16	17	18	19	20	21	2	2 2	2	4 25	2	6 27	28	29	30	31 3	32 33	34	35	36	37	38	39	-	_	-	74	75	77	78	79	80	
9	4	2	4	12	7	4	2	6	5	6	3	9	7	E	F	10	4	10	, 4	, ;	2 4	1		φ	1	1	R	v	N	1	6	3	Ø	2		T				-		
_	1	4	+	-	+	1		Ī	-	-	۲	٠	1		f	Ť			+	Ť	-	1		ø		+	1	1	1	Ť	-	1	Ø	_		1					-	
-		Ħ	\dagger	\dagger	†	+	+	\dagger			\vdash		H	+	+	\dagger	\dagger	T	+	+	+	1		Ø		+	+		\dagger		1	T	φ	2	\vdash						-	
-	T	$\dagger \dagger$	T	T	†	1	1	t			1		H	T	+	\dagger	\dagger	T	T	+	\dagger	-		ø		1	+		1	1	1		Ø	2					1			
-	-	$\dagger \dagger$	+	+	\dagger	+	+	t			1	-	H	+	T	\dagger	\parallel	t	+	+	\dagger	-		Ø		+	t		1	1	-	\vdash	Ø	2		-		-	1	-		
-	T	#	\dagger	\dagger	†	1	1	t			1		H	1	+	\dagger	\parallel	1	+	\dagger	\dagger	-		Ø			1		1	T			Ø	2		-		-	-			
_		$\dagger \dagger$	\dagger	\dagger	+	+	+	†	-	-	-	-	H	+	\dagger	\dagger	\dagger	\dagger	+	+	+	-	Н		7	+	+	+	1	+	+	1	Ø	2	-	-	\vdash		+	-	-	
_		Ħ	\dagger	\dagger	\dagger	+	+	†			1	-	H	\dagger	\dagger	\dagger	\dagger	t	+	+	+	1	-	ø	-	+	\dagger	1	H	t	+		ø	2		\vdash		-				
-	-	$\dagger \dagger$	+	+	+	+	+	\dagger		-		-	H	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	+	+	-	_	_	9	+	+	+	H	1	+	1	ø	2	-	\vdash	\vdash	\vdash	-	-		
ροφ	1	\dagger	+	+	\dagger	1	+	+	-	-	-	-	H	\dagger	+	\dagger	\dagger	\dagger	+	+	+	+	\forall	-	0	+	\dagger	+		+	-		1	2	-	-	+	-		-	-	21.0
νυψ	\vdash	ti	\dagger	+	+	A	Q	9	5		\vdash	-	i	\dagger	+	\dagger	ti	t	+	+	+	1	\forall	φ		+	1	Y	A	2	1	7	1	2	-	1	-	H	-			21.0
-	-	$\dagger \dagger$	+	+	ť	7	-	0	3	-	+	-	H	+	+	+	+	+	+	+	+	+	1		2	+	+	^	1	-	+	1	ø	2	\vdash	+	+	\vdash	+	-	-	•
-	\vdash	\dagger	+	+	+	+	+	\dagger		-	+	-	H	+	+	+	$\dagger \dagger$	+	+	+	+	+			3	+	\dagger	+	H	+	+	-	0	2	+	-	-	\vdash		-	-	
_	+	\dagger	+	+	\dagger	+	+	+	+	-	+	-	H	+	+	+	\forall	+	+	+	+	-	_	φ	4	+	+	+	$\dagger \dagger$	+	+	+	0	2	+	\vdash	+	-	+	-	-	
_	-	H	+	+	\dagger	+		+	+	\vdash	+	-	H	+	+	\dagger	+	\dagger	+	\dagger	+	+		Ø	5	+	+	+	H	+	+	-	Ø	2	-	\vdash	-	+	-	-	-	
_	+	H	+	\dagger	+	+	+	+	+	-	+	-	H	+	+	\dagger	+	+	+	\dagger	+	+			6	+	+	+	H	+	+	-	Ø	2	+	-	+	\vdash	+-	-	-	
_	+	╫	+	+	+	+	+	+	-	-	+	-	H	+	+	+	+	+	+	+	+-	╁	1	Φ	7	+	+	+	H	+	+	-	0	2	+-	+	+	+	-	-	-	
-	+	H	+	+	+	+	+	+	+	+	+	-	H	+	+	+	+	+	+	+	+	+			8	+	+	+	H	+	+	-	0	2	+	\vdash	\vdash	-	+	-	-	
-	+	H	+	+	+	+	+	+	\vdash	+	+	H	Н	+	+	+	$^{\rm H}$	+	+	+	+	+	_	-	9	+	+	+	H	+	+	+	0	-	+	+	+	-	+	-	-	
-	+	H	+	+	+	+	\dashv	+	-	+	+	-	Н	+	+	+	\mathbb{H}	+	+	+	+	-	\vdash	1	Ø	+	+	+	H	+	+	+	1	2	+	\vdash	+	\vdash	-	-	-	
-	+	H	+	+	+	+	-	+	-	-	+	-	H	+	+	+	\mathbb{H}	+	+	+	+	╁	+	_	1	+	+	+	H	+	+	+	ø	2	1	\vdash	\vdash	\vdash	+	-	-	
_	+	H	+	+	+	+	-	+	+	+	+	\vdash	Н	+	+	+	\mathbb{H}	+	+	+	+	+	+	_	2	+	+	+	H	+	+	+	Ø	2	+-	+	-	-	+		-	
_	+	H	+	+	+	+	-	+	-	+	\vdash	-	H	+	+	+	+	+	+	+	+	+	H	-	3	+	+	+	H	+	+	-	1.	2	+-	\vdash	-	-	+	-	-	
_	+	+	+	+	+	+	-	+	-	\vdash	\vdash	-	H	+	+	+	+	+	+	+	+	+	H		-	+	+-	+	H	+	+	-	0	2	-	\vdash	-	\vdash	-	-	-	
	+		+	+	+	+	-	1	-	-	+	-		+	+	+	+	+	+	+	+	-	H		4	+	+	+	\mathbb{H}	+	+	-	0	2	-	\vdash	-	\vdash	-	_	-	~
43 0	+	1	+	+	+	+	4	1	-	-	+	-	Į	+	+	+	4	+	+	+	+	+	H	1	5	+	+	-	1	+	+	-	-	2	-	-	-	-	-	-	-	21.0
_	-	+	-	+	+	-	-	_	-	-	-	-	-	+	+	-	+	+	+	+	+	-	H		-	+	+	-	-	-	-	-	-	2	+-	-	-	-	-	-	-	
_	-	+	+	+	+	1	-	_	+	-	-	-	-	+	+	+	+	+	+	+	+	-	H		-	+	+	+	-	-	+	-	-	-2	+-	1	-	-	-	-	-	
_	+	+	+	+	+	1	-	_	-	-	-	_	-	+	-	+	+	+	+	+	+	-		_	-	+	+	-	-	-	+	-	-	-2	-	-	-	-	-	_	-	
_	-	+	+	+	+	-		_	-	-	-	-	-	+	-	+	+	+	+	+	+	-				-	+	-	-	-	-	-	-	2	+-	1	-	-	-	_	_	
_											1			1	1	1	1	1	1	1	1	1					1	1	1		1	1	1	2	1		1	1	1			

2.2 Instructions for Completing the Daily Verification Record (DVR)

- (1) The DVR is prepared in accordance with QRAINST 4855.21G with the following additions and exceptions:
 - (a) A separate DVR form is to be prepared for each shop.
 - (b) All characteristics from the QCL which are the responsibility of the certifier being checked are to be verified at that stage of rework.
 - (c) After the completion of the verification of characteristics on the component, extend the line beneath the last characteristic to the right margin of the DVR form.
 - (d) On the right margin of the form and directly above the extended line, write in the standard hours required to perform the rework as listed on the work order accompanying the component. If the standard hours are not listed, an estimate must be obtained from the production supervisor or taken from a previous "Weekly Completion Report."
 - (e) The total number of defects found on the item, and attributable to the certifier being verified, is entered on the right hand side of the DVR above the standard hours and circled.
 - (f) Total the defects found and standard man-hours for the day and enter in the appropriate area of the Shop Verification Control Chart (SVCC) Data Summary Form (page 10).
 - (g) Defects found on a product unit attributable to another certifier or another shop are to be recorded separately from the sample data. (See Procedure Manual, Section 3.5, page 32).
 - (h) All other instructions contained in QRAINST 4855.21G and pertaining to completing DVR's remain in force.

SHOP VERIFICATION CONTROL CHART

DATA SUMMARY


AQL - 1.5	QA SPECIALIST	Jones	SHOP NO	. 9.XXXX

			Υ		1
	Date	Defecta	Man-Hours	b3	IMI
R, N, T, M R H 12.5 N 4	2-2-76	0	6.5		6.5
	2-3-76	1	9.8	1	16.3
$U = \frac{\Sigma d}{\Sigma MH/100} = \frac{1}{.163}$				·— · · · ·	
U - 6.13					
CL - 12. (Table II)					
R, N, T, M R H 12.5 N 4	2-9-76	.0	2.6	0	2.6
E d 1	2-10-76		5.1		7.7
U - E d 1 .156	2-11-76	0	3.6		11.3
	2-13-76	0	4.3		15.6
U - 6.41					
CL - 12. (Table II)					-
R. N. T. MAJ HIZLAINIS	2-16	0	5.6	0	5.6
R, N, T, M H 31.4 N 9	2-17	1	7.5	1	13.1
$U = \frac{Ed}{EMH/100} = \frac{2}{.324}$	2-18	0	3.4	1	16.5
	2-19	r	8.6	2	25.1
U = 6.17	2-20	6	7.3	2	32.4
CL = 3. (Table II)					-
R, N, T, M N H 31.4 N 9	2-23	1	7.4	1	7.4
	2-24	0	8.3		15.7
$U = \frac{\Sigma d}{\Sigma MH/100} = \frac{3}{.362}$	2-25	1	3.4	2_	19.1
.362	2-26	0	5.7	7_	24.8
U = [2.2.8]	2-27		11.4	3	36.2
CL - 3. (Table II)				 -	
R, N, T, M M H 31.9 N 9	3-1		32.9	工	32.9
Ed'					-
U = 3.03	ļ				
CL = 8. (Table II)					
R, N, T, M 1 H 31.4 N 9	3-1	_3	32.4	3_	32.4
$U = \frac{\Sigma d}{\Sigma MH/100} = \frac{3}{.324}$					
V - 9.25					
CL - 8. (Table II)					-

RSL . 10-75

2.3 <u>Instructions for Completing the Shop Verification Control Chart (SVCC) Data</u> Summary Form

- (1) Enter the following data at the top of the form:
 - (a) Designated AQL.
 - (b) QA Specialist's name.
 - (c) Shop number.
- (2) From the DVR, record each day's data for a shop for a normal production interval in one block. When Mandatory A inspection is in force, the data for one subgroup should be entered in a block. This may be less than one day's record (Mandatory B and C inspection is not used for control charting).
 - (a) Indicate in the block the sampling level (R, N, T, or M).
 - (b) Enter the value of the sample hours $(H_r, H_n, or H_t)$ in the "H" space and the expected number of items to be inspected $(N_r, N_n, or N_t)$ in the "N" space.
 - (c) From the shop DVR, enter the date, number of defects found, and total man-hours in the appropriate block of the Data Summary form.
 - (d) Add together the daily defects found and enter in the "\darkgraph" column.
 - (e) Add together the daily man-hours of inspection and enter in the "∑MH" column.
 - (†) As soon as the value in the "\(\sum_{MH} \)" column equals or exceeds the value in the "H" box, verification inspection for that Production Interval (or subgroup) is terminated.
- (3) The value of U (defects per 100 man-hours) for the Production Interval is determined by dividing " \sum d" by " \sum MH/100" (\sum MH divided by 100).
- (4) The value of the appropriate control limit (CL) is entered from the MVR $(CL_r, CL_n, or CL_t)$.

91-4	46.€	8
6-4	0	8
7-7	0	S
3-26	0	\$
61-8	0	2
345	68.€	2
9-8	3.62	8
3-5	0	8
4-ε	0	8
5-5	2.97	8
3-2	0	8
1-5	25.6	8
1-8	45.€	8
12-Z	70.01	8
2-20	FE.E	8
81-3	50.8	71
9-2	68 £	75
05-1	49.£	71
82-1	Stt	72
91-1	854	12
6-1	0	12
2-1	81.7	12
15-56	0	24
61-21	0	8
15-15	0	8
5-21	0	8
62 -11	0	8
23-11	0	8
St-11	39.8	8
8-11	£8.9	8
1-11	3.25	8
15.1		

DATE

 \supset

CL

RSL. 10-75

2.4 Instructions for Completing the Shop Verification Control Chart (SVCC)

- (1) Enter the following data at the top of the chart:
 - (a) Designated AQL.
 - (b) QA Specialist's name.
 - (c) Shop number.
- (2) Draw the AQL as a solid line across the face of the chart.
- (3) From the SVCC Data Summary form, enter the following data at the bottom of the chart:
 - (a) Date of entry for the Production Interval.
 - (b) The Value of U.
 - (c) The Value of CL, (Control Limit).
- (4) On the vertical line directly above the data are plotted the values of U and CL. The latest value of U is connected to the previous value by a solid line. The latest value of the CL is connected to the previous value by a dashed line.
- (5) Switching rules described below are applied to determine the level of sampling (or Mandatory inspection) required during the next Production Interval.
 - (a) Normal to Tightened: A shift from Normal (H_n) to Tightened (H_t) sampling is required if 7 consecutive points on the SVCC fall above the AQL while on Normal sampling.
 - (b) <u>Tightened to Normal</u>: A shift from Tightened (H_t) to Normal (H_n) sampling is allowed if 3 consecutive points on the SVCC fall below the AQL while on Tightened sampling.
 - (c) Normal to Reduced: A shift from Normal (H_n) to Reduced (H_r) sampling is allowed if 5 consecutive points on the SVCC fall below the AQL while on Normal sampling.
 - (d) Reduced to Normal: A shift from Reduced (H_r) to Normal (H_n) sampling is required if 5 consecutive points on the SVCC fall above the AQL while on Reduced sampling.
 - (e) Normal, Reduced, or Tightened to Mandatory: A point above the control limit (CL_r , CL_n , or CL_t) on the SVCC requires an immediate shift to Mandatory inspection.
 - (f) Whenever a switch to Mandatory inspection occurs, consult <u>Procedure</u> <u>Manual</u>, Sections 2.7.7 through 2.7.9, pages 14 - 16, for instructions. Figure 1 (page 15) shows a flow chart of these switching rules.

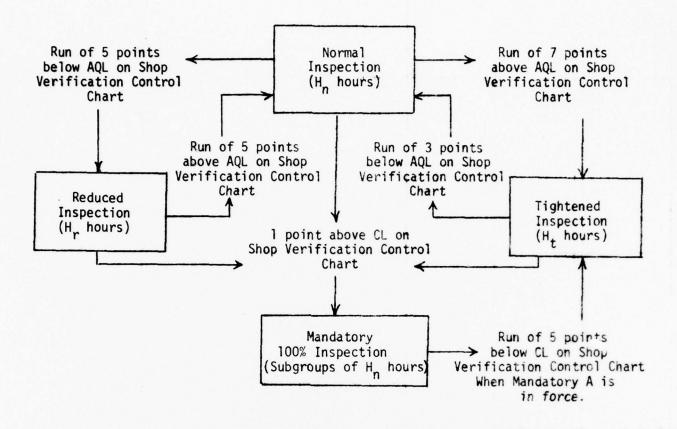


Figure 1. Flow Chart of Sampling System

References

- [1] "Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling," Richard S. Leavenworth, Richard L. Scheaffer, and Charles J. Lyon, Research Report No. 76-4, Department of Industrial and Systems Engineering, University of Florida, February 1976.
- [2] "Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling," Richard S. Leavenworth, Richard L. Scheaffer, and Charles J. Lyon, Research Report No. 76-5, Department of Industrial and Systems Engineering, University of Florida, February 1976.

Inspection level = I
AQL in defects per 100 man-hours = 1.0
AOQL = 2.5

LEVEL I
AQL 1.0
SHOPS:

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)
0-125	reduced normal tightened			
126-200	reduced normal tightened			
201-315	reduced normal tightened			
316-500	reduced normal tightened			
501-800	reduced normal tightened	12.2 30.5 48.4	4.0 5.0 5.0	7.3
801-1250	reduced normal tightened	14.0 35.3 55.9	3.5 4.0 4.5	6.5
1251-2000	reduced normal tightened	15.8 39.8 63.0	9.5 4.0 4.0	6.0
2001-3160	reduced normal tightened	25.3 63.5 101	6.0 4.0 3.5	5.5
3161-5000	reduced normal tightened	27.8 69.9 111	5.5 3.5 3.0	5.3
5001-8000	reduced normal tightened	39.3 98.6 156	4.0 3.5 3.0	4.9
over 8000	reduced normal tightened	42.3 106 169	3.5 3.5 2.5	4.7

Compiled from: Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling: R. S. Leavenworth, R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville, February 1976.

Inspection level = I
AQL in defects per 100 man-hours = 1.5
AOQL = 4.0

Proceed in direction of arrow until first plan is encountered

LEVEL I AQL 1.5

SHOPS:

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)
0-125	reduced normal tightened	, , ,		
126-200	reduced normal tightened			
201-315	reduced normal tightened			
316-500	reduced normal tightened	7.7 19.3 30.5	6.5 7.5 8.0	11.5
501-800	reduced normal tightened	8.9 22.2 35.3	5.5 6.5 7.0	10.4
801-1250	reduced normal tightened	10.0 25.1 39.8	15.0 6.0 6.0	9.6
1251-2000	reduced normal tightened	16.0 40.1 63.5	9.5 6.0 5.5	8.8
2001-3160	reduced normal tightened	17.6 44.1 69.9	8.5 5.5 5.0	8.4
3161-5000	reduced normal tightened	24.8 62.2 98.6	6.0 5.5 4.5	7.8
5001-8000	reduced normal tightened	26.7 67.1 106	5.5 5.0 4.0	7.4
over 8000	reduced normal tightened	35.0 88.0 140	7.0 5.0 4.0	7.0

Compiled from: Procedure for Maintenance and Rework Process Quality Control Based on Random Sampling: R. S. Leavenworth, R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville, February 1976.

Inspection level = IAQL in defects per 100 man-hours = 2.5 AQQL = 6.5

Proceed in direction of arrow until first plan is encountered

LEVEL I AQL 2.5

SHOPS:

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)
0-125	reduced normal tightened			
126-200	reduced normal tightened			+
201-315	reduced normal tightened	4.8 12.2 19.3	10.5 12.5 13.0	18.3
316-500	reduced normal tightened	5.6 14.0 22.2	9.0 10.5 11.0	16.4
501-800	reduced normal tightened	6.3 15.8 25.1	24.0 9.5 10.0	15.1
801-1250	reduced normal tightened	10.1 25.3 40.1	15.0 10.0 8.5	13.9
1251-2000	reduced normal tightened	11.1 27.8 44.1	13.5 9.0 8.0	13.3
2001-3160	reduced normal tightened	15.6 39.3 62.2	10.0 9.0 7.0	12.3
3161-5000	reduced normal tightened	16.9 42.3 67.1	9.0 8.0 6.5	11.8
5001-8000	reduced normal tightened	22.1 55.5 88.0	11.0 8.0 6.0	11.1
over 8000	reduced normal tightened	24.2 60.7 96.2	10.0 7.5 6.5	10.5

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Inspection level = I
AQL in defects per 100 man-hours = 10.0
AQL = 25.0

Proceed in direction of arrow until first plan is encountered

LEVEL I
AQL 10.0

SHOPS:

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ) 65.3			
0-125	reduced normal tightened	1.4 3.5 5.6	36.0 43.0 45.0				
126-200	tightened 6.3 49.0						
201-315	reduced normal tightened	2.5 6.4 10.1	60.0 39.0 35.0	55.3			
316-500	reduced normal tightened	52.7					
501-800	reduced normal tightened	3.9 9.9 15.6	38.0 35.0 29.0	49.1			
801-1250	reduced normal tightened	4.2 10.6 16.9	36.0 33.0 27.0 45.0 32.0 25.0	47.0			
1251-2000	reduced normal tightened	5.6 14.0 22.1		44.2			
2001-3160	reduced normal tightened	6.1 15.3 24.2	40.0 29.0 27.0	41.8			
3161-5000	reduced normal tightened	6.4 16.1 25.5	39.0 28.0 26.0	40.7			
5001-8000	reduced 7.9 32.0						
over 8000	reduced normal tightened	8.3 20.8 32.9	42.0 26.0 23.0	38.4			

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Inspection level = II
AQL in defects per 100 man-hours = 1.0
AQL = 1.5

LEVEL II

AQL 1.0

Shops:

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)	
0-125	reduced normal tightened				
126-200	reduced normal tightened				
201-315	reduced normal tightened				
316-500	reduced normal tightened	19.8 49.8 79.0	7.5 5.0 3.0	5.7	
501-800	reduced normal tightened	26.2 65.9 104	5.5 4.0 3.5	4.5	
801-1250	reduced normal tightened	29.9 75.1 119	5.0 3.5 3.0	4.2	
1251-2000	reduced normal tightened	42.9 108 171	3.5 3.5 2.5	3.9	
2001-3160	reduced normal tightened	62.1 156 247	4.0 3.0 2.5	3.4	
3161-5000	reduced normal tightened	79.5 200 317	3.0 2.8 2.4	3.2	
5001-8000	reduced normal tightened	99.0 249 394	3.5 2.5 2.2	3.1	
over 8000	reduced normal tightened	112 280 444	3.2 2.4 2.2	2.8	

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

25

Inspection level = II
AQL in defects per 100 man-hours = 1.5
AOQL = 2.5

Proceed in direction of arrow until first plan is encountered

LEVEL II
AQL 1.5

SHOPS:

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)		
0-125	reduced normal tightened					
126-200	reduced normal tightened					
201-315	reduced normal tightened	12.5 31.4 49.8	12.0 8.0 5.0	9.0		
316-500	reduced normal tightened	16.6 41.6 65.9	9.0 6.0 5.5	7.2		
501-800	reduced normal tightened	18.9 47.4 75.1	8.0 5.5 4.5	6.6		
801-1250	reduced normal tightened	5.5 5.0 4.0	6.2			
1251-2000	reduced normal tightened	educed 39.2 6.5 ormal 98.4 4.5				
2001-3160	reduced normal tightened	50.2 126 200	5.0 4.5 3.8	5.1		
3161-5000	reduced normal tightened	reduced 62.4 5.5 normal 157 4.0				
5001-8000	reduced normal tightened	70.4 177 280	5.0 3.6 3.4	4.5		
over 8000	reduced normal tightened	93.4 235 372	4.5 3.5 3.1	4.3		

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Inspection level = II
AQL in defects per 100 man-hours = 2.5
AQL = 4.0

LEVEL II
AQL 2.5
Shops:

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)
0-125	reduced normal tightened			
126-200	reduced normal tightened	7.9 19.8 31.4	19.0 12.5 8.0	14.3
201-315	reduced normal tightened	10.4 26.2 41.6	14.5 9,5 8.5	11.4
316-500	reduced normal tightened	11.9 29.9 47.4	12.5 8.5 7.5	10.4
501-800	reduced normal tightened	17.1 42.9 68.0	8.5 8.0 6.5	9.8
801-1250	reduced normal tightened	24.7 62.1 98.4	10.0 7.0 6.5	8.6
1251-2000	reduced normal tightened	31.7 79.5 126	8.0 7.0 6.0	8.2
2001-3160	reduced normal tightened	39.4 99.0 157	9.0 6.5 5.5	7.7
3161-5000	reduced normal tightened	44.4 112 177	8.0 5.8 5.4	7.1
5001-8000	reduced normal tightened	58.9 148 235	7.5 5.8 5.0	6.8
over 8000	reduced normal tightened	7.0 5.5 4.8	6.5	

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Inspection level = III
AQL in defects per 100 man-hours = 1.0
AQL = 1.0

AQL 1.0 Shops:

LEVEL III

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)	
0-125	reduced normal tightened				
126-200	reduced normal tightened			•	
201-315	reduced normal tightened	24.4 61.4 97.3	6.0 4.0 3.6	4.3	
316-500	reduced normal tightened	36.5 91.7 145	4.0 3.8 3.0	4.0	
501-800	reduced normal tightened	48.5 122 193	5.2 2.9 2.9	3.3	
801-1250	reduced normal tightened	66.9 168 266	3.8 2.7 2.4	3.0	
1251-2000	reduced normal tightened	98.8 248 394	3.5 2.6 2.2	2.8	
2001-3160	reduced normal tightened	144 362 574	3.0 2.4 2.0	2.5	
3161-5000	reduced normal tightened	198 498 789	2.8 2.1 1.8	2.2	
5001-8000	reduced normal tightened	274 689 1,093	2.4 2.0 1.7	2.1	
over 8000	reduced normal tightened	387 972 1,540	2.2 1.8 1.65	1.9	

Compiled from: <u>Procedure for Maintenance and Rework Process</u>
<u>Ouality Control Based on Random Sampling</u>: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

3

Inspection level = III
AQL in defects per 100 man-hours = 1.5
AQL = 1.5

AQL 1.5 Shops:

LEVEL III

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)		
0-125	reduced normal tightened			ļ		
126-200	reduced normal tightened	15.4 38.7 61.4	10.0 6.5 5.5	6.8		
201-315	reduced normal tightened	23.0 57.9 91.7	6.5 6.0 5.0	6.4		
316-500	reduced normal tightened	30.6 76.8	8.0 4.6 4.5	5.2		
501-800	reduced normal tightened	42.2 106 168	6.0 4.2 3.8	4.8		
801-1250	reduced normal tightened	62.4 157 248	5.6 4.0 3.4	4.4		
1251-2000	reduced normal tightened	91.0 229 362	5.0 3.8 3.2	3.9		
2001-3160	reduced normal tightened	125 314 498	4.4 3.3 2.9	3.5		
3161-5000	reduced normal tightened	173 435 689	3.8 3.1 2.7	3.3		
5001-8000	reduced normal tightened	244 613 972	3.5 2.8 2.6	3.0		
over 8000 reduced normal tightened		331 831 1,317	3.2 2.6 2.4	2.7		

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Inspection level = III
AQL in defects per 100 man-hours = 2.5
AQL = 2.5

AQL 2.5 Shops:

LEVEL III

Proceed in direction of arrow until first plan is encountered

Production Interval in Average Man-Hours	Sampling level	Sample hours in man-hours of production (H)	Control Limits (CL)	Limiting Quality (LQ)	
0-125	reduced normal tightened	9.7 24.4 38.7	16.0 10.0 9.0	10.7	
126-200	reduced normal tightened	14.5 36.5 57.9	10.0 10.0 7.5	10.1	
201-315	reduced normal tightened	13.0 7.0 7.0	8.2		
316-500	reduced normal tightened	26.6 66.9 106	9.0 6.8 6.0	7.6	
501-800	reduced normal tightened	39.3 98.8 157	9.0 6.6 5.4	6.9	
801-1250	reduced normal tightened	57.4 144 229	7.8 5.9 5.0	6.2	
1251-2000	reduced normal tightened	78.9 198 314	7.0 5.3 4.6	5.6	
2001-3160	reduced normal tightened	109 274 435	6.0 5.0 4.3	5.2	
3161-5000	reduced normal tightened	154 387 613	5.5 4.5 4.2	4.8	
5001-8000	reduced normal tightened	209 524 831	5.0 4.1 3.8	4.3	
over 8000	reduced normal tightened	4.6 4.0 3.6	4.1		

Compiled from: Procedure for Maintenance and Rework Process
Quality Control Based on Random Sampling: R. S. Leavenworth,
R. L. Scheaffer, C. J. Lyon, University of Florida, Gainesville,
February 1976.

Table of Random Numbers (1 - 50)

43	37	23	33	49	10	11	44	6	39
8	4	15	3	31	29	19	20	16	24
22	38	50	7	32	1	18	47	12	35
17	5	41	42	21	26	48	2	13	28
30	45	27	14	25	46	36	40	34	9
42	33	6	35	8	2	10	30	21	44
15	39	22	38	25	40	3	23	7	4
31	16	13	34	27	41	9	14	24	19
37	48	43	47	11	45	36	12	1	46
50	28	26	20	32	29	5	18	49	17
2	7	45	1	27	48	33	47	24	15
42	41	43	26	32	18	37	35	16	9
38	39	36	8	4	10	44	5	25	3
49	6	22	19	34	23	29	28	12	46
14	20	13	21	50	11	31	40	30	17
44	4	21	38	28	10	33	17	13	1
32	34	18	35	29	22	46	26	8	25
30	5	2	19	15	36	40	24	3	7
9	49	41	37	42	27	50	12	23	39
14	6	20	48	31	47	11	43	16	45

Source: Moses, L. V., and R. V. Oakford, <u>Tables of</u>
<u>Random Permutations</u>. Stanford University Press, 1963.
(Table VI in <u>Procedure Manual</u>)