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be fo rmulated to compute correction terms to potential coeffic ients derived
from uncorrected surface free-air anomal ies., In orde r to obtain the anomalies
on the bounding sphere the method of least squares collocation was investiga ted.
The computa t ion of anomaly correction terms for 1654 5~ equal area blocks
was carried out with the largest correction being 5. 1 mgals with the root mean
squa re value being ±0 .9  ~igals . Using these correction terms and previously
derived potentia l coefficients from terrestrial gravity data , an improved set
was derived.~ , From degree 5 to degree 20 , the improved set showed slightly
better agreement with the GEM 9 (satellite der ived) potential coeffic ients
than the original coefficients . The correction of the origina l coeffic ients
was small, however , being 1.3% of the original coeffic ients at degree 2 ,
ris ing to 7.5% at degree 40. -’

Finally, ~the anomaly correction terms were used to obtain an
improved compar ison of satellite derived 5~ anomalies and terrestrial
data . This was done by using the satellite determined potential coefficients
to derive anomalies on a bounding sphere which were then downward
continued to the surface. These anomalies showed a better agreement with
the observed anomalies than did anomalies computed directly on the
surface (mean square difference: 109 mgal2 vs. 91 nigaiG ).
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Introduction

The determination of potential coeffic ients from the analysis of satellite
data , grav ity data, or a combination of both data types is an active area of research
in geodesy. These potential coeffic ients are usefu l in improved orb it prediction
and estimation; in the computation of long wave length features of quantities
dependent on the gravity field such as geoid undulations and detlections of the
vertical; and in the info rmation such coefficie nts imply about the internal structures
of the earth.

In these dete rm inations from two different data types , satellite data and
terrestrial gravity data , it is very important to be sure that we are determining
the same quantity (the potential coeffic ients) through consistent models. In this
paper we examine the model problem for the determ ination of potential coeffic ients
from te rrestrial data. A recent discussion with numerical results for the potential
coeffic ients can be found in Rapp (1977) . In that report a problem was found w ith
certa in corrections to be applied to the terrestrial anomaly that were needed to
determine potential coeffic ients. To define this furthe r we express the fully
normalized potential coefficients (Cv ,  S~~) in terms of grav ity anomalies as
follows (Ostach and Pellinen, 1970):

1 ~cos mX ~ —

(1) {— 
~
} = (~~g + G1+ ...) 

~ ~ P~ (Sin~~) d~s,~ 
4rrG(2-1) srn m )t.

where G is an average value of gravity, ~ is the geocentric latitude , 
~~

‘
~: 

are the
fully normalized assoc iated Legendre function s, ~ g is the mean surface fre e air
anomaly g iven in block dO’ , and G1 is the Molodensky G1 term. The * ind icates
that the coefficients are given with respect to the reference field used for defining
the ~ g values. Pellinen (1962) has ind icated that the neglect of the G~ term in
(1) can cause errors in the low degree coeffic ients of 10 to 20%. Numerical studies
described in Rapp (1977) agree with this estimate but the results are based on a
number of assumptions relating the G1 term to the terrain correction.

In practice , the computation of the G~ term for mean anomalies (such
as 1° and 5° ) can be d ifficult in areas of rapidly varying topography. Consequently,
it is of interest to develop a procedure for the estimation of the potential coe ffic ients
from terrestrial data that does not require the computation of the G1 term , yet
reta ins the rigor implied by that procedure. In this way we can determine these
coefficients in a manner that such coeffic ients can be directly compared to satellite
derived values. In addition , ou r results should indicate a proper anomaly (which
is eas ily computed) to use in the comb ination of satellite and gravity data for
potential coeffic ient de terminations.
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Procedu res

The gravitational potential of this earth is usually exp ressed in terms
of the potential coeff ic ients as:

(2 )  V (r ,~~,A ) ~~L [i ~~~~~~~~~~~~~~~ cosmA + ~~~ sin m A)~~~~(sin~~)]

where kM is the geocentric gravitational constant and a is the equatorial radius
of an ellipsoid approximating the geo id. In fact , a is arbitrary, but traditional
use has been for it to be taken as an ell ipso id equatorial radius. Equation (2) is
considered convergent on and outside the Bril louin sphe re R that just encloses
all the mass of the earth. (In this discussion we will ignore the mass of the
atmosphere.)

Adopting a reference potential (usually that implied by an equipotential
ellipsoid), a distu rb ing potential , T , can be found from (2). Using the basic
boundary cond ition of gravimetric geodesy (Heiskanen and Moritz , 1967 , p. 86 ,
eq. (2- 147c)), we find for the gravity anomaly :

(3) ~ g(r , G,X) ~~~~~~~~~~~~~~~~~~~~ *co smX +L~ 
*sin m X ) Pj~ (sin~~)

Equation (3) is regarded as formally convergent on and outside the boundary
sphere. [It should be noted here that in practice the summation in (3) is not to

~ but to some small finite degree. The resultant finite series has often been
evaluated at the surface of the earth. ] On the bound ing sphere the gravity
anomaly is:

(4) ~~~~~~~~~ = k M V (2 1)

We now apply the usual orthogonal relationships of spherical harmonics to
derive the potential coeffic ients from anomaly values given on the bounda ry
sphere. We have :

— *C20 1 —— r~~ 5m X ~ — —

(5) 
~~ (kM\ ( a ~~ J ~ g ( R ,~ ,A )  

~~~~~~
• mA~ 

P~ ( S in e)  d~
4~~ -~~ ‘ (L— l) k ~—)  ~R
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This equation can be compared to (1) and the differences seen. Let ~~~~~~~~
be the potential coe fficients computed from (1) setting C1 and higher te rms to
zero . In additio n we let:

(6) Ag (R ,~~,A) = Ag (R ,(b , X) + 6

where Ag (R ,c~, X) are the anomalies assumed to refe r to a spherical approximation
of the geo id where R is the rad ius of the sphere. If we now substitute (6) into (5’)
and using (1) we have:

(7) = (
~~~

)
2 

~~~ 
~~ 2 

+ 
rr 

1 
- 

~ 6 ~ P~ (sin ~~) d~R a ’  L
5 22

.i ,~ 4 G(~ 1) L 51~~~ inA~

where in the coeffic ient of the integral we have set (kM/ ’~
2 ) to an average value

of gravity and (a/~ )2 has been set to 1. These approximations are justifi ed as
the 6 term is expected to be small. The coeffic ient of (C,~~, Sz?.” ) in (7) is
1.0039 at degree 2 and reaches 1.0628 at degree 60 letting a = 6378140 m ,
H = 6371000 m , and R = 638440 5 m. Computations related to (7) will be
described in a later section.

We now tu rn to the determination of the 6 term introduced in equation
(6 ’) . This term may be computed in several ways . An upward continuation
procedu re using 5° mean anomalies has been described by Rapp (1969). However,
a mo re convenient procedure is possibly the use of least squares collocation.
For its application we consider that we are given a set of surfac e ano malies
which are to be extended to the boundary sphere. We can represent this
computation in the following general form:

(8) C ~~ (C t ~’ + D 1 )

_ 1  
[A~~s]

where £~~ is the mean anomaly on the bounding sphere , ~2~ s is the mean free-air
surface anomaly, C~ ,s represents the cova r iance between Ab and A’~~ , Cy ~ is
the covarianc e between the known surfac e anomalies A~ : and D .. is the standard
deviation of the known anomalies. A similar procedure has been used in Rapp
(1977) to estimate 5° mean free—a ir surface anomal ies from 1.: x 1° mean free-air
anomalies. However , in the applic ation of (3) we need to use a spatial covariance
fu nction as opposed to a surface covariance function used in Rapp ( 1977) .
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In the past few years a numbe r of spatial covariance functions have
been described. We can write:

2 2-$
~2

(9) C (P ,Q) = c2 (_ .

~~

-

~
-)  P2 (cos c~)

2= 2

where: C is the covarianc e between two anomalies located at a distanc e r~ and
r~ from the center of the earth, and separated by a spherical dista nce 4~. c~ are
anomaly degree variances and R B is the radius of a sphe re totally imbedded within
the earth. This sphere is often called the Bjerhammar sphere. Anomaly covari-
ance functions may also be derived from disturbing potential degree variances.
The infinite series in (9) may be expressed in closed form provided a model is
chosen for the anomaly degree variances. Examples of these models and the
resultant closed exp ression for C (P ,Q) are described in Tsche rning and Rapp
(1974). In this report a subrou t ine COVA was given that computed covariances
for the following c2 model;

(10) ~ 
A ( 2 — 1 )

(L— 2)( L— B)

A = 425.28 mgal2, B = 24 with a Ho value of 6369780 m. This particular
ts quite well information that exists conc erning point anomaly variances ,

.A~ Linom aly variances , and anomaly degree variances of low degree as implied
irom satellite derived potential coefficients . However , the computation of the
covariances needed in (8) requires an excessive amount of computer time so that
we have investigated the use of a simplified c~ model that yields s implified
covariance expressions. For such a case we used the following model suggested
by Tschern ing:

(11) ~2 = A’ (L - l )

whic h implies the follow ing anomaly covarianc e function:

(12) C (P ,Q) = A ’s2 (.1 — 1  — Zn

where

s

-4-
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L = [1 - 2 s t

N 1 + L - s t

t cos ~

For the application of this model approp r iate values of A ’ and s or Ra need to
be chosen. How this was done and results from (8) for test cases are described
in the next section.

Compu tations of the 6 term

We first propose to evaluate (8) for 5° mean anomalies. In doing this
we will consider three d iffe rent covarianc e functions. The firs t spatial covarianc e
func t ion is defined through equation (10) and assoc iated constants and is obtained
from subrout ine COVA given in Tsche rning and Happ (1974). We then considered
the covarianc e function described in (12) with values of A’ de termined for two
different R8 values . To do this we first defined Ha and evaluated (12) with

= 0° and r~ = r~ = H + 13. 405 km. The anomaly varianc e from COVA was also
evaluated for this case and the value of A ’ computed so that the anomaly variance
at the given r~ = r~ values would be the same from COVA and the simplified
model of equation (12) . The two Ha values were based on a value given by
Lauritzen (1973, p. 84) and on a value for Ha given by Tscherning (1972 , p. 58).
We summarize in Table 1 various constants to be used in computations to follow.

Table 1

Parameters Associated with C ovarianc e Computations

Quantity Value Description

H 6371000 m Mean Earth Radius
6384405 m Radius of Bounding Sphere

H 8 6369780 m Implied by Constants of COVA
Ha 6335960 m R~ from Lauritzen with A ’
A’ 16.95 mgal2 .~ computed for use in (12)
H 8 6348827 m H a from Tschernin g with A ’
A’ 10. 16 mgal2 J compu ted for use in (12)

—5-.
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For future referencing we designate the covariances from (12) using
A’ = 16.95 mgal2 and R~ = 6335960 m as Model B, and with A’ = 10.16 mgar
and Ro = 6348827 m as Model C.

For these initial computations we chose 4 5° anomalies of upward
continuation to the bounding sphere using (8). In each case the anomaly on the
bounding sphere was computed using the 5 closest known 5° anomalie s ( including
the surface value itself). The mean ano maly covariances needed in (8) were compute d
by the numerical integration of the point covariance function as described in
Heiskanen and Moritz (1967, p. 277) except our application is to the computation
of the covariance between mean anomalies. This integration is the most time
consuming aspect of the computation. Various tests we re made with different
grid spacings in this numerica 1 ifl tegration procedure . For a given grid spacing
co mputations for a single 5° block took 4 times longe r using subroutine COVA
than when the simplified model represented by equation (12). However , we also
found that a smaller grid interval was requ ired w ith the use of COVA to achieve
a given accu racy than was requ ired when using the simplified model. Cons idering
this fact , the use of COVA in the upwa~d continuation process would take 29 times
longe r than the s implified model when accurac ies on the order of = 0 . 2  mgals are
sought in the process. An initial description of the 4 test blocks is given in Table 2.

Table 2

Descript ion of 50 Test Blocks

Block Mean Surface
No. F A Anomaly Accuracy ~ if

208 —18.1 mgals 3.4 45—50 96—103 2011 m
310 — 4.3 4.3 35—40 82— 88 2967
408 21.5 =3.7 30—35 319—325 —3192
562 —32. 1 ±3 . 7 15—20 83— 89 —1581

* Rapp (1977)

As can be seen from Table 2 , two of the blocks have a large mean elevation ,
while two blocks are ocean blocks with their depths given

Compu tations were made to determine 6 as defined by equation (6) using
(8) with three different covariance functions . In (8) the ~~ values we re set to
zero as we wished to find solely the effect of the upward continuation and not a
filte red anomaly value . The r~ value was determined by adding to the mean eart h
radiu s the average elevation of the block (or zero if we had an oceanic block) .
The r~ value was taken as the rad ius of the bound ing sphe re define d in Table 1.

—6— 
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The procedure for computing r~. can be regarded as a spherical approximation.
An improved ellipsoidal approximation can be found by adding the mean elevation
of the block to the ellipsoidal geocentric distance (plus geoid undulation). We
fou nd , howeve r , tha t the ellipsoidal computations changed our fina l results on
the order of 0.2 mgals. In the results given in Table 3 the spherical approximation
has been used.

Table 3

Estimates of 5= Ag (~~,ct ~,A ) -  Ag (R ,co , X)
fo r 4 5° equal area blocks

Block No. 6(mgals) Covar ance Used

208 0.5  Original COVA
208 0. 6 Model B
208 0.5 Model C
310 0. 4 original COVA
310 0.4 Model B
310 0.4 Mod e iC
408 -1. 1 Original CO~.. ’ A
408 — 1. 1 Model B
408 —0.9 Model C
562 1. 6 Original COVA
562 1. 6 Model B
562 1. 3 Model C

It is immediately clear that the results computed from the three diffe rent covariance
functions diffe r only slightly . For computations dealing with the complete 1654
anomaly field we choose to use the cons tants of Model B defined previously.

From Table 3 we see that the influence of the covariances on the upward
continued anomaly is small. We next examine two additional quantities that must
be specified befo re a global computation can be carried out. The firs t is the
numerical integration subdivision interval and the second is the nu mber of known
5° anomalies to use in the upward continuation procedu re . We first look at the
integration interval . This arises when a po int covariance function is used to
compute the covariance between two quantities that represent area averages .
Conside r the two blocks A~ and A2 shown in Figu re One for which the covariance
~~~~ is designed for some unspec ified type of variable .

—7— 
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~ A2

a A1

b

Figu re One

Location of Mean Blocks for which
Covariances are to be Derived

Let C (P ,Q) be a point covariance function between poin ts P ( in  A1) and Q(in  A 2).
Then we can write ( following from equation (7-82) in He iskanen and Moritz , 1967) :

(13) CA 1A2 = 
b)~~’b5 5 5 C (x ,y, x’,y ’) d x dy  dx ’dy ’

x 0 7 O x = ~ y = C

If we now let:

a = n d y
b = n d x
a’ = n d y ’
b’ = n d x ’

we can express (13) in the following numerical integration form:

(14) CA ,A 2 = _!~ ~~

‘ 

~~

‘ ‘

~~

‘ 

~~~ C (x~y,x~y~)

— s —
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The accuracy of this computation wül improve as n increases, but so will the
computation time. Our interest is to choose the smallest n consistent ‘.vith the
final accurac ies desired. To do this we computed the upward continued anomalies
for the four test blocks given in Table 2 using different n values,. an d. the 5
closest 5° anomal ies , and the ellipsoidal reference model ~a 637S14O i~i,
f = 1, 298. 25). The results are shown in Table 4.

Table 4

Effect of Grid Siz e on Upward Continuation of 5° Anomalies

________ —~~~~ n
Block No. 4 6 3 10

208 —17.27 mgals — 17.40 —17.43 —1 7 .42
310 — 3.33 — 3.90 — 3.91
408 20 .49 20.64 20 . 67 20 .67
562 —31.20 —31.33 —31.35

We see from this only small changes in the upward continued anomalies.
For our pu rposes we select for fu ture use an n of 5 which falls between two
tested values . Such a cho ice would appear to yield accuracies in this part of the
upward continuation of about = 0.1 mgals.

We next examined the effect of the number of known blocks to be used
in the upward continuation. We carried out computations with 1, 5 , and 9 5°
blocks closes t to the block being upward continued to the bounding sphere . These
results are shown in Table 5.

Table 5

Effect of Number of Known Blocks on
Upward Continuation of 5

0 Ano malies

Number of Known ~1ocks
Block 1 5 9

208 —17.01 mgals -17.40 -17.32
310 — 4. 12 — 3.90 — 3 .S 7
408 20.52 20.64 20.56
562 —31. 13 —31.33 -31.34 
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We see that the diffe rence between us ing 5 and 9 blocks is small. Because of
symmetry , however , we choose to use for furthe r computations , the 9 closest
50 anomalies for the global upw ard continuation.

With the above info rmation available , the upward continuation of the
1654 surface 5° anomalies given in Happ(1977) was carried out under the following
spec Lfications :

Covariances : Model B
Grid Division : 5
Numbe r of Known Blocks: 9

In addition , the geocentric distance to the surface anomaly block was computed by
adding the he ight of the block to the geocentric rad iu s of an ellipsoid whose equatorial
radiu s was 6378140 m with a flattening of 1/298 .25.

The mean difference between the su rface anomalies and the bounding
sphere anomalies was 0. 0 mgals whil e the root mean square difference was
~0.9 mgals. The maximum difference was 5.1 mgals which occured for a block
whose surface anomaly was 67 mgals . A comple te listing of the surface anomalies
and the bound ing sphere anomalies can be obtained from the author.

~ pplication of Upward Continued Anomalies to Potential Coeffic ient Determinati ns

We now wish to use the anomalies on the bounding sphe re to derive
potential coeffic ients as shown in equation (7) . In doing this it is convenient to
write (7) in the follow ing form:

C
(15) ~~~~

=
~~~~~~~_ 

‘

~~~~ +~~~~ — 
l~~~+~~~~

• 

—
L 5 2 *~ ~5 L *J LA S~~J ~~~~~~

where

~ 
C

~~~ ~~ ~~
—) — 1

1 ~ 1cos m X ~ — —
4rG(2_ l) 

, ~ 
~ sin m~~ 

p~ ( Si ne) d~

—10—
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Using the potent ial coeffic ients given by Rapp (1977) and the values of H, R,
and a (6378140 m) given previously the above correction terms were computed
and used to obtain the corrected coefficients given on the left hand side of (15).
In orde r to jud ge the magnitude of these correction te rms, root mean square
values by degree , of the total correction , correction (fl , and correction (Ifl are
given in Table 6. In addition , the ratio ( i n  percent ) of these corrections to the
magnitude of the coeffic ients is shown in Figure 2.

Table 6

Hoot Mean Square Value of Potential Coeffic ient
Correction Terms By Degree

(x 1011
)

Total Correction Correction
Correction (I) (II)

2 717 796 1346
3 981 797 1682
4 375 357 635
5 470 234 605
6 234 266 443
7 312 200 472
8 151 113 214
9 222 147 344

10 114 103 195
11 132 93 206
12 93 53 132
13 91 66 140
14 59 50 99
15 82 57 132
16 71 54 117
17 66 47 104

-18 66 42 100
19 52 39 Si
20 59 31 86
21 57 34 85
22 56 35 85
23 52 30 78
24 51 28 74
25 54 29 79
26 58 27 50
27 55 25 74
28 60 27 82

—ii —
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29 . 56 30 82
30 56 26 76
31 50 22 67
32 53 27 75
33 50 24 70
34 54 27 77
35 44 25 65
36 51 27 74
37 42 24 61
38 46 26 67
39 42 22 - 60

[ 4 0  43 26 64

From Figure 2 we see that the correction terms, relative to the
coefficients , increase with degree. The first correction term shows almost a
linear dependence on 2 while correction term ( II) shows a more rapid inc rease
than (I) .  The total correction is less (on the average) than correction te rm (II )
as there is some cancellation between the two correction terms. We see then
that the correction terms have larger effects at high degrees than at the lower
degrees. This is opposite to what was found in Rapp (1977) when techniques for
estimating the G1 te rm in equation (1) were investigated. The results of this
pape r seem to be more realistic.

We should point out here that the correction terms are small , not only
with respect to the potential coeffic ien ts, but also with respect to the estimated
standard deviations of the po tential coeffic ients as dete rmined from the standard
deviation.~ of the anomalies used in the compu tation. Such comparisons , in terms
of %, are given in Table 7.

Table 7

Total Correction Term , and Standard Deviation of ,
Potential Coefficients Expressed as a Percent of the Coeffic ients

2 Correction Std. Dev . £ Co rrection Std . DeV .

5 1.8% 18.7~ I 25 5.5% 80.5~7-
10 1.6 29.1 30 3.4 86 .0
15 2.7 45. 5 35 7 .4 .87.2
20 1.6 77 .7 40 7 .5  - 83.4
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It is clear from Table 7 that the correction terms are cons iderably smaller than
the uncerta inty in the coefficients . On the other hand , the corrections computed
here are 20 times larger than the corrections to the potential coefficients aris ing
f rom the use of a spherical reference su rface , and the neglect of the atmosphe re
( Rapp, 1977) .

Our next computation involved the comparison Oi the potential coeffic ients
computed from 50 gravity data (Rapp , 1977) and those coeffic ients corrected using
equation (15) , with the GEM 9 potential coefficients (Lerc h et al. , 1977) . The
GEM 9 coeffic ients are complete to degree 20 and are derived solely on the basis
of satellite observations . These comparisons , in terms of root mean square
potential coeffic ient differences , are given in Table 8.

Table 8

Root Mean Square Potential Coeffic ient Differences
Between the GEM 9 Coeffic ients and Those Coeffic ients

Implied by 5° Mean Anomalies Given on the Earth ’s
Surface and On the Bounding Sphere

Su rface Anomalies Bounding Sphe re
£ Used Anomalies Used

2 . 2934 X 10~~ .2946 X 10~~
3 .262 5 .2638
4 .1612 .1619
5 . 1473 . 1494
6 .0935 .0926
7 .0574 .0573
8 .0592 .059 3
9 .0612 .0604

10 .0444 .0444
11 .0332 .0331
12 .0254 .0252
13 .0222 .0222
14 .0252 .0251
15 .0228 .0224
16 .0205 .0202
17 .0217 .0214
18 .0172 .0169
19 .0145 .0143
20 .0164 .0161
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F rom this table we see a sl ight degradation in the agreement when the correction
terms are applied at the lower degrees. However , from degree 6 and beyond, the
corrected coeffic ients agree w ith the GEM 9 coeffic ients better than the uncorrected
coeffic ients . However , the improvement is small and could be cons idered negligable
when the accuracy of the potential coeffic ient determinations is considered. Never-
theless the results are encouraging.

Ap plication of Upward Continued Anomalies to Anomaly Comparisons with
Anomalie s Implied by Potential Coeffic ients

For a number of years potent ial coeffic ient solutions have been jud ged by
computing anomalies from such coefficients and comparing such anomalies with
su rface anomalies. In this compu tation , equation (3) or a spherical approximation
has been used to compute the anomalies fro m the coefficients. Such a procedure
has been done ignoring the convergence question as it has been considered to have
negligable influence on the final results. We now tu rn our attention to such
comparisons using the results of this paper.

To do this we firs t computed anomal ies in 5° blocks as implied by the
GEM 9 coeffic ients to degree 20 using equation (3) whe re r was evaluated as the
geocentric distance to the block whose anomaly was being determined. Let this
anomaly be designated ~ .gSA . Next compute the 5° anomaly on the bounding sphere
using equation (4) . Us ing this value, compute from equat ion (6) the anomaly on
the surface using the 6 value implied by the upward cont inuation process. This
anomaly , whic h we will designate ~ gsa , can be rigerously compared to the
surface anomaly values , as given in Rapp (1977) . Such comparisons between the
observed surfac e values ~~~ , ~gs~ and ~~~ are shown in Table 9 in terms of
root mean square d ifferences (when the mean difference has been excluded) .

Table 9

Root Mean Square Difference Between Potential
Coefficient Anomalies and Surface 5° Anomalies

I m(max’i ( m g alS)
5 

— 

10 15

E (( ~~ — ~ g3A) 2 ) 107 109 123

- 

E((~~g~— ~gse) 2) 88 91 101
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In this table m is the maximum standard error of the terrestrial ano maly used
in the comparison. The number of such anomalies is 1003 (m �5 mgals);
1343 (m~ 10 mgals) and 1483 (m ~ 15 mgals).

It is clear that the bette r agreement between the anomalies occurs
when the potential coeffic ients are used to evaluate anomalie s on the bounding
sphere which are then downward continued to the su rface , instead of just
evaluating the anomalies on the surface using an expression of questionable
converging properties.

Summary and Conc lusion s

This pape r has been writt en to show how potential coeffic ients can be
dete rm ined from terrestrial gravity data rigorously considerin g the topograph y
by upward continuing the surface free-air anomalies to a sphere that completely
surrounds the earth. This upward continuatio n can be performed by least squares
collocation. We found that the use of sophisticated covarianc e functions was too
expensive in terms of computer costs so that it was necessary to choose
s implified equations . However , tests showed that results from the s implified
equations agreed qu ite well w ith values obta ined fro m the more realistic
covarianc e functions . Using these simplified models , a set of 1654 5

0 equal
area anomalies on the bounding sphere have been computed. The maximum
difference be tween the surface ano maly and the anomaly on the bounding sphere
was 5.1 mgals with the root mean square difference being =0 .9  i igals.

The correction term 6, and the potent ial coeffic ients implied by the
~u rface data, were used in equation (15) to derive correction terms to the surface
data potential coefficients . The correction terms were small , bei ng about 2
of the actual coeffic ients at degree 5 ris ing in a roughl y linear way pe~~entage
wi se~ to about 7% at degree 40.

The corrected coeffic ients we re compared to the GEM 9 potent ial
coeffic ients , as were the coeffic ients implied by the uncorrected surface
anomalies. We found that above degree 5, the corrected coeffic ients agreed
slightly bette r with GEM 9 than did the coeffic ients impl ied by the uncorrec ted
surface anomaly da ta.

A fina l test was made by computing su rface anomalies directly from a
spherical harmonic expansion evalua ted cn the surface of the earth and thu s -~f
questionable accuracy) , and also by first computing the anomalies on the bou nding
sphere and subsequently downward continuing the m to the earth ’s surface usia;
the 6 term derived through collocation. These ~vo anomaly sets were then
compared to the surface anomalies given in R~pp 1977’ . We found that the better
agreement was obtained whe n the corrected bounding sphere anomalies were used
( mean square difference :109 mgals’~, than when directly computed anomalies on the
surface from potential coeffic ients were used mean square difference ~i mgalsi .
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This paper has shown that the problems raised by the convergenc e
question are real at the 1 mgal level for 5° anomalies. Thu s for the most
accurate determination of potential coeffic ients from surface gravity material ,
equa t ion (7) or (15) should be used.

Finally, an important implicatio n of these studies exists for those
computations that combine surface grav ity and satell ite data for potentia l
coeff ic ient de terminations . In most current applications , equation (2 ) is used
to relate anomalies and potential coe ffic ients. Howeve r , this approach is in
erro r with the more correct procedure being the use of equation (4 ’ with the
needed anomaly being fou nd from equation (6) .
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