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Introduction

The determination of potential coefficients from the analysis of satellite
data, gravity data, or a combination of both data types is an active area of research
in geodesy. These potential coefficients are useful in improved orbit prediction
and estimation; in the computation of long wave length features of quantities
dependent on the gravity field such as geoid undulations and deflections of the
vertical; and in the information such coefficients imply about the internal structures
of the earth.

In these determinations from two different data types, satellite data and
terrestrial gravity data, it is very important to be sure that we are determining
the same quantity (the potential coefficients) through consistent models. In this
paper we examine the model problem for the determination of potential coefficients
from terrestrial data. A recent discussion with numerical results for the potential
coefficients can be found in Rapp (1977). In that report a problem was found with
certain corrections to be applied to the terrestrial anomaly that were needed to
determine potential coefficients. To define this further we express the fully
normalized potential coefficients (Cy., Sga) in terms of gravity anomalies as
follows (Ostach and Pellinen, 1970):

1 62, s 1 r " & ; cos m)q 5 =
" TeE-1) s ¢ Paa (Sl o
(1) {§£- *} 4nG(i-1) Jc (Ag + Gy +...) TR (sin®)

where G is an average value of gravity, © is the geocentric latitude, P.. are the
fully normalized associated Legendre functions, Ag is the mean surface free air
anomaly given in block do, and G, is the Molodensky G, term. The * indicates
that the coefficients are given with respect to the reference field used for defining
the Ag values. Pellinen (1962) has indicated that the neglect of the G, term in

(1) can cause errors in the low degree coefficients of 10 to 20%. Numerical studies
described in Rapp (1977) agree with this estimate but the results are based on a
number of assumptions relating the G, term to the terrain correction.

In practice , the computation of the G, term for mean anomalies (such
as 1° and 5°) can be difficult in areas of rapidly varying topography. Consequently,
it is of interest to develop a procedure for the estimation of the potential coefficients
from terrestrial data that does not require the computation of the G, term, yet
retains the rigor implied by that procedure. In this way we can determine these
coefficients in 2 manner that such coefficients can be directly compared to satellite
derived values. In addition, our results should indicate a proper anomaly (which
is easily computed) to use in the combination of satellite and gravity data for
potential coefficient determinations. '




Procedures

The gravitational potential of this earth is usually expressed in terms _
of the potential coefficients as: i

(Cza cosmA + Sy, sinmA) Pya (sin'«?):l1

i [\/}1“

(2) V(r,0,\) = —1 +S; (

2 o

where kM is the geocentric gravitational constant and a is the equatorial radius
of an ellipsoid approximating the geoid. I fact, a is arbitrary, but traditional
use has been for it to be taken as an ellipsoid equatorial radius. Equation (2) is
considered convergent on and outside the Brillouin sphere R that just encloses
all the mass of the earth. (In this discussion we will ignore the mass of the
atmosphere.)

Adopting a reference potential (usually that implied by an equipotential
ellipsoid), a disturbing potential, T, can be found from (2). Using the basic
boundary condition of gravimetric geodesy (Heiskanen and Moritz, 1967, p. 86,
eq. (2~147c)), we find for the gravity anomaly:

(3) Ag(r,8,)) = %—-? 4- 1)( >y (C,Zm *cosmA + Sy, *sinmA) Py, (Sin®@)
4=2 3=90

Equation (3) is regarded as formally convergent on and outside the boundary |
sphere. [It should be noted here that in practice the summation in (3) is not to
= but to some small finite degree. The resultant finite series has often been
evaluated at the surface of the earth.] On the bounding sphere the gravity
anomaly is:

(4 Ag(R,Q,A) = L ,T (2- 1)< >r (Cgz *cosmA + 8§, sinmA) Py, (sind)

=2 n

We now apply the usual orthogonal relationships of spherical harmonics to
derive the potential coefficients from anomaly values given on the boundary
sphere, We have:

*

Cpa 1 o rcosmM R S
(5) = e 3 ) Ag (RO,A) < L ] Py (sin®@) do
{SZ’ - <;[\(2 1)< b 5 sin mA
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This equation can be compared to (1) and the differences seen. Let (C/::, )
be the potential coefficients computed from (1) setting G, and higher terms to
zero. In addition we let:

(6) Ag (R,@,)) = Og (R,0,\) + 0

where Ag (R,¥,\) are the anomalies assumed to refer to a spherical approximation
of the geoid where R is the radius of the sphere. If we now substitute (6) into (5)
and using (1) we have:

o v  ad (O . poOSEA.
(M { e (-R—> (5" [—Zz} el 5 { - Py (sin®) do
R/ \a/ LF M 47Gi-1) J) - sinmd’

where in the coefficient of the integral we have set (kM/R?) to an average value
of gravity and (a/ /R)* has been set to 1. These approu:imations are justified as
the 6 term is expected to be small. The coefficient of (C,, ’ S}z. ) in (7) is
1.0039 at degree 2 and reaches 1.0628 at degree 60 lettmv a = 6378140 m,

R = 6371000 m, and R = 6384405 m. Computations related to (7) will be
described in a later section.

We now turn to the determination of the 6 term introduced in equation
(6). This term may be computed in several ways. An upward continuation
procedure using 5° mean anomalies has been described by Rapp (1969). However,
a more convenient procedure is possibly the use of least squares collocation,
For its application we consider that we are given a set of surface anomalies
which are to be extended to the boundary sphere. We can represent this
computation in the following general form:

(8) Agz = Ca,s (C‘.? S Dt:)-l [4Ags]

where Agz is the mean anomaly on the bounding sphere, Ags is the mean free-axr
surface anomaly, Cz,; represents the covariance between Agz and Ags C1:

the covariance between the known surface anomalies &gs and D., is the standard
deviation of the known anomalies. A similar procedure has been used in Rapp
(1977) to estimate 5° mean free-air surface anomalies from 1°x 1° mean free-air
anomalies. However, in the application of (8) we need to use a spatial covariance
function as opposed to a surface covariance function used in Rapp (1977).




In the past few years a number of spatial covariance functions have
been described. We can write:

(9) C@®=) ¢

where: C is the covariance between two anomalies located at a distance r» and

rq from the center of the earth, and separated by a spherical distance ¥&. c, are
anomaly degree variances and Rs is the radius of a sphere totally imbedded within
the earth. This sphere is often called the Bjerhammar sphere. Anomaly covari-
ance functions may also be derived from disturbing potential degrece variances.
The infinite series in (9) may be expressed in closed form provided a model is
chosen for the anomaly degree variances. Examples of these models and the
resultant closed expression for C (P, Q) are described in Tscherning and Rapp
(1974). In this report a subroutine COVA was given that computed covariances

for the following c, model:

(10) cy = Al-1)
(¢-2)(¢-B)

A = 425,28 mgal®, B = 24 with a Re value of 6369780 m. This particular
its quite well information that exists concerning point anomaly variances,
. anomaly variances, and anomaly degree variances of low degree as implied

(rom satellite derived potential coefficients. However, the computation of the
covariances needed in (8) requires an excessive amount of computer time so that
we have investigated the use of a simplified ¢y model that yields simplified
covariance expressions. For such a case we used the following model suggested
by Tscherning:

(11) CZ= —L——A f/—l)
4

which implies the following anomaly covariance function:

(12) C (P,Q) = A's® (%-1-2n%>

where

s° = R3/(rsry);
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For the application of this model appropriate values of A’ and s or Rs need to
be chosen. How this was done and results from (8) for test cases are described
in the next section.

Computations of the § term

We first propose to evaluate (8) for 5° mean anomalies. In doing this

we will consider three different covariance functions. The first spatial covariance
function is defined through equation (10) and associated constants and is obtained
from subroutine COVA given in Tscherning and Rapp (1974). We then considered
the covariance function described in (12) with values of A" determined for two
different Rz values. To do this we first defined Rs and evaluated (12) with
v=0%and r» = r; =R + 13.405 km. The anomaly variance from COVA was also
evaluated for this case and the value of A’ computed so that the anomaly variance
at the given r» = r; values would be the same from COVA and the simplified
model of equation (12). The two Rs values were based on a value given by
Lauritzen (1973, p. 84) and on a value for Rs given by Tscherning (1972, p. 58).
We summarize in Table 1 various constants to be used in computations to follow.

Table 1

Parameters Associated with Covariance Computations

Quantity Value [ Description
R 6371000 m | Mean Earth Radius
R 6384405 m | Radius of Bounding Sphere
Rs 6369780 m Implied by Constants of COVA
Rs 6335960 m Rs from Lauritzen with A’ |
A 16.95 mgal® J | computed for use in (12) ‘
R3 6348827m 1 | Re from Tscherning with A" |
{ 10. 16 mgal® J computed for use in (12) !
| |




For future referencing we designate the covariances from (12) using
/

A = 16.95 mgal2 and R = 6335960 m as Model B, and with A" = 10,16 rngal2
and Rg= 6348827 m as Model C.

For these initial computations we chose 4 5° anomalies of upward
continuation to the bounding sphere using (8). In each case the anomaly on the
bounding sphere was computed using the 5 closest known 5° anomalies (including
the surface value itself), The mean anomaly covariances needed in (8) were computed
by the numerical integration of the point covariance function as described in
Heiskanen and Moritz (1967, p. 277) except our application is to the computation
of the covariance between mean anomalies. This integration is the most time
consuming aspect of the computation. Various tests were made with different
grid spacings in this numerica’ iutegration procedure. For a given grid spacing
computations for a single 5° block took 4 times longer using subroutine COVA
than when the simplified model represented by equation (12). However, we also
found that a smaller grid interval was required with the use of COVA to achieve
a given accuracy than was required when using the simplified model. Considering
this fact, the use of COVA in the upward continuation process would take 29 times
longer than the simplified model when accuracies on the order of =0.2 mgals are
sought in the process. An initial description of the 4 test blocks is given in Table 2.

Table 2 ]

kb

Description of 5° Test Blocks

Block Mean Surface

| No.* FA Anomaly  Accuracy  ¢° i h '
|

| 208 -18.1 mgals £3.4 45-50 96-103 2011 m

! |
310 - 4.3 4,3 35-40 82- 88 2967

| 408 21,5 23,7 30-35 319-325 -3192 ‘
i 562 -32,1 =3, 7 15-20 83- 39 -1581

* Rapp (1977)

As can be seen from Table 2, two of the blocks have a large mean elevation,
while two blocks are ocean blocks with their depths given .

Computations were made to determine 0 as defined by equation (6) using
(8) with three different covariance functions. In (8) the D, values were set to
zero as we wished to find solely the effect of the upward continuation and not a
filtered anomaly value. The r, value was determined by adding to the mean earth
radius the average elevation of the block (or zero if we had an oceanic block).
The r; value was taken as the radius of the bounding sphere defined in Table 1.

=B

- | D— N———




The procedure for computing r» can be regarded as a spherical approximation.

An improved ellipsoidal approximation can be found by adding the mean elevation

of the block to the ellipsoidal geocentric distance (plus geoid undulation), We
found, however, that the ellipsoidal computations changed our final results on

the order of 0.2 mgals. In the results given in Table 3 the spherical approximation
has been used.

Table 2

Estimates of 0= Ag (R,©,\)- Ag (R,0,A)
for 4 5° equal area blocks

Block No. 6 (mgals) Covar ance Used
208 0.5 Original COVA |
208 0.6 Model B
208 0.3 Model C
310 0.4 Original COVA i
310 0.4 Model B
310 0.4 Model C
408 -1.1 Original CO"'A
408 -1.1 Model B
408 -0.9 Model C
562 1.6 Original COVA
562 1.6 Model B
562 1.3 Model C
3|

It is immediately clear that the results computed from the three different covariance
functions differ only slightly. For computations dealing with the complete 1654
anomaly field we choose to use the constants of Model B defined previously.

From Table 3 we see that the influence of the covariances on the upward
continued anomaly is small. We next examine two additional quantities that must
be specified before a global computation can be carried out. The first is the
numerical integration subdivision interval and the second is the number of known
5° anomalies to use in the upward continuation procedure. We first look at the
integration interval, This arises when a point covariance function is used to
compute the covariance between two quantities that represent area averages,
Consider the two blocks A, and Az shown in Figure One for which the covariance
Ciyag is designed for some unspecified type of variable.




a Az
=
a A,
b -
Figure One

Location of Mean Blocks for which
Covariances are to be Derived

Let C (P,Q) be a point covariance function between points P (in A;) and Q(in A;).
Then we can write (following from equation (7-82) in Heiskanen and Moritz, 1967):

3 = [ ,v,%X,y) dx dydx'dy’
(1 ) CA1A2 (ab)(ab) J‘—o J—o J, }J‘, C(x y X y) X y X 3
If we now let:

a = ndy

b = ndx

a’ = ndy’

b’ = ndx’

we can express (13) in the following numerical integration form:

n n

(14) CA’."E = S: z Y

C(x,y, xz,y':',)

C\L\//I 3




The accuracy of this computation will improve as n increases, but so will the
computation time. Our interest is to choose the smallest n consistent with the
final accuracies desired. To do this we computed the upward continued anomalies
for the four test blocks given in Table 2 using different n values, and the 5
closest 53° anomalies, and the ellipsoidal reference model (2 = 63781z0m,

f = 1/298,25). The results are shown in Table 4.

Table 4

Effect of Grid Size on Upward Continuation of 5° Anomalies

s | n )
Block No. 4 ) 8 10
208 -17.27 mgals -17.40 -17.43 -17.42
310 - 3.83 - 3.90 —~ 391
408 20.49 20. 64 20.67 20.67
562 -31.20 -31.33 -31.35

We see from this only small changes in the upward continued ancmalies.
For our purposes we select for future use an n of 5 which falls betweea two
tested values. Such a choice would appear to yield accuracies in this part of the
upward continuation of about = 0.1 mgals.

We next examined the effect of the number of known blocks to be used
in the upward continuation. We carried out computations with 1,5, and 9 5°
blocks closest to the bleck being upward continued to the bounding sphere. These

results are shown in Table 5.

Table 3

Effect of Number of Known Blocks on
Upward Continuation of 5° Anomalies

i Number of Known Blocks

i Block ! L 3 9 i
] )

i |

{208 g -17,01 mgals -17.40 -17.32 |
| 3 | - 4,12 - 3.90 - 3,87 |
| 4 ; 20. 52 20. 64 20.36

b 582 ! -31.138 -31.33 -31.34




We see that the difference between using 5 and 9 blocks is small. Because of
symmetry, however, we choose to use for further computations, the 9 closest
5° anomalies for the global upward continuation.

With the above information available, the upward continuation of the
1654 surface 5° anomalies given in Rapp(1977) was carried out under the following
specifications:

Covariances: Model B

Grid Division: 5
Number of Known Blocks: 9

In additien, the geocentric distance to the surface anomaly block was computed by
adding the height of the block to the geocentric radius of an ellipsoid whose equatorial
radius was 6378140 m with a flattening of 1/298. 25.

The mean difference between the surface anomalies and the bounding
sphere anomalies was 0.0 mgals while the root mean square difference was
=0.9 mgals. The maximum difference was 5.1 mgals which occured for a block
whose surface anomaly was 67 mgals. A complete listing of the surface anomalies
and the bounding sphere anomalies can be obtained from the author.

Application of Upward Continued Anomalies to Potential Coefficient Determinations

We now wish to use the anomalies on the bounding sphere to derive
potential coefficients as shown in equation (7). In doing this it is convenient to
write (7) in the following form:

razu*" 1’61: ,AEE,W Aép,\

1- b — e } = <' — A -— ?
9 Syt \By. LA, LASL,
where

,A— 2 -~ /R o 6 L3N

j 511 - /Ef\ﬁ\‘_l"‘ r_Z ;

\ASz,jy L\R \a) _15251\

IAEZ]

1 fp cosS mA
LASE,J:,~ 47G(1-1)

P.. (sin®) do
{sin m)\Jk Ppa )

Qe

-10-




Using the potential coefficients given by Rapp (1977) and the values of R, R,
and a (6378140 m) given previously the above correction terms were computed
and used to obtain the corrected coefficients given on the left hand side of (15).
In order to judge the magnitude of these correction terms, root mean square
values by degree, of the total correction, correction (I), and correction (II) are
given in Table 6. In addition, the ratio ( in percent) of these corrections to the
magnitude of the coefficients is shown in Figure 2.

Table 6

Root Mean Square Value of Potential Coefficient
Correction Terms By Degree

(x 10"

2 Total Correction Correction |

Correction (1) (II)

2 71T 796 1346

3 981 797 1682

4 375 357 635

5 470 234 605

f 234 266 443

7 312 200 472

8 151 113 214

9 222 147 344

10 114 103 195
11 132 93 206 |
12 93 53 132 ,
13 91 66 140 ;
14 59 50 99 :
15 82 57 132 ;

R i 54 117

17 66 47 104

18 66 42 100
|19 52 39 31 ;
P20 59 31 36 i
21 57 34 85 ;
22 56 35 85 ,
23 52 30 7
24 51 28 74 i
| 25 54 29 79
26 58 27 30 ?
27 55 25 T4 4

28 60 27 32

wile=




coefficients, increase with degree.

29 56 30 82
30 56 26 76
31 50 22 67
32 53 217 75 |
33 50 24 70
34 54 27 77
35 44 25 65
36 51 27 74 |
37 42 24 61 |
38 46 26 67 |
39 42 22 60 |
40 43 26 64 |

From Figure 2 we see that the correction terms, relative to the
The first correction term shows almost a

linear dependence on Z while correction term (II) shows a more rapid increase
The total correction is less (on the average) than correction term (II)
We see then

than (I).

as there is some cancellation between the two correction terms.
that the correction terms have larger effects at high degrees than at the lower

degrees.

This is opposite to what was found in Rapp (1977) when techniques for

estimating the G; term in equation (1) were investigated. The results of this
paper seem to be more realistic.

We should point out here that the correction terms are small, not only
with respect to the potential coefficients, but also with respect to ti.e estimated
standard deviations of the potential coefficients as determined from the standard
deviations of the anomalies used in the computation. Such comparisons, in terms
of %, are given in Table 7.

Table 7

Total Correction Term, and Standard Deviation of,
Potential Coefficients Expressed as a Percent of the Coefficients

' g
2 | correction Std. Dev. 2 E Correction | Std.Dev.
T T i
I 6 | 1.8% 18.7% 25 | B.8% | 80.5%
: [ 0 R 15 29.1 P8 a4 | 86,0
R e 45.5 35 7.4 | a9
20 | 4.6 7.7 0 | 1.5 | 83.4
-12-
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It is clear from Table 7 that the correction terms are considerably smaller than
the uncertainty in the coefficients. On the other hand, the corrections computed
here are 20 times larger than the corrections to the potential coefficients arising
from the use of a spherical reference surface, and the neglect of the atmosphere
(Rapp, 1977).

Our next computation involved the comparison oi the potential coefficients
computed from 5° gravity data (Rapp, 1977) and those coefficients corrected using
equation (15), with the GEM 9 potential coefficients (Lerch et al., 1977). The
GEM 9 coefficients are complete to degree 20 and are derived solely on the basis
of satellite observations. These comparisons, in terms of root mean square

! potential coefficient differences, are given in Table 8,

Table 8

Root Mean Square Potential Coefficient Differences
Between the GEM 9 Coefficients and Those Coefficients
Implied by 5° Mean Anomalies Given on the Earth's
Surface and On the Bounding Sphere

Surface Anomalies Bounding Sphere
2 Used Anomalies Used
2 .2934 x 10°° .2946 x 10°°
3 . 2625 .2638
4 .1612 .1619
5 .1473 .1494
6 .0935 .0926
j q .0574 .0573
! 8 .0592 ,0593
é 9 .0612 .0604
| 10 . 0444 .0444
11 . 0332 .0331 @
12 .0254 .0252 |
13 .0222 .0222 ;
14 .0252 .0251 '
15 .0228 .0224 |
16 .0205 .0202 |
17 .0217 .0214 |
18 L0172 .0169 1
19 .0145 .0143
20 .0164 .0161
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From this table we see a slight degradation in the agreement when the correction
terms are applied at the lower degrees. However, from degree 6 and beyond, the
corrected coefficients agree with the GEM 9 coefficients better than the uncorrected
coefficients. However, the improvement is small and could be considered negligable
when the accuracy of the potential coefficient determinations is considered. Never-
theless the results are encouraging.

Application of Upward Continued Anomalies to Anomaly Comparisons with
Anomalies Implied by Potential Coefficients

: For a number of years potential coefficient solutions have been judged by

computing anomalies from such coefficients and comparing such anomalies with

I surface anomalies. In this computation, equation (3) or a spherical approximation

has been used to compute the anomalies from the coefficients. Such a procedure

| has been done ignoring the convergence question as it has been considered to have
negligable influence on the final results. We now turn our attention to such
comparisons using the results of this paper.

To do this we first computed anomalies in 5° blocks as implied by the
GEM 9 coefficients to degree 20 using equation (3) where r was evaluated as the
geocentric distance to the block whose anomaly was being determined. Let this
anomaly be designated Agsi. Next compute the 5° anomaly on the bounding sphere
using equation (4). Using this value, compute from equation (6) the anomaly on
the surface using the 8 value implied by the upward continuation process. This
anomaly, which we will designate Agss , can be rigerously compared to the
surface anomaly values, as given in Rapp (1977). Such comparisons between the
observed surface values Ags , Ags, and Agss are shown in Table 9 in terms of
root mean square differences (when the mean difference has been excluded).

Table 9

Root Mean Square Difference Between Potential
Coefficient Anomalies and Surface 5° Anomalies

m (max) (mgals) ﬁ

5 10 15 |

4 i

E (( Ags - Ags)°) 107 109 | 128 |

| | |
{ | |
| E((Ags- Agw)®) 88 - SN RRRES | S
| | i




In this table m is the maximum standard error of the terrestrial anomaly used

in the comparison. The number of such anomalies is 1003 (m <35 mgals);
1343 (m< 10 mgals) and 1433 (m < 15 mgals).

It is clear that the better agreement between the anomalies cccurs ‘
when the potential coefficients are used to evaluate anomalies on the bounding ’
sphere which are then downward continued to the surface, instead of just
evaluating the anomalies on the surface using an expression of questionable
converging properties.

Summary and Conclusions

This paper has been written to show how potential coefficients can be
determined from terrestrial gravity data rigorously considering the topography
by upward continuing the surface free-air anomalies to a sphere that completely
surrounds the earth. This upward continuation can be performed by least squares
collocation. We found that the use of sophisticated covariance functions was too
expensive in terms of computer costs so that it was necessary to choose
simplified equations. However, tests showed that results from the simplified
equations agreed quite well with values obtained from the more realistic
covariance functions. Using these simplified models, a set of 1654 5° equal
area anomalies on the bounding sphere have been computed. The maximum
difference between the surface anomaly and the anomaly on the bounding sphere
was 5.1 mgals with the root mean square difference being =0.9 mgals.

The correction term &, and the potential coefficients implied by the
surface data, were used in equation (15) to derive correction terms to the surface
data potential coefficients. The correction terms were small, being about 2 7
of the actual coefficients at degree 5 rising in a roughly linear way (percentage
wise) to about 7% at degree 40.

The corrected coefficients were compared to the GEM 9 potential
coefficients, as were the coefficients implied by the uncorrected surface
anomalies. We found that above degree 5, the corrected coefficients agreed
slightly better with GEM 9 than did the coefficients implied by the uncorrected
surface anomaly data.

A final test was made by computing surface anomalies directly from a
spherical harmonic expansion evaluated on the surface of the earth (and thus of
questionable accuracy), and also by first computing the anomalies on the bounding
sphere and subsequently downward continuing them to the earth's surface using
the & term derived through collocation. These two anomaly sets were then
compared to the surface anomalies given in Rapp (1977). We found that the better
agreement was obtained when the corrected bounding sphere anomalies were used
(mean square difference =109 mgals), than when directly computed anomalies on the
surface from potential coefficients were used (mean square difference = 31 mgals).
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This paper has shown that the problems raised by the convergence
question are real at the = 1 mgal level for 5° anomalies. Thus for the most
accurate determination of potential coefficients from surface gravity material,

equation (7) or (135) should be used.

Finally, an important implication of these studies exists for those
computations that combine surface gravity and satellite data for potential
coefficient determinations. In most current applications, equation (2) is used
to relate anomalies and potential coefficients. However, this approach is in
error with the more correct procedure being the use of equation (4) with the
needed anomaly being found from equation (6).
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