ID-A045 092 LITTON SYSTEMS INC MORRIS PLAINS N J AIRTRON DIV F/G 20/5 THE SINGLE CRYSTAL GROWTH AND LASER ROD FABRICATION OF ND:YV04.(U) AUG 77 L E DRAFALL, R F BELT DAAB07-76-C-0908 ECOM-76-0908-1 NL														
	0F AD A045092				10							And the second s		
		gang an variable and a franciscus				<text><text><text><text></text></text></text></text>				<text><text><text><text><text></text></text></text></text></text>	1			
	<text><text><text></text></text></text>									A set of a s	-		 A statistical discussion of the statistical discussio	
THE STATE OF THE S	Billion Mucros Barro Mucros Barro Mucros Barro Maro Ma	telera Stera seren Elera Lanore Elera Lanore Elera Elera Elera Lanore Elera	Pallene energy Barrer Rigerer Distance Rigerer Distance Riger Distance Riger Distance Riger Distance Riger Hallone	Barris (MSP) Marine Barris Barris (Barris Barris (Barris Barris Barris Marine Barris Ba	rura dia dia dia dia dia dia dia dia dia di	Ru	More Bin Store Bin Conce Bin Conce Bin Conce Bin Conce Bin	Mar. Result- light (Mar. Result- light (Mar. Mar. Mar. Mar. Result Bar.	END DATE FILMED					
2		-							-		_		1	/

AD.A.045.0

Research and Development Technical Report

THE SINGLE CRYSTAL GROWTH AND LASER ROD FABRICATION OF ND:YVO₄

Larry E. Drafall Roger F. Belt Litton Systems, Inc. Lambda/Airtron Division 200 East Hanover Avenue Morris Plains, N.J. 07950

August, 1977

Interim Report for Period 1 July 1976 to 1 Jan. 1977

Distribution Statement

Approved for public release, distribution unlimited.

DOC FILE COPY

Prepared for:

ECOM

US ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY 07703

NOTICES

1

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM **REPORT DOCUMENTATION PAGE** REPOR NUMBER 2. GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMBER ECOM-76-0908-1 rept. TYPE OF REPORT & PERIOD COVERED TITLE (and Submity) THE SINGLE CRYSTAL GROWTH AND LASER ROD Interimy 1 July 1976 -FABRICATION OF ND YVO4 . PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(a) Larry E. /Drafall and Roger F. /Belt DAAB 07-76-C-0908 New 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK Lambda-Airtron Division Litton Systems, Inc. 200 E. Hanover Avenue Morris Plains, N. J. 07950 1 S7627Ø3DH93D1-11 DI 12. REPORT DATE 1. CONTROLLING OFFICE NAME AND ADDRESS Commander U.S. Army Electronics Command August, 1977 13. NUMBER OF PAGES Attention(DRSEL-CT-L VII + 30 Fort Monmouth, N. J. 07703. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Commander, DCASD, Springfield Unclassified 240 Route 22 15. DECLASSIFICATION DOWNGRADING SCHEDULE Springfield, N. J. 07081 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dill. Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) NEODYMIUM LASERS LASERS SOLID STATE CRYSTAL LASERS YTTRIUM VANADATE CZOCHRALSKI GROWTH SINGLE CRYSTALS LASER RODS 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Growth of [100] YVO₄:Nd was performed from melts contained in RF heated iridium crucibles. Initial growth experiments used phosphor grade YVO_4 and NdVO₄ until the growth parameters of structurally sound crystals were determined. Stoichiometric solid state reactions of the component high purity oxides, V_2O_5 (< 15 ppm impurities), 99.999 % Y_2O_3 , and 99.99 % Nd_2O_3 were then used. During growth a significant DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 209175

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Kniered)

amount of V_2O_5 was vaporized which led to changes in melt composition and crystallization temperatures. The YVO4 melt slowly decomposed into YVO_3 and O_2 . After prolonged heating, V_2O_5 depletion and sample decomposition limited growth. Experiments indicated YVO4:Nd could be grown from a nonstoichiometric composition of 10 mole % excess Y_2O_3 at lower temperatures where V_2O_5 vaporization was noticeably less. The crystal-melt interface and thermal gradient were adjusted to produce the best growth in a 98 % N₂ - 2 % O₂ atmosphere at a pull rate of 1.25 mm/hr and a rotation rate of 4 rpm. Boules of [100] $YVO_4:Nd 65 mm long x 6 mm x 20 mm were grown with excellent diameter$ control. Erratic growth occurred along [001] with large smooth facets on (001) planes the entire boule length. The thickness along [010] can be controlled by the seed, shoulder, and growth rate conditions. With slow pull rates of 1.25 mm/hr the [001] growth direction was much less pronounced. In the [100] axis orientation the growth interface contained the two directions [010] and [001] where differences for thermal expansion and conductivity are largest. Crystals showed a marked tendency to cleave along the {100} planes which seriously hindered growth and rod fabrication. The cleavage was strongly aggravated by impurity levels.

ACCESSION for white seation section 1.0.1.1 1:15 1 10 DISTRIBUTION INVANIABILITY COJES SPECIAL

TABLE OF CONTENTS

Page

TABLE O	OF CONTENTS	i
LIST OF	F ILLUSTRATIONS	iii
LIST OF	F TABLES	iv
SUMMARY	¥	v
PREFACE	3	vii
1 INT	TRODUCTION ·····	1
2 EXF	PERIMENTAL	3
a	Crucibles for Growth	3
b	Starting Materials	5
с	Growth Station Construction and Gradients	8
d	Control System	10
е	Seed Crystals and Holders	10
f	Growth Atmosphere	12
g	Growth Axis	12
h	Melt Composition and Doping	· · 14
i	Growth Run Procedure	14
3 RES	SULTS	15
a	Production of Seeds	15
ь	Oxygen Levels	15
с	Thermal Gradients	16
d	Pull Rate and Interface Shape	16
e	X-ray Results on Phases	17
f	Run Examples and Results	20

		Page
4	DISCUSSION ·····	26
5	CONCLUSIONS	28
6	RECOMMENDATIONS ·····	29
7	REFERENCES	30

LIST OF ILLUSTRATIONS

Figure No.		Page
1	Cross Section of YVO ₄ Growth Station	9
2	Block Diagram of Diameter Control System	11
3	Single Crystal Pieces of YVO4 from Melt	13
4	Single Crystal Seed Holders	13
5	Phase Diagram for $Y_2O_3 - V_2O_5$ System	18
6	Crystal Grown with a Taper	21
7	Excellent Diameter Control of Crystal	21
8	Preferred Growth in the <u>c</u> -direction of a Nd:YVO ₄ Crystal	25
9	Transverse Cracking Caused by Diameter Fluctuation	27

LIST OF TABLES

Table No.		Page
I	Physical Properties of Nd:YVO4 and Nd:YAG	4
II	Typical Analysis of Starting Materials	6
III	Analysis of Iridium Metal for Crucibles	7
IV	X-ray Identification of YVO4 Melt	19
v	Summary of Nd:YVO4 Growth Runs	22-24

SUMMARY

This project was initiated to investigate the single crystal growth and laser rod fabrication of [100] oriented Nd:YVO4. The desired size and quality of the crystals were obtained most advantageously by Czochralski growth methods. We have utilized RF heated iridium crucibles and commercially developed crystal growth equipment to evaluate rapidly many variables. Two growth stations were used continuously.

Our investigations have shown that the purity of the starting components Y_2O_3 , V_2O_5 , and Nd_2O_3 is important for low defects and crack-free growth. The V_2O_5 appears to be very difficult to purify. Prepar VO_4 was purchased from several suppliers but gave consistent crace coblems. Our preparations of YVO_4 worked more efficiently but also exhibited cracking during mechanical processing.

Early in the program the effects of thermal gradients, rotation rate, pull rate, O_2 levels, and annealing cycles were studied to obtain reliable growth data. Most of these experiments were performed with lower purity materials. After growth conditions were established, the best available starting components were employed. Low gradients, rotation rates of 4-30 rpm, pull rates of 1.5 mm/hr, and O_2 levels of 2 % gave best results.

The crystal structure associated problems of morphology and cleavage were difficult to solve. Boules of [100] orientation were desired. Both thermal expansion and conductivity are widely different for the two other resulting directions in or adjacent to the growth interface. Smooth facets occurred on {010} planes, {001} planes are absent, and $\{111\}+\{311\}$ planes are erratic. Boule cross sections tend to be rectangular with truncated or rounded corners. Cleavage was always along $\{100\}$ and $\{010\}$ planes. This resulted in fractures across and along the boule axis.

Boule fracture may be a result of severe strain during growth, impurity precipitation, Nd doping levels, melt stoichiometry, and other minor factors. We have attempted to study several of these systematically to prevent cracking. The boule growth at this time is restricted to lengths of 4-7 cm and "diameters" of 1 cm. Some mechanical fabrication methods were examined. Diamond wheels and core drills tended to give highly fractured pieces.

PREFACE

This Interim Technical Report describes experimental work performed under Contract No. DAAB 07-76-C-0908 from 1 July 1976 to 1 January 1977. The contract was titled objectively as "The Single Crystal Growth and Laser Rod Fabrication of Nd:YVO4". The project was initiated by and performed for the Combat Surveillance and Target Acquisition Laboratory of the U. S. Army Electronics Command, Fort Monmouth, New Jersey 07703. Mr. John Strozyk was assigned as the contracting officer's designated technical monitor.

All experimental work described in the report was performed in the laboratories of the Lambda-Airtron Division, Litton Systems, Inc., 200 E. Hanover Avenue, Morris Plains, N. J. 07950. The general direction of the program was supervised by Dr. Roger F. Belt. The principal investigator and project engineer on all crystal growth was Dr. Larry E. Drafall. Mr. Karl Jensen served as senior technician and prepared all materials.

1 INTRODUCTION

At the present time the most widely used and commercially available crystal laser is Nd:YAG. This material is incorporated in nearly all modern military laser target designators and rangefinders. Research and development were performed on Nd:YAG during 1964-1968 while limited production followed shortly thereafter.

Considerable savings in cost, weight, and simplicity can result in a laser transmitter through the substitution of crystals which are birefringent and have lower threshold energy requirements. Theoretically such crystals are available but thus far none have been developed to the practical state of Nd:YAG. One such single crystal 1/15 Nd:YVO4, a material which initially showed great promise but was abandoned as Nd:YAG progressed. YVO4 is a highly birefringent uniaxial single crystal with a zircon structure. When doped with Nd and pumped along the <u>a</u>-axis, the stimulated emission cross section is about five times that of Nd:YAG. Such a laser rod should have a lower oscillation threshold and be useful for both CW and pulsed operation where total energy input is desired to be a minimum. Laser performance measurements on a limited number of Nd: YVO4 pieces of "a-axis" material have confirmed these expectations. Small selected rods have demonstrated lasing thresholds approximately 50% lower than Nd:YAG under similar (1a)pulse pumping. Performance with dye laser or argon ion laser pumping has also been superior in Nd:YVO4 specimens compared to high quality Nd:YAG. (1b) Some recent CW experiments show that Nd:YVO4 outperforms Nd:YAG. A laser rod of <u>a</u>-axis Nd:YVO₄ has a strongly polarized emission and an excellent TEMoo mode should result. It can also be used without a cavity polarizer. Light emitting diodes can be matched

efficiently to small Nd; YVO₄ rods in an end or face pumped configuration to give a very compact system for ranging or integrated optics. The self Q-switching of Nd: YVO₄ is a distinct possibility.

The main difficulty which slowed the early exploitation of Nd: YVO_4 was the crystal growth, since the properties were recognized⁽³⁾ in 1966 and emphasized again⁽⁴⁾ in 1969. Because the crystal of YVO_4 is highly anisotropic, contains vanadium which can exist in several oxidation states, and is refractory (M.P. 1825°), one might expect the growth to be more than routine. The history of attempts to get good crystals is long and extends over the Verneuil, flux, Bridgman and Czochralski methods. Only the latter is considered here to give the size, quality and performance in a relatively short period of development similar to YAG. In fact, one may use similar facilities already established for Nd:YAG growth.

The Czochralski growth of YVO_4 was first reported⁽⁵⁾ using gas fired Ir crucibles. These crystals were all <u>c</u>-axis growth. A similar attempt was made later⁽⁶⁾ with little more success. After a lapse of 5-6 years, several workers again^(7,8) studied the growth and obtained fair <u>c</u>-axis crystals with RF heated Ir crucibles in standard systems. The major growth problems were inclusions, cracks, color centers and control of conditions. At this stage, crystals of Nd:YVO₄ were not large or perfect enough to obtain 3 x 30 mm laser rods. Two recent investigations were funded by U. S. Army, ECOM^(9,10) to determine the most appropriate growth technique, to assess the magnitude of the problems involved, to evaluate pure YVO₄ for polarizer applications and study the spectroscopic properties of Nd:YVO₄ as well as other dopants. These programs yielded sufficient samples to provide laser

performance data and warrant continued interest in developing the growth process.

Yttrium vanadate (YVO_4) is a tetragonal single crystal with unit cell dimensions of $\underline{a} = 7.123 \overset{O}{A}$ and $\underline{c} = 6.191 \overset{O}{A}$. Structurally, it is similar to zircon, $2rSiO_4$, which also possesses a unique arrangement with highly anisotropic physical properties. The principle features of structure⁽¹¹⁾ in YVO₄ are chains of alternating edge sharing VO₄ tetrahedra and YO₈ triangular dodecahedra. These are undoubtedly responsible for growth habit, cleavage, extreme birefringence, thermal conductivity and expansion differences, and many growth anomalies. The favorable laser properties of $Nd: YVO_A$ are closely associated with the YO₈ polyhedra. In the latter, the symmetry is lower than similar groups in garnet. As a consequence, very little Stark splitting is observed for Nd³⁺ in YVO₄ and the ${}^{4}F_{3/2}$ metastable level has a large oscillator strength and lower radiative lifetime than Nd³⁺ in YAG. Some important physical properties of Nd:YVO4 and Nd:YAG are compared in Table I. The few laser measurements are firmly established but are a result of limited work.

2 EXPERIMENTAL

a Crucibles for Growth

The growth temperatures of $Nd:YVO_4$ are typically in the range of 1825-1900°C. If idium is the crucible material most suitable for growth at this temperature for RF heated Czochralski procedures. Iridium has a melting point of 2450°C but must be heated in an inert atmosphere or very low O_2 pressure to prevent rapid oxidation. For initial growth runs an iridium crucible 1.5 inch I.D. x 2.0 inch high with a 1.75 inch O.D. x 0.87 inch I.D. washer shaped lid was used.

TABLE I

Physical Properties of Nd:YVO4 and Nd:YAG

Property	Nd:YVO4	Nd:YAG
Formulation	Y.99Nd.01V04	Y2.97 Nd .03 ^{A1} 5 ⁰ 12
Wt. % Nd	0.87	0.725
Nd atoms/cm ³	1.536 x 10 ²⁰	1.38×10^{20}
Demsity g/cm ³	4.22	4.55
Formula wt.	204.42	595.28
Crystal structure	tetragonal a= 7.12 ⁽¹¹⁾ c= 6.29	cubic, a = 12.005
Melting point ^O C	1825	1950
Moh hardness	4 - 5	8.5
Refractive index	1.97	1.823
Thermal cond. $Wcm^{-1}K^{-1}$	//c axis 0.0523	0.13
Thermal expansion, 10 ^{~6} C ⁻¹	Lc axis 0.0510 da-4.43 (12) dc-11.37	(15) 6.9
*Laser wavelength, μ cm	1.0644 ⁽¹⁴⁾	1.0643(14)
*Fluorescence lifetime, µs	96 (14)	230 (14)
*Linewidth, cm ⁻¹	7 (14)	6.5 (14)
*Cross section, 10 ⁻¹⁹ cm ²	30 ⁽¹⁴⁾	6.5 (14)
*Polarization	¥	none
*Pulsed threshold, J	0.5 (14)	1.1 (14)
dno/dt	$8.5\pm0.9\times10^{-6}$ °K ⁻¹	7.3×10 ⁻⁶ °C ⁻¹
dne/dt	$3. \times 10^{-6} {}^{\circ}\mathrm{K}^{-1}$ (16)	
Nd segregation coef.	~ 0.3 (14)	(14) 0.2

* Laser property measurements for \underline{a} -axis direction.

The crucible has a 0.060 inch wall and 0.090 bottom thickness. After several growth runs, a larger 2 inch I.D. by 2 inch high crucible with a 2.25 inch O.D. by 1.5 inch I.D. lid enabled larger diameter boules to be grown. A second growth station employed a 2 inch by 2 inch heavy wall (0.120 inch) crucible.

b Starting Materials

Reacted materials of phosphor $grade YVO_A$ and $NdVO_A$ were obtained from GTE Sylvania. The material had high levels of trace impurities but was used until the parameters of the growth of structurally sound crystals were determined. Better control over the purity was achieved through a solid-state reaction of the component oxides at 1250°C in an oxygen environment. High purity V_2O_5 was purchased from United Mineral and Chemical Co., the 99.9999% Y_2O_3 from Research Chemicals and 99.999% Nd₂O₃ from Molycorp. The purity of V_2O_5 was important and often contains 50-100 ppm of residual elements such as Ca, Na and K. In the case of Y_2O_3 and rare earth oxides, purity designations are somewhat misleading since characterization was usually done solely on the basis of rare earth impurities. Typical analyses of our chemical starting materials are given in Table II. In addition to raw materials for crystal growth, it was also important to consider the material used to contain the melt since intimate contact was maintained by the crucible with its contents throughout the growth cycle. The purity of iridium used for crucible fabrication is presented in Table III. The impurity content of the iridium metal was relatively fixed since this was determined by the vendor. The crucible reactivity with the melt was small and trace amounts of metals were not likely to get into solution.

TABLE II

(1) TYPICAL ANALYSIS OF STARTING MATERIALS

Element	Y ₂ O ₃ (Research Chem.) 99.9999	Nd ₂ O ₃ (Molycorp) 99.999	V ₂ O5 (United Mineral) Grade I	YVO4 (Sylvania) Phosphor Grade
Sm		200(2)		
A1	ND		<1	
Ca	<20	12	<1	1-10
Cu			<1	<1
Si	<20	60	10	65
Ti	ND		2	
Mg	ND		<1	6
Cr			1	5
Mn			1	
Ag			<1	
Fe	ND			9
Ni				10
RE ⁽⁴⁾				<3 each

(1) All values in PPM

South Street and the second state of the second state of the second state of the

(2) Other rare earths total 1-10

(3) ND = Not detected at limit of method used

(4) RE = Rare earths

TABLE III

TYPICAL ANALYSIS OF IRIDIUM METAL USED IN CRYSTAL FABRICATION (Engelhard, Inc.)

Element	Concentration (PPM)
Pt	25
Rh	55
Ag	20
Pb	40
Fe	50
Si	50
Mg	20
Ni	20

Because of the expensive nature of the chemicals, moderately priced phosphor grade materials have been used in the initial work to establish growth parameters without sacrificing too much in terms of material purity. As work progressed the best grade chemicals were substituted in order to investigate any internal quality dependence on impurities.

c Growth Station Construction and Gradients

The equipment used to grow Nd:YVO₄ was capable of maintaining high temperatures (1860°C) for an extended period of time in a satisfactory growth atmosphere. Figure 1 illustrates the detailed construction of the growth station. A 450 kHz, 30 kw RF generator was used to heat the iridium crucible. All the ceramic internal supports and forms were made of zirconia. The annular space between the crucible and the fused silica glass tube employed zirconia grog as insulation. The crucible was supported by a series of zirconia tubes and plates. The support tubes and discs were slotted to allow free flow of the gases through the system. On top of the zirconia grog rested a tube which supported a zirconia disc. The disc was slotted to allow careful alignment with the sighting path of the infrared detector used for diameter control sensing.

The outer enclosure consisted of two sections made from type 208 fused silica tubing. A gas tight seal on the bottom section was accomplished with a gland and O-ring between the fused silica tube and the support table. The top seal between the two silica tubes was a slip fit sealed with zirconia felt. The gases were introduced through the table into the lower quartz tube and passed up through the grog around the crucible and out the top. By maintaining the proper

Figure 1 Cross sectional view of YVO4 growth station.

flow of gases, most atmospheric gaseous impurities are prevented from entering the system through the top.

d Control System

Diameter control of the growing crystal is accomplished by using a special system depicted by the block diagram of Figure 2. The voltage produced by passing a portion of the RF generator plate current through a resistor is detected and compared to a reference voltage. The absolute value of the reference voltage is proportional to the deviation of the actual crystal diameter from its programmed diameter. The magnitude of the error signal is the difference between these two voltages. If the crystal is smaller than the programmed diameter, the error signal causes the plate current to be adjusted downward and conversely. In effect, the system keeps the generator power level constant as long as the crystal diameter is correct; it adjusts the power level up or down to re-establish the proper diameter whenever necessary. Temperature fluctuations in the melt are minimal using this method and crystal flaws due to non-uniform diameter are virtually eliminated. The RF generator cooling water temperature and conductivity are also monitored and accurately controlled to minimize voltage transients at the RF coil. A programmed cooldown cycle is incorporated in the control system and is used at the conclusion of a growth run to eliminate thermal shock. This cooling rate is adjustable over a wide range.

e Seed Crystals and Holders

Initial attempts to obtain seed crystals by nucleation on iridium wire was not very successful due to a highly insulated growth system. By slow cooling the crucible and melt, solid single crystal

pieces were extracted by core drilling. Some of these are depicted in Figure 3. One large piece was selected for use as a seed. Rectangular seeds were mounted on S shaped wire hooks suspended from alumina rods. A small elongated hole was drilled in the seeds with a diamond tipped drill. Because the seeds can "swing" on the iridium wire, the S shaped holder was modified as shown in Figure 4. The horizontal iridium support was blade shaped and the seed was pinned to eliminate any movement during growth. Vapors from the melt reacted significantly with the alumina rods causing brittleness and replacement was required after a few runs. Sapphire pull rods proved much more resistant to vapor attack and were substituted later for the alumina.

f Growth Atmosphere

For Nd:YVO₄ a growth atmosphere of 98% N_2 -2% O₂ has been established at flow rates of 11.2 ft³/hr and 0.244 ft³/hr respectively. Inert argon with oxygen would be desirable but tends to give crucible arcing at high temperatures. In pure N_2 gas both iridium and vanadium will react to form small amounts of refractory nitrides. The iridium crucible is also subject to oxidation and the O₂ pressure is important above 1300°C.

g Growth Axis

Single crystals of the <u>a</u>-axis or [100] orientation are required for laser rods. In the zircon tetragonal structure of YVO_4 the (100) plane is a natural cleavage plane. Thus, the crystals cleave both perpendicular and parallel to the growth direction. In addition, <u>a</u>-axis crystals are subject to adverse problems of thermal expansion, thermal conductivity and rotational asymmetry due to the

Figure 3 Single crystal pieces of YVO₄ from melt.

Figure 4 Single crystal seed holders.

anisotropy in the plane of growth. Natural cleavage planes provided a basis for rough orientation, but this was confirmed by means of the Laue x-ray back reflection technique.

h Melt Composition and Doping

Stoichiometric compositions of yttrium orthovanadate were used for crystal growth. Experiments indicated however that nonstoichiometric melts of 5 and 10 mole % excess Y_2O_3 were successful with growth, although the latter did not yield crystals of good quality. With excess Y_2O_3 the growth temperature of YVO_4 was lower and vaporization of V_2O_5 from the melt and YVO_4 decomposition were noticeably less.

The Nd^{3+} activator, as Nd_2O_3 was initially added to the phosphor grade YVO_4 and compensated with V_2O_5 . After growth run YV-10, the phosphor grade $NdVO_4$ was used for incorporation of the Nd^{3+} . Both YVO_4 and $NdVO_4$ are isomorphous with no reported phase transitions for either compound up to the melting point. Starting materials of high purity were prepared by reacting Y_2O_3 and V_2O_5 where the Nd_2O_3 was substituted directly for Y_2O_3 . In small amounts, Nd^{3+} can be substituted for Y to produce 1 atomic % $Nd:YVO_4$. The actual segregation coefficient for Nd in YVO_4 is about 0.3 or a little larger than Nd in YAG. The small coefficient reflects the larger size of Nd compared to Y. The occurrence of a radial distribution of Nd in some boules must be considered because of growth rate variations in different directions.

i Growth Run Procedure

The usual procedure for growth was to charge the crucible with the starting material. Each amount of powder must be thoroughly

molten before the next increment of material was added to prevent crust formation. The charged crucible was "soaked" overnight with a partial crust on the surface to reduce vaporization losses. The next day a seed crystal was slowly lowered into the furnace and dipped into the melt. The pull and rotation rates were adjusted and the crystal tapered to diameter by manually lowering the temperature. Once the boule grew straight under relatively stable conditions, the IR detector was employed to control diameter. After the appropriate length was attained, the boule was removed from the melt by slowly increasing the temperature without changing the pull rate. The temperature was then programmed cooled to room temperature.

3 RESULTS

a Production of Seeds

Sections of crystal boules which usually did not have cracks were used for seeds. As the quality of the boules improved, so did the resulting seeds. When a seed had a crack, it tended to propagate into the boule. A long seed of 15-20 mm proved more successful than shorter ones. The long seeds extended above the crucible lid and increased the gradient resulting in much easier growth. Vaporization from the melt often etched the seeds but did not cause growth problems.

b Oxygen Levels

In the melt growth of oxide crystals, oxygen equilibria are extremely important, particularly where one component is volatile or valence changes are possible. For Nd:YVO₄ at its melting point of 1825° C, the vapor pressure of pure V₂O₅ rises to greater than a few mm Hg. At melt temperatures around 1900° C, the vapor pressures are nearly 10 mm Hg. Under these circumstances a slight decomposition of

 YVO_4 occurred which was governed by the total pressure related to the O_2 pressure. A partial oxygen pressure of 2% was used to maintain the correct valence state for vanadium (V^{5+}). The lower oxidation states are increasingly refractory with loss of oxygen and form haze, precipitates, or secondary phases in the $Y_2O_3 - V_2O_5$ system.

c Thermal Gradients

The initial boules showed growth on the seeds but was directed toward one side and off the rotational symmetry axis. Growth continued for several millimeters but the crystal usually burned-off. The thermal gradient was much too shallow for growth to be properly initiated. In order to steepen the gradient, the crucible lid was removed. This resulted in nucleation on the crucible wall where projections from the wall grew toward the center of the crucible and interfered with the growing crystals. Better success was achieved by using the lid and raising the crucible about one inch in the RF coil so the top of the crucible wall and the "feet" on the seed were eliminated with this steeper thermal gradient. Several crystals about 15 mm long were grown but burn-offs remained a problem. Removal of a portion of the ZrO₂ insulation helped eliminate the burn-offs.

d Pull Rate and Interface Shape

By quickly removing a crystal from the melt, the interface shape could be observed. As expected, the interface was very flat and was made more convex by changing the pull rate and rotation rate. The adjustment of a satisfactory thermal gradient and interface shape were largely empirical. Rotation rates ranged from 4 to 30 rpm with pull rates of 0.050 to 0.200 inch/hr. The optimum rates for rotation and

pulling were 4 rpm and 0.100 inch/hr, respectively. The resulting boules had a flattened cross-section with faceting on (OlO) and the long edge parallel to $[J\infty]$. With a slow pull rate of 0.050 inch/hr the preferred growth direction was much less pronounced. A fast rotation rate of 30 rpm tended to produce more equidimensional boules but also flattened the shape of the interface which was the opposite effect we were trying to accomplish.

e X-ray Results on Phases

A diamond core drill sample of material was taken from a crucible which was cooled slowly to room temperature. Two distinct layers were evident. The top layer was $Nd:YVO_4$ and the bottom layer consisted of a two phase mixture of Nd:YVO₄ and $Y_8V_2O_{17}$ as identified by x-ray diffraction. According to the phase equilibrium diagram for the system $Y_2O_5 - V_2O_5^{(17)}$ (Figure 5), if V_2O_5 was being vaporized from the melt, the starting stoichiometric composition was being depleted in V₂O₅. With slow cooling Nd:YVO₄ would be first to crystallize in the cooler upper portion of the crucible. At the eutectic temperature, two phases crystallize, Nd:YVO₄ and $Y_8V_2O_{17}$, and would be found in the bottom part of the crucible where crystallization occurs last. From previous runs, it was evident that vaporization from the melt was changing the bulk composition. Deposits removed from the crucible lid were identified by x-ray diffraction as YVO4. However, as described above, V_2O_5 also was vaporizing. At the melting point YVO_4 also decomposed to produce YVO3 and O2. Other workers have identfied these same compositions.^(17, 18) Table IV gives the x-ray powder diffraction data for the phases identified (18).

Figure 5 Phase equilibrium diagram for the system $Y_{2}O_{3}-V_{2}O_{5}$.(17)

		(18)
TABLE	IV	

X-Ray identification of YVO_4 melt.

YVO ₄ Mel	t (200 <mesh)< th=""><th></th><th></th><th></th></mesh)<>			
X-Ray Li	nes Observed		Line Ide	ntified As
<u>d</u>	ī	YVO4	YVO3	Y8V2017
3.79	5		х	
3.56	100	(100)		
3.42	3		x	
3.09	6			(80)
3.01	7			(100)
2.944	3			(90)
2.903	4			(80)
2.796	2		(20)	
2.694	11		(100)	
2.663	89	(90)		
2.637	17		(30)	
2.519	21	Х		
2.357	9	Х		
2.246	5		х	
2.222	16	Х		
2.166	4		х	
2.010	7	Х		
1.920	14		(20)	
1.888	14			Х
1.861	11			Х
1.832	70	(74)		
1.781	13	Х		
1.751	2	Х		
1.711	6	Х		
1.592	1		Х	
1.570	28	Х		
1.530	8		х	

f Run Examples and Results

Most of the difficulties with growth in the early stages of the program resulted from burn-offs during growth due to melt composition changes caused by decomposition and vaporization. In order to counteract burn-offs, the melt temperature was programmed cooled at a certain rate once the seed was dipped. Boule lengths reached 30 mm, but the taper was large which caused cracking. (Figure 6) Further adjustments in the thermal gradient by various heat reflector arrangements helped the growth process. In the $Nd:YVO_4$ melt, very dark convection lines were present which tended to interfere with the IR detector. By using a smaller diameter "eye" in the detector and setting it only after the boule was growing straight, lengths of up to 65 mm were obtained without burn-offs. The IR detector was never successful in tapering the boule from the seed and then growing straight without burn-offs. Once the boule was grown manually to diameter and growing straight under relatively stable conditions, the detector did an excellent job of diameter control (Figure 7). Table V lists the data for the Nd:YVO4 growth runs.

Boules grown with [100] orientation showed a preferred growth in the [001] direction as shown in Figure 8. This was especially evident with a fast pull rate of 0.20 inch/hr. Growth on the seeds in the <u>c</u> direction occurred very easily with little or usually no growth in the <u>a</u> direction. The resulting boules had a flattened cross-section with faceting on (010) the entire length. This crystal habit made it very difficult for the IR sensor on the diameter control to track the boule. With a slow pull rate of 0.050 inch/hr the preferred growth diameter was much less pronounced. Crystals showed a marked tendency

Figure 6 Crystal grown with a taper.

Figure 7 Excellent diameter control of crystal.

			TABLE V	(1)	
		Summary	of Nd:YVO ₄ gro	wth runs	
Run No.	Crystal (2) Diameter (mm)	Crystal Length (mm)	Pull Rate (mm/hr)	Rotation Rate (rpm)	Comments
I-1Y	1	;	1	1	Crucible leak.
YV-2	1	1	1	1	Crucible melted, sprayed YVO_4 .
YV-3	1	1	1	ł	No crystal, fast cool for seeds.
YV-4	1	1	1	ł	Crucible leak.
YV-5	1	1	.050	50	Small pulled crystal, melt cut up for seeds.
¥V-6	11	60	•050	24	No haze in crystal, bottom cracked.
YV-7	1	1	ł	1	Crucible leak.
YV-8	1	1	1	1	Material extruded from crucible.
9-VY	15	30	.050	24	Clear part of crystal looks good, no cracks.
YV-10	1	1	1	ł	Seed & holder fell into melt. No crystal.
11-VY	10	13	.100	30	Crystal has no cracks, very short, looks clear.
YV-12	12	20	.100	4	Crystal short & cracked.
YV-13	(12)(6)	61	•200	4	Fast pull rate, crystal cracked, transverse cracks at diameter changes
YV-14	(9)(11)	43	.100	4	Top of crystal looks good, cracks start at diameter changes. Crystal only grew in 2 directions.
YV-15	14	10	.100	20	Short crystal, irregular shape, cracked.
YV-16	:	1	;	ł	No crystal - for seeds.

Connents	No crystal.	Surface froze, shut down, no crystal.	Crystal very short, no cracks.	For seeds, try to dip seed & cool melt for seeds.	Crystal about 2", cracked at diameter changes.	Crystal is irregular in shape and cracked.	Boule very irregular in shape, composition 10 mole % excess Y ₂ O ₃ .	No crystal, used crackle for charge.	No crystal, nonstoichiometric melt, 5 mole % excess $Y_2 O_3$.	Crystal cracked, boule shifted and is asymmetric.	No crystal, V ₂ O ₅ added to compensate for vaporization.	Small crystal, nonstoichiometric melt, 5 mole $\%$ excess $Y_2 O_3 \cdot$	Small crucible (1 1/2"ID x 2" hi) longitudinal cracks, crystal has an hourglass type shape, no transverse cracks.
Rotation Rate (rpm)	1	1	10	ł	4	4	4	}	;	4	;	4	4
Pull Rate (mm/hr)	ł	ł	.100	1	.100	.100	.100	1	1	.100	1	.100	.100
Crystal Length (mm)	ł	1	5	1	50	16	40	ł	;	30	1	Ŋ	40
Crystal Diameter (mm)	1	:	15	1	17	(12)(6)	15	1	ł	(16)(10)	1	п	(14)(7)
Run No.	YV-17	¥V-18	91-VY	YV-20	YV-21	YV- 22	YV-23	YV-24	YV-25	YV-26	YV-27	YV-28	YV-29

Comments	Longitudinal and transverse cracks, diameter control fair.	Transverse cracks at diameter changes. No longitudinal cracks.	Crucible failure.	Boule more equidimensional, quality looks good, some longitudinal cracks.	Poor quality, many cracks, may be from poor quality seed.	Good length, good diameter control, quality looks good, transverse and longitudinal cracks.	Very short boule, transverse cracks.	Good length, good diameter control. Again transverse and longitudinal cracks.
Rotation Rate (rpm)	4	4	•	4	4	4	4	4
Pull Rate (mm/hr)	•100	•100	ı	•050	.100	•100	•1.00	.100
Crystal Length (mm)	30	30	J	30	10	57	10	65
Crystal Diameter (mm)	(1)(2)	(13)(2)	•	20	10	(16)(6)	(14)(7)	(14)(6)
Run No.	YV-30	YV-31	YV-32	YV-33	YV-34	YV-35	YV-36	YV-37

(1) Unless otherwise stated material composition is stoichiometric

For pronounced preferential growth, 2 dimensions are given. The (<u>c</u>) direction first, then the (<u>a</u>) direction. (2)

Figure 8 Preferred growth in the [001] direction of a typical Nd:YVO₄ crystal. (a) View along [010] (b) View along [001].

to cleave along the (100) and (010) planes. Less frequently, irregular cracks were present. Since diameter fluctuations usually produce a tendency toward cracking as in Figure 9, diameter control was very important. In order to produce reasonable control, the boules could not be too asymmetric.

4 DISCUSSION

The Czochralski growth of <u>a</u>-axis crystals of Nd:YVO₄ posed numerous problems, the first of which was the repeated burn-offs of the boules during growth. As vaporization of V_2O_5 occurred, the bulk composition changed and Nd:YVO4 crystallized at lower temperatures. The melt temperature was too hot and no longer in equilibrium with the growing crystal and burned off. With continued heating, progressively more V_2O_5 was lost, changing composition and the temperature of crystallization of Nd:YVO4. The rate of vaporization probably was not constant at all temperatures. After prolonged heating of the melt, a significant amount of YVO_4 decomposed to YVO_3 and O_2 so that growth was no longer possible. Another factor contributing to the burn-off problem was the melt drop in the crucible caused by vaporization. At high melt levels considerably more power was needed to reach growth temperatures than with lower levels. As material vaporized, the melt temperature increased due to lower melt levels. Experiments to determine the vaporization rate of V205 from the melt by weight loss would be impossible due to simultaneous loss of Nd:YVO4 and iridium, and because of sample decomposition. After considerable experimentation, the appropriate thermal gradients and interface shape were determined where the IR detector compensated for the melt compositional

Figure 9 Transverse cracking caused by diameter fluctuations.

changes and adjusted the temperature to routinely grow boules with good diameter control. In order to reduce the problem of V_2O_5 vaporization, an external gas overpressure would be needed in a high pressure crystal puller or growing at lower temperatures from a nonstoichiometric solution.

Diameter control problems were also caused by pronounced crystal faceting on (010) and the longer edge parallel to [100] produced by the preferred <u>c</u>-axis growth. The faceting was inherent with the material, however, the preferred <u>c</u>-axis growth direction can be diminished by reducing the pull rate.

The most persistent problem to date was cracking. Many factors such as chemical purity, dopant concentration, cooling rate, thermal gradients, and atmosphere composition could be responsible. A large difference in the thermal expansion exists along the <u>a</u> and <u>c</u> axes which of course is inherent with the material. If the thermal expansion did not cause the cracking, it surely contributed to the strain in the boule. The parameters listed above are being investigated vigorously to obtain an insight into the fundamental problems of cracking and cleavage.

5 CONCLUSIONS

The Czochralski growth of [100] boules of Nd:YVO₄ has been investigated for possible laser application. The principal problems were solved systematically to obtain high quality material. Iridium crucibles were used with RF heating to melt the components. The 1.5 to 2.0 inch diameter crucible was chosen to minimize thermal gradients. The growth station was designed with heavy insulation and chambers to control the growth interface and thermal stress after

pulling. A most important factor was "diameter" control to prevent thermal excursions and "off axis" growth. Fair crystals were grown with low purity pre-reacted YVO₄ and NdVO₄. Our own preparations from Y_2O_3 and V_2O_5 gave better results. The best crystals were grown at a rotation rate of 4 rpm, pull rate of .100 inches/hr, and O_2 level of 2%. The single persistent problem of cracking and cleavage on (100) planes has limited size and quality. Cracking was partially associated with the growth parameters, the crystal structure, and purity of starting materials. The growth conditions were studied extensively this period. High quality [100] seed material was prepared from single crystal pieces and a technique was developed for mounting on an iridium wire. Under ideal growth conditions, smooth facets were found on the crystal boules. Initial trials of cutting, core drilling, and other fabrication procedures were deferred until better quality crystals were grown.

6 RECOMMENDATIONS

Further experiments should be conducted on the origin of the cleavage of Nd:YVO₄. The effects of growth gradients, O_2 levels, stoichiometry, and chemical reagent purity should be examined more thoroughly. Experiments on the best manner for fabrication of laser rods should be started. Some spectral data and optical tests should also be collected to correlate with the growth parameters of selected materials.

7 REFERENCES

1	 (a) L.G. DeShazer, M. Bass, U. Ranon, J.K. Guha, E.D. Reed, J. Strozyk and L. Rothrock, Paper Cl, VIIIth International Quantum Electronics Conference, San Francisco, California, June 10, 1974. (b) Private Communication, J. Strozyk, U.S. Army ECOM, JanFeb, 1975.
2	A.W. Tucker, M. Birnbaum, C.L. Fincher and L.G. DeShazer, J. Appl. Phys. <u>47</u> , 232 (1976).
3	J.R. O'Connor, Appl. Phys. Letters <u>9</u> , 407 (1966).
4	W. Phillips and R.J. Pressley, RCA Laboratories Report and Communication on Growth and Properties of $Nd:YVO_4$ (1969).
5	J.J. Rubin and L.G. Van Uitert, J. Appl. Phys. <u>37</u> , 2920 (1966).
6	H.M. Dess and S.R. Bolin, Trans. Metall. Soc. AIME 239, 359 (1967).
7	A.D. Morrison, J. Mat. Sci. <u>8</u> , 1666 (1973).
8	K. Chow and H.G. McKnight, Mat. Res. Bull. 8, 1343 (1973).
9	H.G. McKnight and L.R. Rothrock, ECOM-TROO22F, Contract DAAB-77-C-0022, April, (1973).
10	M. Bass, L.G. DeShazer, U. Ranon, TR-ECOM-74-0104-1, Contract DAAB 07-74-C-010, October 1974.
11	K. Robinson, G.V. Gibbs and P.H. Ribbe, Amer. Mineral <u>56</u> , 782 (1971).
12	H. C. Schopper, W. Urban and H. Ebel, Solid State Comm. <u>11</u> , 955 (1972).
13	P.H. Klein and W.J. Croft, J. Appl. Phys <u>38</u> , 1603 (1967).
14	M. Bass, L.G. DeShazer, and U. Ranon, Report No. ECOM 74-0104-1, 1974.
15	J.D. Foster and L.M. Osterink, Appl. Optics 7, 2428 (1968).
16	Private Communication, J. Strozyk, U.S. Army ECOM, 1977.
17	E.M. Levin, J. Am Ceram. Soc. <u>50</u> , 381 (1967).
18	R.C. Ropp, Mat. Res. Bull. <u>10</u> , 271 (1975).
19	G.J. McCarthy, C.A. Sipe, and K.E. McIlvried, Mat. Res. Bull. 9, 1279 (1974).

DISTRIBUTION LIST

101	DEFENSE DOCUMENTATION CENTER Attn: DDC=TCA	205	DIRECTOR Naval research laboratory
012	CAMERON STATION (BLDGS) Alexandria, va 22314	001	ATTN: CODE 2627 Washington, DC 20375
102	DIRECTOR National Security Agency	206	COMMANDER Naval Electronics Laboratory Center
001	ATTN: TDL Fort george G. Meade, MD 20755	001	ATTN: LIBKARY San diego* ca 92152
104	DEFENSE COMMUNICATIONS AGENCY Technical Library Center	207	CDR» NAVAL SURFACE WEAPONS CENTFR White oak laboratory
001	CODE 205 (P. A. TOLOVI) Washington, DC 20305	001	ATTN: LIBRARY, CODE WX=21 Silver Spring, MD 20910
200	OFFICE OF NAVAL RESEARCH Code 427	212	COMMAND, CONTROL & COMMUNICATIONS DIV Development center
001	ARLINGTON VA 22217	001	MARINE CORPS DEVELOPMENT & EDUC COMD Quantico, va 22134
201	CDR. NAVAL SHIP SYSTEMS COMMAND Technical Library. Ru 3 5-08	213	DIRECTOR, NAVAL RESEARCH LABORATORY Attn: Code 4109, Edtpo Cor, Maccallum
001	NATIONAL CENTER ND. 3 WASHINGTON, DC 20360	001	WASHINGTON. DC 20375
203	GIDEP ENGINEERING & SUPPORT DEPT	214	COMMANDER® NAVAL AIR SYSTEMS COMMAND Wetenringical Department(Air=Def)
001	PD BDX 398 NORCO* CA 91760	005	WASHINGTON, DC 20361

217	NAVAL AIR SYSTEMS COMMAND	008	COMMANDER US ARMY MISSILE COMMAND
004	MASHINGTON. DC 20360	001	ATTN: DRSMI-RED Repstone Arsenal, Al 35809
300	AUL/LSE 64=285 Maxwell AF8= AL 36112	402	COMMANDER US ARMY MISSILE COMMAND
		100	REDSTONE ARSENAL, AL 35809
301	ROME AIR DEVELOPMENT CENTER Attn: Documents Lirrary (Tild)	403	CDR. US ARMY MISSILE COMMAND Redstone scientific info center
001	GRIFFISS AFB, NY 13441	002	ATTN: CHIEF, DOCUMENT SECTION Redstone Arsenal, al 35809
302	USAFETAC/CBTL Attn: Lirrarian	404	COMMANDER US ARMY MISSILE COMMAND
001	STOP 825 Scott AFB+ IL 62225	001	ATTN: DRSMI®RE (MR. PITTMAN) Redstone Arsenal, Al 35809
307	HQ ESD (DRI)	406	COMMANDANT Us army aviation center
001	BEDFORD, MA 01731	003	ATTN: ATZG-D-MA Fort Rucker, Al 36362
112	HQ. AIR FORCF FLFCTRONIC WARFARF CENTER	408	COMMANDANT Us Army military police school
002	ATTN: SURP SAN ANTONIO, TX 78243	003	ATTN: ATSJ-CD-M-C Fort Mcclellan, al 36201
		417	COMMANDER 11s Army Tnteiligence center 2 sch(
314	ATTN: DLCA ATTN: DLCA ANDREWS AFB	002	ATTN: ATSI-CD-MD FORT HUACHUCA, AZ 85613
100	WASHINGTON. DC 20331		

& SCHOOL

	418 001	COMMANDER Hg Fort Huachuca Attn: technical reference UIV Fort Huachuca, A2 85413	438	HODACDAMA-ARI Mashington, I
	420	COMMANDER USASA TEST & EVALUATION CENTER ATTN: IAD*CDR*7 Fort Huachuca* A7 85613	452	CDR. US ARMY Attn: DrxPG Naval Trainir Orlando, FL
	421	COMMANDER HQ US ARMY COMMUNICATIONS COMMAND Attn: CC-OPS-SM Fort Huachuca, Az 85613	460	COMMANDER US army arman attn: drsar-f rock island,
3	422	COMMANDER US ARMY YUMA PROVING GROUND ATTN: Steyp-mid (tech Library) Yuma, Az 85364	461 001	COMMANDER, RC US ARMY ARMAN ATTN: Sarri-L Rock Island,
	432	DIR& US ARMY AIR MOBILITY R&D LAB Attn: T. Gossett. Bldg 207-5 Nasa Amés research center Moffett field. Ca 94035	466	CDRA US ARMY Combat develo Attn: Atcacc Fort leavenno
	436	HQDACDAMD=TCE) Washington, DC 20310	470	DIRECTOR OF C US ARMY ARMOF Attn: Atzk-CC Fort Knox* Ky
	437	DEPUTY FOR SCIENCE & TECHNOLOGY Office, Assist sec Army (R&D) Washington, DC 20310	473	COMMANDANT US ARMY DRDNA Attn: Atsl-Cd

-	
A	
E	
0	
-	
>	
•	
0	
	5
-	•
~	2
0	
2	2
K	
ĩ	2
4	5
A	c
9	A P
4	2
5	
I	3
•	-
e	C

UL 20310

FRAINING DEVICE AGENCY NG EQUIPMENT CENTER 32613

AMENT COMMAND -RDP (LIBRARY) • IL 61201

ROCK ISLAND ARSENAL Ament command -LR-Y • IL 61201

COMBINED ARMS DPMENTS ACTIVITY JRTH. KS 66027 COMBAT DEVELOPMENTS Dr center CD-MS KY 40121

US ARMY DRDNANCE SCHOOL ATTN: ATSL-CD-DR 002 Aberdeen Proving Ground, MD 21005

	474	COMMANDER US ARMY TEST & EVALUATION COMMAND	481	HARRY DIAMOND LABORATORIES, DEPT OF ARMY Attn: DrxDO-rcb (DR. J. Nemarich)
	001	ATTN: DRSTE=D5=E Aberdeen Proving Ground, md 21005	001	2800 POWDER MILL ROAD Adelphis MD 20783
	475	CDR, HARRY DIAMOND LABORATORIES Attn: Lirrary	482	DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTY
	001	2800 PDWDER WILL RGAD Adelphi, wd 20783	001	ATTN: DRX57+T Aberdeen Proving Ground, md 21005
	476	DIR/DEV & ENGR Defense systems div	498	COMMANDER US ARMY TANK-AUTOMOTIVE DEV CTR
	002	ATTN: SAREA-DE-DDR (H. TANNENBAUM) Edgewood Arsenal, APG, MD 21010	001	AITNI DKDIATULA TECHNICAL LIBRARY Warrena mi 48090
4	477	DIRECTOR US ARMY BALLISTIC RESEARCH LARS	499	COMMANDER US ARMY TANK-AUTOMOTIVE COMMAND
	001	ATTN! DRXBH-LB Aberdeen Proving Ground, md 21005	001	ATTNI DRUTATRA WARRENs MI 48090
	478	DIRECTOR US ARMY BALLISTIC RESEARCH LABS	507	CDR. US ARMY AVIATION SYSTEMS COMMAND Attn: Drsav-G
	001	ALTNI DRXBR-CA (DK. L. VANDEKIEFI) Aberdeen Proving Ground, MD 21005	001	51. LOUIS, MD 63166
	479	DIRECTOR	511	COMMANDER, PICATINNY ARSENAL
	100	US ARMY HUMAN ENGINEERING LABS Aberdeen Proving Ground, md 21005	002	ATTN: SARPA-FK-S BLDG 350 DDVER* NJ 07801
	480	COMMANDER Edgewood Arsenal	513	COMMANDER Picatinny Arsenal
	001	ATTN: SAREA-TS-L Aberdeen Proving Ground, MD 21010	001	ATTN: SARPA=TS=S #59 Dover N.1 07801

518	TRI-TAC DFFICE Attn: CSS (DR. Pritchard)	542	COMMANDANT US ARMY FIELD ARTILLERY SCHOOL
001	FORT MONMOUTH. NJ 07703	002	ATTN: ATSFA-CTD FORT SILL OK 73503
526	COMMANDER White Sands Missile Range	547	COMMANDER Frankford Arsenal
005	ATTN: STEMS-IU-S HO WHITE SANDS MISSILE RANGE, NM 86002	001	ATTN: LIBRARY, K2400, BLDG 51-2 Philadelphia, pa 19137
527	COMMANDER White Sands Missile Range	548	COMMANDER Frankford Arsenal
001	ATTN: STEMS-IU-U White Sands Missile Range, NM 88002	001	ATTN: PDS 64-4 (J. L. HELFRICH) Philadelphia, pa 19137
531	CDR. US ARMY RESEARCH OFFICE Attn: drxro-ip	550	COMMANDER Frankford Arsenal
001	PO BOX 12211 Research Triangle Park, nc 07709	001	ATTN: SARFA-FCO-O (MR. S. NOVACK) Philadelphia, pa 13137
532	CDR. US ARMY RESEARCH OFFICE Attn: Drxro-PH (Dr. r. j. Lontz)	554	COMMANDANT US ARMY AIR DEFENSE SCHOOL
001	RESEARCH TRIANGLE PARK, NC 27709	001	FORT BLISS, TX 79916
536	COMMANDER US ARMY ARCTIC TEST CENTER	\$55	COMMANDER Us Army Nuclear Agency
005	ATTN: STEAC=TD=MI APO SEATTLE 98735	001	FORT BLISS. TX 79916
537	CDR. US ARMY TROPIC TEST CENTER Attn: Stetc-md-A (tech Library)	556	COMMANDER, HO MASSTER Technical information center
001	DRAMER 942 Fort Clayton. Canal 70ne 09827	001	ATTN: MRS. RUTH REYNOLDS Fort Hood, TX 76544

	559 001	COMMANDER US ARMY DUGMAY PROVING GROUND ATTN: MT-T-M DUGMAY, UT 84022	571 001	DIRECTOR, EUS US ARMY AIR MU ATTN: TECHNIC/ Fort Eustis, V
	562 001	COMMANDER, DARCOM ATTN: DRCDE-DE (MR. H. BLADGETT) 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	572 002	COMMANDER US ARMY LOGIS ATTN: ATCL-MC Fort LEE, VA 2
	563 001	COMMANDER® DARCOM ATTN: DRCDE 5001 EISENHOWER AVE Alexandriaø va 22333	573 001	COMMANDER US ARMY LOGIS Attn: Atcl-Ma Fort Lee, Va 3
6	564 001	CDR. US ARMY SECURITY AGENCY Attn: Iarda-It Arlington Hall Station Arlington, VA 22212	574 002	COMMANDER HQ, TRADAC ATTN: ATTNG-XC Fort Monrde, V
	567 002	COMMANDANT US ARMY ENGINEER SCHOOL ATTN: ATSE-TD-TL Fort Belvoir, VA 22060	575 001	COMMANDER US ARMY TRAINI Attn: Atco-tec Fort Monrde, V
	568 001	COMMANDER US ARMY MOBILITY EQP RES & DEV C ^N ATTN: Drxf8-r Fort Belvoir, va 22060	576	COMMANDER US Army traini attn: atco-sie fort monrde, v
	569	COMMANDER US ARMY ENGINEER TOPOGRAPHIC LARS ATTN: ETL°TD-EA Fort Belvoir, va 22060	578 001	CDR. US ARMY (VINT HILL FAR ATTN: IAVAAF Marrenton, Va

STIS DIRECTORATE 40Bility R&D LAB Cal Library VA 23604

- TICS CENTER 22801
- **FICS CENTER**
 - 23801
- IA 23651
- ING & DOCTRINE COMMAND VA 23651
- ING & DOCTRINE COMMAND VA 23651
- - GARRISON MS STATION 22186

- ATTN: DRSEL-NV-VIS (MR. L. GILLESPIE) DIRECTOR. NIGHT VISION LABORATORY US ARMY ELECTRONICS COMMAND FORT BELVOIR, VA 22060 600 100
- DIRECTOR, NIGHT VISION LABORATORY US ARMY ELECTRONICS COMMAND 601
 - ATTN: DRSEL-NV-SD (MR. GIBSON) FORT BELVOIR, VA 22060 001
- DIRECTOR, NIGHT VISION LABORATORY US ARMY ELECTRONICS COMMAND ATTN: DRSEL-NV-D 602
 - FORT BELVDIR. VA 22060 001
- DFC OF MISSILE ELECTRONIC WARFARE Electronic Warfare Lab, Ecom White Sands Missile Range, NM 88002 CHIEF 604 001 7
- CHIEF 606
- INTEL MATERIEL DEV & SUPPORT OFC Electronic Marfare Lab, ecom Fort Meade, MD 20755 001

Originating Office

22

- COMMANDER 680
- US ARMY ELECTRONICS COMMAND FORT MONMOUTH. NJ 07703 000
 - DRSEL-PP-I-PI
- DRSEL-PL-ST
 - DRSEL-NL-D
- DRSEL-ML-D
 - DRSEL-VL-D

DRSEL-TL-TG (Mr. S. Schneider) DRSEL-NL-R-5(Dr. E. Dworkin) (Dr. H. Hieslmair) (Ofc of Record) (Mr. J. Strozyk) (Dr. H. Jacobs) Mr. B. Louis) Dr. R. Buser) Dr. E. Tebo) DRCPM-TDS-SE DRSEL-CT-LE DRSEL-CT-LD DRS EL-MA-MP DRSEL-CT-LC DRSEL-CT-LD DRSEL-MS-TI DRSEL-00-TD DRSEL-TL-I DRSEL-VL-E TRADOC-LNO DRSEL-TL-D DRS EL-TL-B DRSEL-ML-N DRSEL-CT-L DRSEL-CT-L DRSEL-BL-D USMC-LLNO DRSEL-PA DRSEL-RD DRSEL-DRSEL 2** 5

- 700 CINDAS Purdue Industrial Research Park 2595 Yeager Road 001 W. Lafayette, in 47096
- 701 MIT LINCOLN LABORATORY Attn: Library (RM A-082) PO BOX 73 002 Lexington, MA 02173
- 702 ENVIRONMENTAL RESEARCH INST OF MICHIGAN Attn: Iria Library Do Dov 4.8
 - PD BOX 618 001 ANN ARBOR* MI 48107
- 703 NASA SCIENTIFIC & TECH INFO FACILITY Baltimore/Washington intl Airport 001 PO BOX 8757, MD 21240

- 706 ADVISORY GROUP ON ELECTRON DEVICES Attn: Secy. Working Group D (lasers) 201 Varick Street 002 New York. Ny 10014
- 707 TACTEC BATTELLE MEMORIAL INSTITUTE 505 King Avenue 001 Columbus, om 43201

- 708 BALLISTIC MISSILE RADIATION ANAL CEN Env research inst of michigan Box 618 201 Aum 40000 M1 48407
 - 001 ANN ARBOR. MI 48107
- 709 PLASTICS TECH EVAL CENTER Picatinny Arsenal, bldg 176 Attn: MR, A. M. Anzalone 001 Dover, NJ 07801
- 710 KETRON, INC. ATTN: MR. FREDERICK LEUPPERT 1400 MILSON BLVD, ARCHITECT BLDG 002 Arlington, va 22209
- 711 METALS AND CERAMICS INF CENTER Battelle
- 505 KING AVENUE 001 COLUMBUS, DH 43201