

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING HIGH EFFICIENCY, HIGH POWER GALLIUM ARSENIDE READ-TYPE IMPATT DIODES

SEVENTH QUARTERLY PROGRESS REPORT

1 January 1977 to 31 March 1977

CONTRACT NO. DAAB07-75-C-0045

Prepared By

H. R. Chalifour and S. R. Steele Raytheon Company Waltham, Massachusetts 02154

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND · FORT MONMOUTH, N.J.

RAYTHEON COMPANY
Special Microwave Devices Operation
130 Second Avenue
altham, Massachusetts 02154

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

This project has been accomplished as part of the U.S. Army (Manufacturing and Technology) (Advanced Production Engineering) Program which has as its objective the timely establishment of manufacturing processes, techniques or equipment to insure the efficient production of current or future defense programs.

	SECURITY CLASSIFICATION OF THIS PAGE (When Date	Entered)	
	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
9	Manufacturing Methods and Tec Engineering High Efficiency, Power Gallium Arsenide Read-T Diodes	High	5. TYPE OF REPORT & PERIOD COVERED Quarterly Report 1/1/77 - 3/31/77 6. PERFORMING ORG. REPORT NUMBER 0677-1379
(10)	H. R./Chalifour S. R./Ste	ele (15)	DAABØ7-75-C-ØØ45
	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	Raytheon Company Waltham, Massachusetts 02154		2759738
	11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Electronics Command Fort Monmouth, New Jersey	(1)	12. REPORT DATE April 1977 13. NUMBER OF PAGES 47
9	Jan-31 May 7	no. 3	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Resett)	The second second	
	Approved for public release; 17. DISTRIBUTION STATEMENT (of the abstract entered		0
	18. SUPPLEMENTARY NOTES	•	Micro
	Impatt Diode, Read Diode, Gal Diodes, Plated Heat Sink, Mic Mic ABSTRACT (Continue on reverse side if necessary en Group B testing of the confir during the period, ending tha	lium Arsenide, rowave Oscilla didentify by block number) matory sample	Schottky, Microwave ators diodes was completed
	tested met specifications. D The Read profile wafers for t fabricated and met specificat production line. Wafer chara	ata is include he pilot produ ions. They we	ed herein. action diodes were ere delivered to the

production line. Wafer characterization data is included herein,

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

402847

LB

as well as evaluation data on the first two wafers subsequent to sample diode assembly on the production line.

The fifth X-band life test was completed. The sixth X and Ku-band life tests were also completed. Results are discussed herein.

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING HIGH EFFICIENCY, HIGH POWER GALLIUM ARSENIDE READ-TYPE IMAPTT DIODES

SEVENTH QUARTERLY PROGRESS REPORT

1 January 1977 to 31 March 1977

CONTRACT NO. DAAB07-75-C-0045

The object of this program is to develop a capability to manufacture High Efficiency, High Power Gallium Arsenide IMPATT Diodes meeting the description and specifications of Section F of the contract and the requirements of SCS-481.

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

Prepared By

H. R. Chalifour and S. R. Steele Raytheon Company Waltham, Massachusetts 02154

PURPOSE

The objective of this program is to establish a capability to manufacture high-efficiency, high-power Gallium Arsenide IMPATT diodes at specified rates and yields. There are two diode types; one at X-band, and one at Ku-band which have the nominal characteristics listed below.

	X-Band	Ku-Band
Operating Frequency (GHz)	10.0 ±1.0	15.0 ±1.0
Power Output (Watts)	3.5 min.	2.5 min.
Conversion Efficiency (%)	20 min.	20 min.
Operating Junction Temperature (OC)	200 max.	200 max.

Engineering effort is to be directed toward establishing production processes for both Gallium Arsenide epitaxial wafers and diode fabrication and test. The wafers are to meet the material characterization testing as specified, and the diodes must meet the detailed performance requirements outlined in SCS-481.

TABLE OF CONTENTS

SECTION			PAGE
1.0	INTRO	DUCTION	1-1
2.0	RESUL	TS AND ACCOMPLISHMENTS	2-1
	2.1	Results of Confirmatory Sample Testing Pilot Production Run	2-1
3.0	DIODE	OPERATING LIFE TESTS	3-1
	3.1 3.2 3.3	Summary of Requirements Status of Operating Life Test Program Results of Tests	3-1 3-1
4.0	CONCL	USIONS	4-1
5.0	PROGR	AM FOR NEXT INTERVAL	5-1
6.0	IDENT	IFICATION OF PERSONNEL	6-1
APPENDI	ХА	TESTS RESULTS - CONFIRMATORY SAMPLE DIODES	A-1
APPENDI	ХВ	SPECIFICATION - GaAs EPITAXIAL WAFER READ PROFILE PEM DIODE	B-1

LIST OF ILLUSTRATIONS

FIGURE							PAGE
2-1	Breakdown	Voltage	Profile	- V	Vafer	41415B	2-7
2-2	Breakdown	Voltage	Profile	- P	Vafer	41410C	2-8

LIST OF TABLES

TABLE		PAGE
2-1	Read Wafers Supplied for Pilot Run	2-4
2-2	Data Sheet - MS50371 - X-Band Diodes	2-5
2-3	Data Sheet - MS50371 - X-Band Diodes	2-6
3-1	Fifth Operating Life Test Data - X-Band Diodes	3-3
3-2	Sixth Operating Life Test Data - X-Band Diodes	3-4
3-3	Sixth Operating Life Test Data - Ku-Band Diodes	3-5

1.0 INTRODUCTION

Results of Group A testing on the confirmatory sample diodes were presented in the report covering the prior period. During the present period, the Group B testing was completed. The testing was successful with the exception of two diodes lost during end-point testing subsequent to nuclear irradiation. This was due to testing error as discussed in this report.

Authorization to proceed to the pilot production phase was received from ECOM. The Read-profile wafers were grown and delivered to the production line. Six wafers of each type (X-band and Ku-band) had been scheduled for this activity, and this quantity was delivered. The wafers were accepted by incoming inspection, and some were committed for fabrication into dice. Sample diodes fabricated from the first two wafers met specifications. Production of the X-band diodes has, therefore, been initiated.

The operating life test program is continuing. During the period, the fifth X-band life test was completed and there were no failures. The sixth X-band and the sixth Ku-band tests were also completed without diode failures. Experience gained in tuning the cavities and corrections to the life test equipment, as discussed in several earlier reports, has resulted in greatly improved results in recent tests compared to those completed earlier in the program.

2.0 RESULTS AND ACCOMPLISHMENTS

2.1 Results of Confirmatory Sample Testing

The complete Group A testing on the confirmatory samples was performed during the prior period, and data was included in the Sixth Quarterly Progress Report. During the present period, the Group B testing was completed. The devices tested met all of the specifications with the exception of two devices which failed during end-point testing after exposure to nuclear irradiation. The failures were due to operator error during retest caused by improper tuning sequence. The other devices subjected to the same test showed no performance degradation, verifying that the devices are resistant to nuclear irradiation. Twenty-two each of X-band and Ku-band devices were delivered. The remaining three devices of each type are radioactive and are stored at a Raytheon facility. available for inspection or test. An X-band and a Ku-band test cavity were delivered with the confirmatory sample diodes.

The Group B testing consisted of the following sequence of tests:

Operating Life Test (9 diodes of each type)

	X-Band	Ku-Band	
Oscillator Frequency	10.0 ±1.0	15.0 ±1.0	GHz
Oscillator Output Power (min)	3.5	2.5	Watts
Oscillator Efficiency (min)	20	20	ક
Junction Temperature (max)	200	200	°c
Ambient Temperature	25 ±3	25 ±3	°c
Test Duration	1000	1000	Hours

Storage Life - Nonoperating (9 diodes of each type) 2.

> 200°C Ambient Temperature:

1000 Hours Test Duration:

Nuclear Radiation Exposure (3 diodes of each type) 3.

> 10 KW Power Level:

7 Minutes Exposure Time:

1.2 x 10⁵ rads (Silicon) Gamma Exposure:

 $1.04 \times 10^{13} \text{ n/cm}^2$, 1 Mev Si Neutron Exposure:

damage equivalent

Shock, Vibration, Accelerating, Hermeticity (4 diodes of 4. each type)

Shock MIL-STD-750, Method 2016

500 G, 1 ms

1/2 Sine Pulse 3 planes

5 shocks per plane

Vibration MIL-STD-750, Method 2056

50 - 2000 - 50 Hz

3 planes - 4 cycles/plane

3 minutes/cycle

Acceleration MIL-STD-750, Method 2006

20,000 G

3 planes

1 minute/plane

Hermeticity MIL-STD-750, Method 1071, Condition H

4 Hours @ 60 psi Helium 1 x 10 atm cc/sec. maximum

Test results for the Group A and Group B testing are included in Appendix A.

2.2 Pilot Production Run

The specification for the gallium arsenide wafers which was drafted during the course of this program and revised several times to better define the wafer characteristics was finalized during the confirmatory sample phase of the program. Wafers for the pilot run were grown to these identical specifications based upon successful performance from the confirmatory samples. The specification is included in Appendix B of this report.

Six X-band wafers and six Ku-band wafers were grown and delivered for fabrication of the pilot run diodes. A listing of the key wafer characteristics is given in Table 2-1. The wafers were subjected to a quality control incoming inspection procedure prior to acceptance for production line use and all of the wafers were accepted. All of the wafers met the requirement of 80% usable area, the usable area being at least 3.0 cm². Actually, 100% of the wafer surface was considered device grade material. Two X-band and two Ku-band wafers were committed for dice fabrication. The balance was held in storage for future use.

The two X-band wafers have been completely processed. A sample of the resulting dice was selected for diode assembly and electrical evaluation. The results are given in Table 2-2 for wafer 41415B and in Table 2-3 for wafer 41410C. It may be seen by comparison of this data with the data in Appendix A (for the confirmatory samples) that the pilot run wafers are quite similar to the confirmatory sample wafers.

Characteristics profile maps were made for each of the wafers as described in previous reports. A map of the Breakdown Voltage for each (Figures 2-1 and 2-2) is sufficient to show the uniformity on the wafers. This further verifies that at least

Table 2-1 Read Wafers Supplied for Pilot Run

	Band	Ku	Ku	Ku	Ku		Ku						
ct	$n_{\rm o} \times 10^{16}$ (cm ⁻³)	7	8	10	10	10	111	6	7	80	6	80	8
Contact	x (m m)	0.19	0.19	0.19	0.20	0.20	0.19	0.19	0.20	0.19	0.18	0.19	0.18
	x b m	0.24	0.23	0.23	0.24	0.25	0.23	0.23	0.25	0.24	0.23	0.24	0.24
	V^* (volts)	7.7	7.3	8.3	9.8	8.4	7.2	8.2	8.8	8.3	7.5	8.2	8.1
, se	$Q^* \times 10^{12}$ (c-cm ⁻³)	2.4	2.2	2.4	2.5	2.4	2.3	2.3	2.3	2.4	2.3	2.4	2.4
Spike	$\begin{array}{c} n \times 10^{16} \\ (cm^{-3}) \end{array}$	40	36	22	55	52	49	35	33	36	33	34	34
	W (nm)	52	52	41	42	44	41	20	20	20	20	20	20
Transit	$ \begin{array}{c} n \times 10^{16} \\ \text{(cm}^{-3} \end{array} $	1.1	1.2	1.0	1.1	1.0	1.0	0.50	0.52	0.52	0.53	0.49	0.48
T	(M M)	4.2	3.9	4.0	4.3	4.3	3,9	5.1	5.3	4.9	4.6	4.8	4.8
Buffer	W W	4.8	4.3	4.2	4.5	4.5	4.2	5.1	5.2	4.9	4.7	4.8	4.8
No.		27A	28B	35B	36A	36B	37B	10A	10C	11A	13A	15A	15B
Wafer No.	Series	414						414					

Table 2-2
Data Sheet - MS50371
SCS-481 Type 1
X-Band Diode

AR	CHARACTERISTIC	BV	CTO	CTVR	۲ R	RTH	P. 0	, О	VOP	lop	E	Mech. Tun.	HAT	ΔTj	QExt.	DF RMS	(N/S).
	TEST CONDITION	lma	V=O	$V = V_R$													
UNITS		Volts	PF		Volts	M/Do	Watts	CHz .	Volts	ma	%			၁		Hz	ф
	LIMITS MIN.						3.5	6			20	+250					
- 1								11	7.0	200				200	200	50	115
Serial No.	Diode I.D. Number																
	41415B-A-8	35.0		1.72	25	14.3	3.5	9.5	57.2	270 2	22.7		400	196			
1	6	38.5		1.89	25	14.3	3.5	9.6	57.3	270	22.6		400	196			
	10	43.0		1.90	25	13.3	3.5	9.5	58.1	265	22.7		400	183			
1	11	44.0		1.75	25	1	3.5	2.4	57.3	280	21.8		400	1			
1	12	42.5		1.95	25	13.1	3.5	9.5	57.1	260	23.6		400	174			
1	14	38.8		1.85	25	14.3	3.5	9.6	55.8	260	24.1		400	182			
	15	40.0		1.78	25	13.8	.5	9.7	55.8	260	24.1		400	177			
Constitution and	16	43.5		1.55	25	14.1	3.5	10.1	56.4	240	25.9		400	167			
	17	40.1		1.81	25	14.0	3.5	8.6	9.95	260	23.8		400	182			
	18	43.2		1.87	25	13.3	3.5	9.6	26.7	260	23.7		400	175			
	19	44.4		1.88	25	13.0	3.5	9.7	57.4	260	23.5		400	174			
200000																	
Constant of																	
and and																	
															1		1

Table 2-3
Data Sheet - MS50371
SCS-481 Type 1
X-Band Diode

Watts CHz Volts ma % CC	, i		-	,		>	Ď.	0						F < 5	T.			100,00
Watts CH2 Volts ma % OC Hz 3.5 9 20 ± 250 12 3.5 9 20 ± 250 50 11 3.5 11 70 500 50 20 50 11 3.5 10.0 57.4 235 25.9 380 177 17 17 18 1	CHARACTERISTIC BY CTO CTVR VR R)	CTO CTVR VR	CTVR VR	۸ R	۸ R	Y.	КТН	٠ م	F.0	VOP	lop	د	Tun.	HAT	$^{\Delta T}$ j	QExt.	OF RMS	Z.Z
Watts GHz Volts ma % C Hz 3.5 9 1 20 ± 250 1 3.5 11 70 500 ± 250 1 3.5 10.0 57.4 235 25.9 380 177 3.5 10.0 57.0 245 25.1 380 184 3.5 10.0 56.7 245 25.2 380 184 3.5 10.0 57.1 240 25.5 380 184 3.5 10.0 57.1 250 24.5 380 184 3.5 10.0 57.1 250 24.5 380 184 3.5 10.0 57.1 250 24.5 380 184 3.5 10.0 57.1 250 24.5 380 184 3.5 10.0 56.6 245 25.2 380 184 4 1 1 1 1 1 8 1 1 1 1 1	TEST CONDITION 1ma V=O V = VR	$V=O$ $V = V_R$	$V = V_R$	= VR														
3.5 9 20 ± 250 200 200 500 3.5 10.0 57.4 235 25.9 380 177 200 500 <td< td=""><td>UNITS Volts PF PF Volts C/</td><td>P_F P_F Volts</td><td>P_F P_F Volts</td><td>Volts</td><td>olts</td><td>, 'S</td><td>×</td><td>-</td><td>GHz</td><td>Volts</td><td>ma</td><td>%</td><td></td><td></td><td>၁့</td><td></td><td>Hz</td><td>ф</td></td<>	UNITS Volts PF PF Volts C/	P _F P _F Volts	P _F P _F Volts	Volts	olts	, 'S	×	-	GHz	Volts	ma	%			၁့		Hz	ф
3.5 10.0 57.4 235 25.9 380 177 3.5 10.0 57.0 245 25.1 380 183 3.5 10.0 55.5 245 25.7 380 184 3.5 10.0 55.7 245 25.7 380 189 3.5 10.0 56.7 245 25.2 380 189 3.5 10.0 56.6 245 25.2 380 199 3.5 10.0 56.6 245 25.2 380 199 4 1 1 1 1 1 5 1 2 1 2 1 2 1 2 1 2 1 3 1									6			20	2					
3.5 10.0 57.4 235 25.9 380 3.5 10.0 57.0 245 25.1 380 3.5 10.0 55.5 245 25.7 380 3.5 10.0 56.7 245 25.2 380 3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 57.1 250 24.5 380	-								111	7.0	500				200	200	50	115
3.5 10.0 57.4 235 25.9 380 3.5 10.0 57.0 245 25.1 380 3.5 10.0 56.7 245 25.7 380 3.5 10.0 56.7 245 25.2 380 3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380	Serial Diode I.D. No. Number																	
3.5 10.0 57.0 245 25.1 380 3.5 10.0 55.5 245 25.7 380 3.5 10.0 56.7 245 25.2 380 3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380	41410C-A-2 42.8 1.75 25 1	.8 1.75 25 1	25 1	25 1	1	1	5.	.5	0		235	25.9		380	177			
3.5 10.0 55.5 245 25.7 380 3.5 10.0 56.7 245 25.2 380 3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380	3 42.0 1.80 25 1	1.80 25	1.80 25	25		1	15.1	.5			245	25.1		380	183			
3.5 10.0 56.7 245 25.2 380 3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380 6 245 25.2 380 6 245 25.2 380 7 26 245 25.2 380 7 26 245 25.2 380 8 3.5 10.0 56.6 245 25.2 380 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 42.0 1.86 25 1	1.86 25	1.86 25	.86 25	-	1	15.7	. 5	10.0	5.	245			380	184			
3.5 10.0 57.1 240 25.5 380 3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380	6 42.3 1.84 25 1	1.84 25	1.84 25	25		1	16.1	2	-	56.7	245	25.2		380	192			
3.5 10.0 57.1 250 24.5 380 3.5 10.0 56.6 245 25.2 380		1.87 25	1.87 25	25		7	16.1	.5	-	57.1	240			380	189			
3.5 10.0 56.6 245 25.2 380	-	1.89 25	25	25	-	7	14.8	2		57.1	250	24.5		380	184			
	9 40.8 1.84 25 1	1.84 25	25	25		-	16.8	2	0	9.95	245	25.2		380	199			1
					-		Γ											
					-										Γ		1	

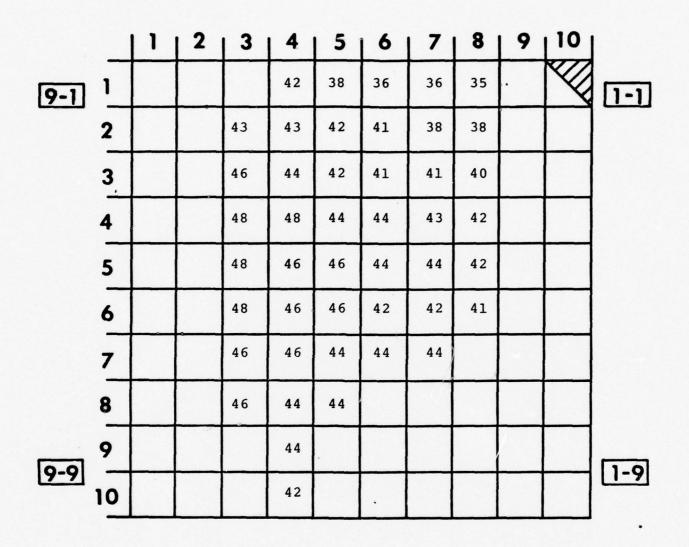


Figure 2-1 Breakdown Voltage Profile - Wafer 41415B

		1	2	3	4	5	6	7	8	9	10	
9-1	1				46	45	43	43	43		\forall	1-1
	2			51	48	46	45	43	41	41		
	3			50	48	46	45	43	41	41		
	4			51	48	46	45	44	42	41		
	5			52	50	47	45	45	43	43		
	6			54	48	46	46	45	43	43		
	7			54	48	46	45	44	44	42		
	8				49	46	44	44	43			
	9											1-9
9-9	10											

Figure 2-2 Breakdown Voltage Profile - Wafer 41410C

80% of the wafer area was usable. The uniformity of breakdown voltage depicted is a vast improvement over wafers evaluated early in the program.

Assembly of the pilot run diodes has begun using dice from these wafers, and other wafers are being processed.

3.0 DIODE OPERATING LIFE TESTS

3.1 Summary of Requirements

Operating life test requirements of this program specify that diodes periodically be subjected to 1000 hour life tests while operating as oscillators. The tests are to be initiated at the end of the first quarter and repeated quarterly for a total of seven (7) tests. The sample size for each test is five (5) diodes of each type randomly selected from a corresponding wafer. In addition, nine (9) diodes of each type are to be life tested for 1000 hours as a part of the Group B quality conformance inspection at the time of confirmatory sample testing and again at the time of pilot run sample testing.

The testing is to be conducted at an ambient temperature of 25°C with the test cavity temperature held below 75°C and the diode junction temperature not exceeding 200°C. To identify failures, the power output must be monitored with failures defined by a 25% decrease in the power output of a diode relative to its initial value. The Group B life testing will be performed with the diode operating within its rated power output, frequency, efficiency, and junction temperature specifications. The quarterly tests will be conducted in such a way as to demonstrate progress toward successfully meeting these test requirements.

Two operating life test stations, one for X-band diodes and one for Ku-band diodes, were designed and constructed to meet the operating life test requirements described. A description of the equipment was presented in the first quarterly report.

3.2 Status of Operating Life Test Program

The following is a summary of the results obtained to date during the operating life test program. Only one diode has

failed in the last three tests, and this was felt to be a circuit problem rather than a defective diode.

	Х-В	and	Ku-	Band
Test Number	Qty. Tested	Failures	Qty. Tested	Failures
1	5	1	5	1
2	5	1	5	5*
3	5	1	5	0
4	5	0	5	0
5	5	0	5	1
6	5	0	5	0

* System malfunction caused catastrophic failure of all devices.

3.3 Results of Tests

During the current period, the fifth X-band life test was completed and the sixth X-band and Ku-band tests were also completed. During the fifth X-band life test, the event log indicates several interruptions due to power supply shutdown. This was caused by an apparent malfunction of the circuit breaker switch. The power was quickly reset and there was no damage to the devices under test. Bias circuit oscillations were noted on one of the Ku-band diodes during the sixth test. The cavity tuning was adjusted slightly to correct the condition. There was no damage to the diode.

Upon completion of the tests, the diodes were retested for power output, efficiency, and operating frequency. In all cases, the original data was very closely duplicated.

The data for the fifth X-band test is given in Table 3-1. The data for the sixth X-band and Ku-band tests is given, respectively, in Tables 3-2 and 3-3.

Table 3-1 Fifth Operating Life Test Data - X-Band Diodes

	Diode No.	Rack Position	Resistance (C/W)	Junction Temp. (CC)	Operating Voltage (Volts)	Operating Current (mA)	Power Out (Watts)	Freq.	Dissipated Power (Watts)
Initial Final	41320BC2-13	1	13.5	179	57.2	260 260	33.5	9.4	11.4
Initial Final	Initial 41320BC2-2 Final	7	14.3	188	57.0	260	33.5	9.6	11.3
Initial Final	41320BC2-1	æ	14.5	188	55.7 55.8	265 265	3.3	9.7	11.3
ω Initial 4.	41320BC2-3	4	14.0	186	56.8	265 260	33.5	9.6	11.6
Initial Final	41320BC2-5	S	14.2	182	55.8	260	3.5	9.3	11.0

Specification: $P_0 = 3.5 \text{ W minimum}$ $f_0 = 9-11 \text{ GHz}$ $\eta = 208 \text{ minimum}$ $T_j = 200^0 \text{C maximum}$

Table 3-2

Sixth Operating Life Test Data - X-Band Diodes

Dissipated Power (Watts)	10.4	10.6	10.6	11.3	12.8
Freq. (GHz)	9.35	9.31	9.30	9.52	9.22
Power Out (Watts)	3.5	3.5	3.8	3.5	3.5
Operating Current (mA)	245 242	250 250	255 252	270	310 305
Operating Voltage (Volts)	56.6	56.4	55.4	54.8 55.4	52.5 52.4
Junction Temp.	153	190	190	183	185
Resistance (OC/W)	12.3	15.5	15.6	14.0	12.5
Rack Position	ß	9	7	œ	6
Diode No.	41319BA-5	41319BB-6	41319BB-8	41319BB-14	41319BB-5
	Initial Final	Initial Final	Initial Final	Final	Initial Final

= 3.5 W minimum 9-11 GHz f_o Мо Specification:

20% minimum

200°C maximum

Table 3-3

Sixth Operating Life Test Data - Ku-Band Diodes

Dissipated Power (Watts)	9.5	9.3	9.3	9.5	9.6
Freq.	14.30	14.35	14.15	14.13	14.14
Power Out (Watts)	2.5	2.5	2.5	2.5	2.5
Operating Current (mA)	305	300	305 305	310 315	300
Operating Voltage (Volts)	39.3	39.4	38.7	38.5	40.2
Junction Temp. (°C)	199	199	194	198	196
Resistance (^O C/W)	18.4	18.7	18.2	18.3	17.9
Rack	S.	9	7	80	0
Diode No.	41328AB2-6	41328AB2-14	41328AC1-1	41328AC1-9	41328AC1-21
	Initial Final	Initial Final	Initial Final	<pre></pre>	Initial Final

= 2.5 W minimum ٥ ړ Specification:

14-16 GHz f_o

= 20% minimum = 200°C maximum r F.

4.0 CONCLUSIONS

The confirmatory sample phase of the program was successfully concluded.

Fabrication of the pilot run diodes has begun, and results to date are good.

The sixth life test has been completed with no failures.

5.0 PROGRAM FOR NEXT INTERVAL

During the next interval, the pilot run is scheduled to be completed. As part of the effort, a demonstration of the yields and production rates will be made for ECOM personnel. The seventh life test will be run concurrently with the pilot run assembly effort.

6.0 IDENTIFICATION OF PERSONNEL

Michael Benedek Engineer - Production Processes	144	Hours
Henri Chalifour Manager - Diode Production	120	Hours
Paul Coletti Supervisory Engineer - Dice Fabrication	112	Hours
William Labossier Research Assistant - Epitaxial Wafer Growth	88	Hours
Samuel R. Steele Senior Scientist - Manager Materials Laboratory	8	Hours
Basil Vafiades Programs Manager - MMTE Program Manager	18	Hours
Production Technicians	155	Hours
Research Technicians	139	Hours
Machinists	20	Hours

APPENDIX A

TEST RESULTS - CONFIRMATORY SAMPLE DIODES

DATA SHEET MS50371 SCS-481 TYPE 1

CHAR	CHABACTERISTIC	4			>							Mech.	F 4 12			t	
	CACIENDIIO	λq	CTO	CTVR	'R	ттн	0	0	OP	40b	=	Tun.	HAI	1.1	CExt.	DFRMS	(N/S)A
TEST	TEST CONDITION	lma	V=0	V=VR													
UNITS	S	Volts	PF	PF	Volts	°c/w	Watts	GHz	Volts	ma	%			°c		Hz	qp
LIMITS	TS MIN.						3.5	6			20	+ 250					
								=	20	200				200	200	50	115
erial	Diode I. D.																
No.	Number																
81	41319B-A-1	31.7	23.1	1.88	25	13.1	3.5	9,93	49.5	270	26.2	ok	380×2	129	< 200	.43	-144
82	41319B-A-3	43.9	23.1	1.73		13.0	3.5	96.6	55.05	05222	28.6	ok	380×2	114	< 200	. 68	-144
83	41319B-A-5	47.0	25.9	1.88	25	12.3	5	9.94	57.4	230	26.5	ok	380×2	120	< 200	.86	-144
84	41320R-RR-14	40.5	26.4	1.88	25	12.7	3,5	9.84	55.9	246	25.5	ok	380×2	130	< 200	. 97	-=144-
85	41319B-A-8	49.3	25.5	1.87	25	14.9	3.5	6.6	59.2	235	25.5	ok	380×2	155	< 200	.86	-145
98	41319B-A-16	46.2	24.9	1.90	25	15.2	5	9.82	58.5	235	25,5	ok	380×2	155	< 200	98.	-142
87	41319B-A-18	47.6	25.1	1.89	25	13.5	3.5	9.6	58.6	250	23.9	ok	380×2	150	< 200	.86	-145
88	41319B-B-3	39.5	23.6	1.90	25	15.9	3.5	9.91	52.1	245	27.4	ò	380×2	147	< 200	. 68	-143
68	41319B-B-5	35.0	24.0	1.89	25	12.5	3.5	96.6	50.9	255	27.0	ò	380×2	143	< 200	.31	-144
90	41319B-B-6	45.5	25.8	1.88	25	15.5	3.5	9.83	55.4	265	23.8	òk	380×2	174	< 200	. 68	-146
91	41319B-B-8	45.8	26.1	1.88	25	15.6	3.5	9.85	55.5	240	26.3	ok	380×2	153	< 200	.54	-145
92	41319B-B-14	13.9	23.5		25 .	14.0	3.5	9.79	56.8	240	25.7	å	380×2	142	< 200	77.	-144
93	41319B-B-15	38.4	25.9	1.89	25	13.6	3.5	9.79	54.2	255	25.3	ok	380×2	141	< 200	.48	-145
94	41319B-B-16	47.0	25.8	1.85	25	15.3	3.5	88.6	57.5	240	25.4	ok	380×2	157	< 200	48	-145
95	41319B-B-18	14.7	26.3	1.87	25	15.5	3.5	9.85	56.8	255	24.2	ok	380×2	170	< 200	48	-145
96	41320B-AA-2	45.2	26.9	1.87	25	13.5	3.5	9.87	57.0	250	24.6	ok	380×2	145	< 200	86	-142
97	41320B-AA-6	38.3	25.1	1.86		14.1	3.5	9.87	54.4	246	26.2	ş	380×2	139	< 200	.86	-143
98	41320B-AA-8	41.8	24.6	1.86	25	14.2	3.5	9.85	57.7	240	25.3	ok	380×2	146	< 200	1.08	-144
66	41320B-AA-10	39.1	25.2	1.87	25	15.0	3.5	9.92	54.1	255	25.4	ok	380212	154	< 200	1,53	-146
100	41320B-AA-11	40.3	24.6	1.63	25	13.8	3.5	96.6	53.6	253	25.8	ok	380×2	139	< 200	.77	-145

DATA SHEET MS50371 SCS-481 TYPE 1

V=O V=VR V=VR V=O V=O V=O V=O V=VR V=O V=O V=VR V=O V=O V=VR V=O	10 4 0	Other						1					Mech.	HAT	E	0 20	4	MA(S/N)
MIN. 1ma V=O V=V R	ACIE	KINITC	λg	CTO	CTVR	2				-	TOP.	-	T mu.			F.XT.	O- RMS	
MIN. Volte PF Volte C/W Watte GHz Volte ma % C/W Watte GHz Volte ma % C/W Watte GHz Wax. 3.5 9 1.00 1.00 200 200 5.0 1.00	COND	ITION	lma	V=0	V=VR						1							
MAX. 3.5 9 20 4.250 50 50 50 50 50 50 50							C/W				ma	%			၁		Hz	qp
MAX. 11	1	MIN		T				3.5	6			07						
47.1 26.7 1.85 25 13.9 3.5 9.91 58.9 245 24.3 ok 880x7 152 < 200 1.53 41.5 20.5 1.86 25 14.8 3.5 9.95 58.5 235 25.5 ok 880x7 152 < 200 1.53 44.2 21.1 1.93 25 14.1 3.5 9.87 58.7 235 25.4 ok 880x7 145 < 200 1.09 37.8 25.2 1.91 25 14.3 3.5 10.0053.8 250 0k 880x7 152 < 200 1.09 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ok 880x7 162 < 200 1.08 68 68 68 68 68 68 68 68 68 68 68 68 68	0	MAX.							=	70					200	200	50	115
47.1 26.7 1.85 25 13.9 3.5 9.91 58.9 245 24.3 ak 880x 152 < 200 1.53 41.5 20.5 1.86 25 14.8 3.5 9.95 58.5 25.5 ok 880x 152 < 200 1.53 44.2 21.1 1.93 25 14.1 3.5 9.87 58.7 235 25.5 ok 880x 145 < 200 1.09 37.8 25.2 1.91 25 14.3 3.5 10.0053.8 250 ak 880x 152 < 200 1.09 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ak 880x 162 < 200 1.08 18.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ak 880x 162 < 200 1.08 1.08 1.08 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09	Diod	e I. D.	,															
47.1 26.7 1.85 25 13.9 3.5 9.24 1 28.9 44.1 51.5 3.5 4.4 5 0k 80.24 152 < 200 1.53 44.2 21.1 1.93 25 14.8 3.5 9.95 58.5 25.5 0k 80.24 152 < 200 1.09 37.8 25.2 1.91 25 14.1 3.5 9.87 58.7 25.5 0k 80.24 145 < 200 1.09 37.8 25.2 1.91 25 14.3 3.5 10.0053.8 250 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 24.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 24.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 24.0 256 25.2 0k 80.24 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 24.0 256 25.2 0k 80.25 162 < 200 1.08 38.1 25.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12	Na	mber	1	1		1	1		-	1	+	1	1	000		000	1	1 ::
41.5 20.5 1.86 25 14.8 3.5 9.87 58.7 235 25.4 0k 880x2 145 < 200 1.09 44.2 21.1 1.93 25 14.1 3.5 9.87 58.7 235 25.4 0k 880x2 145 < 200 1.09 37.8 25.2 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 880x2 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 880x2 162 < 200 1.08	41320	B-AA-12	•	26.7	1.85	22	13.9	ין		א נ	1	24.3		Sauxa	157	2000		-181-
44.2 41.1 1.55 25 14.1 3.5 5.87 26.0 0k 380x2 152 < 200 .68 37.8 25.2 1.91 25 14.3 3.5 10.0053.8 250 26.0 0k 380x2 152 < 200 .68 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 0k 380x2 162 < 200 1.08	41320	B-AA-13	•	20.5	1.80	67	14.8	0 4		0 0	1	20.0		38 UX 4		2000	100	143
38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ok 880x2 162 < 200 1.08 38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ok 880x2 162 < 200 1.08	41320	B-AA-1/	7.44.2	21.1	1.93	27	14.1	0 1	18.			4.07	1	380×4	641	000	100	255
38.1 25.8 1.90 25 15.5 3.5 9.89 54.0 256 25.2 ok 880x2 162 < 200 11.08	41320	B-AA-19	37.8	25.2	1.91	25	14.3	2	10.00		T	26.0		380×	152	< 200	89	-145
	41320	B-AA-20	38.1	25.8	1.90	25	•	5		1		25.2	ok	380x2		< 200	1.08	-145
						•												
				·														

GROUP B INSPECTION SCS-481 TYPE 1 X-BAND DIODES

SUBGROUP 1 Shock, Vibration, Acceleration, Hermeticity

CONDITIONS:

Shock	Vibration	Acceleration	Hermeticity
per MIL-STD-750 Method 2016	per MIL-STD-750 Method 2056	per MIL-STD-750 Method 2006	per MIL-STD-750 Method 1071
500G	20 G	20000 G	Test Condition H
1 ms .	50-2000-50 Hz	3 Planes	4 Hours @ 60 lb He
1/2 Sine Pulse	3 Planes	l Min/Plane	Pressure
3 Planes	4 Cycles/Plane		He-Leak Detector
5 Shocks/Plane	4 Min/Cycle		

CHARAC	CTERIST	c	Po		F	0	n		Т	j :	
UNITS			Wa	tts	G	Hz	8		0	С	
		Min.	3.	5	9		2	0			
LIMITS	3	Max.			1	1			2	00	
END PO	DINT		I	F	I	F	I	F	I	F	
Serial No.		de I.D.	1								Operator:
81	41319B-	-A-1	3.5	3.5	9.93	9.96	26.2	26.7	154	151	frakende.
82	41319B-	-A-3	3.5	3.5	9.48	10.02	28.6	28.5	140	140	Date: 1-13-77
99	41320B-	-AA-10	3.5	3.5	9.92	9.96	25.4	26.3	179	172	
100	41320B	-AA-11	3.5	3.5	9.96	9.96	25.8	26.6	164	158	Q.C. Approved:
											C nuga
											Date: <u>2.9.77</u>

GROUP B INSPECTION SCS-481 TYPE 1 X-BAND DIODES

Nuclear Radiation Exposure SUBGROUP 2

CONDITIONS:

Power Level - 10 KW

7 Min. Exposure

Gamma Exposure - 1.2 x 10⁵ rads (Si)

Neutron Exposure - 1.04 x 10¹³n/cm², 1 MeV Si Damage Equivalent (indicated by sulphur

pellet dosimetry).

NOTES:

*1 - The exposed devices are radioactive (Av198) and they are being stored in a controlled access and storage area with Raytheon's flash X-ray facility.

2 - Device S/N AA was a control device; hence, it was not exposed to radiation.

CHARAC	CTERISTI	ıc	P	,	F	0	η		Т	j :	·
UNITS			Wa	atts	G	Hz	ક		0	С	
		Min.	3.	. 5	9		2	0			
LIMIT	3	Max.			1	1			2	00	
END P	TNIC		I	F	I	F	I	F	I	F	
Serial No.		de I.D. umber									Operator:
AA	41319B	-A-7	3.5	3.5	9.85	9.87	25.2	25.9	197	191	ficher Banks.
85	41319B	-A-8	3.5	3.5	9.90	9.90	25.2	25.1	180	180	Date: 1/13/77
86	41319B	-A-16	3.5	3.5	9.82	9.80	25.5	25.1	180	184	1. Diruesseo
87 *	41319B	-A-18	3.5	3.45	9.80	9.7	23.9	21.7	175	196	Q.C. Approved:
											Taul Xhilli
ABOVE	PERFORM	ANCE WAS	ОВТА	INED	PRIO	TO	DEVICE	"BUR	TUO-N	•	Date: 1/13/77
TO AVO	ID OVER	HEATING,	THE	POWER	TO T	HE D	ODE V	AS IN	CREAS	ED	Date: 1/13/1/
TOO FA	ST AND	TOO HIGH	TH	E BUR	n-ou:	WAS	TYPIC	AL OF	OVER	-	
DRIVE	DIODES	; HENCE,	NOT	DUE T	о тні	RAD	IATIO	EXPO	SURE.		

GROUP B INSPECTION SCS-481 TYPE 1 X-BAND DIODES

SUBGROUP 3

Storage Life

CONDITIONS:

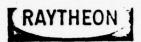
- Nonoperating

- Ambient Temperature 200°C ±3°C

- Duration, 1040 Hours

CHARA	CTERIST	c	Po	,	F	0	п		Т	
UNITS			Wa	itts	G	Hz	8		0	С
		Min.	3.	5	9		2	0		
LIMIT	S	Max.			1	1			2	00
END P	OINT		I	F	I	F	I	F	I	F
Serial No.		ie I.D. imber								
88	41319B-	-B-3	3.5	3.5	9.91	9.96	27.4	26.9	172	176
93	41319B-B-15		3.5	3.5	9.79	9.86	25.3	25.1	166	167
94	41319B-	B-16	3.5	3.5	9.88	9.91	25.4	25.2	182	184
95	41319B-	B-18	3.5	3.5	9.85	9.85	24.2	25.0	195	188
96	41320B-	AA-2	3.5	3.5	9.87	9.90	24.6	24.7	170	169
102	41320B-	AA-13	3.5	3.5	9.95	9.88	25.5	26.2	177	171
103	41320B-	AA-17	3.5	3.5	9.87	9.87	25.4	26.2	170	164
104	41320B-	AA-19	3.5	3.5	10.0	010.0	326.0	25.3	177	183
105	41320B-	AA-20	3.5	3.5	9.89	9.85	25.3	25.1	185	187

Operator:


frielestende

Date: 1/26/77

Q.C. Approved:

C minga

Date: <u>-977</u>

GROUP B INSPECTION SCS-481 TYPE 1 X-BAND DIODES

SUBGROUP 4

Operating Life

CONDITIONS:

Oscillator Frequency:

10.0 GHz ±1.0 GHz

Oscillator Output Power:

3.5 W-CW, Min.

Oscillator Efficiency (RF-DC): 20% Min.

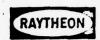
Junction Temperature:

200°C Max.

Ambient Temperature:

25 ±3°C

CHADA	CTERIST	rc	Pc		F		r	ì	T	j
CHARA	CIERISI		4						1	
UNITS			Wa	tts	G	Hz	9		°	C
		Min.	3.	5	9		2	20		
LIMIT	S	Max.			1	1		40	2	00
END P	TNIC		I	F	I	F	I	F	I	F
Serial No.		de I.D. umber	1							
83	41319B-	A-5	3.5	3.5	9.35	9.36	25.2	25.6	153	150
89	41319B-B-5		3.5	3.5	9.22	9.22	21.5	21.9	185	181
90	41319B-	B-6	3.5	3.5	9.31	9.31	24.8	24.6	190	191
91	41319B-	B-8	3.5	3.5	9.30	9.30	24.8	24.9	190	190
92	41319B-	B-14	3.5	3.5	9.52	9.54	23.7	23.4	183	185
97	41320B-	AA-6	3.5	3.5	9.70	9.70	23.9	23.0	182	190
98	41320B-	AA-8	3.5	3.5	9.78	9.77	24.2	23.9	181	183
101	41320B-	AA-12	3.5	3.5	9.34	9.33	22.5	22.5	192	192
84	41320B-	BB-14	3.5	3.5	9.80	9.80	23.8	23.8	167	167
	-									


Operator:

Date: 1/26/77

Q.C. Approved:

C niessa

Date: 3.9.77

IMPATT DIODE TEST CAVITY

TYPE	THX-8000		
SERIAL NUMBER	s/N-5		
HAT SIZE	380	HAT STYLE	Stepped
		DIODE	MS-50371 41319B-A-7
	0	PERATING DATA	
VOLTAGE	60.2 V	BREAKDOWN VOLTAGE	
CURRENT	230 mA	@ I _R = 1 mA	47.1 V
POWER OUTPUT	3.5 W-CW	CAPACITANCE-C _{TO}	24.3 pf
FREQUENCY	9.58 GHz	CAPACITANCE-C _{TVR}	1.88 pf
EFFICIENCY _	25.3	e v _R	25 V

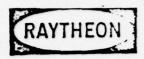
DATA SHEET MS50372 SCS-481 TYPE 2

CHAR	CHARACTERISTIC		By	2	CrvB	٧,	RTH	d,	64	VOP	Lop	-	Mech.	HAT	TJ	O.F.	DFRMS.	(N/S)AN
TECT	TEST CONDITION		- lms	2 0 5	V = V							-						
STIMIL	1000		Volts	1	1 0	Volts	W/C	Watts	GHz	Volts	ma	P%			O		Hz	qp
		MIN						2.5				20	+ 250			1		
LIMITS		MAX.						1	16	02	500				200	200	50	-115
Serial	Diode I. D.																	
No.	Number																	
106	41328A-B1-24	-24	23.5	10.5	1.65	15	17.5	2.5	14.31	39.0	290	22.1	ok	190	179	<200	10.1	-136
107	41328A-B2-2	-2	23,8	11,0	1,75	15	18.2	2.5	14.49	39.0	295	21.7	ok	190	189	<200	20.2	-144
108	41328A-B2-4	-4	23.5	10.4	1.68	15	18.3	2.5		38.7	295	21.9	ok	190	188	<200	18.0	-145
109	41328A-B2-5	-5	23.7	11.0	1.72	15	18.6	2.5	14.31	39.0	297	21.6	ok	190	194	<200	18.0	-147
110	41328A-B2-6	9-	23.9	9.5	1.60		18.4	2.5	14.30	39.5	290	21.8	ok	190	190	<200	10.1	-148
111	41328A-B2-14	-14	24.2	8.5	1.75	15	18.7	2.5	14.42	39.3	292	21.8	ok	190	193	<200	16.0	-146
112	41328A-C1-1	-1	24.1	10.7	1.67	15	18.2	2.5	14.07	38.6	300	21.6	ok	190	190	<200	16.0	-147
113	41328A-C1-9	-6	24.2	10.3	1.68	15	18.3	2.5	14.34	37.8	295	22.4	ok	190	183	<200	16.0	-143
114	41328A-C1-21	-21	25.3	8.3	1.67	15	17.9	2.5	14.14	41.6	280	21.5	ok	190	188	<200	16.0	-148
115	41328A-C2-5	-5	24.6	88.3	1.68	15	18.8	2.5	14.38	40.4	285	21.7	ok	190	195	<200	10.1	-159
116	41328A-C2-7	-7	22.9	10.3	1.65	15	18.7	2.5	14.2	38.8	285	22.5	ok	190	186	< 200	12.7	-144
117	41328A-C2-8	-8	22.9	10.8	1.66	15	18.5	2.5	14.1	38.2	290	22.6	ok	190	183	<200	16.0	-146
118	41328A-C2-9	-6	22.8	10.4	1.63	15	18.9	2.5	14.2	38,3	290	22.6	ok	190	187	<200	12.7	-145
122	81844M2-2-13	-13	19.9	6.6	1.53	15	17.0	2.5	14.24	35.0	345	20.7	ok	190	188	< 200	18.0	-140
123	81844M2-2-15	-15	20.1	9.7	1.55	15	18.1	2.5	14.43	36.1	325	21.2	ok	190	193	< 200	14.3	-148
124	81844M2-2-16	-16	22.0	8.8	1.54	15	17.6	2.5	14.60	37.7	305	21.8	ok	190	183	< 200	10.1	-152
125	81844M2-2-23	-23	23.0	9.2	1.58	15	18.7	2.5	14.5	36.9	320	21.1	ok	190	200	< 200	16.0	-138
126	81844M2-3-8	-8	20.8	10.0	1.56	15	17.0	2.5	14.40	36.8	320	21.0	ok	180	185	< 200	16.0	-146
127	81844M2-3-9	6-	19.9	10.0	1.57	15	16.8	2.5	14.38	36.1	320	21.7	ok	190	177	< 200	15.0	-146
128	81844M2-3-23	-23	19.0	8.9	1.50	15	17.5	2.5	14.8	35.5	340	20.8	ok	180	191	< 200	18.0	-131

DATA SHEET MS50372 SCS-481 TYPE 2

(N/S)AI		ф		-115		-142	-148	-148	-143	-141								
AFRMS		Hz		20		22.6	18.0	18.0	18.0	18.0								
QExt.				200		<200	<200	<200	<200	<200				 				
TJ		ပ		200		183	170	198	182	178								
HAT						190	190	190	200	195								
Mech. Tun.			+ 250			Å	ò	ok	ş	ok								
-		%	02			21.8	20.9	20.3	22.3	21.5								
lop		ma		200		310	320	345	305	320								
VOP		Volts		20		37.1	37.7	35.7	38.1	36.3								
Fo		GHz	14	91		14.58	14.33	14.35	14.60	14.27								
P _o		Watts	2.5			2.5	2.5	2.5	2.5	2.5								
RTH		°C/W				17.6	18.0	17.6	18,0	16.8								
N N		Volts				15	15	15	15	15								
CTVR	V = VR					1.60	1.62	1.50	1.57	1.52								
CTO	V=0	PF				8.3	9.4	8.8	9.5	9.3								
Ву	lma	Volts				21.0	21.5	19.5	22.4	21.8								
CHARACTERISTIC	TEST CONDITION		MIN.		Diode I. D. Number	7	81844M2-5-4	81844M2-1-2	81844M2-1-8	81844M2-1-10								
CHAR	TEST	UNITS	TIMITE	LIMIT	Serial No.	129	130	119	120	121								

SUBGROUP


1 SHOCK, VIBRATION, ACCELERATION, HERMETICITY

CONDITIONS:

Shock	Vibration	Acceleration	Hermeticity
Per MIL-STD-750 Method 2016	Per MIL-STD-750 Method 2056	Per MIL-STD-750 Method 2006	Per MIL-STD-750 Method 1071
500G 1 ms 1/2 Sine Pulse 3 Planes 5 Shocks/Plane	20G 50-2000-50 Hz 3 Planes 4 Cycles/Plane 4 Min/Cycle	20000G 3 Planes 1 Min/Plane	Test Condition H 4 hrs @ 60 lb. He Pressure He Leak Detector <1 x 10 ⁻⁸

CHARAC	TERIST	C	Po	,	F	0	η		7	j :	
UNITS			Wa	itts	G	Hz	8		0	c	
		Min.	1 2	.5	1	4	2	0			
LIMITS	5	Max.			1	6			2	00	
END PO	OINT *		7 I	F	I	F	I	F	I	F	
Serial No.		ie I.D. mber									Operator:
115	41328A-	C-2-5	2.5	2.5	14.3	14.1	21.7	21.7	194	194	I with the french
116	41328A-	C-2-7	2.5	2.5	14.2	14.16	22.6	22.4	185	186	Date: 3/15./7
117	41328A-	C-2-8	2.5	2.5	14.1	14.05	22.5	22.1	184	188	37.3.7.
118	41328A-	C-2-9	2.5	2.5	14.2	14.18	22.5	.22.8	188	185	Q.C. Approved
											C! marza
			$\parallel -$		-						Date: 3.18.77

*I-Initial F-Final

SUBGROUP

2 NUCLEAR RADIATION EXPOSURE

CONDITIONS:

Power Level - 10 KW

7 minute exposure

Gamma Exposure - 1.2 x 10^5 rads (Si) Neutron Exposure - 1.04 x 10^{13} n/cm², MeV Si damage equivalent

(indicated by sulphur pellet dosimetry).

NOTES:

 The exposed devices are radioactive (Av¹⁹⁸) and they are being stored in a controlled access and storage area with Raytheon's flash X-ray facility.

S/N 120 shorted before optimum Po, η and Fo were obtained. Short caused 2)

by faulty tuning sequence.

CHARAC	TERIST	ıc	Po)	F	0	η		T	j :	
UNITS			Wa	tts	G	Hz	ક		0	С	
		Min.	2	.5	1.	4	20	0			
LIMITS	5	Max.			1	5			2	00	
END PO	YTNIC		1 1	F	I	F	I	F	I	F	
erial		de I.D. umber									Operator:
119	81844M2	2-1-2	2.5	2.5	14.3	14.3	20.3	20.1	198	200	habrethe mit
120	81844M	2-1-8	2.5	2.45	14.6	14.7	22.3	21.8	182	186	Date: 1/1-1/2
121	81844M	2-1-10	2.5	2.45	14.21	14.2	21.5	20.9	178	184	
											Q.C. Approved:
											C. Magga Date: 3.18.77
			#				-				Date: 3.18.77
											·

I-Initial F-Final

SUBGROUP

3 STORAGE LIFE

CONDITIONS:

Non-operating


Ambient Temperature: 200°C ±3°C

Duration: 1040 Hours

NOTE 1: RF measurements were done in the standard Ku-band cavity.

CHARA	CTERISTI	ıc .	Po		F	0	η		T	j :	
UNITS			Wa	tts	G	Hz	8		0	С	
		Min.	2	.5	1	4	2	0			
LIMIT	s	Max.			1	6			2	00	
END P	OINT*		I	F	I	F	I	F	I	F	
Serial No.	The state of the s	ie I.D. umber									Operator:
122	818444M	2-2-13	2.5	2.5	14.24	14.18	20.7	20.7	188	188	historel Ferril
123	81844M2	2-2-15	2.5	2.5	14.43	14.3	21.2	21.2	193	193	Date: 1/15/27
124	81844M2	2-2-16	2.5	2.5	14.60	14.4	21.8	21.8	183	183	17.27.
125	81844M2	2-2-23	2.5	2.5	14.50	14.3	21.1	. 21.1	200	200	Q.C. Approved:
126	81844M2	!-3-8	2.5	2.5	14.40	14.3	21.0	21.0	185	185	C. Marza
127	81844M2	2-3-9	2.5	2.5	14.38	14.3	21.7	21.7	177	177	C. Magga Date: 3.18.77
128	81844M2	2-3-23	2.5	2.5	14.80	14.7	5 20.8	20.8	191	191	Date: 3.71.77
129	81844M2	2-4-1	2.5	2.5	14.58	14.4	5 21.8	21.5	183	186	
130	81844M2	!-5-4	2.5	2.5	14.33	14.1	20.9	20.9	170	170	

*I-Initial F-Final

SUBGROUP

OPERATING LIFE

CONDITIONS:

Oscillator Frequency: 15.0 GHz ±1 GHz
Oscillator Output Power: 2.5W-CW Min.

Oscillator Efficiency (RF-DC): 20% Min.

Junction Temperature: 200°C Max.

Ambient Temperature: 25 ±3°C

NOTE 1: RF measurements were done in the RF life test cavities.

CHARAC	CTERIST	ıc	Po)	F	0	η		T	j :	•
UNITS			Wa	tts	G	Hz	ક		0	С	
		Min.	2	. 5	1	4	2	0			
LIMITS	5	Max.			1	5			2	00	
END PO	YTNIC		II	F	I	F	I	F	I	F	
Serial No.		de I.D. umber									Operator:
106	41328A-	-B-1-24	2.5	2.5	14.30	14.3	20.9	20.9	191	191	hidwellen
107	41328A-	-B-2-2	12.5	2.5	14.39	14.5	20.6	20.6	200	200	Date: 3/15/21
108	41328A-	-B-2-4	2.5	2.5	14.4	14.3	20.9	21.1	198	196	
109	41328A-	-B-2-5	2.5	2.5	14.2	14.3	21.1	. 21.1	199	199	Q.C. Approved:
110	41328A-	-B-2-6	2.5	2.5	14.30	14.2	20.9	20.9	199	199	C marga
111	41328A-	-B-2-14	2.5	2.5	14.3	14.3	21.2	21.2	198	198	Date: 3 1877
112	41328A-	-C-1-1	2.5	2.5	14.1	14.1	21.2	21.2	194	194	Date. 0 /3 //
113	41328A-	-C-1-9	12.5	2.5	14.1	14.1	20.9	20.7	198	200	
114	41328A-	-C-1-21	2.5	2.5	14.1	14.1	20.	21.0	196	193	
		•									

*I-Initial F-Final

IMPATT DIODE TEST CAVITY

THK-8000		
S/N 5		
190	HAT STYLE	Flat
	DIODE	41328A-C-2-3
	OPERATING DATA	
40.0 V	BREAKDOWN VOLTAG	
280 mA		25.0
2.5 W-CW	CAPACITANCE-C _{TO}	8.4
14.36	CAPACITANCE-C _{TVR}	1.54
22.3	e v _R	15 V
	S/N 5 190 40.0 V 280 mA 2.5 W-CW	S/N 5 190 HAT STYLE DIODE OPERATING DATA 40.0 V BREAKDOWN VOLTAGE @ I _R = 1 mA CAPACITANCE-C _{TO} 14.36 CAPACITANCE-C _{TVR}

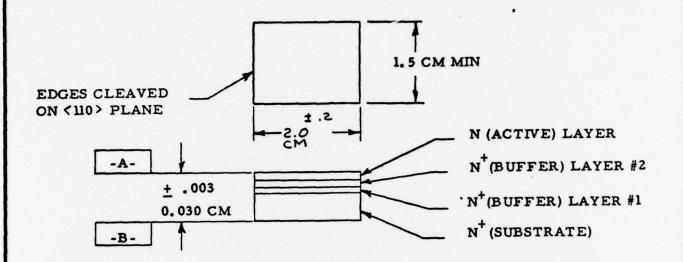
NOTE: The sliding short may be replaced with a precision short for smoother operation in repetitive diode testing.

IMPATT DIODE TEST CAVITY

TIPE		
SERIAL NUMBER		
HAT SIZE	HAT STYLE	
	DIODE	
	OPERATING DATA	
VOLTAGE	BREAKDOWN VOLTAGE	
CURRENT	@ I _R = 1 mA	
POWER OUTPUT	CAPACITANCE-C _{TO}	
FREQUENCY	CAPACITANCE-C _{TVR}	
EFFICIENCY	_ e v _R	

NOTE: The sliding short may be replaced with a precision short for smoother operation in repetitive diode testing.

APPENDIX B


SPECIFICATION

GaAs EPITAXIAL WAFER READ PROFILE PEM DIODE

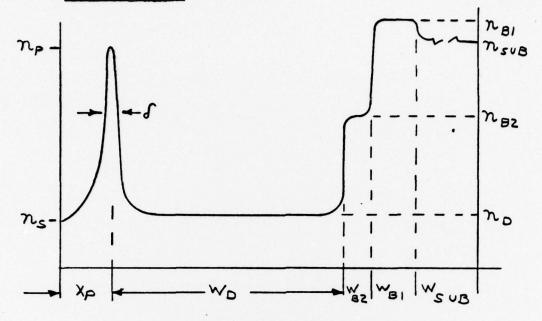
APPLIC	ATION		REVISIONS		
NEXT ASSY	USED ON	LTR	DESCRIPTION	DATE	APPROVED
		1	REVISED EXTENSIVE CHOS. DEE DBSDLETE FILE FOR PREVIOUS REV	9-11-75	
		2	PARAMÉTER 4.6 1.0x1016 ±10% WAS 7.5 x 1015 ± 10% Ne.2.	12/15/75	
		3	REV. EXTENSIVELY PER ENGMARK UP,	12-17-76	
		4	REV. PER ENG. MARKUP	3-15-77	Ac 94)
		5	REV. Sheet 4, Par. 4.5 "8" added.	6/14/77	AC. 6/14/7

UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES	CONTR NO.	RAY	THEON			HEON COMPANY
TOLERANCES: ANGLES ±	DR. R. Silverion 3-5-7				LEXII	IGTON, MASS. 02173
FRACTIONS ±	CHK F. Yequhart 3-31-7	DRAW	NG TITLE			
3 PLACE DECIMALS ± 2 PLACE DECIMALS ± 1 PLACE DECIMALS ±	A flaghante col 12-29-7				EM DI	WAFER READ
MATERIAL:	APPROVED	SIZE	499		DRAWI	NG NO. 892049
	BY DIRECTION OF	SCALE		Rev	. 5	SHEET 1 OF 5

10-0700 (5, 68) VELLUM 10-0701 (5/68) GRID VELLUM

NOTES:

- 1. Usable area 3.0 cm²/min.
- 2. Fifty (50) percent of the wafers grown shall have eighty (80) percent, (minimum area 3.0 cm²/wafer) of usable material. The term usable defines material which meets specifications for dislocation density, doping profile and is capable of producing diodes meeting specification SCS-481, 23 September 1974.


SIZ	Ε	CODE IDE		DRAWING	NO.				
A		499	56		8920	49			
SCA	LE		REV	5	SHEET	2	of	5	

SPECIFICATIONS

- 1. SUBSTRATE
- 1.1 Resistivity: 2 x 10⁻³ ohm-cm max.
- 1.2 Carrier Concentration: 1 4 x 10¹⁸/cm
- 1.3 Dopant: N-Type
- 1.4 Etch Pit Density: 104/cm2 max.
- 1.5 Orientation: $2 \pm 1/2^{\circ}$ off $\langle 100 \rangle$ towards $\langle 110 \rangle$ plane.
- 2. BUFFER LAYER #1
- 2.1 Resistivity: 2 x 10⁻³ ohm-cm max.
- 2.2 Carrier Concentration: 1 4 x 10¹⁸/cm³
- 2.3 Dislocation Density: 1000/cm² max.
- 2.4 Dopant: Silicon
- 2.5 Thickness: 4.0 10.0 um
- 3. BUFFER LAYER #2
- 3.1 Carrier Comentration: 3 10 x 10¹⁶/cm
- 3.2 Dislocation Density: 1000/cm² max.
- 3.3 Dopant: Silicon
- 3.4 Thickness: $l_{\mu}m \pm 0.5_{\mu}m$

	SIZE CODE IDENT NO.			DRAWING NO.					
	Α	49956		892049					
-	SCALE		REV 5	5	SHEET	3	of	5	

4. ACTIVE LAYER: Per Table I

TABLE

	PARAMETER	SYMBOL	PART N	UNITS	
			-1	-2	
4.1	Nominal Operation Freq. Range		X-Band	Ku-Band	
4.2a 4.2b	Carrier Concentration at X . Zero Bias Depletion wd.	No	1.0 x 0.2	cm-3	
4.3	Peak Depth	Хp	0.24	μm	
4. 4	Total charge in spike per unit area	Q	2.4 x	coul/cm	
4.5	Spike width max. at half height	√ Max.	0.06 max.		μm
4.6	Drift Space Doping	no	5 x 10 ¹⁵ <u>+</u> 10%	1. 0x10 ¹⁶ + 10%	cm ⁻³
4.7	Active Layer Thickness	w _D	5.0 <u>+</u> 0.5	4.0 <u>+</u> 0.5	_u m
4.8	Spike Depletion Voltage	V*	8.3' ± 1.0		Volts

SIZE CODE IDENT NO. DRAWING NO. 892049

SCALE REV 5 SHEET 4 of 5

- 5. SURFACE "A" FINISH
- 5.1 Surface "A" to be mirror-like with no hazy frosty appearance.
- 5.2 Surface "A" of wafer (exclusive of 1.5mm wide edge) to have a maximum of four gross defects (pits or mounts). Each defect shall be less than 1/2 mm in diameter and shall have a maximum height of 1 um.
- DATA REQUIREMENTS (EACH WAFER)
- 6.1 Identify substrate vendor and supply vendor crystal number.
- 6.2 Supply vendor data on 1.1, 1.2, 1.4 and best estimates on 2.1, 2.2, 2.3, 2.5, 3.1, 3.2, 3.4, 4.2 4.8.

SIZE CODE IDENT NO. DRAWING NO. 892049

SCALE REV 5 SHEET 5 of 5

DISTRIBUTION LIST

	No. of Copies	No. of Copies
Commander Rome Air Development Center Griffiss Air Force Base ATTN: (EMERR) Mr. L. Gubbins Rome, New York 13440	1	Scientific & Technical 1 Information Facility ATTN: Acquisition Branch (S-AK/DL) P.O. Box 33 College Park, Maryland 20740
Commander Rome Air Development Center Griffiss Air Force Base ATTN: (EMERR) Mr. Regis C. Hi Rome, New York 13440 Commander Air Force Materials Laboratory	1	Commander 1 U.S. Army Material Command ATTN: AMCRD-RS-PE-E AMCRE-DE-W 5001 Eisenhower Avenue Alexandria, Virginia 22304
ATTN: MATE (Ms. E. Torrance) Electronic Branch Wright-Patterson Air Force Bas Dayton, Ohio 45433	e	Commander 1 U.S. Naval Air Development Center ATTN: Library Johnsville, Warminster, Pennsylvania 18974
AFAL (AVTA) Electronic Technology Division ATTN: Mr. Robert D. Larson, C Advanced Electronics Devices B Wright-Patterson Air Force Bas Dayton, Ohio 45433	hief ranch	Chief Naval Ship Systems Command Department of the Navy ATTN: Code 681A2b, Mr. L. Gumina Room 3329 Washington, D. C. 20000
Advisory Group on Electron Devices 201 Varick Street, 9th Floor New York, New York 10014	2	Commander 1 Naval Electronics Laboratory Center ATTN: Library
National Aeronautics & Space Administration George C. Marshall Space Fligh ATTN: R-QUAL-FP (Mr. Leon C. Huntsville, Alabama 35812		San Diego, California 92152 Commander 1 Department of the Navy, ELEX 05143A
Commander U.S. Army Electronics Command ATTN: AMSEL-PP-P1-1	2	ATTN: A. H. Young Electronics Systems Command Washington, D.C. 20360
Green Acres Building Fort Monmouth, N.J. 07703 NASA-Manned Space Craft Center Reliability and Flight Safety		Commander U.S. Naval Research Laboratory ATTN: G. Abraham 5205 Washington, D.C. 20390
ATTN: Library Houston, Texas		

	o. of opies		No. of Copies
Commander Defense Electronics Supply Center	1	Fairchild Semiconductor	1
Directorate of Engineering &	2.L	Fairchild Camera & Instrume	ent
Standardization		Corporation	-11.0
ATTN: (DESC-ECS) Mr. N. A. Haud	ck	ATTN: Mr. Robert Skurko	
Dayton, Ohio 45401		313 Fairchild Drive	
		Mountain View, California 9	4040
Commander	1		
Air Research & Development Comma	and	Sanders Associates, Inc.	1
ATTN: RDTCT		ATTN: Microwave Department	
Andrews Air Force Base		95 Coral Street	
Washington, D.C. 20000		Nashua, New Hampshire 03060)
Amelco Semiconductor	1	Texas Instruments	1
P.O. Box 1030		Semiconductor Components Di	vision
Mountain View, California 94042		ATTN: Semiconductor Librar	
		P.O. Box 5012	
Avantek	1	Dallas, Texas 75200	
ATTN: Mr. Thielan			
3001 Copper Road		Western Electric	1
Santa Clara, California 95051		ATTN: Mr. R. Moore	
		Marion & Vine Streets	
AIL	1	Laureldale, Pennsylvania	
ATTN: Mr. Lou Cianciulli			
Commack Road		Varian Associates	1
Deer Park, L.I., New York 11729		Solid State Division	
American Electronics Laboratory		ATTN: Mr. J. Collard 8 Salem Road	
Richardson Road	1	Beverly, Massachusetts 0191	5
Colmar, Pennsylvania 18915		Beverly, Massachusects 0171	
colmar, rembjivania 10313		Microwave Associates	1
Alpha Industries, Inc.	1	ATTN: Dr. F. Brand	
ATTN: Dr. W.K. Niblack		Burlington,	
20 Sylvan Road		Massachusetts 01803	
Woburn, Massachusetts 01801			
		Hughes Aircraft Corp.	1
Collins Radio Company	1	ATTN: Dr. Bruce Crammer	
ATTN: Dr. T. Walsh		3100 West Lomita Boulevard	
Dallas, Texas 75200		Torrance, California 90509	
Texas Instruments	1		
P.O. Box 5936, MS105			
Dallas, Texas 75222			
ATTN: Central Research Labs.			

	o. of		No. of Copies
General Motors Corporation Delco Radio Division ATTN: Dr. E. Jaumot, Jr. P.O. Box 1104 Kokomo, Indiana 46901	1	Commander U.S. Army Electronics Comm ATTN: AMSEL-RD-EM-2 (H. I Fort Monmouth, New Jersey	DePol)
General Instruments Corp. Semiconductor Products Group 600 West John Street Hicksville, Long Island, New Y	1 ork 1180	Director Electronic Components Labo ATTN: AMSEL-TL-1J (G. Mor Fort Monmouth, New Jersey 0	ris)
Honeywell, Incorporated Semiconductor Products 2747 Fourth Avenue Minneapolis, Minnesota 55408	1	Director U.S. Army Production Equip Agency ATTN: Manufacturing Tech. Rock Island Arsenal	Div.
Micro-Electronics Laboratory Hughes Aircraft Company 500 Superior Avenue Newport Beach, California 9266	1	Rock Island, Illinois 6120 Commander Harry Diamond Laboratories ATTN: Mr. Horst Gerlach	1 S (AMXDO-RAA)
IBM Components Division ATTN: Mr. Al Kran	1	Connecticut & VanNess Strewashington, D.C. 20438 Director	eets, N.W.
East Fishkill, Route 52 Hopewell Junction, New York 12	533	Electronic Components Labo ATTN: AMSEL-TL-1J (Wader Fort Monmouth, New Jersey	gin)
KSC Semiconductor Corp. ATTN: Mr. S. Cudletz, Preside KSC Way (Katrina Road) Chelmsford, Massachusetts 0182		Commander U.S. Army Missile Command ATTN: AMSMI-IEVL (Mr. Buck Building 4500	l ckelew)
Arthur D. Little Acorn Park	1	Redstone Arsenal, Alabama	
ATTN: Dr. H. Rudenberg 15/206 Cambridge, Massachusetts 02140		Office of Defense Research and Engineering Communications and Electro	
Commander Defense Documentation Center ATTN: TISIA-1	12	Room 3D1037 Washington, D.C. 20330	
Cameron Station, Building 5 Alexandria, Virginia 22314		MSI Electronics Incorporat 32-34 57th Street Woodwise, New York 11377	led 1

No. of Copies

1

Motorola Incorporated ATTN: Mr. J. LaRue 5005 East McDowell Road Phoenix, Arizona 85008

Northrop Corporate Laboratories ATTN: Library 320-61 3401 West Broadway Hawthorne, California 90250

Raytheon Company 1
Semiconductor Operation
ATTN: Mr. S. Weisner
350 Ellis Street
Mountain View, California 94040

Dr. Robert H. Rediker 1
Massachusetts Institute of Technology
Building 13-3050
Cambridge, Massachusetts 02139

Sprague Electric Company 1 ATTN: Mr. W. C. Donelan 87 Marshall Street North Adams, Massachusetts 01247

Solitron Devices, Inc. 256 Oak Tree Road Tappan, New York 10983