
ESD-TR-77-193

-C BD ACCESSION US]

-cys.

Technical Note

A Digital Microprocessor
Channel Vocoder

Prepared for the Department of the Air Force
under Electronic Systems Division Contract F19628-76-C-0002 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

1977-33

J. Gorski-Popiel

10 August 1977

A M015-071
Approved for public release; distribution unlimited.

The work reported in this document was performed at Lincoln Laboratory, a center
for research operated by Massachusetts Institute of Technology, with the support
of the Department of the Air Force under Contract F19628-76-C-0002.

This report may be reproduced to satisfy needs of U. S. Government agencies.

The views and conclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the United States
Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Raymond L. Loiselle, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

A DIGITAL MICROPROCESSOR CHANNEL VOCODER

]. GORSKI-POPIEL

Group 64

TECHNICAL NOTE 1977-33

10 AUGUST 1977

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

A complete, real-time, channel vocoder delivering good speech quality

with a 2400-bit/second data transmission rate was implemented using purely

digital circuitry in the form of a high-speed programmed microprocessor.

Necessary algorithms are presented and their effect on the machine design

is discussed in detail. The end product is a very high-speed computing ma-

chine (measured in program throughput terms). It turned out to have a high

degree of programming flexibility, which would make it adaptable to other

tasks. This was a bonus, not an original goal. The project was conceived

and successfully realized as the most practical way to build a vocoder for

actual use in the LES-8/9 satellite communications system.

TABLE OF CONTENTS

Abstract iii

I. INTRODUCTION 1

II. THE VOCODING ALGORITHM 9

2.1 Spectrum analysis and real-time pitch computation 9

2.2 Non-Real Time Pitch Computation 15

2.3 Synthesis 23

2.4 Frame Data Encoding and Decoding 26

III. COMPUTATIONAL FORMS AND STRATEGY 32

IV. OVERALL MICROPROCESSOR STRUCTURE 38

V. DETAILED MICROPROCESSOR STRUCTURE 41

5.1 Program Counter and ROMs 41

5.2 RAM Memory and Buffers 4 7

5.3 Address Processing 48

5.4 Decoders 50

5.5 ALOG and Exp Routines 53

5.6 DO LOOP • 55

5.7 IF, COMP, COMP-IF and GO TO Instructions 56

5.8 Arithmetic ALU and Accumulator B 61

5.9 Array Multiplier 68

5.10 Intermediate Memory 68

5.11 ROM Coding 70

5.12 Data I/O, Acquisition and Synchronization 72

5.13 Pitch Decoding 74

5.14 Timing 75

5.15 Voice Analog Section 76

VI. PROGRAMMING 78

6.1 Logic Commands 79

6.2 Arithmetic Commands 80

6.3 Joint Commands 81

VII. CONCLUSIONS 82

Acknowledgments 83

References 84

I. INTRODUCTION

A digital vocoder is a device which extracts from samples of speech those

attributes which are most essential for accurate synthetic speech reproduction,

subject to the constraint that the data link between the transmitter and re-

ceiver utilizes a minimum data rate. The microprocessor described in this re-

port was designed specifically to implement a 2400-bit/second channel vocoder

delivering good speech quality in real time. The judge of what does and does

not constitute acceptable quality is the human ear. The criteria are thus highly

subjective and ill suited to precise mathematical description. As a result,

vocoder algorithms are largely empirical in nature. The good ones have taken

many years to develop. Not unexpectedly, however, one fundamental fact has

emerged: — computational complexity and final speech quality for a given data

rate are directly related. The Gold-Rader-Tierney channel vocoder algorithm

used in this project was developed over a period of several years by a number

of people with the goal of excellent speech quality. It is thus rather complex

and takes a great deal of computation to implement. Several successful imple-

mentations were built using analog circuitry for the spectrum analysis and syn-

thesis, and digital pitch detectors. However, the algorithm has never before

been implemented in an all-digital machine in real time, because of the high re-

quired machine speed. The processor described in this report is the first ma-

chine with sufficiently high-speed capabilities to realize the Gold, et al. chan-

nel vocoder algorithm in full duplex real-time form. This was achieved using

commercially available Schottky-clamped TTL logic and an 8-MHz system clock

rate. To give a feeling for the speeds involved, an IBM 370 has a program

throughput rate roughly two orders of magnitude too slow.

Many vocoder algorithms were developed under the guidance of B. Gold over

the last decade or more. A great deal of algorithm simulation on large machines

has been done. The most recent work of interest for this project was done by P.

Demko and J. Tierney, both of Group 27 (unpublished internal report). They made

use of a general purpose computer to simulate a 16-channel vocoder in non-real

time. Finite length words were used in order to determine the minimum required

computer accuracy for acceptable reproduction of vocoded speech. A given word

length once decided upon was used throughout the computation, all of which was

done in fixed point arithmetic. Under constraints of this nature, computational

optimization is equivalent to finding optimal scaling of the processed numbers

such that dynamic range is maximized. The results of their work are therefore

of great value to anyone interested in building a fixed point microprocessor to

implement a channel vocoder. Specifically, their results indicated that a 12-bit

coefficient and sample word together with 16-bit processing was a good choice.

18-bit processing gave only marginal improvement. The machine described in

this report follows the Tierney-Demko simulation fairly closely. One major ex-

ception is the use of 16-bit operations throughout, including coefficient lengths.

Other exceptions are of a more detailed and minor nature and will be pointed out

as we come to the appropriate point.

The main thrust of this report is the description of the actual computing

machine; however, since the reason for its existence is a realization of a chan-

nel vocoder a description of the salient features of the algorithm implemented

will be given.

The method by which the machine was designed will also be discussed. This

should be helpful to others faced with similar design problems. At the

beginning of the project I knew of no machine design capable of the high pro-

gram throughput speed needed for the channel vocoder algorithm. Existing

microprocessor designs and standard digital design procedures were, with some

exceptions, not too helpful. A new approach to the problem had to be worked

out. The eventual success of the project was, I believe, almost entirely due

to the design approach developed; that is, simultaneous and closely coupled

design of both hardware and software. To start with, we knew the algorithm

to be realized, and could therefore write down all the mathematical expressions,

and thus the required computational forms. Using available integrated circuits

the problem then reduced to fitting them together in such a way that the compu-

tational forms could be executed in the most efficient way. Each required oper-

ation was carefully scrutinized and implemented in software or in hard-wired

logic, whichever of the two achieved greater efficiency. As an example, con-

sider a sequence of identical operations performed on varying data. In software,

it is usual in such cases to make use of a so-called DO LOOP. An index is set,

a test performed and a decision made whether to return to the beginning of the

sequence or to continue. Symbolically, such a procedure may be expressed as

follows:

1. Set I = 0, K = M

2. Take in New Data

3.

[Perform Required]

Operations)

n

L n + 1. Set I = I + 1

n + 2. If (K - I) > 0 go to Step 2, continue otherwise

n + 3.

n + 4.

n + 5.

In this sequence, steps (n + 1) and (n + 2) do not contribute to the computa-

tion, but only to the control. They could thus be considered overhead, costing

both program memory and execution time. If, however, we eliminate the DO LOOP

control instructions many more program steps would have to be written. An opti-

mum solution therefore is to build in a DO LOOP mechanism in hardware. For

example, one which will give rise to the following software:

1.

2.

3.

Do 2, n, M

Take in New Data

Perform Required

Operations

<- n

n + 1

n + 2

n + 3

The above means DO step 2 through n, M times and on completion continue

with the program. It should be noted that steps n + 1 and n + 2 are now no

longer in the loop. All needed controls are line 1. If each program line

takes T sec to execute, the above solution, besides saving two lines of program,

also shortens the executive time by 2MT sec. For large M this can be quite

considerable.

The software operations, instruction set, and machine architecture are de-

signed together as described, modifying all three as necessary while working

through the required mathematical expressions. It will, of course, be appre-

ciated that after several steps in the process, one will have to go back to the

beginning and re-assess the impact of the latest changes on the previous compu-

tational procedures. Thus, this is an iterative design procedure with feedback,

which stops when all required computations are implementable and the job can be

done within the required time. In terms of engineering esthetics, it is a very

satisfying process in that it meets all requirements, and allocates tasks ef-

ficiently between hardware and software.

After following the above design philosophy for some time it suddenly

dawned on me that the design mode allows computational time problems to be dealt

with especially easily. It is quite straightforward to add more paralleling,

more pipelining, and more hardware as required without starting over. Another

very interesting observation was made when the design was completed. Despite

the decidedly dedicated nature of the design, the end product is by any reason-

able definition a general purpose computing machine. It does have peripherals

which are specifically geared for the vocoding process such as pre-sample fil-

tering, special format data storage, and acquisition systems. However, the

machine itself is quite general purpose. It can do addition, subtraction, and

multiplication. It has DO LOOPS and conditional and unconditional jumps. It

can perform conditional operations and make decisions as a result of some opera-

tions. It also has been programmed to implement a self-diagnostics program, a

task, totally different from the vocoding algorithm.

When faced with the need for a machine to implement a vocoder or a task of

similar complexity, it is perhaps natural to draw on the extensive past exper-

ience accumulated by general purpose computer designers. This leads directly

to a simple "classical" architecture based on familiar design concepts and is

capable of achieving fastest possible machine cycle times, a fact frequently

quoted as its justification. Implementations along these lines can easily

achieve execution times per instruction a factor of 5 or so shorter than those

of the currently proposed machine. Complex signal processing operations are

then carried out by very complex and lengthy software.

Perhaps the single most interesting result to emerge from this project

is the fact that substantially greater total program throughput rate may be

achieved by settling for a slower basic cycle time, but concentrating instead

on making each instruction as powerful and efficient as possible. This claim

is borne out by the fact that at this writing no full-duplex channel vocoder of

similar complexity has been implemented digitally, despite a keen interest in

such devices, other than the machine described here. It is believed that for

tasks involving signal processing or filtering where maximum throughput of mass

real time data is the keynote the proposed approach will yield a more efficient

end product. The chief contributing factor is extensive use of "firmware."

This term means PROM implemented special functions (like log tables for example)

which as a result can be recalled with a single command (not unlike a sub-

routine in a Fortran program). This greatly shortens the required software and

correspondingly speeds execution. This development could not have been possible

without the recent introduction of LSI and large PROMs since they make it pos-

sible to realize custom parallel architecture and fast look up tables with

comparatively little design effort, at small cost in power, size, parts count

and ultimately dollars.

After the final design is completed, debugged and working it is almost in-

evitable that the question comes up "If it had to be done again would I do it

the same way?" Equally inevitably the answer is: "not quite." This case is of

course no exception. Following is a number of comments arrived at by hindsight.

They may prove useful to anyone faced with a similar design problem.

The difficulty in creating a sufficiently flexible addressing scheme was

underestimated. As a result the part of the machine dealing with this problem

was underdesigned at first creating a lot of headaches later on. All this

would have been avoided if addressing received greater attention at the very

outset. If this had been done it is also very likely that a better, more

flexible addressing scheme would have evolved.

Difficulty of debugging rises exponentially with the number of ICs used.

It is therefore very important to include eventual debugging procedures into

the design process. This may raise the IC count slightly, but will repay it-

self manyfold later on. One very attractive way to do this is to set aside a

reasonably large part of the program memory for a self diagnostic routine.

This would exercise all possible machine modes one at a time (if feasible) or

jointly by operating on some predetermined numbers. During each operation the

output of the arithmetic section, for example, is monitored by comparing it

with a precomputed value. The whole procedure should be programmed in such a

a way that if a disagreement is detected the error will have originated in only

a small part of the machine. In this way the detection of several errors should

pinpoint the malfunctioning of individual ICs. In the present machine self

diagnostics was added at the end, and was available only by connecting a sepa-

rate specially designed board. This was due mainly to the non-availability of

sufficiently large ROMs. The diagnostics unfortunately created problems on

its own mainly due to propagation delays. It is felt that self-diagonstics

should be an integral and permanent part of the machine. If the machine is to

be a subsection of a much larger system composed, of other programmable machines

each with its own self-diagnostics all of these diagnostic routines could be

tied together making it possible to debug even very large systems with relative

ease and in a very small fraction of the time it would take otherwise. Since

self-diagnostic is essentially an exercising of the machine itself, it is esti-

mated that its implementation should raise the IC count by not more than 5%.

As already mentioned, the advocated design procedure is only possible due

to the introduction of LSI. With the appearance of even more complex LSI modules

the process becomes more flexible still. A good example of this would be the

use of the AM 2901 module. This is a 40-pin device containing an ALU, shift

registers, buffers, ROM and RAM memory arranged to create very primitive arith-

metic operations under control of the ROM which is already micro-programmed.

A unit like this could have been used to advantage in both the addressing and

arithmetic sections. Another example would be the incorporation of array

multipliers, possibly custom designed, arranged on a single chip.

II. THE VOCODING ALGORITHM

Essentiallv the program consists of four distinct groups.

2.1 Spectrum analysis and real-time pitch computation.

The spectrum analysis operation extracts the energy content of 16 band-

pass filters fed by the speech samples. The sampling period used was 140 ysec,

or a rate of 7.14 KHz. Let us assume x(n) represents the current speech sample

digitized to (12 bits in our case), and x(n-l) the previous one. The first set

of computations are 49 bandpass poles defined by the following difference

equations:

y.(n) = k,.[2 v.(n-l) - x(n-l)] - k, y.(n-2) + x(n) (1)
i Hi i l

where

i = 1, 2..., 49

The k . are 49 distinct constants, while k„ is a single constant equal for all

49 filters. The y.(n), y.(n-l) and y.(n-2) are current, past and past twice re-

moved filter outputs. Digital filters of this type are referred to as recursive.

It is important to note that they contain by virtue of y.(n-l) and y.(n-2), com-

putational feedback. A system of this kind may lead to instability especially

in fixed point arithmetic machines. This problem, together with possible solu-

tions will be discussed later.

The k . and k are respectively given by

k^ = r cos (B.T) (2)

and

2
k„ = r = exp(-aT)

where T = sample period (140 ysec), ot = real part of the complex pole pair

(2n x 60 Hz), g. = complex part of the pole pair. Table 2.1 gives the values

of $. and a summary of the relevant features of all 49 pole pairs. It will be

seen that the poles lie on a line parallel to the imaginary axis. Furthermore,

their positions have been chosen such that if combined in the manner to be

described below, the bandpass filters formed will approximate a linear phase

4
characteristic. Filters of this type are referred to as Lerner filters.

The 49 bandpass poles are summed into 16 sets according to the pattern

shown in Table 2.2 Each pole has a weight attached to it which starts with 0.5

for the first and then continues with alternating sign but of unit magnitude to

end up with 0.5 again on the last pole for an odd number of poles and -0.5 for

an even number. Thus, the first output is:

f1(n) = |0.5 y^n) - y2(n) + y^n) - 0.5 y4(n)| (4)

and the eleventh

fn(n) = j 0.5 y21(n) - y22(n) + y23(n) - y2^(n) + 0.5 y25(n)|

(5)

The envelopes of the rectified bandpass outputs f.(n) are lowpass filtered

using a third-order transitional Gaussian to 12 dB characteristic cutting off at

35 Hz. Here the design differs from the original where a Bessel filter was used.

The Gaussian characteristic has better step response characteristics and was

therefore chosen here. The filters are realized in two steps. A first order

section whose output is:

r^n) = | [2 r^n-1) -2^ (n-1)] + f (n) (6)

is followed by a second order section:

10

TABLE 2,1
LERNER POLE POSITIONS

Pole Real Imaginary Resonant

Designation Coordinate (Hz) Coordinate (Hz) Frequency (Hz) a
1 60 160 170.9 1.42
2 60 200 208.8 1.74

3 60 280 286.4 2.39

4 bO 320 325.6 2.71

5 bO 400 404.5 3.37

6 bO 440 444.1 3.70

7 60 520 523.5 4.36

8 60 560 563.2 4.69

9 60 640 642.8 5.36

10 bO 680 682.6 5.69

LI 60 760 762.4 6.35

12 60 800 802.3 6.69

13 60 880 882.0 7.35
14 60 920 921.9 7.68

15 bO 1000 1001.8 8.35

16 bO 1040 1041.7 8.68
17 60 1120 1121.6 9.35
18 60 1160 1161.6 9.68
19 60 1240 1241.4 10.35
20 bO 1280 1281.4 10.68
21 60 1360 1361.3 11.34
22 60 1400 1401.3 11.68
23 bO 1480 1481.2 12.34
24 bO 1560 1561.2 13.01
25 60 1600 1601.2 13.34
26 60 1680 1681.2 14.01
27 60 1760 1761.0 14.68
28 60 1800 1801.0 15.01

29 60 1880 1881.0 15.68
30 60 1960 1961.0 16.34

31 60 2040 2040.9 17.01
32 60 2080 2080.9 17.34

33 60 2160 2160.8 18.01
34 60 2240 2240.8 18.67
35 60 2320 2320.8 19.34
3b bO 2400 2400.8 20.01
3 7 60 2440 2440.7 20.34
38 bO 2520 2520.7 21.01
39 bO 2600 2600.7 21.67
40 60 2680 2680.7 22.34
41 60 2760 2760.6 23.01
42 bO 2800 2800.6 23.34
43 bO 2880 2880.6 24.01

44 60 2960 2960.6 24.67
45 60 3040 3040.6 25.34
4 b 60 3120 3120.6 26.01

47 60 3200 3200.6 26.67
48 60 3280 3280.6 27.34
49 60 3320 3320.5 27.67

11

A
4-1

X)
•H

C
CD

PQ

«
i

CO

U
CC

-a
aj

c
PQ

CQ
T3

o o O o O O O O O O O o o o o O
CM es CM CN CN CN CN CN CN CN O o 00 ^D vO CN
rH H rH rH rH rH rH rH rH rH CN CM CN co co m

o o O o o O o o O o O O o o o O
o CN st sO 00 o CN <r vD 00 CO 00 o CN 00 O
(0 -T LO vO r^ o> o rH CN co m r-. o <r f^ CO

rH •-i rH rH rH rH CN CN CM CO

o O © o O o o o O O O o o o o O
CO o CN <* ifi 00 o CN <t <X> 00 00 CO ^D CM 00
rH co s* m sO r^ 01 o r-1 CN CO in r^ o <t r^

rH rH rH rH ^-i ^ CN CM CM

CN

w
rJ

s

1
w
H
r4

rJ \o oo CM vO 00

ON

„

00

r

CO
CM

„ „ r*
CM
CO CO

rH

»> c * *
in
CM

00
CM

1-A
CO

m
CO

o m

o
CN

CM
CM CM CM

O
co

ON
CO

CO in r^- 00 r-t CO m r^ CT\ rH co \B Os CO 00 CO
rH rH rH rH rH CN CM CM CM co CO <r

CN <r <e CO o CM <f ^O 00 o CM m CO CM r» CM
r-f r-i ^ rH rH CN CM CM CM CO CO <r

co m o> C0inr^a>rH~-fr^rH\OrH
rHr-HrHrHCMCMCMCOCO<}-

m m vo

u

•H
r^

CM CO m \o co o\ CN CO m vo

12

C.(n) = k3[2C.(n-l) - 2 r.(n-l)] - k4[C.(n-2) - r.(n-l)] + r.(n) (7)

a, k and k. are constants computed to give the required characteristic.

The outputs C.(n) give the energy in the 16 channels and form the output

of the spectrum analysis section. Much of the basic bandwidth compression of

the vocoder has occurred at this point. The original sampled speech in a band-

width of about 3 KHz is now represented by 16 abstracted spectral-energy functions

whose total bandwidth is just 16(35) = 560 Hz.

The pitch extraction, both real time and non-real time is described in

great detail in Ref. 1. Thus, only those parts necessary to illustrate the com-

putational structure will be discussed here. The purpose of the real time pitch

computation is to make preliminary estimates of the pitch period. This is done

on samples of only the bottom 900 Hz since it is known that the fundamental

pitch period will never be in excess of 900 Hz. The actual current sample is

labelled x , the previous sample once removed x and the sample twice removed

x . For computational purposes however x is treated as the current sample

thereby making x ,. the immediate future and x - the immediate past sample. A

parameter A is now defined by (See Fig. 3 for flow diagram).

A = 0
o

+ 1 if x A. > x n+1 n

A = { A if x , = x (8)
n+1 n n+1 n

-1 if x ... < x n+1 n

13

(+2 x is a positive peak
In

A - - A ={ 0 there is no peak n+1 n] r

\-2 x is a negative peak

When peaks are detected, their magnitudes are stored in P and P , i.e., if c cp en

A , - A =2, the content of the current positive peak P is shifted into the
n+1 n cp

past positive peak storage location labelled P and x is written into P v r o pp n cp

Similarly for a negative peak P is shifted into the past negative position

P and x is placed into P . For the majority of cases when no peak is
pn n en

detected the contents of P , P P and P are not disturbed. At any
cp en, pp pn

one sample time magnitudes of current and past positive and negative speech

waveform peaks are available. Six parameters, defined in Eq. (9) are next

formed.

m = P m, = P
0 ' cp' 3 en

m, - |P - P m.=|P-P
1 ' cp pn1 4 en pp

m = |p - P if P > P mc = |P - P if P > P ,ns 2 ' cp pp' cp — pp 5 'en pn1 en — pn (9)

- 0 for P < P =0 for P < P
cp pp en pn

The detailed rationale for the above choice of measurements is described

in Ref. 1. Basically, if time intervals between them are measured, m , m1, m„,

and m, give a good indication of the period for wave shapes with a strong fun-

damental component present. m„ and m- provide a correct period for strong

second harmonics and only some fundamental component waves. This information

is extracted by the following procedure.

14

For each m whenever a new m. is computed for a time T., called the
i i 1

blanking period, no computations are performed, then a parameter a is computed

given by

a. = m x exp(-N £n2/P) (10)
1 l r av

where N is effectively zero during blanking and is then incremented by unity

every sample period, a. therefore represents an exponential run-down which

reaches half its original value when N = P . Updating of a. stops when a new
a" •*-

m is found which is not less than the current value of a.. The time in multiples
l i

of the sampling period, from the beginning of the blanking interval until the

current cessation of the a rundown is stored in P. which in turn defines all
l i

the above parameters thus:

P = \ (P + P,) av . , 2 av i old new (n)

T. = 0.4 P i av
new

The flow diagram for the above is shown in Fig. 1. The six P. are the

initial pitch estimates. Blanking and run-down procedures are helpful in re-

ducing spurious very short pitch period estimates and those produced by noise.

Three sets of P. are kept in memory; the current set and the two most recent

past sets.

2.2 Non-Real Time Pitch Computation

The remainder of the pitch extraction process depends only on the computed

18 values of P.. Also since a new pitch estimate has to be made only once every

18 msec (this corresponds to slightly over 71 sample periods), the computation

15

No

Yes

Do i = 0,1... 5

Pj = current value of Tj
Pav new = I/2 (PaVnew+PO

T . = 0.4 P i w*^ rav

Reset Tj = 0
A = P M rav new
B = m;

Yes

No

I8-6 -I7722

A = Pav old

«i • Bxexp(-/n 2/A)
mj = 0

Ti -Ti + 1

Fig. 1. Real*-time pitch computation flow diagram.

16

from now on can, within broad limits, be done whenever convenient. It does not

have to be finished during any one sample period. It may be spread out over

several or done all at once every 10 msec. The term "non-real time pitch com-

putation" may be misleading since the operation does result, in conjunction with

the rest of the algorithm, in real time speech processing. The name merely

designates those parts of the computations which do not have to be performed

every input-sample period. The approach adopted here was to do the whole non-

real-time pitch computation all at once every 10 msec. This simplifies control,

since the operation does not have to be interrupted.

The computation consists of arranging a table of period estimates and then

choosing the most likely candidate. At the same time attention is also directed

to the energy of the signals involved. If a certain threshold level is not ex-

ceeded, the samples are assumed to be caused by background noise and not speech.

They are therefore labeled for what they are despite any possible detected pe-

riodicity that may be associated with them. If the energy level is exceeded

but the dispersion of the pitch estimates is large (e.g., no two estimates are

alike), the speech sample may in fact have no defined pitch at all as in an

incoherent sound like "s." Both of the above cases are "Hiss." In all other

cases a 7-bit word representing the most likely pitch period (referred to as

"Buzz") as a multiple of the sampling period is found. The above process is

commonly called the Buzz-Hiss or voiced-unvoiced decision. Table 2.3 gives

some examples to further clarify the procedure.

The word used to represent Hiss is 0000111. Thus if the energy

17

TABLE 2.3

Decimal

Pitch

Period = 140 ysec x Pitch
Pitch Word Equivalent Word Frequency Comments

0 0 0 0 0 0 0 0
Hiss

0 0 0 0 111 7 0.98 msec 1020.4 Hz '

0 0 0 10 0 0 8 1.12 msec 892.9 Hz \

0 0 0 1111 15 2.10 msec 476.2 Hz

0 0 10 0 0 0 16 2.24 msec 446.4 Hz / True

0 0 11111 31 4.34 msec 230.4 Hz V Pitch

0 10 0 0 0 0 32 4.48 msec 223.2 Hz 1 Estimate

0 111111 63 8.82 msec 113.4 Hz \

10 0 0 0 0 0 64 8.96 msec 111.6 Hz

1111111 127 17.78 msec 56.2 Hz
'

threshold is not exceeded or the dispersion is too large, this word is put out for

transmission as the current pitch estimate.

The computations involved here are as follows: Let the current 6 P be

designated as column 1, the one preceeding this column 2 and the one before

that as column 3. Also let P.. denote the entry in the i column and 1 row.
ij

A 6 x 6 matrix is now formed which includes besides the above 3 as columns 1,

2 and 3 also the following:

18

P4j • "ij + P2J

P5J - P2j + P3j (12)

P = P + P + P

The reason for these rows is that for waves rich in harmonics the original

estimates Pn. to P.. may erroneously detect second or third harmonics. For such

cases P^. to P,. are more likely to give the correct pitch estimate. Next a

set of window functions for each entry of the first column is defined as

W, (Pi.:) = k x 6.25% of P. .
1J (13)

= 0.0625 k P_, .
ij

where

k = 1, 2, 3 and 4.

A score NC . is then incremented by unity every time if
qk

lPlq-Pijl ± W (14)

For each of the 6 q values all i and j are used. The score is augmented by a

bias term BT (where BT = 8, 6, 3, and 1 for k = 1, 2, 3 and 4, respectively)

giving

" C'f =' jfc' + BT. ! • • • (15)
qk qk k

The P resulting in the largest C , P.. say, is then compared with a thres-

hold term CT. The pitch to be transmitted

TR lmax lmax
(16)

= Hiss word if P, < CT .
lmax —

The threshold term CT = 13.

14

The process just described will, with reasonably high probability, give a

correct pitch estimate. Unfortunately, errors are also inevitable. Their ef-

fect can, to a noticeable degree, be eliminated if data smoothing is employed

on the series of final pitch estimates. This process removes rapid alterations

between Buzz and Hiss and results in the smoothing out of implausibly rapid

time variations in the pitch estimates. The salient features of this proce-

dure follow.

At the end of the pitch evaluation, after the Buzz- Hiss decision has been

made, a shift register is loaded with a 1 if the current pitch word is Buzz and

a 0 if it is Hiss. Using an 8-bit register, the decision for the past 8-pitch

words is stored. The low-pass filters in the spectrum analysis introduce a

60-msec delay in the spectrum data. The pitch data on the other hand is delayed

at most 10 msec. So, in order to time align pitch and spectrum in formation,

the current spectrum information should be combined with the pitch word computed

50 msec ago, i.e., 5 final pitch outputs of delay. The 5th-bit in the above

pitch register then represents the pitch word of current interest. Let the 8

entries in the register be denoted by X.. The first smoothing is done over ad-

jacent sets of 3 X.. The center entry is always altered to the majority. Thus,

for example,

xi+r V xi-l Majority

0] 1 1

0 1 0 0

hence no change, X. = 1

X. is changed to 0

The decisions are made on overlapping sets of 3, moving one X. down at a time.

A second set of eliminations is done on the results of the first but now over

20

a set of five. Again the center X. is changed according to the majority. The

overall pattern is shown below:

1st Elimination

2nd Elimination

It can be shown that this pattern is representable by the following logic

expressions:

Yl'X2

Y2'X3

Y3'X4

Y4'X5

Y5 " X6

X3 4- X2

X. + X.
4 3

X5 + X4

X6 + X5

x7 +x6

X4 + X3

X5 + X4

X6 + X5

X7 + X6

x8 + x?

X,

X,

(17)

and

V - Yl -VY3+Y1 * Y2

+ Yl * Y3 ' Y5 + Yl •'

v + v • Y • Y + Y
*4 1 2 5 1

Y + Y • Y • Y
5 2 3 4

+ Y2 • T3 • Y5 + Y2 • Y4 Y + Y
5 3 Y • Y

4 5

Using X ' and the original X in the shift register, the following pitch editing

process ensues:

21

Decimal x , x

Equivalent 5 5 Editing Procedure

0 0 0 Transmit Hiss word as computed.

1 0 1 Transmit Hiss word despite computed Buzz.

2 10 Find Median over X~ •* X„ and transmit as new Buzz.

3 11 Transmit Buzz word as computed.

The first two and the last procedures are self explanatory, the third one

needs more elaboration. If originally X,. = 0, Hiss would have been the decision,

However, X ' = 1 indicating that a Buzz word is needed. None is available so

a new one has to be derived from neighboring ones. It appears that for editing

of this type, medians are an optimal choice. A median is defined as that value

of a distribution for which half its members are smaller and half larger. Since

the median estimation is done with actual pitch values, 8 past pitch estimates

(denoted by P in flow diagram) have to be also stored.

In order to estimate what will happen in the future as well as in the past,

72 samples x(n) of the speech input are stored in FIFO memory. Samples coming

through the analog pitch channel are clocked into a buffer directly (the

px(n + 72) buffer). The current samples to be used for computation are those

extracted from FIFO memory, therefore, the px(n + 72) buffer contains the value

of pitch 72 sample periods into the future. During every sample period,

X = px(n + 72) if px(n + 72) > X
max max

= X otherwise
max

and (18)

Xmin = Px(n + 72) if px(n + 72) < Xmin

= X . otherwise
min

22

During the non-real pitch computation

A A
1

A, = |X - X | (19)
1 ' max max

Also, X is reset to 00...0 and X. to 01111...1. In this way during a
max min

current P computation h gives maximum deviation of pitch samples 10 msec
IK 1

into the future, whereas A„ provides the same information 10 msec into the past.

The greater of the two values A., and A„ is now compared to a threshold level

(best value here is found empirically). If this level is not exceeded P is
IK

made equal to the Hiss word, otherwise Buzz computation is pursued.

A flow graph of non-real time pitch extraction is shown in Fig. 2.

2.3 Synthesis

The purpose of this operation is to reconstruct synthetic speech from the

received pitch and spectrum data.

The received data contains two 7-bit words representing pitch and 35 bits

representing spectrum energy approximately every 20 msec. More information

about the format and timing of the 2400 bit/sec data stream transmitted from

analyzer/pitch detector to synthesizer over a digitial transmission link, will

be given in Section 2.4. The pitch words are used to control the period of a

digital-equivalent impulse train. If Hiss is received, +1, -1 impulse pairs

are output with period selected by a random number generator. These impulses

are used as inputs into a cascade of (usually) 3 or 4 second-order difference

equations whose aim is to approximate the vocal tract impulse response during

vowel production. Functions of this kind are referred to as formant filters.

2 3

For oonttnMAC* of Computation
IM wioi'n P|j liai b**fi
MWfM "to a linfli* MCIW

P, «ittl M • lwn»r>t.

Fig. 2. Non-real pitch computation flow graph.

24

They also have a "smearing out" effect on the sharp impulses used as inputs.

For more information see Ref. 2. The computational form of the formant filters

is identical to that given in Eq. (7). The constants, however are different.

The original k is now designated k- and varies for each of the formant sec-

tions. The original k. is changed to k, and is the same for all sections.

The formant filter output is the input into 49 band-pass poles identical

to the ones used in the analysis section. Their outputs are weighed and summed

also in the same way; however, no moduli (envelopes) are taken. Let the 16 re-

sults be denoted by A.(n). The spectrum information extracted from the received

data is decoded and converted into a 16-element vector. Each entry is passed

through a third order low-pass filter of the type described in the analysis

(see Figs. 6 and 7) giving 16 outputs B.(n). The A.(n) are used to modulate

the B.(n) to give the 16 E.(n) according to the following scheme:

E.(n) = TZ B.(n) if A.(n) > 0
l it> l l —

fr B.(n) if A.(n) < 0
lb l l

JT B.(n) if A.(n) > 0
ID l l —

rz B.(n) if A.(n) < 0 16 I l

for i
odd

(20)

for i
even

Another set of band-pass poles, again with the same coefficients as in the

analysis is used but now in the reverse fashion. Thus,

25

For Band-Pass Pole Input

1 \\

2 ~h
3 Ex + I E2

4 • -|ErE2

5 E2 + \ E3

etc.

With these inputs, the first 25 band-pass pole outputs G,(n) are computed.

It will be noted from Table 2.1 that the resonant frequency of the 25th pole

pair is 1601 Hz, and that of the 26th 1681 Hz. Also, as will be discussed in

more detail later, the pre-sample input and post-sample output analog filters

cut off at 3.3 kHz with very sharp rejection. Thus, the second harmonic of the

26th band-pass pole with a center frequency 3362 Hz, lies in the rejection band

of the analog output filter. Therefore, the 26th and up to the 49th band-pass

poles contribute nothing to the synthesis that is not already provided by the

post-sample output analog filter. These poles may therefore be neglected.

The final output is then

25 16

x'(n) =]P 2 G.(n) +])P E±(n) (21)

i-1 i=i

x'(n) is converted into an analog signal via a D/A and fed into the voice out-

output .

2.4 Frame Data Encoding and Decoding

The data extracted from the analysis and pitch computation sections is

2 b

further condensed and transmitted in 49-bit frames. Since the data rate is

2.4 kb/sec a frame duration is (49/2400 = 20.41667 msec. There are two 7-bit

pitch words per frame, representing a pitch computation every half frame, i.e.,

every 10.20833 msec. The remaining 35 bits are used to represent the energy in

the 16-analysis channels. As can be seen from Table 2.3, 7-bit pitch words are

adequate to cover the required pitch range. Therefore, no further coding is

needed here. However, 35 bits every 20 msec is not adequate to transmit the

spectrum information. The analysis section supplies 16 words, 16 bits each, a

total of 256 bits which now have to be compressed into 35 bits with a minimum

sacrifice in information content. Even if 4 or 5 bits per sample with logarith-

mic quantization was used (a reasonable approach), we would still have 64 or

84 bits per frame, too many by about a factor or 2. We must take advantage of

the high degree of correlation observed to exist between speech spectral samples,

After a great deal of work, a technique was found some years ago which removes

3
some redundancy and is easy to implement. The 16 spectrum samples S.(n) say

can be thought of as elements of a 16-dimensional vector S.. There exists a

linear transformation, the Hadamard matrix, with elements limited to +1 and

-1, which transforms S. into S.', i.e.,
11

S ' = [H] • S. (22)

such that the elements of S.' are arranged by decreasing order of information

content.

As noted above, logarithmic rather than linear quantization can be used

to provide maximum dynamic range for a given number of bits. This follows from

the empirical observation that speech perception of the human ear is roughly

logarithmic in nature.

27

Thus, the encoding of spectral samples consists of taking the logarithm of

the spectral envelopes, transforming them using the Hadamard matrix, and trans-

mitting 35 bits of information about the result with a maximum number of bits

assigned to the first element and progressively fewer to the adjacent ones.

The data converted to a 2.4 kb/sec serial stream is transmitted over the com-

munications link. At the receive end, the 35-spectral bits are decoded and a

receive spectral vector RS' is formed. Then

-1.
RS. - [H1 * RS! i l J i (23)

It can be shown that [H] = [H]/ 0(H), where 0(H) denotes the order of the

H matrix, in this instance 16. The antilogs of the elements of RS then give

the spectrum inputs into the synthesis section.

Details of the encoding and decoding process are given next. The encode

bit lineup, after log taking and Hadamard transformation is shown below:

BITS

Case

A4 A3 A2 Al V 7~bit log

16 15 14 13 12 11

A 0 X X X X X

B s s X X X X

c: s s X X X X

D s s X X X X

x = information bits

n = unused bits

s = sign bits

A WORDS

A 7-bit logarithm is used. After going through the Hadamard transfor-

mation the top line (Case A) may be multiplied by up to 16 (since the top row

of the Hadamard matrix consists of all +l's). Hence, the indicated 7-bit

log lineup. All other rows of the Hadamard matrix contain an equal number

28

of +1 and -l's, so the maximum shift cannot exceed three binary places. Bit

15 therefore is the effective sign bit for cases B, C, and D.

Case A: Bit 15 is a value bit, but the whole word is known to be positive.

Since this case corresponds to S'(n) all 5 bits A through A, are

used to describe it.

Case B: If the A word is positive and less than 7, the sign bit (0 in this

case) plus the 3 bracketed bits are used, giving the representa-

tion 0 A2 A1 AQ. If A is positive, but greater than 7, 0111, i.e.,

7 is used. For negative numbers if larger than -8 the 4-bit

representation is used as it stands. For A less than -8, just -8,

i.e., 1000 is chosen.

Case C: The same truncation principle as above is used here, except now

only on two bits A (the sign bit) and A . Thus only numbers be-

Case D:

tween 01 and 10 are generated.

Only the sign bit A, in transmitted for this set,

The 16 elements of S' are then assigned to the following groups:

TABLE 2.4

Element of S'
Case

No. of Bits in
Representation

Total No. of
Bits Used

S21 Sll

S'(n)
o

A 5 5 0 0

S|(n),S^(n),S^(n),S*(n) B 4 16 0 1

S^(n),S^(n),S'(n) C 2 6 1 0

S£(n) S|5(n) D 1 8

Total 35 bits

1 1

29

The values S„ and S are merely used as a digital counter to distinguish

the four different cases. Denoting the encoded outputs by 0., it will be found

that Boolean expressions may be derived for them in terms of the A and S -,

S?1. These are given below:

0 = A
o o

°1 = S21

°2 " S21

°3 " S21

+ S

o, V

Sll " S21

•k sll + sll [A '(A + A,) + A. -A • A.
L H o 3 4 o 3

A2 • Sll + Sll

A3 ' Sll + Sll

[\ ' (A1 + A3) + A4 • A± • A3

(A2 + A3) + A4 • A2 * A3

21 11
(A3 + A2 + A1 + Ao) + A4 • A3 A2 • AL

(24)

The encoded words to be transmitted are shown in Table 2.5 by an X. N de-

notes "do not use."

TABLE 2.5

Encode Outputs

o, o. o, 0 0
Case 4 3 2 1 o

A X X X X
r?.J

B X X X X 1 N

C X X
r- - -

I

J
N N N

D X I N N N N

At the receive end the serial data in is converted into an 8-bit word OP ,

and lined up as shown in Table 2.6

30

TABLE 2.6

Decode Inputs

Case OP., OP. 0PC OP 0Pn OP,, OP, OP„
 7 b54 3 2 10

A NNNXXXXX

B NNNNXXXX

C

D

NNNNNNXX

NNNNNNNX

The function of the decoding is to produce a lineup of numbers such that

dynamic ranges are maximized. This implies using the highest possible position,

closest to the sign bit. At the same time, care must be taken to insure that

the process to follow does not produce an overflow with these numbers. In this

case, the following computation is the inverse Hadamard transformation. This

implies, in the first row, a summation of all received values. If we now assume

that OP., in Table 2.6 is equated with the sign bit, then OP to OP- represents
/ D u

the first through seventh value bits. For Case A, all N's will be 0 since it is

known that this number is positive. For the others no such guarantee exists,

therefore the N's in these cases have to be assumed to be sign extensions. Two

extreme cases arise, one when all values received are positive, the other when

they are all negative. For the first case the largest value word A can have

is 31. Word B can be 7; however, there are four of these contributing a total of

28. The three words C can contribute a maximum of three, and D can at most be

0 and it does not contribute. The total is 62. However, one must add eight

to the word A. This follows from the fact that in 2's complement arithmetic

truncation, whether the number is positive or negative, always adds an error in

same direction. Since in the construction of word A only additions are used

51

(16 of them) the number will, on average, be smaller by half the order of the

transformation, 8 in this case. So the total maximum positive sum for all re-

ceived words, using the lineup in Table 2.6 is 72. Using a similar procedure

for an all-negative numbers input (A can be only zero here) and adding 8 to A

gives a minimum of -38. Thus 7 bits are sufficient to represent all eventual-

ities and identification of 0P? with the sign bit is exactly right.

III. COMPUTATIONAL FORMS AND STRATEGY

As indicated at the beginning, the machine we built was designed to imple-

ment the computational forms produced by the channel vocoder algorithms. It

was of central importance that these forms be executed in a minimum of time and

program storage. This section lists the required computational capabilities

and discusses the most efficient way to achieve them.

Let us begin then with the 49 band-pass poles. The equations to be exe-

cuted assume the form given in Eq. (1). There are 49 such poles in the analysis

and 74 in the synthesis operation, a total of 123. If each line of program is

executed in one basic cycle time T , and n lines of code are needed per band-

pass pole, and execution time of 123n T will be required. Given the basic

algorithm and a minimum value of T which the hardware is capable of, minimizing

n without much increasing T is the only possible approach to minimizing total

execution time. This implies parallel hardware. An array multiplier executing

a complete multiply during a single T is therefore desirable. Current Shottky

TTL 16 x 16 array multipliers can be made to give a product in about 100 nsec

(typical). This would imply an upper limit of 10 MHz on the machine cycle fre-

quency. Assuming for the moment that T = 100 nsec each unit increase in n

32

adds 12.3 ysec to the execution time. This represents nearly 10 percent of the

total 140 ysec sample period available for the basic spectrum computation.

The machine must be able to execute the adds and subtracts in parallel with

the multiplies. These operations must be capable of being expressed by the fol-

lowing functional equations.

(Operand 1) (operation) (Operand 2) -»• (Result Destination) (25)

This implies three simultaneous addresses. Assuming at least 8 bits per

address, a minimum of 24 bits of address code will be needed.

The two multiplies already imply two cycle times. Since an addition has

to be performed after the multiplies, a minimum of three T must be available.

The aim therefore will be to build the machine such that no more than three-

cycle times are needed for each second-order iteration of the type shown in

Eq. (1). If a hard wired DO LOOP mechanism of the type discussed in the intro-

duction is used, no additional increase in n due to looping will be required.

Equation (2) implies the need for a ROM in which the 49 K.. . are stored.

Equation (3) requires a mapping of X into exp(-X). Again this may be done by

a ROM. The next computational forms appear in Eq. (4): scaling by half and

the taking of a modulus. The fastest way of achieving a scaling by one half is

to use a multiplexer appropriately wired. The taking of the modulus (absolute

value) may be done as follows: let us assume that an ALU is available which

shifts the input through to the output on one of its channels when, for example,

the code word x.. x„ x„ is supplied and provides the inverse of the input when

the code word is complemented, i.e., becomes x.. x„ x_. The modulus can then

be implemented by connecting the x. through exclusive OR's. The other free

33

input into the exclusive OR's is the sign bit of the input word. When this is

positive, the sign bit is zero and the outputs of the exclusive OR's are x, x„ x„

implying a straight shift through. For negative inputs, the sign bit is one

and the x. will become inverted, i.e., x.. x„ x , forcing the input to appear

inverted on the output. This process takes a single T and can be initiated by

a single command (MOD for example).

Equations (6) and (7) do not impose any new requirements. The scaling by

2 (incidentally this already occurs in Eq. (1)) can again be solved by the use

of a multiplexer. It is hoped that Eq. (6) would take only two program steps

since only one multiply and one subsequent add is needed.

Equation (8) requires a 3-way decision. This can be achieved in two con-

ceptually quite different ways. The machine can be made to access one of three

different addresses depending on whether x,1>x,x,.=x orxin<x and 6 n+1 n n+1 n n+1 n

write 1, A or -1 into A , respectively. This, in addition to the decision

step, requires at least three additional program lines and an unconditional GO

TO command. If pipe-lining is used the number of lines required may double or

even treble. If, however, those lines can be used for other essential opera-

tions as well, this may be a very acceptable solution. An alternative method

is to use an approach similar to that proposed for the modulus function. Thus,

operation A or B is performed, depending on the outcome of a comparison between

two numbers. Two-way comparisons are reasonably simple to implement. The three-

way case becomes much more difficult. It may, of course, be hardware implemented,

The additional complexity this introduces, however, was deemed too high a price,

especially since two lines of software using two-way comparisons can be used to

make a three-way decision. The following three single-line software capabilities

34

were developed:

1. COMP(A > B) IF MET (X 0?± Y); IF NOT MET(X 0P2 Z)

2. COMP(A = B) IF MET (X 0?1 T); IF NOT MET (X 0P2 Z) (26)

3. COMP(A < B) IF MET (X 0?1 T); IF NOT MET (X OP2 Z)

Any of the X, Y or Z can be either of the two comparison words A or B.

Operations OP.. , 0P„ may, but do not have to involve the two numbers. Thus, they

can be an addition or subtraction involving say X and Z, alternatively, OP could

specify a shift through whilst 0P„ a negation of X. Such an operation could be

used to implement the modulus function discussed above. The instruction for this

would be:

COMP(X < 0) IF MET (SHIFT-X); IF NOT MET (SHIFT X) . (27)

Despite the introduction of these very powerful instructions, the modulus in-

struction was retained as a separate entity. This enhances programming

flexibility.

The flow diagrams of Eq. (8) is shown in Fig. 3. It takes two dedicated

lines of software to program. A write into A ,, in a third line is also needed,

however, this can be shared with other operations.

Equation (9) needs no new facilities. The MOD and COMP instructions will

give single line software for their implementation. Similarly, computational

forms needed for Eqs. (10) to (16) are already available. Equation (17) are

Boolean expressions. One can either utilize the logic expression facilities of

available ALUs or (if the number of lines involved is not too large) use one or

more ROMs programmed to give the required expressions. In the present case 8

input lines and one output is required, making it ideal for a single ROM

realization.

35

MET „

ACCA = +1

MET

ACCA *- 1

18-6-17724]

NOT MET

ACCA = ACCA

NOT MET

ACCA = ACCA

An+, =ACCA

Fig. 3. Flow diagram for computation of A = +1, A or —1 depending

on whether X _,_. > X , X ,. = X or X ,, < X .
n+1 n n+1 n n+1 n

36

Nothing new is required again for Eqs. (18) and (19). Equation (20) could

be implemented in software. All the even A (n) collected in an array AE.(n)

say, used in a DO LOOP containing one COMP instruction and one multiply (by 1/16)

would give the even E.(n). Similarly for the odd E.(n). This would take some

six lines of coding. It appears, however, that with very little extra hardware

a single line command to compute the E.(n) from the A.(n) can be obtained. This

is based again on the principle of complementing commands for opposite functions.

Depending on whether the most significant bit out of a storage register (desig-

nated ACCA for accumulator A) containing A (n) is 0 on 1, a hard wired 1/16 B.(n)

is either shifted through directly or inverted. This is done with or without

an additional sign reversal under control of the least significant bit of the

DO LOOP counter which is 0 for even and 1 for odd consecutive passes. This

command is designated DOIB for Direct or Inverse through accumulator B. The

hardware implementation only requires the addition of a few gates.

The next Equation, (21), again does not require any new features. Equa-

tion (22), however, is a matrix operation and would therefore imply a series of

multiplications. Fortunately H is composed entirely of +1 and -1 and only ad-

ditions and subtractions are needed. Also any one entry of H, h.. is given by

hij =ft(io ' V©(11 ' V)©(i2 ' V)©(13 * V * (28)

This represents an 8 input (4i and Aj) values to one output (h..) transforma-

tion. So a single ROM can give all h.. values. A command HAD inside DO LOOP

takes over addition and subtraction under control of h.. and gives a single line

realization. Sixteen runs through this DO LOOP give one line of S. HAD will,

of course, be also used for the inverse Hadamard transformation.

37

Finally, Eq. (24) is also realized using one ROM.

The discussion in this section should give some feel for the way in which

the machine was designed. Those parts which may seem a little vague should be-

come much clearer in the more thorough discussion of machine structure presented

in the next sections.

IV. OVERALL MICROPROCESSOR STRUCTURE

The discussion from now on is concerned exclusively with the final machine

design. This is the end product of many iterations of the type described in

the previous sections.

A block schematic of the machine is shown in Fig. 4. Three-level pipe-

lining is used. The program counter, together with its controls, program and

address code ROMS make up the first time zone. The second contains program de-

coding, an arithmetic section devoted entirely to RAM memory addressing, hard-

ware necessary to implement program operations such as the DO LOOP, GO TO etc.,

and ROMS containing constants like the K.. of (1), exp(x), etc. and the Hadamand

transformation ROM designated HAD ROM. The third zone contains arithmetic pro-

cessing. Each zone is separated from the others by a layer of clocked buffers.

Buffer transfers occur at a clock rate CLL equal to 1/T . Thus, the hardware

in each zone is on its own to complete all the operations required of it during

one period of duration T . The final machine clock was chosen to be 8 MHz or
c

less (this remark should become clearer after reading Section 5.14). Thus T

is not less than 125 nsec. The remaining blocks in Fig. 4 are the input/output

sections for voice sample and communications link data and the machine control

logic. They are outside the pipelining structure since they have no functions

which must be completed during one T . As such they are really not a part of

38

m
UJ

O
M

A

Q
UJ
•x. UJ

-O U- -

°%

z
o

s 8
* UJ

d i

UJ
5

UJ
CO

u
•H
JJ

<J 03
t- a
UJ 0
S JS
I U
K w
a. < -^

u
0

.-i
^
u
o
en
en
o>

z CJ
o 0
K U
o a
UJ o
CO n
o U

•H
CD

O SEJ

00
•H

39

the basic microprocessor.

Basically, pipelining implies that the arithmetic section executes the com-

mands processed by the logic section in the prior T which appeared in the pro-

gram 2T 's ago. Schematically, this can be represented as follows:

TABLE 4.1

Number of
T_ Intervals
c Time Zone 1

PR Step N

Time Zone 2 Time Zone 3

1

2 PR Step N+l Logic N

3 PR Step N+2 Logic N+l Arithmetic N

4 PR Step N+3 Logic N+2 Arithmetic N+l

5 PR Step N+4 Logic N+3 Arithmetic N+2

"Logic N" denotes that part of the command in program step N which is executable

in the logic section, while "arithmetic N" denotes the part which requires the

arithmetic section to perform some task. Not every programming step requires

action from both logic and arithmetic parts. For example, the DO LOOP command

has an effect only on the logic section, while some add instructions will in-

volve the arithmetic section alone. Generally, though, most programming steps

will require some action in both sections. It is of course necessary at times

to store in temporary memory (RAMs) results of arithmetic operations. Since

two time zones are involved in this, care must be taken to give the appropriate

commands at the proper times. This type of operation is indicated in Fig. 4 by

the lines emanating from the arithmetic processing unit into time zone 2 to RAM

memory and logic organization units. Similarly a DO LOOP requires control of

the program stepping and an indication of program position. This is indicated

40

in Fig. 4 by the lines crossing from time zone 2 into 1 and vice versa. These

and other similar cases will be discussed in detail in Section 5.

Table 4.1 should not be construed as an example of how the program is writ-

ten. As a matter of fact each line of program crosses 3 time zones. Thus, a

typical line would be:

PR STEP N; LOGIC N; ARITHMETIC N.

If an arithmetic operation result in line N say is to be processed in the

logic section, the associated logic command will then appear in a line below,

i.e., N+l. In this way the program step and line number becomes the same thing.

Section 6 will give more detail on programming procedures.

V. DETAILED MICROPROCESSOR STRUCTURE

Structural details of the machine are given in Figs. 5, 6, 7, and 8. The

discussion will proceed in terms of functions performed and resultant hardware

realizations. In this way all interrelated blocks appear in the same descrip-

tion. Some units which perform more than a single function will appear in sev-

eral places; however, their description will be from a different point of view.

5.1 Program Counter and ROMs

The ROMs used to store the program and addressing information are 256 x 4

field-programmable devices with a typical access time of 40 nsec and a guaran-

teed maximum of 60 nsec. Since T = 125 nsec, it was considered prudent to in-

clude in the first time zone only the program counter and the program and ad-

dress code ROMs. The 256 counts needed are applied by two 4-bit counters.

Addresses are supplied via line drivers (not shown) to the 8 program ROMs, the

6 address code ROMs, the Page ROM and the Shift ROM. The counter output is

41

w
c
o

u
cu
en

cu

O
O
0)

•a

M
M
o
u
a

T3
C
ct)

c^

o

a

M
o
n
m
0)
U
O
M
P.
O
M
o

a)
O
O
O >

M
•H

42

V3DV Z3j

m

w

- *f i

I

K3° to"

>dWp^ if
ell

:

"S

I:

o
0

« S

4?

c
3

I
U
ca

>-i
o
en
en
<u
o
o

a
o
u
o

cu
-a
o
v
a
>

•H
PH

A3

CO
U
•H
c
a

u
IH
M
V

u
o
CO
en
<D
P
O
M
P.
O
U
u

O
o
o

6C
•H
PL,

44

>l

o
u-i

111

09
3 •u

. H
CO

2 < C
•H

CO
00

-d
C
n)

J<(
U
o
3
4J

| <U
C

k

f to
8 •H
• to | CO * £
• a »" |

01

E a)
H

g s <

00

oo
•H

45

also used as the B input in comparator 1 for DO LOOP purposes (see Section

5.6). The counter clock CLL (See Setion 5.14) is the basic system clock, nom-

inally 8 MHz. The all-full indicator on the counter designated TCC is used in

pitch decoding (see Section 5.13). Presetting of the counter is under control

of the DO LOOP, IF and GO TO instructions (see Sections 5.6 and 5.7). The PE

(parallel enable) inputs are forced low at the appropriate point and an exter-

nal input, supplied by a multiplexer is set into the counter after a low-high

transition of the next CLL. The counter multiplexer consists of 4 dual 4 input

units. Only 3 inputs are used.

Mux Select

Sl
so Inputs

0 0 Not used. Unconnected

0 1 8 bits from ADR ROM B BUFFER

I 0 8 bits from ADR ROM C BUFFER

1 1 8 bits from DF LATCH

The select lines are under control of the IF and GO TO commands (see Sec-

tion 5.7) .

The outputs of all ROMs described here go into clocked buffers (clocked by

CLL) which separate the first from the second time zones. In addition program

ROMs 2 line 4 in conjunction with program bit 7 of Address ROM C provide via a

Nand gate and clocked buffer the S„ input to Mux Y. Details are given in the

next three sections. Also program ROM 8 bits 2, 3, and 5 provide an indication

in the first time zone of the IF command. The reason for this is that COMP is

executable in the arithmetic section while IF is performed a time zone earlier

in the logic section. Therefore the COMP - IF operation (see Section 5.6 for

46

greater details) is coded in two consecutive program lines. On the other hand

information whether it is to be just a COMP or a COMP-IF instruction is needed

at the same COMP appears hence the jumping at a time zone to provide IF

indication.

5.2 RAM Memory and Buffers

In Fig. 5 two sets of RAMs referred to as RAM A and RAM B are shown. Each

consists of two 256 x 16 arrays arranged as page 0 and page 1 giving a total of

1024 16-bit words of random-access memory. The RAMs are fed by multiplexers.

One of the inputs into these comes from the arithmetic section Write Mux output.

This path enables the results of arithmetic processing to be stored in RAM

memory. The other path comes from the other RAM array. It is possible there-

fore to shift data from RAM A into RAM B or vice versa without affecting any

other part of the machine. The two-page controls for both RAMs are also on the

Page ROM. An output multiplexer is also provided for each set of RAMs enabling

either set to write into the AB or BB buffers. These buffers are individually

clocked by commands Clock AB and Clock BB, respectively. Thus, they provide

the dual functions of individual storage and time zone 2 to 3 isolation. Two

further multiplexer arrays in front of the AB and BB buffers are also used.

They are labeled AB Mux and BB Mux, respectively. Under program control, the

Write multiplexer output in the arithmetic section ca be channeled through.

This facility enables the AB and BB buffers to be used as temporary storage

for arithmetic operations. This, as will be later shown, enhances the versatil-

ity of the COMP and COMP-IF instructions.

47

5.3 Address Processing

Address ROMs A and B in the first time zone and their clocked buffers in

the second, provide conventional addressing for the two RAM arrays. The buffered

8-bit address is channeled through a multiplexer (ALA Mux and ALB Mux) and through

an ALU (ADR A and ADR B ALU). The ALUs are conventionally in A plus B mode.

The other input comes from MUX Y which in turn has the value of the DO LOOP

counter I, on its output (unforced state of S_ = S.. =1 on MUX Y) . Outside a

DO LOOP 1-0, thus the address reaching the RAMs will be the 8-bit word pro-

vided by the address ROMs. This arrangement also satisfies all addressing needs

inside a conventional DO LOOP. The first address of a consecutively numbered

array is provided by the addressing ROMs. The I counter then increments once

every run through a LOOP, providing a unit increment for the accessed array

address via MUX Y and the ADR ALU. If unconventional incrementing or random

addressing is needed in a LOOP, the other MUX Y inputs can be used. As an

example, accumulator B (ACCB) may be incremented by some fixed integer k stored

in Accumulator A by the command

ACCB = ACCB + ACCA

once during DO LOOP execution. The contents of ACCB can then be channeled via

MUX Y to the appropriate address ALU. Another possibility is to use the AB

buffer. This provides the most versatile addressing but is restrictive in the

sense that one RAM array becomes unavailable. But for example, a set of

random numbers computed by the program and stored in say RAM A in consecutive

locations, may be used in a subsequent DO LOOP to address RAM B via the AB buf-

fer and MUX Y. Also the address ALU must be in shift A mode and the ALA MUX

48

in state 1, i.e., it channels the contents of CBI to RAM A. In this way the

RAM A address can be incremented consecutively, whilst RAM B is under AB buffer

addressing control. CBI is a counter which may be incremented by unity on com-

mand CBI ; alternatively a word appearing on the output of the A ROMs can be

written into it. Unit incrementing of CBI was already described in conjunction

with use of the AB buffer for addressing. The presetability of CBI provides

another way of random addressing, this time of both RAMs (if required); however,

the random sequence has to be programmed into the A ROM. The address C ALU has

an unforced state of A plus B. Thus a base address provided by ADR ROM C can

be incremented in a DO LOOP via MUX Y. Thse addresses are supplied to the A..

ROM which in turn contains a preprogrammed random sequence of addresses in a

consecutive array. These are then clocked into CBI and are available to RAM A

and B, via inputs 1 on the ALA and ALB multiplexers and ADR ALUs (usually the

latter will be in Shift A mode).

Facilities are also provided for nested looping. Usually in such cases

the innermost loop would be a conventional DO LOOP with incremental addressing

provided by the I counter as described above. For the outer loops, however

1=0 and unit incrementing has to come from somewhere else. One of the func-

tions of the I counter is to provide this facility. I may be set to some

value specified by ADR ROM C and then incremented by unity at every pass through

the loop. In this configuration MUX Y is in the 0 1 state. For more than two

loop nestings, incrementing has to come from either ACCB or the AB buffer. In

principle, since the AB buffer can be accessed from either RAM array and from

the arithmetic sections, unconstrained addressing and incrementing for any degree

49

of loop nesting is possible. However, software has to be used to compute the

addressing and their possible increments. I, I and to a less dedicated de-

gree ACCB can provide hardware oriented nested DO LOOPING up to 3 deep. The I

counter can also be used as intermediate address storage. The flexibility of

the system is best illustrated by the fact that up to 4 levels of indirect ad-

dressing are possible. Thus, an address out of ADR ROM C can be modified by

the ADR C ALU by adding some increment to it. This in turn produces an output

from the A ROM which can be modified a fourth time by the ADR A or B ALUs.

5.4 Decoders

The need for high-speed program throughput means that indivdual instruc-

tions must be very powerful and flexible. As a consequence, most commands have

to be independent of all others. Unfortunately, this in turn generates a need

for wide program words and an attendent increase in ROMs and allied hardware.

Some effort was therefore put into collecting non-interfering commands into

groups (of not more than 7). Each group is then accessed by a one of 8 decoder.

Only one command of each group can be used at a time; however, a 7 to 3 inde-

pendent line compression has been achieved. The eighth output of each decoder

is not used. In this way if none of the particular group of commands is needed

the eighth output is automatically accessed ensuring non-interference with the

rest of the program. Of the 32 lines of program code the bottom 6 are used as

inputs into two decoders (labeled DEC1 and DEC2). This produces an additional

set of 14 commands. An additional two decoders (DEC3 and DEC4) are driven by

the bottom 6 lines of ADR ROM C. Many of the envisioned operations required of

the machine do not need ADR ROM C. With the exception of a multiply, all arith-

metic operations are an example of this. As a consequence the demands imposed

50

on the ADR ROM C by the operations described to date will not be heavy, leaving

it available for other things. Capitalizing on this fact, the two additional de-

coders ensure fuller use of ADR ROM C. The two groups of commands available

from DEC3 and DEC4 are those least frequently used. A full listing is given

in Table 5.1.

The 3 COMP instructions, already described in Section 3, certainly are

mutually exclusive. MULT used to initialize a multiply, MOD to produce a modulus

and DOIB for ACCB control, are all executable in the arithmetic section and do

pose a certain constraint on programming flexibility. CLIX is used to update

I by unity. It is a second time zone command and not a very frequent pne. .

The command ZERO is used to disable the receive decoder multiplexer 2

TABLE 5.1

STATE DEC 1 DEC ? DEC 3 DEC k

0 0 0 OPEN OPEN OPEN OPEN

0 0 1 COMP > ZERO EXP xs2
0 10 COMP = DO CLED xs1

0 11 COMP < CHA Not Used xso
10 0 MULT DOIAR M ALOC

10 1 MOD IF II HAD

110 CLIX INH CMCL AB MUX

111 DOIB SET I
X

Not Used BB MUX

(see Fig. 7). The output of the multiplexer goes to channel 7 of the arithmetic

ALU multiplexer A. Selection of this channel together with the ZERO command

makes 0 available for arithmetic processing. DO is the DO LOOP command to be

51

described in greater detail in Section 5.6. CHA ensures that the ADR ROM C buf-

fer output is shifted directly through the ADR C ALU. DOIAR shifts the arith-

metic ALU commands through directly, or inverts them depending on whether the

least significant bit of the MUX Y output is 0 or 1. IF (see also Section 3.7)

initializes a conditional jump, INH is used in conjunction with DOIB if the ef-

fect of the least significant bit of MUX Y on the DIOB mode of operation is to

be inhibited. This permits ACCB operations to come through as specified or in-

verted depending on whether the word contained in ACCA is positive or negative,

respectively (for ACCB operations, see Section 5.8). Set I writes the 8-bit

word appearing on the output of ADR C ALU into the I counter. The EXT command

disables ROM A , enables ROM A„ and makes the exponent data available (see also

Section 5.5). CLED clocks the edit shift register (described in Section 2.2).

CMCL is used once in the program. It therefore constitutes a clock indicating

completion of a program run. It is used for pitch computation and timing (see

also Section 5.14). XS~, XS.. , and XS„ all mutually exclusive, are used to

select px(n + 72), px(n + 1) or sx(n + 1) (see Section 5.12) and Decoded Pitch,

respectively from Receive Decoder MUX 2. ALOG is the antilog command, it, like

EXP, disables ROM A. and makes available antilog data (see Section 5.5). HAD

is the Hadamard matrix transformation command. It channels a multiplexer to

the HAD ROM input (see Section 5.11). The 8 inputs into which are divided into

two four-bit words, the 'i' word, which is updated once every run through the pro-

gram and the 'j' word, which is updated every time HAD appears. A DO LOOP con-

taining 16 HAD instructions therefore varies j between 0 and 15. This is done

for every value of i (0 to 15)• The output of the HAD ROM is the appropriate add

52

or subtract command specified in the Hadamard transformation (discussed in

Sections 2.4 and 3). The multiplexer channels the HAD ROM output through to the

arithmetic ALU. AB MUX and BB MUX are the controls on the two multiplexers in

front of AB and BB buffers, respectively. The natural unaccessed state of the

decoder output is a 1. The RAM outputs therefore are channeled through these

multiplexers. A 110 on DEC 4 inputs forces a 0 into line 6, i.e., AB MUX and this

selects the Write MUX output through the AB multiplexer. The same happens with

the BB multiplexer when 111 is applied on DEC 4.

Decoders 1 and 2 are permanently enabled. This cannot be permitted for the

3rd and 4th decoders since otherwise conventional use of ADR ROM C might be

translated into an unwanted command out of these devices. An enable line desig-

nated ENABLE C is provided. Every command in decoders 3 and 4 must be accompanied

by an ENABLE C. The 8th line out of the program clocked buffers in Fig. 5 is

shown as ENABLE C. The bar indicates that this line is nominally high and be-

comes 0 only when accessed , this being the inverse of conventional usage. A

zero on the decoders enables them.

5.5 ALOG and Exp Routines

The computation of logarithms is done by a software subroutine. Sixteen-

bit input numbers are mapped into all 7-bit words (0 to 127) in a one-to-one

transformation such that adjacent input words are offset from each other by a

constant on a logarithmic scale. The inverse transformation, referred to as

the antilog (hence, the ALOG label) is programmed into ROM A„. Thus for input

words m = 0 through 127, 128 16-bit output words are available. A 60-dB dynamic

range was assumed to be very adequate. This led to the choice of 0.5 dB steps

53

and a consequent dynamic range of 64 dB. Thus, generally:

on i fALOG (m + 1) 1 ocn
20 1Og10 LALOGIS) J" °'5 (29)

giving l

ALOG (m) = ALOG (m + 1) x 10 . (30)

The largest number representation, assigned to ALOG (128), is 1 - 2 " . It was

assumed that for the case at hand this was sufficiently close to unity to define:

1_
40

ALOG (127) =10 - 0.9440608763

as a result the general expression for ALOG (m) is given by

ALOG (m) - 10 .

This expression was used to evaluate the ALOG transformation table.

Let us assume that X is a number whose logarithm is required. The procedure

is based on the following algorithm:

IF X - ALOG (m) > 0 m = m + -r

=0 m - m) (32)

< 0 m • m — -T-

The evaluation, irrespective of X, is always started with m = 64. It takes exactly

7 iterations at which point the latest value of m is the required LOG (X) .

The ALOG command, besides disabling ROM A. and enabling ROM k also puts a

zero into the most significant bit on the input of ROM A-. This ensures that only

bits 0 to 127 are available as ROM address inputs when the log-taking routine is

in use. When ALOG is not activated, the MSB is held at a high with only addresses

54

128 to 255 available as inputs. This part is reserved for the EXP (m) mapping.

EXP out of decoder 3 enables ROM /\ and makes available at the ROM output the

following transformation, given an input address m:

£n2

EXP (m) = e m _ 128 . (33)

Thus for 128 < m < 255, 0 < EXP (m) < 0.994557

This table is used exclusively for the exponential rundown procedure during

real time pitch computation, as described in Section 2.1.

5.6 DO LOOP

Dedicated DO LOOP operation has already been suggested in the introduction

as a means of speeding up of the program throughput. The command is specified by

DO, DF, DL, N (34)

where DF is the first line of the loop, DL the last and N the number of times the

loop is to be executed. Usually DF is the line immediately following the DO

instruction, however this need not be so. DL is stored in ADR ROM B. The out-

put of the DL latch goes to one of the two inputs on a comparator the other

being the current program counter setting. The DO therefore is a first-time

zone operation. Comparator 1 gives an output the moment the counter setting

reaches the value DL. This output, denoted E.. in Fig. 5, performs two tasks.

It clocks the I counter incrementing I by unity and, if the output of the com-

parator 2 (i.e., E„) is low, it parallel enables the program counter ensuring that

the next value the counter will assume is that available from the counter multi-

plexer. The unforced state of the multiplexer is 1 1 which channels the content

of DF. So, as long as there is a parallel enable during program step DL, the

5 5

next setting is step DF. This is essentially the looping mechanism. Compara-

tor 2 has the current value of I as one of its inputs and the output of the N

latch as the other. When equality of I and N is reached, the DO LOOP has been

executed the required N times. E~ goes high inhibiting the parallel enable

action of E1 the counter therefore continues sequentially which has the effect

of exiting from the DO LOOP. Two-level indirect addressing permits N to be a

variable. For example, an array of N values N. say is stored in consecutive

address locations A.(N.), (j = 0, 1 n). Let us assume the DO is nested in

an outer one controlled by I . If for 1=0 ADR ROM C supplies A (N), N
' x x vr o o o

will be used for the inner DO. The next pass through the outer DO increments

I by unity giving the new address for ROM A„ as A (N) + 1 = A., (N.) as a re- x zoo 11

suit this time the inner DO is executed N. times. Continuing in this way access

is made to all N., making it possible to individually control the number of ex-

ecutions of the innermost DO LOOP.

5.7 IF, COMP, COMP-IF and GO TO Instructions

The IF instructions produces a conditional jump. The decision may be up

to 3-way depending on whether two numbers A and B say satisfy the A > B, A = B

or A < B conditions. The indicators used are the carry-out line from the ALU,

C , the A = B output and the most significant bits of the A and B words, MA and

MB, respectively. Table 5.2 lists all possible states. This table was used to

implement a hard-wired IF instruction.

Justification for the COMP instruction and a short description of its oper-

ation was already provided in Section III and Eqs. (26) and (27). The two quan-

tities to be compared are the contents of the AB and BB buffers, respectively.

56

TABLE 5.2

State MA MA

ALU
C
o

ALU (Q,)
A = B RESULT

1

0

0

1

0

1

1

0

0

1

0

0

0

A positive; B positive

A positive; B negative

A negative; B negative

A > B

2

0

1

0

1

1

1

1

1

A positive; B positive i
A = B

A negative; B negative)

3

0

1

1

0

0

1

1

0

0

0

0

0

A positive; A positive

A negative; B positive

A negative; B negative

A < B

They will be referred to as AB and BB in the subsequent discussion. The com-

parator used in this operation is shown in the top left corner of Fig. 6. Since

AB and BB may be positive or negative independently, the comparator must be

able to handle 2's complement numbers. The outputs from the comparator are com-

bined with the COMP lines to give

EN = COMP > • (A > B) + COMP = • (A = B) + COMP < • (A < B) . (35)

The COMP lines are active low whereas the comparator outputs active high. There-

fore, a comparison if met makes E. = 1, if not met E.. = 0. E.T controls the sel- N N N

ect lines of 3 other multiplexers. During a COMP operation the ACCB control

lines are not used for Accumulator B control. This accumulator becomes unavail-

able for other than shift through operations. Similarly, the PHR multiplexer

selects lines PHR MUX and write multiplexer control WR MUX are no longer

57

available for their prime duties. The two multiplexers are connected in the 0

channel mode, i.e., select AR ALU output. The 3 control lines ACCB.,, ACCB.. ,

and ACCB„ are one of the two sets of 3 inputs (channel 1) into a multiplexer

selected by E„. The zero channel is S„ MUXA, S. MUXA and S„ MUXA. The outputs

of this multiplexer drive the three select lines of MUXA. Thus, when a compar-

ison is not made or made but not met the MUXA outputs are selected by the con-

trol lines originally intended for the job, i.e., SQ, S and S2 MUXA. If, how-

ever, a COMP instruction is met E = 1 forces ACCBQ, ACCB and ACCB- to take

over control of MUXA. Thie mechanism permits selection of different MUXA Inputs

as the A word of the ALU depending on whether a comparison is met or not met.

The word to be selected if the comparison is met is specified by ACCB„, ACCB

and ACCB- if it is not met SQ MUXA, S MUXA, and S MUXA does the selection.

Similarly, the lines controlling the arithmetic operation are either the orig-

inally intended ones ARn and AR.. if no comparison is made or one made and not

met or their place is taken by PHR MUX and WR MUX, respectively, when E = 1.

This channeling is effected via two further multiplexers shown in Fig. 6. Since

the two sets of controls are totally separated, completely independent arith-

metic operations may be performed on two ALU inputs depending on the outcome

of a comparison between AB and BB. The following are three examples selected

to illustrate the use of the COMP instructions. The notation will be described

in greater detail in Section 6.

58

1. COMP> ("I AB, 2AB) (SFTA, SFTA)

2. COMP = (ACCA, MUXY) (SFTA, +) CB -*• ACCA

3. COMP< (BB, AB) (-, SFTB) PHR •+ ACCB

1. This means: if AB > BB shift -r AB through to the natural output of

the arithmetic section (which is the WR MUX output). If the comparison is not

met shift through 2AB.

2. If AB = BB clock the content of ACCA back into itself. This is

equivalent to saying that ACCA should not be disturbed. If the comparison is

not met the content of MUXY incremented by the content of buffer CB and the re-

sults clocked into ACCA.

3. For AB < BB clock BB - PHR into ACCB. If AB > BB place only the PHR

into ACCB. The second entry in the first bracket, i.e., AB is in this case

just a dummy since the ALU selects only channel B anyway. Any one of the MUXA

input could be used here, however, AB with a command of 0 0 0 is the most con-

venient. Although internal ACCB operations are not possible during a COMP,

clocking into ACCB does not require ACCB , ACCB , or ACCB and is therefore per-

missible.

The COMP instruction may also be used as the decision stage for a conditional

jump. If in the line following a COMP instruction an IF appears, the program

counter will go to a location specified in ADR ROMC or continue in its natural

sequence depending on whether the COMP was or was not met, respectively. The

operations specified by the COMP itself have no bearing on the conditional jump.

Table 5.3 combines all the relevant states and their consequences for both

kinds of conditional jumps.

59

TABLE 5.3

1

No. IF
A

CPS

(A = B or E)

*1

_ ..

Meaning Action

1 0 1 0 0 AB > BB conventional No P.E.

2 0 1 0 1 AB < BB IF P.E. to ADR ROMB

3 0 1 1 X AB = BB P.E. to ADR ROMC

4 0 0 1 X Met | COMP P.E. to ADR ROMC

5 0 0 0 X Not met) IF No P.E.

6 1 X X X No IF No P.E.

P.E. stands for parallel enable. X means a don't care state. The action

to be taken in line 2 for example means: set the program counter to go to the

steps specified in the ADR ROM B on the next rising clock edge. The parallel

enable on the program counter is active low, therefore in conjunction with

Table 5.3.

P.E. = IF + CPS • Qn + CPS • Q • Q, 1 o 1
(36)

The GO TO command is a straightforward unconditional jump. It comes from

the top line of the page ROM and goes to the P.E. input on the program counter.

The address to which the program is to go is in ADR ROMC. The complete P.E. on

AA
the program counter taking Eq. (36), GO TO and EOD into account is

P.E. = (IF + CPS • Q1 + CPS • Q • Q.) ' GO TO * EOD (37)

CPS = COMP > • COMP = • COMP <.

A*
EOD = END of DO output. This goes high at the end of a DO LOOP.

60

The relevant data controlling the select lines on the program counter multi-

plexers is collected in Table 5.4.

TABLE 5.4

IF GOTO *1 Qo sl
s
o Select Meaning

0 0 X X X X X Does not occur

0 1 0 1 0 1 ADR ROM B AB < BB in conventional IF

0 1 1 X 1 0 ADR ROM C AB > BB in conventional IF

1 0 X X 1 0 ADR ROM C Unconditional jump

1 1 X X 1 1 DF LATCH Static condition; used in DO

From the above

SQ = (IF + Qx) GOTO
(38)

S = IF + Q • GOTO

5.8 Arithmetic ALU and Accumulator B

The inputs into the arithmetic ALU are fed by two 8-input multiplexers re-

ferred to as MUXA and MUXB (see Fig. 6). Selection of outputs is conventinally

handled by six dedicated lines; S MUXA, S MUXA and S MUXA for multiplexer A

and S MUXB, S MUXB and S MUXB for the other. An exception to this rule for

multiplexer A alone occurs only during the COMP instruction described in the

previous section. Table 5.5 lists all available inputs and their locations.

61

TABLE 5.5

s
o sl S2 MUX A MUX B

0 0 0 AB BB

0 0 1 j AB \ BB

0 1 0 2 AB 2 BB

0 1 1 ACCA I6BB

1 0 0 NHF
CB

1 1 0 MUX Y ACCA

1 1 1 EXT or ZERO PHR or EDIT

The first 3 lines in each multiplexer are the AB and BB buffer outputs

direct, scaled by -r and 2. This is the fastest way of achieving scaling. MUX B

also provides a rrr scaling. This is used for quick implementations of Eq. (20)

and also in non-real pitch evaluation of the window function Eq. (13). ACCA is

available in both MUXES. The reason for this is that the ALU can only provide A

minus B. In this way ACCA minus X or X minus ACCA are both possible. For the

same reason BB appears in MUX A as well. 2 ACCA was found very useful for a

number of operations. MUX Y is multiplexer Y output. This permits constants,

chiefly used for addressing to be brought into the arithmetic section. Since

MUX Y is in the second time zone, its output has to be buffered as shown in

Fig. 5. CB permits constants from the AROM's to be available in the arithmetic

section. The last setting in the MUX A column contains both EXT and ZERO since

this address makes the output of receive decoder MUX 2 available. Whether what

comes in on lines A is one of the 4 inputs into the multiplexer labeled EXT or

ZERO depends on further commands out of decoder A for EXT and decoder 2 for zero.

Position 7 in MUXB is taken up by the output of the product hold register labeled

62

PHR, also the two least significant lines are connected through a two input

multiplexer to X'5 X5 (described in Section 2.2 when the editing procedure was

explained) and the two least significant bits of the PHR output. Edit, which

happens only once during the program, is controlled by an unused setting of the

ACCB controls, i.e., ACCB - 0, ACCB., = 1, ACCB„ = 1. Under this control (with
o 1 ^

111 on MUXB select) the product hold register is cleared to zero and the two

lines X' X are channeled through.

The arithmetic ALU is required to perform only 4 different operations:

shift A, A minus B, A plus B and shift B. Two dedicated control lines AR and r o

AR.. are used. The control on the ALU packages themselves (the 74S181's) requires

6 lines. This and other relevant data is summarized in Table 5.6.

TABLE 5.6

AR
o

AR
Meaning

ALU Controls Enable

M C S, S„ S,
n 3 2 1

S
o MUXA MUXB

0 0 SHIFT A 0 0 0 11 o 0 1
0 1 A - B 0 0 0 11 0 0 0

1 0 A + B 0 110 0 1 0 0

1
1

SHIFT B 0 110 0 1 1 1

ALU controls for only A - B and A + B are used. For SHIFT A the B is set

to zero. Similarly, when just B is required, the A + B command is used and A

is forced to zero by disabling MUXA. It will be seen that the two sets of con-

trols are duals of each other for 5 of the 6 controls and the first one, M is

zero throughout. A very straightforward and consequently low delay realization is

63

possible. The system is given in Eq. (39).

M = 0

C = S = S = AR (39) n 3 o o

S„ = S = AR
2 1 o

and the MUX enable lines

ENABLE MUXA = AR • AR,
o 1

ENABLE MUXB = AR • AR,
o 1

(40)

As already mentioned during the description of t!.e COMP instruction,

PHR MUX and WR MUX commands replace AR and AR.. , respectively, when a comparison

is met. The enable lines on MUXA and B and also the ALU controls are therefore

available through multiplexers controlled by E . Besides the above and the oper-

ations performed in conjunction with the IF, one further is associated with the

ALU. This is DOIAR which stands for direct or inverse operation in arithmetic

ALU. It will be noticed from Table 5.6 that the commands of SHIFT A and SHIFT B

are logic duals of each other. Similarly so are those of A - B and A + B. This

choice is deliberate and is utilized to provide a single line conditional com-

mand. The condition used is the value of the least significant bit of multi-

plexer Y (designated LSBY). The function DOIAR • LSBY controls a pair of ex-

clusive OR's, the other inputs into which are AR and AR,. When DOIAR is not
o 1

used its value is high and consequently, irrespective of LSBY, the exclusive

OR's transmit AR and AR unchanged. During a DOIAR command the outputs of the

exclusive OR's are AR and AR, if LSBY = 0, AR„ and AR, if LSBY = 1. The o 1 o 1

examples below illustrate the usage of the command:

64

1. DOIAR (ACCA, CB) -*• ACCB

2. DOIAR (AB - PHR) -> ACCB

1. Leaves value of ACCA unchanged if LSBY = 0 or replaces it by CB if

LSBY = 1.

2. Clock AB - PHR into ACCB if LSBY =0, and AB + PHR if LSBY = 1.

It should also be pointed out that the LSBY may assume difference values.

Thus inside a DO LOOP LSBY will alternate between 0 and 1 on consecutive passes.

If the ACCB or AB inputs on MUXY are used the evenness or oddness of the numbers

contained there will be the controlling factor.

The arithmetic ALU output is channeled through a specially arranged set of

two input multiplexers. Their purpose is to provide saturation. Operation of

this kind implies non-modulo arithmetic. When a positive number is to appear

on the ALU output exceeding the largest representation permissible, the output

is forced to this largest permissible value rather than "wrap around" as would

be the case in ordinary modulo arithmetic. Under similar conditions for nega-

tive numbers the output is clamped to the most negative permissible value. In

-15
the representation used here, this implies 1-2 and -1 as the two limiting

values. The choice of this kind of computational strategy is dictated by sta-

bility considerations. It may be shown that in any kind of computation which

contains feed-back (examples of this are all the digital filters used here), a

self-sustaining instability is likely if overflow and conventional "wrap around"

is to occur. Furthermore, this will be so even if all else is totally ideal.

Saturation arithmetic on the other hand guarantees complete stability even if

accidential overflow was to occur. Table 5.7 summarizes and comments on all

possible states. SA, SB and SF are the sign bits of the A, B, inputs and the

6C>

ALU output. OP is the operation with OP = 0 for Add and OP = 1 for Subtract.

Actually OP is equivalent to AR" . The last column, labeled OUTPUT, indicates

whether the result of the operation is correct (in which case an O.K. appears)

or in the event of an overflow, what kind of clamping is needed. The State

column is the decimal equivalent of OP SA SB. The clamping multiplexer follow-

ing the ALU has one of its inputs (channel 0) connected to the ALU output. The

other has the inverted sign bit, i.e., SF connected to the most significant bit

and SF itself to all others.

TABLE 5.7

State OP SA SB SF Comments Output

0 0 0 0 0

1
A + B, both positive, answer positive O.K.

0 0 0 0 1 A + B, both positive, answer negative positive clamp

1 0 0 1 X Effective subtract of 2 positive
numbers

O.K.

2 0 1 0 X Effective subtract of 2 positive
numbers

O.K.

3 0 1 1 1 A + B, both negative, answer negative O.K.

3 0 1 1 0 A + B, both negative, answer positive negative clamp

4 1 0 0 X A - B, both positive O.K.

5 1 0 1 0 Effective add of 2 positive numbers
answer positive

O.K.

5 1 0 1 1 Effective add of 2 positive numbers
answer negative

positive clamp

6 1 1 0 0 Effective add of 2 negative numbers
answer positive

negative clamp

6 1 1 0 1 Effective add of 2 negative numbers
answer negative

O.K.

7 1 1 1 X A - B, both negative O.K.

ACCB consists of an ALU also with saturation clamping. Although it is

describes as the ACCB, the content of the register is usually implied when

66

a number is referred to as ACCB. The unit is intended primarily for arithmetic

operations and is therefore designed for 16-bit words. In addressing, only

half the number is needed and so only the top 8 bits of ACCB are channeled over

to MUXY. Three dedicated lines designated ACCB , ACCB and ACCB control opera-

tions. These are listed in Table 5.8.

TABLE 5.8

No. ACCB
o

ACCB^^ ACCB-

Internal
MUX
E
N

PHR MUX
E
N

•

Meaning Comments

0 o 0 0 1 0 SHIFT EX ALU in A+B with A=0

1 0 0 1 0 0 ACCB + EX Straight A+B

2 0 1 0 x x Not used

3 0 1 1 X X Edit

4 1 0 0 0 1 ACCB ALU in A-B with B=0

5 1 0 1 0 1 ACCB + 1 ALU in A+B, 8th Bit-1, B=0

6 1 1 0 0 0 ACCB - EX Straight A-B

7 1
1 1 1 0

. • - , •

SHIFT - EX

ALU in A-B with A=0

EX = external input; E = MUX enable line.

Operation 5, above, i.e., ACCB + 1 has a 1 in the 8th bit down. In this

way the ACCB can be incremented for addressing purposes. This is achieved by

disabling the PHR MUX and forcing a 1 into the 8th carry bit. AO detects this

state since

AO = (ACCB + ACCB + ACCB) • CPS

It is fed through a Nand gate to give the required carry.

(41)

67

The MOD and DOIB commands are also associated with ACCB.

5.9 Array Multiplier

Figure 9 gives a very rough schematic of the system used. The boxes with

numbers in them are AM25S05 4 by 2, 2's complement multipliers. A block labeled

i - j refers to multiplier bits i and i + 1 and multiplicant bits j through

j + 3. Neither the multiplier nor multiplicand lines are shown, but their pre-

sence and position can be inferred from the labeling. Since only the 16 most

significant bits are used in the product not all multiplier blocks are needed,

thereby saving on hardware. More detailed information on such arrays is given

in the manufacturers data sheets. The particular arrangement used here produces

a 16-bit product in typically 80 nsec.

The multiplier in the arithmetic section is supplied by the MULT Register.

This in turn is clocked in every cycle by CLL and therefore always contains the

output of the arithmetic ALU. The multiplicand is the CB buffer output. This

buffer is clocked only on the dedicated command CLCB. Since the multiplier is

memoryless a new product of the current ALU output word and CB is constantly

being produced. The multiply command MULT is used only as a clock on the

product hold register PHR. Thus MULT results in the current product being re-

tained for further use. This value is available until the next MULT command

appears.

5.10 Intermediate Memory

Besides the RAMs, which could also be calssified as intermediate memory,

a number of single word intermediate memories are available. The division into

time zones, necessitated by the need for pipelining, provides storage in the

68

16-BIT PRODUCT

Fig. 9. 16 x 16 multiplier array with 16-bit product,

69

dividing buffers. Not everywhere, however, is use made of this facility. Thus,

all buffers clocked by CLL directly will store their contents for one clock

period only. Others like AB, BB and CB buffers perform the dual role of (1.)

isolation of 2nd and 3rd time zones and, (2.) intermediate storage. This second

effect is achieved by providing dedicated clocking lines for each of them. In

this way only when the clocking command is given will the content on the inputs

of these buffers be stored in them. Storage of given words for an arbitrary

number of computational periods is therefore possible. CBI in the second time

zone (Fig. 5) is also a storage register. Also, an existing word may be incre-

mented by unity. Exactly the same is true of the I counter. Both of these

registers are 8-bits wide. The multiply register, clocked by CLL does not pro-

vide intermediate storage, the PHR however does. This was already described in

the previous section. ACCA can provide storage since a clock ACCA (CL ACCA) is

available, and finally ACCB with CL ACCB provided is also an intermediate store.

5.11 ROM Coding

At a number of points of this report mention has been made of the ROMs used

to implement memoryless Boolean functions. This section lists and describes

them all.

The ENCODER ROM implements Eqs. (24). The inputs are A , A , A , A , A ,

S and S starting with the least significant and up to the seventh address

bit. The 8th and most significant bit is grounded. The four outputs are labeled

0 , 0„, 0„ and 0.. The encoder ROM translates the computed output words (stored
12 3 4

in the output buffer)into the required format used for serial data transmission.

The ROM output feeds the Data Register (Fig. 7.).

70

HAD ROM produces the expression given in Eq. (28) as one of its outputs,

this is denoted by H . Another line, denoted H is used to give the complement,

i.e., H . The eight inputs are the i and j words. The two remaining outputs

are used to produce

(42)
SA = 13 + *2 ' h ' *0 + *2 ' (i0 + V

SB = S + T2 ' Tl ' T0 + l2 ' (i0 + il)

S, will be seen to be zero for lines 1 and 3 in Table 2.4. S„ is zero for
A B

lines 1 and 2. They are therefore numerically equal to S and S , respectively.

Actually

Sll - SA • TS

S21 - SB • TS

(43)

where TS = 0 during a spectrum computation and 1 during pitch. More details on

this parameter are given in Section 5.14.

The TIMING ROM is driven by the 'i' word and TS. It is used to produce, in

conjunction with other circuitry described in Section 5.14, timing pulses for

data in an output. Table 5.9 lists the requirements. The R. are the ROM out-

puts and the last column represents clocking pulses. More about these will be

found in Section 5.14.

71

TABLE 5.9

TS i R3
R2 Rx Ro No. of CP]_ |

0 o 0 0 1 0 5

i

0 1. 2, 3, 4 0 0 1 1 4

0 5, 6, 7 0 1 0 1 2 !
0 8, , 15 0 1 1 0 1

1 X 0 0 0 0 7

The EDIT ROM has already been mentioned in conjunction with editing pro-

cedure in Section 2.2. Specifically, the EDIT ROM accepts the 8-decision bits

generated during the editing process as a parallel address and provides one line

only labeled X' The logic implemented is given in Eq. (17).

Finally, there are the two sets of A ROMS designated ROM A storing con-

stants and ROM A used for ALOG and EXP commands described in Section 5.5.

5.12 Data I/O, Acquisition and Synchronization

The data input/output facility at the machine end is provided by the Data

Register (Fig. 7). The encoded word for transmission is clocked into it in

parallel. The MSB of this word appears always on line OP of the register out-

put. Clocking pulse CP provides the required clocking edge for this register,

when clock output buffer (CLOB) is activated.

CLOB = S, MUXA + AR' + AR'
1 o 1 (44)

An edge triggered F/F controlled by CP. and CLOB in turn controls the select

line S on the data register. With S_ = S =1 the register (a set of 74S194s)

is in parallel load mode. CLOB will put S. = 1 and CP , which comes always in

72

the following line, puts S back to zero. Thus only immediately after CLOB will

a parallel load result. Elsewhere the select lines will be in state S = 1,

S = 0 which implies a shift right every time a clocking edge is applied. The

clock on the register may be either CP„ or CP, . The latter is used in bursts of

appropriate length (see Section 5.14) to shift right the available data. Thus

the first edge of CP puts the most significant bit available on CP, into CP7.

It also pulls into CP the bit applied to the DSR input on the Data Register.

For the first spectrum word CP. will have five edges. After such a clocking se-

quence, the five bits originally present will have been clocked out via OP and

five new bits now occupy postions OP to OP . Another clocking sequence CP

whose edges occur half a period behind CP is used to clock the content of OP

serially into a first-in first-out memory. Thus, on completion of this procedure

the original content of the data register has been transferred into the FIFO,

designated output FIFO. The number of clocking edges in the sequence CP (and

as a consequence in CP as well) is given in the last column of Table 5.9.

These sequences correspond to the number of bits in the encoded final output

words as described in Section 2.4. The received data, which appears on the bottom

lines of the Data Register after completion of a CP - CP clocking sequence is

treated as a word equivalent to the one just clocked into the output FIFO. Thus

if CP1 has five edges the receive word is assumed to represent the first spec-

trum word and so on. These received words are then decoded as described in

Section 2.4 by a hard-wired multiplexer designated Receive Decoder MUX1 (Fig. 7).

The output of this multiplexer is the 10 input on Receive Decoder MUX 2.

In order to ensure that the received bits do indeed have the interpreted

73

meaning, it is necessary to synchronize the received data stream with the inter-

nal CP clocks. Since the input data is at 2.4 KHz whereas the CP pulses are

at a vastly different rate, again a FIFO is used as a buffer. This is desig-

nated Receive FIFO in Fig. 7. The input into this device is clocked at the

2.4 KHz rate, externally supplied as the input data clock. The system first

requires Frame synchronization, i.e., it recognizes spectrum and pitch words

and lines them up in a specially provided shift register. It then waits until

the machine itself is ready to accept data. When this happens (referred to as

data sync) data is taken out of this shift register and processed while new

data is entered into the input FIFO ready for transfer into the shift register.

5.13 Pitch Decoding

A one-shot triggered at the appropriate time clocks the received pitch

word into a RAM, capable of storing 16 8-bit words. The address is generated

by a 4-bit counter and channeled via a MUX. Only during the write cycle is the

address supplied exclusively by the counter. When in read, an offset is added

to the address. Since A is manually adjustable this permits an effective delay

to be introduced between the just-written and just-read pitch words. This delay ad-

justment is used to equalize any time offsets that may exist between the re-

ceived pitch and the spectrum. A buffer stores the currently read pitch word.

The buffer output is compared against the Hiss word. Its complement is also

used to preset a counter, whenever that becomes full, and is clocked by TCC,

the program counter overflow. A gating arrangement ensures that for non-hiss

words, the pitch multiplexer (Fig. 7) selects the impulse 1 0 0 0„ and is other-

wise connected to zero. In this way an impulse separated in time by the multiple

74

of computational periods specified by the received pitch word is generated.

The output of the pitch multiplexer is available to the machine via the EXT in-

put on MUXA and the 01 input on the Receive Decoder MUX2. If a Hiss word is

received the pitch multiplexer is connected to the 0 0 or 1 1 states under

pseudorandom number control. The 0 0 position supplies a positive unit pulse,

whilst the 1 1 position gives a negative unit pulse. As a consequence, pitch

excitation during Hiss is a noise signal of unit amplitude but random sign. The

1 8
pseudorandom bit generator is capable of providing a random sequence with 2

members. Since the sampling clock averages 140 ysec (see next Section) the se-

18
quence repetition rate is 2 x 140 ysec = 36.7 sec. This is sufficiently long

not to generate a noticeable repetitive pattern.

5.14 Timing

In order to maximize program throughput speed a half frame's work of com-

puting is done without any pauses. Since program execution times will vary de-

pending on input data, the intervals between TCC pulses will also vary, making

the internal machine clock non-uniform. On the other hand, the input speech

samples are received at a uniform 140 ysec sample rate. Therefore, the effec-

tive internal sample rate has to average 140 ysec or less over each half frame.

A variation of 130 ysec to 150 ysec can be expected. The internal clocking rate

CLL is adjusted until over a half frame the average execution time is just under

140 ysec. Generally, there will be an irrational number of speech samples in

a half frame. Since only integer values are acceptable, an interger N is gen-
nr

erated each 1/2 frame such that the various NUT7, values averaged over many frames
tir

approximate the above irrational number. In this way the frame rate and sample

7 5

rate may be synchronized to each other, preventing relative slippage. In the

machine itself, using software, I is generated by unit incrementing once every

program run. At the end of the program a comparison is made. As long as IN

is less than N no action is taken. When I = N , the command CMCL is gen- nr NK Hr

erated which stops the system clock CLL. The system at that time has used up

Nu samples and so it has to wait until a new set of N samples has been stored
Hr Hr

in the sample FIFOs.

5.15 Voice Analog Section

A schematic of this section is shown in Fig. 8. The voice output from a

microphone is fed into an amplifier with 6 to 21 dB of variable gain. The out-

put feeds a presample low-pass cutting off at 3.3 KHz. This is an 8th order

elliptic filter (C0815c, 9 = 71°) with zero gain at DC. The output is split

into two paths. One goes via a preemphasis network again with zero DC gain into

a sample and hold. The other is band-pass filtered by an 8th order Butterworth

80 to 600 Hz filter. Its output is also sampled by a sample and hold module.

The first of the two is the spectrum, the second the pitch path. Preemphasis

of spectrum samples has been found empirically to improve final speech quality.

Fundamental pitch periods lie in the range of 80 to 200 Hz;the band-pass filter

therefore permits up to the third harmonic of the highest fundamental to come

through. Spectrum and pitch samples are transferred into an A/D converter during

alternating periods. Two clocks, denoted by SHS and SHP, respectively for spec-

trum and pitch sampling, are generated as follows: A presetable 8-bit wide counter

has its parallel input hard wired to 220. A 1-MHz clock is used giving a 35 usec

period from preset to all full (255). The 255 state characterized by the over-

flow TC = 1 is used as a parallel enable for the counter and is a 1 usec wide

76

pulse with a 35 ysec period.

The acquisition time of the sample and hold modules, defined as the time

an unchanging input must be maintained to get the specified accuracy, is 35 ysec.

Both SHS and SHP are maintained high for exactly that length of time. The

140 ysec sample period is divided into four 35 ysec zones. Starting with both

SHS and SHP low for 35 ysec, SHS goes high. This lasts for 35 ysec whilst SHP

is still low, in the third zone both are low again and in the fourth SHP alone

is high. A high is the sample state and during a low the sample is held. The

A/D conversion time (to 12-bit accuracy) is 30 ysec. The strobe input into

the A/D on transition from 0 to 1 resets the converter to zero and sets the "busy

bit" felso referred to as the status) to 1. When the strobe goes low, conversion

begins. In our system, starting with the spectrum channel as the strobe goes

high the A/D is reset and the status goes high disabling both the FIFOs and the

px(n + 72) buffer. One microsecond later, the strobe goes low, and SHS goes

high initiating a spectrum sample. The FET switch (active low) channels the

pitch S&H to the D/A. This will have already been converted in the pitch S&H

into a steady level. Thus the A/D starts its conversion cycle on the pitch

sample. Some 30 ysec later the conversion is complete at which time the status

goes low. Since SRCL goes high, this transition clocks the A/D output into the

px(n + 72) buffer as well as into the FIFOs. In the meantime the spectrum sample

period (35 ysec) is being completed. By the time the next strobe comes along the

spectrum sample is already held for some 35 ysec; also, the FET switch channels

the spectrum sample into the A/D and the spectrum conversion in the A/D begins.

At the same time the next pitch sample is already being taken into the pitch

S&H. On completion of the spectrum conversion the status output on the A/D

77

clocks this into the FIFOs but not into the px(n + 72) buffer since SRCL is now

toggled into the low state and is not producing a clocking edge. The cycle then

repeats. The FIFOs contain both spectrum and pitch samples (alternating) whilst

the px(n + 72) buffer holds pitch samples only.

At the output side, the reconstructed samples are fed first into a FIFO.

This is done in order to bring their rate back to the constant 140 ysec. The

clock used to store the samples in this FIFO is the internally generated pro-

gram execution rate which varies (as discussed in the previous section) from

120 ysec approximately to 150 usec. The average rate over one-half a frame is

140 ysec. Thus, extracting the samples from the FIFO at exactly 140 ysec elim-

inates effectively the internal varying rate. These samples are then put through

a low-pass filter identical to the 3.3 KHz presample filter. De-emphasis may

be added at this point to compensate for the input pre-emphasis. However, the

quality of speech was found to be more natural without it and so it was left

out in our system.

A power amplifier feeding earphones or a loudspeaker completes the audio

system.

VI. PROGRAMMING'

At the end of Section 4 the format in which a program line would be writ-

ten was already indicated. The program step is just a consecutive number and

conveys no information other than that of position. The real information con-

tent is in the logic and the arithmetic parts. The two are separated by a semi-

colon to denote that execution of the former is one time zone ahead of the lat-

ter. The following is a list of mnemonics used to denote various operations

together with comments and explanations. The simpler operations, such as the

78

read or write are strictly one-zone operations (logic in this case) however,

more complex commands like the COMP - IF for example require both logic and

arithmetic sections. The listing therefore is in three parts: logic, arithme-

tic and combined operations.

6.1 Logic Commands

1. X -*• Y Read constant at address X in AROM and

write into Y where Y can be either the

CB or the CBI buffer.

2. X •*• Y For J = A; read X in RAM A and store in

Y. Y may be the AB, BB, buffer or a lo-

cation in RAM B. For J = B it is a read

from RAM B and into AB, BB or a location

in RAM A.

3. WR •*• RA at X Write content of WR MUX output into RAM A

at location X.

4. WR -> RB at X Write content of WR MUX output into RAM B

at location X.

5. WR AX •+ RB at „Y Write content of RAM A at X into RAM B
A B

at Y. The dual with A and B reversed

is also permissible.

6. DO DF, DL, N Execute program lines DF up to and in-

cluding DL, N times.

7. CHA Channel the A input through the Address

C ALU.

8. CHI Channel I to the output of MUX Y.
x x

9. GO TO N Unconditional jump to program step N.

10. EXP, X ^ CB Write content of the A„ ROM, exponent

section address X into CB.

79

11. ALOG (X) •+ CB

12. CLIX

13. CBI = CBI + 1

14. Set I = N x

15. CHACCB

16. CHACCB, CHI

17, INH

18. CMCL

19. HAD

20. BL

6.2 Arithmetic Commands

1. ZERO

2. X •+ ACCA

3. X -»• ACCB

4. X + Y

5. X - Y

6. MULT

Write content of A„ ROM, ALOG section,

address X into CB.

Unit increment I . x

Unit increment content of CBI.

Set I to be equal to N. Where N can
x

be an arbitrary integer (including zero).

Channel ACCB (8 top bits only) through

MUX Y.

Channel content (8 top bits only) of

AB through MUX Y.

Inhibit the effect of the least signifi-

cant bit out of MUX Y on the DOIB command,

Half frame clocking computed in software.

Arithmetic operations under Hadamard

matrix control.

Blank; no operation.

Shift zero through MUX A.

Clock X into ACCA.

Clock X into ACCB.

Add X to Y.

Subtract Y from X.

Multiply; the content of CB will be multi-

plied by the content of the multiply regis-

ter which is the past ALU output and the

product will be clocked into the PHR at

the end of the CLL clock period.

80

MOD (X)

DOIAR (X OP Y)

9. DOIB (X OP Y)

The modulus of X appears on theoutput of

ACCB. X is the number coming through the

arithmetic ALU.

Direct or inverse operation in arithmetic

ALU. Execute Y OP Y if the least signifi-

cant bit out of MUX Y (LSBY) is zero or

X OP Y if it is one. Two pairs of OP and

OP are plus, minus and Shift A, Shift B.

Direct or inverse operation in ACCB. Same

as above but the operations are with re-

spect to ACCB. These are given in Table

5.8. In addition the control is LSBY ®

MSB ACCA. If this is 1 direct operation

results if 0 inverse.

10. C0MP> (A,B), (0P1, 0P2) X -y Y

If AB > BB do A OP. X and write into Y

if AB < BB do B OP- X and wriete into Y.

COMP< and COMP = are analogous. For

greater detail see Section 5.7.

6.3 Joint Commands

There are two such commands. The IF jump and the COMP - IF. Both require

an arithmetic operation followed by a logic command in the next line. The IF

appears as follows:

 ; A - B

If > 0 +a, = 0 +b, < 0 +c;

This means that depending on the outcome of the comparison between A and B,

where A is the word in the A channel of the arithmetic ALU and B is the B chan-

nel word, go to address 'a' if A > B, go to 'b' if A = B and to address 'c' if

81

A < B. This is a three-way decision.

For the COMP IF, using the COMP= as an example, a typical program line

might look as follows:

 ; COMP= (AB, ACCA) (+, SFTA) CB •*• ACCA

If YES N;

This means that if the operation is not met (irrespective of what the operations

are) go to program step N, otherwise continue sequentially.

VII. CONCLUSIONS

One of the consequences of the design approach described in this report is

the constant need to re-assess the effect of the most recent modification on

the rest of the machine and then take appropriate action. However, when the

final modification is reached and the system just works successfully, the in-

centive to go back and rework the system for a more elegant solution is lacking.

If, therefore, the machine described here seems in places capable of obvious

improvements and none are made, this is so mainly due to the lack of time for

a more elegant solution.

The final machine built has the following statistics:

Power consumtion: ~ 22 amps at 5 volts

~ 0.3 amps at 15 volts.

Size: 451 DIPs 85% Shottky TTL rest regular TTL

3-1/2 Augat boards of digital hardware

1/2 Augat board of analog hardware

Fits into one standard drawer.

82

ACKNOWLEDGMENTS

The author would like to acknowledge the contributions of a number of

people whose help made the construction of the vocoder possible: Gloria Liias

for her extensive programming support, Joe Tierney and Ben Gold for numerous

discussions on principles of vocoding and computer design, Bob Meade for help

in building the units and last but certainly not least Warren Hutchinson who

cooperated with the author in all phases of design and whose contributions

were of decisive importance to the success of the project.

83

REFERENCES

1. B. Gold and L. Rabiner, "Parallel Processing Tecniques for Estimating
Pitch Periods of Speech in the Time Domain," J. Acoust. Soc. 46,
442-448 (1969).

2. B. Gold and L. Rabiner, "Analysis of Digital and Analog Formant
Synthesizers," IEEE Trans. Audio Electroacoust. AU-16, 81 (1968),
DDC 673594.

3. B. Gold and C. M. Rader, "The Channel Vocoder," IEEE Trans. Audio
Electroacoust. AU-15, 148 (1967), AD-679147.

4. R. M. Lerner, "Band-Pass Filters with Linear Phase," Proc. IEEE _5_2,
249-268 (1964).

84

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-77-193
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4- TITLE (and:Subtitle)

A Digital Microprocessor Channel Vocoder

5. TYPE OF REPORT & PERIOD COVERED

Technical Note

6. PERFORMING ORG. REPORT NUMBER

Technical Note 1977-33

7. AUTHORCs^

Jerzy Gorski-Popiel

8. CONTRACT OR GRANT NUMBERrs>

F19628-76-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M.I.T.
P.O. Box 73
Lexington, MA 02173

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Program Element No. 63431F
Project No. 2029

11. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Systems Command, USAF
Andrews AFB
Washington, DC 20331

12. REPORT DATE

10 August 1977

13. NUMBER OF PAGES

92
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division
Hanscom AFB
Bedford, MA 01731

15. SECURITY CLASS, (of this report)

Unclassified

15o. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

channel vocoder LES-8/9
digital microprocessor synthetic speech

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A complete, real-time, channel vocoder delivering good speech quality with a 2400-bit/second data
transmission rate was implemented using purely digital circuitry in the form of a high-speed programmed
microprocessor.

Necessary algorithms are presented and their effect on the machine design is discussed in detail.
The end product is a very high-speed computing machine (measured in program throughput terms). It
turned out to have a high degree of programming flexibility, which would make it adaptable to other tasks.
This was a bonus, not an original goal. The project was conceived and successfully realized as the most
practical way to build a vocoder for actual use in the LES-8/9 satellite communications system.

 . , . —

DD F0RM 1473
1 JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

