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ABSTRACT 

A complete, real-time, channel vocoder delivering good speech quality 

with a 2400-bit/second data transmission rate was implemented using purely 

digital circuitry in the form of a high-speed programmed microprocessor. 

Necessary algorithms are presented and their effect on the machine design 

is discussed in detail.  The end product is a very high-speed computing ma- 

chine (measured in program throughput terms).  It turned out to have a high 

degree of programming flexibility, which would make it adaptable to other 

tasks.  This was a bonus, not an original goal.  The project was conceived 

and successfully realized as the most practical way to build a vocoder for 

actual use in the LES-8/9 satellite communications system. 
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I.   INTRODUCTION 

A digital vocoder is a device which extracts from samples of speech those 

attributes which are most essential for accurate synthetic speech reproduction, 

subject to the constraint that the data link between the transmitter and re- 

ceiver utilizes a minimum data rate.  The microprocessor described in this re- 

port was designed specifically to implement a 2400-bit/second channel vocoder 

delivering good speech quality in real time.  The judge of what does and does 

not constitute acceptable quality is the human ear.  The criteria are thus highly 

subjective and ill suited to precise mathematical description.  As a result, 

vocoder algorithms are largely empirical in nature.  The good ones have taken 

many years to develop.  Not unexpectedly, however, one fundamental fact has 

emerged: — computational complexity and final speech quality for a given data 

rate are directly related.  The Gold-Rader-Tierney channel vocoder  algorithm 

used in this project was developed over a period of several years by a number 

of people with the goal of excellent speech quality.  It is thus rather complex 

and takes a great deal of computation to implement.  Several successful imple- 

mentations were built using analog circuitry for the spectrum analysis and syn- 

thesis, and digital pitch detectors.  However, the algorithm has never before 

been implemented in an all-digital machine in real time, because of the high re- 

quired machine speed.  The processor described in this report is the first ma- 

chine with sufficiently high-speed capabilities to realize the Gold, et al. chan- 

nel vocoder algorithm in full duplex real-time form.  This was achieved using 

commercially available Schottky-clamped TTL logic and an 8-MHz system clock 

rate.  To give a feeling for the speeds involved, an IBM 370 has a program 

throughput rate roughly two orders of magnitude too slow. 



Many vocoder algorithms were developed under the guidance of B. Gold over 

the last decade or more.  A great deal of algorithm simulation on large machines 

has been done.  The most recent work of interest for this project was done by P. 

Demko and J. Tierney, both of Group 27 (unpublished internal report).  They made 

use of a general purpose computer to simulate a 16-channel vocoder in non-real 

time.  Finite length words were used in order to determine the minimum required 

computer accuracy for acceptable reproduction of vocoded speech.  A given word 

length once decided upon was used throughout the computation, all of which was 

done in fixed point arithmetic.  Under constraints of this nature, computational 

optimization is equivalent to finding optimal scaling of the processed numbers 

such that dynamic range is maximized.  The results of their work are therefore 

of great value to anyone interested in building a fixed point microprocessor to 

implement a channel vocoder.  Specifically, their results indicated that a 12-bit 

coefficient and sample word together with 16-bit processing was a good choice. 

18-bit processing gave only marginal improvement.  The machine described in 

this report follows the Tierney-Demko simulation fairly closely.  One major ex- 

ception is the use of 16-bit operations throughout, including coefficient lengths. 

Other exceptions are of a more detailed and minor nature and will be pointed out 

as we come to the appropriate point. 

The main thrust of this report is the description of the actual computing 

machine; however, since the reason for its existence is a realization of a chan- 

nel vocoder a description of the salient features of the algorithm implemented 

will be given. 

The method by which the machine was designed will also be discussed.  This 

should be helpful to others faced with similar design problems.  At the 



beginning of the project I knew of no machine design capable of the high pro- 

gram throughput speed needed for the channel vocoder algorithm.  Existing 

microprocessor designs and standard digital design procedures were, with some 

exceptions, not too helpful.  A new approach to the problem had to be worked 

out.  The eventual success of the project was, I believe, almost entirely due 

to the design approach developed; that is, simultaneous and closely coupled 

design of both hardware and software.  To start with, we knew the algorithm 

to be realized, and could therefore write down all the mathematical expressions, 

and thus the required computational forms.  Using available integrated circuits 

the problem then reduced to fitting them together in such a way that the compu- 

tational forms could be executed in the most efficient way.  Each required oper- 

ation was carefully scrutinized and implemented in software or in hard-wired 

logic, whichever of the two achieved greater efficiency.  As an example, con- 

sider a sequence of identical operations performed on varying data.  In software, 

it is usual in such cases to make use of a so-called DO LOOP.  An index is set, 

a test performed and a decision made whether to return to the beginning of the 

sequence or to continue.  Symbolically, such a procedure may be expressed as 

follows: 



1. Set I = 0, K = M 

2. Take in New Data 

3. 

[Perform Required] 

Operations   ) 

n 

L n + 1.  Set I = I + 1 

n + 2.  If (K - I) > 0 go to Step 2, continue otherwise 

n + 3.       

n + 4.       

n + 5.       

In this sequence, steps (n + 1) and (n + 2) do not contribute to the computa- 

tion, but only to the control.  They could thus be considered overhead, costing 

both program memory and execution time.  If, however, we eliminate the DO LOOP 

control instructions many more program steps would have to be written.  An opti- 

mum solution therefore is to build in a DO LOOP mechanism in hardware.  For 

example, one which will give rise to the following software: 

1. 

2. 

3. 

Do 2, n, M 

Take in New Data 

Perform Required 

Operations 

<- n 

n + 1 

n + 2 

n + 3 

The above means DO step 2 through n, M times and on completion continue 

with the program.  It should be noted that steps n + 1 and n + 2 are now no 



longer in the loop.  All needed controls are line 1.  If each program line 

takes T sec to execute, the above solution, besides saving two lines of program, 

also shortens the executive time by 2MT sec.  For large M this can be quite 

considerable. 

The software operations, instruction set, and machine architecture are de- 

signed together as described, modifying all three as necessary while working 

through the required mathematical expressions.  It will, of course, be appre- 

ciated that after several steps in the process, one will have to go back to the 

beginning and re-assess the impact of the latest changes on the previous compu- 

tational procedures.  Thus, this is an iterative design procedure with feedback, 

which stops when all required computations are implementable and the job can be 

done within the required time.  In terms of engineering esthetics, it is a very 

satisfying process in that it meets all requirements, and allocates tasks ef- 

ficiently between hardware and software. 

After following the above design philosophy for some time it suddenly 

dawned on me that the design mode allows computational time problems to be dealt 

with especially easily.  It is quite straightforward to add more paralleling, 

more pipelining, and more hardware as required without starting over.  Another 

very interesting observation was made when the design was completed.  Despite 

the decidedly dedicated nature of the design, the end product is by any reason- 

able definition a general purpose computing machine.  It does have peripherals 

which are specifically geared for the vocoding process such as pre-sample fil- 

tering, special format data storage, and acquisition systems.  However, the 

machine itself is quite general purpose.  It can do addition, subtraction, and 

multiplication.  It has DO LOOPS and conditional and unconditional jumps.  It 



can perform conditional operations and make decisions as a result of some opera- 

tions.  It also has been programmed to implement a self-diagnostics program, a 

task, totally different from the vocoding algorithm. 

When faced with the need for a machine to implement a vocoder or a task of 

similar complexity, it is perhaps natural to draw on the extensive past exper- 

ience accumulated by general purpose computer designers.  This leads directly 

to a simple "classical" architecture based on familiar design concepts and is 

capable of achieving fastest possible machine cycle times, a fact frequently 

quoted as its justification.  Implementations along these lines can easily 

achieve execution times per instruction a factor of 5 or so shorter than those 

of the currently proposed machine.  Complex signal processing operations are 

then carried out by very complex and lengthy software. 

Perhaps the single most interesting result to emerge from this project 

is the fact that substantially greater total program throughput rate may be 

achieved by settling for a slower basic cycle time, but concentrating instead 

on making each instruction as powerful and efficient as possible.  This claim 

is borne out by the fact that at this writing no full-duplex channel vocoder of 

similar complexity has been implemented digitally, despite a keen interest in 

such devices, other than the machine described here.  It is believed that for 

tasks involving signal processing or filtering where maximum throughput of mass 

real time data is the keynote the proposed approach will yield a more efficient 

end product.  The chief contributing factor is extensive use of "firmware." 

This term means PROM implemented special functions (like log tables for example) 

which as a result can be recalled with a single command (not unlike a sub- 

routine in a Fortran program).  This greatly shortens the required software and 



correspondingly speeds execution.  This development could not have been possible 

without the recent introduction of LSI and large PROMs since they make it pos- 

sible to realize custom parallel architecture and fast look up tables with 

comparatively little design effort, at small cost in power, size, parts count 

and ultimately dollars. 

After the final design is completed, debugged and working it is almost in- 

evitable that the question comes up "If it had to be done again would I do it 

the same way?"  Equally inevitably the answer is: "not quite."  This case is of 

course no exception.  Following is a number of comments arrived at by hindsight. 

They may prove useful to anyone faced with a similar design problem. 

The difficulty in creating a sufficiently flexible addressing scheme was 

underestimated.  As a result the part of the machine dealing with this problem 

was underdesigned at first creating a lot of headaches later on.  All this 

would have been avoided if addressing received greater attention at the very 

outset.  If this had been done it is also very likely that a better,  more 

flexible addressing scheme would have evolved. 

Difficulty of debugging rises exponentially with the number of ICs used. 

It is therefore very important to include eventual debugging procedures into 

the design process.  This may raise the IC count slightly, but will repay it- 

self manyfold later on.  One very attractive way to do this is to set aside a 

reasonably large part of the program memory for a self diagnostic routine. 

This would exercise all possible machine modes one at a time (if feasible) or 

jointly by operating on some predetermined numbers.  During each operation the 

output of the arithmetic section, for example, is monitored by comparing it 

with a precomputed value.  The whole procedure should be programmed in such a 



a way that if a disagreement is detected the error will have originated in only 

a small part of the machine.  In this way the detection of several errors should 

pinpoint the malfunctioning of individual ICs.  In the present machine self 

diagnostics was added at the end, and was available only by connecting a sepa- 

rate specially designed board.  This was due mainly to the non-availability of 

sufficiently large ROMs.  The diagnostics unfortunately created problems on 

its own mainly due to propagation delays.  It is felt that self-diagonstics 

should be an integral and permanent part of the machine.  If the machine is to 

be a subsection of a much larger system composed, of other programmable machines 

each with its own self-diagnostics all of these diagnostic routines could be 

tied together making it possible to debug even very large systems with relative 

ease and in a very small fraction of the time it would take otherwise.  Since 

self-diagnostic is essentially an exercising of the machine itself, it is esti- 

mated that its implementation should raise the IC count by not more than 5%. 

As already mentioned, the advocated design procedure is only possible due 

to the introduction of LSI.  With the appearance of even more complex LSI modules 

the process becomes more flexible still.  A good example of this would be the 

use of the AM 2901 module.  This is a 40-pin device containing an ALU, shift 

registers, buffers, ROM and RAM memory arranged to create very primitive arith- 

metic operations under control of the ROM which is already micro-programmed. 

A unit like this could have been used to advantage in both the addressing and 

arithmetic sections.  Another example would be the incorporation of array 

multipliers, possibly custom designed, arranged on a single chip. 



II.  THE VOCODING ALGORITHM 

Essentiallv the program consists of four distinct groups. 

2.1  Spectrum analysis and real-time pitch computation. 

The spectrum analysis operation extracts the energy content of 16 band- 

pass filters fed by the speech samples.  The sampling period used was 140 ysec, 

or a rate of 7.14 KHz.  Let us assume x(n) represents the current speech sample 

digitized to (12 bits in our case), and x(n-l) the previous one.  The first set 

of computations are 49 bandpass poles defined by the following difference 

equations: 

y.(n) = k,.[2 v.(n-l) - x(n-l)] - k, y.(n-2) + x(n)        (1) 
i      Hi i     l 

where 

i = 1, 2..., 49 

The k . are 49 distinct constants, while k„ is a single constant equal for all 

49 filters.  The y.(n), y.(n-l) and y.(n-2) are current, past and past twice re- 

moved filter outputs.  Digital filters of this type are referred to as recursive. 

It is important to note that they contain by virtue of y.(n-l) and y.(n-2), com- 

putational feedback.  A system of this kind may lead to instability especially 

in fixed point arithmetic machines.  This problem, together with possible solu- 

tions will be discussed later. 

The k . and k are respectively given by 

k^ = r cos (B.T) (2) 

and 

2 
k„ = r = exp(-aT) 

where T = sample period (140 ysec), ot = real part of the complex pole pair 



(2n x 60 Hz), g. = complex part of the pole pair.  Table 2.1 gives the values 

of $. and a summary of the relevant features of all 49 pole pairs.  It will be 

seen that the poles lie on a line parallel to the imaginary axis.  Furthermore, 

their positions have been chosen such that if combined in the manner to be 

described below, the bandpass filters formed will approximate a linear phase 

4 
characteristic.  Filters of this type are referred to as Lerner  filters. 

The 49 bandpass poles are summed into 16 sets according to the pattern 

shown in Table 2.2 Each pole has a weight attached to it which starts with 0.5 

for the first and then continues with alternating sign but of unit magnitude to 

end up with 0.5 again on the last pole for an odd number of poles and -0.5 for 

an even number.  Thus, the first output is: 

f1(n) = |0.5 y^n) - y2(n) + y^n) - 0.5 y4(n)| (4) 

and the eleventh 

fn(n) = j 0.5 y21(n) - y22(n) + y23(n) - y2^(n) + 0.5 y25(n)| 

(5) 

The envelopes of the rectified bandpass outputs f.(n) are lowpass filtered 

using a third-order transitional Gaussian to 12 dB characteristic cutting off at 

35 Hz.  Here the design differs from the original where a Bessel filter was used. 

The Gaussian characteristic has better step response characteristics and was 

therefore chosen here.  The filters are realized in two steps.  A first order 

section whose output is: 

r^n) = | [2 r^n-1) -2^ (n-1)] + f (n) (6) 

is followed by a second order section: 

10 



TABLE 2,1 
LERNER POLE POSITIONS 

Pole Real Imaginary Resonant 

Designation Coordinate (Hz) Coordinate (Hz) Frequency (Hz) a 
1 60 160 170.9 1.42 
2 60 200 208.8 1.74 

3 60 280 286.4 2.39 

4 bO 320 325.6 2.71 

5 bO 400 404.5 3.37 

6 bO 440 444.1 3.70 

7 60 520 523.5 4.36 

8 60 560 563.2 4.69 

9 60 640 642.8 5.36 

10 bO 680 682.6 5.69 

LI 60 760 762.4 6.35 

12 60 800 802.3 6.69 

13 60 880 882.0 7.35 
14 60 920 921.9 7.68 

15 bO 1000 1001.8 8.35 

16 bO 1040 1041.7 8.68 
17 60 1120 1121.6 9.35 
18 60 1160 1161.6 9.68 
19 60 1240 1241.4 10.35 
20 bO 1280 1281.4 10.68 
21 60 1360 1361.3 11.34 
22 60 1400 1401.3 11.68 
23 bO 1480 1481.2 12.34 
24 bO 1560 1561.2 13.01 
25 60 1600 1601.2 13.34 
26 60 1680 1681.2 14.01 
27 60 1760 1761.0 14.68 
28 60 1800 1801.0 15.01 

29 60 1880 1881.0 15.68 
30 60 1960 1961.0 16.34 

31 60 2040 2040.9 17.01 
32 60 2080 2080.9 17.34 

33 60 2160 2160.8 18.01 
34 60 2240 2240.8 18.67 
35 60 2320 2320.8 19.34 
3b bO 2400 2400.8 20.01 
3 7 60 2440 2440.7 20.34 
38 bO 2520 2520.7 21.01 
39 bO 2600 2600.7 21.67 
40 60 2680 2680.7 22.34 
41 60 2760 2760.6 23.01 
42 bO 2800 2800.6 23.34 
43 bO 2880 2880.6 24.01 

44 60 2960 2960.6 24.67 
45 60 3040 3040.6 25.34 
4 b 60 3120 3120.6 26.01 

47 60 3200 3200.6 26.67 
48 60 3280 3280.6 27.34 
49 60 3320 3320.5 27.67 

11 
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C.(n) = k3[2C.(n-l) - 2 r.(n-l)] - k4[C.(n-2) - r.(n-l)] + r.(n)     (7) 

a, k and k. are constants computed to give the required characteristic. 

The outputs C.(n) give the energy in the 16 channels and form the output 

of the spectrum analysis section.  Much of the basic bandwidth compression of 

the vocoder has occurred at this point.  The original sampled speech in a band- 

width of about 3 KHz is now represented by 16 abstracted spectral-energy functions 

whose total bandwidth is just 16(35) = 560 Hz. 

The pitch extraction, both real time and non-real time is described in 

great detail in Ref. 1.  Thus, only those parts necessary to illustrate the com- 

putational structure will be discussed here.  The purpose of the real time pitch 

computation is to make preliminary estimates of the pitch period.  This is done 

on samples of only the bottom 900 Hz since it is known that the fundamental 

pitch period will never be in excess of 900 Hz.  The actual current sample is 

labelled x   , the previous sample once removed x and the sample twice removed 

x   .  For computational purposes however x  is treated as the current sample 

thereby making x ,. the immediate future and x  - the immediate past sample.  A 

parameter A is now defined by (See Fig. 3 for flow diagram). 

A = 0 
o 

+ 1 if x A.   >  x n+1   n 

A   = { A  if x ,  = x (8) 
n+1    n     n+1   n 

-1  if x ... < x n+1   n 

13 



(+2      x is a positive peak 
In 

A - - A ={ 0  there is no peak n+1   n  ] r 

\-2      x is a negative peak 

When peaks are detected, their magnitudes are stored in P  and P  , i.e., if c cp     en 

A  , - A =2, the content of the current positive peak P  is shifted into the 
n+1   n cp 

past positive peak storage location labelled P  and x is written into P v r        o pp     n cp 

Similarly for a negative peak P  is shifted into the past negative position 

P  and x  is placed into P  .  For the majority of cases when no peak is 
pn     n en 

detected the contents of P  , P   P  and P  are not disturbed.  At any 
cp  en,  pp     pn 

one sample time magnitudes of current and past positive and negative speech 

waveform peaks are available.  Six parameters, defined in Eq. (9) are next 

formed. 

m =  P m, =  P 
0 ' cp' 3    en 

m, - |P  - P m.=|P-P 
1 ' cp   pn1 4    en   pp 

m = |p  - P   if P   > P     mc = |P  - P    if P  > P       ,ns 2 ' cp   pp'    cp — pp    5   'en   pn1     en — pn     (9) 

- 0 for P  < P =0 for P  < P 
cp   pp en   pn 

The detailed rationale for the above choice of measurements is described 

in Ref. 1.  Basically, if time intervals between them are measured, m , m1, m„, 

and m, give a good indication of the period for wave shapes with a strong fun- 

damental component present.  m„ and m- provide a correct period for strong 

second harmonics and only some fundamental component waves.  This information 

is extracted by the following procedure. 

14 



For each m whenever a new m. is computed for a time T., called the 
i i 1 

blanking period, no computations are performed, then a parameter a  is computed 

given by 

a. = m  x exp(-N £n2/P  ) (10) 
1   l    r        av 

where N is effectively zero during blanking and is then incremented by unity 

every sample period,  a. therefore represents an exponential run-down which 

reaches half its original value when N = P  . Updating of a. stops when a new 
a" •*- 

m is found which is not less than the current value of a..  The time in multiples 
l i 

of the sampling period, from the beginning of the blanking interval until the 

current cessation of the a rundown is stored in P. which in turn defines all 
l i 

the above parameters thus: 

P        = \  (P     + P,) av . ,     2  av      i old new (n) 

T. = 0.4 P i       av 
new 

The flow diagram for the above is shown in Fig. 1.  The six P. are the 

initial pitch estimates.  Blanking and run-down procedures are helpful in re- 

ducing spurious very short pitch period estimates and those produced by noise. 

Three sets of P. are kept in memory; the current set and the two most recent 

past sets. 

2.2  Non-Real Time Pitch Computation 

The remainder of the pitch extraction process depends only on the computed 

18 values of P..  Also since a new pitch estimate has to be made only once every 

18 msec (this corresponds to slightly over 71 sample periods), the computation 

15 



No 

Yes 

Do  i = 0,1... 5 

Pj = current value of Tj 
Pav new = I/2 (PaVnew+PO 

T . = 0.4 P i     w*^ rav 

Reset Tj = 0 
A = P M    rav new 
B = m; 

Yes 

No 

I8-6 -I7722 

A = Pav old 

«i • Bxexp(-/n 2/A) 
mj = 0 

Ti -Ti + 1 

Fig. 1.  Real*-time pitch computation flow diagram. 
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from now on can, within broad limits, be done whenever convenient.  It does not 

have to be finished during any one sample period.  It may be spread out over 

several or done all at once every 10 msec.  The term "non-real time pitch com- 

putation" may be misleading since the operation does result, in conjunction with 

the rest of the algorithm, in real time speech processing.  The name merely 

designates those parts of the computations which do not have to be performed 

every input-sample period.  The approach adopted here was to do the whole non- 

real-time pitch computation all at once every 10 msec.  This simplifies control, 

since the operation does not have to be interrupted. 

The computation consists of arranging a table of period estimates and then 

choosing the most likely candidate.  At the same time attention is also directed 

to the energy of the signals involved.  If a certain threshold level is not ex- 

ceeded, the samples are assumed to be caused by background noise and not speech. 

They are therefore labeled for what they are despite any possible detected pe- 

riodicity that may be associated with them.  If the energy level is exceeded 

but the dispersion of the pitch estimates is large (e.g., no two estimates are 

alike), the speech sample may in fact have no defined pitch at all as in an 

incoherent sound like "s."  Both of the above cases are "Hiss."  In all other 

cases a 7-bit word representing the most likely pitch period (referred to as 

"Buzz") as a multiple of the sampling period is found.  The above process is 

commonly called the Buzz-Hiss or voiced-unvoiced decision.  Table 2.3 gives 

some examples to further clarify the procedure. 

The word used to represent Hiss is 0000111.  Thus if the energy 
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TABLE 2.3 

Decimal 

Pitch 

Period = 140 ysec x Pitch 
Pitch Word Equivalent Word Frequency Comments 

0 0 0 0 0 0 0 0 
Hiss 

0 0 0 0 111 7 0.98 msec 1020.4 Hz ' 

0 0 0 10 0 0 8 1.12 msec 892.9 Hz \ 

0 0 0 1111 15 2.10 msec 476.2 Hz 

0 0 10 0 0 0 16 2.24 msec 446.4 Hz / True 

0 0 11111 31 4.34 msec 230.4 Hz V Pitch 

0 10 0 0 0 0 32 4.48 msec 223.2 Hz 1  Estimate 

0 111111 63 8.82 msec 113.4 Hz \ 

10 0 0 0 0 0 64 8.96 msec 111.6 Hz 

1111111 127 17.78 msec 56.2 Hz 
' 

threshold is not exceeded or the dispersion is too large, this word is put out for 

transmission as the current pitch estimate. 

The computations involved here are as follows:  Let the current 6 P be 

designated as column 1, the one preceeding this column 2 and the one before 

that as column 3.  Also let P.. denote the entry in the i  column and 1   row. 
ij 

A 6 x 6 matrix is now formed which includes besides the above 3 as columns 1, 

2 and 3 also the following: 
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P4j • "ij + P2J 

P5J - P2j + P3j (12) 

P     = P     + P     + P 

The reason for these rows is that for waves rich in harmonics the original 

estimates Pn. to P.. may erroneously detect second or third harmonics.  For such 

cases P^. to P,. are more likely to give the correct pitch estimate.  Next a 

set of window functions for each entry of the first column is defined as 

W, (Pi.:) = k x 6.25% of P. . 
1J (13) 

= 0.0625 k P_, . 
ij 

where 

k = 1, 2, 3 and 4. 

A score NC . is then incremented by unity every time if 
qk 

lPlq-Pijl  ± W (14) 

For each of the 6 q values all i and j are used.  The score is augmented by a 

bias term BT  (where BT = 8, 6, 3, and 1 for k = 1, 2, 3 and 4, respectively) 

giving 

" C'f =' jfc'  + BT.   ! • •     • (15) 
qk    qk    k 

The P  resulting in the largest C  , P..   say, is then compared with a thres- 

hold term CT.  The pitch to be transmitted 

TR   lmax        lmax 
(16) 

= Hiss word if P,   < CT  . 
lmax — 

The threshold term CT = 13. 
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The process just described will, with reasonably high probability, give a 

correct pitch estimate.  Unfortunately, errors are also inevitable.  Their ef- 

fect can, to a noticeable degree, be eliminated if data smoothing is employed 

on the series of final pitch estimates.  This process removes rapid alterations 

between Buzz and Hiss and results in the smoothing out of implausibly rapid 

time variations in the pitch estimates.  The salient features of this proce- 

dure follow. 

At the end of the pitch evaluation, after the Buzz- Hiss decision has been 

made, a shift register is loaded with a 1 if the current pitch word is Buzz and 

a 0 if it is Hiss.  Using an 8-bit register, the decision for the past 8-pitch 

words is stored.  The low-pass filters in the spectrum analysis introduce a 

60-msec delay in the spectrum data.  The pitch data on the other hand is delayed 

at most 10 msec.  So, in order to time align pitch and spectrum in formation, 

the current spectrum information should be combined with the pitch word computed 

50 msec ago, i.e., 5 final pitch outputs of delay.  The 5th-bit in the above 

pitch register then represents the pitch word of current interest.  Let the 8 

entries in the register be denoted by X..  The first smoothing is done over ad- 

jacent sets of 3 X..  The center entry is always altered to the majority.  Thus, 

for example, 

xi+r V xi-l Majority 

0 ] 1 1 

0 1 0 0 

hence no change, X. = 1 

X. is changed to 0 

The decisions are made on overlapping sets of 3, moving one X. down at a time. 

A second set of eliminations is done on the results of the first but now over 
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a set of five.  Again the center X. is changed according to the majority.  The 

overall pattern is shown below: 

1st Elimination 

2nd Elimination 

It can be shown that this pattern is representable by the following logic 

expressions: 

Yl'X2 

Y2'X3 

Y3'X4 

Y4'X5 

Y5 " X6 

X3 4- X2 

X. + X. 
4    3 

X5 + X4 

X6 + X5 

x7 +x6 

X4 + X3 

X5 + X4 

X6 + X5 

X7 + X6 

x8 + x? 

X, 

X, 

(17) 

and 

V - Yl   -VY3+Y1   *   Y2 

+ Yl   *   Y3   '  Y5 + Yl   •' 

v  + v  • Y  • Y  + Y 
*4    1    2    5    1 

Y  + Y  • Y  • Y 
5   2   3   4 

+ Y2 • T3 • Y5 + Y2 • Y4 Y  + Y 
5   3 Y  • Y 

4   5 

Using X ' and the original X  in the shift register, the following pitch editing 

process ensues: 
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Decimal    x ,  x 

Equivalent   5 5  Editing Procedure 

0 0    0 Transmit Hiss word as computed. 

1 0    1 Transmit Hiss word despite computed Buzz. 

2 10 Find Median over X~ •* X„ and transmit as new Buzz. 

3 11 Transmit Buzz word as computed. 

The first two and the last procedures are self explanatory, the third one 

needs more elaboration.  If originally X,. = 0, Hiss would have been the decision, 

However, X ' = 1 indicating that a Buzz word is needed.  None is available so 

a new one has to be derived from neighboring ones.  It appears that for editing 

of this type, medians are an optimal choice.  A median is defined as that value 

of a distribution for which half its members are smaller and half larger.  Since 

the median estimation is done with actual pitch values, 8 past pitch estimates 

(denoted by P   in flow diagram) have to be also stored. 

In order to estimate what will happen in the future as well as in the past, 

72 samples x(n) of the speech input are stored in FIFO memory.  Samples coming 

through the analog pitch channel are clocked into a buffer directly (the 

px(n + 72) buffer).  The current samples to be used for computation are those 

extracted from FIFO memory, therefore, the px(n + 72) buffer contains the value 

of pitch 72 sample periods into the future.  During every sample period, 

X   = px(n + 72)   if px(n + 72) > X 
max max 

= X otherwise 
max 

and (18) 

Xmin = Px(n + 72)  if px(n + 72) < Xmin 

= X . otherwise 
min 
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During the non-real pitch computation 

A   A 
1 

A, = |X   - X   | (19) 
1   ' max   max 

Also, X   is reset to 00...0 and X.  to 01111...1.  In this way during a 
max min 

current P  computation h    gives maximum deviation of pitch samples 10 msec 
IK 1 

into the future, whereas A„ provides the same information 10 msec into the past. 

The greater of the two values A., and A„ is now compared to a threshold level 

(best value here is found empirically).  If this level is not exceeded P  is 
IK 

made equal to the Hiss word, otherwise Buzz computation is pursued. 

A flow graph of non-real time pitch extraction is shown in Fig. 2. 

2.3  Synthesis 

The purpose of this operation is to reconstruct synthetic speech from the 

received pitch and spectrum data. 

The received data contains two 7-bit words representing pitch and 35 bits 

representing spectrum energy approximately every 20 msec.  More information 

about the format and timing of the 2400 bit/sec data stream transmitted from 

analyzer/pitch detector to synthesizer over a digitial transmission link, will 

be given in Section 2.4.  The pitch words are used to control the period of a 

digital-equivalent impulse train.  If Hiss is received, +1, -1 impulse pairs 

are output with period selected by a random number generator.  These impulses 

are used as inputs into a cascade of (usually) 3 or 4 second-order difference 

equations whose aim is to approximate the vocal tract impulse response during 

vowel production.  Functions of this kind are referred to as formant filters. 
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For  oonttnMAC* of Computation 
IM wioi'n P|j  liai b**fi 
MWfM "to a linfli* MCIW 

P,   «ittl M • lwn»r>t. 

Fig.   2.     Non-real pitch computation flow graph. 
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They also have a "smearing out" effect on the sharp impulses used as inputs. 

For more information see Ref. 2.  The computational form of the formant filters 

is identical to that given in Eq. (7).  The constants, however are different. 

The original k  is now designated k- and varies for each of the formant sec- 

tions.  The original k. is changed to k, and is the same for all sections. 

The formant filter output is the input into 49 band-pass poles identical 

to the ones used in the analysis section.  Their outputs are weighed and summed 

also in the same way; however, no moduli (envelopes) are taken.  Let the 16 re- 

sults be denoted by A.(n).  The spectrum information extracted from the received 

data is decoded and converted into a 16-element vector.  Each entry is passed 

through a third order low-pass filter of the type described in the analysis 

(see Figs. 6 and 7) giving 16 outputs B.(n).  The A.(n) are used to modulate 

the B.(n) to give the 16 E.(n) according to the following scheme: 

E.(n) =  TZ  B.(n)  if A.(n) > 0 
l       it>  l l   — 

fr B.(n)  if A.(n) < 0 
lb  l l 

JT  B.(n)  if  A.(n) > 0 
ID  l l    — 

rz  B.(n)  if  A.(n) < 0 16  I        l 

for i 
odd 

(20) 

for i 
even 

Another set of band-pass poles, again with the same coefficients as in the 

analysis is used but now in the reverse fashion.  Thus, 
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For Band-Pass Pole     Input 

1 \\ 

2 ~h 
3 Ex + I E2 

4 •        -|ErE2 

5 E2 + \ E3 

etc. 

With these inputs, the first 25 band-pass pole outputs G,(n) are computed. 

It will be noted from Table 2.1 that the resonant frequency of the 25th pole 

pair is 1601 Hz, and that of the 26th 1681 Hz.  Also, as will be discussed in 

more detail later, the pre-sample input and post-sample output analog filters 

cut off at 3.3 kHz with very sharp rejection.  Thus, the second harmonic of the 

26th band-pass pole with a center frequency 3362 Hz, lies in the rejection band 

of the analog output filter.  Therefore, the 26th and up to the 49th band-pass 

poles contribute nothing to the synthesis that is not already provided by the 

post-sample output analog filter.  These poles may therefore be neglected. 

The final output is then 

25 16 

x'(n) =]P 2 G.(n) + ])P E±(n) (21) 

i-1 i=i 

x'(n) is converted into an analog signal via a D/A and fed into the voice out- 

output . 

2.4  Frame Data Encoding and Decoding 

The data extracted from the analysis and pitch computation sections is 
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further condensed and transmitted in 49-bit frames.  Since the data rate is 

2.4 kb/sec a frame duration is (49/2400 = 20.41667 msec.  There are two 7-bit 

pitch words per frame, representing a pitch computation every half frame, i.e., 

every 10.20833 msec.  The remaining 35 bits are used to represent the energy in 

the 16-analysis channels.  As can be seen from Table 2.3, 7-bit pitch words are 

adequate to cover the required pitch range.  Therefore, no further coding is 

needed here.  However, 35 bits every 20 msec is not adequate to transmit the 

spectrum information.  The analysis section supplies 16 words, 16 bits each, a 

total of 256 bits which now have to be compressed into 35 bits with a minimum 

sacrifice in information content.  Even if 4 or 5 bits per sample with logarith- 

mic quantization was used  (a reasonable approach), we would still have 64 or 

84 bits per frame, too many by about a factor or 2.  We must take advantage of 

the high degree of correlation observed to exist between speech spectral samples, 

After a great deal of work, a technique was found some years ago which removes 

3 
some redundancy and is easy to implement.   The 16 spectrum samples S.(n) say 

can be thought of as elements of a 16-dimensional vector S..  There exists a 

linear transformation, the Hadamard matrix, with elements limited to +1 and 

-1, which transforms S. into S.', i.e., 
11 

S ' = [H] • S. (22) 

such that the elements of S.' are arranged by decreasing order of information 

content. 

As noted above, logarithmic rather than linear quantization can be used 

to provide maximum dynamic range for a given number of bits.  This follows from 

the empirical observation that speech perception of the human ear is roughly 

logarithmic in nature. 
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Thus, the encoding of spectral samples consists of taking the logarithm of 

the spectral envelopes, transforming them using the Hadamard matrix, and trans- 

mitting 35 bits of information about the result with a maximum number of bits 

assigned to the first element and progressively fewer to the adjacent ones. 

The data converted to a 2.4 kb/sec serial stream is transmitted over the com- 

munications link.  At the receive end, the 35-spectral bits are decoded and a 

receive spectral vector RS' is formed.  Then 

-1. 
RS. - [H1   * RS! i  l J       i (23) 

It can be shown that [H]  = [H]/ 0(H), where 0(H) denotes the order of the 

H matrix, in this instance 16.  The antilogs of the elements of RS  then give 

the spectrum inputs into the synthesis section. 

Details of the encoding and decoding process are given next.  The encode 

bit lineup, after log taking and Hadamard transformation is shown below: 

BITS 

Case 

A4 A3 A2 Al V   7~bit log 

16 15 14 13 12   11 

A 0 X X X X      X 

B s s X X X       X 

c: s s X X X      X 

D s s X X X       X 

x = information bits 

n = unused bits 

s = sign bits 

A WORDS 

A 7-bit logarithm is used.  After going through the Hadamard transfor- 

mation the top line (Case A) may be multiplied by up to 16 (since the top row 

of the Hadamard matrix consists of all +l's).  Hence, the indicated 7-bit 

log lineup.  All other rows of the Hadamard matrix contain an equal number 
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of +1 and -l's, so the maximum shift cannot exceed three binary places.  Bit 

15 therefore is the effective sign bit for cases B, C, and D. 

Case A:   Bit 15 is a value bit, but the whole word is known to be positive. 

Since this case corresponds to S'(n) all 5 bits A through A, are 

used to describe it. 

Case B:   If the A word is positive and less than 7, the sign bit (0 in this 

case) plus the 3 bracketed bits are used, giving the representa- 

tion 0 A2 A1 AQ.  If A is positive, but greater than 7, 0111, i.e., 

7 is used.  For negative numbers if larger than -8 the 4-bit 

representation is used as it stands.  For A less than -8, just -8, 

i.e., 1000 is chosen. 

Case C:   The same truncation principle as above is used here, except now 

only on two bits A  (the sign bit) and A .  Thus only numbers be- 

Case D: 

tween 01 and 10 are generated. 

Only the sign bit A, in transmitted for this set, 

The 16 elements of S' are then assigned to the following groups: 

TABLE 2.4 

Element of S' 
Case 

No. of Bits in 
Representation 

Total No. of 
Bits Used 

S21 Sll 

S'(n) 
o 

A 5 5 0 0 

S|(n),S^(n),S^(n),S*(n) B 4 16 0 1 

S^(n),S^(n),S'(n) C 2 6 1 0 

S£(n)  S|5(n) D 1 8 

Total 35 bits 

1 1 
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The values S„  and S  are merely used as a digital counter to distinguish 

the four different cases.  Denoting the encoded outputs by 0., it will be found 

that Boolean expressions may be derived for them in terms of the A and S -, 

S?1.  These are given below: 

0 = A 
o   o 

°1 = S21 

°2 " S21 

°3 " S21 

+ S 

o, V 

Sll " S21 

•k sll + sll [A '(A + A,) + A. -A  • A. 
L H      o   3    4   o   3 

A2 • Sll + Sll 

A3 ' Sll + Sll 

[\ ' (A1 + A3) + A4 • A±   •   A3 

(A2 + A3) + A4 • A2 * A3 

21   11 
(A3 + A2 + A1 + Ao) + A4 • A3 A2 • AL 

(24) 

The encoded words to be transmitted are shown in Table 2.5 by an X.  N de- 

notes "do not use." 

TABLE 2.5 

Encode Outputs 

o, o. o, 0 0 
Case 4 3 2 1 o 

A X X X X 
r?.J 

B X X X X 1   N 

C X X 
r- - - 

I 

J 
N N N 

D X I   N N N N 

At the receive end the serial data in is converted into an 8-bit word OP , 

and lined up as shown in Table 2.6 
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TABLE  2.6 

Decode   Inputs 

Case       OP.,     OP.    0PC     OP       0Pn     OP,,     OP,     OP„ 
  7 b54 3 2 10 

A NNNXXXXX 

B NNNNXXXX 

C 

D 

NNNNNNXX 

NNNNNNNX 

The function of the decoding is to produce a lineup of numbers such that 

dynamic ranges are maximized.  This implies using the highest possible position, 

closest to the sign bit.  At the same time, care must be taken to insure that 

the process to follow does not produce an overflow with these numbers.  In this 

case, the following computation is the inverse Hadamard transformation.  This 

implies, in the first row, a summation of all received values.  If we now assume 

that OP., in Table 2.6 is equated with the sign bit, then OP  to OP- represents 
/ D      u 

the first through seventh value bits.  For Case A, all N's will be 0 since it is 

known that this number is positive.  For the others no such guarantee exists, 

therefore the N's in these cases have to be assumed to be sign extensions.  Two 

extreme cases arise, one when all values received are positive, the other when 

they are all negative.  For the first case the largest value word A can have 

is 31.  Word B can be 7; however, there are four of these contributing a total of 

28.  The three words C can contribute a maximum of three, and D can at most be 

0 and it does not contribute.  The total is 62.  However, one must add eight 

to the word A.  This follows from the fact that in 2's complement arithmetic 

truncation, whether the number is positive or negative, always adds an error in 

same direction.  Since in the construction of word A only additions are used 
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(16 of them) the number will, on average, be smaller by half the order of the 

transformation, 8 in this case.  So the total maximum positive sum for all re- 

ceived words, using the lineup in Table 2.6 is 72.  Using a similar procedure 

for an all-negative numbers input (A can be only zero here) and adding 8 to A 

gives a minimum of -38.  Thus 7 bits are sufficient to represent all eventual- 

ities and identification of 0P? with the sign bit is exactly right. 

III. COMPUTATIONAL FORMS AND STRATEGY 

As indicated at the beginning, the machine we built was designed to imple- 

ment the computational forms produced by the channel vocoder algorithms.  It 

was of central importance that these forms be executed in a minimum of time and 

program storage.  This section lists the required computational capabilities 

and discusses the most efficient way to achieve them. 

Let us begin then with the 49 band-pass poles.  The equations to be exe- 

cuted assume the form given in Eq. (1).  There are 49 such poles in the analysis 

and 74 in the synthesis operation, a total of 123.  If each line of program is 

executed in one basic cycle time T , and n lines of code are needed per band- 

pass pole, and execution time of 123n T will be required.  Given the basic 

algorithm and a minimum value of T which the hardware is capable of, minimizing 

n without much increasing T  is the only possible approach to minimizing total 

execution time.  This implies parallel hardware.  An array multiplier executing 

a complete multiply during a single T is therefore desirable.  Current Shottky 

TTL 16 x 16 array multipliers can be made to give a product in about 100 nsec 

(typical).  This would imply an upper limit of 10 MHz on the machine cycle fre- 

quency.  Assuming for the moment that T = 100 nsec each unit increase in n 
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adds 12.3 ysec to the execution time.  This represents nearly 10 percent of the 

total 140 ysec sample period available for the basic spectrum computation. 

The machine must be able to execute the adds and subtracts in parallel with 

the multiplies. These operations must be capable of being expressed by the fol- 

lowing functional equations. 

(Operand 1) (operation) (Operand 2) -»• (Result Destination) (25) 

This implies three simultaneous addresses.  Assuming at least 8 bits per 

address, a minimum of 24 bits of address code will be needed. 

The two multiplies already imply two cycle times.  Since an addition has 

to be performed after the multiplies, a minimum of three T must be available. 

The aim therefore will be to build the machine such that no more than three- 

cycle times are needed for each second-order iteration of the type shown in 

Eq. (1).  If a hard wired DO LOOP mechanism of the type discussed in the intro- 

duction is used, no additional increase in n due to looping will be required. 

Equation (2) implies the need for a ROM in which the 49 K.. . are stored. 

Equation (3) requires a mapping of X into exp(-X).  Again this may be done by 

a ROM.  The next computational forms appear in Eq. (4):  scaling by half and 

the taking of a modulus.  The fastest way of achieving a scaling by one half is 

to use a multiplexer appropriately wired.  The taking of the modulus (absolute 

value) may be done as follows:  let us assume that an ALU is available which 

shifts the input through to the output on one of its channels when, for example, 

the code word x.. x„ x„ is supplied and provides the inverse of the input when 

the code word is complemented, i.e., becomes x.. x„ x_.  The modulus can then 

be implemented by connecting the x. through exclusive OR's.  The other free 
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input into the exclusive OR's is the sign bit of the input word.  When this is 

positive, the sign bit is zero and the outputs of the exclusive OR's are x, x„ x„ 

implying a straight shift through.  For negative inputs, the sign bit is one 

and the x. will become inverted, i.e., x.. x„ x , forcing the input to appear 

inverted on the output.  This process takes a single T and can be initiated by 

a single command (MOD for example). 

Equations (6) and (7) do not impose any new requirements.  The scaling by 

2 (incidentally this already occurs in Eq. (1)) can again be solved by the use 

of a multiplexer.  It is hoped that Eq. (6) would take only two program steps 

since only one multiply and one subsequent add is needed. 

Equation (8) requires a 3-way decision.  This can be achieved in two con- 

ceptually quite different ways.  The machine can be made to access one of three 

different addresses depending on whether x,1>x,x,.=x orxin<x and 6 n+1   n  n+1   n    n+1   n 

write 1, A or -1 into A  , respectively.  This, in addition to the decision 

step, requires at least three additional program lines and an unconditional GO 

TO command.  If pipe-lining is used the number of lines required may double or 

even treble.  If, however, those lines can be used for other essential opera- 

tions as well, this may be a very acceptable solution.  An alternative method 

is to use an approach similar to that proposed for the modulus function.  Thus, 

operation A or B is performed, depending on the outcome of a comparison between 

two numbers.  Two-way comparisons are reasonably simple to implement.  The three- 

way case becomes much more difficult.  It may, of course, be hardware implemented, 

The additional complexity this introduces, however, was deemed too high a price, 

especially since two lines of software using two-way comparisons can be used to 

make a three-way decision.  The following three single-line software capabilities 
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were developed: 

1. COMP(A > B) IF MET (X 0?±  Y); IF NOT MET(X 0P2 Z) 

2. COMP(A = B) IF MET (X 0?1  T); IF NOT MET (X 0P2 Z) (26) 

3. COMP(A < B) IF MET (X 0?1  T); IF NOT MET (X OP2 Z) 

Any of the X, Y or Z can be either of the two comparison words A or B. 

Operations OP.. , 0P„ may, but do not have to involve the two numbers.  Thus, they 

can be an addition or subtraction involving say X and Z, alternatively, OP  could 

specify a shift through whilst 0P„ a negation of X.  Such an operation could be 

used to implement the modulus function discussed above.  The instruction for this 

would be: 

COMP(X < 0) IF MET (SHIFT-X); IF NOT MET (SHIFT X)   . (27) 

Despite the introduction of these very powerful instructions, the modulus in- 

struction was retained as a separate entity.  This enhances programming 

flexibility. 

The flow diagrams of Eq. (8) is shown in Fig. 3.  It takes two dedicated 

lines of software to program.  A write into A ,, in a third line is also needed, 

however, this can be shared with other operations. 

Equation (9) needs no new facilities.  The MOD and COMP instructions will 

give single line software for their implementation.  Similarly, computational 

forms needed for Eqs. (10) to (16) are already available.  Equation (17) are 

Boolean expressions.  One can either utilize the logic expression facilities of 

available ALUs or (if the number of lines involved is not too large) use one or 

more ROMs programmed to give the required expressions.  In the present case 8 

input lines and one output is required, making it ideal for a single ROM 

realization. 

35 



MET     „ 

ACCA = +1 

MET 

ACCA *- 1 

18-6-17724] 

NOT MET 

ACCA = ACCA 

NOT MET 

ACCA = ACCA 

An+,  =ACCA 

Fig. 3.  Flow diagram for computation of A   = +1, A or —1 depending 

on whether X _,_. > X , X ,. = X or X ,, < X . 
n+1   n  n+1   n    n+1   n 
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Nothing new is required again for Eqs. (18) and (19).  Equation (20) could 

be implemented in software.  All the even A (n) collected in an array AE.(n) 

say, used in a DO LOOP containing one COMP instruction and one multiply (by 1/16) 

would give the even E.(n).  Similarly for the odd E.(n).  This would take some 

six lines of coding.  It appears, however, that with very little extra hardware 

a single line command to compute the E.(n) from the A.(n) can be obtained.  This 

is based again on the principle of complementing commands for opposite functions. 

Depending on whether the most significant bit out of a storage register (desig- 

nated ACCA for accumulator A) containing A (n) is 0 on 1, a hard wired 1/16 B.(n) 

is either shifted through directly or inverted.  This is done with or without 

an additional sign reversal under control of the least significant bit of the 

DO LOOP counter which is 0 for even and 1 for odd consecutive passes.  This 

command is designated DOIB for Direct or Inverse through accumulator B.  The 

hardware implementation only requires the addition of a few gates. 

The next Equation, (21), again does not require any new features.  Equa- 

tion (22), however, is a matrix operation and would therefore imply a series of 

multiplications.  Fortunately H is composed entirely of +1 and -1 and only ad- 

ditions and subtractions are needed.  Also any one entry of H, h.. is given by 

hij =ft(io ' V©(11 ' V)©(i2 ' V)©(13 * V      *   (28) 

This represents an 8 input (4i and Aj) values to one output (h..) transforma- 

tion.  So a single ROM can give all h.. values.  A command HAD inside DO LOOP 

takes over addition and subtraction under control of h.. and gives a single line 

realization.  Sixteen runs through this DO LOOP give one line of S.  HAD will, 

of course, be also used for the inverse Hadamard transformation. 
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Finally, Eq. (24) is also realized using one ROM. 

The discussion in this section should give some feel for the way in which 

the machine was designed.  Those parts which may seem a little vague should be- 

come much clearer in the more thorough discussion of machine structure presented 

in the next sections. 

IV.  OVERALL MICROPROCESSOR STRUCTURE 

The discussion from now on is concerned exclusively with the final machine 

design.  This is the end product of many iterations of the type described in 

the previous sections. 

A block schematic of the machine is shown in Fig. 4.  Three-level pipe- 

lining is used.  The program counter, together with its controls, program and 

address code ROMS make up the first time zone.  The second contains program de- 

coding, an arithmetic section devoted entirely to RAM memory addressing, hard- 

ware necessary to implement program operations such as the DO LOOP, GO TO etc., 

and ROMS containing constants like the K.. of (1), exp(x), etc. and the Hadamand 

transformation ROM designated HAD ROM.  The third zone contains arithmetic pro- 

cessing.  Each zone is separated from the others by a layer of clocked buffers. 

Buffer transfers occur at a clock rate CLL equal to 1/T .  Thus, the hardware 

in each zone is on its own to complete all the operations required of it during 

one period of duration T .  The final machine clock was chosen to be 8 MHz or 
c 

less (this remark should become clearer after reading Section 5.14).  Thus T 

is not less than 125 nsec.  The remaining blocks in Fig. 4 are the input/output 

sections for voice sample and communications link data and the machine control 

logic.  They are outside the pipelining structure since they have no functions 

which must be completed during one T .  As such they are really not a part of 
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the basic microprocessor. 

Basically, pipelining implies that the arithmetic section executes the com- 

mands processed by the logic section in the prior T which appeared in the pro- 

gram 2T 's ago.  Schematically, this can be represented as follows: 

TABLE 4.1 

Number of 
T_ Intervals 
c Time Zone 1 

PR Step N 

Time Zone 2 Time Zone 3 

1   

2 PR Step N+l Logic N   

3 PR Step N+2 Logic N+l Arithmetic N 

4 PR Step N+3 Logic N+2 Arithmetic N+l 

5 PR Step N+4 Logic N+3 Arithmetic N+2 

"Logic N" denotes that part of the command in program step N which is executable 

in the logic section, while "arithmetic N" denotes the part which requires the 

arithmetic section to perform some task.  Not every programming step requires 

action from both logic and arithmetic parts.  For example, the DO LOOP command 

has an effect only on the logic section, while some add instructions will in- 

volve the arithmetic section alone.  Generally, though, most programming steps 

will require some action in both sections.  It is of course necessary at times 

to store in temporary memory (RAMs) results of arithmetic operations.  Since 

two time zones are involved in this, care must be taken to give the appropriate 

commands at the proper times.  This type of operation is indicated in Fig. 4 by 

the lines emanating from the arithmetic processing unit into time zone 2 to RAM 

memory and logic organization units.  Similarly a DO LOOP requires control of 

the program stepping and an indication of program position.  This is indicated 
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in Fig. 4 by the lines crossing from time zone 2 into 1 and vice versa.  These 

and other similar cases will be discussed in detail in Section 5. 

Table 4.1 should not be construed as an example of how the program is writ- 

ten.  As a matter of fact each line of program crosses 3 time zones.  Thus, a 

typical line would be: 

PR STEP N; LOGIC N;       ARITHMETIC N. 

If an arithmetic operation result in line N say is to be processed in the 

logic section, the associated logic command will then appear in a line below, 

i.e., N+l.  In this way the program step and line number becomes the same thing. 

Section 6 will give more detail on programming procedures. 

V.   DETAILED MICROPROCESSOR STRUCTURE 

Structural details of the machine are given in Figs. 5, 6, 7, and 8.  The 

discussion will proceed in terms of functions performed and resultant hardware 

realizations.  In this way all interrelated blocks appear in the same descrip- 

tion.  Some units which perform more than a single function will appear in sev- 

eral places; however, their description will be from a different point of view. 

5.1 Program Counter and ROMs 

The ROMs used to store the program and addressing information are 256 x 4 

field-programmable devices with a typical access time of 40 nsec and a guaran- 

teed maximum of 60 nsec.  Since T = 125 nsec, it was considered prudent to in- 

clude in the first time zone only the program counter and the program and ad- 

dress code ROMs.  The 256 counts needed are applied by two 4-bit counters. 

Addresses are supplied via line drivers (not shown) to the 8 program ROMs, the 

6 address code ROMs, the Page ROM and the Shift ROM.  The counter output is 
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also used as the B input in comparator 1 for DO LOOP purposes (see Section 

5.6).  The counter clock CLL (See  Setion 5.14) is the basic system clock, nom- 

inally 8 MHz.  The all-full indicator on the counter designated TCC is used in 

pitch decoding (see Section 5.13).  Presetting of the counter is under control 

of the DO LOOP, IF and GO TO instructions (see Sections 5.6 and 5.7).  The PE 

(parallel enable) inputs are forced low at the appropriate point and an exter- 

nal input, supplied by a multiplexer is set into the counter after a low-high 

transition of the next CLL.  The counter multiplexer consists of 4 dual 4 input 

units.  Only 3 inputs are used. 

Mux Select 

Sl 
so Inputs 

0 0 Not used.  Unconnected 

0 1 8 bits from ADR ROM B BUFFER 

I 0 8 bits from ADR ROM C BUFFER 

1 1 8 bits from DF LATCH 

The select lines are under control of the IF and GO TO commands (see Sec- 

tion 5.7) . 

The outputs of all ROMs described here go into clocked buffers (clocked by 

CLL) which separate the first from the second time zones.  In addition program 

ROMs 2 line 4 in conjunction with program bit 7 of Address ROM C provide via a 

Nand gate and clocked buffer the S„ input to Mux Y.  Details are given in the 

next three sections.  Also program ROM 8 bits 2, 3, and 5 provide an indication 

in the first time zone of the IF command.  The reason for this is that COMP is 

executable in the arithmetic section while  IF is performed a time zone earlier 

in the logic section.  Therefore the COMP - IF operation (see Section 5.6 for 
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greater details) is coded in two consecutive program lines.  On the other hand 

information whether it is to be just a COMP or a COMP-IF instruction is needed 

at the same COMP appears hence the jumping at a time zone to provide IF 

indication. 

5.2  RAM Memory and Buffers 

In Fig. 5 two sets of RAMs referred to as RAM A and RAM B are shown.  Each 

consists of two 256 x 16 arrays arranged as page 0 and page 1 giving a total of 

1024 16-bit words of random-access memory.  The RAMs are fed by multiplexers. 

One of the inputs into these comes from the arithmetic section Write Mux output. 

This path enables the results of arithmetic processing to be stored in RAM 

memory.  The other path comes from the other RAM array.  It is possible there- 

fore to shift data from RAM A into RAM B or vice versa without affecting any 

other part of the machine.  The two-page controls for both RAMs are also on the 

Page ROM.  An output multiplexer is also provided for each set of RAMs enabling 

either set to write into the AB or BB buffers.  These buffers are individually 

clocked by commands Clock AB and Clock BB, respectively.  Thus, they provide 

the dual functions of individual storage and time zone 2 to 3 isolation.  Two 

further multiplexer arrays in front of the AB and BB buffers are also used. 

They are labeled AB Mux and BB Mux, respectively.  Under program control, the 

Write multiplexer output in the arithmetic section ca be channeled through. 

This facility enables the AB and BB buffers to be used as temporary storage 

for arithmetic operations.  This, as will be later shown, enhances the versatil- 

ity of the COMP and COMP-IF instructions. 
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5.3  Address Processing 

Address ROMs A and B in the first time zone and their clocked buffers in 

the second, provide conventional addressing for the two RAM arrays.  The buffered 

8-bit address is channeled through a multiplexer (ALA Mux and ALB Mux) and through 

an ALU (ADR A and ADR B ALU).  The ALUs are conventionally in A plus B mode. 

The other input comes from MUX Y which in turn has the value of the DO LOOP 

counter I, on its output (unforced state of S_ = S.. =1 on MUX Y) .  Outside a 

DO LOOP 1-0, thus the address reaching the RAMs will be the 8-bit word pro- 

vided by the address ROMs.  This arrangement also satisfies all addressing needs 

inside a conventional DO LOOP.  The first address of a consecutively numbered 

array is provided by the addressing ROMs.  The I counter then increments once 

every run through a LOOP, providing a unit increment for the accessed array 

address via MUX Y and the ADR ALU.  If unconventional incrementing or random 

addressing is needed in a LOOP, the other MUX Y inputs can be used.  As an 

example, accumulator B (ACCB) may be incremented by some fixed integer k stored 

in Accumulator A by the command 

ACCB = ACCB + ACCA 

once during DO LOOP execution.  The contents of ACCB can then be channeled via 

MUX Y to the appropriate address ALU.  Another possibility is to use the AB 

buffer.  This provides the most versatile addressing but is restrictive in the 

sense that one RAM array becomes unavailable.  But for example, a set of 

random numbers computed by the program and stored in say RAM A in consecutive 

locations, may be used in a subsequent DO LOOP to address RAM B via the AB buf- 

fer and MUX Y.  Also the address ALU must be in shift A mode and the ALA MUX 
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in state 1, i.e., it channels the contents of CBI to RAM A.  In this way the 

RAM A address can be incremented consecutively, whilst RAM B is under AB buffer 

addressing control.  CBI is a counter which may be incremented by unity on com- 

mand CBI ; alternatively a word appearing on the output of the A ROMs can be 

written into it.  Unit incrementing of CBI was already described in conjunction 

with use of the AB buffer for addressing.  The presetability of CBI provides 

another way of random addressing, this time of both RAMs (if required); however, 

the random sequence has to be programmed into the A ROM.  The address C ALU has 

an unforced state of A plus B.  Thus a base address provided by ADR ROM C can 

be incremented in a DO LOOP via MUX Y.  Thse addresses are supplied to the A.. 

ROM which in turn contains a preprogrammed random sequence of addresses in a 

consecutive array.  These are then clocked into CBI and are available to RAM A 

and B, via inputs 1 on the ALA and ALB multiplexers and ADR ALUs (usually the 

latter will be in Shift A mode). 

Facilities are also provided for nested looping.  Usually in such cases 

the innermost loop would be a conventional DO LOOP with incremental addressing 

provided by the I counter as described above.  For the outer loops, however 

1=0 and unit incrementing has to come from somewhere else.  One of the func- 

tions of the I  counter is to provide this facility.  I may be set to some 

value specified by ADR ROM C and then incremented by unity at every pass through 

the loop.  In this configuration MUX Y is in the 0 1 state.  For more than two 

loop nestings, incrementing has to come from either ACCB or the AB buffer.  In 

principle, since the AB buffer can be accessed from either RAM array and from 

the arithmetic sections, unconstrained addressing and incrementing for any degree 
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of loop nesting is possible.  However, software has to be used to compute the 

addressing and their possible increments.  I, I and to a less dedicated de- 

gree ACCB can provide hardware oriented nested DO LOOPING up to 3 deep.  The I 

counter can also be used as intermediate address storage.  The flexibility of 

the system is best illustrated by the fact that up to 4 levels of indirect ad- 

dressing are possible.  Thus, an address out of ADR ROM C can be modified by 

the ADR C ALU by adding some increment to it.  This in turn produces an output 

from the A ROM which can be modified a fourth time by the ADR A or B ALUs. 

5.4  Decoders 

The need for high-speed program throughput means that indivdual instruc- 

tions must be very powerful and flexible.  As a consequence, most commands have 

to be independent of all others.  Unfortunately, this in turn generates a need 

for wide program words and an attendent increase in ROMs and allied hardware. 

Some effort was therefore put into collecting non-interfering commands into 

groups (of not more than 7).  Each group is then accessed by a one of 8 decoder. 

Only one command of each group can be used at a time; however, a 7 to 3 inde- 

pendent line compression has been achieved. The eighth output of each decoder 

is not used.  In this way if none of the particular group of commands is needed 

the eighth output is automatically accessed ensuring non-interference with the 

rest of the program.  Of the 32 lines of program code the bottom 6 are used as 

inputs into two decoders (labeled DEC1 and DEC2).  This produces an additional 

set of 14 commands.  An additional two decoders (DEC3 and DEC4) are driven by 

the bottom 6 lines of ADR ROM C.  Many of the envisioned operations required of 

the machine do not need ADR ROM C. With the exception of a multiply, all arith- 

metic operations are an example of this.  As a consequence the demands imposed 
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on the ADR ROM C by the operations described to date will not be heavy, leaving 

it available for other things.  Capitalizing on this fact, the two additional de- 

coders ensure fuller use of ADR ROM C.  The two groups of commands available 

from DEC3 and DEC4 are those least frequently used.  A full listing is given 

in Table 5.1. 

The 3 COMP instructions, already described in Section 3, certainly are 

mutually exclusive.  MULT used to initialize a multiply, MOD to produce a modulus 

and DOIB for ACCB control, are all executable in the arithmetic section and do 

pose a certain constraint on programming flexibility.  CLIX is used to update 

I by unity.  It is a second time zone command and not a very frequent pne. . 

The command ZERO is used to disable the receive decoder multiplexer 2 

TABLE 5.1 

STATE DEC 1 DEC ? DEC 3 DEC k 

0 0 0 OPEN OPEN OPEN OPEN 

0 0 1 COMP > ZERO EXP xs2 
0 10 COMP = DO CLED xs1 

0 11 COMP < CHA Not Used xso 
10 0 MULT DOIAR M ALOC 

10 1 MOD IF II HAD 

110 CLIX INH CMCL AB MUX 

111 DOIB SET I 
X 

Not Used BB MUX 

(see Fig. 7).  The output of the multiplexer goes to channel 7 of the arithmetic 

ALU multiplexer A.  Selection of this channel together with the ZERO command 

makes 0 available for arithmetic processing.  DO is the DO LOOP command to be 
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described in greater detail in Section 5.6.  CHA ensures that the ADR ROM C buf- 

fer output is shifted directly through the ADR C ALU.  DOIAR shifts the arith- 

metic ALU commands through directly, or inverts them depending on whether the 

least significant bit of the MUX Y output is 0 or 1.  IF (see also Section 3.7) 

initializes a conditional jump, INH is used in conjunction with DOIB if the ef- 

fect of the least significant bit of MUX Y on the DIOB mode of operation is to 

be inhibited.  This permits ACCB operations to come through as specified or in- 

verted depending on whether the word contained in ACCA is positive or negative, 

respectively (for ACCB operations, see Section 5.8).  Set I writes the 8-bit 

word appearing on the output of ADR C ALU into the I counter.  The EXT command 

disables ROM A , enables ROM A„ and makes the exponent data available (see also 

Section 5.5).  CLED clocks the edit shift register (described in Section 2.2). 

CMCL is used once in the program.  It therefore constitutes a clock indicating 

completion of a program run.  It is used for pitch computation and timing (see 

also Section 5.14).  XS~, XS.. , and XS„ all mutually exclusive, are used to 

select px(n + 72), px(n + 1) or sx(n + 1) (see Section 5.12) and Decoded Pitch, 

respectively from Receive Decoder MUX 2.  ALOG is the antilog command, it, like 

EXP, disables ROM A. and makes available antilog data (see Section 5.5).  HAD 

is the Hadamard matrix transformation command.  It channels a multiplexer to 

the HAD ROM input (see Section 5.11).  The 8 inputs into which are divided into 

two four-bit words, the 'i' word, which is updated once every run through the pro- 

gram and the 'j' word, which is updated every time HAD appears.  A DO LOOP con- 

taining 16 HAD instructions therefore varies j between 0 and 15.  This is done 

for every value of i (0 to 15)•  The output of the HAD ROM is the appropriate add 

52 



or subtract command specified in the Hadamard transformation (discussed in 

Sections 2.4 and 3).  The multiplexer channels the HAD ROM output through to the 

arithmetic ALU.  AB MUX and BB MUX are the controls on the two multiplexers in 

front of AB and BB buffers, respectively.  The natural unaccessed state of the 

decoder output is a 1.  The RAM outputs therefore are channeled through these 

multiplexers.  A 110 on DEC 4 inputs forces a 0 into line 6, i.e., AB MUX and this 

selects the Write MUX output through the AB multiplexer.  The same happens with 

the BB multiplexer when 111 is applied on DEC 4. 

Decoders 1 and 2 are permanently enabled.  This cannot be permitted for the 

3rd and 4th decoders since otherwise conventional use of ADR ROM C might be 

translated into an unwanted command out of these devices.  An enable line desig- 

nated ENABLE C is provided.  Every command in decoders 3 and 4 must be accompanied 

by an ENABLE C.  The 8th line out of the program clocked buffers in Fig. 5 is 

shown as ENABLE C.  The bar indicates that this line is nominally high and be- 

comes 0 only when accessed , this being the inverse of conventional usage.  A 

zero on the decoders enables them. 

5.5 ALOG and Exp Routines 

The computation of logarithms is done by a software subroutine.  Sixteen- 

bit input numbers are mapped into all 7-bit words (0 to 127) in a one-to-one 

transformation such that adjacent input words are offset from each other by a 

constant on a logarithmic scale.  The inverse transformation, referred to as 

the antilog (hence, the ALOG label) is programmed into ROM A„.  Thus for input 

words m = 0 through 127, 128 16-bit output words are available.  A 60-dB dynamic 

range was assumed to be very adequate.  This led to the choice of 0.5 dB steps 
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and a consequent dynamic range of 64 dB.  Thus, generally: 

on  i            fALOG   (m + 1) 1 ocn 
20  1Og10 LALOGIS) J"  °'5 (29) 

giving l 

ALOG (m) = ALOG (m + 1) x 10       . (30) 

The largest number representation, assigned to ALOG (128), is 1 - 2 " .  It was 

assumed that for the case at hand this was sufficiently close to unity to define: 

1_ 
40 

ALOG (127) =10    - 0.9440608763 

as a result the general expression for ALOG (m) is given by 

ALOG (m) - 10 . 

This expression was used to evaluate the ALOG transformation table. 

Let us assume that X is a number whose logarithm is required.  The procedure 

is based on the following algorithm: 

IF X - ALOG (m)  > 0 m = m + -r 

=0  m - m    ) (32) 

< 0  m • m — -T- 

The evaluation, irrespective of X, is always started with m = 64.  It takes exactly 

7 iterations at which point the latest value of m is the required LOG (X) . 

The ALOG command, besides disabling ROM A. and enabling ROM k    also puts a 

zero into the most significant bit on the input of ROM A-.  This ensures that only 

bits 0 to 127 are available as ROM address inputs when the log-taking routine is 

in use.  When ALOG is not activated, the MSB is held at a high with only addresses 
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128 to 255 available as inputs.  This part is reserved for the EXP (m) mapping. 

EXP out of decoder 3 enables ROM /\ and makes available at the ROM output the 

following transformation, given an input address m: 

£n2 

EXP (m) = e m _ 128   . (33) 

Thus for 128 < m <  255,    0 <  EXP (m) < 0.994557 

This table is used exclusively for the exponential rundown procedure during 

real time pitch computation, as described in Section 2.1. 

5.6 DO LOOP 

Dedicated DO LOOP operation has already been suggested in the introduction 

as a means of speeding up of the program throughput.  The command is specified by 

DO, DF,  DL,  N (34) 

where DF is the first line of the loop, DL the last and N the number of times the 

loop is to be executed.  Usually DF is the line immediately following the DO 

instruction, however this need not be so.  DL is stored in ADR ROM B.  The out- 

put of the DL latch goes to one of the two inputs on a comparator the other 

being the current program counter setting.  The DO therefore is a first-time 

zone operation.  Comparator 1 gives an output the moment the counter setting 

reaches the value DL.  This output, denoted E.. in Fig. 5, performs two tasks. 

It clocks the I counter incrementing I by unity and, if the output of the com- 

parator 2 (i.e., E„) is low, it parallel enables the program counter ensuring that 

the next value the counter will assume is that available from the counter multi- 

plexer.  The unforced state of the multiplexer is 1 1 which channels the content 

of DF.  So, as long as there is a parallel enable during program step DL, the 
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next setting is step DF.  This is essentially the looping mechanism.  Compara- 

tor 2 has the current value of I as one of its inputs and the output of the N 

latch as the other.  When equality of I and N is reached, the DO LOOP has been 

executed the required N times.  E~ goes high inhibiting the parallel enable 

action of E1 the counter therefore continues sequentially which has the effect 

of exiting from the DO LOOP.  Two-level indirect addressing permits N to be a 

variable.  For example, an array of N values N. say is stored in consecutive 

address locations A.(N.), (j = 0, 1 n).  Let us assume the DO is nested in 

an outer one controlled by I .  If for 1=0 ADR ROM C supplies A (N ), N 
' x        x vr o o   o 

will be used for the inner DO.  The next pass through the outer DO increments 

I by unity giving the new address for ROM A„ as A (N ) + 1 = A., (N.) as a re- x zoo        11 

suit this time the inner DO is executed N. times.  Continuing in this way access 

is made to all N., making it possible to individually control the number of ex- 

ecutions of the innermost DO LOOP. 

5.7  IF, COMP, COMP-IF and GO TO Instructions 

The IF instructions produces a conditional jump.  The decision may be up 

to 3-way depending on whether two numbers A and B say satisfy the A > B, A = B 

or A < B conditions.  The indicators used are the carry-out line from the ALU, 

C , the A = B output and the most significant bits of the A and B words, MA and 

MB, respectively.  Table 5.2 lists all possible states.  This table was used to 

implement a hard-wired IF instruction. 

Justification for the COMP instruction and a short description of its oper- 

ation was already provided in Section III and Eqs. (26) and (27). The two quan- 

tities to be compared are the contents of the AB and BB buffers, respectively. 
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TABLE 5.2 

State MA MA 

ALU 
C 
o 

ALU (Q,) 
A = B RESULT 

1 

0 

0 

1 

0 

1 

1 

0 

0 

1 

0 

0 

0 

A positive; B positive 

A positive; B negative 

A negative; B negative 

A > B 

2 

0 

1 

0 

1 

1 

1 

1 

1 

A positive; B positive i 
A = B 

A negative; B negative ) 

3 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

A positive; A positive 

A negative; B positive 

A negative; B negative 

A < B 

They will be referred to as AB and BB in the subsequent discussion.  The com- 

parator used in this operation is shown in the top left corner of Fig. 6.  Since 

AB and BB may be positive or negative independently, the comparator must be 

able to handle 2's complement numbers.  The outputs from the comparator are com- 

bined with the COMP lines to give 

EN = COMP > • (A > B) + COMP = • (A = B) + COMP < • (A < B)  .   (35) 

The COMP lines are active low whereas the comparator outputs active high.  There- 

fore, a comparison if met makes E. = 1, if not met E.. = 0.  E.T controls the sel- N N        N 

ect lines of 3 other multiplexers.  During a COMP operation the ACCB control 

lines are not used for Accumulator B control.  This accumulator becomes unavail- 

able for other than shift through operations.  Similarly, the PHR multiplexer 

selects lines PHR MUX and write multiplexer control WR MUX are no longer 
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available for their prime duties.  The two multiplexers are connected in the 0 

channel mode, i.e., select AR ALU output.  The 3 control lines ACCB.,, ACCB.. , 

and ACCB„ are one of the two sets of 3 inputs (channel 1) into a multiplexer 

selected by E„.  The zero channel is S„ MUXA, S. MUXA and S„ MUXA.  The outputs 

of this multiplexer drive the three select lines of MUXA.  Thus, when a compar- 

ison is not made or made but not met the MUXA outputs are selected by the con- 

trol lines originally intended for the job, i.e., SQ, S and S2 MUXA.  If, how- 

ever, a COMP instruction is met E = 1 forces ACCBQ, ACCB and ACCB- to take 

over control of MUXA.  Thie mechanism permits selection of different MUXA Inputs 

as the A word of the ALU depending on whether a comparison is met or not met. 

The word to be selected if the comparison is met is specified by ACCB„, ACCB 

and ACCB- if it is not met SQ MUXA, S MUXA, and S MUXA does the selection. 

Similarly, the lines controlling the arithmetic operation are either the orig- 

inally intended ones ARn and AR.. if no comparison is made or one made and not 

met or their place is taken by PHR MUX and WR MUX, respectively, when E = 1. 

This channeling is effected via two further multiplexers shown in Fig. 6.  Since 

the two sets of controls are totally separated, completely independent arith- 

metic operations may be performed on two ALU inputs depending on the outcome 

of a comparison between AB and BB.  The following are three examples selected 

to illustrate the use of the COMP instructions.  The notation will be described 

in greater detail in Section 6. 
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1. COMP>  ("I AB, 2AB) (SFTA, SFTA) 

2. COMP = (ACCA, MUXY) (SFTA, +) CB -*• ACCA 

3. COMP<  (BB, AB) (-, SFTB) PHR •+ ACCB 

1. This means:  if AB > BB shift -r  AB through to the natural output of 

the arithmetic section (which is the WR MUX output).  If the comparison is not 

met shift through 2AB. 

2. If AB = BB clock the content of ACCA back into itself.  This is 

equivalent to saying that ACCA should not be disturbed.  If the comparison is 

not met the content of MUXY incremented by the content of buffer CB and the re- 

sults clocked into ACCA. 

3. For AB < BB clock BB - PHR into ACCB.  If AB > BB place only the PHR 

into ACCB.  The second entry in the first bracket, i.e., AB is in this case 

just a dummy since the ALU selects only channel B anyway.  Any one of the MUXA 

input could be used here, however, AB with a command of 0 0 0 is the most con- 

venient.  Although internal ACCB operations are not possible during a COMP, 

clocking into ACCB does not require ACCB , ACCB , or ACCB  and is therefore per- 

missible. 

The COMP instruction may also be used as the decision stage for a conditional 

jump.  If in the line following a COMP instruction an  IF appears, the program 

counter will go to a location specified in ADR ROMC or continue in its natural 

sequence depending on whether the COMP was or was not met, respectively.  The 

operations specified by the COMP itself have no bearing on the conditional jump. 

Table 5.3 combines all the relevant states and their consequences for both 

kinds of conditional jumps. 
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TABLE 5.3 

1 

No. IF 
A 

CPS 

(A = B or E ) 

*1 

_ .. 

Meaning Action 

1 0 1 0 0 AB > BB conventional No P.E. 

2 0 1 0 1 AB < BB IF P.E. to ADR ROMB 

3 0 1 1 X AB = BB P.E. to ADR ROMC 

4 0 0 1 X Met    | COMP P.E. to ADR ROMC 

5 0 0 0 X Not met ) IF No P.E. 

6 1 X X X No IF No P.E. 

P.E. stands for parallel enable.  X means a don't care state.  The action 

to be taken in line 2 for example means: set the program counter to go to the 

steps specified in the ADR ROM B on the next rising clock edge.  The parallel 

enable on the program counter is active low, therefore in conjunction with 

Table 5.3. 

P.E. = IF + CPS • Qn + CPS • Q  • Q, 1        o   1 
(36) 

The GO TO command is a straightforward unconditional jump.  It comes from 

the top line of the page ROM and goes to the P.E. input on the program counter. 

The address to which the program is to go is in ADR ROMC.  The complete P.E. on 

AA 
the program counter taking Eq. (36), GO TO and EOD  into account is 

P.E. = (IF + CPS • Q1  + CPS • Q  • Q.) ' GO TO * EOD (37) 

CPS = COMP > • COMP = • COMP <. 

A* 
EOD = END of DO output.  This goes high at the end of a DO LOOP. 
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The relevant data controlling the select lines on the program counter multi- 

plexers is collected in Table 5.4. 

TABLE 5.4 

IF GOTO *1 Qo sl 
s 
o Select Meaning 

0 0 X X X X X Does not occur 

0 1 0 1 0 1 ADR ROM B AB < BB in conventional IF 

0 1 1 X 1 0 ADR ROM C AB > BB in conventional IF 

1 0 X X 1 0 ADR ROM C Unconditional jump 

1 1 X X 1 1 DF LATCH Static condition; used in DO 

From the above 

SQ = (IF + Qx) GOTO 
(38) 

S  = IF + Q  • GOTO 

5.8 Arithmetic ALU and Accumulator B 

The inputs into the arithmetic ALU are fed by two 8-input multiplexers re- 

ferred to as MUXA and MUXB (see Fig. 6).  Selection of outputs is conventinally 

handled by six dedicated lines;  S MUXA, S MUXA and S MUXA for multiplexer A 

and S MUXB, S MUXB and S MUXB for the other.  An exception to this rule for 

multiplexer A alone occurs only during the COMP instruction described in the 

previous section.  Table 5.5 lists all available inputs and their locations. 
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TABLE 5.5 

s 
o sl S2 MUX A MUX B 

0 0 0 AB BB 

0 0 1 j  AB \  BB 

0 1 0 2 AB 2 BB 

0 1 1 ACCA I6BB 

1 0 0 NHF 
CB 

1 1 0 MUX Y ACCA 

1 1 1 EXT or ZERO PHR or EDIT 

The first 3 lines in each multiplexer are the AB and BB buffer outputs 

direct, scaled by -r and 2.  This is the fastest way of achieving scaling.  MUX B 

also provides a rrr  scaling.  This is used for quick implementations of Eq. (20) 

and also in non-real pitch evaluation of the window function Eq. (13).  ACCA is 

available in both MUXES. The reason for this is that the ALU can only provide A 

minus B.  In this way ACCA minus X or X minus ACCA are both possible.  For the 

same reason BB appears in MUX A as well.  2 ACCA was found very useful for a 

number of operations.  MUX Y is multiplexer Y output.  This permits constants, 

chiefly used for addressing to be brought into the arithmetic section.  Since 

MUX Y is in the second time zone, its output has to be buffered as shown in 

Fig. 5.  CB permits constants from the AROM's to be available in the arithmetic 

section.  The last setting in the MUX A column contains both EXT and ZERO since 

this address makes the output of receive decoder MUX 2 available.  Whether what 

comes in on lines A is one of the 4 inputs into the multiplexer labeled EXT or 

ZERO depends on further commands out of decoder A for EXT and decoder 2 for zero. 

Position 7 in MUXB is taken up by the output of the product hold register labeled 
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PHR, also the two least significant lines are connected through a two input 

multiplexer to X'5 X5 (described in Section 2.2 when the editing procedure was 

explained) and the two least significant bits of the PHR output.  Edit, which 

happens only once during the program, is controlled by an unused setting of the 

ACCB controls, i.e., ACCB - 0, ACCB., = 1, ACCB„ = 1.  Under this control (with 
o 1 ^ 

111 on MUXB select) the product hold register is cleared to zero and the two 

lines X'  X are channeled through. 

The arithmetic ALU is required to perform only 4 different operations: 

shift A, A minus B, A plus B and shift B.  Two dedicated control lines AR and r o 

AR.. are used.  The control on the ALU packages themselves (the 74S181's) requires 

6 lines.  This and other relevant data is summarized in Table 5.6. 

TABLE 5.6 

AR 
o 

AR 
Meaning 

ALU Controls Enable 

M C  S,  S„  S, 
n  3  2  1 

S 
o MUXA    MUXB 

0 0 SHIFT A 0 0  0  11 o 0       1 
0 1 A - B 0 0  0  11 0 0       0 

1 0 A + B 0 110  0 1 0       0 

1 
1 

SHIFT B 0 110  0 1 1     1 

ALU controls for only A - B and A + B are used.  For SHIFT A the B is set 

to zero.  Similarly, when just B is required, the A + B command is used and A 

is forced to zero by disabling MUXA.  It will be seen that the two sets of con- 

trols are duals of each other for 5 of the 6 controls and the first one, M is 

zero throughout.  A very straightforward and consequently low delay realization is 
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possible.  The system is given in Eq. (39). 

M = 0 

C = S  = S  = AR (39) n   3   o    o 

S„ = S  = AR 
2   1    o 

and the MUX enable lines 

ENABLE MUXA = AR  • AR, 
o    1 

ENABLE MUXB = AR  • AR, 
o    1 

(40) 

As already mentioned during the description of t!.e COMP instruction, 

PHR MUX and WR MUX commands replace AR and AR.. , respectively, when a comparison 

is met.  The enable lines on MUXA and B and also the ALU controls are therefore 

available through multiplexers controlled by E .  Besides the above and the oper- 

ations performed in conjunction with the IF, one further is associated with the 

ALU.  This is DOIAR which stands for direct or inverse operation in arithmetic 

ALU.  It will be noticed from Table 5.6 that the commands of SHIFT A and SHIFT B 

are logic duals of each other.  Similarly so are those of A - B and A + B.  This 

choice is deliberate and is utilized to provide a single line conditional com- 

mand.  The condition used is the value of the least significant bit of multi- 

plexer Y (designated LSBY).  The function DOIAR • LSBY controls a pair of ex- 

clusive OR's, the other inputs into which are AR and AR,.  When DOIAR is not 
o      1 

used its value is high and consequently, irrespective of LSBY, the exclusive 

OR's transmit AR and AR unchanged.  During a DOIAR command the outputs of the 

exclusive OR's are AR and AR, if LSBY = 0, AR„ and AR, if LSBY = 1.  The o      1 o      1 

examples below illustrate the usage of the command: 
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1. DOIAR (ACCA, CB) -*• ACCB 

2. DOIAR (AB - PHR) -> ACCB 

1. Leaves value of ACCA unchanged if LSBY = 0 or replaces it by CB if 

LSBY = 1. 

2. Clock AB - PHR into ACCB if LSBY =0, and AB + PHR if LSBY = 1. 

It should also be pointed out that the LSBY may assume difference values. 

Thus inside a DO LOOP LSBY will alternate between 0 and 1 on consecutive passes. 

If the ACCB or AB inputs on MUXY are used the evenness or oddness of the numbers 

contained there will be the controlling factor. 

The arithmetic ALU output is channeled through a specially arranged set of 

two input multiplexers.  Their purpose is to provide saturation.  Operation of 

this kind implies non-modulo arithmetic.  When a positive number is to appear 

on the ALU output  exceeding the largest representation permissible, the output 

is forced to this largest permissible value rather than "wrap around" as would 

be the case in ordinary modulo arithmetic.  Under similar conditions for nega- 

tive numbers the output is clamped to the most negative permissible value.  In 

-15 
the representation used here, this implies 1-2   and -1 as the two limiting 

values.  The choice of this kind of computational strategy is dictated by sta- 

bility considerations.  It may be shown that in any kind of computation which 

contains feed-back (examples of this are all the digital filters used here), a 

self-sustaining instability is likely if overflow and conventional "wrap around" 

is to occur.  Furthermore, this will be so even if all else is totally ideal. 

Saturation arithmetic on the other hand guarantees complete stability even if 

accidential overflow was to occur.  Table 5.7 summarizes and comments on all 

possible states.  SA, SB and SF are the sign bits of the A, B, inputs and the 
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ALU output.  OP is the operation with OP = 0 for Add and OP = 1 for Subtract. 

Actually OP is equivalent to AR" .  The last column, labeled OUTPUT, indicates 

whether the result of the operation is correct (in which case an O.K. appears) 

or in the event of an overflow, what kind of clamping is needed.  The State 

column is the decimal equivalent of OP SA SB.  The clamping multiplexer follow- 

ing the ALU has one of its inputs (channel 0) connected to the ALU output.  The 

other has the inverted sign bit, i.e., SF connected to the most significant bit 

and SF itself to all others. 

TABLE 5.7 

State OP SA SB SF Comments Output 

0 0 0 0 0 

1 
A + B, both positive, answer positive O.K. 

0 0 0 0 1 A + B, both positive, answer negative positive clamp 

1 0 0 1 X Effective subtract of 2 positive 
numbers 

O.K. 

2 0 1 0 X Effective subtract of 2 positive 
numbers 

O.K. 

3 0 1 1 1 A + B, both negative, answer negative O.K. 

3 0 1 1 0 A + B, both negative, answer positive negative clamp 

4 1 0 0 X A - B, both positive O.K. 

5 1 0 1 0 Effective add of 2 positive numbers 
answer positive 

O.K. 

5 1 0 1 1 Effective add of 2 positive numbers 
answer negative 

positive clamp 

6 1 1 0 0 Effective add of 2 negative numbers 
answer positive 

negative clamp 

6 1 1 0 1 Effective add of 2 negative numbers 
answer negative 

O.K. 

7 1 1 1 X A - B, both negative O.K. 

ACCB consists of an ALU also with saturation clamping.  Although it is 

describes as the ACCB, the content of the register is usually implied when 
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a number is referred to as ACCB.  The unit is intended primarily for arithmetic 

operations and is therefore designed for 16-bit words.  In addressing, only 

half the number is needed and so only the top 8 bits of ACCB are channeled over 

to MUXY.  Three dedicated lines designated ACCB , ACCB and ACCB  control opera- 

tions.  These are listed in Table 5.8. 

TABLE 5.8 

No. ACCB 
o 

ACCB^^ ACCB- 

Internal 
MUX 
E 
N 

PHR MUX 
E 
N 

• 

Meaning Comments 

0 o 0 0 1 0 SHIFT EX ALU in A+B with A=0 

1 0 0 1 0 0 ACCB + EX Straight A+B 

2 0 1 0 x x Not used 

3 0 1 1 X X Edit 

4 1 0 0 0 1 ACCB ALU in A-B with B=0 

5 1 0 1 0 1 ACCB + 1 ALU in A+B, 8th Bit-1, B=0 

6 1 1 0 0 0 ACCB - EX Straight A-B 

7 1 
1 1 1 0 

. • - , • 

SHIFT - EX 
  

ALU in A-B with A=0 

EX = external input; E = MUX enable line. 

Operation 5, above, i.e., ACCB + 1 has a 1 in the 8th bit down.  In this 

way the ACCB can be incremented for addressing purposes.  This is achieved by 

disabling the PHR MUX and forcing a 1 into the 8th carry bit.  AO detects this 

state since 

AO = (ACCB  + ACCB  + ACCB ) • CPS 

It is fed through a Nand gate to give the required carry. 

(41) 
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The MOD and DOIB commands are also associated with ACCB. 

5.9 Array Multiplier 

Figure 9 gives a very rough schematic of the system used.  The boxes with 

numbers in them are AM25S05 4 by 2, 2's complement multipliers.  A block labeled 

i - j refers to multiplier bits i and i + 1 and multiplicant bits j through 

j + 3.  Neither the multiplier nor multiplicand lines are shown, but their pre- 

sence and position can be inferred from the labeling.  Since only the 16 most 

significant bits are used in the product not all multiplier blocks are needed, 

thereby saving on hardware.  More detailed information on such arrays is given 

in the manufacturers data sheets.  The particular arrangement used here produces 

a 16-bit product in typically 80 nsec. 

The multiplier in the arithmetic section is supplied by the MULT Register. 

This in turn is clocked in every cycle by CLL and therefore always contains the 

output of the arithmetic ALU.  The multiplicand is the CB buffer output.  This 

buffer is clocked only on the dedicated command CLCB.  Since the multiplier is 

memoryless a new product of the current ALU output word and CB is constantly 

being produced.  The multiply command MULT is used only as a clock on the 

product hold register PHR.  Thus MULT results in the current product being re- 

tained for further use.  This value is available until the next MULT command 

appears. 

5.10 Intermediate Memory 

Besides the RAMs, which could also be calssified as intermediate memory, 

a number of single word intermediate memories are available.  The division into 

time zones, necessitated by the need for pipelining, provides storage in the 
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16-BIT PRODUCT 

Fig. 9.  16 x 16 multiplier array with 16-bit product, 
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dividing buffers.  Not everywhere, however, is use made of this facility.  Thus, 

all buffers clocked by CLL directly will store their contents for one clock 

period only.  Others like AB, BB and CB buffers perform the dual role of (1.) 

isolation of 2nd and 3rd time zones and, (2.) intermediate storage.  This second 

effect is achieved by providing dedicated clocking lines for each of them.  In 

this way only when the clocking command is given will the content on the inputs 

of these buffers be stored in them.  Storage of given words for an arbitrary 

number of computational periods is therefore possible.  CBI in the second time 

zone (Fig. 5) is also a storage register.  Also, an existing word may be incre- 

mented by unity.  Exactly the same is true of the I counter.  Both of these 

registers are 8-bits wide.  The multiply register, clocked by CLL does not pro- 

vide intermediate storage, the PHR however does.  This was already described in 

the previous section.  ACCA can provide storage since a clock ACCA (CL ACCA) is 

available, and finally ACCB with CL ACCB provided is also an intermediate store. 

5.11 ROM Coding 

At a number of points of this report mention has been made of the ROMs used 

to implement memoryless Boolean functions.  This section lists and describes 

them all. 

The ENCODER ROM implements Eqs. (24).  The inputs are A , A , A , A , A , 

S  and S  starting with the least significant and up to the seventh address 

bit.  The 8th and most significant bit is grounded.  The four outputs are labeled 

0 , 0„, 0„ and 0..  The encoder ROM translates the computed output words (stored 
12  3     4 

in the output buffer)into the required format used for serial data transmission. 

The ROM output feeds the Data Register (Fig. 7.). 
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HAD ROM produces the  expression given in Eq. (28) as one of its outputs, 

this is denoted by H .  Another line, denoted H  is used to give the complement, 

i.e., H .  The eight inputs are the i and j words.  The two remaining outputs 

are used to produce 

(42) 
SA =  13 + *2 ' h  '  *0 + *2 ' (i0 + V 

SB = S + T2 ' Tl ' T0 + l2 '   (i0 + il) 

S, will be seen to be zero for lines 1 and 3 in Table 2.4.  S„ is zero for 
A B 

lines 1 and 2.  They are therefore numerically equal to S   and S  , respectively. 

Actually 

Sll - SA • TS 

S21 - SB • TS 

(43) 

where TS = 0 during a spectrum computation and 1 during pitch.  More details on 

this parameter are given in Section 5.14. 

The TIMING ROM is driven by the 'i' word and TS.  It is used to produce, in 

conjunction with other circuitry described in Section 5.14, timing pulses for 

data in an output.  Table 5.9 lists the requirements.  The R. are the ROM out- 

puts and the last column represents clocking pulses.  More about these will be 

found in Section 5.14. 
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TABLE 5.9 

TS i R3 
R2  Rx Ro No.   of CP]_  | 

0 o 0 0    1 0 5 

i 

0 1.   2,   3,   4 0 0     1 1 4 

0 5,   6,   7 0 1    0 1 2 ! 
0 8, ,   15 0 1     1 0 1 

1 X 0 0    0 0 7 

The EDIT ROM has already been mentioned in conjunction with editing pro- 

cedure in Section 2.2.  Specifically, the EDIT ROM accepts the 8-decision bits 

generated during the editing process as a parallel address and provides one line 

only labeled X'   The logic implemented is given in Eq. (17). 

Finally, there are the two sets of A ROMS designated ROM A storing con- 

stants and ROM A used for ALOG and EXP commands described in Section 5.5. 

5.12 Data I/O, Acquisition and Synchronization 

The data input/output facility at the machine end is provided by the Data 

Register (Fig. 7).  The encoded word for transmission is clocked into it in 

parallel.  The MSB of this word appears always on line OP of the register out- 

put.  Clocking pulse CP provides the required clocking edge for this register, 

when clock output buffer (CLOB) is activated. 

CLOB = S, MUXA + AR' + AR' 
1        o    1 (44) 

An edge triggered F/F controlled by CP. and CLOB in turn controls the select 

line S on the data register.  With S_ = S =1 the register (a set of 74S194s) 

is in parallel load mode.  CLOB will put S. = 1 and CP , which comes always in 
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the following line, puts S back to zero.  Thus only immediately after CLOB will 

a parallel load result.  Elsewhere the select lines will be in state S  = 1, 

S = 0 which implies a shift right every time a clocking edge is applied.  The 

clock on the register may be either CP„ or CP, .  The latter is used in bursts of 

appropriate length (see Section 5.14) to shift right the available data.  Thus 

the first edge of CP puts the most significant bit available on CP, into CP7. 

It also pulls into CP the bit applied to the DSR input on the Data Register. 

For the first spectrum word CP. will have five edges.  After such a clocking se- 

quence, the five bits originally present will have been clocked out via OP and 

five new bits now occupy postions OP  to OP .  Another clocking sequence CP 

whose edges occur half a period behind CP  is used to clock the content of OP 

serially into a first-in first-out memory.  Thus, on completion of this procedure 

the original content of the data register has been transferred into the FIFO, 

designated output FIFO.  The number of clocking edges in the sequence CP  (and 

as a consequence in CP as well) is given in the last column of Table 5.9. 

These sequences correspond to the number of bits in the encoded final output 

words as described in Section 2.4.  The received data, which appears on the bottom 

lines of the Data Register after completion of a CP - CP  clocking sequence is 

treated as a word equivalent to the one just clocked into the output FIFO.  Thus 

if CP1 has five edges the receive word is assumed to represent the first spec- 

trum word and so on.  These received words are then decoded as described in 

Section 2.4 by a hard-wired multiplexer designated Receive Decoder MUX1 (Fig. 7). 

The output of this multiplexer is the 10 input on Receive Decoder MUX 2. 

In order to ensure that the received bits do indeed have the interpreted 
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meaning, it is necessary to synchronize the received data stream with the inter- 

nal CP clocks.  Since the input data is at 2.4 KHz whereas the CP pulses are 

at a vastly different rate, again a FIFO is used as a buffer.  This is desig- 

nated Receive FIFO in Fig. 7.  The input into this device is clocked at the 

2.4 KHz rate, externally supplied as the input data clock.  The system first 

requires Frame synchronization, i.e., it recognizes spectrum and pitch words 

and lines them up in a specially provided shift register.  It then waits until 

the machine itself is ready to accept data.  When this happens (referred to as 

data sync) data is taken out of this shift register and processed while new 

data is entered into the input FIFO ready for transfer into the shift register. 

5.13 Pitch Decoding 

A one-shot triggered at the appropriate time clocks the received pitch 

word into a RAM, capable of storing 16 8-bit words.  The address is generated 

by a 4-bit counter and channeled via a MUX.  Only during the write cycle is the 

address supplied exclusively by the counter.  When in read, an offset   is added 

to the address.  Since A is manually adjustable this permits an effective delay 

to be introduced between the just-written and just-read pitch words. This delay ad- 

justment is used to equalize any time offsets that may exist between the re- 

ceived pitch and the spectrum.  A buffer stores the currently read pitch word. 

The buffer output is compared against the Hiss word.  Its complement is also 

used to preset a counter, whenever that becomes full, and is clocked by TCC, 

the program counter overflow. A gating arrangement ensures that for non-hiss 

words, the pitch multiplexer (Fig. 7) selects the impulse 1 0 0 0„ and is other- 

wise connected to zero.  In this way an impulse separated in time by the multiple 
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of computational periods specified by the received pitch word is generated. 

The output of the pitch multiplexer is available to the machine via the EXT in- 

put on MUXA and the 01 input on the Receive Decoder MUX2.  If a Hiss word is 

received the pitch multiplexer is connected to the 0 0 or 1 1 states under 

pseudorandom number control.  The 0 0 position supplies a positive unit pulse, 

whilst the 1 1 position gives a negative unit pulse.  As a consequence, pitch 

excitation during Hiss is a noise signal of unit amplitude but random sign.  The 

1 8 
pseudorandom bit generator is capable of providing a random sequence with 2 

members.  Since the sampling clock averages 140 ysec (see next Section) the se- 

18 
quence repetition rate is 2  x 140 ysec = 36.7 sec.  This is sufficiently long 

not to generate a noticeable repetitive pattern. 

5.14 Timing 

In order to maximize program throughput speed a half frame's work of com- 

puting is done without any pauses.  Since program execution times will vary de- 

pending on input data, the intervals between TCC pulses will also vary, making 

the internal machine clock non-uniform.  On the other hand, the input speech 

samples are received at a uniform 140 ysec sample rate.  Therefore, the effec- 

tive internal sample rate has to average 140 ysec or less over each half frame. 

A variation of 130 ysec to 150 ysec can be expected.  The internal clocking rate 

CLL is adjusted until over a half frame the average execution time is just under 

140 ysec.  Generally, there will be an irrational number of speech samples in 

a half frame.  Since only integer values are acceptable, an interger N  is gen- 
nr 

erated each 1/2 frame such that the various NUT7, values averaged over many frames 
tir 

approximate the above irrational number.  In this way the frame rate and sample 
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rate may be synchronized to each other, preventing relative slippage.  In the 

machine itself, using software, I   is generated by unit incrementing once every 

program run.  At the end of the program a comparison is made.  As long as IN 

is less than N  no action is taken.  When I  = N  , the command CMCL is gen- nr NK    Hr 

erated which stops the system clock CLL.  The system at that time has used up 

Nu samples and so it has to wait until a new set of N  samples has been stored 
Hr Hr 

in the sample FIFOs. 

5.15 Voice Analog Section 

A schematic of this section is shown in Fig. 8.  The voice output from a 

microphone is fed into an amplifier with 6 to 21 dB of variable gain.  The out- 

put feeds a presample low-pass cutting off at 3.3 KHz.  This is an 8th order 

elliptic filter (C0815c, 9 = 71°) with zero gain at DC.  The output is split 

into two paths.  One goes via a preemphasis network again with zero DC gain into 

a sample and hold.  The other is band-pass filtered by an 8th order Butterworth 

80 to 600 Hz filter.  Its output is also sampled by a sample and hold module. 

The first of the two is the spectrum, the second the pitch path.  Preemphasis 

of spectrum samples has been found empirically to improve final speech quality. 

Fundamental pitch periods lie in the range of 80 to 200 Hz;the band-pass filter 

therefore permits up to the third harmonic of the highest fundamental to come 

through.  Spectrum and pitch samples are transferred into an A/D converter during 

alternating periods.  Two clocks, denoted by SHS and SHP, respectively for spec- 

trum and pitch sampling, are generated as follows:  A presetable 8-bit wide counter 

has its parallel input hard wired to 220.  A 1-MHz clock is used giving a 35 usec 

period from preset to all full (255).  The 255 state characterized by the over- 

flow TC = 1 is used as a parallel enable for the counter and is a 1 usec wide 
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pulse with a 35 ysec period. 

The acquisition time of the sample and hold modules, defined as the time 

an unchanging input must be maintained to get the specified accuracy, is 35 ysec. 

Both SHS and SHP are maintained high for exactly that length of time.  The 

140 ysec sample period is divided into four 35 ysec zones.  Starting with both 

SHS and SHP low for 35 ysec, SHS goes high.  This lasts for 35 ysec whilst SHP 

is still low, in the third zone both are low again and in the fourth SHP alone 

is high.  A high is the sample state and during a low the sample is held.  The 

A/D conversion time  (to 12-bit accuracy) is 30 ysec.  The strobe input into 

the A/D on transition from 0 to 1 resets the converter to zero and sets the "busy 

bit" felso referred to as the status) to 1.  When the strobe goes low, conversion 

begins.  In our system, starting with the spectrum channel as the strobe goes 

high the A/D is reset and the status goes high disabling both the FIFOs and the 

px(n + 72) buffer.  One microsecond later, the strobe goes low, and SHS goes 

high initiating a spectrum sample.  The FET switch (active low) channels the 

pitch S&H to the D/A.  This will have already been converted in the pitch S&H 

into a steady level.  Thus the A/D starts its conversion cycle on the pitch 

sample.  Some 30 ysec later the conversion is complete at which time the status 

goes low.  Since SRCL goes high, this transition clocks the A/D output into the 

px(n + 72) buffer as well as into the FIFOs.  In the meantime the spectrum sample 

period (35 ysec) is being completed.  By the time the next strobe comes along the 

spectrum sample is already held for some 35 ysec; also, the FET switch channels 

the spectrum sample into the A/D and the spectrum conversion in the A/D begins. 

At the same time the next pitch sample is already being taken into the pitch 

S&H.  On completion of the spectrum conversion the status output on the A/D 
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clocks this into the FIFOs but not into the px(n + 72) buffer since SRCL is now 

toggled into the low state and is not producing a clocking edge.  The cycle then 

repeats.  The FIFOs contain both spectrum and pitch samples (alternating) whilst 

the px(n + 72) buffer holds pitch samples only. 

At the output side, the reconstructed samples are fed first into a FIFO. 

This is done in order to bring their rate back to the constant 140 ysec.  The 

clock used to store the samples in this FIFO is the internally generated pro- 

gram execution rate which varies (as discussed in the previous section) from 

120 ysec approximately to 150 usec.  The average rate over one-half a frame is 

140 ysec.  Thus, extracting the samples from the FIFO at exactly 140 ysec elim- 

inates effectively the internal varying rate.  These samples are then put through 

a low-pass filter identical to the 3.3 KHz presample filter.  De-emphasis may 

be added at this point to compensate for the input pre-emphasis.  However, the 

quality of speech was found to be more natural without it and so it was left 

out in our system. 

A power amplifier feeding earphones or a loudspeaker completes the audio 

system. 

VI.  PROGRAMMING' 

At the end of Section 4 the format in which a program line would be writ- 

ten was already indicated.  The program step is just a consecutive number and 

conveys no information other than that of position.  The real information con- 

tent is in the logic and the arithmetic parts.  The two are separated by a semi- 

colon to denote that execution of the former is one time zone ahead of the lat- 

ter.  The following is a list of mnemonics used to denote various operations 

together with comments and explanations.  The simpler operations, such as the 
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read or write are strictly one-zone operations (logic in this case) however, 

more complex commands like the COMP - IF for example require both logic and 

arithmetic sections.  The listing therefore is in three parts:  logic, arithme- 

tic and combined operations. 

6.1  Logic Commands 

1. X -*• Y Read constant at address X in AROM and 

write into Y where Y can be either the 

CB or the CBI buffer. 

2. X •*•  Y For J = A; read X in RAM A and store in 

Y. Y may be the AB, BB, buffer or a lo- 

cation in RAM B. For J = B it is a read 

from RAM B and into AB, BB or a location 

in RAM A. 

3. WR •*•  RA at X       Write content of WR MUX output into RAM A 

at location X. 

4. WR -> RB at X       Write content of WR MUX output into RAM B 

at location X. 

5. WR AX •+ RB at „Y   Write content of RAM A at X into RAM B 
A B 

at Y.  The dual with A and B reversed 

is also permissible. 

6. DO DF, DL, N       Execute program lines DF up to and in- 

cluding DL, N times. 

7. CHA Channel the A input through the Address 

C ALU. 

8. CHI Channel I  to the output of MUX Y. 
x x 

9. GO TO N Unconditional jump to program step N. 

10.   EXP, X ^ CB        Write content of the A„ ROM, exponent 

section address X into CB. 
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11. ALOG (X) •+ CB 

12. CLIX 

13. CBI = CBI + 1 

14.   Set I  = N x 

15.   CHACCB 

16.   CHACCB, CHI 

17, INH 

18. CMCL 

19. HAD 

20. BL 

6.2 Arithmetic Commands 

1. ZERO 

2. X •+ ACCA 

3. X -»• ACCB 

4. X + Y 

5. X - Y 

6. MULT 

Write content of A„ ROM, ALOG section, 

address X into CB. 

Unit increment I . x 

Unit increment content of CBI. 

Set I  to be equal to N.  Where N can 
x 

be an arbitrary integer (including zero). 

Channel ACCB (8 top bits only) through 

MUX Y. 

Channel content (8 top bits only) of 

AB through MUX Y. 

Inhibit the effect of the least signifi- 

cant bit out of MUX Y on the DOIB command, 

Half frame clocking computed in software. 

Arithmetic operations under Hadamard 

matrix control. 

Blank; no operation. 

Shift zero through MUX A. 

Clock X into ACCA. 

Clock X into ACCB. 

Add X to Y. 

Subtract Y from X. 

Multiply; the content of CB will be multi- 

plied by the content of the multiply regis- 

ter which is the past ALU output and the 

product will be clocked into the PHR at 

the end of the CLL clock period. 
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MOD (X) 

DOIAR (X OP Y) 

9.   DOIB (X OP Y) 

The modulus of X appears on theoutput of 

ACCB.  X is the number coming through the 

arithmetic ALU. 

Direct or inverse operation in arithmetic 

ALU.  Execute Y OP Y if the least signifi- 

cant bit out of MUX Y (LSBY) is zero or 

X OP Y if it is one.  Two pairs of OP and 

OP are plus, minus and Shift A, Shift B. 

Direct or inverse operation in ACCB.  Same 

as above but the operations are with re- 

spect to ACCB.  These are given in Table 

5.8.  In addition the control is LSBY ® 

MSB ACCA.  If this is 1 direct operation 

results if 0 inverse. 

10. C0MP> (A,B), (0P1, 0P2) X -y  Y 

If AB > BB do A OP. X and write into Y 

if AB <  BB do B OP- X and wriete into Y. 

COMP< and COMP = are analogous.  For 

greater detail see Section 5.7. 

6.3  Joint Commands 

There are two such commands.  The IF jump and the COMP - IF.  Both require 

an arithmetic operation followed by a logic command in the next line.  The IF 

appears as follows: 

 ;       A - B 

If > 0 +a, = 0 +b, < 0 +c;   

This means that depending on the outcome of the comparison between A and B, 

where A is the word in the A channel of the arithmetic ALU and B is the B chan- 

nel word, go to address 'a' if A > B, go to 'b' if A = B and to address 'c' if 
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A < B.  This is a three-way decision. 

For the COMP IF, using the COMP= as an example, a typical program line 

might look as follows: 

   ;  COMP= (AB, ACCA) (+, SFTA) CB •*•  ACCA 

If YES N; 

This means that if the operation is not met (irrespective of what the operations 

are) go to program step N, otherwise continue sequentially. 

VII. CONCLUSIONS 

One of the consequences of the design approach described in this report is 

the constant need to re-assess the effect of the most recent modification on 

the rest of the machine and then take appropriate action.  However, when the 

final modification is reached and the system just works successfully, the in- 

centive to go back and rework the system for a more elegant solution is lacking. 

If, therefore, the machine described here seems in places capable of obvious 

improvements and none are made, this is so mainly due to the lack of time for 

a more elegant solution. 

The final machine built has the following statistics: 

Power consumtion:     ~ 22 amps at 5 volts 

~ 0.3 amps at 15 volts. 

Size:     451 DIPs 85% Shottky TTL rest regular TTL 

3-1/2 Augat boards of digital hardware 

1/2 Augat board of analog hardware 

Fits into one standard drawer. 
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