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THE FAST FOURIER-HADAMARD TRANSFORM AND ITS USE IN SIGNAL REPRESENTATION AND CLASSIFICATION

By: Mr. J. E. Whelchel, Jr. and Mr. D. F. Guinn, Melpar, Inc.

STRACT

A

A discrete time transform hes-been, studied and applied to
the representation and discrimination of digitized signals. The
transform consists of an orthogonal (Hadamard) matrix whose
elements are all ones and minus ones. To facilitate implemen-
tation, a fast Hadamard transform ({HT) eveloped
requiring only NlogN rather than N4 algebraic additions. £
Several properties of the FHT are revealed, including the nature
of its presence in the fast Fourier transform, in which it per-

forms the additive operations as shown by further decomposing
the product of matrices representing the FFT. ong other
properties discussed are the Hadamard-sampled Walsh relation-

ship, the Hadamard analog to the ‘‘shift’’ property of the
Fourier transform, and the structure of covariance matrices
diagonalized by the Hadamard transform. The efficiency of the
Hadamard transform is compared with that of optimum transforms
for signal representation and discrimination. For signal repre-
sentation, the optimum transform is the set of eigenvectors
which diagonalize the ple correlation matrix of the signals.
For signal discrimination, the optimum transform for Nilsson's
likelihood decision technique is that which simultaneously
diogonalizes two different covariance matrices. The inductive
capability (training set vs. unknown data) of discriminants esti-
mated from the transform coefficients by parametric techniques
is described. Discriminants based on sample means generalize
better than those based on probability densities.

INTRODUCTION

The impact of the fast Fourier transform on signal process-
ing is just beginning to be felt, particularly the ““fast”’ convolu-
tion property of the transform. In this paper, a discrete time
transform, termed the Hadamard transform, is analyzed and some
relationships between it and the discrete time Fourier transform
are developed. !n addition, the effectiveness of the transform
for two application areas of interest, signal representation and
discrimination, are considered in detail. Potential application
areas best suited for the transform are suggested and contrasted
with those being exploited by the fast Fourier transform.

DISCRETE TIME FOURIER TRANSFORM

The primary transform in signal analysis has been histori-
cally the Fourier transform pair,

F(w) = / f(1) eIt dy

-0

ond its inverse.

For signals that are of an echo or burst nature, extending
over some finite time epoch 0 to T, it is customary to consider
the signals as periodically extended functions of period T for
which the above reduces to the Fourier series,

G =1 j: f(r) e3"™0" gy

with inverse

2w
w0=T

We know, in addition, from the sampling theorem! that o
signal band limited to W cycles over the interval 0 to T can be
represented by a 2TW dimensional signal vector S where
3 = (s], $2, 83« S Tw). The increased use of sampled
and digitized signals fgr spectrum analysis has led to the fur-
ther modification known as the discrete time Fourier transform
defined as:

N-1
! kN N = 2TW
fa Zs“’ n o= 0,1, N1
k=0

with inverse,

N-1
5 = ]ﬁz 'n°j2wnk/N g
n=0

The Fourier transform becomes an N by N unitary matrix F
performing as a linear operator on the sampled time series to
obtain the ‘‘spectrum’’ vector f,

¥ s F3,
where

FF* = F*F = NI

The scope of this paper will include the relationships
between the Fourier matrix F and an N by N orthogonal matrix,
H, known as a Hadamard matrix to be described next.

DISCRETE TIME HADAMARD TRANSFORM

The Hadamard matrixS is generated recursively from
successive Kronecker (direct)products, Hy = Hp X Hy 2 for

=




St

N =4, 8,16, ... and where Hjp = (} }) For example,

Hy Hj

. .

el

1 -1

-1

]
Hy H

and in general Hoy = ( N N).

Hn -Hy

It is clear that both the orthogonal and symmetric properties

of \/—7 Hy are preserved in each step of the recursion so that

N
H=HT.

(:/—L)HN is bothorthonormal and symmetric (:—‘)HH = | and

In the analysis of the rest of this paper, we will be con-
cerned only with N = 2", P =1,2,3,... as the dimensionality
of both the F and H matrices.

A matrix T which relates F and H can be cfmpufed from the
product F H since from F = TH, FH'! = T = §JFH- The
structure of the T matrix is rather obscure, however, and a much
simpler and appealing relationship will be shown to exist
between the fast Fourier transform and a ‘‘fast’’ Hadamard
transform to be developed next.

FAST HADAMARD TRANSFORM (FHT)

The recent innovation of the fast Fourier transform in
digital signal processing has reduced the requirement for com-
puting the Fourier transform by orders of mognitude from N
real products and adds to 2NlogN. A similar algorithm exists
for the Hadamard transform, the nature of which we discuss
next.

To develop the algorithm, we note?,

Hy 0
Diag (Hy, HN) = 12 XHy = 0 Hy

Iy |
ond note that Hy X Iy = (|: |:) )
IN ANbyN diagonal matrix. Then a recursion formula can be
developed from the following property of direct products:
Hn = HpXHnyz = (I3 X Hy/g) (Ha X Iny2)

thus

Hy 0 '2 |2
Hy = pxtyria iy = (0 Hz) ('2 "2)

Hg = (I3 X Hyg) (Hy X 1g)

= (14 X Hy) (I X Hy X I9) (Hy X 1)

f Hap HoXlp 0 g 14
s 0 HXipJ\ 14 -1y

continuing we have

Hig = (12 X Hg) (Hy X Ig)

(Ig X Hy) (14 X Hy X 19) (I3 X Hy X 14) (Hp X Ig)

and in general

logN logN
HN = ﬁ (lzlogN-iXHZXIzi-l) = ﬂ Ezi .
i=1,2,3, i=1,2,...

Since Hy is symmetric as well as each matrix EZ‘ in its

product decompesition, it follows that

logN
HN " TT Ezi
i=1,2,3,
= (HyT
= ENT ... E4TE,T
= Ey ... E4Ep .

Note that there are N add opeartions in each E matrix with
logN such matrices in each product giving NlogN algebraic
operations.

We next show the marked similarity of the above recursion
to one which generates the fast Fourier transform.

FAST FOURIER TRANSFORM

To do this we return to the matrix F in more detail, devoting
our attention primarily to the complex form of the Fourier trans-
form. Hamming” and others have analyzed the finite Fourier
transform as a real orthogonal matrix whose rows consist of the
sampled sines and cosines, but the Fourier-Hadamard relation-
ship is more cumbersome to develop in this form.

If we let W = 7 2"/N, then W' becomes the n'" harmonic
(n'™ row) of the discrete Fourier transform:

N1
sothat  fo= Yo Wk ns0,1,., N
k=0




W0 W0 WO wo
WO Wl w2 w3
w0 w2 wo w2
WO w3 w2 w!

ond for N =4, F = where Wnk = wnkmod N,

Note that F is symmetric since reversing the exponents of
WPX in the summation does not alter the values of the terms in
F. To illustrate the FFT using direct products, we alter for
convenience the designation of W to lower case w = eJ“™ so
that w'/™ becomes the n'™ root of unity.

0.0

wow L

Fy = = = H

2 (wo w1/2) (1 _1) 2
by rearranging the row ordering for F 4 it can be shown that

(designating Fyy = P Fﬁ where P is a symmetric row permuta-
tion matrix to be discussed later),

. Fa2 ¥
Fe = \6; 6

Given

0
; W 0
where Gy = FDy = Fy (0 w]/4)
and
00 0ns0 0,0 0 L0
w0 w2 WO W2 w0 W12 WO w2

Fa' 04,0 AL ,0 V4,12 34

0,34 .,0. 34 \0,34,2,V4

using the symmetry properties of the rotating vector wrk |

oi2m(3)/4

ei2n(2)/4 e-i2n(0)/4

P 2n(1)/4

3 Fp0 \(120 \[l2 D) A
S (0 Fz)(o Dz)(lz 1) = (2% M2 P2 X 1)

n
Dy 2 Diag (I3, D9

where
in general one can show the recursion for the Fourier transform:*
Fu = (12X FN/2) Dy (2 X Iny2)

* Since completion of this paper, it has been found that o
similar recursion is also developed by M. C. Pease in the

Jour. A.C.M. April 1968, pp. 252-264.

where
A IN/2 0
Dn/2= W0
wI/N
0 w2/N 0
0 ps
wl/2Z-1/N

Using a property of direct products,7

IN X (A|A2A3) = (|N X A]) (|N X A2) (1 NX A3)

one has for example:

Fg = 12X [l X Hp) By (H X |2)] Dy (Hy X 1)
= (14 X Hp) (13 X D9) (19 X Hy X 19) Dy (Hy X 1)
where Iy X 62 = Diag [1,1,w0,w]/4,1,1,w0,w1/4]

64 = Diag [1,1,l.l,w°,w‘/8,w2/8,w3/8],

The matrices present in the FHT con be seen to be embedded
in the product form of the FFT above for N = 8. Each doubling
of N contributes two new terms and modifies those already
present by the direct product with l. The general product term
becomes:

Fy = PFy
logN
= P A
N (lzfogN-r' X Dzi-?) ('ﬂogN-i X Hy X Izi-l)
i=1,2,3
logN
i=1,2,3

where E_; make up the FHT. This expansion is equivalent .0

the *‘decimation in frequency’’ form of the FFT.8 Since FN is
a symmetric matrix one can again reverse the ordering (noting

also that E2i = EziT and UZi = U2i since Uzi is diagonal),
T logN T
(FN) " -I—l— Ugi By PT Fiap
i ie1,2,...

EN Uy - E4 U4 Ez Uz P.

This form of the FFT has been programmed in FORTRAN ||
with provision made for optional computation of the FHT.

Each matrix in the product form of the FFT derived by
Brigham and Morrow® and by Anderson” can also be split into
two factors where each product pair is E2i P UzlogN-i P.




Before proceeding, consider the permutation matrix P which
related F’ to F after each iteration. We can designate the
harmonic number of each row of F) by subscripting Qhot Tow
vector with the equivalent bmory number thus the 2nd harmonic
of Fy4, the row vector (w" w 2) is designated flO

fo 0,0
Then Fy consists of (?‘]> = (wo w]/z) . Each recursion in

the FFT *“doubles’’ the harmonic number to obtain even har-
monics in the top half of Fy and adds one to each to obtain the
respective odd harmonics in the lower half; thus F4 and Fg
obtained by the recursion has the following ordering:

Fg
fo00
Fa _  hoo
Fa fo=fo fmo
fo _.f]o = fz—.f”o etc.
i T=h  fo
=B fo
fon
hn
In each case, it is evident that the natural ordering is the
reverse ordering of each binary subscript in the above arrays
(see also references 6 and 9). The permutation matrix P which
reorders the Fourier coefficients to natural order has in each

row a 1 in the column defined by the above relationship. Thus
for N =4

00/1000
o1foo1to
1000100
11\0001

P =

A further discussion of the P matrix with its significance in
the Hadamard-sampled Walsh relationship is presented in
appendix A.

COMPARISON WITH OPTIMUM TRANSFORMS
SIGNAL REPRESENTATION AND DISCRIMINATION

The Fourier transform provides a useful and familiar refer-
ence with which to compare and relate the properties of the
Hadamard transform. There are several application areas,
however, such as signal representation and discrimination for
which neither transform is ‘‘optimum'' in the sense of efficiency
of representation or classification accuracy.

For this reason, the Hadamard transform was compared al so
with the following two transforms: the orthogonal matrix con-
sisting of the eigenvectors of the sample correlation matrix of o
set of digitized echoes, and a nonsingular matrix which performs
the simultaneous diagonalization of two different covariance
matrices. The first transform i? ogﬁmum in the mean square
sense for signal representation while the second is
optimum within the context of a specified decision criterion

known as Nilsson's likelihood scheme to be described later in
this paper. The optimality property follows directly from the
ottoinment of stotistically independent voriables through the
diagonalization procedure.

A. Signal Representation:
1. Representation of signal sets

It is known that the most efficient set of basis functions
for representing a class of snfnols is determined by the
Karhunen-Loeve expansion.'¢ For sampled and digitized sig-
nals, X = (xq ... x)) where N = 2TW, the optimum coordinant
system is readily shown to be the eigenvectors of the sample
correlation matrix B,

B = ((bij»

where the correlation matrix is estimated from an ensemble of
n column signal vectors X| using the relations

1 5 T T W o e
B = ;Z"kxk and b'J E'xlx”.

i=12..N and j = 1,2,...N

For a choice of dimensionality, r < 2TW, the coefficients
of the signals expanded over the eigenvectors corresponding
to the r largest eigenvalues of B will represent the signals
with least loss of energy on the average. To show this
variational property one finds the stationary vrlues of the
quadratic form

Q) = X1 B
where % & column vector subject to the constraint
0= N® = xT%-1,
by extremizing the functional
HE = Q) -aNR) .

From culc:‘lgs of variations, the set of Euler-Lagrange
equations are:

_gl:_ a QR) - 1_( ';_]) = 0 i= ],2,...,N

l
from which N
3 .
a—xi(-ﬂz) . in,undxai(i‘TBi') = 2) by

j=1
N
“a-zbq x =0 i=1,2,...N
j=1
or AX = .




<

The actyal maximum is of course A, since for any eigen-
= =Tp= =T.2 ax
vector, €, €'BE = €'AE = A. It follows from this that the
squares of the projections of the signal vectors on the eigen-
vector, ¥, corresponding to A, are maximized due to the
nature of the correlation matrix. That is, let the signals be
column vectors X1,...,X,, then,

n n

O ST e T -

Amax = 71BY =TZYT ®FHNY = ,],—Z(VTxk)z
k=1 k=1

the expression on the right being the sum of the squares of the
signal vectors projected on y.

For a comparative measure of the representation efficiency
obtained with the Hadamard transform, the ratio “r,"’ between
the average energy retained by a subset of Hadamard coeffi-
cients and the total energy (full set of coefficients) was com-
puted for several signal sets with dimensionality 2TW = 32,

The same information for the eigenvectors of the correlation
matrix exists in the corresponding eigenvalue spectrum.

A comparison of the number of coefficients required by each
of the two transforms to retain the same amount of signal energy
on the average (rg) is a measure of the relative efficiency of the
Hadamard transform.

Spectral plots of the eigenvectors and the Hadamard codes
are shown in figure 1 for a representative data set consisting of
52 signals. The relative amplitudes for the Hadamard codes are
the mean of the squares of the values of the 11 largest coeffi-
cients. For the eigenvectors the function illustrated in this
figure is the relative magnitude of each eigenvalue plotted
against its position in a list of the 11 largest eigenvalues when
ploced in order of decreasing values.

The efficiency is such that 82% of the sum of the expected
squares of the coefficients of all 52 signal vectors making up
the data set are contained in a three-dimensional space repre-
sented by the projections of the signals across three eigenvec-
tors. In comparison, the binary coordinate systems required
seven components to achieve equal representation for this data
set.

Figure 2 shows graphically the reconstruction efficiency
for one particular echo in the signal set.

The reconstruction of a signal based on the most represen-
tative coefficients of a set of signals tended to overemphasize
the lower frequency Hadamard rows possibly due to a *‘washout”’
effect of the signal ensemble on the relatively large number of
rows with considerable high frequency spectral content. One
finds from the Hadamard-Walsh relationship (appendix A) that
the spectra of each of fully half of the functions in the Hadamard
transform is in the form of the lower sidebands of one of the
other half modulating the sampled values of ¥1qp. ..o (equivalent
to a sampled cosNwmt carrier, 0<t<1).

The eigenvector corresponding to Ao, fends to resemble
(but not equal) the mean of a group of positive-going signals,
thereby retaining a modest amount of high frequency information
present in the mean.

In conclusion, the representation efficiency of the Hadamard
transform (based on mean square criteria) was found to be sur-
prisingly good relative to the eigenvectors of the sample
correlation matrix.

2. Representation Efficiency of a Single Signal

Several interesting observations can be made regarding
the Fourier vs. Hadamard representation of a single signal.

By thinking in general terms again about the Fourier
spectra of sampled Walsh functions, one envisions each of
those which modulate the sampled Y100, o “‘carrier’’ as being
linear combinations of the high frequency Fourier components
of the signal with bandwidth 2W. Therefore, while a signal
having considerable energy spread over the higher frequency
range is by definition not efficiently represented by its Fourier
coefficients, it often is by its Hadamard coefficients.

In the extreme, signals which undergo spectral widening
transformations, such as clipping or phase modulation, are
often more efficiently represented by their Hadamard coeffi-
cients.

In figure 3-A, a signal with comparative Fourier and Hada-
mard reconstruction efficiency (using eight coefficients) is
shown, with the Fourier line spectra of one of the best Hada-
mard coefficients shown in figure 3-B. In figure 4 the recon-
struction of a signal with 2TW = 256, using the FHT, is shown,
using the best 32 coefficients.

SIGNAL DISCRIMINATION, THE PATTERN RECOGNITION
PROBLEM

The problem of discriminating between two or more classes
of signals can be subdivided into two distinct phases, the
estimation problem and the classification problem. In the esti-
mation phase, the parametric technique for arriving at a dis-
criminant configuration was chosen.

The parametric approach consists of the techniques of
statistical estimation, estimation of probability densities,
computation of sample means, etc. The statistical parameters
are computed using a set of data known as the training set, and
the results are considered as estimates of the true parameters
describing a larger class of data generated by mechanisms
assumed to be similar to those which generated the training
data. This larger class represents the real world or working
phase in the pattern recognition problem.

The degree of sophistication employed (i.e., sample means
vs. probability densities) is usually determined by how
accurately these parameters, as estimated from the training set,
are actually expected to describe the unknown data. This




generalization problem is of central importance in any pattern
recognition problem.

Three estimation and discrimination schemes were studied
in regard to their capabilities with the training set only, and
with a small degree of generalization (50% training set, 50%
unknown), using approximately 250 signals, each having a
dimensionality of 32 time samples.

These methods were:

a. The matched filter, based on somple means.

b. Discriminants, derived from independent probability
density estimates (simultaneous diagonalization of two
different covariance matrices).

c. Discriminants derived from probability densities at the
outputs of the Hadamard transform.

ESTIMATION BASED ON SAMPLE MEANS

Matched Filter: The matched filter (linear discriminant)
configuration consists of the difference of the mean vectors of
the two classes. The term ‘‘matched filter,”’ is a specialization
in the sense that only the correlation for zero delay or dot
product between the signal vector 3 and a stored vector is
implied rather than a full convolution operation.

The estimation problem involves merely the computation of
the sample mean vector for each class in the training set. The
classification problem for which this procedure is optimum is
that in which the covariance matrices, Ku are alike and are
assumed to be scalar matrices. The if" class consists of a
menn vector ; in a 2TW dimensional signal space surrounded
by a sphencul cluster of vectors :, j=1,2,...,r each representing
m; perturbed by independent addmve Gaussian noise with zero
mean (figure 5-A). For this paper, we will consider only dis-
crimination between two classes, i=1,2. Since the covariance
matrix for the multivariate Gaussian distribution is the same for
each class, the conditional a priori probability density is

1 _\T¥ T
P(xii) = (W) exp 172 {(z-7) Tk (3 -7)

where K" = lz'IZTW
[

o? = Now

laTw a identity matrix

No 8 noise power spectral density,

The log likelihood decision is (%) = In %-(‘%‘2))— >

The surface g(X) = 0, is a hyperplane separating the
clusters in figure 5-A between the means T and m3. The
likelihood function is simply,let o = 1, for convenience

ol®) = [Z?T-(ﬁ]—ﬁz)—'ﬁ:]-ﬁl +Fr'|2-ﬁz] 29,

An inspection of figure 5-B and the above expression for two
classes shows that the decisions are amplitude sensitive due

to the scalar terms which are functions of the energy content of
the mean vector ;. Often amplitude invariance is desired so a
modified (not necessarily optimum) discriminant is employed,
resulting from the normalization of M, (division by |[@;[| i=1,2).
The resulting correlation discriminant X' - (fi] — ) 2 0 yields
decisions affected only by signal shape information (direction
and not length of X as in figure 5-C).

If ¥ = HX, and §; = H ™;, o discriminant with similar proper-
ties operating on the Hadamard mean vectors Uy end T7 can be
expressed by 'y‘.r - (@) =) 20, where ||;| =N {[m;[l. In
addition, since the Hadamard (or any nonsingulor) transform on
the data effects a similarity transform on the covariance matrix,
K, it is left unchanged,

HHT (‘ﬁl) T ]

T
-~ IHH" = N 5

The actual discriminant can often be simplified by truncat-
ing the vector representing the difference of the normalized
mean vectors U] and U7 of the two classes making up the
training set. In figure 6-A a discriminant is shown (in the time
domain) resulting from the linear combination of those Hada-
mard rows corresponding to, and weighted by, the seven largest
elements of d where d- U] - U2. A comparison of this vector
with the vector d, figure 6-B, shows the small effect of trunca-
tion for this data set (data set 1). Note the relative lack of
high-frequency detail in the discriminant, a property which will
be shown later to be in marked contrast to the spectral content
of discriminants based on probability density estimates
(simultaneous diagonalization).

ESTIMATION AND DISCRIMINATION USING PROBABILITY
DENSITIES

The more general problem of discrimination between two
multivariate Gaussian processes'" with estimated parameters
N(@@;,K;), i = 1,2, involves the determination of the conditional
probabilities p(x]i)

1

e b ol Lo aaT i g
PED = T e

with Ky # K7 in general. The log likelihood decision for equal
p(i) becomes

g(x) = In p(xi1) 20 or g¥ = —[In

bz i Q‘]

where Q, is the term in the exponent above.

A linear nonsingular transformation A on the data vector X
results in the vector y with Gaussian parameters N(3;, X;) where
Z; results from o similarity transformation on K; by A. Of
particular theoretical interest is the transformation R which
simultaneously diagonalizes Ky and K7 resulting in:

] - - b - >
g(x) = —i—[ln |A| orzT A‘rz-qT .r]] 20

where A is K diogonalized, 7;=R(xX-#;) and Ky is transformed
to the identity matrix. The coefficients of this transform can

then be processed as independent univariate Gaussion variables.

Ao
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An application of this procedure in an asymptotic sense to
the class of covarionce motrices describing noncyclic stationary
processes was described by Capon'® who employed sampled
power spectra obtained from the Fourier transform.

One observes the presence of a bias term and energy meas-
urement terms in the likelihood function above, resulting in
amplitude sensitive decisions, an undesirable feature in many
pattern recognition applications. Furthermore, one of the
exploitable features of the Hadamard transform, from an imple-
mentation standpoint, is its binary nature. Because of this it is
often desirable to process the Hadamard coefficients as random
variables, by clipping them, followed by an estimation scheme
requiring only the area under the positive portion of the proba-
bility density function of each coefficient.

Such a scheme has been reported by Nilsson'6 which in turn
develops a set of weights by which the clipped coefficients of
unknown signals are linearly combined as a discriminator. To
develop the weighted discriminant, the assumption of statistical
independence between the variables is made which, for the
usual case of nondiagonal covaiiance matrices, is unjustified.
Because of the implementation simplicity of the method,
however, it was desirable to compare the results of using
Nilsson's approach on the coefficients of both the Hadamard and
“R"’ transform, the latter satisfying the requirement of statisti-
cal independence.

Nilsson's method is summarized here.

Let p(1) = p(2), and consider from Bayes theorem the ratio,

PR _pED <1 o o) - o2& ¢

bR " S W™ =g S
where % 8 transform coefficient vector. With statistical
independence we have:

n n
(x;]1)
o &) =r[ plxil) ete. s g® =D |n{£(—::7)§ <0
i= i=1 !

By clipping the transformation coefficients, the notation
complexity reduces from the analog case to the following:

plx; = 11) & p;, plx; =0[1) & 1-p;

plx; =112) & g, plx; =012) & 1—g,

n P (] 9) z (] p)
PR PN iRl -l
=~ g(x) . X |n[gi (1—pi)]+§ln (1-g;) =

which is a linear discriminant estimated from the cumulative
probability for x;.

Note that the presence of the bias term does not introduce
amplitude sensitivity in the decision, due to clipping. For a pre-
determined transform, (Hadamard, Fourier) the clipping also
renders the estimation scheme amplitude insensitive on a signal-
to-signal basis.

SIMULTANEOUS DIAGONALIZATION

While the ‘‘R"’ matrix is known to be the Fourier transform
for stationary processes, most data encountered in pattern
recognition problems belong to the more general class of non-
stationary processes. For such processes a matrix is derived
which performs a linear transformation of the signal data in such
a way that the covariance matrix of class 1 is reduced to the
identity matrix while the covariance matrix describing class 2
is diogonalized. For class 1, the random variables obtained by
correlating each row of the filter matrix with the signals will be
independent with unit variance about the transformed mean. For
class 2 the outputs are again statistically independent, but
with variances proportional to the respective eigenvalues. The
technique is accomplished in the following manner.

The parameters of a set of multivariate Gaussian signals, X,
are described by a mean vector ?ﬁ, and a covariance matrix, R,

where
R = <(0'|J )), i= ],2,...,N Ol‘ldj = ],2,...,N .

The covariance matrix can be estimated from a set of sig-
nals using the relation:
Uij =E [(xi -m;) (xj - mj)] :
In the procedur?z one computes the product
(R~|']/2)T ) R]'] where the matrices Ry and R arise in the

following manner.

We let Ry be the covariance matrix of class 2 and then
determine R1-1/2 by first diagonalizing the covariance matrix
(Rq) of class 1. The it column of the column eigenvector
matrix Q, which performs the diagonalization, is multiplied by
T ( A th eigenvalue of Ry) yielding the matrix R]‘Vz,

i
known as the whitening filter for class 1, since

Ry VTR RyVZ -1,
The symmetric matrix (R]']/Z)T Ry R]']/z results when the

transformation which whitens the covariance statistic of

class 1 is applied to the covariance matrix of class 2. When a
second transformation (M) is found that diagonalizes
(R]'VZ)T Ry Ry /2 it can be seen that it will not affect the
statistics of class 1, since M'IM = | where M'M = [, the
matrix M_consisting of the column eigenvectors of

(R-|'V2)T Ro R]']/z. We then obtain, finally, a linear trans-
formation R which is equal to:

il
X = QHMY where QH = R 2
or 7 = (QHM)T X
7 = RX
R =MHIQT.

The R matrix then yields a set of 32 time-domain filters
which yieldoutputs that are statistically independent for both
classes and, thus, could be thought of as the optimum set of
linear observables for discriminutin% between two stationary or
nonstationary Gaussian pvocesses.,




Figure 7 shows one row of the 'R’ transformation obtained
from the above procedure for a typical pair of classes. Note
the predominant high frequency content in the spectra of the
filter which is in direct contrast to the matched filter discrimi-
nants.

This phenomenon was noted in all rows of the “‘R’’ trans-
formation matrix and occurred consistently for all data sets
studied. It appears to be related to the decrease in statistical
dependence with increasing frequency between the coe“icienfﬁ
of the Fourier expansion of a stationary Gaussian time series.

A comparison of the effectiveness of the Hadamard and
“R" transforms tor signal discrimination is illustrated in
figure 8 for a representative signal set (2TW=32), consisting of
35 signals from class 1 and 35 from class 2 (data set 1). The
Nilsson scheme of estimation and classification was employed
on the transform coefficients in both cases. The relative
classification accuracy is plotted against the number of
coefficients with largest weights in Nilsson's method used to
form the discriminant. The largest subset of coefficients
shown is eight out of a possible 32. Although the absolute
scale is not shown, all accuracies exceeded 50%.

While the difference between the best coefficient of each
transform is not representative of all data sets studied the rate
of increase and resulting divergence of the accuracies, as
extra coefficients are added to the discriminant, is typical of
the data and is due to statistical dependence between the
Hadamard coefficients.

Although studies, performed with the training set only,
provide useful clues on the relative effectiveness of probability
density measures on the various transform coefficients, the
generalization properties of the estimation procedures is of
considerable importance and is described next.

GENERALIZATION PROPERTIES

Defining o generalization ratio g, by:

No. of signals in training set
No. of unknown signals (working phase)

9 =

the Hadamard transform, ‘'R’ transform, and matched filter
discriminant were evaluated against the training set only

(g, = 1.0) and for g, = 0.5.

For the ‘‘R" transform, a technique sufficient for the pur-
poses of testing relative generalization capability, was
employed by summing selected ‘'R’ transform coefficients.
This scheme (suggested by the statistical independence of the
coefficients) allows for prediction of the classification per-
formance on the training set since, for n independent Gaussian

n n
variables, Varp = 3 Var; and vt =2 u;. Classification

i= i=
accuracies predicted from the standard deviation tables for ut
and (Var)1 agreed closely with the accuracies actually
meosured.

Table 1 shows a typical set of relative discrimination
accuracies for studies involving 220 signals (2TW = 32), with
g, = 0.5. The eight best coefficients estimated from the
training set for each transform were used. As before, while
absolute accuracies are not indicated, all exceeded 50%.

TABLE 1

Comparison of Discriminant Techniques

Training Set Unknown
A% A%
Simultaneous Diagonalization 25 0
Matched Filter 12 8
Hadamard (Nilsson Technique) 11 0

From the table it can be seen that significant improvement
over the matched filter in classification of the training set
appears possible by obtaining independent probability measures
of the two classes. The generalization capability of the
matched filter, however, exceeded that obtained by the ‘“‘R”’
transformation for the data studied, possibly due fo the differ-
ences in spectral content of the two discriminants. Although
the clipping operation in Nilsson's method prevents a time
domain realization as a linear discriminant, those Hadamard
codes included in the Nilsson discriminant exhibit a more
balanced spectra (high and low frequency content).

The FHT was applied to a set of 3500 digitized signals
each with 256 time samples under more severe generalization
conditions (10% training set, 90% unknown). The Nilsson and
the maiched filter discriminants were estimated from the full
transform and employed as classifiers on the best 32 Hadamard
coefficients. It was found that the sample-means discriminant
was again more effective from a generalization standpoint than
those estimated from probability densities.

CONCLUSIONS AND APPLICATION AREAS

The Hadamard transform appears to have useful application
in signal representation especially in the areas of data com-
pression systems. Several investigators have noted the appli-
cability of the transform for further processing the power
spectral coefficients of the channe! voc«’:derza'22 before
transmission over a channel. Such studies have emphasized
reduced bit rate due to coarse quantization of selected coeffi-
cients rather than truncation of the number of coefficients.

Several invesfigcm.vrsz3 have studied the relative merits of
the ““transformation compression’’ approach with other methods
of data compression, studying in particular the Fourier and
Karhunen-Loeve techniques using the coefficient truncation
technique. In reference 23 it is concluded that the two tech-
niques are efficient in performance but impractical in imple-
mentation. For those systems considered in reference 23 which
include digital sensors or A/D conversion of the data, it would
seem that perhaps the FHT would alleviote the implementation
problem.




In signal discrimination it would appear that the use of
probability densities on selected transform coefficients should
be employed with generalization in mind for signals with
appreciable variability in shape within a class. The means of
the transform coefficients appear to be useful for many practical
problems. Often in pattern recognition, one searches for trans-
form properties which render it less sensitive to a particular
type of variation of a signal such as translation, change in
amplitude, etc. Such attacks against the generalization problem
tend to overshadow in importance the excellent methods and
insights given to us by theory for discriminating between
training sets or even generalizing on the basis of partially
known parameters.

One of the principle applications of the FFT in signal
processing is in the performance of rapid convolution using
frequency domain techniques®’ including matched filter process-
ing of pulse compression radar echoes, etc. Because the
Hadamard transform does not possess these translation-related
properties it would not be expected to play a major role in this
area (see appendix B).

Orthogonal multiplex data transmission systems have been
discussed in references 24 and 25, with some comments made in
the latter concerning the burst error immunity properties of such
systems. |t would appear that the FHT would have application
in the formation of the transmission signal and in the receiver.

APPENDIX A

THE HADAMARD-WALSH RELATION AND THE SIGNIFICANCE OF P

The permutation matrix P can be shown to be identical to
that which carries the ordering of the rows of the Hadamard
matrix to the matrix whose rows are the sampled Walsh functions,
termed the Walsh matrix28. The Walsh functions in turn have
been defined 6 over the interval (0,1) as the successive modula-
tion in various combinations of a set of square waves ¥ (1),
p=2",n=0,1,2,...r, where p designates the number of
periods in the interval. Forp =0, ¥ (1) 41, O<t<l.

Replacing p by its equivalent r bit binary number, the waveform
of a particular Walsh function is specified as the product of
those Walsh functions represented by each ‘1’ in its binary
subscript. Letting r = 3 for example, ¥ 11 = ‘lfoo])(\l! 0]0) is
seen to be the modulation of ¥qq by ¥q1 (see figure 9).

The row vectors of the Walsh matrix of order N =2 are
designated as \Pbr'"bo' b; = 0,1, and can be generated from a

recursion relation involving % and @.]. ForN = 2,

v
Hy= (.f(]l where%y = (1,1), ¥} = (1,-1). Then it follows
that:
Yb.by = Tb.bg X)) = W g X¥
Y0 b,.bg = Fb..bg X (1D = ¥ b X ¥
where @ X b = (u]b],a]bz,uzbl,ozbz) G = (ay,02)
b = (by,bp)-

APPENDIX B
PROPERTIES OF THE HADAMARD TRANSFORM AND FOURIER-HADAMARD ANALOGIES

There are three properties of the Fourier transform which
have contributed greatly to its usefulness in signal processing
applications, the ‘‘shift’’ property and the resulting convolution
theorem27,28 being perhaps the most useful. The others include

the invariance of the power spectrum to translation and finally
the simultaneous diagonalization of all covariance matrices
describing stationary processes.

From this it follows directly that
wbn...b]bo = wa Xq’b] X.. X\Ilb b.-=01

ST AR
for example \T'no results from \Tl]o by the operation
Y10 =¥ X ¥ X ) = (1 H)XA-NXA-D) =(1-1-111-1-10).

At the same time it can also be shown that
hbn...b]bo = \an X..X q;b] X \l'bo '
where an---hbo is the by...bybgy row of H.

For example, hyyg = \fl\ X \T'] X $0 is the only nonzero
row of E‘Hz X E]H2 X EOH2 = (E] XEp X Eo) Hg
1

)&

where £1 = 01/

“loo 1

Thus the same permutation matrix specifies the Hadamard-
sampled Walsh reordering and the required reordering necessary
in the FFT. Because of this equivalence, other interpretations
exist for the generation of each Fourier harmonic, (row of F).
For example if N = 4 it is clear 1hot?3 is the complex modula-
tion of fz with fy,

Tor =T = 0w w2 wd) = (WO, W2) x (wO,wl)
flo = T = (WO,W2,W0,w2) = (WO,w0) x (W0,w))
M=fe= [w°w°,w‘w2,w2w°,w3wﬂl = (WO, W3 W2,W1).

The ‘‘shift’’ property of the Fourier trensform is stoted
mathematically be the statement,

if Fls) = f" H1) oISt dy

then the Fourier transform of f(t - ) is el™s F(s).

In discrete time an equivalent expression for the shift
property is the following, if f=F% then fy=F s




Saia £ o T e

T T

w0 where T! =/00. .1

LI 0..10
and W = eJ2™/N g5 before.
Then Ty = Diag [wo,w‘, ...,wN-‘] T=DFT

The “‘shift’’ property becomes equivalent to the specification

FT'=D FarFTIF =D

thus the shift property is exhibited by the set of eigenvectors of
the translation operator T. By expanding [Al - T| = 0 one
obtains Wi, i = 0,1, ...,N - 1 as the set of eigenvalues, thus
each row of the Fourier matrix is an eigenvector since, for
example,

wo wo
w! w!

TN-1 . = W obviously holds.
wN-1 wN-1

Since any translations less than the period is expressible
as a power of T, the Fourier matrix is the set of eigenvectors
diagonalizing T and thus exhibits the shift property in discrete
time.

The invariance of the power spectrum to translation follows
directly from thms property. The class of covariance matrices
diagonalized by the Fourier matrix is also easily specified as
linear combinatinns of the powers of T,

N-1

K = 00I+Z o; (Ti + TN-i)

i=1

which is identified as the set of cyclic stationary processes.30

It is evident that the Hadamard transform does not possess
these properties with respect to the translation operation. |t
does possess these properties with respect to an operator
defined by the :ullowing relation

S i W X1

e % (1 0)

where Aﬂ‘] designates the Kronecker power of A, A X A...X A,
terms

or products of the above terms. In particular, the linear combi-

nation of such products defines a class of covariance matrices

diagonalized by the Hadamard matrix.

glog N-k k = 12,..1logN

LeningTz -( ) this follows from

HNSKHN = (HZ[O] X Hylloa N-K] ) 5, (1,0 x Hyllog N-K),
- Hy ( |2[k] Hz[k] X H2D°9 N-K)2

Using the property f [k] A[k] B[k] the above expression

becomes (HZIZ H2) X 19 |°9 N-k] which is a diagonal

matrix for k = 1,2, . Iog N. For example, let N = 4, then
'I 0

ol
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