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THE FAST FOURIER-HADAMARD TRANSFORM AND ITS USE IN SIGNAL REPRESENTATION AND CLASSIFICATION

By: Mr. J. E. Whelche l , Jr. and Mr. D. F. Guinn , Melpar , Inc.

~~

STRACT For signals that ore of an echo or burst nature, extending

A discrete time transform has basq. studied and applied to over some finite time epoch 0 to T, it is customary to consider
the representation and discrimination of digitized signa ls. The the signals as periodically extended functions of period T for
trans form consists of an orthogonal (Hadamard) matrix whoie which the above reduces to the Fourier series ,
elements are all ones and minus ones. Io facilitate implemen.
tation, a fast Hadamard transform (.fHT) h.a be~i~~~ ve loped ifI f(t) ei~~ 0t dt w 0requiring on ly NIogN rather than N’ algebraic additions. ‘.~ Cn T T
Several properties of the FHT are revealed , including the nature
of its presence in the fast Fourier transform, in w hich it per.
forms the additive operations as shown by further decomposing with inverse
the product of matrices representing the FFT.&A

~~
na other

properties discussed are the Hadomard-sample Wa sh relation.
ship, the Hadamard analog to the “shift ” property of the f(t) Cn .i~

wOt

Fourier transform , and the structure of covariance matrices
diagonalized by the Hadamord transform . The efficiency of the
Hadamard transform is compared with that of optimum transforms
for signal representation and discrimination. For signal repre. We know , in addition , from the sampling theorem 1 that a
sentation, the optimum transfo rm is the set of ei genvectors signa l bcm d limited to W cycles over the interval 0 to I con be
which diagonalize the samp le correlation matrix of the signals. represented by a 2TW dimensional signal vector I where
For signal discrimination , the optimum transform for Nilsson ’s T = (s 1, 

~2’ 53 ~‘TW )• The increased use of sampled
likelihood decision technique is that which simultaneousl y and digitized si gna ls f~r spectrum ana lysis has led to the fur-
diagonal izes two different covari slce matrices. The inductive ther modification known as the discrete time Fourier transform2
capability (training set vs. unknown data) of discriminants esti- defined as:mated from the transform coefficients by parametric techniques
is descri bed. Discriminants based on samp le means generalize N-i
better than those based on probability densities.

~k ~ j2mm~ki”N N 2TW
n =

k=0

wit h inverse ,

N-I
INTRODU CTION

The impact of the fast Fourier transform on signal process- = 
~n j 2m~~i’N 

-

ing is just beginning to be felt , particularly the “fast ” convo lu- n=O
tion property of the transform. In this paper , a discrete time
transform, terme d the Hadamard transform , is ana lyzed and some The Fourier transform becomes an N by N unitary matrix F
relations hips between it and the discrete time Fourier transform performing as a linear operato r on the samp led time series to
ore deve loped. In addition , the effectiveness of the transform obtain the “spectrum” vector f,
for two application areas of interest , signa l representation and = F ~~~,discrimination , are consi dered in detail. Potential application
areas best suited for the transform are suggested and contrasted where
wi th those being exploited by the fast Fourier transform. F F* = F* F NI.

DISCRETE TIME FOURIER TRANSFORM The scope of this paper will include the relationships
between the Fourier matrix F and an N by N orthogonal matrix ,

The primary transform in si gna l anal ysis has been histori . H, known as a Hadomard matrix to be described next.
ca lly the Fourier transform pair ,

DISCRETE TIME HADAMARD TRANSFORM
F(w) J

.. 
f(t) e~J*t dt

The Hadamard matrix 3 is generate d recursive ly from

and its inverse. successive Kronecker (direc*) pra*cts; 11N H2 X HN,’2 for

_J_ .__~~• ~~~~~~~~~~~ 4~~~~~~~
._._L_2j ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _jC.S.A ..a.. ..~ ‘ ?...~.dJ. - - - -
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N = 4, 8, 16 , ... and where H2 (
~ ~

). For example, /112 0 \ / \ /1 I1~ %~ H2XI2 0 %~ 
14 14

H4 = H2 X H2 = (
~ -~~~~~

)“ (
~ i ~~ 

. 

= k 0 
H2 

H2)k 
0 H2XI2

,Jkl4 .14

/H N HN\ continuing we have
and in genera l 112N I

- NI H16 = (1 2 X H3) (112 X

It is clear that both the orthogonal and symmetric properties 
= (I ~ 112) (14 x H2 x 12) (12 X H2 X 14) (H2 X l~)

of ~~ H2 are preserved in each step of the recursion so that

~
p Ii’ and in general

IHN is bo~hort honormai and symmetric 1—IHH I andN, ~~ lo N logN
H HT. 11N = f

91 (1
2logN-i X H2 X 1

2i.i) 
= 

~ 
E

21 -
In the anal ysis of the rest of this paper , we wi ll be con- i=i ,2,3,

cerned only with N = 2~, P 1,2,3,... as the dimensiona lity Since HN is symmetric as we ll as each matrix E in its
of both the F and H matrices. . . . 2

product decomposition , i t  fo l lows that

A matrix I which relates F and H can be cfmPuted from the logN
product F H since from F TH, FH 1 = I = (~ )FH. The HN = TT E
structure of the T matrix is rather obscure, however , and a much i i  2 3 

2
simpler and appealing relationship will be shown to exist
between the fast Fourier transform and a “fast ” Hadomard (H )Ttransform to be developed next. N

FAST HADAMARD TRANSFORM (FHT) ENT ... E~ r E2
T

The recent innovation of the fast Fourier transform in = EN ... E4 E2 -

digital signal processing has reduced the requirement for cam-
puting the Fourier transform by orders o f magnitude from NL Note that there are N add opeartions in each E matrix with
rea l products and adds to 2NlogN. A similar al gorithm exists log N such matrices in eoch product giving NIog N algebraic
for the Hadamord transform , the nature of which we discuss operations.
next.

We next show the marked similarity of the above recursion
To develop the al gorithm, we note 4, to one which generates the fast Fourier transform.

Diag (HN, 11N) = 

~2 X HN = (
~ HN) 

FAST FOURIER TRANSFORM

~l 
To do this we return to the matrix F in more detail , devoting

and note that H2 X IN = 
N N ) , our attent ion primarily to the complex form of the Fourier trans-

\ ‘N 1N1 form. Hamming 5 and others have analyzed the finite Fourier
‘N ~ N by N diagonal matrix. Then a recursion formula can be transform as a real orthogonal matrix whose rows consist of the
deve loped from the following property of direct products: sampled sines and cosines , but the Fourier-Hodomard relation-

ship is more cumbersoma to develop in this form.
HN = H2 X HN/2 = (12 X HN/2) (H 2 X 1N/2)

If we let W = eJ 2”~~, then wn becomes the ~th harmonic
(nth row) o f the discrete Fourier transform:6

H4 = (1 2 X H 2)(H 2 X I 2) = (~
2 

H2) (I2 .12) so thot ~ ~~~~sk W’~ n 0 , 1 N-i

H8 = (12 X H4)(H 2 X 14)

= (14 X H2) (12 X H2 X 12) (112 X 14)

2

— . ~ ~~~~~~~~~ .-~~~~
_ .. .  .~ —=.--—.,~~ ~~~~~~~~~~~~~~~~~~~~~ .



( Wa w0 W O W 0\ where

wO w 1 w 2 w 3
~ ‘-‘ /

‘
~N/2 0

W o W 3 W 2 W i
and for N 4, F = 

~o ~2 
~

O ~2) 
where ~nk ~nkmod N. DN/2 1 

~
0

1~~ 

)
~2/N 0

Note that F is symmetric since reversing the exponents of
0~nk in the summation does not alter the values of the terms in

~
1/2.1/N

F. To illustrate the FF1 using direct products , we a lter for
convenience the designation of W to lower case w = eJ 2m so

that ~ l/n becomes the nth root of unity. Using a property of direct products ,7

1w0 w 0 \
Given F2 = 

~~o w 11’2) (
~ ~ 

H2 
‘N x (A 1 A 2A 3) (1~ X A 1) (1N X A 2) (I NX A 3)

by rearrang ing the row ordering for F4 it can be shown that Ofl~ has for example:

(designating FN P F~ where P i s a  symmetric row permuto- 
F~ = ‘2 X [(‘2 >~ 112) D2 (112 X l2)] D4 (112 X 14)tion matrix to be discussed later),

/F2 F2\ 
= (14 X H2) (1 2 X D2) (I2 X H 2 X 12) B4 (H2 X 14 )

= 

~G2 .G2) where 12 X D2 = Diag [1,i,w0,w 1~”4,1,1.w0,w 1
~”4]

(w o 0
where G2 = F2 D2 F2 0 w 1~’4) D4 = Diag 1,1,i,w 0,w~~8,w 2

~”8,w
3 ”8] -

and The matrices present in the FHT can be seen to be embedded
in the produc t form of the FFT above for N = 8. Each doubling

1~0 w L2 w~ w 112 w0 w 1”2 w 0 w ls’2 present by the direct product with 1 2. The general product term
O w O w° w

~~) 

~~~ w0 w° w0 ) of N contributes two new terms and modifies those alread y

F4 ’ 1 w~ w 1 ~ .w 0 -w 1’4 w0 w~
’
~ wi~’2 3/4 becomes:

\ o  ~~~ .w 0 -w 3”4 0 
~~~~~ w 1’~

2 w 1
~’4 FM = P

logN
using the symmetry properties of the rotating vector W r~k . 

= ~ T~T i~ N-i x D2~1) (l2logN~i X H2 X

e J 2”~
3
~ 

4 i=i ,2,3

log N
= ~ fT U21 E~

~ W eJ 

where E2~ 
make up the FHT. This expansion is equivalent .0

2~ (0)/4 i=1 ,2,3

eJ2m~~
)/4 the “decimation in frequency ” form of the FFT.8 Since FN is

a symmetric matrix one con again reverse the ordering (noting

( F2 0 
)(1

2 0 \/ 12 1
2) 

also that E2~ 
= E

2~
T and U21 = U21

T since U21 is diagonal),
F~~= 0 F2 0 D2)~I2 - l 2 

= (1 2 X H 2)D 2 (H2 X 1 2)
IlogN I

where ~ Diag (p 2. D2) (~~ )T 
= ( if u2~ E21

) 
pT pT = p

\i=I,2,

in genera l one can show the recursion for the Fourier tronsform: *
= EN UN ... E~ U4 E2 U2 P.

F~ = (1 2 X F1,(/2) DN/2 (112 X 1N/2) This form of the FF1 has been programmed in FORTRAN II
with provision made for optional computation of the FHT.

Since comp letion of this paper , it has been found that a
simi lar recursion is also developed by N. C. Pease in the Each matrix in the product form of the FF1 derived by
Jour. A.C.M. Apri l 1968, pp. 252.264. Brigham and Morrow 6 and by Anderson9 can also be sp lit into

two factors where each product pair is E21 P U
2logN.i P.

3

~, 
~~~~~~~~~ 

,. ._ 
~~~~~~~~~~ ~ ~~~~~ ~~~~~~~ .•.~~~ . , . ..___ i.~.... - - -



Before proceeding, consider the permutation matrix P which known as Nilsson ’s likelihood scheme to be described later in
related F’ to F after each iteration. We can desi gnate the this paper. The optimality property follows directl y from the
harmonic number of each row of FN by subscript ing that row ottoinment of statisticall y independent voriab les through the
vector w ith the equivalent binary number thus the 2’~ harmonic diagona lizotion procedure.

— of F4, the row vector (w 0 w 1’2 w0 w~~
2) is desi gnated ~~

Then F2 consists of 
(To) 

i~ O ~0 \ A. Si gnal Representation:

\~ 
Lo ~i~~) . Each recursion in 

~ Representation of signa l sets
the FF1 “doubles” the harmonic number to obtain even bar-
mon ics in the top half of FN and adds one to each to obtain the It is known that the most efficient set of basis functions
respect ive odd harmonics in the lower half; thus F4 and F8 for representing a class of sipnols is determined by the
obtained by the recursion has the following ordering: Karhunen-Loeve expansion.1’ For sampled and digitized si g-

ria ls, ~ = (x1 .. xN) where N = 2TW , the optimum coordinant
F8 system is readily shown to be the eigenvectors of the samp le

fooo correlation matrix B,
F4 100 B = ((b~ )) i 1,2,...,N and j = 1,2,...,NF2 ~o = ~~ ~ io

~o —a~io = ~2—.-fi 10 etc. where the correlation matrix is estimated from an ensemble of
i~ = 

~ 
i~oi n co lumn si gnal vector s 

~k using the relations

~1= r3 ~ n

ciii 
B = ~~~~1k ~k

T and b1J = E x~ -
k= 1In eac h case, it is evident that the natural ordering is the

reverse ordering of each binary subscript in the above arrays
(see also references 6 and 9). The permutation matrix P which For a choice of diniensionality , r < 2TW , the coeffici ents
reor ders the Fourier coefficients to natural order has in each of the signals expanded over the eigenvectors corresponding
row a 1 in the column defined by the above relationshi p. Thus to the r largest eigenva lues of B will represent the signals
for N = 4 wit h least loss of energy on the average. To show this

variationa l property one finds the stationary v lues of the

00(1 
0 0 0” quadratic form

01 O O 1 0 ~~= 10 0 1 0 0 1 -  Q~~) I~~BI
11 0 0 0 1 /

wherel ~ column vector subject to the constraint
A further discussion of the P matrix with its significance in

the Hadamard-somp led Walsh relationship is presented in 0 = N(~) = 1T1 — 1
appendix A.

by extremizing the functiona l
COMPARISON WITH OPTIMUM TRANSF ORMS

H(l) = Q(~)— i J 4 ( I )  -

SIGNAL REPRESENTATION AND DISCRIMINATION
From calci~l~s of variations, the set of Euler-Lagrange

The Fourier transform provides a useful and familiar refer- equations are:
once with whic h to compare and relate the properties of the
Hodamard transform. There are several application areas, ~~ .

~~~
_ Q(~) - ~~~~~~~ (~T1 — 1) = 0 i = 1,2 N

however , such as si gnal representation and discrimination for ~~X j 
= 

~x 1
which neither transform is “optimum” in the sense of efficiency
of representat ion or classification accuracy. from which

N

For this reason, the Hadomard transform was compared also -A ~~~~ = 2x
with the following two transfo rms: the orthogonal matrix con- ~~ i ~ 

and ~~ ~ T~~) = 2
~~ ~~ x~

sisting of the eigenvectors of the sample correlation matrix of a
set of digitized echoes, and a nonsingular matrix which performs N

the simu ltaneous diagonalization of two different covarianc. .. ~~ — 
~~~ b~ x~ 0 i • 1,2,..., N

matrices. The first transform i~ optimum in the mean Square
sense for signal representation~°’~~ whi le the second is
optimum w ithin the context of a specified decision criterion or Al •

4



The actua l maximum is of course tnax since for any eigen- The eigenvector corresponding to ~~~ tends to resem ble

vector ,t jTBj ~T = ~~. It fol lows from this that the (but not equal) the mean of a group of positive-going si gnals,

squares of the projections of the signal vectors on the eigen- thereby retaining a modest amount of high frequency information

vector , j , correspond ing to are maximized due to the present in the mean.
nature of the correlation matrix. That is, let the si gnals be
column vectors 

~1’~~’~n then, In conclusion , the representation efficiency of the Hadamard
trans form (based on mean square criteria) was found to be sur-

n n pri singly good relative to the ei genvectors of the samp le

~max = VTBV ..L~~~ 7T 
~ k~k

T)7 !~~~~~
T
~k)2 corre lation matrix.

k=1 k=i

the expression on the right being the sum of the squares of the 
2. Representation Efficiency of o Single Signal

signa l vectors projected on Several interesting observations can be made regarding
the Fourier vs. Hadamard representation of a sing le signal.

t~or a comparative measure of the representation efficiency
obtained with the Hadamard transform , the ratio re” between By thinking in genera l terms again about the Fourier
the average energy retained by a subset of Hadamard coeff i~ spectra of sampled Walsh functions , one envisions eac h of
cients an d the total energy (full set of coefficients) was com- those which modulate the samp led ‘ioo o “carrier ” as being
puted for several si gnal sets with dimensionality 21W = 32. linear combinations of the hi gh frequency Fourier components

of the si gna l with bandwidth 2W . Therefore , while a signa l
The some information for the eigenvectors of the correlation having considerable energy spread over the higher frequency

matrix exists in the corresponding ei genvo lue spectrum. range is by definition not efficiently represented by its Fourier
coefficients , it often is by its Hodamard coeffici ents.

A comparison of the number of coefficients required by each
of the two transforms to retain the same amount of signal energy In the extreme , signa ls which undergo spectral widening
on the average (re) is a measure of the relative efficiency of the trans formations , such as clipping or phase modulatior’ , are
Hadamard transform. often more efficiently represented by their Hadamard coeffi .

cients.
Spectral p lois of the eigenvectors and the Hadamard codes

are shown in figure 1 for a representative data set consisting of In figure 3-A , a signal with comparative Fourier and Hada-
52 signals. The relative amp litudes for the Hadamard codes are mar d reconstruction efficiency (using ei ght coefficients) is
the mean of the squares of the values of the ii largest coeffi- shown , wit h the Fourier line spectra of one of the best Hada-
cients. For the eigenvectors the function illustrated in this mard coe fficients shown in figure 3-B. In figure 4 the recon-
figure is the relative magnitude of each eigenvalue plotted struction of a signal with 2TW 256, using the FHT , is shown,
against its position in a list of the 11 largest eigenvalues when using the best 32 coefficients.
placed in order 0f decreasing vo~ues.

SIGNAL DISCRIMINATION , THE PATTERN RECOGNITION
The efficiency is suc h that 82% of the sum of the expected

PROBLEMsquares of the coefficients of all 52 signal vectors making up
the data set are contained in a three-dimensional space repre-
sented by the projections of the si gna ls across three eigenvec - The problem of discriminating between two or more classes

tors. In comparison , the binary coordinate systems required of si gna ls can be subdivided into two distinct phases, the

seven components to ac hieve equal representation for this data estimation problem and the classification problem. In the esti-

set, motion phase , the parametric technique for arriving at a dis- —

criminant configuration was chosen.

Fi gure 2 shows graphicall y the reconstruction efficiency
for one particular echo in the signal set. The parametric approach consists of the techniques of

statistica l estimation , estimation of probability densities ,

The reconstruction of a signal based on the most represen- computation of sample means , etc. The statistical parameters

tutive coeffic ients of a set of signals tended to overemphasi ze are compute d using a set of data known as the training set , and

the lower frequency Hadamard rows possibl y due to a “was hout” the resu lts are considered as estimates of the true parameters

effect of the signal ensemble on the relatively large number of describing a larger class of data generated by mechanism s

rows wit h considerable high frequency spectral content. One assumed to be simi lar to those which generated the training

finds from the Hadamard-Walsh relationship (appendix A) that data. This larger class represents the real world or working

the spectra of each af fully half of the functions in the Hadamard phase in the pattern recognition problem.

trans form is in the form of the lower sidebands of one of the
other half modulating the sampled values of ~~~~~ (equivalent The degree of sophistication employed (i.e., sample mean s
too  samp led cos Nw t carrier , O<t .~1). vs. pro bability densities ) is usually determine d by how

accurate ly these parameters , as estimate d from the training set ,
are actua lly expected to descri be the unknown data. This

5
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genera lization problem is of central importance in any pattern to the sca lar terms which are functions of the energy content of
recognition problem. the mean vector iii~. Often amp litude invariance is desired so a

modi fied (not necessarily optimum) discriminant is emp loyed,
Three estimation and discrimination sc hemes wer e studied resulting from the normalization of 

~ 
(division by Ii~~II i~ 1,2).

in regard to their capabilities with the training set only, and The resulting correlation discr iminant ~T , (
~~1 M2) ~ 0 y ie lds

wit h a small degree of genera lization (50% training set, 50% decisions affected only by signal shape information (direction
unknown), using approximate ly 250 si gna ls, each having a and not lengt h of ~ as in figure 5-C).
dimensionality of 32 time samples.

If 9’ Hi’, and 
~ — H 

~~~~ 
a discr iminant with similar proper-

These met hods were: ties operating on the Hadamard mean vectors 
~i 

and 
~2 can be V

expresse d byV T - (U1 — Li2) ~ 0, where ~U’~l l — .JF~ 1M~Il. In
a. The matched filter, based on samp le means, addition , since the Hodamord (or any nonsingular) transform on

the data effects a similarit y trans form on the covar i once matrix ,
b. Discriminants , derive d from independent probability K, it is left unchanged,density estimates (simultaneous diagona lization of two

different covariance matrices ). (Hi)T (~~l) H’1 1 I II lIT 1-~~ =~~~I.

c. Discriminants derived from probability densities at the The actual discriminant can often be simp lified by truncat-
outputs of the Hadamard transform. ing the vector representing the difference of the normalized

mean vectors U1 and 
~2 of the two classes making up the

ESTIMATION BASED ON SAMPLE MEANS training set. In figure 6-A a discriminan t is shown (in the time
domain) resulting from the linear combination of those Hoda-

Matched Filter: The matched filter (linear discr iminant) mard rows corresponding to , and wei ghted by, the seven largest
conf iguration consists of the difference of the mean vectors of elements of d, where d =U~ — u2. A comparison of this vector
the two classes. The term “matc hed filter ,” is a specialization with the vector ~~, fi gure 6-B, shows the small effect of trunco-
in the sense that only the correlation for zero delay or dot tion for this data Set (data set 1). Note the relative lack of
product between the signal vector land a stored vector is high-frequency detai l in the discriminont , a property whic h wil l
imp lied rather than a full convolution operation. be shown later to be in marked contrast to the spectral content

of discriminonts based on probability density estimates
The estimation prob lem involves merely the computation of (simultaneous diagona lization).

the sample mean vecto r for each class in the training set. The
classification pro blem for which this procedure is optimum is ESTIMATION AND DISCRIMINATION USING PROBABILITY
that in whic h the covarionce matrices , K. , are a like and are DENSITIES
assumed to be scalar matrices. The ~th c lass consists of a
m~an vector~~1 in a 2TW dimensi onal si gnal space surrounded The more general problem of discrimination between two
by a spherical cluster of vectors lj . j l,2 r each representing mu ltivariate Gaussian processes 14 wit h estimated parameters
~ perturbed by independent additive Gaussian noise with zero N(~ 1,K~), i 1,2, invo lves the determination of the conditional
mean (fi gure 5-A). For this paper , we wi ll consider only dis- proba bilities p(~ii)
crimination between two classes , i 1 ,2. Since the covariance
matrix for the multivar iate Gaussian distribution is the same for p(~ li) = 

1
each c lass , the conditional a priori probability density is1 (2~ )TW K I 1

~
2 exp ~_4(~

_ ffi~)T K~
’1 (~ —

,
~~~~ 

TW
P(lIi) = 

~t2wN 0W )  exp -1 /2 1(1 - T K’1 ( - 
...~)I wit h K1 ~ K 2 in genera l. The log likelihood decision for equal

p(i) becomes

where K’1 = 12TW 12TW ~ identi ty matrix g(~) = In~~~.i.U_ 
~ 0 or g(~) — I 2’

p(l~2) L I~ iI ] < 0In -j~
-- —

= N0W N0 ~ noise power spectra l density, where Q1 is the term in the exponent above.
P(l~1)

The log likelihoo d decision isg(l) = In p (~~2) - A linear nonsingular transformation A on the data vector ~
resu lts in the vector ~t wit h Gaussian parameters N(~1,I~) where

~ 
resu lts from a simi larity transformation on K, by A. Of

The surface g(l) • 0, is a hyperplane separating the particular theoretical interest is the transformation R which
clusters in figure 5-A between the means 

~~ 
and~~2. The simultaneous ly diogonalizes K 1 and K2 resulting in:15

likelihood function is simp ly, let ~ = 1, for convenience
g(~) = -k[ln A l ~ r2 T ~~ 

~2 — ~i
T .

~ i] ~ a> n
<

U-

where A is K 2 diagonaiized, i~=R(~
.n

~1) and K 7 is trans formed
An inspection of figure 5-B and the above expression for two to the identity matrix. The coefficient s of this transform can
c lasses shows that the decis ions are amplitude sensitive due then be processed as independent univariate Gaussian variables.

- -~~- — - —. p ~~~~~~~~~~ — .-
~~~~~~~~

, - — S ~~~~~~~~~~~~~~~~~~~~~ —- _~~__ _~~ - ~~~~- - --~~~ - ~~~~~~~~~~~~~~~~ —- ~~- -— -*.— ~~~~ - —— - -- - -



An application of this procedure in an asymptotic sense to SIMULTANEOUS DIAGONALIZATION
the c lass of covariance matrices describing noncyclic stationary
processes was describe d by Capon 1 ~ w ho emp loyed sampled While the ‘R” matrix is kno~wi to be the Fourier transform
power spectra obtained from the Fourier transform , for stationary processes , most data encountere d in pattern

recognition pro blems belong to the more general class of non-
One observes the presence of a bias term and energy meas- stationary processes. For such processes a matrix is derived 17

urement terms in the likelihood function above, resu lting in which performs a linear transformation of the signal data in such
amp litude sensitive decisions , an undesirab le feature in many a way that the covar ionce matrix of class 1 is reduced to the
pattern recognition app lications. Furthermore , one of the identity matrix w hile the covariance matrix describing class 2
exploitable features of the Hodamard transfo rm, from an imple- is diagona lized. For class 1, the random variables obtained by
mentot ion standpoint, is its binary nature. Because of this it is correlat ing each row of the filter matrix with the si gna ls will be
of ten desirable to process the Hadamard coefficients as random independent with unit variance about the transformed mean. For
variables , by c lipp ing them, followed by an estimation scheme c lass 2 the outputs are again statisticall y independent, but
requiring on ly the area under the positive portion of the proba- wit h variances proportional to the respective ei genva lues. The
bility density function of each coefficient , technique is accomp lished in the following manner.

Such a scheme has been reported by Nilsson 16 w hich in turn The parameters of a set of multivariote Gaussian si gnals, 
~~

,

develops a set of wei ghts by which the clipped coefficients of ore descri bed by a mean vector 
~~ 

and a covariance matrix , R,
unknown signals are linearl y combined as a discriminator. To w here
develop the weighted discriminant , the assumption of statistical 

R — ((
~

)), i = 1,2 N and j — 1,2 N -independence between the variables is made which, for the
usua l case of nondiagonal covatiance matrices , is unjustified. The covariance matrix can be estimated from a set of si g-
Because of the imp lementation simp licity of the method, na ls using the relation:
however , it was desirable to compare the results of using
Nilsson ’s approac h on the coefficients of both the Hadomard and ~ij — E [(x , — mi ) (x

j 
— m

j)],
“R” transform , the latter satisfying the requirement of statisti -
ca l independence. In the procedure one computes the product

(R 14”2)1 R2 R1
.i

~~ w here the matrices R1 and R2 arise in the
Nilsson’s method is summarized here, following manner.

Let p(i) — p(2), and consider from Bayes theorem the ratio , We let R2 be the covariance matrix of class 2 and then
determine R1-1/2 by first diagona lizing the covar iance matrix

p( i l~) — 
p (ill) < 1 or g(~) — 1fl~

_
~ .i1) < 0

~ 
(12) > (R 1) of class 1 . The ~th co lumn of the column ei genvector

~~~~) ~~~~~
2)>

matrix Q, w hich performs the diagona lization , is multiplied by
where I ~ transform coefficient vector. With statistical .1 

~~~ ~ 
tb ei genvalue of R1) yielding the matrix R1’~

”2,
independence we have:

known as the whitening filter for class 1 , sincen n

p (Iii) =[] p (xi ii ) etc. .‘. g(l) _
~~~~~~~ ln~~ 

(x-I1)~

~p(x 1 l2)~ 
~ 0 

(R1
11”2)T R 1 R1

’l/’2 =

i=i i-i The symmetric matrix (R 1
112)T R2 R1~~~

2 resu lts when the

By c lipping the transformation coefficients , the notation trans formation which whitens the covoriance statistic of
complexity reduces from the analog case to the following: c lass 1 is applied to the covariance matrix of class 2. When a

second transformation (M) is found that diagonalizes
p(x~ — i l l) 

~ Pi p(xi — Oil) ~ 
1—~ (R 1

11’2)T R2 R1
1
~
2, it can be seen that it wi l l  not affect the

p(x , = 1 12) 
~ 

p(xi = 012) ~ 1~~g• statistics of class 1, since MTIM I where MTM = I, the
matrix M consisting of the column eigenvectors of

n (R1’1”2)T R2 R1 1”2. We then obtain , finally, a linear trans-
- 9(1) ~~~~~~~ 

rp~ (l— g~)1 
~~~ 

(
~~~P~

) formation R which is equal to:
- Inl 1+

Lg~ 
(i—p ~)J ‘~‘ ( ~—g~) 

< 

= Q H MV where OH = R 2
i— i

which is a linear discriminant estimated from the cumulative or = (QHMY 1 
~

pro bability for x~. = R ~
R = MT H’l QT .Note that the presence of the bias term does not introduce

amplitude sensitivity in the decision , due to c lipp ing. For a pre- The R matrix then yields a set of 32 time-domain filters
determined transform , (Hadamard , Fourier ) the cli pping a lso which yield output s that are statistically independent for both
renders the estimation scheme amplitude insensitive on a si gna l- classes and, thus, cou ld be thought of as the optimum set of
to-s ignal basis, linear observables for di scr iminatir~~ between two stationary or

nonstationary Gaussian processes.
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Figure 7 shows one row of the “R” trans formation obtained Table 1 shows a typ ica l set of relat ive discrimiaation
from the above procedure for a typical poir of classes. Note accuracies for studies involving 220 si gnals (2TW = 32),  wit h
the predominant high frequency content in the spectra of the 9r = ~ The eig ht best coeff ic ients estimated from the
filter which is in direct contrast to the matched filter discr imi- traini ng set for each transform were used. As before , while
nonts. abso lute accuracies are not indicated , al l  exceeded 50%.

This phenomenon was noted in all rows of the “R” trans- TABLE I
formation matrix and occurred consistently for all data sets 

Comparison of Discriminan t Techniques
studied. It appears to be related to the decrease in statistical
dependence wi th  increasing frequency between the coefficient~9 Training Set Unknown
of the Fourier expansion of a Stationary Gaussian time series.

I ~%
A comparison of the effectiveness of the Hodamard and Simultaneous Diagona lization I 25 0 I

“R” transform ” tor signal discrimination is illustrated in I i 8figure 8 for a representati ve si gnal set (2TW 32), consisting of Matched Filter 
J 12

35 s gnols from class I and 35 from class 2 (data set 1). The Hadomard (Nilsson Techni que) 11 a
Nilsson scheme of estimation and classi fication was emp loyed
on the transform coefficien ts in both cases. The relative From the table it can be seen that si gnificant improvement
classification accuracy is p lotted against the number of over the matched filter in classification of the training set
coefficients with largest weights in Nilsson ’s method used to appears possible by obtainin g independent probobi lity measures
form the discriminant. The largest subset of coefficients of the two classes. The generalization capability of the
shown is eig ht out of a possible 32. Althoug h the absolute matched filter , however , exceeded that obtained by the “R”
scale is not shown, all accuracies exceeded 50%. transformation for the data studied , possibl y due to the differ-

ences in spectral content of the two discriminants. Although
While the difference between the best coefficient of each the clippin g operation in Nilsson ’s method prevents a time

transform is not representative of all data sets studied the rate domain realization as a linear discrim inant , those Hadamard
of increase and resulting divergence of the accuracies, as codes included in the Nilsson discriminan t exhibit a more
extra coefficients are added to the discriminant , is typ ical of balanced spectra (high and low frequency Content).
the data and is due to statistic al dependence between the
Hadamard coefficients. The FHT was applied to a set of 3500 digitized si gnals

each with 256 time samples under more severe generalization
Althoug h studies , performed with the training set only, conditions (10% trainin g set , 90% unknown). The Nilsson and

provide useful clues on the relative effectiveness of probabili ty the matched filter discrirninant s were estimated from the full
density measures on the various transform coefficients , the transform and employed as classifiers on the best 32 Hadamard
genera lization properties of the estimation procedures is of coefficients. It was found that the samp le-means discrimir tant
considerable importance and is described next, was again more effective from a generalization stand point than

those estimated from probability densities.
GENERALIZATION PRO PERTIES - i

CONCLUSIONS AND APP LICATION AREAS
Defining a generalization ratio 9r by:

No. of signals in training set The Hadomard transform appears to have useful app lication
= 

No. of unknown signals (working phase) in signal representation especiall y in the areas of data cam-
pression systems. Several investi gators have noted the app li-

the Hadamard transform , “R” transform , and matched filter cability of the transform for further processi, the power
discriminant were evaluated against the training set only spectral coefficients of the channel vocoder2&22 before(
~ = 1.0) and for 9r 0.5. transmission over a channel. Such studies have emphasized - I

reduced bit rate due to coarse quantizati on of selected coeffi-
For the “R ’ transform , a technique sufficient for the pur- cients rather than truncati on of the number of coefficients.

poses of testing relative generalization capability, was

employed by summtng selected ‘R” trans form coefficients. Several investi gators23 have studied the relative merits ofThis scheme (suggested by the statistical independence of the the “trans formation compression ” approac h with other methodscoe fficients ) al lows for prediction of the classifica tion per- of data compressi on , stu dy ing in particular the Fourier andformance on the training set since , for n independent Gaussia n Korhunen-Loeve techniques using the coeffici ent truncationn technique. In reference 23 it is concluded that the two tech-variables , VorT = 
~~ 

Var 1 and uT 
= 
~~ u i. Classification 

niques are effici ent in performance but impractical in imp le-= 1 i I 
mentotion. For those Systems considered in reference 23 whidiaccuracies pre dicted from the standard deviat ion tables for UT include di gital sensors or A -D conversion of the data , ii would

and (Var) T agreed closel y wi t h the accuracies actuall y seem that perhaps the FlIT would alleviate the imp lementationmeasure d. problem.

8

-— ‘ - -
~~~~~~~ — -  ~~~~~~~~~~~~ 

-
~~ 

—-- — - - .- —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~ ‘- ~~~~~~~~ . -~~ — -——~~~~- ——- —~ - - . - -



In signa l discrimination it would appear that the use of One of the princip le app lications of the FFT in si gna l
probability densities on selected transform coefficients should processing is in the per formance of rapid convolution using
be employed wit h genero lization in mind for signa ls with frequency domain techniques 27 inc luding matched filter process-
appreciable varia bility in shape within a c lass. The means of ing of pulse compression radar echoes , etc. Because the
the transform coefficients appear to be useful for many practical Hadamard transform does not possess these translation-related
pro blems. Often in pattern recognition , one searches for trans- properties it would not be expected to play a major role in this
form properties which render it less sensitive to a particular area (see appendix B).
type of var iation of a si gnal such as translation , change in
amplitude, etc. Such attacks against the generalization problem Orthogonal multip lex data transmission systems have been
tend to overshodow in importance the excel lent methods and discussed in references 24 and 25, wit h some comments made in
insights given to us by theory for discriminating between the latter concerning the burst error immunity properties of such
training sets or even genera lizing on the basis of partial ly systems. It would appear that the FlIT would have application
known parameters. in the formation of the transmission si gna l and in the receiver.

APPENDIX A

THE IIADAMARD-WALSH RELATION AND THE SIGNIFICANCE OF P

The permutation matrix P can be shown to be identical to From this it follows directl y that
that which carries the ordering of the rows of the Hadomard —‘

- V ‘1’b b b - “b X $ b X ... X 4’b b- = 01
matrix to the matrix whose rows are the samp led Walsh functions, n ’ 1 0 — 0 1 n
termed the Walsh matrix 26. The Walsh functions in turn have

- 26 . ~or examp le 
~‘110 results Trom ‘~‘1O by the operation

been defined over the interval (0 1) as the successive modula- —
tion in various combinations of a set of square waves ‘3’~ (t). ~‘11O = ‘~‘O ~ ‘~i 

x = (17)  X(1 .1) X (1.1) = (1 .7 -1 11- 1 . 1 1) .

p = 2n, n = 0, 1, 2,...r, w here p designates the number of At the same time it can also be shown that
periods in the inter val. Far p = 0, 

~
‘0 (t) ~ 1 , 0<t’zI. -i

,~ ~ x x i~ x ~Replacing p by its equivalent r bit binary number, the waveform bn..~bibO 0n “ b1 oo
of a particular Walsh function is specified ax the product of —

- , , ,  wnere hb b b ~~ tne 0 ~~~~~ roW o -
those Walsh functions represented by each 1 in its binary n’” 1 0 n

subscri pt. Letting r 3 for examp le, “cii = (‘~‘O0i)(~ 010) 5 For examp le, h110 = 
~ 

X 
~ 

X is the only nonzero
seen to be the modulation oN’001 by ‘~‘o10 (see figure ~~ row o f E1H2 X E1H2 X E0H2 = (E1 X E1 X E0) H8

The row vectors of the Walsh matrix of order N 21’ are where E1 = (
~ ~

), E~ = (~ o~designated O5+ br ...b0~ 
b~ 0,1, and can be generated from a

recursion re lation involving ~~ and i~ . For N = 2, Thus the same permutation matrix speci fies the Hadamard-

H where4 = (1 1) ~P7 = (1 -1) Then it follows samp led Walsh reordering and the required reordering necessary
2 \~~i / 

0 ‘ ‘ ‘ ‘ in the FFT. Because of this equivalence, other interpretations
that: exist for the generation of each Fourier harmonic, (row of F).

b b = ‘
~b b X (1,-i) = 

~b b x ‘
~~ 

For examp le if N = 4 it is clear that f3 is the comp lex modulo-

— 
r’” 0 r” 0 r’” 0 tion of f2 with f1,

‘~‘0 b~...b0 = ‘1’br.~
bO 

X (1 ,1) = 
~
br~.~bO 

X = = (W °,W 1,W~,W 3) (W 0,W~ X (W 0,W 1)

where ~ X ~ (a1b1,a1b2,a2b1,a2b2) ‘
~~ = (a~,a~) = (W °,W 2,W 0,W 2) = (W 0,W 0) X (W 0,W 2)
b = ( b 1 b2).

= f3 = [W 0W~,W~ W 2,W 2W 0,W 3W 2]  = (W 0,W 3,W 2,W 1).

APPENDIX B

PROPERTIES OF THE HADAMARD TRANSFORM AND FOURIER-HADAMARD ANALOGIES

There are three properties of the Fourier transform which The ‘‘ shift ” property of the Fourier trrnsform is stated
have contributed great ly to its usefu lness in signal process ing mathematically be the statement ,
applications , the “shift ” property and the resulting convolution -

theorem27’28 being perhaps the most useful. The others include if F(s) j  f(t) ci 5t dt

the invariance of the power spectrum to translation and finally -

the simultaneous diagonalization of all covarionce matrices then the Fourier transform of f(t - ‘r) is .J” F(s).

describing stationary processes.
In discrete time an equivalent expression for the shift

property is the fo llowing, if ~ F 1, then f 1 = F T 1 i’

9
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~i 0 1 0 - - o K = o~l + 
~ 

(T i + TN- i )

0 

- 

‘ 
W~ 1) 

~ / 
w hich is identified as the set of cycl ic stationary processes. 3°

where T 1 

(O 

0 . - I ‘ N - i

o i . . o  ) i = 1

and W eJ 2m N as before. It is evident that the Hodamard transform does not possess
Then T~ Diag [wo w i W N.1] I = D t these properties with respect to the translation operation. It

does possess these properties with respect to an operator
The “shift ” property becomes equivalent to the specification defined by the t.~llowi ng relation
F T 1 D F 0 r F T 1 F * D

~0 ~ 
[k]

thus the shift property is ex hibited by the set of eigenvectors of Sk = 

~ 
X 1
~log N - k k = 1,2 log N

the translation operator T. By expanding 1 ) 1  - T 0 one
obtains W~, i = 0,1 N - 1 as the set of ei genva lues , thus where A lki desi gnates the Kronecker power of A, ~~~~~~~~~~
each row of the Fourier matrix is an ei genvector since , for k terms

examp le, or pro ducts of the above terms. In particular the linear combi-
nation o f such products defines a class of covoriance matrices

(W

0 

) 
(0

Wi W i

T N - I - = W 1 . obviousl y holds. 

diagonalized by the Ilodamard matrix.

•‘~ 101 
his follows from

-1  ~N -1) HNSkHN = (H2t~~x H2[log N - k] ) Sk (H2
[k~ x H2

[lag N - k~),

Letting 12 —

Since any translations less than the period is expressible H2 1
k] 12

[kJ H2 
[ki X (H 2 

[log N-k]  2 ,

as a power of T, the Fourier matrix is the set of ei genvectors
diagona lizing T and thus exhibits the shift property in discrete Using the property (A~

)
~~’ 

= A Ek] B[k], the above expression
becomes (H212 H2) X l 2Q°9 

N-k] which is a diagonaltime.
matrix for k 1,2,..., log N. For examp le , let N = 4, then

( 

l i o \The invjriance of the powe r spectrum to translation fol lows 0 I a 1directly from thms property. The class of covariance matrices S1 = 

~~~~ 

etc.
diagona lized by the Fourier matrix is also easil y speci f ied as

linear combinatinns of the powers of T,
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