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AB STRACT

The theory of small superposed deformations for

isotropic incompressible elastic materials is used (i) to obtain

necessary restrictions on the form of the strain-energy function

by requiring that the speed of propagation be real for waves that

pass through a finitely deformed body of material (i.e., Hadamard

stability criterion) , and (ii) to determine critical loading con-

ditions for a thick rectangular plate under which bifurcation

;olutions (i.e., adjacent equilibrium positions) can exist. The

possibility of bifurcation under tensile loading , when one pair of

faces of a plate are force free , is precluded by further material

stability considerations .

~
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1. Introduction

The main purpose of this paper is to bring together results

obtained during the past few years on two basic problems in finite

elasticity theory. One of these is the question of what restric-

tions must be imposed on a constitutive assumption in order to en-

sure p hysica lly realistic behavior of the material which it claims

to describe. The other problem deals with the description of the

conditions under which adjacent equilibrium states can appear as

small perturbations on an equilibrium state of finite deformation

of a thick plate. Most of the results appear in references [l}-[5].

The setting for both problems is the theory of small deforma-

tions superposed on states of pure homogeneous deformation of bodies

made of an isotropic , incompressible elastic material [6) . The

relevant equations are beiefly derived in §2.

The approach taken for the first problem is to investigate the

implications that stem from the Hadamard stability criterion , which

requires that the speed of propagation be real for plane waves that

pass through a deformed body of material. It was shown by Hayes

and Riv].jn [7] that this criterion must be imposed in order to en-

sure that the body can actually exist in the finitely deformed state

considered. Accordingly, we adopt the resulting implications as

minimal, material stability conditions .

The equations that describe wave propagation are derived in

§3 , and further discussed in §4 , for a general material. The main

result is that certain inequalities [1] {see eqn .(4.l) below} in-

volving derivatives of the strain-energy function are necessary and

sufficient for the Hadamard criterion to be satisfied for waves

whose directions of propagation lie in a principal plane of strain .
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An open question remains as to whether these are also necessary

and sufficient when a comp letely general propagation direction is

considered. It is seen , however, that the answer to this is affir-

mative when two principal extension ratios are equal , or in §5 ,

when the constitutive assumption is specialized [3]

The determination of critical states of finite deformation ,

at which non-trivial adjacent equilibrium states first become pos-

sible , has been the subject of numerous investigations over the

past twenty years. A partial list of these is contained in [4].

The geometry considered is a rectangular plate , one pair of

whose faces are force free and whose other two pairs are loaded by

uniformly distributed normal forces when the body is held in its

finitely deformed state. The forces acting on one opposite pair of

faces are regarded as passive , merely holding the length of the

plate fixed in that direction . The forces acting on the other pair

are regarded as being the “cause” of the bifurcation , which is

assumed to appear as a small plane static deformation parallel to

the faces bearing the “passive ” forces.

The equations governing such bifurcations are derived in §6 ,

and it is found that further discussion of the problem can be con-

veniently carried out if two cases that arise naturally are separa-

ted. This separation is governed by the particular values assumed

by the one relevant material parameter that appears ~see (6.15)

and (6..l8)}. One case [4] is considered in 57 and the other in §3 .

When the causal force is a thrust , a single asymptotic formula

[5] ~see (8.17)], relating the cross-sectional geometry of a plate

to the critical condition for flexural bifurcation , is found to be

valid for all materials. This result , for a “thin” cross section ,

covers the case of classical Euler-typ e buckling .
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When the causal force is tensile , it is found that a bifur-

cation can occur only if the load decreases after attaining a maxi-

mum . However , this behavior rules out the possibility that a plate

of material can be held in stable equilibrium in states of pure

homogeneous deformation just prior to that required for the bifur-

cation , and leads to the imposition of further restrictions on the

strain-energy function beyond those discussed in §4.

A major question that remains open for the bifurcation problem

considered here , particularly for “thick” cross sections , is whether

the body actually goes over into a mode shape that is assumed at

the point where the thrust load reaches a critical value . Some

experimental evidence [8] throws doubt on the matter. Attempts to

answer this analytically by employing energetic considerations have ,

so far , been unsuccessful .

Recently [91, [10], the bifurcation problem has been exhaus-

tively studied for a plate of incompressible material by employing

an incrementally-linear , time-independent constitutive relationship .

This theory includes small superposed elastic deformations as a

special case. Accordingly, an alternative description of the res-

ults in §57 and 8 could be gleaned from those in [9] and [10] by

expressing the relevant incremental moduli in terms of the strain-

energy function .

— - ---- - -- ---  -—— __~~_ -~ -- -—--- - -~~~~~~~ - —-- -~~
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2. Basic Equations

We let ~~, X and i denote the vector positions , relative

to a fixed rectangular Cartesian frame x , of a typical particle

of the body in an undeformed state , in a finitely deformed state ,

and in a state at time t, respectively, and write

(2.1)

where u is the displacement associated with an additional small

superposed deformation . We consider states of pure homogeneous

deformation whose principal directions are parallel to the coordi-

nate axes of x and which are completely characterized by the

(positive , constant) extension ratios X1,X2,X3 
. Then

X = F~, F diag (A1,A 2,A 3
) . (2.2)

The components of ~~, X , i and u , referred to x , are denoted

by ~~~~, X1,
j
1 and u~, respectively. In the sequel , all ex-

pressions involving u (and its derivatives) shall be systemati-

cally linearized in u

The Finger strain matrix B is given by

= ~pT = ~~ + ~~T , (2. 3)

where , with (2.1) and (2.2),

= F + ~ = II uj. cL II . (2 .4 )

(We employ the notation ,~~ to denote 9/3~~ , as well as the

usual summation convention for repeated lower-case subscripts.)

The invariants and 12 of B are given by

_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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ii = tr B = 11+ i1
(2.5)

= ½{(tr B)2 - tr = 12+ 12

where

Ii 
= X~ +X~ +X ~ , 12 X~X~ + X~ X~ + , (2.6)

i1 
= 2

~~~
XAuA A  ‘ 

= 2
~~~

XA (Il-X
~
)uA ,A . (2.7)

The incompressibility condition , det F = 1, together with (2.2)

and (2.4), yields

X1X2A 3 
= 1 (2.8)

and
3

~ 
X~~u~ A = o . (2.9)

AJ.

The strain-energy density, W , depends on B through I~

and I., . Letting n~~ denote the components of the Piola-

Kirchhoff stress and P a hydrostatic pressure , we have

+ ½Pcjjk ~1~j~~ ky 
= ~W / 3F ~~

= 2 { ( W 1+I 1W 2 )F~~~- W 2F i j~~F j c L } ( 2 . 1 0 )

where 
~ijk 

is the alternating symbol and

WA 
= 3W/

~
IA , A=l ,2 . (2.11)

Following the previous notational conventional , we write

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- -—
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=r [cLi + l r
cti , P = P + p ,  (2.12)

where ir~~ and p are the stress and hysrostatic pressure , res-

pectively, associated with a superposed deformation . Also , we ex-

pand WA in a series about I~ and 12 ; thus ,

WA 
= WA + W~~~i1 + WA2i2 , A =1 ,2 (2. 1.3)

where WA and WAB denote the first and second derivatives of

W with respect to ‘A . evaluated at ‘A 
= ‘A The substitution

from (2.12) and (2.13) into (2.10), with (2.2), (2.4), (2.6) and

(2.8), yields

fl~~ = 2A A (W l+(Il
_ A
~

) W 2} - P/A A
(2.14)

11AB = 0 , A ~ B , A ,B = 1,2 ,3

and

~~~ B~ 1 
{C AB 6AB + (

~ AB - l ) D AB + E AB }u B ,3- P / X A
(2 .15)

~AB 
= CABUB,A + DABuA B  A ~ B

where is the Kronecker delta and

CAB = 2{W1+(I1-1~ -A~ )W2} ,

DAB = (P
~
2A
~
X
~
W2)/A AXB ‘ 

(2.16)

E AB = 2A A X B{W2+2[Wll +(2Il~
X
~

_X
~

)W l2

+ (I1-X~ ) ( I 1-X~)W22 ]} .

(No summation is impl ied for  repeated upper-case s u b s c r i p t s.)  

_ _ _  J
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We neglect all body forces. Then , bearing in mind that the

A’ s are constants , from (2.1), (2.2), (2.12) and (2.14), the

equations of motion are

lT
cLi.,ct 

= iij , (2.17)

together with the requirement that P be constant , where p is

the mass density and a superposed dot denotes differentiation with

respect to t . The substitution from (2.15) into (2.17) yields

B=1 
(CABuA B B  + EABuB,BA) - P~A

/A A ~~~ 
, A = 1,2 ,3 . (2.18)

Let v denote the (outward drawn) unit vector normal to a

surface of the body in t~ ~formed state. Then the traction

T acting on this surf L.~~e t , and measured per unit

undeformed area , has components given by

‘I’. = rt .v~ = T~ + t~ , (2 .19)

where

T~ = flcdv a , t~ = 

~c~i
’
~cL 

( 2 . 2 0 )

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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3. The Propagation of Plane Waves : The Secular Equation

In this section we derive the secular equation that governs

the propagation of small amplitude sinusoidal plane waves through

a block of material that is otherwise held in equilibrium in the

finitely deformed state characterized by AJJ A 2,A 3 . Letting w

denote the angular frequency, the wave number and n the (real)

unit vector in the direction of propagation of such a wave , we

employ the usual complex notation and write

U = U exp{t (Kn•X-wt)} , (3.1)

where U is a constant vector and = -l

The substitution from (3.1) into (2.9), with (2.2), yields

n•U = n~U~ = 0 , (3.2)

where we disregard the trivial case K = 0

We express the hydrostatic pressure p associated with the

superposed deformation in a form that is consistent with (3.1);

thus,

p = tKq exp{t(Kn X-wt)} , (3.3)

where q is a constant . With the notation

= K 2/ ( pw
2
) , (3.4)

the substitution from (3.1) and (3.3) into (2.18) yields

- qn~) = U~ , (3.5)

where

Qij = QijkUk (3.6)

- .

~

—-

~

--

~

---
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with

~ABC 
= CAB X

~
nB~AC 

+ XA XCnCEAC~ AB . (3.7)

To eliminate q from (3.5) we multiply each term of the

equation by Csrjflr and obtain , with (3.6),

= 0 , (3.8)

where

Esriflr Qijt1
~j~~ it) . (3.9)

Now since vanishes identically, we note that the three

equations in (3.9) are not linearly independent. Taking s = 1

and 2 , fo r example , we obtain

Qit ut = 0 , Q2~
Ut = 0 , (3 .10)

which , with (3.2), constitutes a set of three homogeneous equa-

tions for U . A n o n- t r i v i a l  so lu t ion  for U can exist only if

C
~ JkQl~Q2~

nk 
= 0 . (3.11)

The substitution from (3.9) into (3.11), together with some

algebraic manipulation , yields the desired secular equation in

the form [3]

- + 1 = 0 (3.12)

where

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(3.13)

= n 5 (Q~ 5~ J~~k~~ sk~ 
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and where we have used the fact that n.n = 1 . According to

(3.4), the quantity pa is the square of the slowness associated

with a wave described by (3.1). We see that (3.12) yields two

positive roots for a if and only if

a > 0 , ~ > 0 , and ~
2 4a > 0 . (3.14)

Before turning to a discussion of the implications of (3.14),

we must obtain explicit expressions for a and ~ in terms of W.

To this end we introduce the notation

KA 
= W

1
+ A~W2 , MA = 2 (W

11
+ 2 A ~ W

12
+ A~ W22) , A=l ,2,3 (3.15)

and also

= 
~~~~~~~~~~~~~ , A ~ B ~ C ~ A . (3.16)

The n employing (2 .16)  and (3 .7)  in (3 .13) ,  with (2.8), we obtain [3J

a = 4(A~n~+ ##){(A~n~K2K3
+ U) + W 1(J1+ # # ) }

+ 4W2(X~ x~J1+ ##)

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (3.17)

= 2 {K 1(A ~ n~ + A~n~ ) + J1 + U]

where the symbol ## denotes two additional terms which are

obtained from the ones shown by a cyclic permutation of the sub-

scripts 1,2 ,3 on the A’ s, n ’s, K’ s, M’s and J’s. From (3.17),

with (2.8), (3.15) and (3.16), we calculate 8
2-4ct : 

—~~~~—~~~
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~~~~~~~~~~~~~~~~ ##]

+ 2 [A~ A~n~n~( -A~ )(A~ -A~) +

+ ~~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~~~~~~~~~~~ + U)

+ 4{[J + # # i 2

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (3.18)

interes t to no te , in general , that the quantity

.etely independent of the value assumed by W1 . 
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4. Stability Restrictions for a General Material

The set of inequalities (3.14), which must hold for all n

is the Hadamard s tabi l i ty  cri ter ion . In turn , with (3.17) and

(3.18),  these inequalities lead to res t r ic t ions  on the functional

form of W , which we shall adopt as minima l mater ial  s tabi l i ty

conditions .

It has been shown [11, [3] that , when the propagation direc-

tion n lies in a principal plane of the underlying pure homogene-

ous deformation , the necessary and suff ic ient  conditions for (3.14)

to be sat isf ied are

KA > 0 and (Il
_X

.~
_ 2A

~~
)MA + KA > 0 A = 1, 2 , 3 , (4.1)

where the K ’ s and M ’ s are defined by (3 . 1 .5) .  A sketch of the

proof of this wil l  be g iven below .

The f i r s t  set of condit ions (4.1)  is known as the Baker-

Ericksen inequali t ies [ i ll .  The second se t was apparen tly f i r st

given in [1]. . I t  was shown in [2]  that  (4.1) can also be derived

by considering small s ta t ic  superposed shearing deformations in

principal planes and requiring the corresponding incremental shear

moduli be posi t ive .

It is not known whether any fur ther  restrictions on W

beyond those expressed by ( 4 . 1 ) ,  stem from (3 .14)  for  an arb i t rary

direction n . However , it is re la t ive ly  easy to show that  (4 .1)

is sufficient to ensure 8 > 0 for a rb i t ra ry  n . We employ

( 2 . 6 ) i ,  ( 2 . 8 )  and (3.16) in (3 . 17) 2 and wr i t e
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8 = 2K1{(A 2n~ -X 3n~)
2 

+ ~~~~~~~~~~~~~ + U + 2b

2 2 ~ 2 (4.2)
b = (A 2+X 3) n2n~~ (I 1-A 1- 2Xj~ )M 1+ K1] + ##

From (4.1) we see that b > 0 and , whence , 8 > 0

In the general case when all three X’ s are distinct , we note

that, at most , only two of the three Baker-Ericksen inequalities

are independent . For , with the ordering A1> A2 > A
3 , 

say, from

(3.lS)i we have that K1 > 0 and K 3 > 0 implies K 2 > 0 . If

two of the X’ s are equa l, say A1 A 2 ~ A
3 , 

then , again , at

most two of the Baker-Ericksen inequalities are independent while

the second set in (4.1) reduces to 1(
3 > 0 and just one other in-

equality. Thus, for these special types of deformations , (4.1)

yields , at most , three independent restrictions on the form of W

Some additional comments pertaining to this case are made at the

conclusion of this section .

For propagation in a principal direction , say n = (1,0,0)

(3.17) yields

a = 4X~K2K3 , ~ = 2X~ (K 2
+K 3) , (4.3)

and it is clear that 82-4a > 0 . From expressions for ~ and ~

analogous to these for propagation along the other two principal

directions , we can conclude that ~ > 0 and ~ > 0 if and only

if Kk > 0 . Essentially the same results can be read off directly

from results obtained much earlier by Ericksen [l].

We turn now to the case of propagation in an arbitrary direc-

tion in a princi pal plane . For definiteness , suppose that

Ii = (n ,n2,0) . Then from (3.17) we obtain

= 2(’f1
#’
~’2
) ~ (4.4)

______________________
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where

= A~n~K~ + A~n~K1

= K3 (X 1n
2-X 2n~)

2 (4.5)

+

It is clear from (4.4) that 82 - 4a .~~. 0 . With the va lidity of

(4.1) 1 alread y established , it easily follows [1], [2]  from ( 4 . 4 )

and (4 .5 )  that a > 0 if and only if

(X 1-A 2 ) 2M 3 + K 3 > 0 , (4 .6 )

which , then , is also sufficient for 8 > 0 , as noted previously.

The form of the conditions (4.1) 2 f ollows from ( 4 . 6 ) ,  with ( 2 . 6 ) i,
by considering analogous resul ts  for propagation in the other two

principal  p lanes .

If the underlying deformation is a uniform two-dimensional

extension or compression , we have a situation where two of the

A ’ s are equal.  For example , say

A 1 
= A 2 

= A , A 3 
= 1/A 2 

. (4.7)

Then , wi th  (3 .15 ) ,  the inequali t ies  (4.1)  become

K > 0 , K3 > 0 , (A 3-l)2M + X~K > 0 , (4.8)

where

K 1 = K 2 = W1
+ X 2W2 , K~ = W1

+ X~~W2
2 (4.9)

M = M1 = M2 
= 2(W11 + 2X W12

+ A W22) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The derivatives of W that appear in (4.9) are evaluated for

I~ = 2A~+ 1/X~ , 12 
= A~+ 2/A 2 , (4.10)

which is a point on the curve bounding the domain in the I., 12-plane

where W is def ined.  (See [13], fo r  example) .

Now , when two principal extension ratios are equal , we note

that any direction n is parallel to a principal plane , and it

fol lows that the sa t i s fac t ion  of (4 .8) is necessary and su f f i c i en t

that (3.14) be satisfied for arbitrary directions of propagation

[3] 

- --~~~~~~ -. - --- .
,-

~~~~~~~~~~~ -~~~~~~~~~~~~~~ -~~~--—.— . .
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5. Results for Some Special Mater ia ls

A s tumbling block in the way of obtaining the ful l  implica-

tions of (3.14) for arbi t rary n is the presence of the term

(W
11

W
22

-W~ 2 ) in the expression for a . Three special cases where

this term is absent have been studied [3] . These are the Mooney-

Rivlin material  (see , also , [12]) and mater ia ls  which depend ei ther

on 
~1 

or on 12 . For these it is found that the basic restric-

tions implied by (4.1) are necessary and suf f ic ien t  for (3.14) to

be met for arbitrary n . Only the case where W depends on

shall be discussed here .

We wri te  W = f(11) so that, from (3.15)

KA = f’ , MA 
= 2f” , A = 1,2 ,3 (5.1)

and , with (2.6)i, the conditions (4.1) become

> 0 , 2(XA~
XB)

2f” + f’ > 0 , AB = 12 ,23 ,31 . (5.2)

The derivatives of £ are evaluated at = I~ . From (3.17),

(3 .18) ,  with (5 .1) ,  we obtain

a = 4 ( X~ n~ + # # ) f ’ {( X ~ n~ + # # ) f ’

+ 2f”[(X~ -X~)
2n2n~+ U])

8 = 4{(A~n~+ ##)f
’ + f”[(A~ -A~)

2n~n~+ ##]} , (5.3)

82 -4c t  = 16{(A~ -A~)
2n~n~+ # # )2 (f ”)2

It is clear that 82-4ci ~ 0 , for arbitrary rt , regardless of

the form of E . Recalling that KA > 0 is necessary and sufficient
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that the speed of waves propagating in a principle direction be

real (cf.(4.3)} , it follows from (S.l)i that (5.2) 1 must be satis-

fied .

Now if f” > 0 , we see that (5.2)2 is satisfied and also

a > 0 . Therefore , we need consider only such f where f ” < 0

Recalling the result cited at the conclusion of §4 , we may here

assume that all the ~. ‘ c are dist inct , and , without loss of gener-

ality, take A 1 > A 2 > A 3 . Then (5.2)2 yields just one indepen-

dent condition which can be expressed in the form

= -½(f ’ - c ) / ( A 1-X 3) 2 
, with c > 0 . (5.4)

The substitution from (5.4) into 
~~~~~~~~~~~~~~~~ 

yields

a = 4(X~n~+ ## )f
’{Ff ’ + ~~~~~~~~~~~~~~ ##J}/(A -A

3)
2 

, (5.5)

where

F = (X 1-X 3)
2(A~n~+ U) - {(A~ -A~)

2n~n~+ ##} . (5.6)

According to (5.5) and (5.6) we have a > 0 if and only if

~ > 0 pro vided F .~~. 
0 for all ii and F = 0 for some n . That

these latter conditions are indeed met can be seen by expressing F

as a function of n~ and n~ (recall n~= 1-n~ -n~) and then

looking for a minumum of F over the interior of the triangular

domain in the n~n~ -p1ane bounded by the lines n~ =U , n~=0 ,

n~+n~=l . The relevant conditions are ~F/~n~ = 0 and aF/~n~ = 0,

which lead to the equations [3]
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(X~ -A~ )n~ + (A~ -A~)n~ = {A~ -A~ -(X 1-A 3)
2}/2

(5 7)

(A~ -X~ )n~ + (A~ -X~ )n~ = {X~ -A~ -(X 1-A 3)
2)/2

Since A 1 > A 3 , these are found to be inconsistent , and , hence ,

no minimum of F exists. It is also found that F > 0 for

= 0 and n~ = 0 , but , f or n~+n~~l , we have

F = (A1-A 3)
2(A 1n1- X 3

n
3)

3 
, (5.8)

which vanishes when

n~ = A
3/ ( A 1+X 3

) , n~ = A 1/ ( X 1+A 3) . (5.9)

We conclude that F > 0 for all n except for the four values

ar is ing f rom (5 .9) , for which F = 0 

-.~ .. . .— --~~~~-—. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~
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6. Bifurcation of a Thick Plate

We consider a rectangular plate having sides of length

2z 1, 2Z2, 2~ 3 and which occup ies the region

ZA I ~A 
I 

~A 
A = 1,2,3 (6.1)

in its undeformed state . The plate is held in equilibrium in a

state characterized by (2.2) by means of normal forces uniformly

distributed over the faces perpendicular to the x1 and x3
directions . No forces are applied to the faces initially normal

to the x 2 -direct ion . Here we investigate the possibility that a

neighboring equilibrium state can exist in the form of a small

superposed displacement in the x1x2-plane under the conditions that

no further deformation occurs in the x3-direction , that no tangen-

tial tractions are applied to the load-carrying faces, and that

these faces remain parallel to their original directions . If such

bifurcation is possible , we say that the underlying pure homogene-

ous deformation is a cri tical sta te .

With A 3 fixed , we note from (2.6) and (2.8) that

I~ = A~ + ( A + X ~~~) X ~~~, 12 = X
3
(A+X ~~) + A 2 (6.2)

where

A = X 2 /X~ . (6.3)

Also , from (2.14), (2.20) and the fact that the faces 
~2 

= ±

are force free , we obtain

P = 2A ~~C W 1 (X ~~+ X ~~)W 2 } , (6.4)

and
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“II = 2( 1 12 ) (W 1 + A~ W2 ) / ( A A
3)
½ 

. (6.5)

From (4. 1) i, with A = 3, we see that the force applied to the

face is a thrust or tension accordingly as A > 1 or

A < 1 , respectively.

To describe neighboring equil ibrium states we take u and p

in the form

u1 = u1(~ 1,~ 2 ) ,  u2 = u2 (~ 1,~ 2 ) ,  u 3 = 0, p = p(~1,~ 2
) . (6.6)

Then from (2.18) and ( 2 . 9 )  we obtain

(C 11 + E11)u 1 ~~
+C12u1 2 2

+ E12u221 -p 1/X 1 0

C21u211
+ (C22

+ E22 )u 2 22~ 
E21u1 12-p 2JX 2 

= 0 , (6.7)

Au11+ U 2 2  
= 0

The condition that the faces 
~2 

= ± 
~2 

remain force free

is , f rom ( 2 . 2 0 ) 2 ~~~ 
= 0 . Then with (6.6) and (2 .15 )  we obtain

~21 C 21u1 2 
+ D21u2 ~ 

= 0 ..~

~
‘ 

~~~~~ 
(6.8)

~22 (C 22 + E22 )u 2,2 + E21u1,1 -p/A 2 = oJ

The faces = ± remain paral le l  to the x 2x 3 -plane and are

free of tangent ia l  t rac t ions  if i.~12  
= u1,3 

= 0 and 
~12 ~l3 

0 .

With (6.6) and (2.15), these conditions are seen to be satisfied

if

U12  
= U2 1  

= ~ ‘ ~J. = ± ( 6 . 9 )
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We employ (2.16), (6.3), (6.4) and find that solutions of

(6.7), (6.8), (6.9) can be obtained in the separable form [4],

-sin~~1-~ cos~~1-1 cos~~1-i
u1 = 

~, U~(~2), u2 = ~ U(~~), p = 
~
, Q(~2 )

cos ’P~1J sin~Y~ 1J 
sin’Y~1J

(6.10)

where

= n7T /2. 1, ‘V = (n - ½) T r / 2 , 1, n = 1,2,3,... (6.11)

and

U1 = ~~~~ U ’ , Q = 

~~~ 
{c12u ” -~

2 (c
11+ E11-XE 12)U’} , (6.12)

provided that  U sa t i s f ies  the d i f f e r e n t i a l  equation

~~~~~~~~~~~~~~~~~~~~~~ + X 2c2~U = 0 (6.13)

and the boundary conditions

u ” + x 2 c2 2u = o
~ 

= ± 
~2 

(6.14)
U ‘‘‘ + c22{2A 2÷l+A (x-1)2}U’ OJ

The upper set of expressions in (6.10) represents a symmetric mode

of deformation with respect to the x2x3-plane and the lower set

an anti-s~~metric mode with respect to this plane . Also , the quan-

tity c~ denotes either ~ or ‘V , depending on which set is

considered , and A is defined by

A = 
~~~~~~~~~ (A+l) 2(W11+2X~W12+A~W22)/(W1

+X~W2) . (6.15)

It appears that Wesolowski [14] was the first to exploit the 

~~~~~~~~~~~~~~~~~~~~~~ .~~~~ --  ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
j~~~~~~~ —.
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fact that the governing differential equation and boundary con-

ditions for a bifurcation problem of this type depend on the strain-

energy function only through a single material parameter , such as

A . We remark here that , for any specified value of A 3 , A is a

function of A only {cf.(6.2)}

With (3.15) we see that A can be expressed as

A = (A+l)2M
3/(AA 3K3) and , from (4.1) (with the subscript A=3)

together with (2.6), (2.8) and (6.3), that the Hadamard criterion

can be satisfied only if (A-l) 2M3/(XX 3K3) 
> -l . Whence , A must

satisf y (X - l ) 2A > -(A+l)2 , or simply

A > -(A+l)2/(A-l)2 = A0 (X )  , say , (6.16)

in order that the underlying deformat ion meet the minimal stability

requirement.  Of course , no restriction arises from (6.16) if A=l

Upon assuming a solution of (6.13) of the form U = exp (c2r~2)

we obtain a biquadratic equation for r which has four roots

of the form ± (R±T) where

R = ½ {(A+l )2 + A (A~1)
2}½ , T = ½ {(A+l) (A~ l)

2}½ . (6.17)

According to (6.16), R is real for all possible values of A and

T is real if A � ~ - 1
(6.18)

T is imaginary if -l > A > -(X+1)2/(A-l)2

It is convenient to t reat  these two cases separately. The first

is discussed in §7 and the other in §8 .

~- ~~~~~~~~ .- . — -—- ~~.- . —~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-
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—
~~~~~~~~~~ —~~
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7. Bifurcation When A > - 1

When (6 .i .8) i applies , we let

= R + T , = R - T (7.1)

and write the general solution of (6.13) in the form (4]

U = L1coshc~r1~ 2 + L2sinhc2r1~2

+ N1coshcil’21 2 
+ N2sinhc2I’2~2 , (7.2)

where L1,L2,N1,N2 are constants. The substitution into (6.14)

yields four equations for the determination of these constants ,

which , with the notation

(7.3)

can be written as

(r~+A 2)L 1coshr1n + (r2+x 2)N coshr~~ = 0 , H

r 1(r~+x 2 )L1sinhr 1~ + r2(r~+A 2)N 1sinhr 2n 
= 0

( 7 . 4 )
(r 2+A 2)L2sinhr~~ + (I’2+A 2)N sinhF~~ = 0

r1(r~
÷A 2)L2coshr1ri + r 2 (r ~ ÷ A 2 )N2coshr 2 n = 0 .

In order that non-trivial solutions of (7.4) exist , we must

have either

tanht’,n F F 2 +X 2 2

or 

L2 
= N2 

= 0 and tanhF1n 
= 

~~~~ F2+x 2 ‘ 
( 7 . 5 )

tanhF n F F2~ A 2 2
= N1 

= O afld t aflhF ’fl 
= 

~~~ (~~~~
+
~~~~

) 

_ _ _ _ _ _ _ _ _ _
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if (7.5) holds , we can obtain n aIL- t r iv ia l  values of and N1
from (7.4) and , accordingly, from (6.10), (6.12) and (7.2) we see

that the variation of U
1 

is odd and u2 is even with respect to

This gives rise to an anti-symmetric shape with respect to

the x1x3-plane , which we call a f l e~cur a l mode . Conversely, the

shap e associated with the satisfaction of (7.6) is symmetric with

respect to the x1x3-plane and we call that a barreling mode .

With the convention that

1+ 1 for a flexural mode
V =~~~ (7.7)

1 for a barreling mode

and with (7.1), it is possible to write both bifurcatioii conditions

and (7.6)2 in the form [4]

sinh(2R~) = ~ 
R {4T2+X (A+1 )2} (7 8)sinh(2T~) T C4R2 A(A 1)2)

From (6.17), and bearing in mind that A is a function of A , we

see that R and T are functions of A . Then (7.8) can be re-

garded as an equation for the determination of n as a function of

A . From (6.11) and (7.3),

= nir 9.2 / 2 Z 1 , n = 1,2,3,... (7.9)

where n denotes the number of half-wavelengths parallel to the

x1-direction in a neighboring mode . Thus , we may also regard (7 .8 )

as an equation for the determination of critical values of A

corresponding to a particular aspect ratio (~21Z1) and a given

mode shape. 

-~~~~~ 

_
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am results based on (7.8) have been proven analytically

the assumption that A is c o n s; 2 n t .  These are summar-

ollows , where 0 = 4R2-X( ’k- l)2

If A > 1 (tensile case) (7.8) admits no real
solutions and , hence , no bifurcation is possible.

For any A > 1 , one and only one positive value of
ii exists for flexure if 0 > 0 and none exists if
0� 0 .

For any A > 1 , one and only one positive value of
11 exists for barreling if 0 < 0 and none exists if

the vanishing of ~4R
2-A(A-l )2} is the condition which

the ranges of critical values of A for which flexural

ling bifurcations can occur . From (6.17)1, this separa-

ition is defined by

A = A-(A+ 1)2/(A-l) 2 = A (A)  , say . (7.10)

be said about this in the next section . The function A

plotted in the AA-plane in Fig.3 of [4] for A > -1

3)

rical results from (7.8) can be obtained [4] by assigning

ons tan t  values to A and then solving numerically for n

tion of A . This procedure yields curves of the form

ematically in Fig.l. here we have taken three constant

,b ,c for A with the assumed ordering -1 < a < b < c .

curves represent solutions of (7.8) for flexure and the

rves ~he solutions for barreling .

ough the condition A = constant is somewhat artificial

of course , for the Mooney-Rivlin material for which A E 0),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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from curves such as those in Fig.l it is possible to determine

critical values of A , for any specified value of n , for

arbitrary variation of A with A . The procedure is to read

off pairs of values of crit ical A and corresponding A for the

value of n specified and then plot these points in the AA-p lane .

This yields two distinct curve s , one for flexur e and one for bar-

reling . On this same graph we plot  the actual variat ion of A

with A from (6.15) {recall (6.1) and the fact that A 3 is f i xed) .

The intersections of this latter curve with the former give the

critical value s of A for f lexure and barrel ing corresponding to

the value of n for which the original curves were derived. This

procedure is i l lustrated in F ig .4  of [ 4 ] .

We take this opportunity to correct equation (7 .4 )  of [4]

which , for the example chosen, should read

A = 2 (A+l) 2, (A2+6X+l) . (7.11)

This correction alters slightly the numerical values stated in the

final sentence of [ 4] ,  but does not change in any way the qualita-

tive aspects of the discussion there. Of course , if the actual

variation of A with A is known, as for example in (7.11), it

could be employed in (7 .8 )  and a numerical solut ion effected

direct ly .



8. Bifurcation when A < - 1

When (6.18)2 applies , we write

T tS , S = ½ {_ (A+l)(A_l) 2}½ 
‘ 

(8.1)

and express the general solut ion of (6.13) in the form

U = (L1cos~S~2 + L2sinc2S~2)coshc2R~2
(8.2)

+ (N1sinc2S~2 + N2cosc2S~2)sinhc2R~2

where L1,L2,N1,N2 are constants and R is given by (6.17)1.

We introduce the notation

q1 
= R2- S2 + A 2; q2 = 2RS ; q3 

= (1-A)R; q~ = (l-A)S

Y = coshRri cosSn ; Z = sinhR~ siriSn ; (8.3)

y = c~ shR~ sinS~ ; z = s inhR~ cosS~

where ~ is given by (7.3), and then substitute from (8.3) into

(6.14). This yields {cf.(7.4)}

L1(q1Y-q 2Z) + N1(q1Z+q 2Y) = 
01

(8.4)
L1(q 3z+q~y) 

+ N2(q3y-q~z) 
= 0J

L2(q 1y+q 2z) + N 2 (q 1z-q 2y) = 0)
(8.5)

L 2 (q 3Z - q ~ Y) + N2(q3Y+q~Z) 
= 0J

Now (8.4) and (8.5) admit non-trivial solutions for the L’s

and N’ s onl y if either

L2 = N2 = 0 and (q 1Y-q 2 Z)  ( q 3y -q ~~:) = (q1 +q 2Y) (q 3:+q~y) (8.6)

or

~tiL ~~~~~~~~~~~~~ ~~~ 
-:-::-—-

~~~~~~~
- ~~~~~~~~~~~~ .~~ .. ~~..-.. .-.- . . . - . . ...:
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L1 
= N1 

= 0 and (q1y+q2z)(q3Y+q~Z) 
= (q1z-q2y)(q3Z-q4Y) , (8.7)

unle ss it should happen that the determinants associated with

(8 .4)  and (8 .5)  both vanish simultaneously; that is , unl ess

(Yz+Zy)(q1q~+q2q3) 
= 0 . (8.8)

The significance of this exceptional case shall become apparent

below .

If (8.6) applies then non-trivial values of L1 and N1 can

be~ foun d from (8 .4 ) ,  which , with (6.10) , (6 . 12) i and (8 .2 ) , give s

values for u1 and u2 whose variations with 
~2 

are , respec-

tively, odd and even . As before , this situation describes flexural

modes. The converse behavior is noted when (8 .7 )  applies which ,

therefore , governs barreling modes.

We let

r = X (3-A) (1+A) + (A+1) (X-l) 2

2 (8.9)
s = A (A+l) + (A+l) (A-l)

and substitute from (6.17), (8.1) and (8.3) into (8.6) and (8.7)

and cast both bifurcation conditions in the form

vRs sin 2S~ = Sr sinh 2Rn , (8.10)

where v is given by ( 7 . 7 ) . Bearing in mind that  R ,S ,r , s are

functions of A , we have , as wi th  ( 7 . 8 ) ,  that  (8 .10)  serves to

define a re la t ionship  between n and c r i t i ca l  values of A

I t  can readi ly  be shown that  (8 .8 )  is sa t i s f i ed  t r i v i a l l y  if

A = 1 or if r~ = 0 ; but , for A ~ 1 , there are non-trivial

solution s for q of the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -
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= k~ (k1 ,2,3,. . . )  , fj = ir/2S , (8.11)

if and only if

r = 0 . (8.12)

The solutions (8.11) also satisfy (8.10) and , with (8.12), are

seen to be independent of the value assigned to V . This leads

to the possibility of the simultaneous appearance of flexural and

barreling modes , a feature which stands in sharp contrast to that

when A > - 1 , where these modes are clearly delineated. The

condition (8.12), which gives rise to this feature , is seen , with

(8.9)1, to yield an expression for A in terms of A that is

identical in form to A in (7.10).

Bearing in mind that A 3 is fixed , we employ (6.2), (6.5),

(6.15) and calculate

drL 1/ dX = _ (W
1+A~W2){3A

2+l+A (A_ 1)2}/(A 3X 3)
½ 

, (8.13)

and note that 
~~~ 

is stationary for any value of A which

satisfies

A = - (3A 2+l) /(A-l) 2 = A(A ) , say . (8.14)

From (6.16), (7.10), (8.14) it easily follows that

A0 < A < A for 0 < A < 1

- 
(8.15)

A < 1 0 < A  for A > l

Plots of A0, A , A in the XA-plane are shown in Fig .2. The

reg ion below the curve 13 represents values of A which violate

(6.16) and , thus, is irrelevant . 
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To proceed with the discussion of (8.10) we again resort to

the somewhat art i f ic ial  si tuation where A is assigned some con-

stant value < - 1 . In doing so , from Fig.2 , we see that the

possible values of A must be restricted to lie in the interval

e I A ~~ . 
E where e and E are the roots of the equation

A = A0(X )  . That is , with (6.16) ,

e = -(l-/ A) 2 / (A+l) , E = - ( l + /A ) 2/ (A+l) . (8.16)

We f i rs t  consider the case where H11 is a thrust (X>l) and then

where it is tensile (X< 1)

8.]. The Case of Thrust

Here , for a specified value of A < -l , we consider values

of A that lie in the interval 1 ~ A I E . Let X denote the

abscissa of the intersection of the horizontal line corresponding

to this value of A with the curve A in Fig.2. Then 1 < A < E

and we note that X and E both increase monotonically with in-

creasing A

The solutions of (8.10) that result by assigning two values

to A are shown schematically in Fig.3 , where values of n are

plotted against cri t ical  values of A . The solid curves pertain

to flexural  b i furcat ion and the broken curve s to barreling .

The numerical values of the relevant parameters X , E and ~
corresponding to three representative values of A are listed in

Table I .  These can be used to gain some idea of the scale

associated with Fig.3. It can be shown that the mini mum value of

ñ is approximate ly  2 r r / 5

--.-.. . -~~~----. --~~~ ~~~~~~~~. “- -
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Table I. Relevant parameters for three values of
A ( th rus t )

-2 . 4 6 2 5  2 .6 4 .5135 1.623 6
-7.0 2.0 2.2153 1.2825

-17.7778 1.6 1.6360 1.3018

The features common to the solutions of (8.10), for any con-

stant A < -l , are summarized as follows . Each flexural curve

emanates from the point A = 1 , n = 0 and increases steadily to

a point A = , r~ = ~j where it intersects a downward sloping

barreling curve . This barreling curve decreases steadily until it

intersects a limiting line A = E at a value of n, r10 , say ,

where ~~ > > 0 . No barreling bifurcation is possible if

~~ . The flexure and barreling curves intersect at the points

Ccf.(8.ll)} A = , r~ = k~j(k=l ,2 ,3,...) , and each curve crosses

the line A = A at these points . If r~ lies in any of the open

intervals (iT,2~i), (3ii ,4iT), (59 ,6i9), etc., the critical values for

barreling are less than A , while those for flexure , to the extent

they exist , are greater than A . Conversely, for values of r~ in

the intervals (O ,~i), (2~T,3~i), (4~ ,5~),etc.,the flexure curve lies

to the left of the line A = A , and the barreling curve to the

right. Both the flexure and barreling curves have the line A = A

as an asymptote as n -
~~ . The barreling and flexure curves may

intersect the line A = E ; the tendency for such intersections to

occur increases as A decreases (algebraically) .

Recal l ing tha t  r~ is given by (.9), it appears that certain

peculiarities arise in connection with the interpretation of the 
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solutions depicted in Fig.3 for values of A “close” to X~ . If

taken at face value , these results for large n can be considered

as conditions for the appearance of surface modes in a thick plate

[10] . However , pending further investigation into the relevance of

the critical conditions for such plates , we here eschew giving any

direct physical interpretation.

On the other hand , for values of A near unity , the flexural

curves in Figs.! and 3 show a strong s imilar i ty.  This region ,

which gives the bifurcation condition for a thin plate , ha s been

studied [5] for the case A > -l , governed by (7 .8 ) . The result

is expressed by the asymptotic series

x = i + a1~
2+ a2~~÷ a3~

6+ a~ri8~ O(~
10) , (8.17)

where the a’s are given by

a1 = 2/3 , a2 = 16/45 , a3 
= 2(A +18/7)/27

(8.18)
a~ = 2(A1+l13/175)/27

with A1 denoting the value of A when A = 1 . From (8.10),

following the expansion procedure used in [5], we again obtain

(8.17), with (8.18). This result shows (i) that the cr i t ical  value

of A for flexure is independent of both the form of the strain-

energy function and the initial extension ratio A 3 up to the

terms of fourth order in Ti and (ii) that this critical value is

extremely insensi t ive to the detailed behavior of the material up

to terms of e ighth order in r~ .

Numerical results for arbitrary variation of A with A

(i.e., for an arbitrary material } could be obtained by plotting

curves as in Fig.3 for a large number of constant values of A
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and then following the procedure described in [4] . Alternatively,

the function A could be employed directly in (8.10).

8.2 The Case of Tensile Load

Here , for a specified value of A < -1 , we consider values

of A that lie in the interval e I A < 1 {cf.(8.16)} , and let

3 ,3 denote the abscissae of the intersections of the horizontal

line corresponding to this value of A with the curves A , A in

Fig.2. Then e < A < A < 1 , and we note that e, A , A all

decrease monotonically as A increases.

In Fig.4 are shown , schematically, the solutions of (8.10)

that result by assigning two values to A . Again , the solid

curves pertain to flexure and the broken curves to barreling .

Wesolowski [14] restricted attention to barreling bifurcations .

To obtain some idea of the scale associated with Fig.4 , the numeri-

cal values of e, X ,X ,ij , corresponding to three representative

values of A are listed in Table II.

The most important feature to note in connection with any

solution of the type shown in Fig.4 is that neither the barreling

nor the Elexural curve has any point lying to the right of the line

A = X . Thu s, there is a range of A , A < A < 1 , for which no

bifurcation can occur .

Table II. Relevant parameters for three values of
A (tensile)

A e A A
-2.05 0.1776 0.2 0.2425 3.8324
- 7 . 0  0 .45 14 0.4641 0 . 5  2 . 3 9 3 3
-15.4 0.5938 0.6 0.6246 2.0697

If we assume for the moment a material does exist for which
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A is constant and which also meets the minimal material  s tabi l i ty

requirement (W1+X ~ W 2) > 0 , then from (6.5), (8.13) and (8.14)

it follows that the tensile force increases from zero to a

max imum as A decreases from unity to , and then decreases as

A continues to decrease. Whence , in concurrence with  Weso lowski

[14] and Hill and Hutchinson [ 9 ] ,  we conclude that if a b i furcat ion

is to occur , it must do so af ter  a load maximum is achieved . How-

ever, this behavior can be used to illustrate that a plate of this

material having a f in i te  aspect rat io 
~~~~~~ 

could behave as a

perpetual motion machine without suffer ing a bifurcat ion .

The extension of this argument to a general material  leads to

the conclusion that , if the relevant var ia t ion of A with A is

p lotted in F ig .2 , the result ing curve must lie above the curve A

for 0 < A < 1 . Thus , in general , no bifurcations of the types

considered can exist under tensile loading conditions.

We remark that the curve A , itself , is independent of the

value of the extension rat io  A 3 . Also , the above conclusion is

based solely on the implications arising from (6.5), (8.13) and the

necessity of the Baker-Ericksen inequalities , and leads to a further

restriction on the form of the strain-energy function beyond that

implied by (4.1)2. This restriction , viz .  A > A , can be cast

in the form

(A~ -A~)
2M3 

+ (A~ +3A~ )K 3 > 0 , (A 1>A 2) (8.19)

upon employing (2.8), (3.15), (6.3), (6.13) and (8.14). In the

event that the passive load applied to the faces = ±

of the plate is also tensile (i.e., if A 3
>A 2), then a similar

_ _ _  -~~~~.. . . -— - ~~~~~~.-. - ~~~~~~~~~~~~~~ 
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line of reasoning , with the roles of A 1 and A 3 interchanged ,

leads to the conclusion that another of the conditions (4.1)2 I
must be replaced by the stronger restriction

(A~ -A~ )
2M 1 

÷ (A~ +3A~)K1 > 0 , (X
3
>X 2) . (8.20)
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