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by
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] ABSTRACT

The theory of small superposed deformations for
isotropic incompressible elastic materials is used (i) to obtain
necessary restrictions on the form of the strain-energy function
by requiring that the speed of propagation be real for waves that
pass through a finitely deformed body of material (i.e., Hadamard
stability criterion), and (ii) to determine critical loading con-

ditions for a thick rectangular plate under which bifurcation

solutions (i.e., adjacent equilibrium positions) can exist. The

\ possibility of bifurcation under tensile loading, when one pair of
faces of a plate are force free, is precluded by further material

stability considerations.
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{ 1, Introduction

f : The main purpose of this paper is to bring together results

obtained during the past few years on two basic problems in finite

elasticity theory. One of these is the question of what restric-
tions must be imposed on a constitutive assumption in order to en-

sure physically realistic behavior of the material which it claims

to describe. The other problem deals with the description of the
conditions under which adjacent equilibrium states can appear as

small perturbations on an equilibrium state of finite deformation !
of a thick plate. Most of the results appear in references [1]-[5].

The setting for both problems is the theory of small deforma-
tions superposed on states of pure homogeneous deformation of bodies
made of an isotropic, incompressible elastic material [6]. The
relevant equations are beiefly derived in §2.

The approach taken for the firs; problem is to investigate the
implications that stem from the Hadamard stability criterion, which
requires that the speed of propagation be real for plane waves that
pass through a deformed body of material. It was shown by Hayes

and Rivlin [7] that this criterion must be imposed in order to en-

sure that the body can actually exist in the finitely deformed state
considered. Accordingly, we adopt the resulting implications as
minimal material stability conditions.

The equations that describe wave propagation are derived in
§3, and further discussed in §4, for a general material. The main
result is that certain inequalities [1] {see eqn.(4.1) below} in-
volving derivatives of the strain-energy function are necessary and
sufficient for the Hadamard criterion to be satisfied for waves

whose directions of propagation lie in a principal plane of strain.




An open question remains as to whether these are also necessary

and sufficient when a completely general propagation direction is
considered. It is seen, however, that the answer to this is affir-
mative when two principal extension ratios are equal, or in §5,
when the constitutive assumption is specialized [3].

The determination of eritical states of finite deformation,
at which non-trivial adjacent equilibrium states first become pos-
sible, has been the subject of numerous investigations over the
past twenty years. A partial list of these is contained in [4].

The geometry considered is a rectangular plate, one pair of
whose faces are force free and whose other two pairs are loaded by
uniformly distributed normal forces when the body is held in its
finitely deformed state. The forces acting on one opposite pair of
faces are regarded as passive, merely holding the length of the
plate fixed in that direction. The forces acting on the other pair
are regarded as being the '"cause'" of the bifurcation, which is
assumed to appear as a small plane static deformation parallel to
the faces bearing the ''passive'" forces.

The equations governing such bifurcations are derived in §6,
and it is found that further discussion of the problem can be con-
veniently carried out if two cases that arise naturally are separa-
ted. This separation is governed by the particular values assumed
by the one relevant material parameter that appears {see (6.153)
and (6.18)}. One case [4] is considered in §7 and the other in §8.

When the causal force is a thrust, a single asymptotic formula
[S] {see (8.17)}, relating the cross-sectional geometry of a plate
to the critical condition for flexural bifurcation, is found to be
valid for all materials. This result, for a '"thin'" cross section,

covers the case of classical Euler-type buckling.
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When the causal force is tensile, it is found that a bifur-

cation can occur only if the load decreases after attaining a maxi-
mum. However, this behavior rules out the possibility that a plate
of material can be held in stable equilibrium in states of pure
homogeneous deformation just prior to that required for the bifur-
cation, and leads to the imposition of further restrictions on the
strain-energy function beyond those discussed in §4.

A major question that remains open for the bifurcation problem
considered here, particularly for '"thick" cross sections, is whether
the body actually goes over into a mode shape that is assumed at
the point where the thrust load reaches a critical value. Some
experimental evidence [8] throws doubt on the matter. Attempts to
answer this analytically by employing energetic considerations have,
so far, been unsuccessful.

Recently [9], [10], the bifurcation problem has been exhaus-
tively studied for a plate of incompressible material by employing
an incrementally-linear, time-independent constitutive relationship.
This theory includes small superposed elastic deformations as a
special case. Accordingly, an alternative description of the res-
ults in §57 and 8 could be gleaned from those in [9] and [10] by

expressing the relevant incremental moduli in terms of the strain-

energy function.




Ak Basic Equations

We let ¢, § and g denote the vector positions, relative
to a fixed rectangular Cartesian frame x, of a typical particle
of the body in an undeformed state, in a finitely deformed state,

and in a state at time t, respectively, and write

1 1

=X +u (2.1)

where u is the displacement associated with an additional small
superposed deformation. We consider states of pure homogeneous
deformation whose principal directions are parallel to the coordi-
nate axes of x and which are completely characterized by the
(positive, constant) extension ratios xl,x2,x3 . Then

§ = fg, F = diag(kl,ka,xs) . (2.2)

-~

The components of g, 3, g and u, referred to x, are denoted
by £y xi’ii and u;, respectively. In the sequel, all ex-
pressions involving u (and its derivatives) shall be systemati-
cally linearized in u

The Finger strain matrix B 1is given by

== 2

B=FE' = P+ fFEE (2.3)
where, with (2.1) and (2.2),
Fafet, £ollu,l 2.4)

(We employ the notation vy tO denote a/aga , as well as the

usual summation convention for repeated lower-case subscripts.)

The invariants Il and i2

of B are given by

i




I, = tr § = Jod& i =

1 1 i
(2.5)
I, = %{(tr B)2 - tr B%} = I+ i
2 ~ =~ 2 2012
where
: -t 3 . 2.2 2.2
: I, = A5 +A3 ok x2x3 F g F R (2.6)
r ; 2 2 A 2 % ( 2y (2.7)
1 i, = TS T Ay (I,-A5)u 5 .
N L B

The incompressibility condition, det E = 1, together with (2.2)
and (2.4), yields
A1A2A3 =1 {2.8)
and
] -1
Z Ayu 5 A5 (2.9)
Ka3 A& T
The strain-energy density, W, depends on B through il

and iz . Letting ﬁai denote the components of the Piola-

Kirchhoff stress and P a hydrostatic pressure, we have

il %PeijkeaBYFjBFkY = BW/aFia
i = 2{(W +I )F WQFiBFjBFja} ’ (2.10)
E
|
{ where €. is the alternating symbol and
f
W, = OW/3@, , A=1,2 ., (2.11)

Following the previous notational conventional, we write




D ® Bepg*# ., s RaBa gy, (2.12)

where m . and p

ai are the stress and hysrostatic pressure, res-

pectively, associated with a superposed deformation. Also, we ex-

pand WA in a series about Il and I2 sy thus,

Mo =W, e Wl + W, 0, , 41,2 (2.13)

where WA and WAB denote the first and second derivatives of

W with respect to IA , evaluated at iA = IA . The substitution

from (2.12) and (2.13) into (2.10), with (2.2), (2.4), (2.6) and
(2.8), yields

= 2
HAA = ZKAle+(Il-AA)W2} = P/AA s

(2.14)
Bup =0 5 K4 B, &8 =1,2,3
and
3
A L Canlap *(6ap-1IDsg* Egplug p- P/Ay
2.15)
™B = CaYB,A * Dag¥a,g » A# B,
where Gij is the Kronecker delta and
S @ .8
CAB Z{Wl+(I1 AA AB)WQ} 5
= Bl
Dyg * (P-2XEASW) /A 05 (2.16)

m
[}

2 s2
AB ZAAAB{W2+Z[Wll+(ZIl-XA-XB)Wl2

(1R (T )W, 1)

(No summation is implied for repeated upper-case subscripts.)




We neglect all body forces. Then, bearing in mind that the
A's are constants, from (2.1}, (2.2), (2.12) and (2.14), the

equations of motion are

T = pu,

al,q T (2.17)

together with the requirement that P be constant, where p is
the mass density and a superposed dot denotes differentiation with

respect to t The substitution from (2.15) into (2.17) yields

+ E gyl =, . A= 1,2,5 . (2.18)

I (Cap¥a s * EapYs,pa)

B=1

Let v denote the (outward drawn) unit vector normal to a

~

surface of the body in t’ -formed state. Then the traction

T acting on this surf cime t , and measured per unit

undeformed area, has components given by

Ty« Bogv, =Ty +24 , (2.19)

where

Te & JF 9 5 & = W 0. (2.20)
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3. The Propagation of Plane Waves : The Secular Equation

In this section we derive the secular equation that governs
the propagation of small amplitude sinusoidal plane waves through
a block of material that is otherwise held in equilibrium in the

finitely deformed state characterized by ApsA Letting w

2’)‘3
denote the angular frequency, «k the wave number and n the (real)
unit vector in the direction of propagation of such a wave, we

employ the usual complex notation and write

u=1U exp{l(Kg-g-wt)} 5 (3.1)

where U 1is a constant vector and 12 = -1

The substitution from (3.1) into (2.9), with (2.2), yields

g-g = niUi S (3.2)

where we disregard the trivial case « 0

We express the hydrostatic pressure p associated with the
superposed deformation in a form that is consistent with (3.1);

thus,

P = 1Kq exp{1(mg-§-wt)} 3 (3.3)
where q 1is a constant. With the notation
o = k2/(pw?) , (3.4)
the substitution from (3.1) and (3.3) into (2.18) yields
c(Qijnj - qni) = Ui 5 [(Sies)

where

Qj = Ujik >




P

with
i 2
QUpc = Cas*a"BSac * *a*cPcEaclas (37)
To eliminate q from (3.5) we multiply each term of the
equation by €sprilly and obtain, with (3.6),

Qstut =0, (3.8)

where
Qe = esrinr(oQijtnj'Git) E (3.9)

Now since nsést vanishes identically, we note that the three
equations in (3.9) are not linearly independent. Taking s =1

and 2, for example, we obtain

Qe = 6 4 Bl =0, (3.10)

which, with (3.2), constitutes a set of three homogeneous equa-

tions for U . A non-trivial solution for U can exist only if

-~ ~

eiijlinjnk =0 (3.11)

The substitution from (3.9) into (3.11), together with some
algebraic manipulation, yields the desired secular equation in

the form [3]

a2 - Bo + 1 =20, (3.12)

where

e T eijknknsnt(leZSiQ3tj+n2Q3$intj+n3leiQ2tj) ’

g = nS(Qij 'njnijsk) ’




and where we have used the fact that ne.n = 1 . According to

~ o~

(3.4), the quantity po 1is the square of the slowness associated
with a wave described by (3.1). We see that (3.12) yields two

positive roots for ¢ if and only if

@ >0, B0, and 8°-4a 3> 0. (3.14)

Before turning to a discussion of the implications of (3.14),
we must obtain explicit expressions for o and B8 in terms of W.

To this end we introduce the notation

I

= 2 = 2 =
KA = Wl+ Asz 3 MA 2(W11+2AAW12+ wazz) , A=1,2,3 (3.15)
and also
2.2 .2 2.2
JA = MAanC(AB-AC) , A#B#C4#A. (3.16)

Then employing (2.16) and (3.7) in (3.13), with (2.8), we obtain [3]

a = 4(xfnd ##){(A§n§K2K3+ FH) + W (T + #4))
. 4w2(x§x§Jl+ #4)
+ 1602020202222 20320202 2y W Wey) , (5u17)
B = 2{K (A5n3 + a5nd) + 3, + 44},

where the symbol ## denotes two additional terms which are
obtained from the ones shown by a cyclic permutation of the sub-
scripts 1,2,5 on the A's, n's, K's, M's and JVs. From (S l7);

with (2.8), (3.15) and (3.16), we calculate B°-4q :




.

Coael b B 2 2.0
= aWS{[A[n) (A5-23) "+ ##]

2,7,2_32y /4,2
+ 2[A2 3 2n3(\ A2) (A2-2 ) v ##])

2.3 .5 -
+ 8w2{J1[x2(Al-x3)(nl+n2)

222 2,.2
+ A3(x1-13)(nl+n3)] + ##}
+ 4{[Jl+ ##]2

5 16nl eng(xe-xz)e(xe A2)2(A2 Az)a(w wia)} . (3.13)

11 22

" interest to note, in general, that the quantity 82-4a

etely independent of the value assumed by Wl
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4. Stability Restrictions for a General Material

The set of inequalities (3.14), which must hold for all n,
is the Hadamard stability criterion. In turn, with (3.17) and
(3.18), these inequalities lead to restrictions on the functional
form of W , which we shall adopt as minimal material stability
conditions.

It has been shown [1j, [3] that, when the propagation direc-
tion n lies in a principal plane of 'the underlying pure homogene-

ous deformation, the necessary and sufficient conditicns for (3.14)

to be satisfied are

K, >0 and (Il-Az-ZARl)MA R, el A= §,2.8 (4.1)

A A A

where the K's and M's are defined by (3.15). A sketch of the
proof of this will be given below.

The first set of conditions (4.1) is known as the Baker-
Ericksen inequalities [11]. The second set was apparently first
given in [1]. It was shown in [2] that (4.1) can also be derived
by considering small static superposed shearing deformations in
principal planes and requiring the corresponding incremental shear
moduli be positive.

It is not known whether any further restrictions on W ,
beyond those expressed by (4.1), stem from (3.14) for an arbitrary
direction n . However, it is relatively easy to show that (4.1)

~

is sufficient to ensure B > 0 for arbitrary n . We employ

-~

(2.6)1, (2.8) and (3.16) in (3.17), and write




S g .

< g g goa aa
B = ZKl{(AZn2 k3n3) + nl(A2n2+k3n3)} + #4 + 2b ,

(4.2)

o
[

2 2 2 2 ot
(Ap*As) n2n3{(Il-Al ZATTIM ¢+ K ) o+ A

From (4.1) we see that b > 0 and, whence, B8 > 0
In the general case when all three A's are distinct, we note

that, at most, only two of the three Baker-Ericksen inequalities

are independent. For, with the ordering Al> Ay > A3 , say, from
(3.15)1 we have that Kl > 0 and K3 > 0 implies K2 >0 .. If
two of the A's are equal, say Al = Az # AB , then, again, at

most two of the Baker-Ericksen inequalities are independent while
the second set in (4.1) reduces to K3 > 0 and just one other in-
equality. Thus, for these special types of deformations, (4.1)
yields, at most, three independent restrictions on the form of W
Some additional comments pertaining to this case are made at the
conclusion of this section.

For propagation in a principal direction, say n = (1,0,0) ,

-~

(3.17) yields

o = KK, B o= 233Kk, (4.3)
and it is clear that g2-4q > 0 ., From expressions for o« and 8
analogous to these for propagation along the other two principal
directions, we can conclude that a > 0 and B8 > 0 if and only
& 4 KA > 0 . Essentially the same results can be read off directly
from results obtained much earlier by Ericksen [12].

We turn now to the case of propagation in an arbitrary direc-
tion in a principal plane. For definiteness, suppose that

n= (n,,n,,0) . Then from (3.17) we obtain

~

2’

o= dy,v, , B o= 2(YytY,) (+.4)




- 1§ <

where
a2 D s o
Yy = A Ky + Aok,

2 252
= K3(Aln -A2n2) (4.5)

<
n
]

2.2 2 2
+ nlna(xl+A2) {K3+(A1-A2) M3}

It is clear from (4.4) that 82 - 40 > 0 . With the validity of
(4.1)1 already established, it easily follows [1], [2] from (4.4)
and (4.5) that o > 0 if and only if

L
(A-2)%M, + kK, > 0, (4.6)

which, then, is also sufficient for 8 > 0 , as noted previously.
The form of the conditions (4.1)2 follows from (4.6), with (2.6)1,
by considering analogous results for propagation in the other two
principal planes.

If the underlying deformation is a uniform two-dimensional
extension or compression, we have a situation where two of the
A's are equal. For example, say

kg Ap ek, k= S2aE (4.7)

Then, with (3.15), the inequalities (4.1) become

K>0, kK;>0, 3-D2M+r'kso0, (4.8)
where
K=K =K, =W+ AW, K, =W + 2w
Wb 2 & 257 w3 1 2 7
2 X A
M=M= My = 2(H L+ 2ABH e AMH,)




The derivatives of W that appear in (4.9) are evaluated for

I, = 2324+ 1A% I, = Ve 22 (4.10)

which is a point on the curve bounding the domain in the IlIZ-plane
where W 1is defined. (See [13], for example).

Now, when two principal extension ratios are equal, we note
that any direction n is parallel to a principal plane, and it

follows that the satisfaction of (4.8) is necessary and sufficient

that (3.14) be satisfied for aqrbitrary directions of propagation

t3] .
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5. Results for Some Special Materials

A stumbling block in the way of obtaining the full implica-
tions of (3.14) for arbitrary n 1is the presence of the term
2 - . :
11w22 w12) in the expression for o . Three special cases where
this term is absent have been studied [3]. These are the Mooney-

W

Rivlin material (see, also, [12]) and materials which depend either

on Il or on I2 . For these it is found that the basic restric-

tions implied by (4.1) are necessary and sufficient for (3.14) to

be met for arbitrary n . Only the case where W depends on I1

shall be discussed here.
We write W = f(il) so that, from (3.15) ,

K, = £' , M, = 2£" , A=1,2,3 (5.1)

and, with (2.6)1, the conditions (4.1) become

£ 20 ) RN W e 1E,25,51 (5.2)
The derivatives of f are evaluated at il = Il From (3.17),
(3.18), with (5.1), we obtain
5 2 2 ' 2.2 '
a 4(llnl+ ##)£f {(Alnl+ ##) £
" 2 w22 D2
+ 2f [(12-A3) n ng+ 411} ,
= 2 2 ' WroeB (8.8 2 2
B = 4{(Alnl+ ##)f + f [()\2 A3) nyns+ ##1}) , (5.3)
2 ” 2 2.2 2.2 2 oty 2
B -4a = 16{(A2 X3) nyng+ ¥4I (f)

It is clear that 62-4a >0, for arbitrary n , regardless of

the form of f . Recalling that K, > 0 is necessary and sufficient

d
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that the speed of waves propagating in a principle direction be
real {cf.(4.3)} , it follows from (5.1)1 that (5.2)l must be satis-
fied.

Now if f" > 0 , we see that (5.2), is satisfied and also
@ > 0 . Therefore, we need consider only such f where f' < 0
Recalling the result cited at the conclusion of §4, we may here
assume that all the A's are distinct, and, without loss of gener-
ality, take A, > A_ > A_, . Then (5.2)2 yields just one indepen-

1 2 3
dent condition which can be expressed in the form

£ = -s(f'-e)/(xl-x3)2 , with € >0 . (5.4)

The substitution from (5.4) into (5.3), yields

3 2_2 tepe! 2 .8.02.0.2 N g
a 4(xlnl+ #t)f {Ff + e[(A2 A3) nong+ ##]}/(A1 AB) o ES S5
where
A iy BB B g 8.8 5.5
F = (kl x3) (Alnl+ #4) {(Ae A3) n2n3+ #tr . ((5:..6))

According to (5.5) and (5.6) we have a > 0 if and only if

€ >0 provided F >0 for all n and F =0 for some n . That

~ -~

these latter conditions are indeed met can be seen by expressing F

as a function of ni and n§ (recall n§= 1-n§-n§) and then
looking for a minumum of F over the interior of the triangular

2
il

2
+n§=1. The relevant conditions are aF/ani = 0 and aF/3n3 =0,

domain in the n ng-plane bounded by the lines n§=0, n§=0,

2
i

which lead to the equations [3]

n

et s+




e i g

S 1

2 ..o a R B B oD
(Al-kz)nl + (A3 A2)n3 {Al A5 (Al A3) Mz,
(5.7)
g .9 0 28y 8 . @ 8 L a8
(Al Aa)nl + (A3 Az)n3 {Aa x3 (A, 13) T/2

Since Al > )X, , these are found to be inconsistent, and, hence,

3
no minimum of F exists. It is also found that F > 0 for
ni = 0 and ng =0, but, for ni+n§=1 , Wwe have
F= (L -k,)0n -~ %yn.)3 (5.8)
5 L <Ry ’ :
which vanishes when
n2 = A_/ (A, +A.) n2 = A_/ (A, +1.) (5.9)
2l 3 3% 2 3 L 1"=3= = :

We conclude that F > 0 for all n except for the four values

arising from (5.9), for which F =0
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6. Bifurcation of a Thick Plate

We consider a rectangular plate having sides of length

22 22 22 and which occupies the region

1’ 2? 3

A=1,2,3 (6.1)

in its undeformed state. The plate is held in equilibrium in a
state characterized by (2.2) by means of normal forces uniformly
distributed over the faces perpendicular to the X, and X
directions. No forces are applied to the faces initially normal
to the x2-direction. Here we investigate the possibility that a
neighboring equilibrium state can exist in the form of a small

superposed displacement in the XX -plane under the conditions that

2
no further deformation occurs in the x3-direction, that no tangen-
tial tractions are applied to the load-carrying faces, and that

these faces remain parallel to their original directions. If such
bifurcation is possible, we say that the underlying pure homogene-

ous deformation 1is a eritical state.

With A fixed, we note from (2.6) and (2.8) that

<,
L LD ol & =1 -2
I, = A5 + (ATHA35, I, = A, (a+277) + 25 (6.2)
where
A= ,\2/Al - (6.3)
Also, from (2.14), (2.20) and the fact that the faces 52 = % 12
are force free, we obtain
Y : - - S
P = 2h (W, « (AT+AJIW,} , (6.4)

and




e

i 22 2 %
I, 2(1-2 )(Wl + A3W2)/(AA3) . (6.5)

From (4.1)1, with A = 3, we see that the force applied to the
face El = zl is a thrust or tension accordingly as X > 1 or
A <1, respectively.

To describe neighboring equilibrium states we take u and p

~

in the form
up = uy(8,8,), up = Up(E1E), Uy = 0, p = P(ELE) o (6.6)

Then from (2.18) and (2.9) we obtain

(Cyp * Egpduy 19+Cypu) op* EjpUpy 57 7P 1/A = 0,
Corp 11* (Cop* Eppduy op* Enpyuy 457 5/A, = 0, (6.7)
Aul’1+ u2’2 =0 .

The condition that the faces 52 = £ & remain force free

2
is, from (2.20)2 » Moy = 0 . Then with (6.6) and (2.15) we obtain
Tp1® CpyUy o * Dpg¥p g = 0
£2=t22 : (6.8)
T + E =0

22= (Cop* Expluy 5 21Y1,1 “P/A;

The faces £, = %2, remain parallel to the x2x3-p1ane and are

free of tangential tractions if I =0 and 7w, ,,= m, .,=0.
’

b 35 12" "13
With (6.6) and (2.15), these conditions are seen to be satisfied
if

W o @y %0, § Y2y (6.9)
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We employ (2.16), (6.3), (6.4) and find that solutions of
(6.7), (6.8), (6.9) can be obtained in the separable form (4],

-siné&l cos@&l cos¢gl
u, = U (5,) U, = U(E, )y P = QES) 5
1 cosWEl 1te? @ sin‘l’&;l . sinwgl e
(6.10)
where
o= nufh;, Fm ()i, Box 1,23, (6.11) j
and
U sl @5 p {c, .0"-a%c. .+ B..-xE )U;} 6.12
1 A0 s Ape |12 %l & il i to-niy
provided that U satisfies the differential equation
V) 2hea(r-1)2 3020 + A%0% = 0 (6.13)
and the boundary conditions
u" + 2%% = 0
52 = + 22 (6.14)

U'' + 02222+ 1+A(2-1)%0" = 0

The upper set of expressions in (6.10) represents a symmetric mode
of deformation with respect to the x2x3-p1ane and the lower set

an anti-symmetric mode with respect to this plane. Also, the quan-
tity Q denotes either ¢ or VY , depending on which set is

considered, and A 1is defined by

L 2 2 L
A s (A+1) (wll+2k W, . +A

2
§ L 3W22)/(WI+X3W2) : (6.15)

It appears that Wesolowski [14] was the first to exploit the

i
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fact that the governing differential equation and boundary con-
ditions for a bifurcation problem of this type depend on the strain-
energy function only through a single material parameter, such as

A . We remark here that, for any specified value of A3 », A 1is a
function of A only {cf.(6.2)}

With (3.15) we see that A can be expressed as

A= (A+1)2M3/(xx3K3) and, from (4.1) (with the subscript A=3) ,
together with (2.6), (2.8) and (6.3), that the Hadamard criterion
can be satisfied only if (k-1)2M3/(AA3K3) > -1 . Whence, A must
satisfy (A-1)2A > -(A+1)2 , or simply

A 5 =[3+13%00-13% = A ), say , (6.16)

in order that the underlying deformation meet the minimal stability
requirement. Of course, no restriction arises from (6.16) if A=1

Upon assuming a solution of (6.13) of the form U = exp(Qrge) 5
we obtain a biquadratic equation for T which has four roots

of the form + (R+T) where

R = %{(3x+1)2 + A(A-1)2F% , T = {(A+1)(r-1)2)% . (6.17)

According to (6.16), R 1is real for all possible values of A and

T istreal 3£ Az - 1 ,
(6.18)

T is imaginary if -1 > A > -(A+1)2/(r-1)2

It is convenient to treat these two cases separately. The first

is discussed in §7 and the other in §8.

IR e ————r T O
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Bifurcation When A > -1

When (6.18), applies, we let
il

Pl = R +T , F2 =R -T (7.1)
and write the general solution of (6.13) in the form [4]
U = Llcoshm’lg2 + Lesinhm’lg2
+ NlcoshQF2€2 + Naslnhnrzge , 7.2)
where Ll,Le,Nl,N2 are constants. The substitution into (6.14)

yields four equations for the determination of these constants,

which, with the notation

n = 912 y 7 .3)
can be written as
D2 2% -
(F1+A )Llcoshfln + (P2+A )Nlcoshrzn 1
22 s 2. 02 s "
Pl(F2+x )L151nhrln + P2(F1+A )le1nhF2n S
(7.4)
2.432 s 2.42 . 3
(F1+A )L251nhrln + (P2+A )N251nhF2n 0l
2.2 Wl . B 3
rl(r2+x )Lecoshrln + L2(Pl+k )N2coshF2n 0

In order that non-trivial

have either

rl
tanh.gn

tanhl ln

0 and

or
tanhFln
tanﬁfan

0 and

solutions of (7.4) exist, we must

P, o 2
e e (7.5)
e 1B
-
a3 2\ 2
5 (e s
T 2 2 /.)
2 | Py
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If (7.5) holds, we can obtain nou-trivial values of Ll and N1
from (7.4) and, accordingly, from (6.10), (6.12) and (7.2) we see
that the variation of u, is odd and u, is even with respect to
&2 . This gives rise to an anti-symmetric shape with respect to
the xlx3-p1ane, which we call a flexural mode. Conversely, the
shape associated with the satisfaction of (7.6) is symmetric with

respect to the xlx3-plane and we call that a barreling mode.

With the convention that

+ 1 for a flexural mode

v = (7.7}
- 1 for a barreling mode ,

and with (7.1), it is possible to write both bifurcation conditions

(7.5)2 and (7.6)2 in the form [4]

sinh(2Rn) _ . R {4T?+2(A+1)?}
_h‘r‘%'sin 2ty VT AR A(A-1)2) il

From (6.17), and bearing in mind that A 1is a function of A , we

see that R and T are functions of A . Then (7.8) can be re-
garded as an equation for the determination of n as a function of

A . From (6.11) and (7.3),
n = mr2.2/22,l ¢ Bw 3,280 (7.9)

where n denotes the number of half-wavelengths parallel to the
xl-direction in a neighboring mode. Thus, we may also regard (7.8)
as an equation for the determination of critical values of A
corresponding to a particular aspect ratio (la/zl) and a given

mode shape.




o

ain results based on (7.8) have been proven analytically

the assumption that A is constant. These are summar- 3

ollows, where 8 = 4RZ-A(A-1)2

If A >1 (tensile case) (7.8) admits no real
solutions and, hence, no bifurcation is possible.

For any A > 1 , one and only one positive value of
n exists for flexure if 6 > 0 and none exists if
8 £ 0

L bl et s oL S s i

For any A > 1 , one and only one positive value of ;
n exists for barreling if 6 < 0 and none exists if :
8 20

the vanishing of {4R2-A(A-1)2} is the condition which
the ranges of critical values of A for which flexural

ling bifurcations can occur. From (6.17)1, this separa-

ition is defined by
& = X=(A*1)%F00-132 = A(R), say . (7.10)

be said about this in the next section. The function A
plotted in the XA-plane in Fig.3 of [4] for A > -1

3)

rical results from (7.8) can be obtained [4] by assigning
ongtant values to A and then solving numerically for n
tion of X . This procedure yields curves of the form
ematically in Fig.l. Here we have taken three constant
,b,c for A with the assumed ordering -1 < a < b < c

curves represent solutions of (7.8) for flexure and the

rves the solutions for barreling.

ough the condition A = constant is somewhat artificial

of course, for the Mooney-Rivlin material for which A = 0),




. R

from curves such as those in Fig.l it is possible to determine
critical values of A , for any specified value of n , for
arbitrary variation of A with XA . The procedure is to read

off pairs of values of critical A and corresponding A for the
value of n specified and then plot these points in the AA-plane.
This yields two distinct curves, one for flexure and one for bar-
reling. On this same graph we plot the actual variation of A
with X from (6.15) {recall (6.1) and the fact that A3 is fixed}.
The intersections of this latter curve with the former give the
critical values of A for flexure and barreling corresponding to
the value of n for which the original curves were derived. This
procedure is illustrated in Fig.4 of [4].

We take this opportunity to correct equation (7.4) of [4]

which, for the example chosen, should read
1 2 2
A= 2(A+1)°/(A°+6A+1) . @7 11}

This correction alters slightly the numerical values stated in the
final sentence of [4], but does not change in any way the qualita-
tive aspects of the discussion there. Of course, if the actual
variation of A with X 1is known, as for example in (7.11), it
could be employed in (7.8) and a numerical solution effected

directly.
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8. Bifurcation when A < -1

When (6.18)2 applies, we write
T = 15 , 5 = wl-(As1)(a~1)217 (8.1)
and express the general solution of (6.13) in the form

U = (Llcosnsg2 + L251nQS£2)coshQR£2

(8.2)
+ (N151nQS§2 + N2cosQS£2)51nh§2R£2 5
where Ll,Lz,Nl,N2 are constants and R is given by (6.17)1.
We introduce the notation
2 2 2. = ; £ : = s
q, = R"- 8% + A% q, = ZRS; q5 = (1-A)R; q) = (1-A)S ;
Y = coshRn cosSn ; Z = sinhRn sinSn ; {8.3)
y = c2shRn sinSn ; 2z = sinhRn cosSn ;

where n 1is given by (7.3), and then substitute from (8.3) into

(6.14). This yields {cf.(7.4)}

L,(q;Y-q,2) + N,(q,Z+q,Y) =0
y (8.4)

L, (ajz+quy) + Ny(q3y-q,z) = 0

L,(q,y*q,2z) + Ny(q;2z-q,y) =0
(8.5)

L2(q32'th) * N2(q3Y+th) & 0

Now (8.4) and (8.5) admit non-trivial solutions for the L's

and N's only if either

L, =N, =0 and (q,Y-q,2)(q5y-q,2) = (Q;2+q,Y) (qQ32+q,y) (8.6)

or
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L, =N, =0 and (q,y*q,2)(a5Y*q,Z2) = (q,2-9,y) (q52-q,Y) , (8.7)

unless it should happen that the determinants associated with

(8.4) and (8.5) both vanish simultaneously; that is, unless

(Yz+Zy) (q,q,*a5a5) = 0 . (8.8)

The significance of this exceptional case shall become apparent
below.

If (8.6) applies then non-trivial values of Ll and Nl can
be (found from (8.4), which, with (6.10), (6.12)1 and (8.2), gives
values for u; and u, whose variations with 52 are, respec-
tively, odd and even. As before, this situation describes flexural
modes. The converse behavior is noted when (8.7) applies which,

therefore, governs barreling modes.

We 1let

AEE-AFLHeR) ¥ (AelyEr-132

e ]
n

(8.9)
A(A+1l) + (A+1)(r-1)°

wn
n

and substitute from (6.17), (8.1) and (8.3) into (8.6) and (8.7)

and cast both bifurcation conditions in the form

VRs sin 2Sn = Sr sinh 2Rn , (8.10)

where v is given by (7.7). Bearing in mind that R,S,r,s are
functions of X , we have, as with (7.8), that (8.10) serves to
define a relationship between n and critical values of A

It can readily be shown that (8.8) is satisfied trivially if

A=1 or if n=0; but, for X # 1 , there are non-trivial

solutions for n of the form
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n= kit (k=1,2,3,...) y i = u/28 , (8.11)
:
' if and only if
re- 0. (8.12)

The solutions (8.11) also satisfy (8.10) and, with (8.12), are
seen to be independent of the value assigned to v . This leads
to the possibility of the simultaneous appearance of flexural and
barreling modes, a feature which stands in sharp contrast to that
when A > - 1 , where these modes are clearly delineated. The
condition (8.12), which gives rise to this feature, is seen, with
(8.9)1, to yield an expression for A in terms of X that is
identical in form to A in (7.10).

Bearing in mind that A is fixed, we employ (6.2), (6.5),

3
(6.15) and calculate

. 2 2 Ll 3, 1%
dnll/dx = (wl+x3w2){3x +1+A(X-1)°}/ (A A3) o (8.13)

and note that T,;, is stationary for any value of A which

satisfies
A= - (37\%+1)/(x-1)% = A(A) , say . (8.14)

From (6.16), (7.10), (8.14) it easily follows that

>
A
b=
A
Pl

for 0 < A < 1

~ (8.15)
A <A, <A for g |

Plots of A, A, A in the AA-plane are shown in Fig.2. The

region below the curve AO represents values of A which violate

(6.16) and, thus, is irrelevant.
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To proceed with the discussion of (8.10) we again resort to
the somewhat artificial situation where A is assigned some con-
stant value < -1 ., In doing so, from Fig.2, we see that the

possible values of A must be restricted to lie in the interval

€ <A< E where e and E are the roots of the equation
A = Ao(k) . That is, with (6.16),

e = ~(1-¥=0)2%/(a%1) , E = ~[I+/A)S/(A51) . (8.16)
We first consider the case where Hll is a thrust (A>1) and then

where it is tensile (A<1)

8.1 The Case of Thrust

Here, for a specified value of A < -1 , we consider values
of A that lie in the interval 1 < A < E . Let A denote the
abscissa of the intersection of the horizontal line corresponding
to this value of A with the curve A in Fig.2. Them 1 < A <E 4
and we note that A and E both increase monotonically with in-
creasing A .

The solutions of (8.10) that result by assigning two values
to A are shown schematically in Fig.3, where values of n are
plotted against critical values of X . The solid curves pertain
to flexural bifurcation and the broken curves to barreling.

The numerical values of the relevant parameters i, E and n
corresponding to three representative values of A are listed in
Table I. These can be used to gain some idea of the scale

associated with Fig.3. It can be shown that the minimum value of

i is approximately 2m/S




Table I. Relevant parameters for three values of

A (thrust)

A A E n
-2.4625 2.6 4.5135 1.6236
-7.0 2.0 2.2153 1.2825

-17.7778 1.6 1.6360 1.3018

The features common to the solutions of (8.10), for any con-
stant A < -1 , are summarized as follows. Each flexural curve
emanates from the point A =1, n =0 and increases steadily to
a point A =X, n =7 where it intersects a downward sloping
Bhrreling curve. This barreling curve decreases steadily until it
intersects a limiting line A = E at a value of n, Ny » say,
where 7 > ng > 0 . No barreling bifurcation is possible if
n<ng . The flexure and barreling curves intersect at the points
{c£.(8.11)} A =X, n = kn(k=1,2,3,...) , and each curve crosses
the line A = A at these points. If n 1lies in any of the open
intervals (7W,27n), (37n,4n), (51,6n), etc., the critical values for
barreling are less than Y , Wwhile those for flexure, to the extent
they exist, are greater than X Conversely, for values of n in
the intervals (0,n), (217,3n), (47M,57N), etc.,the flexure curve lies
to the left of the line A = A , and the barreling curve to the
right. Both the flexure and barreling curves have the line A = X
as an asymptote as n + « ., The barreling and flexure curves may
intersect the line X = E ; the tendency for such intersections to
occur increases as A decreases (algebraically).

Recalling that =n 1is given by (7.9), it appears that certain

peculiarities arise in connection with the interpretation of the
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3 solutions depicted in Fig.3 for values of A 'close" to X . If
taken at face value, these results for large n can be considered
as conditions for the appearance of surface modes in a thick plate
[10]. However, pending further investigation into the relevance of
the critical conditions for such plates, we here eschew giving any
direct physical interpretation.

F On the other hand, for values of A near unity, the flexural
curves in Figs.l and 3 show a strong similarity. This region,
which gives the bifurcation condition for a thin plate, has been

: studied [5] for the case A > -1 , governed by (7.8). The result i

is expressed by the asymptotic series

A =1+ anPs aynts a3n6+ a,n%+ 0(n'% , (8.17)

where the a's are given by

[
i
N
P
(9}
w
n

16/45 , a. = 2(A +18/7)/27 ,

3
(8.18)

2(Al+113/175)/27 -

with Al denoting the value of A when A =1 . From (8.10),
following the expansion procedure used in [5], we again obtain
(8.17), with (8.18). This result shows (i) that the critical value

of A for flexure is independent of both the form of the strain- s

energy function and the initial extension ratio A3 up to the

terms of fourth order in n and (ii) that this critical value is

extremely insensitive to the detailed behavior of the material up
to terms of eighth order in n

Numerical results for arbitrary variation of A with A
{i.e., for an arbitrary material} could be obtained by plotting

curves as in Fig.3 for a large number of constant values of A
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and then following the procedure described in [4]. Alternatively,

the function A <could be employed directly in (8.10).

8.2 The Case of Tensile Load

Here, for a specified value of A < -1 , we consider values
of A that lie in the interval e < A < 1 {cf.(8.16)} , and let
2,2 denote the abscissae of the intersections of the horizontal

- -~

line corresponding to this value of A with the curves A, A in
Fig.2. Then e < el =i , and we note that e, A, A all
decrease monotonically as A increases.

In Fig.4 are shown, schematically, the solutions of (8.10)
that result by assigning two values to A . Again, the solid
curves pertain to flexure and the broken curves to barreling.
Wesolowski [14] restricted attention to barreling bifurcations.

To obtain some idea of the scale associated with Fig.4, the numeri-
cal values of e, X,i,ﬁ , corresponding to three representative
values of A are listed in Table II.

The most important feature to note in connection with any
solution of the type shown in Fig.4 is that neither the barreling
nor the flexural curve has any point lying to the right of the line
A s X, Thus, there is a range of A , A <Ac<1, for which no
bifurcation can occur.

Table II. Relevant parameters for three values of
A (tensile)

A : e & I
-2.05 0.1776 0.4a 0.2425 3.8324
-7.0 0.4514 0.4641 0.5 2.3933
-15.4 0.5938 0.6 0.6246 2.0697

If we assume for the moment a material does exist for which
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A is constant and which also meets the minimal material stability
requirement (W1+A§W2) >0, then from (6.5), (8.13) and (8.14)

it follows that the tensile force Hll increases from zero to a
maximum as A decreases from unity to A , and then decreases as
A continues to decrease. Whence, in concurrence with Wesolowski
[14] and Hill and Hutchinson [9], we conclude that if a bifurcation
is to occur, it must do so after a load maximum is achieved. How-
ever, this behavior can be used to illustrate that a plate of this
material having a finite aspect ratio (22/21) could behave as a
perpetual motion machine without suffering a bifurcation.

The extension of this argument to a general material leads to
the conclusion that, if the relevant variation of A with X is
plotted in Fig.2, the resulting curve must lie above the curve A
for 0 <A <1 . Thus, in general, no bifurcations of the types
considered can exist under tensile loading conditions.

We remark that the curve A , itself, is independent of the |
value of the extension ratio A3 . Also, the above conclusion is
based solely on the implications arising from (6.5), (8.13) and the
necessity of the Baker-Ericksen inequalities, and leads to a further
restriction on the form of the strain-energy function beyond that 7

implied by (4.1),. This restriction, viz. A > A , can be cast

in the form

2
(A2-13) My o+ (x§+3x§)x3 0y (g »hgd (8.19)

upon employing (2.8), (3.15), (6.3), (6.13) and (8.14). In the

event that the passive load applied to the faces Ey = ¢ 23

of the plate is also tensile (i.e., if A3>k2), then a similar




.

line of reasoning, with the roles of Ay and A3 interchanged,
leads to the conclusion that another of the conditions (4.1)2

must be replaced by the stronger restriction

2_ 5,242 2,7,2
(As-ke) Ml + (A3+3A2)Kl - B (A3>A2) . (8.20)
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