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SOLAR ATMOSPHERIC DYNAMICS

I. Introduction

The goal of this research is to study the driving of the solar atmospheric
oscillations and their role in heating the chromosphere and corona. During
the first year of this contract the wave vector surfaces of Magneto-Acoustic-~
Gravity (M.A.G.) waves were studied and we derived modal equations for compress-
ible three-dimensional fluid flow that will enable the propagation and dissi-
pation of M.A.G. waves to be studied. During the second year a computer code
to solve these modal equations was written and testing on it begun. In addi-
tion, data from Skylab was analyzed for acoustic pulses in the transition
region and the steady flow of a solar wind through a magnetic flux tube diverg-
ing more rapidly than radially was calculated. The contract supported Dr.
S.H. Hsieh as a research fellow and Mr. Robert Wolff as a graduate student
working on the solution of the modal equations. So far under this contract
one paper has been published on Magneto-Gravity Waves (Schwartz and Stein,
1975), and two others are now being prepared. One on "Magneto-Acoustic-Gravity

Waves" and the other on "Flow Through a Diverging Magnetic Flux Tube".

IT. Wave Vector Surfaces of Magneto-Acoustic-Gravity Waves

I have studied the wave vector surfaces of Magneto-Acoustic-Gravity (MAG)
waves in the WKB limit, that is using the local dispersion relation. The wave

vector surface is the surface k(w) in k-space on which the local dispersion

relation is satisfied for fixed frequency w.
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There are three wave modes. One is the usual Alfven mode. It's wave

vector surface consists of two planes perpendicular to the magnetic field
and a distance w/acos6 from the origin. We call these the Alfven planes.

At ligh frequencies, w>Nac, gravity is unimportant. Here Nac=rg/2s is
the acoustic cutoff frequency, where g is the acceleration of gravity, s 1s
the sound speed and r the ratio of specific heats at constant pressure and
volume. In this case, the MAG waves behave as Magneto-hydrodynamic (MHD)
waves. In weak magnetic fields the fast mode is an acoustic mode and the
slow mode a magnetic mode, while in strong magnetic fields the fast mode is
a magnetic pressure mode and the slow mode an acoustic mode propagating
along the magnetic field.

At low frequencies, one mode has a wave vector surface that is approxi-
mately a plane perpendicular to the magnetic field. This wave vector surface
lies everywhere closer to the origin than the Alfven plane and has an outward
bump that just touches the Alfvén.plane for vertically propagating waves
(kHoriz=0)' At large kx, the wave vector surface approaches a plane that
passes through the origin.

The other mode's wave vector surface is similar to the acoustic-gravity
wave hyperboloid close to the origin and also becomes a plane, perpendicular
to the magnetic field far away from the origin. As the magnetic field strength
increases, the hyperboloid gets squashed between the Alfven planes and dis-
appears. In the regions of large KHOriz neither wave 1s a normal propagating
wave. For both thelr potential energy becomes far greater than their kinetic
energy. In the weak field case the magnetic potential energy is small for
both modes when KHoriz is large, while in the strong fie.d case one mode has

predominantly magnetic potential energy and the other has none.

Part of this work was published by Schwartz and Stein (1975) and part




appeared in a thesis of Nelson Hartunian (1975) from Brandeis University.
The remainder is now being written up for publication. A clearer picture
of MAG waves will however require the solutidn of the initial value problem

either with the modal or a truly 3-dimensional code.

ITTI. Modal Equations for Compressible Fluid Flows

Non-linear calculations are simple in one spatial dimension (Richtmyer
and Morton, 1969), but complicated in two or three. However, gravity waves
are inherently two~dimensional and magneto-acoustic-gravity waves are inher-
ently three-dimensional. The modal approach reduces the three-dimensional
problem to a one-dimensional problem by imposing a horizontal structure on
the motion. We separate all the fluid variasbles into mean and fluctuating
parts. The mean part is uniform on horizontal planes and the fluctuating
part has a periodic hexagonal horizontal structure of some given length sczale.
We then have a system of Eulerian partial differential equations for the mean
and fluctuating variables. These equations were derived in collaboration
with H.S. Hsieh and Robert Wolff.

To solve these equations we write them in finite difference "conservation"

form and use the Richtmyer two-step Lax-Wendroff method (Richtmyer and Morton,

1969):
i = )
= SZX ﬁ?+1 F?) e j+‘
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The Lax-Wendroff scheme is dissipative and handles shocks well, but it also
damps waves with wavelengths less than 20 zones moderately. It is also subject
to some non-linear instabilities. To suppress these instabilities we introduce
additional dissipation with the "flux corrected transport'" scheme developed by
J. Boris (Book, Boris, Hain 1975). The Lax-Wendroff scheme was tested for the
one-dimensional full fluid equations on the shock tube problem and a small am-
plitude piston driven wave in a uniform medium. The shock tube problem is an
especially sensitive test because it involves three types of waves (shock, contact
discontinuity and simple wave) with known speeds and amplitudes, and is independ-
dent of boundary conditions.

The boundary conditions are more difficult for the modal equations than
for Lagrangian one-dimensional equations. The Richtmyer Lagrangian scheme is a
leapfrog scheme with the variables staggered in space and time. Hence the
boundary conditions need only specify the velocity. The Lax-Wendroff scheme :
defines all variables at the same space and time. Hence we must specify all ;
the variables at the boundary. To do this we need to know the solution at one
point, but in general we do not. In our case, we can use polarization relations
for small amplitude waves to specify all variables at the inflow boundary. At

the outflow boundary, we can use essentially the same method as in the Lagran-

glan scheme., For any variable f at the boundary x-.,
+ 1
£ =f§+(032+unff) At

1
2

(£

3y " f{l)/(xJ_l - %)

These boundary conditions have been coded for acoustic waves in a uniform medi-

um and the outflow toundary conditions for a stratified atmosphere as well.

t remains to code the inflow boundary conditicns for accustic-gravity waves.




A computer cocde for the modal equations (without magnetic field or

radiation) is currently being tested in collaboration with Robert Wolff. The
testing program is as follows:
A. To test non-linear coupling, consider plane-parallel (vertical)
motion in a uniform medium for
(1) shock tube
(2) piston driven sinusoidal waves including shcck formation
B. To test horizontal variation, consider a piston driven wave in a uni-
form medium. This corresponds to waves propagating at an angle to
the vertical direction. Test:
(1) increase in vertical wavelength with decreasing horizontal

scale

(2) wvelocity is longitudinal
(3) reduced height of shock formation
(4) boundary condition for non-vertically propagating wave

C. To testvertical motion in a stratified atmosphere, consider piston
driven vertical acoustic waves with frequency above and below the
critical frequency and compare with the one-dimensional Lagrangian
calculations using the full fluid equations.

Once the code has been fully tested for acoustic-gravity waves, conduction
and radiative losses will be added and a heating model of the solar chromosphere
and corona constructed. Afterwards magnetic fields and grey radiative transfer
will be added. Simultaneously, grey radiative transfer will be added to the
one-dimensional Lagrangian code. The modified code will be used to construct a
dynamic model solar atmosphere. This will be used as an initial model for a

nen-equilibrium, non-grey time dependent model, which will be used to analyze

changes observed in line profile due to waves propagating through the atmosphere




in collaboration with Richard Klein (Kitt Peak National Observatory) and
Richard Shine (University of Colorado). Richard Shine is currently calculating
Ho emission from the accretion shock found in the calculations by Klein, Stein,
and Kalkofen (1977) of a radiating shock ﬁ;bpagating through an A star atmos-
phere.

The Lax-Wendroff scheme is also being used in the development of a two-
and three-dimensional code in collaboration with Richard Klein and Lawrence
Auer (High Altitude Observatory, National Center for Atmospheric Research).
Such a code will be able to solve truly three-dimensional magneto-hydrodynamic
problems. We have so far made tests on two two-dimensional problems -- a
symmetric shock and gravitational accretion flow into a density perturbation.

We have tested three schemes: MacCormack (1971), Lax-Wendroff and Dunner Cell

e e bty Yo

(Book, Boris, and Hain, 1975). 3o far only the MacCormack scheme is compatible
with our Polsson equation solver for the gravitational potential, but all three
work for the shock problem. We are now working on the data management problem

for three-dimensional calculations and on a faster Poisson solver.
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IV. Wave Pulses in the Transition Region

Vertically propagating acoustic pulses develop a secondary crest in their

B —

wake (Figure 1). The second peak arises from the resonarit wake behind pulses
in a stratified atmosphere (Lamb, 1945; Schmidt and Zirker, 1963; Kato, 1966;
Stein and Schwartz, 1972). The separation between the peaks is close to the
acoustic cutoff period of the atmosphere. This two peaked wave form may be
used as a signature for acoustic pulses. Observations from Skylab show inten-
sity fluctuations in transition region lines that occasionally displayed such

a double peaked structure (Figure 2) (Vernazza et al 1375). Vernazza and I

have made a systematic search for such double peaked pulses, and performed some




calculations on pulse propagation to determine the relation between density

and velocity fluctuations. 1
If acoustic pulses with their double peaked structure are present, they
should become more prominant as we look at stronger pulses. Weak pulses will
be common and precede other weak pulses by various time intervals without any
causal connection. However, strong pulses are rare, hence two such pulses
following one another closely in time are likely to be causally connected. To
search for the presence of acoustic pulses in the Skylab data, we made histo-
grams of the number of pulses seen in CIII and OIV intensity greater than a
given strength versus the interval between succeeding pulses (Figures 3 and U4).
When all pulses are included, the number of pulses at any given separation
decreases nearly monotonically with increasing pulse separation from a maxi-

mm at the minimum resolvable separation. As the pulses included are restric-

ted to those of greater and greater strength a decided maximum develops in the
range of 100-175 seconds separation. This behavior is clearly seen in the OIV
data. The data for CIII, which is formed at 9x10" °X, is more complicated. In
the case of CIII, even for the weakest pulses, there is a maximum near 150 sec.
separation, and this maximum persists as the pulse strength increases.

A separation of 150 sec. corresponds to the acoustic cuteff period in an
isothermal atmosphere of 3000 °K. Note there is also a secondary maximum in
obcth the CIII and OIV data at a separation of 250 sec., which corresponds to
the acoustic cutoff period in an isothermal atmosphere of 8000 °K.

Next we looked at why waves are difficult to detect in intensity fluctuations
in the transition region. We were especially interested in why the 300s oscilla-
tions stop being seen. As a simple preliminary calculation we kept the tempera-
ture of each fluid blob fixed at its initial value as the blcb moved in response

to waves. This case corresponds to infinitely rapid radiative energy adjust-

ment flow. The results are shown in Figure 5. We see that when an acoustic
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wave enters the transition region its velocity amplitude continues to increase
with height, but its density fluctuation amplitude 60/p0 decreases by a factor
of 3. Hence the intensity fluctuation, which 1s proportional to density squared,

will decrease by an order of magnitude.

V. Flux Tube Flow

Kopp and Holzer (1976) investigated the expansion of the solar wind along
a tube that widens out faster than radially. Such a widening tube may occur
in the expansion of the solar wind along open magnetic field lines. They
found that when the tube, along which the fluid flows, widens by more than
a critical amount the flow develops two sonic points. In the standard case
of a radially diverging flow, the fluid accelerates and becomes supersonic at
a sonic point located at several solar radil. When the flow diverges. more rap-
idly than radially close to the sun, a second sonic point develops in the region
of rapid divergence. Kopp and Holzer investigated the time-dependent transient
behavior of the solar wind when the flux tube along which it is flowing suddenly
widens by more than the critical amount. They found that the wind accelerates
and becomes supersonic at the inner critical point, shocks back to the subscnic
solution, then accelerates and becomes supersonic again at the outer critical
point. The shock is facing inward, but is dragged outward by the expanding
wind. In the course of several hours the shock is dragged cut from the inner
critical point to the outer critical point, Thereafter, the flow becomes super-
sonic at the inner critical point and remains supersonic throughout, rejoining
the standard solution beyond the outer critical point.

I repeated these calculations using an initial value Lagrangian finite
difference code, instead of the Eulerian code used by Kopp and Holzer. I con-

sldered the same case as they had, an isothermal atmosphere of pure hydrogen at

-
a temperature of 1.8 x 10° °K. The area of the flux tube was widened from a2
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radial tube to a tube which diverged by a factor 4.5 greater than radial at
half a solar radius above the surface. The formula for the diverging flux

tube was the same as used by Kopp and Holzer:

R A A e

Ar)/hg = (r/RG)z e ot e fll/[e(r-ﬁl)/° +1]
where
-l)e(RG-R1 )/U,

fl i (fmax

fﬁax = 4.5 and ¢ = 0.1 RO'

Contrary to their results, I found the shock that developed outside the inner

critical point remained stationary and was not dragged outward by the wind
(Figure 6).

Inside the shock the wind speed was u, = 231 km/s (MO = 1.33) and outside
it was u; = 104 km/s (M1 = 0.6). The sound speed was s, = 173 km/s. The vel-
ocity jump across the shock

b i
LA

y.-'

was found from
2

b uo-ul
gy -+ () 1y+1=0
0

to be 0.487. The shock strength was
l/y = 2-053

the shock velocity was

-y

u =u0-soy

- 17 ks,

h‘wmw‘ e . b
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and the shock Mach number was

1
M = y 2= 1.43.

Thus the shock propagated inward very slowly. This is a stable steady state
situation, since as the shock moves closer to the critical point its strength
(1/y) decreases and it gets dragged back out to where it was.

The Richtmyer type Lagrangian code I used had an artificial viscosity which
spread the shock over two zones, and weakened it slightly. The real shock would
therefore be stable as well, and would be slightly further in, closer to the
inner critical point. The reason for the discrepancy between our results and
those of Kopp and Holzer is riot known. It may be that their Eulerian code
damped their shock more heavily than my artificial viscesity, so that their

shock was weaker, and hence got dragged outward by the wind.

These results are presently being written up as a brief research note.
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Figure 3:
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Figure Captions g

Relative intensity fluctuations as a function of time. The relative
intensity is shown for six lines formed in the region from the bottcom
of the transition zone (Ly =) to the low corona (Mg x). Intensity is

normalized so maximum intensity is one for each line for each time

interval. Temperatures at the right are the approximate formation

temperature of the lines.

Velocity as a function of time for an acoustic wave pulse traveling
vertically upward through a model solar atmosphere. The velocity

amplitude is scaled by (density)l/u.

Number of pulses observed in O IV (A 554) as a function of the time
delay Ctetween successive pulses. Data from Harvard UV experiment
on skylab. Each curve is for pulses greater than indicated strength,

as measured by ratio of maximum to base intensity.
Similar to Figure 3, but for C III (A 977).

Velocity and density amplitude of pulse at bottom (T=2x10“°K) and
middle (T=2x105°K) of transition region. Note decrease in density

but not velocity amplitude of wave in transition region.

Mach number and density vs. height for steady flow through a ver-
tical magnetic flux tube that diverges faster than radially. The

flux tube spreads by a factor 4.5 faster than radially at heights

near RO/2 above the photosphere.
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