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Abatmct.\"l‘his G‘;fi;- describes the development of hierarchical

planning systems to support medium range planning and operational
decisions in a batch processing production envirorment. In this

approach, higher level decisions impose constraints to lower level

actions, and lower level decisions provide the necessary feedback
to reevaluate higher level actions. An analysis of the existing
methodology to design hierarchical production systems is given.
Computational results are pr'esented.T

1. Introduction

Production can be defined as the process of converting raw materials
into finished products. An effective managerent of the production process
should provide the finished products in appropriate quantities, at the
desired times, of the required quality, and at a reasonable cost.

Production management encompasses a large number of decisions that
affect several organizational echelons. These decisions can be grouped
into three broad categories: (1) strategic decisions, inwolving policy
fornulation, capital investment decisions, and design of physical facili-
ties; (2) tactical decisions, dealing prixmriiy with aggregate production
planning; and (3) operational decisions, concerning detailed production
scheduling issues. These three categories of decisions differ markedly in
terms of level of management msponsibiﬁty and interaction, scope of the
decision, level of detail of the required information, length of the
planning horizon needed to assess the consequences of each decision, and
degree of uncertainties and risks inherent in each decision. These consi-
derations have led us to favor a hierarchical plamning system
to support bmduction management decisions, which guarantees an appropriate
coordination of the overall decision making process, but, at the same time,
recognizes the intrinsic characteristics of each decision level. A
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Justification for this hierarchical approach and its implications for the
design of a production system has been reported by Hax []i]. Early moti-
vation for this approach can be found in the pioneering work of Holt,
Modigliani, Muth, and Simon [15], and in Winters [20]. Hax [3 ] described
an application of a hierarchical production system for a continuous manu-
facturing process. Hax and Meal [14], and Bitran and Hax [1] addressed
the use of hiearchical systems in a batch processing enviromment. Armstrong
and Hax [3], and Shwimer [19] analyzed an application for a job shop activity.
Recent theoretlcal research In the field of hierarchical production planning
systems has been conducted by Golovin [10], Gabbay [9]), and Candea [6].

Thls chapter discusses the general 1ssues associated with the design
of hlerarchical production planning systems. An overall description of
the characteristics of such systems is given in Section 2. Section 3 ana-
lyzes the aggregate production planning decisions. Section 4 Justifies the
need for hierarchical plamning systems. Section 5 presents the treatment
of demand forecasts. Sections 6 and 7 discuss the most important methodo-
logles proposed to disaggregate higher level decisions. Finmally, Section €
provides computational results comparing the efficiency of the various
disaggregation methodologiles.

2. A Hierarchical Production Planning System

Production decisions involve complex choices among a large number of
a.ltexﬁatives. These choices have to be made by trading-off conflicting
objectives under the presence of financial, technological, and marketing
constraints, Such decisions are not trivial and model based systems have
proven to be of great assistance in supporting managerdal actions in this
field. In fact, one could argue that, in this respect, production 1s the

T e e e e B2 A SN s
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most mature field of management. A great many contributions have been made
in this field by operations research, system analysis, and computer sciences.
But now we belleve it 1s both significant and feasible to attempt a more
comprehensive and integrative approach to production management.

The optimal plamning and scheduling of multiple products has received
much attentlon in the operations research literature. Several attempts
(Manne [17], Dzielinski, Baker, and Manne [7], Dzielinski and Gomory (8],
Lasdon and Terjung [16]) have been made to formulate the overall problem
as a single mixed-integer mathematical programming model to be solved on
.a rolling horizon basis. However, these approaches require data such as
the forecast demand for every item over a complete seasonal cycle, usually
a full year. When these systems involve the scheduling of several thousands
of items, these data requirements become overwhelming and the resulting
plaming process becomes unrealistic due to the magnitude of the forecast
errors inherent in such detalled long term forecasts.

The obvious alternative to a detalled monolithic approach to produc-
tion planning 1s a hierarchical approach. The basic design questions of
a hlerarchical planning system are the partitioning of the overall planning
problem and the linkage of the resulting subproblems. An important input
to resolve these questions is the rnumber of levels recognized in the product
structure. Hax and Meal [14]) 1dentified three different levels:

(1) .Items are the final products t. be delivered to the customers. They
represent the highest degree of specificity regarding the manufactured
products. A glven product may generate a large number of items differing
in terms of characteristics such as color, packaging, labels, accessories,

size, etc.

(11) Families are groups of items which share a common manufacturing
setup cost. Economies of scale are accomplished by jointly replenishing




e

items belonging to the same family.

(111) Types are groups of families whose production quahtities are to be
determined by an aggregate production plan. Families belonging to a type
normally have similar costs per unit of production time, and similar
seasonal demand patterns.

We have found that these three le\}els are necessary to characterize
the product structure in many batch processing manufacturing environments
we have examined. Obviously, there are some practical applications where
there are some practical applications where additional or fewer levels might
be needed. In the remainder of this paper we will propose a hierarchical
planning system based on these three levels of item aggregation. Note 3
however, that conceptually the system can be extended to any number of
aggregation levels by defining appropriate subproblems linking those levels.

The first step in our hierarchical planning approach is to allocate
the total production capacity among product types by means of an aggregate
planning model. The planning horizon of this model covers normally a full
year in order to properly consider the fluctuating demand requirements for
the products. We advocate the use of a linear programming model at this
level. There are various advantages associated with the use of such a
model that will be addressed in the next section. The major drawback 1s
that a linear programming model does not take setup costs into consideration.
The implications of this limitation will be examined in detail in Section Te

The second step in the planning process is to allocate the production
quantities for each product type among the families belonging to that type.
This 1s done by disaggregating the results of the aggregate planning model
but only for the first period of the planning horizon, thus substantially
reducing the required amount of data collection and data processing. The
disaggregation procedure used assures consistency and feasibility among
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the type and famlly production decisions while attempting to minimize the
total setup costs incurred in the production of families‘. It is at this
stage where setup costs are now explicitly considered.

Finally, the family production allocation is divided among the items
belonging to each family. The objective of this decision 1s to maintain
all items at an inventory level that maximizes the time between family
setups. Agaln, consistency and feasibility are the driving constraints
of this disaggregation process.

An extensive justification for this approach 1s provided in Hax [11]

.and Hax and Meal (14]. Under certain cost structures, it has been shown

to be optimal (Gabbay [9]). Under more general cost structures, it has
empirically been found to perform exceptionally well, as discussed in
Section 7. Figure 1 shows the overall conceptualization of the hierarchi-
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cal planning effort. A computer based system has been developed to faci-
litate its implementation. The detalls of this system are reported in
the next chapter of this book (Hax and Golovin [13]). Herein we will

concentrate on the methodological issues associated with the system design.

3. Aggregate Production Planning for Types

This 1s the highest level of planning in the production system, addressed
.at the type level. Essentlally any aggregate production planning model
can be used as long as it adequately represents the practical problem under
consideration. (For extensive discussions of possible aggregate models,
see Buffa and Taubert [5], Hax [12], and Silver [18].) We consider the
following simplified linear program at this level:

7 T
Maimize £ I (e, .%X. *H. I . WE (r +0,.0,)
A S A the + 0.0,

subject to:

d 1=1,...,I; t=1,...,T

Xie = Ig,e4n ¥ Iy t401 1,64 °
I :
Py s G s T
% i (M)t 9 t‘l. cee ,T
ot f_ (m)t 9 t.l’.o.’T
3 20 ,  dml,...,T; t=L#l,...,L4T
Ry 0p 2 O s t=l,...,T

The decision variables of the model are: xit' the number of units to be
produced of type i during t; I, ¢41,» the number of units of inventory remain-
’
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ing at the end of period t+L; Rt and Ot, the regular and overtime hours
used during period t, respectively. :

The parameters of the model are: T, the length of the planning horizon;
L, the length of the production lead time; Cyts the unit production cost
(excluding labor); hit’ the inventory carrying cost per unit, per period;
ry and Ot » the cost per manhour of regular and overtime labor, respectively;
(m)t and (om) ¢» the total availability of regular and overtime hours in
period t, respectively; and my the inverse of the productivity rate for

type 1, in hours/unit. is the effective demand for type i during

dy ) t4L
period t+L. (For a definition of effective demand, see section 5.)

Whenever the production costs c,, are invariant with time, no back-

it

orders are allowed, and the regular work force payroll is a fixed commitment,
L i

the terms I I ci X,, and I rth are fixed and should be deleted from
1=1 t=1 VA0 T g

the objectlve function. In that case, the model seeks the optimum aggre-
gate plan trading off inventory holding and overtime costs. It is straight-
forward to extend the model to include other cost factors and decisions,
such as hiring and firing, backorders, subcontracting, lost sales, etc.
Also, the constraints can represent ary number" of technological, financial,
marketing restrictions, or other considerations.

Linear programming is a convenient model to use at this aggregate
level due to both its computational efficiency and the wide avallability
of linear programming codes. In addition, L.P. permits sensitivity and
parametric analyses to be performed quite easily. Tre shadow price infor-
mation that becomes available when solving L.P. models can be of assistance
in identifying opportunities for capacity expansions, market penetrations,
introduction of new products, etc.

Notice that the manufacturing setup costs have been purposely ignored
in this aggregate model formulation. In practice, we have found that setup
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costs have a secondary impact on the total production cost (see Section 8
for sensitivity analysis). Moreover, the inclusion of sétup costs would
force the model to be defined at a family level. This implies a high
level of detail which invalidates all the advantages of hierarchical
planning discussed in the next section. Consequently, setup costs are
considered only at the second level of .the hierarchical planning process.

Because of the uncertainties present in the planning process, only
the first time period's production plan is implemented. At the end of
each time period, new information becomes avallable that 1s used to update
the model with a rolling plamning horizon of length T. Therefore, the
data transmitted from the type to the family level is the resulting
product typce production and inventory quantities for the first period
of the aggregate model. These quantities will then be disaggregated
among the families belonging to each corresponding type.

4, The Need for Hierarchical Planning

The advantages of the aggregate approach as compared to a detalled
one may now be clearer. These advantages can be divided into three
distinct categories.

The first category considere the costs of data collection to support
the model as well as the computational cost of running the model. A
major information system may be required to collect the demand productivity
and co.st data as well as prepare forecasts for thousands of individual
items, a more costly project than bullding the production planning system
itself. This data must then be reviewed by management. As the number
of items increases, this effort can become unwieldy, leading to deteriora-
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tion of the data used in the planning process and therefore the output.
In most cases, this cost of data collection and preparation will far out-
weigh the cost of computation. This is important to note as the cost of
computation continues to decrease and it becomes feasible to solve enormous
linear or non-linear programming problems. Aggregation of items can
significantly reduce the cost and effort in demand forecasting and data
preparation in addition to decreasing the computational costs.

The second category considers the accuracy of the data. Unless all

items are perfectly correlated, an aggregate forecast of demand will have

- reduced variance. In general, we are able to employ more sophisticated

techniques such as econometric models or auto regressive-moving average
statistical models and spend more time in obtaining managerial judgment,
glven the smaller number of forecasts required. Since decisions on regular
time, overtime, hiring and firing, and other production rate changes are
based on the total production quantity demanded, increased forecast accuracy
on total demand should improve the decision making process.

Finally, and perhaps from an implementation standpoint, most impor-
tantly, aggregation leads to more effective managerial understanding of
the model's results. When ten thousand items are being planned simulta-
neously, the sensitivity of the results to changes in individual item demnds
may be complex. There are too many combinations of changes to consider.

The manager may never be able to see the overall picture but, instead, be
lost in the detaills.

In addition, at this level of managerial planning, most marketing
forecasts are made by product group and decisions made by product line or
manpower ciass. These are budgeting declsions, not lot sizing decisions
for next week. It 1s cruclal that the decision variables and sensitivity

analysis that can be carried out correspond to those with which the manager
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deals.

While all these arguments for aggregation are valid; they would be
meaningless 1f it were not possible to disaggregate back to the detailed
level and obtain near optimal results from this hierarchical approach.
Our results, discussed in Section 8 have shown hierarchical systems to be

near optimal under a variety of realistic conditions.

5. Demand Forecasts

Unless care is taken, the use of aggregation may lead to infeasibili-
ties. It 1s Imrortant to realize that inventorles and demand only have
physical meaning at the item level. The concept of product types is a
mere abstraction that makes possible the aggregation process. When
calculating product type inventories, it is incorrect to simply add the 1
inventorles.of all the items belonging to a product type. Implicitly,
that practice assumes complete interchangeability of the inventories among
all the items in a product type, which is not fhe case. To illustrate this
point, consider a product type consisting of items 1 and 2, whose initial

H
3
1

inventories and demand requirements for the next five periods are as follows:

Demand by Period

o RSTETe C SONGIN ISR YRR N
Item 1 600 100 100 200 200 400
Item 2 100 200 200 MO 400 800
Total 700 300 300 600 600 1200

By simply considering total product type demand and inventory, we would
calculate net demands of 0, 0, 500, 600, and 1200. But, in fact, we will
run out of item 2 in periods 1 and-2. The problem arose from assuming
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that we could use product type inventory held in item 1 for item 2. This

problem is corrected by defining effective demands for each item.

Formally, if Ek ¢ 1s the forecast demand for item k in period t, AL,
y
is 1ts corresponding available inventory, and SSk is its safety stock, the

effective demand dk t of item 1 for period t is given by:
] b

e : »
dk,t = max (0,2;21 dk,!. - AIk + ssk) v GELL2 00t

dk,t = ak’t P - 2 TR,

»
where t 1s the first time period in which the initial inventory is depleted,

Q)

i.e.

t*1

I q o - AL +S5 < 0 , and

*
t

$ & .=AL ¥ > 0
e G, g = AL + S5
The effective demand for a type 1 1is simply gliven by the sum of the effec-
tive demands for all items belonging to a given type, 1l.e.
where K(1) is the set of all items k belonging to product type 1.

In our previous example, the effective demands are:

Effective Demand by Period

" RN MieRe VSRR aae 3

- Item 1 0 0 0 0 400
Item 2 100 200 400 4oo 800
Total Effective Demand for 100 200 400 400 1200

Product Type

The hierarchical forecasting system operat~s as follows:
(1) An aggregate forecast is generated for each product type for each

e = M=o A o] "o e~
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time period in the planning horizon.

(11) The type forecasts are disaggregated down to item forecasts. This
disaggregation can be done by forecasting the proportion of the total type
demand corresponding to each item. These proportions can be updated using
exponential smoothing techniques, which are appropriate to apply for a
short horizon at a detailed level. Notice that item and family forecasts
are only required for a few time periods in the product type disaggregation
models we will present.

(111) After updating the avallable inventory for each item, the effective
item demand is calculated by applying expression (1) above. Whenever the
initial available Inventory exceeds the first period's demand, expression
(1) requires item forecasts for successive periods in the planning horizon.
These forecasts can be obtained by making trend and/or seasonability adjust-
ments to the initial period forecasts, agailn using exponential smoothing
techniques.

(1v) The effective demand for types is obtained from expression (2).
These demands are used in the aggregate model described in section 3.
Computer programs to perform automatically the necessary calculations are
discussed in the next chapter.

Note that this forecasting system is an example of a top down approach,
using aggregate product type forecasts and disaggregating, rather than
using detalled forecasts and summing to get the aggregate product type

forecasts.

6. The Family Disaggregation Model

The central condition to be satisfied at this planning level for a
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coherent disaggregation is that the sum of the productiops of the families
in a product type equals the amount dictated by the higher level model
(plan) for this type. This will assure consistency between the aggregate
production plan and the family disaggregation process. This consistency
should be achieved while determining the run quantities for each family
that minimize the total setup cost among families, the remaining cost to
be considered.

We will now examine four disaggregation methods which have been pro-
posed in the literature: Hax and Meal [14], Knapsack [1], Winters [20],

.and Equalization of Run Out Times.

6.1 Hax and Meal Method

Conceptually, Hax and Meal [14] suggested a heuristic approach to
family disaggregation that:
(1) schedules those families in each product type that must be run in
the current planning period in order to meet the items' service require-
ments;

(11) sets initial family run quantities so as to minimize cycle inventory
and setup costs. (This is accomplished by setting the initial family run
quantity equal to the corresponding family economic order quantity.);

(111) then adjusts the run quantitites of the families so as to use all
the production time allocated to each product type by the aggregate planning
model, while observing items' overstock limits.

To implement these three conditions, Hax and Meal proposed an algorithm
with the following rules:

(1) Only those families which trigger during the current planning period
have to be scheduled for production. A family is said to trigger whenever
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the current available inventary of any of its items cannot absorb its

expected demand during its production lead time plus the review period,

i.e. whenever

< + L ST +
Mg < Gy * Gept oo + o p) +55,  for any keK()),
where K(j) 1s the set of all items k belonging to family j.
Equivalently, we can define the run out time of an item k to be

AIk - SSk
I’I)‘I‘k = ——

Z

i
A family j 1s saild to trigger whenever its run out time for at least one
item 1s less than one time period, 1.e.

mrd = Mn IROI‘k = Mn ﬁlf-ssk RN
keK(J) kek(3) 13
e

If we do not produce this family j some member item will run out, violating
our assumption in the aggregate plan of no backorders.

(11) The initial run quantity, YJ, for a family that has triggered, is
set to the minimum between its economic order quantity, EOQJ; and the
dift‘enence between the overstock limit of the family, 0S,, and its current
available inventory, AL J; i.'e.

YJ = M:In(FDQJ,OSJ-AI)

J

where
AL - I >
J o kek() 5 T

3 T L s and
J mex(a)os“
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EOQ‘1 can be determined by the lot size formula for a family of related
items (Brown ["), page 47). When an item k has a terminal demand at the
end of a season, OSk can be calculated by means of a newsboy model (see
Zimmermann and Sovereign (211, page 370).

(4141) If the sum of the initlal run quantities for the families belonging
to a product type i does rot add up to the total production time allocated
to that type by the aggregate planning model, adjustments in the family
run quantities are needed.

Let J(1) be the set of all families belonging to product type i, and
X, be the total production to be allocated among these families. X has been
determined by the aggregate planning model, and corresponds to the optimal
value of variable xil since only the first period result of the aggregate

model 1s to be implemented., Two cases should be considered:

] ¥
() It Z( ; Y,j < Xi, the new run quantities YJ for each families are:
Jed(1

I (OSk‘AIk) ]

Y . Min[ I (0S-AL), Y+ (K- E YJ)—!:—%Jl}:—(W
3 keK(J) KT TR A T oty wekily)

This simply states that the initial run quantities are expanded in propor-
tion to the difference between the overstock limits and the current avail-
able inventory. This difference con';sponds to the maximum allowable produc-
tion of each family, up to its overstock limit. If all the families that
have triggered must be produced to their overstock limit, and the total
production 1s still less than the aggregate production requirement x;, one
should go deeper in the run out 1list scheduling families belonging to

product type 1 in order of increasing run out time until we reach the total
assigned production capacity. The new families should be run up to their
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maximum allowable quantities.

(b)y If . Z YJ > x;, the run quantities are decreased in proportion to
Jed (1)

their initlal assignments, i.e.

Y; 2 x;—zy‘i—r

jesqa) 9

For further details about this methodology, the reader is referred
to [14].

6.2 Knapsack Method

Bitran and Hax [1] proposed a disaggregation technique which essentially
is a formalization of the heuristics developed by Hax and Meal. For

every product type 1 the following convex knapsack problem is solved:

s.d
Minimize I 4

JeI1) Y

Subject to: . .
Y =

a3 T A

’-bJ % iUbJ: JeJ(1) (3)

where YJ i1s the number of ur.xita to be produced of family Jj, sJ is the setup
cost for family J, d‘1 is the forecast demand for family j (usually an
amual forecast demand), le and ub.j are lower and upper bounds for the
quantity Y,, and x; is the total amount to be allocated among all the
families bslonging to type 1.

The lower bound lbj, that defines the minimum production quantity
for family j, 1s given by:

, = max [o, (4,3 * 4y o % wue +dy 1) = AT + ssd] :
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This lower bound, EbJ » the minimum production to avoid backorders given
current forecasts, guarantees that any backorders will be due only to
forecast errors greater than the safety stock SS g

The upper bound ubJ is given by:

ubJ - OSJ-AI'j

where 0S 5 1s the overstock limit of family j.

The objective function assumes that the family run quantities should
be proportional to the setup cost and annual demand for a given family.
This seems to be a reasonable assumption (and is the basis of the economic
order quantity formulation), that tends to minimize the average annual
setup cost. Notlce that the total inventory carrying cost has already
been established in the aggregate planning model; therefore it does not
enter in the current formulation.

The first constraint:
= x.

g9
JeI) J #

' *
assures the equality between the aggregate model input x1 and the sum of
the famlly run quantitites. It can be shown (see Bitran and Hax [L]) that
this condition can be substituted by

i
jany BE M iy

without changing the optimum solution to the disaggregation problem, Intui-
tively, the larger the YJ'B' the smaller the objective function value and so
the constraint is always met exactly.

Initially J(1) contains only those families which trigger during the

current planning period. The production for these families must be sche-
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duled in this period to avoid future backorders. All otper families are
put on a secondary list. These famllles will be scheduled only if extra
capacity is available.

Bitran and Hax [1] presented an efficient algorithm to solve this
problem through a relaxation procedure. Optimallty and convergence proofs
are glven in [1] and [2]. The algorithm consists in ignoring initilally
the bounding constraints (3) and solving the objective function subject
to the knapsack restriction (4). Then a check is made to verify if the
optimum values Y satisfy the bounds (3). If they do, the Y;'s constitute

J

#
the optimal solution. If not, at least some of the Yj's are shown to be
optimal and a new iteration takes place. The algorithm is finite because

at each iteration we determine the run quantity of at least one family.

6.3 Winters Method

Winters [20] examined various alternatives for disaggregating the
aggregate production quantities. He recommended a disaggregation proce-
dure in which families are produced in economic order quantities, in order
of their increasing run out times, until the aggregate total 1s reached.
Unlike the Hax and Meal method, the initial run quantities are not modified,
but are treated as indivisible discret.:e units and their release point is
varied.

Using the terminology described previously, the Winters disaggregation
method can be formalized as follows:

(1) Compute the run quantity for each family J:

Y

J i m-n (mjl OSJ - AIJ)' .

(11) Compute the run out time for each family J:




AT, =SS,
ROT, = Mn —XK K
J keK(J) d

where cl.k i1s the forecast demand for item k.

(111) Rank all the families belonging to a glven product type by increasing

run out times., This constitutes the run out list for a type.

(iv) For each product type, go down the run out list accumulating Y J's

*
untll the total desired production X1 1s reached; 1.e., produce families

1 to n in the run out list where:
n *
I > X
4o Y.j 2 X , and

n‘l #
z < X
md R

Further discussion on this approach is provided in [20].

6.4 Equalization of Run Out Times

An obvious alternative disaggregation method 1s to allocate the

P —

production amount determined at the aggregate planning level for a given
type in such a way as to equalize the run out times of all the items
; belonging to that type. This implies skipping the family level as a

disaggregation layer. Run out time equalization is a natural disaggre-
gation methodology to be applied at the item level and, therefore, the
corresponding technical details will be presented in the next section.

It 1s important to mention at this point that when run out time equal-
ization 1is dﬁ.rectly applied at the item level, no consideration is glven
to the resulting setup costs associated with the family runs. Thus, it
might be expected that this disaggregation procedure will generate fairly
high setup costs, relatlve to Lhe other fumlly Alsaggregallon methuds whlch
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take explicit account of setup costs. The possible advantages of a direct |
item run out time equalization are the realization of a high degree of !
synchronization of the production plamning system, and the added simplicity

in implementing the hierarchical system.

T. The Item Disaggregation Model

For the current planning period, all the costs have been already deter-
mined In the former two levels and any feasible disaggregation of a family
run quantity has the same total cost. However, the feasible solution chosen
will establish the initial conditions for the next period and therefore
will affect future costs. In order to save setups in future periods it
seems reasonable to distribute the family run quantity among its items in
such a way that the item run out times coincide with the run out time of
the family. A direct’ .consequence is that all items of a family will trigger
simultaneously, minimizing remnant stock, the remaining inventory held in
the items in that family. '

T+.2 A Hewuristic Approach

Hax and Meal (1&] propoéed a heuristic algorithm to equalize the run

i
z
&
1
§
:

out times of the items belonging to each family., The essence of this approach
is to allocate the family run quantity, Y;, 80 as to maximize the expected
time until an item in that family runs out. Any item running out requires
scheduling the entire family again and, therefore, should be deferred as

long as possible within the constraints of item overstock limits and the

total family production quantity determined at the family disaggregation
level,

e ——————————— S S —
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An initial run quantity is determined for each item by means of the

expression:
#*
Y, + I ( -SS]:)
7 = ) kek() Tk B = (5)
e = % W e = By
keK(J)

where Z, is the number of units to be produced of item k; Alk and S, ,
are, respectively, the available inventory and safety stock of item k;
dk 1s the forecast demand for item kj; K(j) is the set of
*
indices of all the items belonging to famlily Jj; and YJ 1s the total amount
to be allocated for all items belonging to family j. Y; was determined
by the family disaggregation model.
Notice that the new run out time for item k will be:
I
k
9
and, by equation (5), this is equal to
#
Y.+ I (A.Ik-ssk)
J
& keK(J)
keK(J)

RJI‘k

which is constant for every item k. This equalizes the expected runout
time for all the items in the family. Moreover, sumning each side of
Equation (5) over all k values gives us:

*
I D
kek(g) ¥ 0
and, therefore, guarantees that the total amount allocated to the family,
*
YJ has been allocated among the items belonging to that family.

The resulting run quantities must be tested for negativity and
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against the overstock limits for each item., If the item run quantity does
not lie between these limlts it 1s set to zero or to the overstock limit,
as appropriate. The normalizing constant,

#*
YJ+ I (Alk-ssk)

keK(j)

R

keK(J)

is appropriately modified by eliminating that item from the summations

and the procedure is repeated again for the remaining items.

"T.2 Knapsack Approach

Bitran and Hax [1] formalized the heuristic approach by formulating
the run out time equalization problem as the following strictly convex
knapsack problem for each family j:

#* -2
i (AT, =SS, ) '
Minimize % 3 I " kekgg) KK T e i ¥
keK(J) g g i
keK(j) t=1 %t g kst
subject to: . Y'
keK(J) A J
B < 05 - A,
L+l
> mex [0, Z - AL +
5 2 mex |0, T4 - AT+,

The first constraint of this problem requires consistency in the
disaggregation from family to items. The last two constraints are the
upper and lower bounds for the item run quantities. These bounds are

similar to those defined for the knapsack family disaggregation model in
the prewious section.
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The two terms inside the square bracket of the objective function
represent, respectively, the run out time for family J, and the run out
time for an item k belonging to family j (assumlng perfect forecast).
The minimization of the square of the differences of the run out times
will make those quantities as close as possible. The term % in front of
the objective function is just a computational convenience.

An algorithm to solve this problem follows very closely the logic
presented in the famlly disaggregation algorithm. Details are given in
Bitran and Hax [1] and will not be presented here.

8. Computational Results

We conducted a serles of experiments to examlne the performance of
the hierarchical system under various conditions including size of fore-
cast errors, capacity avallability, magnitude of setup costs, length of
the planming horizon, and disaggregation methodology used from product
type to family levels. .

The data used for these tests were obtained from a major manufacturer of rubber
tires. The product structure characteristics and other relevant informa-
tion are given in Figure 2. Table 1 exhibits the demand pattern for both
product types. Product type 1 had a terminal demard season (corresponding
to the requirements of snow tires), and consisted of 2 families and 5 items.
Product type 2 had highly fluctuating demand throughout the year and
consisted of 3 families and 6 items. Families were groups of items
sharing the same molds in the tire curing presses, and therefore, sharing a
common setup cost. Items, for instance, were white wall and regular wall

tires of the same class. Families and items have the same cost charac-
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Product Type 1: Pl

Product Type 2; P2

v T
Families: P1F1 /P1F2\ P2Fl\ P2F2\ IPZF?,\ sFamildes
Items: 71 - -¥2 I3 EL- +F2 1,.1 I2 nn 12 I1 I2 :Items
Family setup cost = $90 Family setup cost = $120
Holding cost = $.31/unit a month Holding cost = $.40/unit a month
Overtime cost = $9.5/hour Overtime cost = $9.5/hour
Productivity factor = .1 hr/unit Productivity factor = .2 hrs/unit
Production lead time = 1 month Production lead time = 1 mcnth
Regular Workforce Costs and Unit Production Costs are considered fixed costs.
Total Regular Workforce = 2000 hrs/month
Total Overtime Workforce = 1200 hrs/month
FIGURE 2. PRODUCT STRUCTURE AND OTHER RELEVANT INFORMATION
TIME PERIOD PRODUCT TYPE 1 PRODUCT TYPE 2
t Pl P2
-1 12,736 . 6,174
2 7,813 2,855
3 e, 4,023
y 0 4,860
5 0 7.131
6 0 9,665
7 1,545 17,603
8 7,895 14,276
9 10,982 11,706
10 15,782 15,056
1n 16,870 8,232
12 15,870 7,880
13 9,878 10,762
TOTAL 99,371 120,223
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teristics and the identical productivity rates of their corresponding product
types. .

The experiments applied various hierarchical production planning systems
under varying conditions for a full year of simulated plant operations.
Production decisions were made every four weeks at which time a report was
generated identifying aggregate as well as detalled decisions. The model
was then updated and rerun using a one year rolling planning horizon. This
process was repeated 13 times. At the end of the simulation, the total
setup costs, inventory holding costs, overtime costs, and backorders were

_listed. A sumary of eleven different simulation runs is provided in Table
2. The similations were inmplemented on the Computer Based Operations
Management System (COMS) developed at M.I.T. (see Hax and Golovin [13]).

Run 1 can be regarded as the base case: no forecast errors, a planning
horizon of one year divided into 13 periods of 4 week durations each,
"normal" capacity (defined as 2000 hours of regular time and 1200 hours of
overtime per period), "normal" setup costs ($90 for families belonging to
product type 1, and $120 per family belonging to product type 2). All
the other runs varied some characteristics of Run 1.

8.1 Difference in Performance of Family Disaggregation Methodologies

We tested the performance of hierarchical planning systems using four
different family disaggregation methodologles: Hax and Meal, Knapsack,
Winters, and Equalization of Run Out Times. At the item level, we limited
ourselves to use the heurlistics approach proposed by Hax and Meal for
equalization of run out times. : A careful analysis of Table 2 iIndicates
that no significant differentes of perofrmance seem to exist among the

four tested methodologies. Hax and Meal, and Knapsack have a slight
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1 3 4 5
HIGH SETUP COST | HIGH SETUP COST
FAMILY BASE CASE CASE I CASE II
DISAGGREGATION | , OOST | NO FORECAST Samwm%oﬁe woxmww%ﬁme P1: 500C,50 P1: 6000, 4500
METHODOLOGY ERROR P2: 400,400,1000 | P2: 400,5000, 3000
NO FORECAST ERROR | NO FORECAST ERROR

HAX-MEAL Setup 5580 5580 5580 67050 106400

Holding mmms mmw_mm mmmw: mwwmp mwomo

Overtime 1092 1415 2365 1072 mum

Total 159179 159790 163899 220593 260417

Backorders 0 2398 6460 0 0
KNAPSACK Setup 5360 5360 5250 67050 104800

Holding 72510 73611 76577 72374 72597

Overtime 81111 81425 82365 81111 81102

Total 158981 160396 160192 220535 258449

Backorders 2 1513 6243 10 y
WINTERS Setup 5800 5690 5470 68850 107000

Holding 73382 74915 76988 72861 71889

Overtime 81643 81406 82384 81102 82821

Total 160825 162011 164842 222813 261710

Backorders 0 17 10618 0 0
EQUALIZATION |Setup 5910 5910 5910 68850 107000 591
OF RUN OUT Holding 72533 73047 T5U4T 72533 72533 11
TIME Overtime 81102 81415 80912 81102 81102 1174

Total 159545 160372 162269 222485 260635

Backorders 14 2398 9965 14 14 14
TABLE 2, SUMMARY OF COMPUTATIONAL RESULTS WITH DIFFERENT HIERARCHICAL PRODUCTION PLANNING SYSTEMS




6 7 8 9 10 11
T
TIGHT LOOSE 6 MONTH 6 MONTH 6 MONTH 1-1-1-1-3-6
) CAPACITY CAPACITY PLANNING HORIZON- | PLANNING HORIZON- | PLANNING HORIZON~ | PLANNING HORIZON-
3000 | 1660 Reg. Hrs. 2500 Reg. Hrs. ORIGINAL TIGHT CAPACITY NORMAL CAPACITY NORMAL CAPACITY
IROR | NO FORECAST ERROR | NO FORECAST ERROR | NO FORECAST ERROR | NO FORECAST ERROR | 10% FORECAST ERROR | NO FORECAST ERROR
4590 5910 5910 5910 5910 5580
ﬁmw.m: mmmmw mmzm mmm,\m 64969 .3m.~m
117430 50 57 94250 9077
237178 110589 161660 163432 .H.mpwwmm Hmmm%
0 0 0 40603 2956 383
4480 5910 5960 5030 5960 5250 3
115072 56002 67212 83983 64971 78052
117439 48507 88597 103332 9077 440
236991 110419 161499 192305 1 mﬁwm wmmﬂm
144 0 0 16658 2951 73
5690 5800 5910 4920 5910 5910
115058 55233 68030 67400 66637 80250
117420 49115 88588 108927 908 Hmwmmm
238168 110148 162528 181247 Hm.u.w.mm
0 3677 0 28765 17 0
5910 5910 5910 5910 5910 5910
ﬁmmmm mmymm mmomm 83980 64969 mw%
117439 517 597 103332 .
Im%:u 1 1105049 161602 193222 Hmmmm 159505
145 0 14 16662 2956 14

s s i.....:l.llllj
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advantage over Winters and Equalization of Run Out Times, but the differences
in cost do not constitute major gains. The Equalization.of Run Qut Times
procedure gives the highest setup costs, as expected. It is not

possible to infer, with this limited amount of experimentation, whether or
not a given disaggregation methodology could offer some specific advantages
under certain given conditions. Research in progress is designed to cast

some light on these issues.

8.2 Sensitivity to Forecast Errors

Runs 1, 2, and 3 show the impact of forecast errors on the production
plamming decisions. Forecast errors are uniformly distributed in intervals
of the type [-a,+a] and are introduced in all three levels. Moreover,
at the family and item levels we guarantee that the demands of families in
the same product type and the demands of items in a family add to the demand
of the product type and family respectively. As one would have expected,
the quality of the decisions deteriorates under increasing forecast errors.
Both cost and slze of backorders increase when forecast errcrs begin to
escalate. However, the system performs reasonably well even under fore-
cast errors of wp to 30%, included in Run 3. (The 6243 units back-
ordered in Run 3 of the Knapsack case represent a 97% service level.) This
is an inportant Justiﬁcatién for the hierarchical approach since, obviously,
aggregate forecasts can be more accurate than detailed forecasts.

8.3 Semsitivity to Changes in Setup Coete

The vﬁlues irputed to the setup costs in the base case (Run 1) were
realistic measures of the actual setup costs incurred.in the normal manu-
facturing operations. They included direct setup costs (manpower and




-28-

materials), as well as opportunity costs for having the machines idle while

performing the changeover. We wanted to test the system's performance under |
extreme conditions which represented unusually high setup |
costs. With this purpose in mind we made two different runs, Runs 4 and 5,

with the following setup cost characteristics:

Setup Costs ‘
Type 1 Type 2 |
Family 1 Family 2 Famlly 1 Family 2 Family 3 |
Run 4 5000 50 400 Loo 1000
Run 5 6000 4500 400 5000 3000
Base Case -
Run 1 90 90 120 120 120

Naturally, the total cost associated with Runs 4 and 5 increases signifi-
cantly. It can be observed that Runs 1, 4, and 5 are almost identical in
terms of inventory holding costs and overtime costs, which indicate that
the overall production strategies for these runs do not change much.

This 1s to be expected as the aggregate plan does not see the increase in
setup costs. This could be a limitation of this particular hierarchical
approach when applied to situations with extremely high setup costs, since,
under these conditions, one could have expected higher inventory accumula-
tion to obtain a better trade off between inventory and setup costs.

.

8.4 Sensitivity to Capacity Availability

Runs 6 and 7 evaluate the performance of the system under different
capacity conditions. Run 6 decreases the regular capacity to 1660 hours
per period; 'Run 7 expands the regular capacity to 2500 hours (as opposed
to 2000 hours in the base case). As one could see from the results in
Table 2, the system's performance is quite sensitive to capacity changes.
Under tight capacity, there is a significant increase in both costs and

e ——— S S e
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backorders; the opposite 1s true under loose capacity. Clearly, the system

can be useful in evaluating proposals for capacity expansion.

8.5 Sensitivity to Changes in Planning Horizon Characteristics

Runs 8, 9, 10, and 11 experiment with changing the length of the
planning horizon under different conditions. ‘ Shortening the planning hori-
zon from 13 periods to 6 perlods did not affect the system's performance
under normal capacity conditions. (Compare Runs 1 and 8, and Runs 2 and 10).
However, as one would have expected, the size of backorders began to increase
significantly when the planning horizon is shorter under tight capacity.

Run 11 deals with an aggregation of time periods in the planning horizon.

The length of the planning horizon is still a full year but it is divided
into only six time periods of uneven lengths. The first four periods have
l—week duration each, the fifth period covers 12 weeks (aggregation of three
l-week periods), and the sixth period covers 24 weeks (aggregation of six ;
l-week periods). Run 11 shows a performance quite similar to the base case.
This result might indicate that this type of aggregation 'of the planning
horizon could be useful in many situations, since it improves the forecasting
accuracy in more distant time perlods and reduces the associated computa-
tional time, without experiencing a decline in performance.

8.6 Degree of Suboptimization

Although our proposed hierarchical planning system provides optimum
aolutibns to the subproblems that deal with individual decisions at each
level, obviously it is not an overall optimum procedure. As we have pointed
out, setup costs are ignored at the agg're@.te planning level, thus intro-
ducing suboptimization possibilities. To analyze how serious this subopti-
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mization problem was, we developed a mixed integer programming (MIP) model
at a detalled item level to identify the true optimal soiution to our test
problem. The MIP model was implemented by means of IBM's MPSX/MIP code, ‘
which is a general purpose branch and bound algorithm.

Due to the computational cost of solving MIP models, we limited
our comparisons between the hierarchical planning system and the MIP model
to those situations containing no forecasting errors. In those cases,
we could solve the MIP model only once, and obtain the optimum yearly
cost. (If forecast errors would have been introduced we would have had
_to solve the MIP model 13 times for each run, which was prohibitively
expensive.)

We computed MIP solutions to three of our previous runs: the base
case (Run 1'), the first high setup cost run (Run 4'), and the tight capa-
city run (Run 6'). The MIP results are glven in Table 3. The existing
1limits on the node tables of the branch and bound code used did not allow
us to determine the true optimum in the MIP runs. Therefore, the solutions
reported in Table 3 might still be improved. Table 3 also provides the
continuous lower bounds obtained at the time in which the computations

1! u' . 6!
RUN High Setup Cost

BASE CASE CASE T TIGHT CAPACITY
COST NO FORECAST ERROR P1: 5000,50 1600 Reg. Hrs.
COMPONEXNTS P2: 1400,400,10000
SETUP 4,590 48,050 3,930
HOLDING 75,953 79,880 115,872
OVERTIME 77,796 75,430 117,430
=

t known 158, 3 | 203,360

b P »339 3,36 237,232
LOWER BOUND 153,926 162,783 233,665

TABLE 3. SUMMARY OF COMPUTATIONAL RESULTS WITH MIXED INTEQER PROGRAMMING MODELS
—————————————————————— T
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were interrupted. For all practical purposes, we could consider the solu~-
tions corresponding to Runs 1' and 6' to be optimal. Possibly Run 4'
could still be improved.

By comparing the total costs of the three runs for the Knapsack case

we have:
Knapsack Best known
Hierarchical System MIP solution
Base Case 158,981 158,339
High Setup Cost 220,535 203,360
Tight Capacity 236,733 237,232

We see that the hierarchical planning system was extremely efficlent. It
appears that only under abnormally high setup cost the system's perofrmance
begins to depart significantly from the overall optimal solution.

In sumary, the hierarchical systems seems to perform near optimum
when setup costs are moderate. The base case cost, which reflected the
operating data of the tire industry, is only .4 percent higher than the
best known optimum solution obtained by the MIP fornulation. However, the
cost of each run of the hierarchical system was approximately $5, while the
correspording MIP run cost near $50. In addition, the MIP approach would be
computationally impossible to carry out for larger problems. Moreover, the
hierarchical system appears to offer coherent solutions under varying fore-
cast errors, capacity avallabilitles, and planning horizon lengths.

Extremely high setup costs could affect the performance of the system.
In practice, families with very high setups are candidates for continuous
production (as opposed to batch production) if they have a high level of
demand. In such a case, those families can be handled independently of
the hierarchical system., In situations where there are few high setup
families with low demand, special constraints can be imposed on the family
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disaggregation model to produce those families in large enough quantities.
This can be accomplished by setting the lower bound of the family to its
unconstrained economic order quantity. When all the familles in the
product structure have high setup costs and low demand levels, it might
not be desirable to eliminate setup costs at the aggregate level. In

that situation, we could eliminate the aggregate planning model for porduct
types and allocate production quantities at the family level by using

an approach similar to that proposed by Lasdon and Terjung [16]. We would
then -apply the item disaggregation model to allocate the family production

. quantities among items.
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