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PREFACE

This Ninth Technical Report describes the work performed on Contract
Number DAHC15-73-C-0127 on Theoretical Studies of High-Power Ultraviolet
and Infrared Materials during the period from 1 January 1977 through
30 June 1977. The work on the current contract is a continuation of that

of the previous Contract Number DAHC15-72-C-0129.

In view of the increasing importance of impurity absorption in high-
power laser materials for use as windows, this report and the following
report are dedicated to a tabulation of impurity spectra of important
materials in the ultraviolet and visible regions. The previous infrared
impurity-absorption study, which emphasized the COZ-laser wavelengths near
10.6 um, is being updated to include a greater number of impurities, par-
ticularly those of importance at other infrared wavelengths. The results,
along with the results of our other ongoing programs will be presented in
subsequent reports. Previously reported results are not repeated in the

present report.
The following investigators contributed to this report:

Dr. H. Vora, consultant, University of Washington, Seattle, Wash.

Dr. T. G. Stoebe, consultant, University of Washington, Seattle, Wash.
Mr. M. R. Flannery, research assistant

Mr. Eugene Loh, Jr., research assistant

Dr. M. Sparks, principal investigator

Lona Case and Frances Rossiter typed the manuscript and prepared the

art work with their usual skill and care.
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Sec. 1

I. INTRODUCTION

Over the years the quality of transparent materials for the ultra-
violet and visible regions has been steadily improved by the advance of
various material-refinement and crystal-growth techniques]'] such as the
use of reactive-atmosphere processing (RAP).]‘Z’]'3 With high-power lasers
now becoming available at an increasing number of frequencies and at in-
creasing power levels, obtaining ultra-low absorptance materials for high-
power use throughout the optical frequency range is emerging as an important

problem. There is in fact considerable current interest in reducing the

residual optical absorption of materials in order to increase the power of

ultraviolet and visible lasers and to increase the resistance of materials
to damage by high-intensity radiation in laboratory and space environments.

It has been shown]'a’]'5

that impurity absorption is an important effect
that Timits the ultraviolet intensity that materials can transmit. Thus,

it is important to understand the origin of the residual absorption in order
to provide guidance for programs to further improve the materials and to
estimate the expected materials limits set by residual imperfections. Re-
ducing the absorptance of dielectric reflectors and of antireflection coat-

ings are problems of growing importance. It is believed]‘6

that impurities
in deposited films is a major factor limiting the absorptance of both types
of coatings. Thus, the present tabulation should be useful in identifying
the impurities responsible for observed absorptance in bulk materials and
coatings, in identifying potentially troublesome impurities in a given

material at a given operating wavelength, and in selecting a wavelength

that is likely to be less troubled by impurity absorption.
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Sec. 1

A study of impurity absorption in the 2 — 15 yum infrared region was
completed ear]ier.]‘7 A tabulation of absorption-line positions (with no
spectra) for alkali halides has been given by S. C. Jain, A. V. R. Warrier,

and S. K. Agarwal.]'7a

In the present report, the optical-absorption spectra of commonly
occurring impurities in several ultraviolet-transparent solids are tabu-
lated and discussed, and the assignments of the absorption bands are re-
viewed. The wavelength region included extends from the very near infrared,
at 1 pm (1000 nm, or 0.124 eV), through the vacuum-ultraviolet region. The
host materials covered are LiF, NaF, KC%, MgFZ, Can, Mgo, A2203, SiOz, and
silicate glasses.

The features of the spectra are summarized in tables and figures.

The peak positions, approximate line widths, and, when available, the oscil-
lator strengths of all bands are summarized in correlation-type graphs for
each material in Figs. 1.1 — 1.9. An abbreviated graphical summary show-
ing the positions of several important impurity-absorption bands in several
materials is given in Figs. 1.10 through 1.14, which also shows the intrin-

sic electron and ionic absorption edges.

The intrinsic and extrinsic absorption spectra are categorized accord-
ing to the type of host material, e.g., alkali halides, alkaline-earth
halides, and oxides, and according to the type of impurity, e.qg., halogens,

H and D centers, OH and 0D centers, 0, S, Se centers, color centers,
radiation-induced defect centers, transition-metal ions, and rare-earth ions.
Comparisons of results for various host materials, and also for various im-
purities, are given in the form of tables and figures whenever possible.

A number of commonly occurring types of absorption centers are defined in




Sec. 1

EXPLANATORY NOTES FOR FIG. 1.1

Column 1: Lists properties of pure, doped, and irradiated materials. For

doped or irradiated materials the properties appear in the following order:

1. impurity or dopant (Oé or LiOz)
2. radiation (electrons, neutrons, etc.)

3. color centers or color bands (V,, F, or a, 8, etc.)

K’
4. additional information (sample color, photochromic, etc.)

Some of the AQZO3 spectra indicate the polarization of the electric
field with respect to the ¢ axis. The composition of silicate glasses is
given befcre listing the impurity. The absorption edge is defined as the

photon energy at which g=5 em 7,

Column 2: Sample temperature.

Column 3: Peak positions (|), widths (+), and oscillator strengths
(numbers) of impurity spectra. Ellipses indicate absorption structure above

the absorption edge. Some lines are labeled by their color center or impurity.

Column 4: References: T2.1 stands for Table 2.1, F2.23 stands for Fig. 2.23,

and II-C 9 6f indicates a paragraph in the text.
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Fig. 1.10. Summary of the positions of important impurity-absorption
lines in LiF shown with respect to the ultraviolet and infrared cutoff
frequencies. A complete summary of absorption bands in LiF is given

in Fig. 1.1.
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Table 1.1. Table 1.2 summarizes the intrinsic crystalline-structure,
vacuum-ultraviolet cutoff, infrared cutoff, and major color-center absorp-

tions for the materials covered in this report.

In general, ionically bonded materials (near the edges of the peri-
odic table) consisting of light elements are transparent to shorter wave-
lengths (in the UV or VUV region). The fundamental absorption across the
energy gap can be described as charge transfer from the valence band, con-
sisting of p orbitals of the anions, to the nearly-free-electron conduction
band.]‘8 The resulting Urbach absorption edges are quite steep. The devia-
tions from the sharp Urbach-edge absorption typically occur at quite high
values of absorption coefficient, from ~1 cm_] to several hundred cm“]

The absorption coefficient remains high over a considerable range of photon
energies, up to ~ 5 eV, as seen in Figure 2.1 below. These absorption
tails are believed to be extrinsic in most cases, but Pinnow and coworkers
argued that the long secondary exponential absorption (the much steeper
Urbach edge being the primary exponential absorption) in fused silica and
glasses is intrinsic. (Ref. 4.5, Figs. 4.4-4.6, and accompanying discus-
sion in Sec. IV, Vol. II) The behavior of the optical absorption near the
infrared cutoff typically is quite different, the value of the absorption
coefficient at which the extrinsic contributions become greater than the
intrinsic multiphonon absorption being as low as B = 10'4 cm'] or even some-

what lower. No absorption analogous tc the secondary exponential absorption

has been observed in the infrared region.

This study of Pinnow and coworkers appears to be the only attempt to
distinguish between absorption and scattering. This distinction is ex-

tremely important in low-power optical systems since absorption gives rise
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Sec. 1

to heating that can cause fracture or excessive optical distortion. With
the current interest in high-power optical systems in the ultraviolet and

visible regions, additional absorption measurements may be forthcoming.

The impurity absorption in transparent crystals may be grossly

divided into two types:

In intra-impurity absorption, the electron transitions are between

two energy levels of the absorption center. Examples]'8 include most of
the absorption bands of H , OH , Oé, 02', F centers, such positive-ion im-
purities as T1+, In+, Sn++, and Pb++ having outer electronic configuﬁation

Z 10 n<10

Sty Ag+, and Cu’ with d configuration, transition-metal ions with d

n<1l4

and rare-earth ions with f The intra-impurity transitions can be weak

or strong, depending on the selection rules for the transition from the
ground state to the particular excited state of the ion or defect.]'9
For example, both the 3d to 3d transition of transition-metal ions and the
4f to 4f transition of the rare-earth ions are weak since they are parity-
forbidden. However, the 3d to 3d transitions are generally stronger and
broader than the 4f to 4f transitions in solids because the 3d orbitals are
more strongly coupled to vibrational modes than are the 4f orbitals because
the 4f electrons of the rare-earth ions are shielded from the surroundings
by the outer 552 and 5p6 electrons, while there are no outer electrons to

shield the 3d electrons. The vibronic coupling mixes the parity so that

the transitions are no longer forbidden.

Interconfigurational transitions can be weak or strong, depending on
the particular selection rule. For example, the 3d to 4s absorption of
transition-metal ions is weaker (oscillator strength '~10'3) than the 3d to

4p absorption (oscillator strength -10'2) or the 4f to 5d absorption of
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the rare-earth ions (oscillator strength ~]O']) since the 3d to 4s absorp-
tions are parity-forbidden while the latter are parity-allowed. The parity-

allowed transitions are strong only if they are also spin-allowed.

tron from a p orbital of a negative ion to the nearly-free-electron conduction

=12 gl

band or to the s or d orbitals of transition-metal ions,
s, d, or f orbitals of rare-earth ions. The impurity can be either a posi-
tive or negative ion. The charge-transfer transitions involve more than

one ion and are usually allowed.

Absorption lines are often characterized by the value Bmx of the ab-
sorption coefficient 8 at the center of the line, the line width Ahw (full
width at one-half the maximum value), and the oscillator strength f, which

are related by the expression

- r
L 5 o e d T (1.1)

mx
(nr + 2}

NE = (8.7 x 101 em™? ev

where N is the number of centers per cubic centimeter, n. is the refractive

index of the host material at the wavelength of the absorption band, the ab-
sorption coefficient Bmx at the peak is measured in cm'], and the line width
Muw is measured in eV. The factor 8.7, which is for Gaussian lines, is re-

placed by 12.9 for Lorentziar lines, thus giving the well known Smakula

equation.]‘]3 For fl # 1.5, N = 2 x 1022 cm'3 (formally for a solid density),

sh = 0.5 eV, and f = 1 (strong absorption), (1.1) gives By = 5.5 x ]06 cm'],
which is reasonable for solid densities since values of 8 in such strong-
absorption regions as that above the fundamental absorption edge are of this

order of magnitude. One part per million of a strong absorber (f = 1) would
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: R -1
give B .. " b5 cm

for this case. The potential severity of the impurity
absorption problem for high-power optics is illustrated by this same example.

Values of 8 less than 1074 em! already are needed in high-power-laser sys-

tems. Only two parts per billion of a relatively weakly absorbing impurity

(f = 10'2) will give rise to B = 10°% em™1 at the center of the absorption

band. For a strongly absorbing impurity (f = 1), only 0.02 parts per billion,

or 4 x 10'2 centers per cubic centimeter, would give B = 1074 !,

The absorption coefficient B is, of course, the exponential decay
coefficient B in the Beer law I = I0 exp(-82). The optical density is de-

fined as 1og]OIinC/I where "inc" and "trans" denate incident and

trans’
transmitted. In the limit of small reflectance (negligible multiple re-
flections), the absorptance is given by A = 1 - exp(-BL), where & is the

sample thickness, the transmittance is given by T=1-A-R=1-A

7

= eXp('BQ) = ] inc?

Erans and the absorption coefficient can be obtained

from the optical density from the expression

1

g =~ 2.308  x (optical density) {1.2)

for reflectance R << 1.

A sample with 9.0 percent reflectance for two surfaces and no absorp-
tance has an optical density of log]0 [(17(1 - 0.09)] = 4.10 x 10'2. For
samples with a well defined base line, such as in Fig. 4.1, the base-line
value of the optical density is subtracted from the reported value and (1.2)

is used to estimate the value of 8. For example, in Fig. 4.1,

g = 2.30(0.1)°" (1.0 - 0.08) = 22.1 em”)
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Sec. II-A Alkali Halides
I[T. ALKALI HALIDES

A. Intrinsic Properties of Alkali Halides

The intrinsic Urbach ultraviolet absorption edge at 105 nm (11.8 eV)
and the onset of infrared absorption at ~4 - 10 um (4000 - 10000 nm, or
0.311 - 0.124 eV), which define the edges of the broad transmitting region
of LiF, are shown in Fig. 1.10, along with representative absorption-peak
positions. The Urbach ultraviolet absorption edges and the beginning of the
extrinsic absorption spectra are shown in Fig. 2.1 for LiF, NaF, CaF

2’
and Ban.z'] The intrinsic exciton and interband absorption spectrum of

SrFZ,
thin LiF fi]msz'z is given in Fig. 2.2. Fiqure 2.3 summarizes the intrinsic
UV spectra of other alkali-halide films on LiF substrates at room tempera-
ture and 80 K.z'3 Similar spectra have been measuredz'4 at 10 K.

The band gap is sometimes taken to be equal to the value of the ab-

sorption shoulder,z'5

for example at 8.5 eV (146 nm) in KCL as indicated by

the vertical arrow in Fig. 2.3(g). The positions at 80 K of these absorp-

tion shoulders, which correspond to the onset of interband transitions, along
with the positions of the lowest-energy exciton peak at 300 K, the American
Institute of Physics Handbook values of the band gaps, and the room-temperature
absorption edges (which were taken as the position in the Urbach-tail region

at which the absorption coefficient g = 5 cm']), are summarized in Table 2.1
for the alkali halides. It is seen that the room-temperature absorption

edges range from 8.2 to 11.8 eV for the fluorides, from 6.6 to 7.4 eV for

the chlorides, from 6.1 to 6.4 eV for the bromides, and from 5 to 5.3 eV for

the iodides.
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