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PREFACE

The UNIX operating system for the PDP-11 series of minicomputers
has gained wide popularity in academic and government circles. Under
the Project AIR FORCE (formerly Project RAND) study effort,
"Information Sciences Research," The Rand Corporation is engaged in
analyzing, evaluating, and developing computer operating system
concepts with UNIX. Recent work has dealt with such topics as
security, file systems, performance, user interfaces, network access,
and office automation.

This report, together with its companion report, R-2064/1-AF,*
describes the current state of work in the area of interprocess
communication (IPC). The companion report outlines the major issues
involved in providing IPC, describes the standard UNIX IPC facilities,
and points out several of their weaknesses. The present report
describes the '"port'" mechanism developed at Rand to overcome some of
those weaknesses. [t presents details of the implementation as well
as sufficient background material to enable the UNIX programmer to
understand how ports work and how to use them. While the report is
intended principally as a user's and implementer's guide, the reader
with a general knowledge of operating systems should be able to follow
the discussion without difficulty.

% Carl Sunshine, Interprocess Communication Extensions for
the UNIX Operation System: I. Design Considerations, The Rand

Corporation, R-2064/1-AF, June 1977.
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SUMMARY

The interprocess communication (IPC) facilities in the UNIX
operating system, known as pipes, suffer from several deficiencies.
They do not allow communication between processes unless prior
arrangements have been made by a common ancestor of the processes
desiring to communicate. In addition, they do not support the notion
of a "message'; all the data written on a pipe are merged into a
single stream. Thus, it is impossible for a receiving process to
determine which of several potential senders is the source of the data
received, or even the boundaries between the data coming from
different senders. These deficiencies and others have led to the
development of a new IPC mechanism for UNIX, known as a port.

This report describes the implementation of ports as UNIX
"special files." Ports build on the existing pipe mechanism to
achieve system buffering of messages and use the UNIX directory
structure to provide a naming capability so that unrelated processes
can communicate. The ordinary UNIX access protection mechanisms also
carry over to ports. Thus, ports constitute a logical extension to
the UNIX file system and have proved quite easy to implement.

In addition to the implementation description, this report
contains all the information required to use ports in programs. The
behavior of the UNIX input/output operations as they apply to ports is
described in Sec. IV. Details of the system call that creates ports

are provided in an appendix.
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[. INTRODUCTION

This is the second of two companion reports dealing with
interprocess communication (IPC) in the UNIX operating system. The
first report [1] presents an overview of the IPC mechanisms that have
appeared in various systems and analyzes the weaknesses of IPC in
UNIX. The present report describes a mechanism, called a port,
developed at Rand to eliminate some of those weaknesses.

The pert mechanism described here provides a means by which |
arbitrary UNIX processes can communicate in stream- or
message-oriented fashion. Much of the needed background is provided
in Sec. 11, where the UNIX pipe facility on which ports are based is
described. In Sec. III, the motivation for ports is presented and the
features they provide are described. Section IV provides a more
thorough description of the implementation of ports and the details
regarding their use, and in Sec. V their security-related aspects are
summarized. Details of the system call that creates ports are

presented in an appendix.
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Since this report deals with the specific measures taken to
improve the UNIX operating system, the reader is presumed to have some
familiarity with UNIX. "The UNIX Time-Sharing System'" [2]| will
provide most of the the requisite background. While a user-
(programmer)-level view is sufficient for understanding the essential
teatures of the IPC mechanism described here, some of the details
require knowledge of the internal operation of the UNIX kernel. Of
particular importance is an understanding of the UNIX pipe construct.

A UNIX pipe is an unnamed file that is used for stream-oriented
data transfer between related processes. A process creates a pipe by
invoking a system-provided primitive function; when the process forks,
its child or children inherit file descriptors {(process-local
identifiers by which files are referenced), for the pipe that they, as
well as the parent, can read or write. The only differences between
pipes and ordinary files are:

1. They are created by means of a special system call that
returns two file descriptors--one for reading and another
for writing. Thus the process that creates a pipe can pass
on to its descendants capabilities for reading or writing
only, or capabilities for both.

2. They have no names and are deleted when closed by all
processes having file descriptors for them (all files are
implicitly closed on process termination).

3. There is implicit synchronization that prevents the writers
of a pipe from getting more than a fixed number of
characters ahead of its reader(s) by blocking the writers
(putting them to sleep) until the reader catches up. When

the reader catches up, the file representing the pipe is
truncated to zero length.
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Pipes are buftered on three levels:

1. The data are buftered in kernel memory. The buffer space is
that for ordinary disk files and requires no additional
space in the kernel.

As blocks are needed by the rest of the system, kernel
buffers blocks are written to disk storage. Again, the
transfer of blocks to and from disk is handled just as it is
tor ordinary files.

(5]

3. [If the processes writing a pipe get too far ahead of the
reading processes, they are suspended until the r-aders
catch up. This is a kind of "buffering in time."

The new mechanism augments pipes by providing two new

capabilities:

1. It enables a reader to demultiplex the input stream into
""messages" and to determine the source process that wrote
each message.

2. It provides a naming capability so that unrelated processes
can communicate with each other.

In most other respects, the new mechanism is practically identical to
a pipe. It shares the buffering mechanisms and therefare makes use of
much of the existing kernel code. Thus, building on pipes has led to
considerable economy of implementation. In addition, since pipes are
a familiar construct to UNIX programmers, the extensions are
considerably easier for users to understand and use than mechanisms
that require new, specialized system calls. The new mechanism is

called a port.

.
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IT1. PORTS

Ports were originally conceived to solve the problem of multiple
asynchronous inputs to a process. This problem arises whenever a UNIX
process receives inputs from two or more sources and wishes to wait
for the first input from either of them. In UNIX a read of any one
file (or pipe) causes the reading process to go to sleep until data
are available ftrom that file or until the reader is signaled, in which
case data may be lost. This motivated an earlier Rand addition to
UNIX, the "empty" system call, which tells a process whether or not
data are available for reading from a particular pipe or terminal.
While usetul! in some contexts, the "empty" call is often unacceptable
because .t requires a process to poll its inputs, thus placing a
coustant demand on the processor.

[he port mechanism solves the multiple input problem by making it
possible to multiplex all of the various inputs into a single stream.
A port is created ncing a system call that is similar to the pipe
system call, except that the port is marked for special treatment on
writes. On a write to a port, the data to be written are preceded by
a header containing information identifying the writer and a character
count. The writer ID may consist of the process number of the writing
process, the user ID number of the owner of that process, a
system-assigned '"process group identifier” (that is the same for all
processes sharing a single “open" of the port), or any combination
(including none) of the above. The UNIX kernel supples the header, so

that: (1) from the point of view of the writer, writes to a port are

no ditfferent than writes Lo any other device (writes are




"device-independent'), and (2) the reading process can tell
unequivocally who did the writing and can parse the data into the
proper units, since headers cannot be "forged."

A port may be given a name and write permissions at the time it
is created. The name and protection information is specified just as
tor an ordinary tile and is implemented using the already existing
mechanisms within UNIX, thus providing economy of implementation as
well as general harmony with the rest of the system. Since ports may
be opened for writing in the same way as ordinary files by users with
write permission, they make possible interprocess communication
between unrelated as well as related processes.

With respect to the reader, a port can be created (and implicitly
opened), read, and closed like any other file. A port is an exclusive
use '"device" with respect to reading. Creating a port implicitly
opens it for reading, and only the creator has read access to it.

Note that this restriction does not rule out reading of the port by
descendants of the process that created it. They may be passed a file
descriptor for the already opened port, but it is assumed that they
will be cooperative in its use. Cooperation involves synchronization
by external means.* Assuming synchronization, the reading processes
will be regarded as a single entity referred to below as the "reader."
There are two reasons for the "one reader" restriction on ports.

First, unless individual messages could be directed to a particular

fg"xﬁ_ggample of such synchronization is the use of the "wait"

system call by the shell (the UNIX command language interpreter) to
prevent simultaneous reading of input data from a terminal by more

than one process.




reader, which can be achieved easily by the use of separate ports,
having multiple readers would seem to serve no purpose.  Second, if
multiple readers were allowed, there would have to be some means of
insuring that readers would always receive complete messages, i.e.,
that no message would be split among several readers. This would
require that the system perform considerable bookkeeping, perhaps to
the point of providing interlocks on simultaneous access. Instead, in
the present i1mplementation, once data have been written into a port
with its header they are treated as stream data just as on a pipe; the
system has only to pass the data on to the reader as called for
without regard to contents or message boundaries. The above
arguments, of course, apply only to the case of more than one
simultaneous reader. If applications for multiple readers, disjoint
in time, suggest themselves, the restriction could be removed.

In the simplest usage mode, a port can be regarded by its writer
as an output file or "device" that can be opened, written, and closed
like an ordinary file. The writer need not even be aware that the
"file" is a port. Writing to a port, like writing to a pipe, can be
regarded as writing to the process or group of related processs that
are reading the pipe.

A write that would overflow the pipe that serves as a buffer for
the port data is split into several portions, each with its own
header. To facilitate message- as well as stream-oriented
communication, there is an '"end of message'" indicator in the header to
enable a reader to recognize logical message boundaries defined by the
writer. A message in this context is the data presented to the port

by a single UNIX "write" system call. The pieces of a "split" message




may be interspersed with those cf other messages; 1t is the reader's
responsibility to reconstruct whole messages based on the headers 1f
1t wishes to do so. While it would have been possible to guarantee
that the data from each write would be contiguous, the decision to
split messages was made for two reasons. First, splitting messages
makes it less likely that a single writer will monopolize the port by
writing many very long messages. Second, it proved to be somewhat
easier to implement efficiently.

When all the processes in a "process group" (that is, all writers
sharing a single "open" of the port) have closed it, a zero length
message (i.e., just a header with an end-of-message flag and
information identifying the writer) is placed into the port. Thus,
the reader can determine when communication from a process group has

ended.
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[V. IMPLEMENTATION

Ports, as stressed earlier, make use of existing UNIX mechanisms
for buffering and naming. This section describes the implementation
in greater detail

The UNIX treatment of "special files" has made the implementation
of ports particularly simple. A UNIX special file, like an ordinary

' An inode is a data structure

disk file, is represented by an "inode.'
that contains the owner's [D, protection information (read, write, and
execute permission indicators for the owner himself, others in the
owner's group, and all other users), and other descriptive data. The
directory structure provides one or more names by which to reference
an inode, as well as additional protection from unauthorized
reference. Within each special file inode there are two 8-bit
numbers, a major device number and a minor device number. The major
device number determines which driver routines are used to perform the
opens, closes, reads, writes, and special functions (stty's) directed
to the "file." The minor device number is a parameter that is passed
to the driver when an operation is invoked and usually determines
which one of several (up to 256) "devices'" of that type is to be
affected.

It has been relatively easy to implement ports as UNIX special
files. Naming and access control are provided by the same mechanisms
that apply to ordinary files. In-core and disk buffering of port data
use the mechanisms mentioned above that already exist for pipes.

Implementing ports as special files provides a very clean interface

L T R T S SR




to the code that manages port 1/0. Except for the system call that

creates ports and minor (one-line) changes to the "close'" and "seek"
system calls, all of the code required to implement ports is contained
in the port "device" driver, which is installed in the kernel in the
usual way. Thus, UNIX already provides the user interface through the
usual 1/0 system calls.

The reason that a separate port creation mechanism (the port
system call described in detail in the appendix) is desirable is that
the creation of special file inodes is a privileged operation. While
it would be possible to implement ports by providing a privileged
process for port creation and management, investigation has shown this
to be less convenient, efficient, and flexible than the new system
call.

All the data structures necessary to support the IPC mechanisms
were already present in UNIX, namely, the files table and inodes. A
port uses two inodes. The first is a special file inode with a major
device "port," the other is a disk file inode identical to those that
the pipe call creates. The minor device for the first inode is set at
the time of port creation to indicate what (if any) data are to be put
into the headers prefixed to data written on the port. If a non-null
name is given, the port call creates a directory entry for the inode.
One of the seven spare '"address'" words in the port inode points to the
disk file inode. The file table entry (entries, if opened for reading
and writing) uses one of the several spare flag bits to indicate a
"port." This enables the seek system call to return an error as it
does for pipes, and the close system call to notify the driver when

each process group, not just the last, closes the port.




with

The operations that can be pertormed on ports are given below.

their effects and restrictions on their use.

open:

write:

A port can be opened only for writing and then
only it:

(1) it was given a name when it was created
(otherwise it could not be specified as an argument
to the open system call),

(2) the caller has write permission (this check is
performed by UNIX before the driver open routine is
called), and

(3) the inode is already opened for reading. Thus,
one process can communicate with another only if the
other has indicated (by creating a port leaving it
open for reading) that it is willing to listen.

The driver uses the information in the port-type
inode to locate the disk file inode, which it treats
as a pipe. Headers are prefixed to the data if
required. It may be necessary for the driver to
split a single write into a number of '"chunks,"
putting the writer to sleep until the reader catches
up (i.e, makes more room on the '"pipe" by reading).
There were two possible conventions:

(1) Guarantee that all of the data from one UNIX
"write'" be written before any other writer could
place data in the "pipe," or

(2) Split a single UNIX write into several "chunks,"
each having its own header, and intersperse the
chunks from different writes as required.

Under (1) it would have been easier for one writer,
through malice or error, to monopolize the use of the
port by doing large (up to 65,535 byte) writes.
Alternative (2), which was chosen, necessitated the
use of the end-of-message flag to enable the reader
to recognize the '"write" boundaries (messages). The
problem that this introduces is that the reader may
receive many partial messages before any one message
is completed, and has to buffer partial messages in
user space when message boundaries are significant.

If a write is attempted atter the reader has closed
its end of the "pipe,’
Jjust as on a pipe.

b §

a signal (##11) is generated,
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read:

close:

stty/gtty:

SNy mie
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Ports look like pipes with respect to reading. The
read call returns the minimum of the number of
characters specified and the number in the "disk
tile," sleeps if the file is empty, and returns an
end-of-file indication when the last writer does a
close. Ports provide stream data; it is the
responsibility of the reader to keep track of message
boundaries based on header information, an operation
that can be performed easily by a user subroutine.
Since the data are stream-oriented, the reader can
read them in whatever manner it likes, reading
headers and data with separate operations, or reading
and buffering blocks for greater efficiency.

The close function behaves as it does on any other
file, except that if headers are being written, a
zero length message (header only, with end-of-message
bit set) is written when each process group closes
the file. This required only a one-line change in
the UNIX "close" kernel code and enabled a reader to
detect a logical end-of-file condition for each
writer. Unfortunately, the last close of a port
cannot make its directory entry disappear, since
there is no storage available in which to keep its
name. Furthermore, there is no way to control the
proliferation of names for a given inode (port, in
this case) through link (In) operations. Thus, it is
the user's responsibility to remove the names he
creates (with the "unlink" system call or the "rm"
(remove) command. However, while a careless user may
use up inodes and directory entries, it is just as if
he had failed to delete temporary files of zero
length.

The special function calls, stty and gtty, make

it possible to implement '"device-particular”
operations in UNIX. At present, stty calls on ports
are ignored, but the following paragraph indicates
some of the options that could be implemented to
enable the reader to tailor the characteristics of a
port to meet special requirements.

Since reading a port, like reading any other UNIX
file, causes the reader to block until data are
available, it might be useful for a reader to be
able to determine when and how many data are
available. The stty call could be used to:

(1) Request that a signal be generated whenever data
are written on an empty pipe, or

(2) Return the number of bytes available to be read.

v -
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In some applications it might be important for the reader of a
port to exercise some control over the writers, especially to prevent
some writers from monopolizing use of the port at the expense of

others. The special function calls might be employed in this regard

to:

1. Prescribe a maximum "chunk size," with the driver enforcing
a rule that a given process not be allowed to write two
consecutive chunks until the pipe is emptied by the reader.

2. Return the number of open write file descriptors and the
number of writers waiting to write (number of "active"
writers). This could be used to compute a reasonable chunk
size for the above.

3. Cause a writer to receive an error indication instead of
going to sleep if all of its data can not be accepted.

4. Set a maximum message size (for a single write) and cause
writers to receive an error indication if they try to write
more.

5. Suspend a particular writer (by putting it to sleep when it
tries to write), or reactivate a suspended writer. Note
that permission to suspend is implicit in the fact that the
writer is using the port.

6. Reactivate all writers or a single selected writer.

B P e P
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V. SECURITY IMPLICATIONS

The creator of a port has complete control over it. When a
process creates a port, the (effective) owner of the process becomes
the owner of the port. The port creation system call specifies a set
of write permissions for the creator himself, other users in his
group, and all other users, just as the '"creat" system call does for
ordinary files. Only the specified classes of users plus the

rivileged "superuser'" may open the port for writing. No process,
P 8 P P P p

even one owned by the "superuser," can open the port for reading, so
the creator of the port, and those of its descendants to which it
chooses to pass file descriptors, can read it without fear of losing

data to other processes.

Since the kernel supplies the headers on port data and headers
include a byte count, no writer can "forge" a header. Thus the reader
can rely on knowing what process, process group, and user (real and
effective) wrote each byte that it receives.

Port names are directory entries, just as are the names of
ordinary files. The port may be linked to (given other names) and may
have its names removed by any user having permission to write in the
relevant directories. Thus the '"superuser" may remove the name for
any port. Removing the name does not, however, prevent the reader and
writers who have the port open from proceeding; it merely keeps other
potential writers from gaining access to it.

A (possibly malicious) writer may write to the port as much and
as often as desired in the absence of the flow control features

mentioned at the end of the previous section. However, all the active

L. . v [ — —
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writers are suspended (blocked) when the combined data from the
writers as a whole get ahead of the reader by a fixed number of bytes. ¢
When the reader catches up, all the blocked writers are reactivated at
the same priority, so each then has an equal chance to gain access to
the port. Thus, while any writer can delay service, none can
completely deny access to the others. In addition, of course, the

reader can ignore data from a writer that '"misbehaves."
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VI. REMARKS

The IPC mechanism for UNIX described here provides several
capabilities that either could not be obtained, or could be obtained
only unreliably or inefficiently, within standard UNIX. It should be
noted, however, that the mechanism is directly concerned only with
data transfer rather than synchronization. Improved process
synchronization will probably have to rely on improvements in the UNIYX

signaling mechanism or development of an alternative mechanism.
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Appendix

DETAILS OF THE PORT SYSTEM CALL

The IPC mechanism described above requires only one new system
call. The new call creates a port and opens it for reading (and,

optionally, for writing also). The format of the call is as follows:

char *name;
int fdr, mode, fds[2];

fdr = port(name, mode, fds);

fdr: A returned file descriptor for reading, or -1 if the call
fails.

name: The name by which a port may be opened for writing. It
may be a pointer to a null string ("'") in which case the
port cannot be opened by other processes. The name may
be a complete path name (beginning with a "/'") or may be
relative to the current directory, just as for the '"creat"
system call.

mode: This argument is a 16-bit word formed from the sum of the
following:

0100000: If the "file" is to be opened for reading only,
and not for writing (default is to open for
both reading and writing).

040000: If the header supplied on writes should contain
the process ID of the writer.

020000: If the header supplied on writes should contain
the real user ID (in the low-order byte) and
the effective user ID (in the high-order byte)
of the writing process.

010000: If the header supplied on writes should contain
the process group to which the writer belongs.

If none of the above three options is chosen,
no header is supplied and the port reads just
like an ordinary UNIX pipe. Otherwise, the
indicated words are written in the above order,




followed by a word containing the character
count ot the data to tollow and, 1n the high-
order byte, a 1 if the last byte of the data s
the last byte written by a single write call,
indicating an "end of message."

0200: Write permission for creator.

020: Write permissions for others in the creator's
group.

02: Write permissions for all other users.
If the file name is null the permission bits are
not used, and the file is opened for reading and

writing regardless of the "open flag'" (0100000)
setting.

fds: The file descriptors for reading and writing are returned in
fds[0] and fds[1], respectively (fds[0] = fdr). If mode has
the 0100000 component, the fds argument is not used.
Named ports can be opened for writing by processes with write
permission, just as an ordinary UNIX file. A writing process need not

be aware that it is writing a port, as the headers are supplied by the

port "driver" routine in the kernel.

LS TR TRy T R T N S W Y YR AR N e Ny T

BTG 4 S A Aty o

o

e s v e

o M




19

REFERENCES

Sunshine, Carl, Interprocess Communication Extensions

for the UNIX Operating System: I. Design Considerations,
The Rand Corporation, R-2064/1-AF, June 1977.

Ritchie, D. M., and K. Thompson, "The UNIX Time-Sharing
System,'" Comm. ACM 17, 7, July 1974, pp. 365-375.




