
I r
A0 *044 201 RAND CORP ~~ ~ A MON ICA CALIF F/S 1~/2INTERPROC!~Y COP~MUN 1C*TION EXTENSIONS FOR THE (mIX CflRATINS SY—ETc(U)

JUN 77 , Z C K ER F49620—17—C—0023
UNC LASST F TF D R— (J € u / 2 — A F

_ I!flfl ~~i!Wi
END

DA T E
FILPI D

10—77
DOC

I

I t•~ ~ IIDI2~ 1112.5
I .V L~~~~~~’~~

~ IIIl~
I I.’ lIIH~°

IIIII=!~(liii’ ~ IHI(~
4. ~nn~

MICROCOPY R[SOLUrION TEST CHA RT
N,\ ’ r~ NA 141 l1~i

((4 ,l AM

—,—~~~,-- -~~~~~

~~
‘
~
‘P~T ~~~~~~~~~~~~~~~~~

(¼!~.
1T

R-2064/2-AF
June 1977

inter process Communica tion Extensi ons
for the UNIX Operatin g System :

II. implementa tion

Steven Zucke r

A Project AIR FORCE report -~~~~~~
~~~~

prepared for the \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

United States Air Force - —

_ _  = Rand
_____ SANTA MONICA. CA. qo4ob

p

-



~~~~~-~~~~~~ -~— ----~~~~

The research reported here was sponsored by the Directorate of Operational Require-
ments, Deputy Chief of Staff/Research and Development, Hq. USAF under Contract
F49620-77-C-0023. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright nota-
t ion hereon.
Reports of The Rand Corporation do not necessarily reflect the opinions or policies
of the sponsors of Rand research.

4

/

Published by The Rand Corporation

_ _ _ _ 4 4

—

~~~~~~~ . A~~~, ’ ~~~~~~ )~~ pay . ~~~~~ I~ o . ,

I —- 

P&URT LX)CU~~~N TA O~ U~AGE 
_ _ _ _ _

ki O1~~ k iM( 3 t ~~ ~~. GOVT .kCCCS~~Of: NC)4 ,., 1 o Y S  CA ’  A _OG J.~~MGEH

‘

±~~~
. 

~~~~~~~~~~~~
/
~:~~~~

-
_ _ _ ______

4 ~IT ~ J ~en,J S~~hHgle) S ‘TYPE ,)F NE.PQ~~T r~ P~~R&CG CO V ERED

Interprocess Comc4uv~ication Extensions for the ‘‘ Interim
UNIX Operating System~ - II. Imp l~mentatio~

—

6 rE QROt4~ ORG . cEPOf ’ N U M B E R

~~. A u T t i o R~~,;

Stev i~~~~cke~~j ,. F496 2~-77-C-OU23 \

PERE ON U jNC, O R GA N I Z A T I O N ‘lAME AN D AD DRESS ‘~~~. ~~~~~~~~~ E u ~~ .’T e F ; ~
E : . , TASK

The Rand Corporation A R f A & *OR’(jjNI ’T NUU9(F(S

1700 Main Street
Santa Monica , Ca. 9041~ -

-
~~O~~ T R O~ ,L.IN G O~’ FICE ~ Au A N D A D . F5

—-

Project A I R FOR CE O~fice (~FI~DQA)
~~~ ~~~ iU~~~~~~~~~~~~~ 77 1

Directorate of Operationa l Requirements ~JY•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hq USAF , Washington , D. C. 20330 
~ r —

M C N I T O R I N G  A GEN C Y  N A M E  I. AODRES5(f l  dlttere,,t from ConIrollin~ OUice) tb ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFIED
IS., OE~~LA S S I F I CA T I C N  OC WN~~PA C P N G

SC H EDULE

lb DI STRIDU lION STA1 EM E N T  (of thle Report)

Approved for Public Release; Di str ibut on Unlimited

F? OlSTRI$UTtC~4 ST.~ ryMrN-r (of the eb.trect entered In Block 20. II dIfferen t from Report)

No rest~’ictionS

l~~. SUPPLEMENTARY NOTES

19 K E Y  W01405 ~~~~~~~~~ on rC~~e.e. .id. lI ,,.c.a.ary end IU,nhlIy Ay Stock number)

Data Processing Op~~at ng systems (Computers)
Data Transmission Iriterprocess Communication
Computer Systems Programs
Coding Theory
Software (computers) 

_____

2O A8S~~~ LC’ ~C,ntdnue on Ceerse .14. It ne.eeaary 1rJ ident,fy by block ni~~ub.r~

see reverse side

-
- f

’
~

-
. ~.

~~~~~~~ 
1473 EUIT~(3M Oe I ~~~~ 6’ IS ORSOLETE Sir LED __

SfCUA ITY ‘.LA ~ A i~~ICa r1)te Dr ~.PE P a t “Pt,.m be’ . fn1 e•e,
C

___ ~~.‘

.

.,.
~~~~~~~~~~~~~~~~~~~~~~



-

U~~LA SSI1IED ______

SE C U R I T Y  C~ ASSIFIC ’ A T IO P I  Ø~ THIS PA ,~E (Wh..- Data u.S...))

The UNIX operating system for the PDP-l1

series of minicom puters has gained wide

popularity in academic and government

circles. This report considers inter-

process comun~ .ation (IPC) facilities
with the goal of developing an improved

IPC capability for UNIX. A companion

report outl i nes the major issues i nvolved

in providing IF’C , describes the standard
UNIX IPC facilities , and points out several

of their weaknesses. The pre~~nt report

describes the ~port’ mechanism developed

at Rand to overcome some of those weak-
nesses. It presents details of the imple-

mentation as well as sufficient background
material to enable the UNIX prograniner to
understand hnw ports work and how to use
them. (See R-2064/1-AF.) ~, (PB)

UNC LASSIFIED t



‘
.

~ : . r :T ~~~:~~~~~~~~~~~ 
.—-. — —

~~~
-

R-2064/2-AF
June 1977

Inter process Commu nication Extension s
for the UNIX Operatin g System :

II. Implementation
~~~~~ 

c~--~
Steven Zuck er S T ” ’ ~ ~11

\~:, ~~~~~~~~
\.i~~~ ~~

A Project AIR FORCE report
prepa red for the

United States Air Force

Rand
~~~~ MONI( A . (‘&  ~O4ot~

A I ’ I ’ROVI I) FUll I’I RLI(RH II~.I RIIIL I ION I INL I M I I I I)

E~:±1’’~ _ _ _ _ _ _ _ _

- -

r ~‘r~~’~~~~~ Wq ~~~~~~~~-.--~~ -~~~~~ -

1 1 1

PREFACE

The UNIX operating system for the PDP-ll series of minicomputers

has gained w ide populari ty in academic and government circles. Under

the Project AIR FORCE (formerl y Project RAND) study effort ,

“Information Sciences Research ,” The Rand Corporation is engaged in

analyzing , evaluating, and developing computer operating system

concepts with UNIX. Recent work has dealt with such topics as

security , file systems , performance , user interfaces , network access ,

and office automation.

This report , together with its companion report , R_2064/’l_AF,*

describes the current state of work in the area of interprocess

communication (IPC). The companion report outlines the major issues

involved in providing IPC , describes the standard UNIX IPC facilities ,

and points out several of their weaknesses . The present report

describes the “port ” mechanism developed at Rand to overcome some of

those weaknesses. It presents details of the implementation as well

as sufficient back ground material to enable the UNIX programme r to

understand how ports work and how to use them . While the report is

intended principally as a user ’s and imp lementer ’s guide , the reader

with a general knowled ge of operating systems should be able to follow

the discussion without difficulty.

Carl Sunchi ne , In terp~ ocess Communication Extensions for
the UNIX qperation System : I. Design Considera t ions , The Rand
C o r p o r a t i o n , R - 2 0 6 4 / l - AF , June 1977

\~~~~~~~~~~~~

__ _

— - —~~ -----~~~~~ --.-—-~- - —-

•Pfr~cedz,y~ ~~~ 7~~~y~ff~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V

SUMI’IARY

The interprocess communication (IPC) facilities in the UNIX

operating system , known as p i pes , s u f f e r f rom severa l d e f i c i e n c i e s .

They do not allow communication between processes unless prior

arrangements have been made by a common ancestor of the processes

desiring to communicate. In addition , they do not support the notion

of a “message” ; all the data written on a p ipe are merged into a

sing le stream. Thus , it is impossible for a receiving process to

determine which of several potential senders is the source of the data

received , or even the boundaries between the data coming from

different senders. These deficiencies and others have led to the

development of a new IPC mechanism for UNIX , known as a port.

This report describes the implementation of ports as UNIX

“special files. ” Ports build on the existing pipe mechanism to

achieve system buffering of messages and use the UNIX directory

structure to provide a naming capability so that unrelated processes

can communicate . The ordina ry UNIX access protection mechanisms also

carry over to ports. Thus , ports constitute a logical extension to

the UNIX file system and have proved quite easy to implement .

In addition to the implementation description , this report

contains all the information required to use ports in programs . The

behavior of the UNIX input/output operations as they apply to ports is

described in Sec . IV. Details of the system call that creates ports

are provided in an appendix.

I

h..._. ‘
~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 44


T ~

‘

~~~~~~~~~

“ - -

~~~~

“---‘

~

‘

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

- - .

~4r~9~ y~~’y,$r
~~~~~~~

v i i

CO NT E N ‘f S

PREFACE i i i

SUMHARY v

Section
I .  I NTRODUCTION I

1 1 .  PIPES 2

Il l . PORTS 4

IV. 1MPLE~1ENTAT ION 8

V. SECURITY IMPLICATIONS 13

VI. REMARKS 15

APPENDIX: DETAILS OF THE PORT SYSTEM CALL 17

REFERENCE S 19

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -

~~~~ 

ce A P

I . INTRODUCTION

This is the second of two companion reports dealing with

interprocess communication (TPC) in the UNIX operating system . The

first report [l~ presents an overview of the IPC mechanisms that have

appeared in various systems and analyzes the weaknesses of IPC in

UNIX. The present report describes a mechanism , called a port ,

deve loped at Rand to eliminate some of those weaknesses.

The port mechanism described here provides a means by which

arbitrary UNIX processes can communicate in stream— or

message-oriented fashion. Much of the needed back ground is provided

in Sec. II , where the UNIX pipe facility on which ports are based is

described. In Sec. III , the motivation for ports is presented and the

features they provide are described . Section P/ provides a more

thorough description of the implementation of ports and the details

regarding their use , and in Sec . V their security-related aspects are

summarized . Deta i l s of the system cal l tha t creates ports are

presented in an appendix.

. ,. .- .- —.

2

I I U I UI. ’)

Si t i c e i t i i S I t i l o r t Ira Is w i L i i t t i t
~~ i i i iii .i :~ I i r s t.i keii t I

i mp r o v e the 1~!’~ IX O j I r i i t i J i g s y s tem , the r e ad er i s p i e s u n s i t o tra~’ (‘ S I ll

f a m i l i a r i t y w ith UN IX. ‘Th e UN IX lime —S ha r i i ig System ’’ (21 w i l l

pr (iv ide most of the t iit r e (fu i sit e back ground. W I i i to a u i s e i —

(p r l l g r a n l n i e r) — l e v e l v i e ~ is su ffi ien t for underst anding the esse ntial

I el t ires of the I PC n i e c l i a n i sm do scr i bed here , 50100 (If the r io t .t its

requ i re knowled ge of the interna l operatio n of the UNI X Kernel . (it

part i ciii a r import ance is an understanding of the UNIX p i pe d u S t r u c t.

.A UNIX p i pe is an unnamed file that i s Used f u r st ream—oriente d

data tran sfer between r e l a t ed processes . A p ro ces s I r e a t e s a p i pe by

i tivoking a system—provided primi t ive functio n ; when the process forks ,

its child or children i nherit file descriptors (process—1o al

identifiers by whi ch files are referenced), for the pi pe t h a t they , is

well as the parent , can read or write. The onl y d i f f e r e n c e s between

p ipes and ordinary tiles are:

1 . They are created by means of a special system call that
returns two file descriptors -—one for reading and another
for writing. Thus the process that creates a pi pe can pass
on to its descendants capabilities for reading or writing
only, or capabilities for both.

2. They have no names and are deleted when closed by a ll
processes having f i le de sc r i pto rs fo r them (a ll files are
imp licitl y closed on p rocess termin ati on) .

3. There is inup i h i t synchronization that prevents the writers
of a pipe f r o m g e t t i n g more than a fixed number of
charact ers ahead of i t s r e a d e r (s) by b l o c k i n g the w r i t e r s
(pu t t I ng them to sleep) nfl L i i the reader catches up . When
th e reader catches up, t h e I i ft represent i tug the pipe is
t r u n c a led t o zero I engt I i .

~~~~~~~~ -.~~~~~
— — - .-

~~~~ . .- -  
. - . ~~~~---


~~~~.—--- 

Pipes ito lu if I O i l I wi t h r e e  le vels:

Ih e thi t i  i r e  h u t  t o  re~ iii kerute I m e m o r y .  The h u t  1er spa ce  is
that fur ordinary ilis k tiles and requires no a d d i t i o n a l
s p i c e  in t lie kr rue 1

As bl ocks ire needed by the rest of the system , kernel
buffers blocks are written to (fisk storage . Again , the
transfer of hlnc ks to and from tu sk is handled just as i t  is
for ordinary files.

3 .  I t  the processes  w r i t i n g  a p i p e  get too f a r  ahead of the
readi  r ig p roces se s , they  a re  suspended u n t i l  the  r .~a d e r s
ca t ch  u p .  T h i s  i s  a k i n d  of “ b u f f e r i n g  in t i m e . ”

The new m e c h a n i s m  a ug m e n t s  p i pes by P roy i d  r ig two new

I i~L l l l I l i t  ies  :

I. it enables a r eade r  to d e m u lt i p l e x  t h e  i np u t  s t r eam i n t o
“mess ages ” and to determine the source process that wrote
each message .

2. It provide s a naming capability so that unrelated processes
can communicale with each other.

In most other respects , the new mechanism is p r a c t i c a l l y  identical to

i pipe . It shares the buffering mechanisms ii~I t f ’ r r t ’ r p  makes use of

much of the existing kernel code. Thus , b i i i  t i l i n g  ( I I  pipes has led to

considerable economy of implementat i ( I f l  . Iii ittd i t i t t , s i u I  e p i pes a re’

a familiar construct to UNIX programmers , the e x t e n s i o n s  ire

cons i deral)l y easier for users to unders Land and use than mechani sms

that require new , specialized system calls. The new mechanism is

called a port.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ --

4

i i  1 . PURTS

l’o r t s  w o r e  originally l I n c e i v i ll t o  s o l v e  the 1l r olllerii lI t un ti l I ijtle

. u s v l l c h r I I i I o I i s  inputs to a 
~~~~~~~~ 

ess ‘Ibis pro ill ein arises w h e u i t vr l .1 (NI X

p i l c e s s r e c e i v e s i n p u t s f roi ii t w o u i uuio re sou rces arid wishes I) w a i t

I I l l t l i t ’ I i r s t i n p u t I r i m e i t h e r of t h e n . I i i U N I X a read of an y one

1 1 e or P i P~) ~tu ses t lie road i ng process to go to s leep unt i i t l i t u

:u re l e a i l u l l h e I ron that I ii e or u n i t i 1 the reader is signaled , in whi cli

I u s e cla t i u n i v he l u s t . I b i s I n e i t i v a t e l l an e a r l i e r Rand a d d i t i o n to

I N I X , l i t ’ ‘‘ e m p t y sV s t em c i I i , wit i h t o l l s a p rocess w h e t h e r or not

t a t a .u r u .u v u I I ;ih I~ f o r r r ,I I i ug t i -on a p a r t i en 1 a r p i pe or I cnn i na 1

W it u I t ’ i i s ~~t u l i n some on t ox t s , the “ empty ” c a l l i s o f t e n u n a c c e p t a b l e

t ’t c . i t t s ~ t r t ’ qu i I ! 1 5 , 1 j i r l lce s s t o pu I I i t s inputs , t h u s p l a c i n g a

:s I m i t l t ’n iar i d on the p roces so r

F l u e p o r t n u e c h . i n i s u n so l v e s t h e m u l t i p l e i n p u t prohi eri by m akin g i t

j I s s i l t i e t m o l t i p l i x i l l of t h e v a r i o u s i np u t s i n t o a s i n g l e s t r e an i .

t p o r t i s c r e a te d •~~ :;.g a sy s t e m c u l l t h a t is s i m i l a r to the p i pe

sy s t e m c i i i , OX o j t t h a t the port is ma rked for special t r e a t n u e n t o u t

wri I t s . Un ,u ~ r i t e t a a port , the data to be ~ r i t t e n a r e p r o ceded b y

a header t onl t ai n u i i g information identif ying the writer and a character

count. The writer ID niay consist of the process number of the writing

process , the use r I D number of the owner of t ha t p r o c e s i~ , a

s y s t e m — a s s i gn ed “p r o c e s s group i d e n t i f i e r ’ (t h a t, i s t h e same f o r a 1

proc e i ;ses s h a r i n g a s i n g l e “ open ” of the ’ p o r t) , or a n y comb m i t t ion

i n c I n i l i r ig 111) 110) o f t h e above . The I. N I X k er n e l s upp I es I he boa do r , s

t h a t : (1) 1 r u m t h e p o r t of v i e w of the w r i t e r , w r u t o s ’ t o ,i j ’ r t ire

no d i l l , ‘ r u ’ u i t t i . n i i w r i t e s t o ,mv o th e r d c v i ct (w r i t e s u r t ’

. .
‘
. . . ~~~~~ .

— —— — --

‘ 1ev) c e i I l i l O j) t ’n i I l (’n l t ‘) , i t o h (2) t he read i r ig p r o c l ’ss c a r l

i i I I O f l i i V o t il ly who tI ud the w r i t I ug and (111 p m r s e t h e ’ d a t a i r i t o the

proper t i n t i t s , s m ice h e a d e r s , i i i u i o t he ‘‘ t o r g e ’(I

A p o r t t n u v be given i name i t u d write p e r n l u i s s i o n s at the time it

is c r e a te d . t h e n ame m i i i p r o t ec t i o n i n f o r m a t i o n i s speci 1 1 1 1 1 j u s t iS

b r .ini o r d i n a r y t i l e i n ! is inn p l emeiited u s i n g L h e a l r e a d y e x i s t i n g

u n e c h a n i s n i s w i t h i n U N I X , t h u s p r o v i d i n g economy of im p l e m e n t a t i on as

wel 1 is genora l h a r m o n y w i t h the rest of the system. Since ports may

h u t ’ opened f o r w r i t i ng i n the same way as ordinary f i l e s by u s e r s w i t h

wr ite permissio n , they make p o s s i b l e i n t e r p roce s s c o m m u n i c a t i o n

be tween unrela ted as w e l l as r e la t e d p rocesses .

W i t h respec t L’ t h e reader , a por t can he c rea ted (a n d imp l i c i tl y

opened), read , and closed like any o the r f i l e . A po r t is an e x c l u s i v e

use “devic e” w ith respect to reading . Creating a port implicitly

opens it for reading , and only the creator has read access to i t.

Note that this restriction does not rule out reading of the port by

descendants of the process that created it. They may he pas sed a f i le

descri ptor for the a lready opened port , but it is assumed t h a t they

w i l l he c o o p e r a t i v e in i t s use . C o op e r a t i o n i n v o l v e s s y n c h r o n i z a t i o n

by e x t e r n a l means . ;’: Assuming s y n c h r o n i z a t i o n , the r e a d i n g processes

will be regarded as a single entity referred to below as the “reader. ”

There are two reasons for the “one read er” res t r ict ion on ports .

First , unless individual messages could be directed to a particular

- An examp le of such synch ronization is the use of the “w a i t ”
system call by the shell (the UNIX command language interpreter) to
prevent simultaneous reading of input data from a terminal by more
than one process.

.. ,

~~~~~~~~~ 
‘
~~~~~
:‘

~~~~~~~~~~
‘ .: ‘ ~~~~~~~~~~~~~~~~~



~

1)

i t t ~I c t , ,‘. h i i I hl ( I I I  I ’  i j m i c v t I , i s m  i s  I \  I L  i i 5 t  I I  5~’ l t . i ’ t t j r  t s

t I \  i r i g  Dim I t  u p h i  u u t e r  : ~~~i i i i !  ‘0 0111 t : . ‘ i \  n i t ’  j I~~~~ i . :  ~~~~i a~ , i f

tut u !  I i plo r e i c h ,  u ’  \ S I r I  .iI I o ~~C I I , t l m e ’ m t  w u u m  I f  I i . i v u  t I  t i c  s illit’ t i l t I I I S  c i t

m u s t u n t u g  I f i m  t I ’ l L i l t s woui  I I I  I w i  y s r t &  ( I ~‘ t ( o m I t l e t  c m U  S i  )4 1 S , I

t h a t  rio iuuessu g e wh im Iii be sp l i t  among  seV o1’ i I r e a c h - u s . ‘l i i i  S ~~I I u  I I I

r equ i re I hat t ime ’ :-ys t t in tie r t o  m u  cons i t i e ra h i  t o  hookk eep  i t u g ,  p u ’ r h m a p s  to

t h e ’  p o i n t  ot  p r o v i l l i n i g  u n u t e r h l , c k s  on s i m u l t a n e o u s  i t  l o s s .  I n s t e a d , i n

t he  p resent m nip I enne’n t a t  i on , once d a t a  have been w r i t  t o r i  i n to  a p o r t

w i t h  i t s  t ic a c i er  t I i t ’y ar e  t r e a t e h l  as s t r e a m  d a t a  j u s t  OS on a p i p e ; t h e

s y s t e m  has onl y to  pass  the’ d a t a  on to  t h e  r ead er  as cal  led  fo r

w i  t h o u m t  u ega rd  to  ( ‘ot i ten i t s  or  message b o u n d a r i e s .  The above

rgw ne n it  S , of  course , app l y onl y to th e’ ase of more t han  one

simultaneous reader. 11 app l ica tions f or mul ti ple readers , disjoint

in time , suggest themselves , the restriction could be removed .

in the simp lest usage mode , a port cait be regarded by i ts  w r i t e r

as .ì n u o u t p u t  f i l e  or “device ” t h a t  can he opened , w r i t t e n , and c losed

l i k e  a im o r d i n a r y  f i l e .  The writer need not even he aware that the

“fil e ” is a port. Writin g to a port , like wr it ing t o a p ipe , can be

rega rded as writing to the process or group of related processs that

a re reading the p i pe.

A write that would overflow the pipe that serves as a bufter for

the port data is spli t into several portions , each with its own

head er. To facilitate message- as well as stream-oriented

communication , there is an “enid of message” indicator in the h eader to

enable a reader to recognize log ical messag e boundar ie s def ined by the

writer. A message in this context is the data presented to the port

by i single UNIX ‘‘writ e ’ ” system t a l l ,  The pi e ces of a ‘‘ sic l it ” message

~~~~~~~~~~~~~~~~~~~~~~~~ 
‘, : ~. :.~~::.:

_ _ J

7

i i i ’ h~ i i I t l l ’ j I i St 1 t s t t h i 1 l i s , & o f other u t i e s s~~~i c s . i t u s t h u i t . i l, i

I S p c c i l s m l i i i i t V t o t o t i c i i s t l i i i I w f i , I u u u i o s s . m g c ’ s h i t - I l i i i l i i i ’ t i e ,oh t s i f

I t s i slit s to to s I I , W h i m h o I t w o u i I d hive’ l I O t ’ t u 155 i b I i ’ I i g I l t 1’ i u i l c c

that the I I I 1.i I rum e a c h w r ’i t t ’ wou Ed hue h u t t gu o i is , I f i t h i i S m ou ~ L u

sp l it messageS was niatle-’ for t~ o reason . Fi rst , s i m I i t t m u g m e s sa g~~s

makes i t l ess l i k e l y that a s i ng le w r i t e r w i l l m o n o p o l i z e ’ t he ’ p u t b y

writ i rig many v e ry long messages. Secormd , i t prov etl to be 5 (L m I I (S h . l t

easier to imp l ement efficientl y.

When all the processes iii a “proc ess gr oup” (that i s , a l l w r i t e r s

sha ring a s ingle “open ” of the port) have closed it , a zero length

message (i.e., just a header with an end-of-message flag anti

information identifying the writer) is p laced into the port. Thus ,

the reader can determine when communication from a process group has

ended.

- —~~~~~~~~~ ~~~~~~L
’
~~~~~~~~~~~~~~~’~~~

” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-



~~~~~~~~~~~~~~~~~~~~~~~~~ 

8

I V . I M PLEMEN t ATI ON

Ports , is stressed earlier , make use of e x i s t i r m g U N I X n i e c h i a n i i s u n s

f o r b u f f e r i n g ant i n a m i n g . T h i s sect ion u l e s c r i b e s the im p l em e nt a t ion

in greater detail

The UNIX treatment of “special files ” has made the imp lem e nt i t i o n

of ports particularl y s imp le. A UNIX special file ’ , like an ordinary

d i s k f i l e , i s r e p r e s e n t e d by an “ m o de , ” An m ode is a d a t a s t r u c t u r e

that contains the owner ’ s II), protection information (read , write , and

execute permission indicators for the owner h i m s e l f , o thers in the

owne r ’ s group , and il l othe r users), and other descriptive data. The

direc tory structure provi (les one or more names by wh ich to reference

an m ode , as well as additiona l pro tection from unauthorized

reference . Within each special file m ode there are two 8-bit

numbers , a major device number and a minor device number. The major

device number determines which driver routines are used to perform the

opens , cl oses , reads , writes , and special functions (stty ’s) directed

to the “file .” The m inor device number is a parameter tha t is passed

to the drive r when an oper at ion is invoked and usuall y determines

which one of several (up to 256) “devices ” of that type is to be

a f fec ted .

It has been relative l y easy to implement ports as UNIX special

files . Naming and access control are provided by the same mechanisms

that app ly to ordinary files. In-core and disk buffering of port data

use the mechanisms mentioned above that already exist for p ipes.

Imp l ementing ports as special files provi des a very clean interface

~

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- -‘-- .- --— —

~~~
—-..-. —

w
~~~~a ii ~~i,.i~~~~~~~~~~~~~~~__-__________  T “

~~~~~~
‘ ‘ ___________

9

to the code ’ t h a t manage ’s por t I / O . Excep t f o r the system cii I that

c r e a t e ’s p o r t s a n t i n i i nor (o n e — l i n e) changes to the “ cl ose ’’ and “ seek”

sys t em ca II s , all of the code ree~u i red to i unjm l enit’ti t p o r t s i S (‘oil ta i n eri

i n the ’ p o r t “ d e v i c e ” d r i v e r , w h i c h i s i n s t a l l e d i n the ke rne l i n t ime ’

usual w a y . Thus , U N I X a l r e a d y p r o v i d e s the user i n m t e r f ace t h roug h the

u s u a l I / O sys tem c a l l s .

The reason tha t a separa te por t c r e a t i o n mecha n i i sn i (t he ’ po r t

system ca l l desc r ibed in d e t a i l in the a pp e n d i x) i s d e s i r a b l e is tha i

the creation of special file m odes is a privileged operation u . While

it would be possible to imp lement por ts by providing a pri vileged

process fo r port crea t ion and managemen t , inves tigation has shown this

to be less convenient , efficient , and flexible than the new system

call.

All the data structures necessary to support the IPC mechanisms

were already present in UNIX , namely, the files table and m odes. A

port uses two m odes. The first is a special file m ode with a major

device “port ,” the other is a disk file m ode identical to those that

the pipe call creates . The minor device for the first m ode is set at

the time of port crea tion to indicate what (if any) data are to be put

into the headers prefixed to data written on the port. If a non-null

name is g iven , the port call creates a directory entry for the m ode .

One of the seven spare “address” words in the port m ode points to the

disk file m ode . The file table entry (entries , if opened for reading

and writing) uses one of the several spare flag bits to indicate a

“port. ” This enables the seek system call to return an error as it

does for pipes , and the cl ose system call to notif y the dr iver when

each process group , not. just the last , closes the port .

~~~~~AL 

.

~ — s ~’ ~J~~~.LI ‘ - • ‘ —
~ 

. , . ..  I— .,
‘ 

...



10

‘the opt’ rat tun is I hi . i  I c i  n i be po m l  o rm e ’ul on p o r t s  ire ’  g i v on  h ue  I ow .

with thei r t ’ [ f e l  t s  trot r e s t r i c t  i o n s on th tei r use .

ope’nm : A P° rt car t be op e ’nued oni I y f o r  w r I t I ng ,i n il  t hen
o n l y i f :

(1) it was given a name when it was c r e a t e d
(otherwise it cou lii riot be’ spec i f  ieel as an a rgument
to the’ open system call),

(2) the caller has write permission (this check is
p~ rfo mmcii by UNIX befo re’ the ul r i ye r open rout i no is
called), and

( 3 )  the i node is al ready opened for react i r i g .  ‘I ’hmus ,
one process can commun i cate with another onl y it the
other has indicated (by creating a port leaving it
open for reading) that it is willing to liste n .

wr ite: The driver uses the informatio ni in the port—type
m ode to locate the disk file m ode , which it treats
as a p ipe. Headers are prefixed to the data if
requ i red. It may be necessary f or the driver to
sp lit a single wri te into a number of “chunks ,”
putting the writer to sleep until the reader catches
up ( i .e , makes more room on the “p ipe ” by r e a d i n g) .
There were two possible conventions :

( 1)  Guarantee  t ha t  a l l  of the data  f r o m  one UNIX
“w r i te” be wri tten before any other writer could
place data i n the “p ipe ,” or

(2) Spli t a sing le UNIX write into several “ch unks ,”
each having its own header , arid in terspers e the
chunks from different writes as requi reel .

tinder (1) it would have been easier for tcnic wr iter ,
through mal i ce or error , to monopolize’ the use of time
port by do i ng la rge (up to 65 ,53S hyte l writ e s.
Alt ernative (2), which was chosen, necessitated time’
use of the end-of-message flag to enable t h e  r e a d e r
to recognize the “wri te ” boundaries (messages). The’
problem tha t this introduces is that the reader may
rece ive many part ial  mess ages bef ore any one message
is comp le ted , and has to buffer parti a l messages in
user space when message boundaries are si gnificant .

If a write’ is attempted after the’ reader has closed
i t s e n d  of the ‘‘p 1 pe , ‘‘ a s i gnu I I / ‘ll ) i s gene r u t  ~ ci
j u s t  as on a pipe’ .

_ _ _ _ _  .4



11

Po tt s  1 icok I i k e  p i pe’s s i t  Ii N - s I - i t t  t i r u t h  i uig l i t
r e m i t  .11 I tu t u m i s time ’ m m i i i  m tl i litt i ~t t i m e  u i u u u u u t i i ’  u ( i t

dma rat I ems spec i f  i eul arid time im u tnt u t ’ u i n i t h i t -  ‘‘ c l i  sk
l i l t ’ ,’’ sleeps if the ’ f i l e ’  is euu upt v , .inoi r t ’t um r n is ui

t ’n ie l — o I  — 1  i I t ’  i i t i l i  cat ion ~hon t lie I~u s t e~ r i t u ’  r l i c e ’ s  a
l o se  . Pu r t s p roy i il e ’ sI r e a m  it , i  t . i ;  I t i s t i m e

r e ’spo nm s i b i  l i t  ~ of the ’ r e au le ’  r t o  keep I r u  k o f  mt ’s s~i

h ) c ) u ni da  r i  es hi ,isvd on he,uilt ’r m n i l  o rm, i  t i u~m , a rm 111( 1 i t j u i t i
t h a t  ca u m lie Pert ornue’d e’as i lv by a u m s e ’ r ’ s u i h r u u m t  i r u t ’ .
Since the’ i h i t i  a r e  st rt’anu —ori m ’t i te~t , t h e ’  rt ,icit ’ u .Ini

read t hero i i i  whm a teve r uuia nm nm e r’ i t  I i kes  , r i - u i i i  r u g
headers  a r t u l  d a t a  w i t h  separate olic ’rat i u c nis , o r  r o i l i n g
and b u f f e r i n g  b l o c k s  f o r  g r e ’ u t e ’ r u - i  l i t  ie- ’ru v

c l o s e :  Time c lose  f u n i c t  i on  behaves  as i t  doe’s cam a r m y  i t  h i t - i
f i le, except that if headers ,ire’ being w r i t t e n , a
zero length message (header onl y, w ith end -u I - b u I u S s . g,

hit set) is written when each process group I -  sc
the f i le . ‘Ibm s re qu i red on l y a one— I l i m e  l i i  ul ge’ ri
the UNIX “cl ose ’’ kerne l code and eniab It ’d •i r c ’ a i l e ’  r I ’
detect a log ical end—of— file comb lion for ,‘u i ’hi
writer. Unfortunately, time last d u s t ’  o f  ,i port
cannot  make i t s  d i r e c t o ry  e n t r y  u i i s a p p e ’ar . since

there is no st o rage ava i l able i n w h ic h t m  k e ep  i t s
nanme , Fur thermore , the’ rt’ is nmo way t i  out ru I t l i t
pro l’m ferat ion of names for a g iven m n o d e (port. , iii

this case) through link ( I n )  op e ratio n s. Titus , i t  i s
the user ’ s responsibili ty to re’movt’ the nma n u.’s in ’
c rea tes  ( w i t h  the “u n l i n k ”  sys tem c a l l  tic time “ m a ”

(remove) command. However , while’ a areless user m .iv
use up m o d es and directory e n t r i e s , i t  i s  j u s t  is i f
he had f a i l e d  to dele te  t empora ry  f i l e s  c u t  z e ro
l e n g t h .

s t t y/ g t t y :  The special function calls , stty anti gtiy, mak e’
i t  poss ib le  to imp lement  “ d e v i c e -p a r t i c u l a r ”
o p e r a t i o n s  in  U N I X .  At p r e sen t , s t t y  c a l l s  on p o r t s
are ignored , but the f o l l o w i n g  p a r a g r a p h in d i c a t e s
some of the options that could he imp l emented to
enable the reader to tailor the characteristics of a
por t to mee t specia l requiremen ts .

S i nce reading a por t , like reading any other UNIX
f i le , causes the reader to block uni ti I data are
available , i t mi ght be u s e f u l  for a reader to he
able to determine when and how many data are
availabl e. The stty call could be used t o :

(1) Request t h a  t a si  gna 1 be genie rated whe ’nmeve n’ cli t i

a r e  w r i t t e n  on an empty pi pe , in

(2) Return time ’ nmuambe’ r of iuvtc ’s lvi I j i b  I t ’  t o  l i t ’  t ’~ ,id 

- — -  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
,- ‘ .‘ ,‘- .“. .

~~~~~~
. , ‘ .

-
~~~~~ ~~. — . ~~ - V -. ~~~ -— ,

12

I rm some’ app ! icat ioims it might be importa n t for the roatlt ’r i i i

port. to exercise ’ sonar’ cont rol over the writers , t’spt’ ma ! ly to prev en t

some writers f rom monmopo li zing use ol the’ port at the’ e’xjientse of

others. The special function calls mi ght be emp loyed in t h i s  r e ’g ard

to:

1 . Prescribe a maximum “chunk size ,” with the driver enforcing
a rule that a given prOcess not be allowed to write two
cons ecu ti ve chunks until the p ipe is e m p t i e d  by the  r e a c h e r .

2. Return the number of open write file descriptors and the
number of writers waiting to write (number of “active ”
wr iters). This could be used to compule a reasonable chunuk
size for the above .

3. Cause a writer to receive an error indication instead of’
going to sleep if all of its data can not be accepted.

4. Set a maximum message size (for a sing le writ e) and cause
writers to receive an error indication if they try to write
more .

5. Suspend a particular writer (by putting it to sleep when it
tries to write), or reactivate a suspended wri ter, Note
that permission to suspend is implici t in the fact that the
writer is using the port .

6. Reactivate all writers or a single selected writer. 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


13

V . SECURITY I?’IPLICATIONS

The creator of a port has complete control over it. When a

process creates a por t , the (effective) owner of the process becomes

the owner of the port. The port creation system call specifies a set

of write permissions for the creator himself , other users in his

group , and all other users , just as the “creat” system call does for

ordinary files. Only the specified classes of users plus the

privileged “superuser” may open the port for writing . No process ,

even one owned by the “superuser ,” can open the port for reading , so

the creator of the port , and those of its descendants to which it

chooses to pass file descriptors , can read it without fear of losing

data to other processes.

Since the kernel supplies the headers on port data and headers

include a byte count , no writer can “forge” a header. Thus the reader

can rely on knowing what process , process group , and user (real and

effective) wrote each byte that it receives.

Port names are directory entries , just as are the names of

ordinary files. The port may be linked to (given other names) and may

have its names removed by any user having permission to write in the

relevant directories . Thus the “superuser” may remove the name for

any port. Removing the name does not , however , prevent the reader and

writers who have the port open from proceeding ; it merely keeps other

potential writers from gaining access to it.

A (possibly malicious) writer may write to the port as much and

as often as desired in the absence of the flow control features

menti-~ned at the end of the previous section, h owever , , ull the i t l i v e

- ——k ~~~~~~~~~~~~ ~~-~~ - - - - --- ‘

P -‘ -.‘ - - —--- ---‘---
~~~--- “~~

-‘- - - - - - ‘  -
~~~ - -—- ~---~- - - -— ----‘-“ -—-- ‘- -‘--—— --

14

w r i t e ’ r s a me stmspe’niuleul (ha l ockt’d) wheim t l i e ’ ‘onih I i i u ’ a I c l i t a I r o f lm t h e ’

w r m t e ’rs a s a w h m o l e get ahead of t ime ’ r r ’ ; i u l e ’ r b y a I ixm ’d niumiib m ’r of bytes.

Wheim t he’ reat l e r (-at (‘hit’ s U~~ , all time’ b 1 ockeil writers a me’ rca t u Va ted at

the same priority, so each then has an equal chance to gain access to

the port. Thus , while any writer can delay service , nonme can

comp letel y deny access to the others . In addition , o f course , the

reader can ignore data from a writer that “misbehaves. ”

I

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~-~~~~~~~~~~~~ ‘ - - -~~~~~~~

IS

V I . REMARKS

The I PC med ia n i snum f o r tIN IX tIes or i bed he re’ provides se’ve’ ra 1

capab i l i t it ’s t h a t c i t her cou I tl not be obtained , or could lie obta i n me ’ t t

only unrt’l iabl y or inefficientl y, within sta rmdart l UNIX. It should I~

noted , however , t h a t the m e c h a n i s m i s d i r e c t l y conce ’rnmed o n l y w i t h i

d a t a t r a n s f e r rather thamm syn chronizatio n . Improve ul pr ocess

s y n c h r o n i z a t i o n w i l l probabl y have to rel y on improvements i n the UNIX

si gnal i n m g m e c h a n i s m or deve lopmen t of aim a l t e r n a t i v e m e c h a n i s m .

-~~~~ -~ - ‘

~~~~-cea’x#~ ?~j~
17

A p p e n d i x

1)ETA I I,S OF’ THE PORT SYSTEM CALL

T h e  IP C m e c h a n i s m  d e s c r i b e d  above r e q u l  res onl y onme new s y s t e m

(‘all. The new call creates a port armd opens it for reading (arid ,

optionall y, for writing also). The format of the call is as follows :

char *name ;

m t  fdr , mode , fdsI2I ;

fdr = port(name , mode , fds);

fdr : A returned file descriptor for reading, or -1 if the call
fails .

name : The name by which a port may be opened for writing . It
may be a pointer to a null string (“) in which case the
por t cannot be opened by other processes. The name may
be a complete path name (beginning with a “/“) or may be
relative to the current directory , just as for the “crea t”
system call.

mode: This argument is a 16-bit word formed from the sum of tho
following :

0100000: If the “file” is to be opened for reading only,
and not for writing (default is to open for
both reading and writing).

040000: If the header supplied on wri tes should cont ain
the process ID of the writer.

020000: If the header supplied on writes should contain
the real user ID (in the low-order byte) and
the effective user ID (in the high-order byte)
of the wri ting process.

010000: If the header suppli ed on writes should contain
the process group to which the writer belongs .

If none of the above three options is chosen ,
no header is suppl ied and the po rt reads jus t
like an ordinary UNIX p ipe. Otherwise , the
indicated words are wr i tt en i n the above ord er ,

~~~— 
:- - -

~
--- ~~~~~~~~~~~ —‘i’. 4_~~~ — -

—

- — ,,,, :~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —.uuI~~

18

l o t I eiweul by a worul coot a mi i i rig tin’ I n ac i ‘ 1

ouni t o t t ha t ’ ‘Ia Ia to I ol lu arid , i r a i ii , ’ hi gt i —

or de ’ r b y t e , a 1 i t t u e l a s t b y t e ’ o f t h u ‘ I - a t - c i s
th e ’ l a s t by te w r i t t e i i by a s i n m g l e - ~ m i t t - (i l l
i nt l i ca t i n m g an ‘‘enti (if nume ss a g e ’

0200: W r i t e ’ permission for creator ,

020: Write permissions for others iii the cre’ator ’ s
group .

02: Write permissions for all other users.

If the file name is null the permissi on bits are
riot used , and the file is opened for readi ng and
writing regardless of the “op en f l ag” (0100000)
sett big .

fds: The fil e descri ptors for reading and writi n g are returned i n
fds(0J and fdstl], respectivel y (fds(O] fd r). If mode has
the 0100000 component , the fds argument is not used .

Named ports can be opened for writing by processes with write

permission , just as an ordinary UNIX file, A writing process need not

be aware tha t it i s wri t ing a por t , as the headers are supp l ied b y the

port “driver” rou t ine in the kerne l .

1~

1!
-J

i

~~~~ 
_
~~~±_  ~~~~~~~~~~~ -~ :~~ ~~~~~

‘
~‘:‘~~~~~~~ ‘~~~ ~~~~~~~~~~~~~~~

19

REFERENCES

I . S u n s h i n e , C a r l , I n t e rj u r o c e s s C o mm u n i c a t i o n E x t e n s i o n s
f or 1h ~ ’ UNiX 0~ eratinu & Sy s t e m : L Desi~~n Co n u su c l e ra t ioums ,
The Rar ni C o r p o r a t i o n , R - 2 0 6 4/ l - AF , June 1 9 7 7 .

2. Ritchi e , 0. M. . and K. Thompson , “The’ UNIX Time-Sharin g
System ,” Comm . ACM 17 , 7 , July 1974 , pp. 365-375.

, - ‘ .‘. ..
~ ~~~~~~~~~~~~~~~~~~~~~~~~ -

- - - - — — - - - -- —— - -- ---- _ _

