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significamdy larger time steps with comparable accuracy. In many, if not most, problems it is
not obvious which integration method is more efficient. In this study the Newmark Beta-
Method is examined for stability, accuracy, and cfficiency, wherein Beta = 0 provides an
explicit algorithm, while Beta 80 provides an implicit algorithm. Both algorithms arc used in
the same finite element program to solve a soilsstructure boundary value problem composed
of a cylindrical steel shell encased in a relatively soft rock-like material and subjected to a
surface blast Joading. For this problem with linear system propertics, the implicit method
was significantly nore efficient as measured by compurer time. For nonlinear systems, the
two methods are approximatcly equivalent in efficiency. A combined explicit-implicit
integration technique is proposcd for these types of interaction problems with two or more
materials. The combined expliciv-impliciv algorithm employs explicit integration in the soft
material and jmplicit integration iu the stiff material with a potential increase in cfficiency
by an order of magnitude over cither method applied individually.
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Direct integration techuiques (step-by-step) are widely used for the time integration of dis-
cretized equations of motion that result from applying numerical techniques such as the finite cle-
! ment method to structural dynamic problems, In this study, the Newmark Beta-Method is
| examined for stability, aceuracy, and efficiency, whercin Beta = 0 provides an explicit algorithin, 4 +
while Beta % 0 provides an implicit algorithim. Both atgorithms are used in the same finite element
program to solve a soil-structure boundary value problem composed of a cylindrical steel sheel en-
cased in a relatively soft rock-like maverial and subjected 10 a surface blast loading. The implicic

| method was significantly more dfficient as measured by computer time, For nonlinear systems, the
two methods were approximately equivalent in cfficiency. A combined explicit-implicit
integration techniqur is proposed that employs explicit integration in the soft material and

I implicit integration in the stiff material with a potential increase in efficiency by an order of

| magnitude aver cither method applied individually,
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INTRODUCTION

In the past two decades the finite element method has been widely
used for solving structural dynamics problems. The numerical approxima-
tions inherent in the finite element technique include two broad cate-
gories: (a) spatial discretization and (2) temporal discretization. The
former category deals with the approximation errors and efficiency of the
assumed spatial distribution of the primary variables (e.g., displacement
field), while the latter category deals with the approximation errors and
efficiency involved with the time integration of the discretized equations
of motion. 1In this study only the latter category is pursued and the
discussion 1s restricted to direct integration methods (i.e., step-by=
step). Other methods of solving the equations of motion such as eigen-
value analysis cr method of characteristics are not considered because of
their limitations for nonlinear problems.

Direct integration schemes are generally classified in two groups:
implicit methods and explicit methods. This report examines these two
methods in the light of numerical stability, accuracy, and efficiency for
a class of problems,* chavacterized by a cylindrical structural liner
embedded in a homogeneous rock-like material and subjected to a surface
blast loading [1, 2].

Background

Numerous implicit and explicit integration operators are in current
use and have been reported extensively in engineering literature. Some
of the more popular implicit integration schenes are: the Newmark
Bemethod (B = 0) [3], the Houbolt method [4], and the Wilson @8-method [5].
Explicit schemes are more commonly referred to by a finite difference
operator such as the second central difference scheme [6], Note the
Newmack Bemethod with B = 0 is equivalent to the second central difference
scheme and is an explicit method.

The fundamental difference between an explicit and implicit integra-
tion scheme is that in the explicit case the displacement vector for the
current time step can be predicted directly from the known displacements,
velocities, and accelerations of the previous time steps, whereas in the
implicit case the current displacements are related to current accelerations
(and possibly cuxrent velocities) as well as responses from previous time
steps, As a result, the solution algorithm for the implicit scheme requires
assembling a global mass and stiffness matrix into a set of coupled alge-
braic equations and solving the system by some technique such as Gaussian
elimination.

*0f current interest to the Defense Nuclear Agency (DNA).
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On the other hand, the explicit algorithm only requires assembling
the mass matrix and solving for the current acceleration, The restoring
force vector (stiffness matrix times predicted displacement vector) is
formed on the right-hand side at the element level, thereby eliminating
the need of assembling the global stiffness matrix. If a lumped mass
procedure is used (as is generally done), the accelerations are uncoupled
and can be computed rapidly.

The trade=off one pays for the rapid .explicit algorithm is the
requirement of a small time step to avoid aumerical instability. When
instability occurs the computed responses become wildly erratic, oscil-
lating many orders of magnitude. Numerical instability is governed by
the frequency content of the discretized system and will be discussed
later,

The potential advantage of some implicit integration schemes is that
they are unconditionally stable, allowing a much larger time step con-
trolled by integration accuracy (as opposed to integration stability).

In short, if computational efficiency is measured by the computer
cost (time) to accurately integrsate the equations of motion over a ziven
time range of interest, then the explicit method has the advantage of
rapid solutions per time step but the disadvantage of requiring many time
steps. The reverse is true for the implicit method.

It cannot be categorically claimed that one method is more efficient
than the other. Rather, the question of efficilency i1s highly problem
dependent, involving such factors as: finite element mesh topology,
types of elements, loading function, material properties, degree of non-
linearity, method of characterizing mass matrix, and the size of the
system, Discussion of these influences are given in References 7 and 8.

Recently the idea has been advanced to simultaneously employ
implicit and explicit integration operators over different regions of
the finite element mesh to take optimum advantage of each method. The
above notion, as well as explicit versus implicit efficiency studies, is
pursued in the course of this investigati.n.

Chjective and Scope

This investigation is restricted to the family of integration
operators contained in Newmark®’s ge=method [3] wherein B = G provides an
explicit scheme and B ¥ 0 provides an implicit scheme., The test boundary
value problem to be investigsnced is an elastic steel cylinder encased in
a homogeneous, elastic, rnck-like material subjected to a surface blast

loading.
Within the above framework, the objectives of this study include:

(1) 1Identificarion and discussion,of explicit and implicit algorithms,
including considerations of numerizal stability and accuracy.

(2) Comparison of efficiency between expliclt and implicit for the
test boundary value problem and estimates for a nonlinear case,

(3) Development of a comhined explicit=implicit integration
algorithm for superior efficiency.




Approach

L It is recognized that an efficiency comparison of explicit versus
o implicit schemes (Objective 2) is relative and subjective. That is, the
o relative merits of the two integration schemes are not only dependent on
e d the nature of the bouadary value problem, but also on the programming
skill of the program authors and the particular costing algorithm of the
- host computer site.
- To minimize the iniluence of diiferent programmers, the finite
' . element program FEAP [9] was adopted for this study. FEAP is the only
b known general purpose finite element code containing both explicit and
: implicit algorithms based on the Newmark B-method. It is a linear code
| (also linear viscoelastic) with two- and three-dimensional elements.
With regard to the host computer site (CDC 6600), only central pro-
cessing time will be considered for efficiency comparisons without regard
to input/output (I/0) time. Altaough I/0 time may be significant, partic-
ularly for out-of-core solution methods, it is not considered in this
study because the associated costs are arbitrary and dependent on the
‘ costing algorithm of the operating site.
o In the following pages, the Newmark B-method is reviewed in the
) context of explicit and implicit algorithms, together with a discussion
ir of numerical stability and integration accuracy. Next, the FEAP code is
5 used to ascertain the efficlency of explicit versus implicit for the
| stated test problem. Lastly, a combined explicit~implicit algorithm is
P presented followed by conclusions and recommendations.

o THEORETICAL CONSIDERATICNS OF NEWMARK R=METHOD

For this investigation, we consider the spatially discretized matrix
s equation of structural dynamics given by:

| Mi + Ku = f (N

where: mass matrix

1} 4
[ ]

N

§ = gtiffness matrix

i

i

1 i = acceleration vector
i

¢ U = velocity vector

. u = displacement vector
’ f = external load vector
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Equation 1 is a coupled system of second-order ordinary differential
equations which represents an initial-value problem for finding the dis-
placement “unction u(t) satisfying Equation 1 and also satisfying the
initial conditions u(0) = up and 4(0) = 4y, where u, and u, are given
initial data. The matrix M is assumed constant, symmetric, and positive
definite. The stiffness matrix K is also assumed positive definite, but
not necessarily constant, to reflzct a changing stiffness due to material
nonlinearity.

Newmark B-Method

A step-by=step operator suitable for numerically integrating
Equation 1 is given by Newmark [3] as:

u, + At[(1 -y)i_it + YU (2)

Siae T Ye 4t

u, + bth, + AEP[(1/2 - B)E, + B (3)

Bpaae T Y e+at )

where: At = time step
B = Newmark B-parameter, 0 £ B S 1/4

y = Newmark numerical damping parameter (y = 1/2)

The Jamping parameter y introduces numerical damping when y & 1/2, 1In
this study, vy is taken as 1/2 to avoid complications of numerical damping.
Subscripts denote the time at which the response is evaluated,

Specification of the B-parvameter (B # 0) leads to a variety of well~-
known implicit schemes. For example, B = 1/4 is equivalent to the average
acceleration scheme, and B = 1/6 is equivalent to the linear acceleration
scheme, For the special case B = 0, an explicit scheme results, as can
be observed from Equation 3 wherein displacements at time t + At are pre=
dicted from known responses at the previous time t.

Computational algorithms for implicit (B % 0) and explicit (B = ()
integrations are outlined in the next sections,

Implicit Algorithm

It is assumed the responses uy, Ug, and iy are known for time t, and
the objective is to determine these responses at time t + At, To this
end, the following three steps constitute an implicit algorithm:
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Step 1. From Equation 3, express uy4zy as a function of ug4pe and
previous responses to get:

(1/88t%)u - a

Yetat t+At &

1 71 . 1 .
s 1, ~(2)ac + (a) e+ G 1)

Step 2. Inserting the above expression for u.4p. into Equation 1,
Ui4pr 1s determined from the solution of the coupled system:

1
[< 2>§ + K]“tﬂst " L * Yy

BAL

Step 3. Update accelerations using the expression in Step 1, and
update velocities using Equation 2, i,e.,

. 1
u - 5] u - a
~t+At <8At2> t+At t

0 . At ‘e e
Vesat g, + 5 (@ H )

The above algorithm is repeated successively for each time step through
the time range of interest,

Step 2 of the above algorithm requires assembling the global uass
and stiffness matrix and solving the coupled system by techniques such
as elimination (i.e., triangularization), which is a costly operation.
If the system is linear and a constant size time step is used, the tri-
angularization can be done once and for all at the outset of the proce=
dure so that subsequent steps only require modifying the right=hand side
and performing back substitution. However, for ncsnlinear systems the
stiffness matrix may have to be reformed and, hence, resolved at every
time step and perhaps iterations within the time step, depending on the
degree of nonlinearity and the methodology employed., This disadvantage
of the implicit rethod is not shared by the explicit algorithm discussed
next.

Explicit Algorithm

As before, it is assumed the responses y, ht, and it are known and
the objective is to determine the responses at time t + At. The following
three steps constitute an explicit algorithm.
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Step 1. From Equation 3 with 8 = 0, the displacements u 4a, are
predicted directly as a function of the previous responses:

Ypape = 4

at?
+ Atu + —- 1

where: d = y
-— - t Z -

t t

Step 2. Inserting the above expression for ug4py into Equation 1,
the accelerations iig4p¢ are given by the solution of:

Mippe ™ ferae - R4

Step 3. Lastly, the velocities Etiﬂt are updated from Equation 2,
i.e.:

Yetat T Yt =2l + i,

Unlike Step 2 of the implicit algorithm, Step 2 of the explicit
algorithm only requires assembling the global mass matrix M, If the
lumped mass technique is adopted, then M is diagonal and the solution
for p4pr 18 trivial (otherwise M must be triangularized once at the
outset). Furthermore, the internal force vector represented by Kdy can
be easily computed at the element level circumventing the need of formally
assembling the global stiffness K, Accordingly; there 1s no significant
penalty in the algorithm for nonlinear systems since changes in  are
easily accommodated by right-hand-side operations at the element level.

The apparent advantages of the explicit over implicit algorithm are
mitigated by the concern of numerical stability which limits the size of
the integration step At. These notions are disrussed naxt,

Stability of Newmark B=Method

Numerical etability of a soluton algorithm may generally be assured
by proper ~hoice of the integration step size. Since stability increases
with decreasing step size, a sufficiently small step can generally be
found to provide a stable solution. Tharefore, the question to be explored
is, what size time step is required fox stability of the Newmark B-method.
The following development is restricted to lirear systems. Stability for
nonlinea: systems has been addressed on en energy basis [10, 11].

It is well~known that a linear system represanted by Equsation 1 can
be transformed into an equivalent set >f urcouvled equeiions through
modal analysis. A typical uncoupled modal eguatiua may be written as:

e



¥ + m2 X = p(t) ' 4

where X is the transformed displacement called the normal coordinate,
« 1s the associated frequency of vibration, and p(t) is the transformed
loading functioen.

It is asserted that the numerical integration of all the modal
equations (typified by Equation 4) using the same At is equivalent to

the numerical integration of the coupled system (Equation 1). Accordingly,

numerical stability can be simplified to the investigation of Equation 4.
To this end, the Newmark integration operator (Equations 2 and 3)
can be combined and expressed independently of velocities by taking the
difference of Equation 3 at time t + At from its value at time t and
replacing the resulting valocity difference by Equation 2. This gives:

X - 2, + X

2 .o e .
t+ot t teAt: AtTIBX  py + (1°28)X, + BX, )\ ] (5)

vhere the nodal displacement u is replaced by the normal coordinate X,

For the case of free vibration p(t) = 0, Equation 4 is introduced
into the integration operator (Equation 5) at times t - At, t, and t + At,
vesulting in the difference scheme:

- - )
xt+At bxt + xt"At 0 (6'

2 - (wax)? (1 - 28)

where b 3
1 + (wAt)” B

Equation 6 represents a step-by-~step finite difference scheme for
successively updating the displacements X¢4p in terms of the previous
displacements Xi and Xi.pts

For a given set of initial conditions, the free vibration of a linear
system must be harmonic and bounded, Thus, the stability question is
stated: for a particular B and maximum frequency wp,y, how large a time
step, At, may be taken so that Equation 6 will produce bounded and
harmonic results? This question is answered by determining the difference
solution which is achieved by initially assuming a solution of the form:

(t, /at)
X = r K (8)

where k is the time step counter k = tk/At, and r is to be determinad.
Inserting Che above into Equation 6 leads to the characteristic equation
for »:
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r2 - br + 1 = 0 (9

whose roots Ty Ty in comp..ex polar form are:

1
Ty Ty = € q (10)
-1 2
where q = sip 1 = b°/4 an
iqtk/A:
Since e = ¢o(g (qtk/At) + 1 sin (qt/At), the difference

solution of Equation 6 may be written in the form:

qtk qtk
th = A cos It + B sin Y (12)

where A and B are real constants determined from initial conditions;
A = X(0), B = (At/q) X(0). The above equation yields a bounded, harmonic
solution for th, providing q is real. Clearly, from Equation 11, q 1is

real if (1 = b2/4) 2 0. This provides the stability criterion, such that
replacing b with Equation 7, the maximum allowable time step is given by:

< L 4
At s T~ 48 (13)

where T is the shortest period of vibration of the system given by
T = 2n/umax.

fvaluating Equation 13, the allowable time step for the explicit
case, B = 0, is At S 0.318 T. For implicit examples, B = 1/6 gives
At € 0,551 T, but for B = 1/4 there is no finite limit on At for stability.
Hence, 8 = 1/4 provides an unconditionally stable operator.

For all cases B < 1/4, the allowable time step to insure stability
is dependent on the shortest period of the system as given by Equation 13.
Unfortunately, the value of the shortest period (or highest frequency) is
generally not known and troublesome to calculate. As an alternative, it
is often more convenient to determine the stability limit of At by a
heuristic approach given next.

Heuristic Stability Criterion

In lieu of using Equation 13 for selecting a stablo time step, the
following relationship may be used:



% at " S (h/c)min 1/(1 - 4B) (14)

where h is the shortest side ~f a finite element, c is the maximum wave-

speed of the element materia®, and (h/c)pin implies the controlling

element in the mesh where t: ratio h/c is a minimum. (For isotropic

. elastic materials, the maximum wavespeed is c = {E(1-v)/[p(1+v)(1-2u)]}4/2,'

' where E = Young’s Modul' s, v = Poisson’s ratio, and p = mass density.)

The genesis of Equation 14 1s based on heuristic arguments for the

explicit algorithm (B = 0) and modified by the factor ,/1/(1 = 4B8) for

. implicit cases as discussed in the following.

! Consider the continuum body shown in Figure 1 with an arbitrary

' finite element topology drawn on the body and focus attention on the node

d common to the Zour shaded elements. If this point is perturbed by an

b external agency, continuum theory requires the excitation to travel with
a sonic wavespeed c. Therefore, after a time interval, At, the perturbed
area is inscribed by a circle of radius r, = cAt, shown by the dashed
line in Figure 1, Now, for the corresponding explicit algorithm, the

' perturbed area for one time step can be no greater than the area of

numerical coupling; i.e., the internal forces Kd generated by an excita-

tion of the zommon node during one time ster are coupled no further than

}i the nodws of the shaded elements., This condition holds for each and

. every node as it, in turn, becomes excited, Therefore, in order to insure

that the *‘‘numerical wavespeed’’ of the explicit algorithm can excite an

area at least as large as the area of scnic travel, it is required that

h 2 r. or, equivalently, At § (h/c)min.

With regard tc the implicit algorithm B % 0, the numerical coupling
is greater because we are, in effect, operating with 5’1 and not the
banded matrix K. Since g“ is generally fully populated (although
weakly coupled between distant nodes), the area of numerical coupling is
effectively greater. Accordingly, the maximum allowable time step is
increased by the factor /1/(1 - 4B), which is the ratio from Equation 13:
At(B % 0) = At(B = 0),

Experience has shown that Equation 14 provides a good estimate of an
! allowable time step for stability.

y Accuracy of Newmark 8-Method

The selection of At to insure pumerical stability is a necessary
condition for a meaningful solution; however, it is not automatically a
sufficient condition to insure that the numerical results are a gool
approximation of the original differential equation. This becomes tie
} question of accuracy. An obvious example is the case B = 1/4 which has
; no stability limit for At so that At is controlled strictly from accuracy
considerations,

Accuracy can be studied by comparing the exact solution of the
original differential equation {(Equation 4) with the corresponding dif-
ference solution given by Equation 12, Specifically, for the case of

et et
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Figure 1, Representation of numerical and continuum wavespeed.

free vibration, the exact solution has the form X = A cos wt + B sin wt,
whereas Equation 12 has the form X, = A cos &ty + B sin wty, where
@ = q/At, For harmonic similarity, the numerical frequency & must be a
good approximation of the actual frequency w; or, equivalently, the
numerical period T = 2n/w must be a good approximation of the actual
period T = 2n/w,

The ratio of the approximate period to the actual period provides
a measure of accuracy [12]). With the aid of Kquation 11, this ratio may
be written as:

..-T.-_ - 2u (At/D (15)
T sin”! (V1 = b°/4)

.3
2 - (21r ATE) (1-28)
vhere h = o) (16)

1+ (Zn %%) 8

As At + 0, T/T + 1, illustrating that the approximate solution
approaches the exact solution in the limit, However, for increasing
values of At, T/T diverges from unity on a path dependent on 8. Figure 2
illustrates this trend for g = 0, 1/6, and 1/4 as a function of At/T. It
is observed that T/T begins to significantly deviate from unity when At/T
is larger than say 0.2, which is smaller than the stability limits.,

10
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From the above observations, it T T T T
would appear that accuracy consider-
ations place a more stringent limit
on the maximum time step than dces 2k RS -
the stability criterion, However, ¢
this is generally not true for multi-
degree~of-freedom systems typical of
finite element models. The reason
for this is that the vibration modes
associated with higher frequencies
(shorter periods) generally have
very low participation factors. Thus,
even though the higher modes may be
integrated with significant error,
their net coatribution is masked by 0 1 . . N
the large participation factors of o 0.2 0.4 0.6 0.8 1.0
the dominant lower modes whose in- Time Step 2< I action of Period, At/T
tegration is more accurate due to the
leager perlods. Also, it is known Figure 2, Period accuracy
that the higher vibration modes of of Newmark B-method.

a finite element model are ¢‘ficti-

tious’’ in the sense that they represent a lumping of the infinite set of
higher modes of wvibration corresponding to the continuous system being
modeled, Therefore, the low participation of the fictitious vibration
modes 1s not merely a fortuitous happenstance, but rather 1s a necessary
consequence of proper spatial discretization.

To summarize, for the cases B < 1/4 the allowable time step is
generally governed by the stability criterion (Equation 13 or 14) based
on the shortest period., Unlike the accuracy consideration, the shortest
period (highest mode) cannot be ignored because, even though it initially
has a low participation factor, if it is integrated in the unstable range,
its contribution will grow without bound.

For the unconditionally stable case B = 1/4, the allowable time step
is governed strictly by accuracy considerations, Since the analyst may
have no idea of the frequency content of the mesh nor what frequencies
will be dominant for a specified loading, it is difficult to determine
a prijori an optimum time step size. Accordingly, computational experi-
mentation is generally the most direct method. As a guide, the time step
should te at least sufficiently small to define the shape and character
of the loading function,

In the next section computational experimentation is performed on
the test problem posed in the objective of this report.

Approximate-to-Actual Period, T/T
-

B
A

= stability limits

COMPUTATIONAL INVESTIGATION
The finite elemcnt code FEAP [9] is used to study the efficiency of

the implicit algorithm B = 1/4 versus the explicit algorithm B8 = 0,
FEAP’s explicit and implicit algorithms accept identical finite element

1




input records and use the same element stiffness routine. Thus, it may
be presumed the subsequent comparisons provide an unbilased assessment

of integration efficiency.
The test problem described is representative of a class of problems

of current interest to DNA [1, 2].

Test Problem and Finite Element Model

The test problem is illustrated in Figure 3 which shows a system
composed of a homogeneous media representative o. a soft rock-like
material called tuff and a 3-foot (0.914 m) circular steel liner 0.78
All materials are elastic and are defined in

inch (1.98 em) thick.

Figure 3.

about the vertical centerline.

\

Plane strain geometry is assumed, and the system is symmetric

Pressure, p(t)

L

0.5 kbar
]
v ]
& i
4 |
=/
1 | =~ Time (ms)
0 10 20 30 40
Young's . Mass
Material | Modulus pol;?:;: s Density w(‘::c;:;;d
(psi x 106} (stug-fe/in,%) '
Tuff 0.448 0.286 0.00018 57.0
Steel 30,0 5.30 0.00073 2350
Figure 3. Test problem, loading,

and material properties.
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Pressure loading is distributed
uniformly along the surface of the
tuff, and the loading function is a
triangular pulse whose rise time is
10 ms with a maximum pressure of 0.5
kbar followed by a 30-ms decay to
zero pressure,

The finite element mesh topology
representing the test problem is
shown in Figure 4. Ail elements are
compatible four-ncde, jsoparametric
elements. The steel liner is coarse-
ly modeled with a single layer of
32 elements forming a semicircle.
Although the single layer is insufe~
ficient to accurately capture bend-
ing of the liner, it suffices for
this investigation where the concern
is with time integration,

A simple lumped=mass procedure
is used for both explicit and
implicit integration schemes,
Boundary conditions, degrees of
freedom, average bandwidth, and
other information are displayed in
Figure 4,

Explicit Results (B = 0)

Solutions were attempted for
time steps of At = 0,0025, 0,0035,
and 0,0045 ms, The solutions for
At = 0,0025 and 0,0035 ms were prac-
tically identical, indicating these
solutions provided accurate time
integrations. A typical result is
shown by the solid line in Figure 5,
which is a normalized time-history
plot of the thrust stress (i.e.,
average hoop stress) in the steel
liner at the springline.

For the case At = 0,0045 us,
the responses in the steel liner
became unstable (wildly erratic)
after approximately 150 time steps
or 0.68 ms. Thereafter, instability
quickly spread throughout the entire
system in a matter of a few time
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50
steps, Theoretically, the sonic ' ' '

travel time for a surface disturbance /ﬂi
to travel through 18 feet (5.49 m) of [N
tuff and excite the liner is 3.8 ms, sl / \ i
However, the numerical wave speed can *
travel vertically downward one ele- °
ment depta per time step and prema- o
turely excite the instability of the %
steel liner well ahead of the sonic i 0 ]
travel time.

The heuristic stability pre-

Thrust Stress/Peak Loading Pressure (0.5 kbar)

diction for maximum allowable At *
(Equation 14) based on the steel 205 T
liner elements is At = 0,0033 ms
(i,es, h = 0,78 inch (1.98 cm), c = 0.0025 ms |§&
235 in,/ms (597 cm/ms)]. This is in H EXN““-At'&HNSSmS
good agreement with the observed 10 - ' 1
instability occurring between 0.0035 o Implicit, At = 0.4 ms
< At < 0.0045 ms, Computer time for + Implicit, At = 0.8 ms
the central processor is summarized O Implicit, At = 2.0ms
in Table 1. 0 L 1 1

0 10 20 30

Time (ms)

Implicit Results (B = 1/4)

Figure 5, History plots of
steel liner thrust stress,
implicit and explicit.

Solutions were obtained for the
time steps At = 0,4, 0.8, and 2.0 ms,
which are two orders of magnitude
¢ 2ater than the allowable explicit
time steps. Since B = 1/4 provides an unconditionally stable implicit
algorithm, the only concern is with accuracy. In each case, the results
were in close agreement with each other and the explicit solution as
illustrated by the discrete symbols superimposed on the explicit solution
presented in Figure 5. A slight error can be observed near the peak of
the response for the case At = 2,0 ms, Accordingly, for the sake of
subsequent comparisons, it will be said that the maximum allowable time
step based on accuracy is At = 0,8 ms, This corresponds to 12 time steps
within the loading rise time., Computer cost (time) for the central
processor is summarized in Table 1,

Efficiency of Explicit Versus Implicit

The computer times reported in Table 1 were determined by assessing
a system ‘*clock routine,’’ which measures the actual running time of
each step for both the explicit and implicit algorithms. These results
indicate the number of time steps required to complete the 40 ms loading
duration is 11500 (i.e.,, 40/0,0035) for the explicit case, but only 50
(i.e., 40/0,8) for the implicit case; or a ratio of 230 in favor of the
{mplicit method. On the other hand, the computer cost (time) per step of

14



Table 1. Central Processor Time for Explicit
and Implicit Algorithms

Computer Time Computer Time a
Algorithm Per Step of Algorithm Per Complete Solution
(s) (s)
Explicit
(8 = 0) 0.164 1,870,0
Implicit 4 b c
8 = 1/4) .23 or 1,22 64.0

aComplete solution time is based on 40 ms problem, using
At = 0,0035 ms for explicit and At = 0,8 ms for implicit.

bTime for a solution step requiring triangularization.

®Pime for a solution step not requiring triangularization,

the implicit method, where the stiffness matrix is triangularized, 1is 25

times more than an explicit step cost. For subsequent steps not requiring

triangularization, the implicit cost is 8 times more than the explicit
cost per step. As a net result the computer cost (based on central
processing time) of the explicit solution is 30 times more expensive
than the implicit solution for a complete 40=ms run,

The observed efficiency of the implicit method is primarily due to
the linear nature of the test problem,

Nonlinear systems do not appreciably alter the computer costs for
explicit algorithms because stiffness changes are dealt with at the
element level on the right=hand side of the equilibrium equatioms,
Moreover, since the explicit step size is inherently small, iterations
within the time step are generally not required. Conversely, nonlinear
stiffnesses in the implicit method may require triangularizing and
iterating within every time step, as well as reducing the size of the
time step, For example, previous experlience indicates that, if the tuff
material 1s modeled with a nonhardening plasticity law, then to maintain
accuracy for the dmplicit algorithm requires At = 0,2 ms, as well as
triangularizing and iterating within each time step. Under these condi-
tions, the computer cost can be estimated from Table 1 to be about
equivalent to the cost of the explicit method.

Summarizing for the class of problems considered, the implicit
algorithm is significantly more efficient for linear systems; however,
for nonlinear systems the two methods are competitive. The most prom~
ising efficient scheme is a combined explicit/implicit algorithm
(presented next).

15
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COMBINING EXPLICIT AND IMPLICIT

The natture of the foregoing boundary value problem provides an
illustrative sxample of the potential advantages of combining the
explicit and implicit methods into a single algorithm. To see this,
consider the advantages of applying the implicit algorithm to nodes
(degrees of freedom) associated with the steel liner, while the remain-
ing nodes (degrees of freedom) in the tuff are integrated with an
explicit algorithm. With this assignment, explicit stability is
governed by the larger and sonically slower tuff elements, resulting in
a stable time step on the order of 10 to 100 times larger than the time
step required when the steel elzments govern., By the same token, the
implicit algorithm is significantly enhanced because only the small
portion of the stiffness matrix assoclated with the steel liner needs
triangularization.,

The above concepts are presented more formally in the following
general discussion. Consider an arbitrary body discretized by finite
elements such that all ‘*i’’ nodes are to be integrated implicitly and
all ¢‘e’’ nodes are to be integrated explicitly. These nodes are denoted
in Figure 6 by a dashed line encompassing the ¢‘i’’ nodes, and all nodes
exterior to the dashed curve are ¢‘e!’ rodes, Those element stiffnesses
associated with only ‘‘i’’ nodes are denoted by Kjj, while those asso-
clated with only ‘‘e’’ nodes are expressed as Kee. Mixed elements
associated with both ‘‘e’’ and ‘‘i’’ nodes are denoted by Kei.

With these definitions, the equilibrium equation (Equation 1) can
be written in partitioned form as:

\ " (

Me\ Ye Kee : Kei Ve fe
\ T B e N e I e (17)
Mol Yy Kie ! TR £

where Ugs Uy = displacements at explicit, implicit nodes

ﬁe’ ﬁi = accelerations at explicit, implicit nodes

M Mi = lumped masses at explicit, implicit wnodes

e’
f, = nodal forces at explicit, implicit nodes
Kee = global stiffness of elements with only ‘‘e’’ nodes
Kii = global stiffness of elements with only ¢¢i’? nodes
T

Ke1 - Kie
nodes

= global stiffness of elements with both e and i
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e,

*¢” node region

~—

W _n ~ “i” node region
¢ = “i" boundary

Figure 6, Conceptualization of explicit and implicit
integration regions.

Expressing the partitioned equilibrium equation as two coupled systems
of equations gives

(M) (6} + (K] {u} + [K,] {u} = (£} (18)
(M) {6,} + (KD {ud + (K] {u)} = {f) (19)

To numerically integrute Equations 18 and 19 step~by-step, it is assumed
the responses {u },, {u,}, and their first two derivatives are known for
time t, and the obSective is to determine the responses {“e}t+At'{“i}t+At
and their first two derivatives for time t + At. To this end, the follow-
ing procedure constitutes a combined explicit-implicit algorithm using
the Newmark B-method defined by Equations 2 and 3.

Step 1., Predict the ‘‘e’’ nodal displacements {“e}t+At directly
from Equation 3 with 8 = 0, (i.e,, explicit) to get:

f »
et eiar {ag),

. At v
= { 2t
where {de}t ‘ue}t + At{ue}t + = {ue}t




" emw e  —m - = e

-

Step 2. Again using Equation 3 with B % 0, express {ijleype as a
function of {uy)p4p¢ and previous responses to get:

. 1
{4, } s [—]) {u,} - {a;}
1 t+At <8At2> 17 t+At 1't

1 {1 . 1 o
where {ai}t - {<;Z:§> {ui}t + \EKE){ui}t + (EE - O {ui}t]

Step 3. Inserting the above expression for {iij}e+pt into Equation
19, {uj}e4ae is determined by solving the coupled system:

1

[(‘;;?.) ) + [Ku]}{“i}m: = Elome " Kol Wedepn

+ [Mi] (ai}t

Step 4. Having determined {ugly4ar and {ujl}e4pr, compute the
corresponding accelerations using Equation 18 for {ig}e+at
and the first equation in Step 2 for {iijl}e4pr to get:

{i,)

-1
[Me] ({feJt+At ) [Kee] {ue}t+At N [Keil {“1}c+At)

t+AL
(depne = (= 12 tugdemne = flagde
BAt

Step 5. Lastly, update the velocities using Newmark’s expression,

Equation 2
Ye 1"e ﬁe Ue
- - = {-— + % S R
u u u u
1 paat 1l Ll 1 e

e e e o e b o 2 =

S
«




This procedure is repeated step-by-step throughout the time of
interest.

The advantages of the combined explicit~implicit algorithm is quite
remarkable in that it is potentially one or two orders of magnitude
more efficient than either method applied individually. Note that the
only triangularization required is in Step 3 for the submatrix [Kii]
whose size is small compared to the entire system (e.g., steel elements).
Moreover, the average bandwidth of [Kjj] is easily minimized by judicious
compact node numbering of the ¢‘i’’ nodes, which implies rapid solutions
with minimal storage. Node numbering cof ¢fe?’ nodes has no bearing on
the solution efficiency since all stiffness operations involving ¢‘e?’?
nndes are matrix multiplications perfeoru: ! at the element level, Since
the domain of the ¢‘e’’ nodes are selected to permit the explicit
stability criterion to be based -on the larger and sonically slower
elements, the critical time step may be increased by one or two orders
of magnitude, depending on the nature of the problem,

It is easy to conceive of large, three~dimensional, nonlinear
problems such that a combined method as presented here may be the only
economically feasible alternative of obtaining a solution. Hence, come
bined methods should be vigorously investigated.

CONCLUSIONS AND RECOMMENDATIONS

Within the class of problems and limitations defined in this study,
the following comments appear wvalid for numerical integration by the
Newmark B~method,

1. The maximum allowable time step for conditionally stable schemes
(B < 1/4) is generally controlled by the stability criterion, Equation 13
or 14,

2, The maximum allowable time step for the unconditionally stable
scheme (B = 1/4) 1s controlled by accuracy considerations which may be
determined by computational experimentation., As a guide, define the
time step to subdivide the rise time into 10 increments,

3. For the linear system studied and computer/program employed, the
implicit algorithm (B = 1/4) allows a time step more than 200 times
larger than the explicit method (B8 = 0) with equivalent accuracy. How~
ever, each step of the implicit algorithm is & to 25 times more costly
in computer time than a step of the explicit algorithm depending on
whether or not triangularization is required. As a net result the
implicit method was epproximately 30 times more efficient.

4., Nonlinear systems penalize implicit algorithms much more severely

than explicit algorithms ~o the extent that the two methods become
equally competitive for the nlass of problems considered.
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5. The combined explicit/implicit algorithm has the potential of
enhancing efficiency by one or more orders of magnitude. It is recom-
mended that combined integration methods be thoroughly investigated.
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PWC ENS J.E. Surash, Pearl Harbor Hl; ACE Office (L.TJG St. Germain) Norfolk VA: CO, Great Lakes IL: Code
16 (1'TIG. A, Eckhart) Great Lakes. 1L: Code 120, Oakland CA; Code 120C (A, Adams) San Diego, CA: Code
120C (Library) San Diego, CA; Code 200, Great Lakes [L.; Code 200, Oakland CA; Code 220 Oukland, CA: Code
220.1, Norfolk VA: Code 30C (Boetteher) San Diego, CA; Library, Subic Bay, R.P.; OIC CBU-405, San Diego CA;
X0 Qakland, CA

SPCC PWO (Code 120 & 122B) Mechanicsburg PA

USAF SCHOOL OF AEROSPACE MEDICINE Hyperbaric Medicine Div, Brooks Ai8, TX

USCG (G-ECV/61) (Burkhart) Washington, DC; G-EOE-4/61 (T. Dowd), Washington DC; MMT-4, Washington DC

USCG ACADEMY LT N. Stramandi, New London Ci'

USCG R&D CENTER D. Motherway, Groton CT% Tech. Dir. Groton, CT

USNA Ch, Mech, Engr. Dept Annapolis MD; PWD Engr. Div. (C. Bradford) Annapolis MD; PWO Annapolis MD;
Sys. Engr Dept (Dr. Monney), Annapolis MD

AMERICAN CONCRETE INSTITUTE Detroit MI (Library)

CALIE, DEPT OF NAVIGATION & OCEAN DEV. Sacramento, CA (G. Armstrong)

CALIFORNIA STATE UNIVERSITY LONG BEACH, CA (CHELAPATI); LONG BEACH, CA (YEN)

CORNELL UNIVERSITY Ithaca NY (Serials Dept, Engr Lib.)

DAMES & MOORE LIBRARY LOS ANGELES, CA

DUKE UNIV MEDICAL CENTER 8. Muga, Durham NC; DURHAM, NC (VESIC)

FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FL(MC ALLISTER); Boca Raton FL, (Ocean Engr Dept., C,
Lin)

FLORIDA ATLANTIC UNIVERSITY Boca Raton FL (W, Tessin)

FLORIDA TECHNOLOGICAL UNIVERSITY ORLANDO, FL (HARTMAN)

GEORGIA INSTITUTE OF TECHNOLOGY Atlanta GA (School of Civil Engr., Kahn); Atlanta GA (B, Mazanti)

IOWA STATE UNIVERSITY Ames IA (CE Dept, Handy)

VIRGINIA INST. OF MARINE SCI. Gloucester Point VA (Library)

LEHIGH UNIVERSITY BETHLEHEM, PA (MARINE GEOTECHNICAL LAB,, RIZHARDS); Bethichem PA
(Fritz Engr. Lab No. 13, Beedle); Bethlehem PA (Linderman Lib. No.30, Flecksteiner)

LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & TECH DIV)

MASSACHUSETTS INST. OF TECHNOLOGY Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.); Cambridge
MA (Rm 14 E210, Tech, Report Lib.); Cambridge MA (Whitman)

MICHIGAN TECHNOLOGICAL UNIVERSITY Houghton, MI (Haas)

NORTHWESTERN UNIV Z.P, Bazant Evanston 1.

NY CITY COMMUNITY COLLEGE BROOKLYN, NY (LIBRARY)

OREGON STATE UNIVERSITY CORVALLIS, OR (CE DEPT, BELL); CORVALLIS, OR (CE DEPT, HICKS)

PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA (GOTOLSKD)

PUKDUE UNIVERSITY Lafaycte IN (Leonards); Lafayette, IN (Altschaeffl); Lafayetie, IN (CE Engr. Lib)

SAN DIEGO STATLE UNIV. Dr, Krishnamoorthy, San Diego CA

SOUTHWEST RSCH INST J. Maison, San Antonio TX; R. DeHart, San Antonio ‘I'X

STANFORD UNIVERSITY Stanford CA (Gene)

STATE UNIV, OF NEW YORK Buffalo, NY

TEXAS A&M UNIVERSITY COLLEGE STATION, TX (CE DEPT); College TX (CE Dept, Herbich)
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U.S. MERCHANT MARINE ACADEMY KINGS POINT, NY (REPRINT CUSTODIAN)

UNIVERSITY OF CALIFORNIA BERKELEY, CA (CE DEPT, GERWICK); BERKELEY, CA (CE DEPT,
MITCHELL): BERKELEY, CA (OFF. BUS. AND FINANCE. SAUNDERS); Berkeley CA (B. Bresler); DAVIS,
CA (CE DEPT, TAYLOR}); LIVERMORE, CA (LAWRENCE LIVERMORE LAB, TOKARZ); LaJolla CA (Acq.
Dept. Lib, C-075A): Los Angeles CA (Engr 1, K. Lee); SAN DIEGO, CA, LA JOLLA, CA (SEROCKI)

UNIVERSITY OF DELAWARE Newark, DE (Dept of Civil Engineering, Chesson)

UNIVERSITY OFf HAWAIT HONOLULU, HI(CE DEPT. GRACE): HONOLULU, HI (SCIENCE AND TECH.
DIV.): Honolulu HI (Dr. Szilard)

UNIVERSITY OF ILLINOIS Mectz Ref Rm, Urbana IL: URBANA, IL (DAVISSON); URBANA, IL (LIBRARY),
URBANA, IL (NEWARK): Urbuana IL (CE Dept, W. Gamble)

UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MA CE Dept

UNIVERSITY OF MICHIGAN Ann Arbor MI (Richart)

UNIVERSITY OF NEBRASKA-LINCOLN Lincoln, NE (Ross Ice Shelf Proj.)

UNIVERSITY OF NEW MEXICO Albuquerque NM (Soil Mech. & Pav. Div., J. Nielsen)

UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Aransas TX

UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TX (THOMPSON); Austin TX (R. Olson); Austin, TX (Breen)

UNIVERSITY OF WASHINGTON Dept of Civil Engr (Dr. Mattock), Seattle WA; SEATTLE, WA (MERCHANT);
SEATTLE, WA (OCEAN ENG RSCH LAB, GRAY); Scatlle WA (E. Linger)

URS RESEARCH CO. LLIBRARY SAN MATEOQ, CA

US GEOLOGICAL SURVEY Off. Marine Geology, Mailstop 915, Reston VA

ABROSPACL CORR, Acquisition Group, Los Angeles CA

ALFRED A, YEE & ASSOC. Honolulu HI

ARVID GRANT OLYMPIA, WA

ATLANTIC RICHFIELD CO. DALLAS, TX (SMITH)

AUSTRALIA Dept. PW (A. Hicks), Melbourne

BECHTEL CORP. SAN FRANCISCO, CA (PHELPS)

BELGIUM NAECON, N.V,, GEN,

BETHLEHEM STEEL CO. BETHLEHEM, PA (STEELE)

BROWN & ROOT Houston TX (D. Ward)

CANADA Mem Univ Newfoundland (Chari), St Johns; Surveyor, Nenninger & Chenevert Inc.. Montreal; Warnock
Hersey Prof. Srv Lad, La Sale. Quebec

CF BRAUN CO Du Bouchet, Murray Hill, NJ

CONCRETE TECHNOLOGY CORP. TACOMA, WA (ANDERSON)

CONRAD ASSOC. Van Nuys CA (A. Luisoni)

DRAVO CORP Pittsburegh PA (Giannino); Pittsburgh PA (Wright)

NORWAY DET NORSKE VERITAS (Library), Oslo

EVALUATION ASSOC. INC KING OF PRUSSIA, PA (FEDELE)

FORD, BACON & DAVIS, INC. New York (Library)

FRANCE Dr. Dutertre, Boulogne; P, Jensen, Boulogne

GEOTECHNICAL ENGINEERS INC. Winchester, MA (Paulding)

GLIDDEN CO. STRONGSVILLE, OH (RSCH LIB)

GLOBAL MARINE DEVELOPMENT NEWPORT S8EACH, CA (HOLLETT)

GRUMMAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr)

HALEY & ALDRICH, INC. Cambridge MA (Aldrich, Jr.)

HONEYWELL, INC. Minneapolis MN (Residential Engr Lib.)

HUGHES AIRCRAFT Culver City CA (Tech, Doc. Cir)

ITALY M. Caironi, Milan: Sergio Tattoni Milano

JAMES CQ, R. Girdley, Orlando FL

LAMONT-DOHERTY GEOLOGICAL OBSERV. Palisades NY (McCoy); Palisades NY (Selwyn)

LOCKHEED MISSILES & SPACE CO. INC. SUNNYVALE, CA (PHILLIPS); Sunayvale CA (Rynewicz)

LOCKHEED OCEAN LABORATORY San Diego CA (F. Simpson)

MARATHON OIL CO Houston TX (C. Scay)

MC CLELLAND ENGINEERS INC Houston TX (B, McCleliand)

MCDONNEL AIRCRAFT CO. Dept 501 (R.H. Fayman), St Louis MO

MEDALL & ASSOC, INC. J.T. GAFFEY Il SANTA ANA, CA

MEXICO R, Cardenas

MOBIL PIPE LINE CO. DALLAS, TX MGR OF ENGR (NOACK)

MUESER, RUTLEDGE, WENTWORTH AND JOHNSTON NEW YORK (RICHARDS)

NEW ZEALAND New Zealand Concrete Research Assoc. (Librarian), Porirua

NEWPORT NEWS SHIPBLDG & DRYDOCK CO. Newport News VA (Tech. Lib.)
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NORWAY DET NORSKE VERITAS (Roren) Oslo: J. Creed. Ski: Norwegian Tech Univ (Brandtzacg), Trondhcim

OFFSHORE DEVELOPMENT ENG, INC. BERKELEY. CA

PACIFIC MARINE TECHNOLOGY LONG BEACH, CA (WAGNER)

PORTLAND CEMENT ASSOC. SKOKIE, IL {CORELY): Skokie IL (Rsch & Dev Lab, Lib.)

PRESCON CORP TOWSON, MD (KELLER)

RAND CORP. Santa Monica CA (A. Laupa)

RAYMOND INTERNATIONAL INC. CHERRY HILL, NJ (SOILTECH DEPT)

RIVERSIDE CEMENT CO Riverside CA (W. Smith)

SANDIA LABORATORIES Library Div., Livermore CA

SCHUPACK ASSOC SO. NORWALK, CT (SCHUPACK)

SEATECH CORP, MIAMI, FL (PERONI)

SHELL DEVELOPMENT CO. Houston TX (E. Doyle)

SHELL OIL CO. HOUSTON, TX (MARSHALL)

SWEDEN GeoTech Inst; VBB (Library), Stockholm

TIDEWATER CONSTR. CO Norfolk VA (Fowler)

TRW SYSTEMS CLEVELAND, OH (ENG. LIB.); REDONDO BEACH, CA (DAD)

UNITED KINGDOM Cement & Concrete Assn. (R Rowe) Wexham Springs, Slough Buck: Cement & Concrete
Assoc, (Lit, Ex), Bucks; D. New, G. Maunsell & Partners, London; Shaw & Hattoa (F. Hansen), London; Taylor,
Woodrow Constr (014P), Southall, Middlesex; Univ. of Bristol (R. Morgan). Bristol

USGS MENLO PARK, CA(YOQOUD)

WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Bryan); Library, Pittsburgh PA

WISS, JANNEY, ELSTNER, & ASSOC Northbrook, L. (J, Hanson)

WOODWARD-CLYDE CONSULTANTS Oakland CA (A. Harrigan); PLYMOUTH MEETING PA (CROSS, 1)

AL SMOOTS Los Angeles, CA

BULLOCK La Canada

F. HEUZE Boulder CO

HAMEED ELNAGGAR Wexford PA

CAPT MURPHY SAN BRUNO, CA

GREG PACE EUGENE, OR

R.F, BESIER Old Saybrook CT

T.W. MERMEL Washingion DC
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