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significantly larger time stcps wvith comparable accuracy. In many, if not most, problems it is
not obvious which integration mcthod is more efficient. In this study, thc Newmark Beta-
Method is examined for stability, accuracy, and cffiAciency, wherein Beta =0 provides anl
exp~licit algorithm, wvhile Beta &0 provides anl implicit algorithm. Both algorithmns arc used in
the same finite element program to solve a soil-structure boundary value problem composed
of a cyindrical steel shell encased in a relatively soft rock-like material and subjected to a

* surface blast loading. I-or this problem with lisncar system properties, thle implicit method
was significantly wore efficient as measured by computer time. I-or nonlinear systems, the
two methods are approximately equivalent in) efficiency. A combined explicit-implicit
integration technique is proposcd for these types of interaction problems with two or more
materials. The combined explicit-himplicit algorithm employs explicit integration in the soft
material andl implicit integration ini the stiff material with a potential increase in efficiency
by an order of magnitude ove., either method applied individually.
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1%%~. Newmark Beta-Method 2. Structural dynamics 1. Y99(IAXSC518
I Direct integration techniques (step-by-step) arc widely used for the time integration of dis-

crctizcd equations of motion that result from ap~plying numerical techniques such as the finite edc-
meimet method to structural dynamic problems. InI this study, the Newmark Ileta-Method is
Iexamined for stability, accuracy, and] efficiency, whecrein Beta -0 provides an explicit algorirlun,j I
while Beta !- 0 provides an implicit algorithm. Both algorithms arc used in tile same finite element
program to solve a soil-structure boundary value problem composed of a cylindrical steel shed cin.
e ased in a relatively soft rock-like material andi subjected to a suirface blast loading. Thei implicitI
method was signi ficanftly more dfficicrit as mnea~ured by computer time. For nonlinear systems, theJ
two methods were approximately equtivalent in efficiency. A combined explicit-imlplicit
integration techInicj~mv Is proposed that employs explicit integration in the soft material and
Iimplicit integration in the stiff material with a potential increase in efficiency by an order of I
magnitude over either method applied individually.,
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INTRODUCTION

In the past two decades the finite element method has been widely
used for solving structural dynamics problems. The numerical approxima-
tions inherent in the finite element technique include two broad cate-
gories: (a) spatial discretization and (2) temporal discretization. The
former category deals with the approximation errors and efficiency of the
assumed spatial distribution of the primary variables (e.g.s, displacement
field), while the latter category deals with the approximation errors and
efficiency involved with the time integration of the discretized equations
of motion. In this study only the latter category is pursued and the
discussion is restricted to direct integration methods (i.e., step-by-
step). Other methods of solving the equations of motion such as eigen-
value analysis cr method of characteristics are not considered because of
their limitations for nonlinear problems.

Direct integration schemes are generally classified in two groups:
implicit methods and explicit methods. This report examines these two
methods in the light of numerical stability, accuracy, and efficiency for
a class of problems,* characterized by a cylindrical structural liner
embedded in a homogeneous rock-like material and subjected to a surface
blast loading [1, 2].

7 Background

Numerous implicit and explicit integration operators are in current
use and have been reported extensively in engineering literature. Some
of the more popular implicit integration schemes are: the Newmark
0-methbd (0 k 0) [3], the Houbolt method [4], and the Wilson 0-method [5].
Explicit schemes are more commonly referred to by a finite difference
operator such as the second central difference scheme [6]. Note the
Nawma&k B.'method with 0 = 0 is equivalent to the second central difference
scheme and is an explicit method.

The fundamental difference between an explicit and implicit integra-
tion scheme is that in the explicit case the displacement vector for the
current time step can be predicted directly from the known displacements,
velocities, and accelerations of the previous time steps, whereas in the
implicit case the current displacements are related to current accelerations
(and possibly cuirrent velocities) as well as responses from previous time
steps. As a result, the solution algorithm for the implicit scheme requires
assembling a global, mass and stiffness matrix into a set of coupled alge-
braic equations and solving the system by some technique such as Gaussian
elimination.

*Of current interest to the Defense Nuclear Agency (DNA).
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On the other hand, the explicit algorithm only requires assembling
the mass matrix and solving for the current acceleration. The restoring
force vector (stiffness matrix times predicted displacement vector) is
formed on the right-hand side at the element level, thereby eliminating
the need of assembling the global stiffness matrix. If a lumped mass
procedure is used (as is generally done), the accelerations are uncoupled
and can be computed rapidly.

The trade-off one pays for the rapid.explicit algorithm is the
requirement of a small time step to avoid numerical instability. When
instability occurs the computed responses become wildly erratic, oscil-
lating many orders of magnitude. Numerical instability is governed by
the frequency content of the discretized system and will be discussed
later.

The potential advantage of some implicit integration schemes is that
they are unconditionally stable, allowing a much larger time step con-
trolled by integration accuracy (as opposed to integration stability).

In short, if computational efficiency is measured by the computer
cost (time) to accurately integrate the equations of motion over a given
time range of interest, then the explicit method has the advantage of
rapid solutions per time step but the disadvantage of requiring many time
steps. The reverse is true for the implicit method.

It cannot be categorically claimed that one method is more efficient
than the other. Rather, the question of efficiency is highly problem
dependent, involving such factors as: finite element mesh topology,
types of elements, loading function, material properties, degree of non-
linearity, method of characterizing mass matrix, and the size of the
system. Discussion of these influences are given in References 7 and 8.

Recently the idea has been advanced to simultaneously employ
implicit and explicit integration operators over different regions of
the finite element mesh to take optimum advantage of each method. The
above notion, as well as explicit versus implicit efficiency studies, is
pursued in the course of this investigati~n.

Objective and Scope

This investigation is restricted to the family of integration
operators contained in Newmark's 6-method [3] wherein -= 0 provides an
explicit scheme and R 4 0 provides an implicit scheme. The test boundary
value problem to be investigr&ced is an elastic steel cylinder encased in
a homogeneous, elastic, rpek-like material subjected to a surface blast
loading.

Within tUi above framework, the objectives of this study include:

(1) Identification and discussionof explicit and implicit algorithms,
including considerations of numerical stability and accuracy.

(2) Comparison of efficiency between explicit and implicit for the
test boundary value problem and estimates for a nonlinear case.

(3) Development of a combined explicit-implicit integration
algorithm for superior efficiency.
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Approach

It is recognized that an efficiency comparison of explicit versus
implicit schemes (Objective 2) is relative and subjective. That is, the
relative merits of the two integration schemes are not only dependent on
the nature of the boundary value problem, but also on the programming
skill of the progran. authors and the particular costing algorithm of the
host computer site.

To minimize the iniluence of different programmers, the finite
element program FEA1 [9] was adopted for this study. FEAP is the only
known general purpose finite element code containing both explicit and
implicit algorithms based on the Newmark 0-method. It is a linear code
(also linear viscoelastic) with two- and three-dimensional elements.

With regard to the host computer site (CDC 6600), only central pro-
* cessing time will be considered for efficiency comparisons without regard

to input/output (I/0) time. Altnough I/O time may be significant, partic-
ularly for out-of-core solution methods, it is not considered in this
study because the associated costs are arbitrary and dependent on the
costing algorithm of the operating site.

In the following pages, the Newmark a-method is reviewed in the
context of explicit and implicit algorithms, together with a discussion
of numerical stability and integration accuracy. Next, the FEAP code is
used to ascertain the efficiency of explicit versus implicit for the
stated test problem, Lastly, a combined explicit-implicit algorithm is
presented followed by conclusions and recommendations.

THEORETICAL CONSIDERATIONS OF NEWMARK a-METHOD

For t~his investigation, we consider the spatially discretized matrix
equation of structural dynamics given by:

M6 + Ku (1)

where: M - mass matrix

K stiffness matrix

Su acceleration vector

ii velocity vector

a- displacement vector

f - external load vector

3



Equation 1 is a coupled system of second-order ordinary differential
equations which represents an initial-value problem for finding the dis-
placement -unction u(t) satisfying Equation 1 and also satisfying the
initial conditions 2(0) = uo and ii(O) - •o, where uo and ýo are given
initial data. The matrix j is assumed constant, symmetric, and positive
definite. The stiffness matrix Y is also assumed positive definite, but
not necessarily constant, to reflect a changing stiffness due to material
nonlinearity.

Newmark a-Method

A step-by-step operator suitable for numerically integrating
Equation 1 is given by Newmark [3] as:

+ At[_ - + t+At] (2)

2utV-At = ut + At t + At2[(1/2 -8)t + B t+At] (3)

where: At - time step

a - Newmark a-parameter, 0 ý a ý 1/4

y - Newmark numerical damping parameter (y - 1/2)

The damping parameter y introduces numerical damping when y 4 1/2. In
this study, y is taken as 1/2 to avoid complications of numerical damping.
Subscripts denote the time at which the response is evaluated.

Specification of the a-parameter (R 4 0) leads to a variety of well-
known implicit schemes. For example, 0 - 1J4 is equivalent to the average
acceleration scheme, and a - 1/6 is equivalent to the linear acceleration
scheme. For the special case 6 - 0, an explicit scheme result6, as can
be observed from Equation 3 wherein displacements at time t + At are pre-

dicted from known responses at the previous time t.
Computational algorithms for implicit (R 4 0) and explicit (B = 0)

integrations are outlined in the next sections.

Implicit Algorithm

It is assumed the responses ut, ýt, and Ut are known for time t, and
the objective is to determine these responses at time t + At. To this
end, the following three steps constitute an implicit algorithm:

4



Step 1. From Equation 3, express Ut+At as a function of ut+At and
previous responses to get:

t+At /At)t+At " a

where: a .. 1=~u + +U~-)

Step 2. Inserting the above expression for Ut+At into Equation 1,

Mt+At is determined from the solution of the coupled system:

~ + -' +~ + a(;t2 M + 4 Mt+At = t+At + M-t

Step 3. Update accelerations using the expression in Step 1, and
update velocities using Equation 2, i.e.,

•t+At = ;-2 Rt+At !

t+At t t t+At

The above algorithm is repeated successively for each time step through
the time range ol interest.

Step 2 of the above algorithm requires assembling the global uass
and stiffness matrix and solving the coupled system by techniques such
as elimination (i.e., triangularization), which is a costly operation.
If the system is linear and a constant size time step is used, the tri-
nngularization can be done once and for all at the outset of the proce-
dure so that subsequent steps only require modifying the right-hand side
and performing back substitution. However, for nonnlinear systems the
stiffness matrix may have to be reformed and, hence, resolved at every
time step and perhaps iterations within the time step, depending on the
degree of nonlinearity and the methodology employed. This disadvantage
of the implicit method is not shared by the explicit algorithm discussed
next.

Explicit Algorithm

As before, it is assumed the responses Vt, ýt, and Ut are known and
the objective is to determine the responses at time t + At. The following
three steps constitute an explicit algorithm.

5



Step 1. From Equation 3 with 8 0, the displacements Ut+At are
predicted directly as a function of the previous responses:

At2 ..

where: d ut + Att 4- U
-t t- -t

Step 2. Inserting the above expression for ut+At into Equation 1,
the accelerations Ut+At are given by the solution of:

'" - f - Kd

-t+At -t+At " -t

Step 3. Lastly, the velocities 6t+At are updated from Equation 2,
i.e.:

t+At 2 -t t+tt

Unlike Step 2 of the implicit algorithm, Step 2 of the explicit

algorithm only requires assembling the global mass matrix M. If the

lumped mass technique is adopted, then 4 is diagonal and the solution

for Ut+At is trivial (otherwise t must be triangularized once at the

outset). Furthermore, the internal force vector represented by _t can

be easily computed at the element level circumventing the need of formally

assembling the global stiffness •. Accordingly,, there is no significant

penalty in the algorithm for nonlinear systems since changes in j are

easily accommodated by right-hand-side operations at the element level.
The apparent advantages of the explicit over implicit algorithm are

mitigated by the concern of numerical stability which limits the size of

the integration step At. These notions are dispussed next.

Stability of Newmark $-Method

Numerical stability of a solut!,on algorithm may generally be assured

by proper eboice of the integration step size. Since stability increases

with decreasing step size, a sufficiently small step can generally be

found to provide a stable solution. Therefore, the question to be explored

is, what size time step is required •or stability of the Newmark 6-method.

The following development is restricted to linear systems. Stability for

nonlinear: systems has been addressed on an energy basts [10, 11].

It is well-known that a linear F.ystem represanted by Equat~on 1 can

be transformed into an equivalent set )f urcou led eq'tipions throughV modal analysis. A typical uncoupled modal equatiuvi ma7y .b1 written as:

6



+ W2x - p(t) (4)

where X is the transformed displacement called the normal coordinate,
w is the associated frequency of vibration, and p(t) is the transformed
loading function.

It is asserted that the numerical integration of all the modal
equations (typified by Equation 4) using the same At is equivalent to
the numerical integration of the coupled system (Equation 1). Accordingly,
numerical stability can be simplified to the investigation of Equation 4.

To this end, the Newmark integration operator (Equations 2 and 3)
can be combined and expressed independently of velocities by taking the
difference of Equation 3 at time t + At from its value at time t and
replacing the resulting velocity difference by Equation 2. This gives:

X t+At - 2X At -A " At2[t+At + (1-2B)Xt + OXt=At] (5)

ihere the nodal displacement u is replaced by the normal coordinate X.
For the case of free vibration p(t) - 0, Equation 4 is introduced

into the integr:ation operator (Equation 5) at times t - At, t, and t + At,
resulting in tL:e difference scheme:

Xt+At -bXt + Xt.At " 0 (6)

where b - 2 - (wA-)2 (1 -20) (7)

1 + (wAt) 0

. Equation 6 represents a step-by-step finite difference scheme for
successively updating the displacements Xt+At in terms of the previous
displacements Xt and Xt.At.

For a given set of initial conditions, the free vibration of a linear
system must be harmonic and bounded. Thus, the stability question is

* , stated: for a particular 0 and maximum frequency wmax, how large a time
step, At, may be taken so that Equation 6 will produce bounded and
harmonic results? This question is answered by determining the difference
solution which is achieved by initially assuming a solution of the form:

(tk/At)
Xt r (8)

tk

where k is the time step counter k tk/At, and r is to be determined.
Inserting '.he above into Equation 6 leads to the characteristic equation
for r:

7



2
r - br + 1 = 0 (9N

whose roots rl, r 2 in comp..ex polar form are:

r1, r 2  = -iq (10)

where q -si.1 (V1 b b2/4) (11)

iqtk/bt
Since e k US (qtk/At) + i sin (qtk/At), the difference

solution of Equation 6 raay be written in the form:

Acos At~ + B sin (!t) (12)

where A and B are real constants determined from initial conditions;
A - X(0), B - (At/q) X(0). The above equation yields a bounded, harmonic
solution for Xtk, providing q is real. Clearly, from Equation 11, q is

real if (1 - b2 /4) ý 0. This provides the stability criterion, such that
replacing b with Equation 7, the maximum allowable time step is given by:

At (13)27r 1 -4(3(3

where T is the shortest period of vibration of the system given by
T = 2,r/•ax.

Evaluating Equation 13, the allowable time step for the explicit

case, R - 0, is At ý C.318 T. For implicit examples, 0 - 1/6 gives
At ý 0.551 T, but for 0 - 1/4 there is no finite limit on At for stability.
Hence, a - 1/4 provides an unconditionally stable operator.

For all cases a < 1/4, the allowable time step to insure stability
is dependent on the shortest period of the system as given by Equation 13.
Unfortunately, the value of the shortest period (or highest frequency) is
generally not known and troublesome to calculate. As an alternative, it
is often more convenient to determine the stability limit of At by a
heuristic approach given next.

Heuristic Stability Criterion

In lieu of using Equation 13 for selecting a stable time step, the
following relationship may be used:

8



At • (h/c) I/(l - 48) (14)

where h is the shortest side ',f a finite element, c is the maximum wave-
speed of the element materia', and (h/c)min implies the controlling
element in the mesh where t ratio h/c is a minimum. (For isotropic
elastic materials, the maximum wavespeed is c - {E(1-v)/[p(1+v)(1-2v)]}I)/ 2 ,'
where E - Young's Modul s, v - Poisson's ratio, and p - mass density.)

The genesis of Equation 14 is based on heuristic arguments for the
explicit algorithm (8 - 0) and modified by the factor 1I/(l - 48) for
implicit cases as discussed in the following.

Consider the continuum body shown in Figure 1 with an arbitrary
finite element topology drawn on the body and focus attention on the node
common to the 'our shaded elements. If this point is perturbed by an
external agency, continuum theory requires the excitation to travel with
a sonic wavespeed c. Therefore, after a time interval, At, the perturbed
area is inscribed by a circle of radius rc - cAt, shown by the dashed
line in Figure 1. Now, for the corresponding explicit algorithm, the
perturbed area for one time step can be no greater than the area of
numerical coupling; i.e., the internal forces Kd generated by an excita-
tion of the ,ommon node during one time step are coupled no further than
the nodas of the shaded elements. This condition holds for each and
every node as it, in turn, becomes excited. Therefore, in order to insure
that the "numerical wavespeed" of the explicit algorithm can excite an
area at least as large as the area of sonic travel, it is required that
h ý r. or, equivalently, At I (h/c)min.

With regard to the implicit algorithm 8 4 0, the numerical coupling
is greater because we are, in effect, operating with K=l and not the
banded matrix 1. Since K-I is generally fully populated (although
weakly coupled between distant nodes), the area of numerical coupling is
effectively greater. Accordin ly, the maximum allowable time step is
increased by the factor V1/(I - 48), which is the ratio front Equation 13:
At(O 4 0) - At(O - 0).

Experience has shown that Equation 14 provides a good estimate of an
allowable time step for stability.

Accuracy of Newmark B-Method

The selection of At to insure rumerical stability is a necessary
condition for a meaningful solution; however, it is not automatically a
sufficient condition to insure that the numerical results are a gooc
approximation of the original differential equation. This becomes the
question of accuracy. An obvious example is the case 8 - 1/4 which has
no stability limit for At so that At is controlled strictly from accuracy
considerations.

Accuracy can be studied by comparing the exact solution of the
original differential equation fEquation 4) with the corresponding dif-
ference solution given by Equation 12. Specifically, for the case of

9
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4/

Figure 1. Representation of numerical and continuum wavespeed.

free vibration, the exact solution has the form X - A cos wt + B sin wt,
whereas Equation, 12 has the form Xtk - A cos Wtk + B sin 3tk, where

= q/At. For harmonic similarity, the numerical frequency @ must be a
good approximation of the actual frequency w; or, equivalently, the
numerical period T - 2w/ý must be a good approximation of the actual
period T - 21/w.

The ratio of the approximate period to the actual period provides
a measure of accuracy [12]. With the aid of Equation 11, this ratio may
be written as:

T n2f (At/T) (15)
T sin 1 (ýF b21/4)

where b - T 2 (16)

1 + (2w L)2T/

As At + 0, VT ÷ 1, illustrating that the approximate solution
approaches the exact solution in the limit. However, for increasing
values of At, ,T/T diverges from unity on a path dependent on 3. Figure 2
illustrates this trend for 8 - 0, 1/6, and 1/4 as a function of At/T. It
is observed that T/T begins to significantly deviate from unity when At/T
is larger than say 0.2, which is smaller than the stability limits.

10



From the above observations, it -
would appear that accuracy consider-
ations place a more stringent limit
on the maximum time step than does 2
the stability criterion. However, IH
this is generally not true for multi- •
degree-of-freedom systems typical of
finite element models. The reason
for this is that the vibration modes -

i1-------- ----------- --------------associated with higher frequencies
(shorter periods) generally have
very low participation factors. Thus, .•

even though the higher modes may be 0

integrated with significant error, < -stabilitylimits
their net contribution is masked by s liit

the large participation factors of 0 0.2 0.4 o.6 0.8 1.0
the dominant lower modes whose in- Time Stcp zc F action of Period, At/i
tegration is more accurate due to the
longer periods. Also, it is known Figure 2. Period accuracy
that the higher vibration modes of of Newmark a-method.
a finite element model are '"ficti-
tious" in the sense that they represent a lumping of the infinite set of
higher modes of vibration corresponding to the continuous system being
modeled. Therefore, the low participation of the fictitious vibration
modes is not merely a fortuitous happenstance, but rather is a necessary
consequence of proper spatial discretization.

To summarize, for the cases 0 < 1/4 the allowable time step is
generally governed by the stability criterion (Equation 13 or 14) based
on the shortest period. Unlike the accuracy consideration, the shortest
period (highest mode) cannot be ignored because, even though it initially
has a low participation factor, if it is integrated in the unstable range,
its contribution will grow without bound.

For the unconditionally stable case 0 - 1/4, the allowable time step
is governed strictly by accuracy considerations. Since the analyst may
have no idea of the frequency content of the mesh nor what frequencies
will be dominant for a specified loading, it is difficult to determine
a priori an optimum time step size. Accordingly, computational experi-
mentation is generally the most direct method. As a guide, the time step
should be at least sufficiently small to define the shape and character
of the loading function.

In the next section computational experimentation is performed on
the test problem posed in the objective of this report.

COMPUTATIONAL INVESTIGATION

The finite element code FEAP [9] is used to study the efficiency of
the implicit algorithm 0 - 1/4 versus the explicit algorithm 0 - 0.
FEAP's explicit and implicit algorithms accept identical finite element

11



input records and use tha same element stiffness routine. Thus, it may
be presumed the subsequent comparisons provide an unbiased assessment
of integration efficiency.

The test problem described is representative of a class of problems
of current interest to bNA [i, 2].

Test Problem and Finite Element Model

The test problem is illustrated in Figure 3 which shows a system
composed of a homogeneous media representative oý. a soft rock-like
material called tuff and a 3-foot (0.914 m) circular steel liner 0.78
inch (1.98 cm) thick. All materials are elastic and are defined in
Figure 3. Plane strain geometry is assumed, and the system is symmetric
about the vertical centerline.

Pressure, p(t)

0.5 kbar14 4 4 4 4 4

I -U I
I

Young's Mass
Material Modulus Poisson s Density

(psi x 106) Ratio (slug-ft/in. 4 ) (in.Irns) 3 ft steel liner,

0.78-in. thick
Tuff 0.448 0.286 0.00018 57.0

Steel 30.0 a0 0.00073 235.0

0oo ft

symmetric
about centerline

Figure 3. Test problem, loading, , . •///. .. J

and material properties.

12



Pressure loading is distributed Memcnts = 381

uniformly along the surface of the Dcgrcesfreedom = 861
tuff, and the loading function is a Average bandwidth = 25

triangular pulse whose rise time is
10 ms with a maximum pressure of 0.5
kbar followed by a 30-ms decay to Loading

zero pressure.
The finite element mesh topology

representing the test problem is
shown in Figure 4. Ail elements are
compatible four-node, isoparametric
elements. The steel liner is coarse-
ly modeled with a single layer of
32 elements forming a semicircle.
Although the single layer is insuf-
ficient to accurately capture bend-
ing of the liner, it suffices for
this investigation where the concern
is with time integration.

A simple lumped-mass procedure
is used for both explicit and
implicit integration schemes.
Boundary conditions, degrees of
freedom, average bandwidth, and
other information are displayed in
Figure 4. right and left

boundary arc
vertically free

Explicit Results (0 w 0) and horizontally

fixed
Solutions were attempted for

time steps of At - 0.0025, 0.0035,
and 0.0045 ms. The solutions for
At - 0.0025 and 0.0035 ms were prac-
tically identical, indicating these
solutions provided accurate time
integrations. A typical result is
shown by the solid line in Figure 5,
which is a normalized time-history
plot of the thrust stress (i.e.,
average hoop stress) in the steel
liner at the springlJne.

For the case At - 0.0045 ms,
the responses in the steel liner
became unstable (wildly erratic) rfedba
after approximately 150 time steps ýWWWWWA edN.

or 0.68 ms. Thereafter, instability
quickly spread throughout the entire Figure 4. Finite element
system in a matter of a few time mesh of test problem.

13
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50
steps. Theoretically, the sonic
travel time for a surface disturbance
to travel through 18 feet (5.49 m) of
tuff and excite the liner is 3.8 ms. 40 I
However, the numerical wave speed can 1
travel vertically downward one ele- 0
ment dept a per time step and prema- 0 +

turely excite the instability of the 0 /
steel liner well ahead of the sonic 0
travel time.

The heuristic stability pre- I
diction for maximum allowable At .4
(Equation 14) based on the steel 20
liner elements is At - 0.0033 ms
[i.e., h - 0.78 inch (1.98 cm), c D y__O.0025 ms

235 in./ms (597 cm/ms)]. This is in -4 Explicit, At 3.o35 ms
good agreement with the observed 10o
instability occurring between 0.0035 o 0 Implicit, At - 0.4 ms

< At < 0.0045 ms. Computer time for + implicit, At M 0.8ms

the central processor is summarized 0 implicit, At- 2.0 ms
in Table 1. 0o.-

0 10 20 30

Implicit Results (8 - 1/4) Time(ms)

Solutions were obtained for the Figure 5. History plots ofsteel liner thrust stress,
time steps At - 0.4, 0.8, and 2.0 ms, implind expict.

which are two orders of magnitude implicit and explicit.

g-aater than the allowable explicit
time steps. Since 8 - 1/4 provides an unconditionally stable implicit
algorithm, the only concern is with accuracy. In each case, the results
were in close agreement with each other and the explicit solution as
illustrated by the discrete symbols superimposed on the explicit solution
presented in Figure 5. A slight error can be observed near the peak of
the response for the case At - 2.0 ms. Accordingly, for the sake of
subsequent comparisons, it will be said that the maximum allowable time
step based on accuracy is At - 0.8 ms. This corresponds to 12 time steps
wi.thin the loading rise time. Computer cost (time) for the central
processor is summarized in Table 1.

Efficiency of Explicit Versus Implicit

The computer times reported in Table 1 were determined by assessing
a system "clock routine,'' which measures the actual running time of
each step for both the explicit and implicit algorithms. These results
indicate the number of time steps required to complete the 40 ms loading
duration is 11500 (i.e., 40/0.0035) for the explicit case, but only 50
(i.e., 40/0.8) for the implicit case; or a ratio of 230 in favor of the
implicit method. On the other hand, the computer cost (time) per step of

14



Table 1. Central Processor Time for Explicit
and Implicit Algorithms

Computer Time Computer Time
Algorithm Per Step of Algorithm Per Complete Solutiona

(s) (s)

Explicit 0.164 1,870.0
( 0)

Implicit 4 . 2 3b or 1.22c 64.0
- 1/4)

acomplete solution time is based on 40 ms problem, using

At - 0.0035 ms for explicit and At - 0.8 ms for implicit.

bTime for a solution step requiring triangularization.
CTime for a solution step not requiring triangularization.

the implicit method, where the stiffness matrix is triangularized, is 25
times more than an explicit step cost. For subsequent steps not requiring
triangularization, the implicit cost is 8 times more than the explicit
cost per step. As a net result the computer cost (based on central
processing time) of the explicit solution is 30 times more expensive
than the implicit solution for a complete 40-ms run.

The observed efficiency of the implicit method is primarily due to
the linear nature of the test problem.

Nonlinear systems do not appreciably alter the computer costs for
explicit algorithms because stiffness changes are dealt with at the
element level on the right-hand side of the equilibrium equations.
Moreover, since the explicit step size is inherently small, iterations
within the time step are generally not required. Conversely, nonlinear
stiffnesses in the implicit method may require triangularizing and
iterating within every time step, as well as reducing the size of the
time step. For example, previous experience indicates that, if tile tuff
material is modeled with a nonhardening plasticity law, tIin to maintain
accuracy for the implicit algorithm requires At = 0.2 ms, as well as
triangularizing and iterating within each time step. Under these condi-
tions, the computer cost can be estimated from Table 1 to be about
equivalent to the cost of the explicit method.

Summarizing for the class of problems considered, the implicit
algorithm is significantly more efficient for linear systems; however,
for nonlinear systems the two methods are competitive. The most prom-
ising efficient scheme is a combined explicit/implicit algorithm
(presented next).

15



COMBINING EXPLICIT AND IMPLICIT

The nature of the foregoing boundary value problem provides an
illustrative example of the potential advantages of combining the
explicit and implicit methods into a single algorithm. To see this,
consider the advantages of applying the implicit algorithm to nodes
(degrees of freedom) associated with the steel liner, while the remain-
ing nodes (degrees of freedom) in the tuff are integrated with an
explicit algorithm. With this assignment, explicit stability is
governed by the larger and sonically slower tuff elements, resulting in
a stable time step on the order of 10 to 100 times larger than the time
step required when the steel elements govern. By the same token, the
implicit algorithm is significantly enhanced because only the small
portion of the stiffness matrix associated with the steel liner needs

, triangularization.
The above concepts are presented more formally in the following

general discussion. Consider an arbitrary body discretized by finite
elements such that all "ill nodes are to be integrated implicitly and
all "ell nodes are to be integrated explicitly. These nodes are denoted
in Figure 6 by a dashed line encompassing the "ii" nodes, and all nodes
exterior to the dashed curve are 'Ie!' nodes. Those element stiffnesses
associated with only "ill nodes are denoted by Lii, while those asso-
ciated with only "e" nodes are expressed as _ee. Mixed elements
associated with both "ell and "i'' nodes are denoted by Kei.

With these definitions, the equilibrium equation (Equation 1) can
be written in partitioned form as:

eK e K e

L.;-- + ['j -- -- {- (17)

where u, ui - displacements at explicit, implicit nodes

Ue, Ui - accelerations at explicit, implicit nodes

Me, Mi - lumped masses at explicit, implicit nodes

fe' f1i nodal forces at explicit, implicit nodes

K - global stiffness of elements with only "e'' nodes

Kui - global stiffness of elements with only "ill nodes

K K =i•K - global stiffness of elements with both e and i
Ki1

nodes
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"e" nodc region

i on r "i" node regionS"e"- "i boundary-

Figure 6. Conceptualization of explicit and implicit
integration regions.

Expressing the partitioned equilibrium equation as two coupled systems
of equations gives

(Me] {Uee + (Keel {Ue} + [Kei] {ui} {fe} (18)

(MHi {i} + [Ku) {ui} + (Ku {U {f (19)

To numerically integrbte Equations 18 and 19 step-by-step, it is assumed
the responses {u e), {u iJ and their first two derivatives are known for
time t, and the ob~ecti-Vetis to determine the responses {ue}t+At,{ui~t+At
and their first two derivatives for time t + At. To this end, the follow-

ing procedure constitutes a combined explicit-implicit algorithm using
the Newmark $-method defined by Equations 2 and 3.

Step 1. Predict the "ell nodal displacements {ue)t+At directly
from Equation 3 with 8 - 0, (i.e,, explicit) to get:

{Ue)t+At = {delt

At2
where {d e Ue}t + At{ie}t + -t

etitet 2Ul
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Step 2. Again using Equation 3 with a 4 0, express {Ui}t+At as a

function of {ui')t+At and previous responses to get:

ui t+At (ý-J ui t+At - {it

where {ap~-~~-){± + {U)(ii~

Step 3. Inserting the above expression for {Ui}t+At into Equation

19, {ui)t+At is determined by solving the coupled system:

[( 2) [Mi] + [Kii]1{u±}t+At - {fit+-t " [Kie ]{ue)t+At

+ [Mi] ai t

Step 4. Having determined 'Ue}t+At and {ui}t+At, compute the

corresponding accelerations using Equation 18 for {Ue~t+At

and the first equation in Step 2 for {Ui)t+At to get:

(U. uet+At [Me] 1 ({f e)t+At - [ee] {ue}t+At - (Kei] {ui}t+At)

it+At - {ui t+At

Step 5. Lastly, update the velocities using Newmark's expression,

Equation 2

+ 2 +
t+At t ttA



This procedure is repeated step-by-step throughout the time of
interest.

The advantages of the combined explicit-implicit algorithm is quite
remarkable in that it is potentially one or two orders of magnitude
more efficient than either method applied individually. Note that the
only triangularization required is in Step 3 for the submatrix [Kiu]
whose size is small compared to the entire system (e.g., steel elements).
Moreover, the average bandwidth of [Kij] is easily minimized by judicious
compact node numbering of the "ill nodes, which implies rapid solutions
with minimal storage, Node numbering of "ell nodes has no bearing on
the solution efficiency since all stiffness operations involving "ell
nodes are matrix multiplications perf~c~i. at the element level. Since
the domain of the "ell nodes are selected to permit the explicit
stability criterion to be based on the larger and sonically slower
elements, the critical time step may be increased by one or two orders
of magnitude, depending on the nature of the problem.

It is easy to conceive of large, three-dimensional, nonlinear
problems such that a combined method as presented here may be the only
economically feasible alternative of obtaining a solution. Hence, com-
bined methods should be vigorously investigated.

CONCLUSIONS AND RECOMMENDATIONS

Within the class of problems and limitations defined in this study,
the following comments appear valid for numerical integration by the
Newmark 8-method.

1. The maximum allowable time step for conditionally stable schemes
(0 < 1/4) is generally controlled by the stability criterion, Equation 13
or 14.

2. The maximum allowable time step for the unconditionally stable
scheme (8 1 1/4) is controlled by accuracy considerations which may be
determined by computational experimentation. As a guide, define the
time step to subdivide the rise time into 10 increments.

3. For the linear system studied and computer/program employed, the
implicit algorithm (8 1 1/4) allows a time step more than 200 times
larger than the explicit method (8 - 0) with equivalent accuracy. How-
ever, each step of the implicit algorithm is 8 to 25 times more costly
in computer time than a step of the explicit algorithm depending on
whether or not triangularization is required. As a net result the
implicit method was approximately 30 times more efficient.

4. Nonlinear systems penalize implicit algorithms much more severely
than explicit algorithms ;o the extent that the two methods become
equally competitive for the .-lass of problems considered.
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5. The combined explicit/implicit algorithm has the potential of
enhancing efficiency by one or more orders of magnitude. It is recom-
mended that combined integration methods be thoroughly investigated.
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(Fritz E-ngr. Lab No. 13. If cedle); Bfethlehem PA (Linderman Lib. No.30. Flecksteiner)
LIBfRARY OF CONGRESS WASIhINGTON. DC (SCIENCES & 'ri'ECH DIV)
MASSACIIUS'IX1'S INST. OF TEChINOLOGY Cambridge MA (Rin I0*500, Tech. Reports, Engr. Lib.); Cambridge

MA (Rm 14 E'210, Tech. Report L~ib.): Cambridge MA (Whitmnan)
MICHIIGAN TE-CHNOLOGICAL UNIVERSITY Hloughton, Nil (hIaas)
NORTHIWESTIERN UNIV Z.11. Ifaiant Evanston IL
NY CITY COMMUNITY COLLEGE BfROOKLYN. NY (LIBRARY)
OREGON STATF UNIVERSITY CORVALLIS, OR (CE DITEr BIELL); CORVALLIS, OR (CE DEPT. HlICKS)
PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA (GOTOLSKI)
PURI)UE UNIVERSITY Lafayette IN (Leonards); Lafayette. IN (Alischaeffl); Lafayette. IN (CE Engr. Lib)
SAN DfIEGO STIATE' UN IV. Dr. Krishnamoortliy. San Diego CA
SOUTHIWEST RSCII INST i. Maison. Sanl Antonio TX; R. IDchlart, San Antonio TX
ST'ANFORD UNIVERSITY Stanford CA (Gene)I.STATE'I UNIV. OF NEW YORK Buffalo, NY
TIE XAS' A&M UNIVE RSITY COLLEGE STATxION.,r TX- (CEiEP); College TX (CE D~ept, hierbichi)
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U.S. MERCHANT MARINE ACADE-MIY KINGS POINT. NY (REPRINT CUSTODIAN)
UNIVERSITY OF CALIFORNIA BERKELEY. CA (CE D)EPT, GERWICK); BERKELEY. CA (CE DEPT.

MITCHELL): BERKELEY. CA (OFF. BUS. AND FINANCE. SAUNDERS); Berkeley CA (B. Bresler); DAVIS,
CA (CE DEPT. TAYLOR); LIVERMORE, CA (LAWRENCE LIVERMORE LAB, TOKARZ); La Jolla CA (Acq.
Dept. Lib. C*075A); Los Angeles CA (E-ngr 1. K. Lee); SAN 1)1EGO, CA, LA JOLLA, CA (SEROCKI)

UNIVERSITY OF DELAWARE Newark, D)E (Dept of Civil lEnuincering, Chcsson)
UNIVERSITY OF HAWAII HONOLULU. HI (CE D)EPT, GRACE): HONOLULU. HI (SCIENCE AND TECH.

I)IV.); Honolulu HI (IDr. Szilard)
UNIVERSITY OF ILLINOIS Metz Ref Rm, Urbana IL: URBANA, IL. (I)AVISSON); URBANA, IL. (LIBRARY),

URBANA, IL. (NEWARK): Urbana IL (CE Dept. W. Gamble)
UNIVERSITY OF MASSACHusE'ITS(Heronemus). Amherst MA CE Dept
UNIVERSIT'YOFMI[CHIGAN Ann Arbo~r MI(Richairt)
UNIVERSITY OF NEBRASKA-LINCOLN Lincoln. NE (Ross Ice Shelf Proj.)
UNIVERSITY OF NEW M EXICO Albuquerque NM (Soil Meeh. & Pay. Div.. J. Nielsen)
UNIVERSITY OF TEXAS Inst. Marine Sci (Library). Port Aransas UX
UNIVERSITY OFT'EXAS AT AUSTIN AUSTIN. TX (THOMPSON); Atustin TX (R. Olson): Austin, TX (B~reen)
UNIVERSITY OF' WASH INGTON Dept of Civil Engr (Dr. Mattock). Seattle WA; SEATT1LE. WA (MERCHANT);

StA'I. WA (OCEAN ENG RSCH LAB, GRAY); Seattle WA (E. Linger)
URS RESEARCH CO. LIBRARY SAN MAT EO. CA
US GEOLO'GICAL SURVEY Off. Marine Geology, Mailstop 915. Reston VA
ArEROSPACI;. CORP. Acquisition Group, Los Angeles CA
ALFRED) A. YEE & ASSOC. Honoltulu Hit
ARVID) GRANT OLYM PIA, WA
AT'LANTIC RICH FIELD) CO. I)ALLAS, TX (SMITH)
AUSTRALIA Dept. PW (A. Hicks), Melbourne
BECHITEL CORP~. SAN FRANCISCO. CA (PHELPS)
BELGI UM NAE-CON. N.V., G EN.
BETHILEH IEM STEE'L CO. B ETHLEHIEM, PA (STEELE)
BROWN & ROOT Houston TX (1). Ward)
CANADA Mlei Univ Newfotundland (Chari), St Johns; Surveyor, Nenninger & Chenevert Inc.. Montreal; Warnock

Hersey Prof. Srv Lid. La Saile. Quebec
CF BRAUN CO Du Bouchet, Murray Hill, NJ
CONCRETrETECHNOLOGY CORP). TACOMA, WA (ANDERSON)
CONRAD) ASSOC. Van Nuys CA (A. Ltiisoni)
I)RAVO CORP' Pittsburgh PA (Giannino); Pittsburgh PA (Wright)
NORWAY I)El'NORSKE VERI'IAS (Library). Oslo
)-*VALUATION ASSOC. INC KING OF PRUSSIA. PA (FEI)ELL)
FORD), BACON & DAVIS. INC. New York (Library)
IFRANCE IDr. I)utertcre, Boulogne; P1. Jensen, Boulogne
GEOTECI INICA L ENGI NE ERS INC. Winchester, MA (Paulding)
GLID)DEN CO. STRONGSVILLE, OIl (RSCH 1,III)
GLOBAL MARINE. DEr-VELOPMENT N'I'IWIIOR'I' !IEACII, CA (HOLLEli')
GRUMMAN AEROSPACE CORP). Bethpage NY (Tech. Info. Ctr)
HALEY & ALD)RICH, INC. Cambridge MA (Aldrich. Jr.)
I IONEY WELL, INC. M inneapolis MN (Residential rngr Lib.)
HUGHES A'IRCRAFT Culve( City CA (Tech. Doe. Ctr)
ITALY M. Caironi, Milan: Sergio Tattoni Milano
JAMES CC). R. Girdley, Orlando FL
LAMONT-DOIIERTY GEOLOGICAL OBSERV. Palisades NY (McCoy); Palisades NY (Selwyn)
LOCKHEED MISSILES & SPACE CO. INC. SUNNYVALE, CA (PHIILLIPS): Sunnyvale CA (Rynewicz)
LOCKH1 E,-l-) OCEAN L.ABORATIORY San D~iego CA (F. Simpson)
MARATHON OIL CO Houston TX (C. Scay)
MC CLEL.LAND ENGINE PRS INC Houston TX (B. McClelland)
MCDONNE-L AIRCRAFT" CO. D~ept 501 (R.Hl. Fayman), St Louis MO
MEI)ALL & ASSOC. INC. J.T. GAFFEY 11 SANTA ANA, CA
MEXICO R. CardenaN
MOBIL PIPE LINF. CC). DALLAS. 'IX MOGR Of- UNGR (NOACK)
MUESE-R. RUTLEDGE. WENTWORTH'I ANI)JOINSTION NEW YORK (RICHIARDS)
NEW ZE.ALANI) New Zealand Concrete Research Assoc. (Librarian). Porirua

NE-WPORT NEWS ShIllBLI)G & DRYI)OCK CO. Newport News VA (TIech~. Lib.)
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NORWAY DHET NORSKE VCRITAS (Roren) Oslo:. J. Creed. Ski: Norwegian'rcch Univ (Brandtzaeg). Trondheimi
OFFSHORE D)EVELOPMENT ENG, INC. BERKEELEY. CA
PACIFIC MARINE TECIINOLOGY LONG BEACH. CA (WAGNER)
P~ORTLAND CEM ENTr ASSOC. SKOKIE. IL (CORELY). Skokie 11.(RscIh & Dcv Lab, Lib.)
I'RESCON CORP TOWSON, MD)(KELLER)
RANID CORP). Santa Monica CA (A. Laupa)
RAYMOND INTERNA11ONAL INC. CHERRY HILL. NJ (SOILTErCH DEVIr)
RIVERSID)E CEMFNT CO Riverside CA (W. Smith)
SAND)IA LABORATORIES Library IDiv.. Livermore CA
SCHUPACK ASSOC SO. NORWALK. CT (SCHUPACK)
SEATI*HCHl CORP. M IAMI1. FL (PERONI)
SIIFLL DE-VHLOIM I'NT CO. Hlouston' TX (E. Doyle)
SHIELL OIL. CO. HOUSTON. TX (MARSHALL)
SWED)EN Gco~rech Insi: VBB (Library). Stockholm
TII)EWATER CONsTrR. CO Norfolk VA (Fowlcr)
TRW SYSTEMS CLEVEHLAN D. OHl (ENG. Lill.; RED)OND)O BEACH. CA (D)A[)
UNITED KINGDOM Cement & Concrete Assn. (R Rowe) Wexhani Springs, Slough Buck. Cement & Concrete

Assoc. (Lit. E~x), Bucks; 1). New, G. Maunsell & Partners, London; Shaw & Hatton (F. Hansen), London; Taylor.
WVoodrow Constr (01411), Southall, Middlesex; Univ. of Biristol (R. Morgan). Bristol

USGS MENLO PARK. CA (YOUI))
WESTINGHOUSE I'LFCTRIC' CORP. Annapolis MD) (Oceanic D~iv Lib, Bryan); Library. Pittsburgh PA
WISS. JANNE.Y. E-'LSTIN ER. & ASSOC Northbrook. IL, (J. Hlanson)
WOOI)WARD*CLYI)Ii CONSULTANTS Oakland CA (A. Harrigan). PLYMOUTH MEETING PA (CROSS. 111)
ALSMOOTS Los Angeles. CA
BULLOCK La Canada
F. IIEUZE' Boulder CO
IIAMHHD ELNAGGAR Wexford PA
CAPT MURPHY SAN BRUNO, CA
GREG PAGE EUGENE, OR
R.1. BESIER Old Saybrook CT
T.W. MURMEL Washington DC
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