1

AN=AD43 964 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6 9/2 "
FLEXIBILITY AMD EFFICIENCY IN A COMPUTER PROGRAM FOR NESIGNING ==ETC(U)
JUN 77 D V MCDERMOTT N00014=75=C=0643
UNCLASSIFIED Al=TR=-402

: S g e =
IR RS A R S i <o,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

I Flex1b111ty and Eff1c1ency in a Computer /
Program for Designing Circuits,

REPCRI NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Al-TR-4 %‘ v
4 -£ and Subtitle) . e S S TYPE OF REPORT & PERIOD COVERED

Technical Repert

6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(s)

Drew Vinceng/McDermott

8. CONYRACT OI GlANT NUMBER(e)

NOOOM 75-C- 0643/

[Tvsnronumc ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory”’
545 Technology Square

Cambridge, Massachusetts 02139

t

10. PROGR A ELE“ENT.’ROJECT, TASK
AREA & WORK UNIT NUMBERS

v i ,)
/ S < !’ /

- /

't CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd
Arlington, Virginia 22209

EEalnh

13 ég,‘?l!ﬂ OF PAGES

Office of Naval Research
Information Systems
Arlington, Virginia 22217

4 MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Oflice)

18. SECURITY CLASS. (of this report)

UNCLASSIFIED

18a. D!C&. ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17 DISTRIBUTION STATEMENT (of the abetract entered In Block 20, Il dilferent from Report)

18. SUPPLEMENTARY NOTES

None

Logic

Problem Solving

Circuit design
Artificial Intelligence

19 KEY WORDS (Continue on reverse side il necessary and Identily by block number)
Representation
Data Base

with built-in control-structure concepts.

20 ABSTRACT (Continue on reverse eide If necessary and identify by block number)
This report is concerned with the problem of achieving flexibility (additiv-

ity, modularity) and efficiency (performance, expertise) simultaneously in
one Al program. It deals with the domain of elementary electronic circuit
design. The proposed solution is to provide a deduction-driven problem solver
This problem solver and its knowl-
edge base in the application areas of design and electronics are described.
The program embodying it is being used to explore the solution of some modest
problems in circuit design. It is concluded that shallow reasoning about

0D "Jf:"" 1473 EoITION OF 1 NOV 68 IS OBSOLETE
S/N 0:102-014-6601

UNCLASSIFIED

//',‘/

SECURITY CLASSIFICATION OF THIS PAGE (When Data K« od

-

problem-solver plans is necessary for flexibility, and can be imple-
mented with reasonable efficiency.

. e e B e AR Ll " T g S N ———

e This report describes research done at the Artificiai Intelligence
‘ Laboratory of the Massachusetts Institute of Technology. Support
| for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research Contract N00O14-75-C-0643.

FLEXIBILITY AND EFFICIENCY
IN A COMPUTER PROGRAM FOR DESIGNING CIRCUITS

Oreu Vincent McDermott
Massachusetts Institute of Technology

June 1977

I1lustrations by Karen Prendergast

Revised version of a dissertation submitted to the Department of Electrical
Engineering and Computer Science in partial fulfillment of the requirements
for the Degrce of Doctor of Philosophy.

SR = AR — Tl

- |

PAGE 2

k ABSTRACT

This report is concerned with the problem of achieving flexibility
(additivity, modularity) and efficiency (performance, expertise)
simul taneously in one Al program. It deals with the domain of elementary
electronic circuit design. The proposed solution is to provide a deduction-
driven problem solver with built-in control-structure concepta. This problem
solver and its knouledge base in the application areas of design and
electronics are described. The program embodying it is being used to explore
the solution of some modest problems in circuit design. It is concluded that
shal louw reasoning about problem-solver plans is necessary for flexibility, and
can be implemented with reasonable efficiency. 3§

\

A\

N

PAGE 3

Acknowledgments

I thank Gerald Sussman, my advisor, for much good advice; Sussman and Allen
Broun for help uith electronics; Mitch Marcus and Charles Rich for ideas
control; Bob Moore and Arthur Nevins for predicate calculus; David Mar:

Scott Fahlman for ideological consultation; my readers Marvin Minsky and
Vaughn Pratt for useful comments; and Jon Doyle for careful reading and
substantive suggestions in the later stages of this research. Marr, Patrick
Winston, Guy Steele, and several others also made good suggestions to improve
the organization of this work.

Finally, 1 thank Judi for, among other things, moral support; and myself
for typing many drafts of uhat seemed |ike meaningless gibberish

nn

and

PAGE 4

Contents

I Introduction 7
I.A The Problem 7
1.8 A Rule-Based Problem Solver 16
1.C Supplying Rules for Design 22
1.0 Relation to Previous Work 33
1.0.1 Problem Solving and Reasoning a3
1.0.2 Electronics and Design 39
II Expressing Knowledge in NASL 43
Il1.A The Natural History of Actions 46
I1.B Interpretation and Inference 56
I1.B.1 The NASL Interpreter 57
I1.B.1.1 Selecting a Task to Work On S7
11.B.1.2 Executing Tasks 59
11.B.1.2.1 Primitive and Problematic Tasks 60
11.B8.1.2.2 Primary and Secondary Tasks 63

11.B.2 STP -~ The Stupid Theorem Prover 64
I1.C Choice and Rephrasing 71
[1.C.1 The Choice Protocol 73
I1.C.2 Rephrasing 76
11.0 Dependencies Among Data and Tasks 78
11.E Handling Histakes 82
I1.F Programmer's Guide 84
Il1.F.1 Predicate-Calculus Techniques 86
11.F.2 NASL Programming Techniques 88
III Design of Hierarchical Systems 90
IIl1.A The Representation of Knouledge about Devices 99
I11.A.1 Hierarchies of Device Types 99
111.A.2 The Representation ot Device Diagrams 101
[11.B Design Actions and Plans 106
111.B.1 DESICGN 107
111.B.2 Making Things 112
111.B.3 Constraints 114
111.B.4 Changing Devices 118
I111.C Composition of Partial Solutions 12
111.0 Constraint Collapse 121
I111.E Programmer's Guide 126

PAGE S

IV Electronics 128
IV.A Physics y 128
IV.A.1 Connections and Constraints on Components 122
IV.A.2 Signals 137
IV.A.3 Multiple Models of Linear Systems 135

IV.B Electronic Design Knouledge 137
[V.B.1 Rephrasing Electronic Design Problems 137
IV.B.2 Reconciling Partial Solutions 138
[V.B.3 Changing Circuits 141
IV.B.4 Electronics Analysis Knowledge 145

IV.C Device Schemata 146
1V.D Programmer's Guide 148

V Resulits 150
V.A Using DESI 150
V.A.1 Loading and Running the Program 14,0

V.A.2 DESI Talks to You 161

V.A.3 You Talk to DESI 152

V.B Experimental Results 153
V.B.1 A Simple Amplifier 155

V.B.2 Converting a Square Wave into a Sine Wave 171

V.B.3 NOAH in NASL 176

VI Conclusions 178
VI.A Successes 120
VI.B Failures 186
VI.C Further UWork 196
Appendix 1 -- NASL Syntax and Informal Semantics 194
Appendix 2 -- A Listing of DESI 202
Appendix 3 -- A Listing of ZORCH 216
Appendix 4 -- Details of STP for Theorem Provers 251
Bibliography 255

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

—_r—— (000 NDU S WN -

NS WN—-N—D

<
0o NNNSWN -

LOoONON&SWN -

Figures

Redescribing a Design Problem

Tuo Circuits Suggested by Parts of the Problem
A Cascade of the Tuo Partial Circuits

Signal Conversion Problem

Spectrum of Square Wave

Spectrum of Sine Wave

RC Filter

A Circuit for Adding a Pole
Structure of DESI
A Rephrasing Subtask
Rephrased Task Netuork
Retrieved Circuit and Constraint Task Network
A Task Net, or "Plan"
Task Netuork uith Subnets
Logical Taxonomies of Tasks
Life History of a Task
Enablement Relations in Subnets
Function-Structure Graph
A Tuo-Stage Cascade
An LC-coupled Ampiifier
A Hierarchy of Types of Device Types
Devices in The Type Hierarchy
Design Action Taxonomy
Design Rephrasing Plan Schema
Rephrased Design
Quantity-Value Protection Plan Schema

.10 Radio Spectrum With Tuo Stations
.11 Relevant Constraints
.12 Constraint Netuork

Terminals and Nodes

Composite Device Terminals

Inserting a Device into a Node

Ports and Nests

Fourier Transform of an Offset Square Wave
Bias Plans

General BJT Coupling Plan

Common-Emitter Direct Voltage Coupling
General and Specialized Emitter-Coupled Pairs
Provinces of Artificial Intelligence

The Rule-Based Utopia

PAGE 6

10
11

2
<

18

14
15

23

-
<

30
31
50
52
53
58

-
“

92

94

95
100
181
187
109
110
117
122
123
124

130
130
131
134
142
143
144
147
181
182

] Introduction 7

I Introduction

I.A The Problem

This thesis reports on the exploration of a classic Al controversy
regarding the representation and use of knouledge: the trade-off betueen
flexibility (or modularity or additivity) on the one hand, and efficiency (or
expertise or performance) on the other. It focuses on the knouledge required
for designing elementary electronic circuits. The conclusions | have reached
are that this kind of flexibility requires all important operations to be
mediated by explicit rules driven by changes to an associative data base:; and
that the inevitable inefficiency of this organization can be controlled. The
proposed approach has been tested by implementation of an extensible design
program called DESI.

The theory of design that | have implemented is based on the idea of
"functional reasoning.”" (Freeman and Newell, 1371) A problem is stated as a
property which an electronic circuit is to have. The system searches its
memory for circuits uhose knoun functions fit the requirement. In the
attempt, it constrains the connectivity and component values of the circuit
until enough constraints have accumulated to find values which satisfy the
original property. This simple theory must be complicated in various ways: A
requirement may not be expressed in a form which triggers suggestions of
familiar circuits; it may be necessary to transform the requirement until it
does. More than one device type may be brought to mind in a situation; there
must be criteria for deciding among them, or ways of synthesizing neu circuits
that perform the functions of all the ones retrieved. A suggested circuit may
not work out; the theory must specify how plans are changed.

I require that the embodiment of this theory be "additive"; that is, to

PRECEDING PAGE BLANK-NOT F1LMED ?2_'?'

— e ——

I Introduction 8

the extent possible that neuw knowledge be expressed by neu formulas rather
than by changes to old. This is partly because of the ease with uhich such a
system can absorb neu information; and partly because a creative designer
requires the ability to see the individual parts of its various, often
conflicting, plans and goals. For this reason, the theory is embodied as a
"rule-based" system.

By a "rule-based" system | mean a system uhich makes progress by pattern-
driven operations on a data base. There are several paradigms for such
systems; the classical ones are predicate-calculus theorem provers (Nevins,
1974a), production systems (Newell, 1973a), and Al languages with pattern-
directed procedure invocation. (Hewitt, 1372, Bobrow and Raphael, 1374) In
uhat follous, | will attempt a synthesis of good features of all of these.

The result may be described as a system in uhich plans are assembled piece by
piece. The rules used resemble predicate-calculus implications. They differ
in these ways: they may be used to infer what tasks are required or uhat
solutions are possible; they are less constrained in the kind of inference
rule and "self-referential" deductions alloued; they specify hou they are to
be used; and they come in larger, better organized chunks than is traditional
in predicate-calculus applications.

Before elaborating further on these requirements, let me bring these
problems to life with tuo examples from elementary electronic design,
illustrating as | go hou DESI deals with them. The first example shous howu
choices must often be based on knouledge of current plans. The second example
illustrates some of the other complexities | mentioned. (These informal
scenarios are meant to give you a picture of the design problems DES| is meant
to handle, not the structure of the program or its actual behavior. 1 will go

over these problems again, once in this chapter to illustrate the

—ar

.

I Introduction 9

representation and use of knouledge by the system, and again in Chapter V to

shou the performance of the actual implementation.)

Redescribing Problems and Choosing Solutions

Imagine that DESI is given the problem, "Design an amplifier with an input
resistance of 38 kohm and a voltage gain of 5." For now, let us assume this
problem will be broken into the three subrequirements, "amplifier," "input
resistance = 38 kohm," and "v-gain = 5." (This must be done with care, since
these three characteristics are of rather different kinds.) This is only part
of the problem, for these fragments of the original problem are too precise to
be suggestive; ODESI must further alter the description so that these numbers
become "range descriptions" like, "high input impedance" and "moderate voltage
gain."” (See Fig. [.1.)

"amplifier with input resistance = 30 kohm and
vol tage gain = 5"

\/

| | becomes

I |

v
"amplifier" <---- thing to make
"input resistance 38k" <---- high input resistance
"voltage gain 5" <---- moderate v-gain

Figure 1.1 Redescribing a Design Problem
Once the problem has been described in this form, its fragments trigger
suggestions of possible solutions. For example, in the context of making an

amplifier, "high input impedance" should suggest "common-collector amplifier,"
and "moderate voltage ygain" should suggest "common-enitter amplifier." (Fig.

1.2.)

T

I Introduction 10

high input resistance , POWER high voltage gain

_ POWER
4%\4c(: 4'\LC(:

<convert current
to voltage

OUTPORT

bias bias

INPORT INPORT

OUTPORT
< convert
current to
voltage

COMMON COLLECTOR COMMON EMITTER

bias bias

bias

—_—

Figure 1.2 Tuo Circuits Suggested by Parts of the Problem
It just one of these had been suggested, the probiem wouid be easy: DESI
could select a standard schema for the type that came to mind and make sure
the given numerical constraints could indeed be satisfied. Uh;t must it do
| uhen tuwo or more options occur? In some cases, all but one may be excluded on
the basis of further considerations beyond the simple problem features that

suggested the competing options; often, houwever, uhat is required is a

1 synthesis uhich combines tuo suggestions to provide the functions of both. In
this case, DES| must possess information to the effect that an option
suggested because of what it does for an amplifier's input resistance may be
"cascaded" uwith another option.

So far, | have draun these circuits as if they aluays contained the parts

shoun. Houever, the notions of "common-collector" and "common-emitter"

I I ‘.—' . =" ————————y

I Introduction 11

amplifier each corresponds to a range from general to specialized circuits.
When a common-emitter amplifier simpliciter is desired, the circuit of Fig.
[.2 is selected aimost without thought. But a practiced designer knows that
the "abstract idea" of this circuit may be realized in other uways. To cascade
the tuo circuits of Fig. 1.2, DESI would not just "drau" the same two pictures
and cram them together in some way. Instead, it chooses more general diagrams
of these circuits, and reconsiders hou they are to be biased and coupled.

This will involve further choices. The result is the circuit of Fig. 1.3.

+15V

bias 190k
> convert current
10k (2 to voltage

INPORT [OUTPORT
bias 50k

i bias I&
szg coupling
2k () sets I¢

v—
S
-

Figure [.3 A Cascade of the Two Partial Circuits
Finally, the numerical constraints set aside in favor of more revealing
descriptors are taken up again to give the component values shoun in the

figure.

I Introduction 12

Transforming Problem and Solution

In this second example, | wish to shou hou much more complicated the
phases of design can get. Imagine that the problem given is

Design a network which converts a 1kHz square wave of amplitude 1V into a
sine wave uith the same frequency and amplitude.

1kHz 1kHz

A B A
2 Gete -t N st/ v
\J \J

Figure 1.4 Signal Conversion Problem

Even if you know nothing about electronics, it may be worth thinking about
this problem for a minute before going on. (You don't have to, but the

problem can be amusing, and illustrates an interesting and common phenomenon

of problem solving.)

"y

I Introduction 13

If you knou some elementary mathematics, it probably occurred to you to

take the Fourier series of each of these signals.

the problem becomes:

In this "frequency domain,"”

Desian a network which converts a signal with spectrum

height=4/nr

:'ré;ﬂ‘ri}:fﬁt kHz
1 23 45 6 7 8 9 101 12 13
Figure I.5 Spectrum uof Squdre Wave
into a signal with spectrum
1
E—————————
1 2 3456 7 8 91011213
Figure 1.6 Spectrum of Sine Have

such that the amplitude of the spike at 1kHz is 1V.

If you knou some electronics,

low-pass Filter circuit |ike

|

it might then have occurred to you to try a

I Introduction 14

R

—__/\M When used for low-

pass filtering above

INPORT c :L__ OUTPORT cutoff frequency f

RC=

T

System Function =

1+ RCs
(if not loaded)

Figure 1.7 RC Filter
as your ansuwer, and then try as before to finish the problem off by assigning
values to the primitive components (here, the capacitor and resistor) uhich
satisfy the constraints ue have discovered.
The interesting constraints on this circuit may be stated as follous,

"Make the amplitude of the output spike at 3 kHz less than 108% of the
amplitude of the output spike at 1 kHz."

"Make RC be the reciprocal of the frequency 1 kHz (in rad/sec)."

"The ratio of the amplitudes of the outputs at tuwo frequencies depends on
the amplitudes of the inputs and the selectivity of a device."

"The selectivity of an RC filter is ..."

DES] can derive these constraints from the statement of the problem (starting

uith a lot of knouledge about RC filters and frequency-domain operations).
Unfor tunately, these constraints cannot be solved simul taneously. The

circuit given uill make a square wave look "rounder," but the approximation to
a sine wave uwill not be good enough. The constraint that deserves the blame
in this case is that on the selectivity of an RC fitter. Hou can this be
improved? One way is by "adding a pole" to its system funciion with this

circuit:

I Introduction 15

connect to New
old OUTPORT il OUTPORT

New system function = old x 1

1+RC’s

(Remember to implement A.)

Figure 1.8 A Circuit for Adding a Pole
This makes DESI's view of the solution much more promising. (I won't pursue
this example any further, because the current implementation lacks the

competence to go any further.)

Let me list the various types of information that | appealed to in my
brief overview of hou such problems may be solved. First, DESI needs
knowledge about transforming the problem into a tractable form; this ranges
from a relatively simple sorting out of multiple requirements, to a more
difficult transformation from a time-domain to a frequency-domain description
of a problem. Second, and quite important, there had to be a basis for
choosing among more than one approach. Third, several constraints had to be
satisfied in a consistent way. This required knouledge of the physics of
electronic circuits. Fourth, we had to be able to change plans when our first
try failed.

To make all these kinds of information usable, DESI has to be able to

reason about its current plans and goals. Transforming a problem may be seen

I Introduction 16

as redescribing the topmost goal. Choice of a solution to one problem often
depends on the other problems under consideration. The calculation of a
design quantity to satisfy one constraint is pointless unless all the other
constraints on that quantity are taken into account. And, of course, one
cannot change plans without knowing uhat they are. An organization uhich

makes using such knouledge practical has been the goal of this research.

1.B A Rule-Based Problem Solver

Here is my thesis: problems are solved by reducing them to subproblems.
Some of these subproblems result in action, others in constraints on action.
As the solution progresses, the way in uhich neu subproblems are approached
depends more and more on the state of other subproblem solutions, that is, on
the requirements derived from the physics of the evolving solution and on the
goal structures that have already been elaborated. It is impossible to knou,
as neuw facts are discovered, uhat subsequent subproblems will depend on them,
8o all such facts must be stored in the same communal data base and accessed
whenever they become relevant to a later problem reduction.

This is accomplished by implementing DESI as a set of rules manipulated by
a rule-based problem solver called NASL. A rule-based system (Shortliffe,
1976, Davis and King, 1975) is one in which knouwledge is expressed as
conceptually small units called rules.

There are tuo sources of inefficiency in a system organized this way: the
overhead paid for storing almost all knouledge in the same associative data
base, and the nondeterminism inherent in the possibility that more than one
rule may apply to a problem. The first kind of inefficiency is the price of

flexibility, but it can be |imited by proper organization. One important

T e g e PR—

oy

I Introduction 17

principle ot organization is allou ruies to come in well-organized chunks. In
DESI, these "packets" of rules (McDermott, 1975) are used to represent circuit
diagrams, signal descriptions, partial plans for solving problems, and groups
of rules for making choices.

The second source of inefficiency, nondeterminism, can be controlled by
confining it to the information retrieval module. Above this louest level,
potential nondeterminism is shut off by applying "choice rules" in ambiguous
situations.

In this section and the next, | will sketch the form and content of DESI's
rules. This sketch will be filled in in Chapters [I, IIl, and IV. Chapter V
gives the results that have been obtained by implementing it.

In any rule-based system, each rule is associated with a pattern by which
the system accesses it. The system also maintains a data structure, the

"active processing site," that is intended to describe important aspects of
the current situation. Rules are matched against this structure, and rules
whose patterns match are applied in some way.

The potential advantages of a rule-based system are these: (1) the system
can see what it is doing because important steps occur at standard times in a
standard way; (2) the system can keep track of its deductions and/or actions
in order to explain or undo them; (3) the system can be augmented simply by
adding neu rules.

Realizing these potential advantages has not been easy. There are three
classic types of rule-based systems:

| {1) Predicate-Calculus Theorem Provers -- Here the rules are axioms and

the currently active processing site is that rule uhich is being treated as a
goal. Applying a rule generates neu rules or ansuers to the problem at hand.

(Robinson, 1965, Nilsson, 1971, Nevins, 1974a, R. Moore, 1975)

(2) Production Systems -- Here the rules are condition-action pairs, or
"productions,” and the current site is a small |list called the "Short-Term

—y e —— - O

I Introduction 18

Memory," or STM. Applying a rule consists of performing manipulations on the
STH or doing simple input/output operations. (Rychener, 1976, Newell, 1973a)

(3) Artificial Intelligence Programming Languages -- These |anguages may
be said to be rule based if pattern-directed procedure invocation is taken as
rule application and if such procedures are taken as rules. The processing
site is a flexible record-oriented data base, in particular, the records
currently being added, deleted, or retrieved. These languages include PLANNER
(Hewitt, 1972) and its descendants QA4 (Rulifson et. al., 1972) and Conniver
(Sussman and McDermott, 1972).

(More specific examples uill be mentioned for comparison with NASL later.)

All of these systems have suffered from problems uhich have kept them from
realizing their potential. The predicate-calculus systems are the least
deterministic of the group. The control of application of predicate-calculus
rules has not itself been rule-directed or directed by much knouledge of any
kind. Houwever, one of their strong points is that the proofs they generate
play a natural role in keeping track of their actions or justifying them to a
human user.

Production systems have very lou-level rules. The system provides simple
symbol-manipulation abi!ity, but each programmer must provide his oun control
concepts, starting at the level of the subroutine call. This tends to defeat
real extensibility, since tuo sets of rules probably have different calling
conventions. (Production systems have been evolving toward greater richness.)

Al languages provide more direction and control over problem solving, but
at the cost of making “rulishness” only a token aspect of procedures. The
small patterned inter face betueen a program and its callers is usua!ly duarfed
by the body of the procedure. Other procedures knou that this one is there,
but they do not knou what it is doing.

A general problem of all these systems is that they are insensitive to

impor tant aspects of their oun operation. Production systems and pattern-

directed procedures generally do not maggpulate themselves. (That is, systems

RIS S T ——— — ’ C —

I Introduction 19

built on them do not encourage or simplify this any more than the LISP
interpreter in uhich they are generally embedded.)

To remedy these defects, | have implemented the NASL rule-based system to
depend heavily on explicit representation of control. NASL's active
processing site is a PLANNER-type data base of rules, but more is stored there
than in the typical Al-language system. Besides a model of the current
problem situation, the data base includes a representation of the "current
p'!an." Rules are used, not to trigger actions directly, but to add tasks to
this representation. When the rules are used in a foruward-deductive way, they
resemble productions, with an extra layer of "carefulness" between application
of the rule and actual execution of the task. (Sussman, 1975) When the rules
are used in a backuard-deductive way, uwhen the interpreter is attempting to
find a way of carrying out a task, they augment the plan much the uay a
PLANNER-| ike language invokes procedures.

The difference betueen a plan and a procedure is that a plan may represent
action at a more abstract level. In particular, the order of steps within and
between subplans is itself rule-governed. Furthermore, not all tasks
correspond to subroutine calls to bring something about or caiculate
something. Some tasks are intended to represent "parasitic" actions uhich
influence the execution of other tasks, or which require occasional commitment
of resources. Examples from circuit design are the actions, "Constrain RC to
be 1/2nf," "Make sure every requirement in the given design problem is

accounted for," and "Take note of the high-gain requirement in making this
amplifier."
These secondary tasks, or "policies," are particularly useful in choice

situations, in which the problem solver tries to decide among more than one

course of action. The existence of a policy often amounts to the existence of

R - e — - —— =

| Introduction 28

certain rules for suggesting options or deciding among them.

Another important difference betueen Al-language procedures and NASL plans
is that plans are completely deterministic. All search is done in the rule-
appliers that try to retrieve, construct or choose among plans. [f the
resulting plan does not work, a "mistake correction” plan must be sought uhich
is appropriate to the kind of mistake that occurred.

Inability to retrieve a solution plan via the simple deductive retrieval
mechanism does not cause any kind of "failure." Instead, the system attempts
to transform, or "rephrase," the problem until it is in a more familiar form.
This requires that the rules and records of the system be manipulable by
rephrasing tasks.

To explain its actions and correct its mistakes, the system must keep
records of why it did yhat it did. These are of tuwo kinds: stored chains of
rule applications, and relations betueen tasks. The user may ask for an
explanation of a task in terms of the tasks it was designed to accomplish.
The system may edit these networks of relations wuhen it runs into trouble.

I mentioned at the beginning of this section that rule-based systems are
potentially "extensible," that is, able to accept neu information additively,
Wwithout major reorganization. We can distinguish short- from long-range
extensibility. Over the long range, putting neu information in is part of a
simple but important kind of learning-- "taking advice." It is not the only
part, because reorganizing descriptive structures and debugging or
disambiguating what one is told are also crucial.

Therefore, it is easier to see the importance of extensibility over the
short range. It is common in Al research these days to assume that knowledge
is represented in large, uell-organized chunks (usually called "frames").

(Minsky, 1974) Assuming this to be true, we still have the problem of

I Introduction 21

interactions of tuwo simultaneously active chunks. This is just the
extensibility problem in the small, since each chunk appears to the other to
contain neuw information that may be relevant. Unless all frame interactions
have been foreseen in advance (uwhich is normal in most computer science, but
not in Al), the information in each chunk must be expressed in terms the other
can understand. (This is wuhy programs appear to me to be such a poor frame
representation, since a program is just a large chunk of |ines of code, none
of which means anything outside of its particular context.) At the very
least, a system must notice potentially relevant interactions and ask for
further information when it does.

In NASL, each rule resembles a Skclemized formula of predicate calculus.
(Robinson, 1965) (in fact, few substantive restrictions on predicate calculus
have been preserved in this notation.) The rules are manipulated by a
PLAMNER-1ike theorem prover. (Cf. R. Moore, 1375) Houever, the rules can come
in large chunks called "packets." (McDermott, 1975) Packets can include other
packets (since they are logically just large conjunctions of formulas). One
use of this is the implementation of hierarchies |ike those of "semantic
netuork"” systems. (E.g., Bobrow and Winograd, 1976) Circuit diagrams, among
other things, are stored as packets.

There are several "framish" concepts used in implementing NASL. For
example, the active tasks of the current plan might correspond to the
"important questions" terminals of a Minskian frame. (Minsky, 1974) Howuever, |
have felt free to diverge from the orthodox conventions of frame theory, and

one must not assume that "plans” or "packets" correspond directly to frames.

| Introduction 22

1.C Supplying Rules for Design

To apply NASL to a problem domain, knouledge about that domain must be
supplied in the form of rules. The major rule sets | have developed are for
design in general and electronics in particular. When they are added to NASL,

the system has the structure shoun in Fig. 1.9,

ey

I Introduction 23
Design Electronics Current Data
Knowledge Knowledge Pool

NASL Rules

----------#

LISP

STP | = | NASL Plan Interpreter

ey

EVAL CHOOSE REPHRASE

Figure 1.9 Structure of DESI
The program, loosely knoun as DESI, has the following hierarchical
organization (from the bottom up):

STP -- A PLANNER-I|ike theorem prover
EVAL, CHOOSE, REPHFASE -- non-standard inference mechanisms

NASL -- The interpreter for plans
DESI (proper) -- A set of rules for designing hierarchical systema
ZORCH -- Rules embodying electronics knouledge -

The rules themselves are highly structured. Some of them specify physical
relations among things |ike nodes and signals. Higher-level rules are used to

influence problem choice and transformation. Almost all of them have some

——

I Introduction 24

procedural component, in that they refer to the current task netuwork. For
example, even the simplest statement of Ohm's lau, that the current through a
resistor equals its voltage over its resistance, is stated as a constraint on
the values of these physical quantities.

Most of the "rau information" in the system is stored in packets defining
knoun circuits, such as common-emitter amplifiers, voltage dividers, etc.
When a circuit of a given type is created, its packet will be instantiated.
Each such packet contains information of these kinds:

(1) Component definitions |ike

[COMPONENTS ?##VOLTAGE-DIVIDER
<(R1 ?##VOLTAGE-DIVIDER) (R2 ?##VOLTAGE-DIVIDER)>]

(NASL formulas are aluays enclosed in [brackets]. See Appendix 1 for details
of this and subsequent NASL notation. The prefix "?" indicates a predicate-
calculus variable; in a packet, "?##X" refers to ar object that will be bound
later to a particular instance of the concept the packet describes.

(McDermott, 1975). Angle brackets enclose tuples.)

(2) Connection specifications like

(NOOES ?##VOLTAGE-DIVIDER
< (TOPNODE ?##VOLTAGE-DIVIDER)
(MIDNODE ?##VOLTAGE-D] VIDER)
(BOTNODE ?##VOLTAGE-DIVIDER)>]
(NODE-TERMINALS (MIDNODE ?##VOLTAGE-DIVIDER)
<(#2 (R1 ?#HVOLTAGE-DIVIDER))
(#1 (R2 ?##VOLTAGE-DIVIDER))>)

(3) Constraints and other "frozen tasks" uhich uill be auakened when an
instance of the packet is created. These are used to associate with a device
a description of its purposes and further requirements. The commentary
appear ing around the diagrams in Fig=. 1.2, 1.7, and 1.8 is represented as a
set of such tasks.

These circuits come in hierarchies of various kinds. The components of a
circuit may themselves be circuits., Circuits may be arranged in classea (such
as "amplifier") which share properties. One circuit may be derived from

another by assuming special conditions; for example, the specific and general

common-emi tter circuits | pointed out in Sect. |.A are of this type. All of

T

I Introduction 25

these hierarchies may be represented by the device of allouing packets to
include other packets.

A solution to a design problem is represented as a structure of
instantiated circuits, with primitive-component values selected. A top-level
design problem is of the form, "Find 3@ circuit structure with property...."

It is the information required to go from property to circuit that is of
most interest. This falls into several classes: (1) knouledge about
transforming problems, (2) rules for making choices, (3) plans for altering
and improving circuits, and (4) knouledge about physical %onstraints on
quantities. Each of these categories is represented by rules in DES| and
ZORCH. DESI is a small set of design rules that are intended to be
independent of any one physical domain; it provides a vocabulary and task
structure uwithin uhich ZORCH's rules can operate.

For example, DESI provides a standard framework for rephrasing design
problems. The idea is to transform an unfamiliar design problem into the
making of a familiar kind of circuit obeying physical constraints, using more
suggestive hints like "make it |inear" or "notice the high gain." (Cf. Sect.
I1.A.) Z0RCH provides rules to do this decomposition and then to use the hints
and constraints to zero in on a diagram.

The DESI rephrase plan contains tasks to

"Explode" the given property into "shards."

Classify shards as to uhether they suggest a familiar device type, a
constraint, or a "design features" (ike "finearity."”

Gather the suggestions into a neu task network.

In this process, rules like this (from ZORCH) become important:

RS o

I Introduction 26

[-/> A (D-SHARD ?+P [x (_?+V) (= (V-GAIN (/7/2 _?24V)) _?4G)])
(-/> G (/> (DEN ?+G) 58)
(D-FEATURE ?4P [RANGER V-GAIN HIGH])))

This says that a voltage gain greater than 5@ should be noticed as "high."

The symbel "-/>" signifies implication; the letter after it identifies the way
in which the rule is to be used. (See Chapter Il. The "A" means uhen the
left side is recorded, record the right; the "G" means call the theorem prover
to find ansuers to the left side, and record the right side for each
substitution returned. The actual rules in Appendices 2 and 3 are more
indirect and give more information.)

Once the task netuork has been transformed, other ZORCH rules come into
play. These rules are of these kinds: (1) definitions of fundamental wiring
operations; (2) physical laus like Ohm's which constrain numerical quantities;
(3) plans and pieces of plan for biasing, coupling, and performing other
standard operations on circuits; (4) rules for choosing among sub-types of
inclusive circuit categories suggested by the rephrase rules.

Fundamental wiring operations are defined using the built-in relation
/:MOD-MANIP (for "model manipulation"). For example, connecting terminals to
form nodes may be defined by this rule

[/:MOD-MANIP ?TASK (CONNECT ?T1 ?T2) <>

<" (EXISTS (N) (AND (DEV-TYPE ?N NOOE)
(NODE-TERMINALS ?N <?T1 ?T72>)))>].
This defines an "addlist" (Fikes and Nilsson, 1971) for this action. (lts
"deletelist" is empty.)

Physical laus are defined by rules like this:

o T G

—CRE

I Introduction 27

[-/> A (DEV-TYPE ?X RESISTOR)
(EXISTS (T)
(/:TASK ?2T <>
(A () (CONSTRAIN <" (Vv 2X) " (I ?X) " (R ?X)>
(A (VIR (=« 2?2V (x ?] ?R)))))

<>))]
which commits the designer to the given constraint. CONSTRAIN is a kind of
policy action defined in DESI; again, DESI provides the vocabulary for ZORCH.

Choice rules are used for differential diagnosis or synthesis of partial
solutions. For example, in choosing an amplifier, the rule

(-/> A (/:0PTION ?C ?A1 (/:T0-DO _?+TASK (MAKE AMPLIFIER) <_?+AMP>

(MAKE COMMON-COLLECTOR)])
(-/> A (/:0PTION ?C ?AZ
[/:TO-DO _?+TASK (MAKE AMPLIFIER) <_?+AMP>
(MAKE COMMON-EMITTER)))
(/:RULE-TOGETHER <?Al ?A2>
[/:T0-DO _?+TASK (MAKE AMPLIFIER) <_?+AMP>
(MAKE (CASCADE COMMON-COLLECTOR
COMMON-EMITTER))])]
This rule says that a common-collector amplifier and common-emitter amplifier
may be cascaded to accomplish the purposes of both. (The actual rule comes
closer to saying this.) The conclusion [/:RULE-TOGETHER...] is used by the
choice protocol of Fig. 1.9. It is used to specify composition of separately
unsatisfactory choices; /:RULE-IN and /:RULE-OUT are used to narrow the list
of options.

Many aspects of the operation of the system cannot be brought out by this
kind of summary. In the next three chapters, | will describe its knouledge
more systematically. The major omission so far has been a good description of
the task network and its evolution. Without this description, much of the
content of the rules is |ost.

To compensate, let me sketch DESI's behavior on the second problem | used

as an example in Sect. |.A, indicating points of interest as | go along. The

problem is presented as the problem of designing a circuit to convert signals

s,

I Introduction 28

satisfying an input predicate to those satisfying an output predicate. (See

Chapter 1V.) This is uritten

(DESIGN
(A (CKT)
(CONVERT ?2CKT
(A (IN)
(AND (PERIODIC (TFUN ?IN) 18.8E-3)
(FORALL (T)
(AND (-/> C (/< 2T @)
(= ((ONE-PERIOD (TFUN ?IN)) ?T)
1)
(-/> C (NOT (/< 2?7 B))
(= ((ONE-PERIOD (TFUN ?IN)) ?T)
-nnon)
(x (IN 0UT)

(= (TFUN ?20UT) (X (T) (SIN (= 2000 PI ?T))))))]

The input predicate is just a time-domain definition of "lkHz square uave."

~—

The output predicate defines the time function (TFUN) of the output to be a
sine wave. (C after "-/>" means: to prove the right-hand side, detach the
left as a subgoal.)

The design problem is used to start a task network or plan. The goal of
the problem solver is to accomplish every extant task. In the course of doing
this, subtasks of various kinds may be generated, wuhich must be gotten rid of.
f In the case at hand, the complicated design prob!em does not match any
! stored subplan directly. The resulting failure of the theorem prover causes

the NASL interpreter to set itself the task of "rephrasing" the design task.

e T . -

[

I Introduction 29

O design...
rephrase
O super-task

fmd d-features

explode \ make
design / find core :

desngn
O g (O device

subnet
find =

O constraints

Figure 1.18 A Rephrasing Subtask

This rephrasing process notices the conversion problem in the description
of the desired circuit, and spends some time trying to calculate and compare
the frequency spectra of the input and output signals. This process results
Iin the re-description of the problem as a lou-pass filtering problem. (The
complex details of this example are described in Chapters IV and V.)

This operation of rephrasing the original problem is carried out by the
NASL interpreter, operating at a different logical level. In particular, its
behavior is rule-governed in the same way. The only difference is that
problems at the louer level become objects of manipulation at the higher
level. The result of this manipulation ultimately appears as a neu problem
netuork at the original level.

The signal descriptions | showed earlier are subject to rules from ZORCH
which suggest looking at them in the frequency domain (Figs. 1.5 and 1.6), and

looking for a simple transformation betueen them. The transformation

I Introduction 30

discovered, namely [LOW-PASS 10808], generates the design shards

[x (CKT) (DEV-TYPE ?CKT LOW-PASS-FILTER)]
(x (CKT) (= (LOW-CUTOFF-FREQ ?CKT) 1000))

which in turn suggest a basic device type (lou-pass filter), constrained to
reduce its output at all frequencies above 1 kHz to negligible values.

The task net has nou been "elaborated" to the structure of Fig. 1.11.

O design...

make a constrain
low-pass O = O it...
filter

Figure 1.11 Rephrased Task Network
The problem has become "make a low-pass filter, and constrain it to fit the
exact desired characteristics." The first subproblem in this structure is
much simpler than the original, and results in the retrieval of a useful plan,
in the form of a "device schema" for an RC filter. (I uill defer the

possibility of more than one schema being brought to mind until later.)

I Introduction 31

A

..

Design... ¢
VF:V I 4"””’j;;2---":i. ;
C make Constrain
5 4 low-pass O O selectivity

Get select R
anBC (=" O

A\‘ O select C

“Frozen constraints’
on R, C and System Function

Figure 1.12 Retrieved Circuit and Constraint Task Network

The problem nou (see Fig. 1.12) is to satisfy the constraints given. Some
of these came with the problem statement, but many more tag along uwith the
schema for RC filter (uhich includes facts about filters in general). A
useful feature of the NASL language is that we can express the purposes of
devices in the same language the system uses to express its oun: as tasks. To
use an RC filter is to insist that its resistor and capacitor have values
compatible with its desired system function. Such tasks are called "frozen
policies."

Such already established tasks are not the only useful kind that ride
along in device schemata. There are also "expansion obligations" which remain
to be done. An example of this technique is the definition of "active

transistor," as a "rauw" transistor plus the commitment to bias it in uhatever
context it appears. In the case of the filter, the only expansion obligations
are to select values for the primitive components. These tasks (see Fig.

1.12) are carried out by interactions with the new and frozen constraints.

-~

I Introduction 32

(In the current implementation, most algebraic symbol manipulation is carried
out by the human user.) Values are to be found which satisfy all the
constraints. HWhen they are found, the fact that they satisfy the constraints
is to be "protected." (Sussman, 1375) This can be a complex task in itself.
(Chapter 111.)

As ue sau before, there are no values which satisfy all the constraints.
Even for engineering purposes, an RC filter cannot quite do the job. In this
case, a failure occurs, which causes the insertion into the netuork of a
correction task. This task may have to edit the task netuork as well as the
current circuit model in order to solve the design problem adequately. (The
current implementation stops before this point.)

I have glossed over the problem of choice in this example. It is more
obviously relevant in the case of the first example of Sect. |.A, designing a
buffered amplifier. In this case, rephrasing is relatively simple, being a
matter of unpacking a |lambda expression such as

(A (X) (AND (DEV-TYPE ?X ARPLIFIER)

(= (V-GAIN ?X) S)

(= (INPUT-R ?X) 3P9080))).
Houwever, these fragments suggest more than one kind of amplifier, as we sau.
(Fig. 1.2) In other uorda, the systea has converted a problem with no
apparent solutions into 3 problem with tuo apparent solutions. This
embarrassment of riches is handled by invoking the choice mechanism, a simple
"protocol” for calling the theorem prover. In this mode, a series of staccato
deductions are made which attempt to rule out alternatives, vote in favor of
alternatives, or synthesize neu ones. (See Chapter 2.) The relevant rule is
the one that says, "if you are trying to choose among different ways of making

an amplifier, and option 1 was suggested because of its input resistance, and

option 2 for some other reason, replace these options with [CASCADE |option 1|

[Introduction 33

loption 2|1." (A simplified version of this rule appears above.)

Other choices that occur in these examples are handled similarly. There
is a rule that the general common-emitter circuit is the starting point for
implementing a common-emitter coupled to something else. In the second
example problem, if the system is ever told about LC filters, we will also
have to give it rules |ike

"Use an LC filter if the power involved is high."

"Other things equal, don't use an inductor circuit if you can help it."

For DESI's actual behavior on these problems, see Chapter V.

1.0 Relation to Previous Work

[1.0.1 Problem Solving and Reasoning

The problems | am attacking in this research are not neu. The problems of
generality vs. expertise uere originally studied by Allen Neuell and his
couorkers around 1368. (Newell, 1962) Their efforts produced a "General
Problem Solver" uhich ue have been trying to debug ever since. (Ernst and
Newell, 1969) GPS was a "means-ends analysis" probiem solver which applied
state transformation operators to bring it to its goal. McCarthy (1959) gave
us the term "advice taker" to describe a program wuhich can take neu
information and use it to do better. The creation of such a program is still
my long-term goal and, in a sense, that of most other researchers,

While this research was in progress, a tide of "rule-based" Al programs
has risen uhich NASL seems to be a part of. Its ancestors are the systems |
described in Sect. |1.B. More recent, specialépurpose rule-based systems have
sought to overcome their |imitations. Shortliffe's (1976) MYCIN is a limited

but elegant medical-diagnosis system which uses a backuard-chaining deductive

o gy

I Introduction 34

system. Sussman and Stallman's (1975) EL does electronic circuit analysis by
foruard deduction. Both of these systems keep a record of deductions. EL
uses these records to rethink deductions based on unuorkable assumptions.
(StalIman and Sussman, 1376) Both systems use them to explain their deductions
to a human user.

The NASL system differs from these in that its control language is aimed
at a higher level of abstraction. Its rules, expressed in a predicate
calculus, specify conclusions rather than actions. Action is achieved by
having certain conclusions be interpreted as "required tasks" by the action
interpreter. The notion of "task" is intended to be very inclusivé.

MYCIN and NASL can both be given neu rules, uhich, if they are not buggy,
interact with the rest of the system in efficient ways. Houever, MYCIN's rule
language is deliberately restricted to the domain of fault diagnosis in poorly
understood systems. (Davis et. al., 1975) (MYCIN is superior to NASL in
having a more developed procedure for graceful assimilation of neu rules.
(Davis, 1976)) EL's rules have stylized LISP code bodies. They can do
anything, in principle, but the system functions most elegantly when organized
around the satisfaction of numerical constraints. HMYCIN does almost entirely
backuard chaining during deduction; EL, forward chaining.

The most important conceptual problem | have found in working on NASL is
the requirement that the control structures of a problem solver ought to be
simple enough to be inspectable, but contain enough higher-level concepts to
be useful uhen inspected. The MYCIN group express this as a demand for
"stylized programming" (Davis et. al., 1975). They have achieved impressive

results in tuwo areas. First, by use of "meta-rules," their diagnostic program
can guide its oun flou of control. This is something |ike my "choice

protocol” in which NASL uses choice rules to decide how to proceed. Second,

| Introduction 35

their knouledge-acquisition program knous enough about the "stylization" to
participate in wuriting and debugging neu rules. | shall make a more detailed
comparison of these two capabilities with actual and potential abilities of my
program in Chapter VI,

The main limitation of MYCIN's style of rule-based programming is that it
is wholly oriented toward making tests and letting them "cast votes" for a
result. There is no concept of planning or even acting. Davis et. al.
(1975) acknouledge that for a domain with a more precise theory than medical
diagnosis, a different control structure is called for. | hope DESI is an
example.

Stallman and Sussman’'s (1976) EL is implemented using a language called
ARSE which is embedded in LISP. The primitives in ARSE implement a system of

foruard deduction and "guessing," aimed touard finding a consistent assignment
of variable values in a constraint netuork. ARSE has been used experimentally
on other tasks involving constraints (Mason, 1976, Doyle, 1376), and so has
modest pretensions to generality. ARSE's control structure is formally close
to NASL's (and helped inspire it). ARSE maintains "demon queues" generated by
ongoing deductions. Houever, EL lacks the need or pouer to inspect these
queues efficiently. NASL embeds the control structures in an associative data
base, and generalizes the notion of queue to a task network.

In this respect, the closest control structure to NASL is Sacerdoti's
(1975) NOAH. This is a brilliant program for planning a mechanical assembly
and advising a person carrying it out. The planning part constructs a
hierarchical netuwork of ever more detailed plans. These plans are not
programs; in particular, they do not have to be totally ordered. As parts of
the plan are expanded, their interactions with each other are noted and

corrected for by enforcing orderings.

S — - e ——————————

~—

I Introduction 36

The main difference betueen this part of NOAH and NASL is that NOAH is a
pian compiler, uhile NASL is an interpreter; that is, it expands and executes
pieces of plan as it goes. This is necessary because NOAH has a simple
STRIPS-1ike (Fikes and Nilsson, 1371) assumption about actions which NASL
doesn't share. In particular, NASL is not as sanguine as NOAH about expanding
a future action, because it has a limited mode! of the world at that point,

It does not attempt to summarize the effects of all tasks as state changes, so

it cannot have a domain-independent algorithm for checking interactions

betueen steps. In particular, actions like "Design..." and "Constrain...,
whose effects depend on hou they are carried out and/or uwhat else is being
executed, do not fit into Sacerdoti's frameuork. This makes room for more
sophisticated knouledge about action, but it is a pity that I cannot use
Sacerdoti’s simple and (within their limits) powerful algorithms.

I have also profited from reading papers by Nilsson (1973) and Philip
Hayes (1375) on interleaving planning and execution. Several researchers
(Schank and Abelson, 1375, Abelson, 1375, Rieger, 1976, Charniak, 1975) have
done research on classification of plans analogous to my taxonomies of Chapter
Il1. Usually, houever, they have been more concerned with analyzing narratives
than uith actually solving problems, uhich has led to different criteria for
classification. Perhaps some synthesis of these approaches will be possible.

A class of systems uith uhich NASL shares certain properties are the
"utility" Al systems uhich have appeared recently. These are systems uhich
provide data and control representations for users, wuho are expected to use
these facilities for problem-specific programs. Examples are the Al languages
(Bobrouw and Raphael, 1973), Bobrouw and Winograd's (1376) "Knouledge
Representation Lanqguage," and Srinivasan's (1976a,b) "Meta Description

System.” The Al languages provide assertion-based data bases |ike NASL s,

T

I Introduction 37

(NASL and STP are descended in this direction from the Al language Conniver.
(Sussman and McOermott, 1372)) The other tuo systems are more semantic-netuork
oriented. (Woods, 1975) This is in many ways merely a formal difference.
Other differences betueen these research efforts depend on healthy differences
of focus. For example, the KRL group is more concerned with recognition
problems than | have been.

A bigger philosophical difference is that NASL is an attempt to provide a
plan description language rather than a programming language. The distinction
may be uholly metaphysical; houever, | believe that several features of NASL
plans, especially the notion of "policy," if implemented properly, belong to
plan description rather than programming. A concrete distinction betueen NASL
and the traditional! "Al utility" (Hewitt, 13972) is that NASL, far from
requiring a program to specify a piece of knouledge, requires a body of
knouledge to specify a program. | believe that Srinivasan's MOS results from
a similar orientation, but he is more concerned with general puzzie solving
than.capturing the knouledge in a rich domain.

In any case, the older, less pretentious Al languages are the only members
of this list of systems (NASL included) which are mature enough for their
flaus and strengths to be visible. HWhich features of the neuwer systems will
endure remains to be seen.

Unlike most of the problem solvers mentioned, NASL uses a theorem prover
to do sophisticated deductive information retrieval. This use of theorem
provers has been suggested by many people. (Travis et. al., 1972, Darlington,
1969, Moore, 1975) My theorem prover, STP, resembles most closely that of
Nevins (1974a), uith features from the work of Bledsoe (1975) and Ernst (1971,
1973). Those familiar with the theorem-proving literature will enjoy Appendix

-~y

4, uhich describes its features.

T

I Introduction 38

Other people have studied someuhat different uses of theorem provers in
problem solving. (E.g., Fikes and Nilsson, 1371) In the past couple of years,
one group of people has been urging the use of a predicate-calculus theorem
prover as the only interpreter of a problem solver. (Koualski, 1973, 1974,
Warren, 1974, Hayes, 1373b, Tarnlund, 1975) | think this vieuw is misguided.
Generally one does not go very far uith this approach before he starts adding
corruptive features, such as ordering the axioms, putting in dummy predicates
to control search, allouwing rules to refer to formulas, etc. (Warren, 1974)
My conclusion was that it is better to admit defeat from the start, so | put
control features in as concepts manipulable by the calculus and defined by the
interpreter, and tried to preserve some of the purity of the theorem prover
itself. | shall have more to say about the success of this attempt in the
conclusion.

[should mention that the concepts of action and decision have concerned
philosophers for hundreds of years. Recently, a uhole branch of analytic
philosophy has sprung up around them. (Langford, 1371, Brand, 1978, Danto,
1965, Goldman, 1978) HMany of the workers in this field have interesting
things to say about the logic of action. For example, the computer
scientist's notion of a "primitive" is reflected (someuhat dimly) in
statementa |like, "... those actions, ... performed by M, uhich he cannot be

said to have caused to happen ... | shall designate as basic actions.” (Danto,
1365) Unfortunately, these philosophers are much too reluctant to imagine
that the mind behaves like a device uith a real structure; ail of their
definitions are in terms of phenomenological rather than technological
categories. For example, Goldman (1978) gives the follouwing exegesia of the

notion of "basic action": A basic act is an act A such that "if § wanted to

exemplify A (at t), he would exemplify A (at t)." He then must spend no

) | Introduction 39

little effort explaining auway paralytics. | think that in the long run
philosophers exposed to Al ideas are most likely to arrive at useful concepts
in this field by explaining "uant" and "act" in terms of hypothesized internal

constructs.

1.0.2 Electronics and Design

The usual problem domain for a researcher with my pretensions is some
class of puzzles (Ernst and Neuwell, 1963) or "narrative understanding."

(McOermott, 19743, Charniak, 1972). | have chosen elementary electronic

[y

circuit design instead, for these reasons:

(1) It is not as broad and sloppy a domain as “story understanding." One
can reach "critical mass” with a data base much faster. There are cleare:r
criteria for success. Electronics involves, | hope, as feu mental competences
as possible in an interesting domain.

-

(2) On the other hand, there is room for a variety of kinds of knouledge.
The domain cannot be, and doesn't have to be, represented fully by a state
space and a set of cperators. Puzzles are both too easy and too hard at once;
they are probably a misleading example of problems that succumb to human
thinking.

(3) The subject matter is already formalized to some degree, so that | can
focus on formalizing the control knouledge that is necessary.

(4) Electronics is simpler than other engineering domains in that it
requires less knouledge of space, time, and motion. Expertise in these areas
presumably draus on innate abilities wue have difficulty bringing to light.

(5) My research has had the benefit of being part of an ongoing MIT Al
" laboratory project in automating electronics reasoning. Concepts used by
i Sussman and Stallman (1975), Stallman and Sussman (1976), and A. Broun (1975),
have been taken over, sometimes with some modification, into DESI's knouledge
base. (This is especially true of the parts concerned with signal description
and electronic analysis.)

(6) My uretchedness as an electrical engineer should make it easy to
construct a program as good as its creator.

The main draubacks to electronics are

(1) It is someuhat inaccessible to the average Al researcher or

-

g e

I Introduction 40

psychologist. People lose interest in documents regarding something they knou
tittlie about. (Who knows what DENDRAL (Buchanan et. al., 1963) really does?)
|l have tried to keep large sections of this text independent of electronics.
Only Chapter 1V and Appendix 3 rely on it.

{2) Electronics knouledge as presented in introductory texts leans on
spatial representations to some degree, even if not as much as other branches
of engineering. Frequency-domain manipulations and pole-zero plots are
examples of this. | have tried to preserve the structure of this knouledge in
formal expressions (see Chapter 1Y), but | am auware that humans probably use
more "wired-in" modes of spatial reasoning, whatever that may turn out to
m2an. [doubt that one could choose a better domain than electronics for
avoiding this problem, houever.

My knouledge of electronics is mainly derived from books. (Senturia and
Wedlock, 1975, Hayt and Neudeck, 1976, Watson, 1978) This is reflected in the
fact that the problems DESI has been exposed to are "problem set" problems,
not the sort that a technician would encounter in daily practice.

There is a large literature on the theory of design, artificial
intelligence and design, and "computer-aiced design." So far, houwever, the
intersection of these fields is almost empty. Books about the design process
(Alexander, 1964, Asimou, 1962, Buhl, 1962, Glegg, 1973) consist mainly of
advice for avoiding overlooking things in pondering problems and working out
solutions. About proposing solutions to start with, most of these authors say
things like this:

"What enables us to drau from the warehouse of our experience just the

right set of elements, and to put them into just the right combination so

that they have a sense of fitting the situation, we do not knouw, since no

definite solution exists," (Asimow, 1962, p. 45.)

This author is certainly correct that we do not knou; programs |ike DESI are
only tiny steps toward a theory of creativity. O0f course, as a working
hypothesis, we take issue uwith the claim that no solution exists,

Oesign has attracted artificial-intelligence researchers, particulariy at

Carnegie-Mellon University, for some time. Broadly speaking, areas |ike

automatic programming, and, indeed, all problem solving, fall under the

=

I Introduction 41

heading of "design." Houwever, the theory of design narrouly construed has
been explored by workers |ike Grason (1978), uho studied resolution of
constraints on floor plans; Eastman (1968), who did a formal pychological
study of performance on the task of redesigning a bathroom; Haney (1368), uho
studied the automatic design of computer instruction sets; and Latombe (1376),
whose rule-based design system is an interesting alternative to mine. | have
found especially useful the theory paper by Freeman and Neuell (1969) on a
general theory of design, from which | have borroued heavily. (See Chapter
I11.)

One might expect the field of "computer-aided design" (CAD) (Vlietstra and
Wielinga, 1973, Kuo and Magnuson, 1969, Furman, 1970, Rosenbrock, 1974) to
have produced many expert programs for a general Al program to compete with.
This is not yet the case; "CAD" usually has little to do with the automation
of the actual design process, but concerns itself wuith graphics packages,
analysis programs, and other interactive aids to it. For example, one author
distinguishes "three modes of [computer) operation:

(i) Analysis. An engineering situation is specified in full
mathematical detail by the designer, and the computer draus certa.n

fur ther mathematical consequences....

(ii) Synthesis. The designer specifies in detail the properties which
his system must have, to the point where there is only one possible

solution. The computer finds this solution. An example is optimal
control.

(iii) Design. This is the creative act of a designer, guided by
calculations on the computer and interacting with them in a sequential
manner to produce a satisfactory solution." (Rosenbrock, 1974, p. 29)

The electronics synthesis tasks to which computers have been put include very
lou-level operations such as printed-circuit layout (e.g., Fletcher, 1974) and
filter design (e.g., Chohan and Fidler, 1974). The approaches taken by most

people in this field are usually very "mathematica!," and concentrate on

techniques for discrete or continuous optimization. For example, one approach

e

I Introduction 42

to circuit design in the literature (Director, 1974) consists of putting in as
many components as one deems plausible and letting the program find the
optimal component values for the task given. Many of these components wuill
assume null values and "vanish“; thus this approach starts uith a big circuit
and finds the subset that does the job!

CAD is only beginning to become auware of non-numerical techniques. (But
see Pouers, 1973.) DESI relies almost entirely on non-numerical techniques,
and is very poor at constraint resolution and component-value optimization. A
praciical system uould have to combine the tuo approaches.

It is impossible to survey this field in detail here. It includes its oun

journal, Computer Aided Design, and supports periodic conferences.

Il Expressing Knouledge in NASL 43

II Expressing Knowledge in NASL

The heart of DESI is the NASL interpreter, and the STP theorem prover
which it drives. The theorem prover gives the system a general and flexible
notation; the interpreter imposes an innate interpretation on some of ‘he
expressions of this notation. In this Chapter, | will give a discursive
introduction and overvieu of the interpreter, describing STP and other
inferential protocols as they come up. (See Fig. 1.9.)

The NASL interpreter is a problem solver of the "problem reduction" type.
(Nilsson, 1971) That is, it solves problems by reducing them to simpler
subproblems. The differences betueen this structure and a programming
language are: that a problem solver must decide upon the order in uhich to
attack subproblems; that a problem solver often has subproblems of the form
"reduce problem so-and-so," where a programming |anguage has only the
subroutine call; and that a problem solver must occasionally choose betueen
alternative approaches.

The designer of a problem solver must confront the problem of search. For
problem-reduction problem solvers, this classically takes the form of a search
through an ANO/OR graph of possible approaches. (Nilsson, 1971, Fahliman, 1973,
McODermott, 1974a) UWhether the search strategy is depth-first or more clever,
it depends upon being able to save and restore states of the problem solution
and hence of the "world model"; - this has recently tended to be implemented
using a "context" mechanism. (Sussman and McDermott, 1372)

| believe that searching will aluways be a part of Artificial Intelligence
technique. Houever, it seems to me that search among alternative sequences of
subproblems and world models is a mistake. My principal reason for this

belief is the observation that in the normal course of human problem solving,

R o —
et R

I1 Expressing Knouledge in NASL 44

a rather different faculty is used more heavily, namely, the ability to
correct one's errors. The difference betueen these alternatives is this: if
"state of the world" is thought of as an internal data structure, completely
knoun and under control, it is just as easy or easier to return to an earlier
state to try something else 2s it is to generate a new one. But if states of
the world are really states of the whole world, about uhich one's information
is limited and his control slight, quite the opposite is the case.

So the question, for electronic circuit design, is whether the unfolding
circuit model is to be thought of as an internal data structure or as a
diagram on a piece of paper. A little reflection on this choice has draun me
to the second alternative. Since useful plans will ultimately have to be
applied to the real world, whose surprises will aluays cause mistakes and
revision, the problem of correcting errors rather than "popping them off the
context tree" will have to be faced eventually. There is no point in
per fecting a plan doun to the last detail if circumstances will wureck it.
This is probably uhy people uworry so little about producing optimal plans.

If search isn’t through states of the world model, but it is necessary,

a

what is it that is searched? | think it is knowledge about courses of action.

People can correct states of the world created by the wrong plan, but they

don't normally do this as a way of stumbling on the right plan. Instead, they

use knouledge |ike

"Under circumstances ..., plan ... will work."
“1¢ ..., don"t do"

Consider the difference betueen human and machine playing of chess. |
uill assume the reader is familiar with the usual program organization around
the idea of minimax tree search. (Slagle, 1971) A human, by contrast, learns

to play. His initial plan is simply to make a legal move, wait for his

———
e o R A

]

——

11 Expressing Knouledge in NASL 45

opponent’s reply, and repeat this until the opponent uins. As time goes by,
and he sees and hears more and more about the game, uhere does he put uhat he
learns? According to the theory | am presenting, it becomes part of the
advice surrounding the "make a move" step. This advice is usually in terms of
board patterns, phases of the game, etc. Eventually, more sophisticated
advice in terms of anticipating possible opponent replies is assimilated. If
the deductive system for manipulating this advice is adequate, simple tree
searches will appear as a trace of its manipulations. But this uill never be
assimilated to the overall planning level. The planning level does not become
nondeterministic., Instead, what begin to appear there as the player becomes

more confident of his pouers are "game plans," long-term strategies which
influence his choice of moves.

This sort of search through knouledge about alternative courses of action
is worth spending a lot of effort on. It has three loci in the NASL system.
The principal one is the theorem prover STP, (Sect. I1.B.2) This is
supp lemented by "choice information." (Sect. I1.C.1) It all else fails, the
system calls itself recursively to "rephrase"” an action. (Sect. I11.C.2) |1
have worked hard to make these devices sophisticated. | have given less
thought to the problem of undoing mistakes (Sect [l.E), and none to the
question of learning search knouledge.

Because deductions about courses of action are so central to the theory,
NASL must be a language for describing problems, plans, and physics. The
categories it uses for descriptions, and the inference algorithm it can call
upon to manipulate them, determine its abilities and |imitations. The
limitations are in some ways as important as the abilities. The feuer ways
there are to express something, the more likely it is that the formulas

related to it will be noticed during rule application, and the more flexible

Il Expressing Knouledge in NASL 46

and extensible the system uill be. Conversely, to the degree that each user
is forced to make up his oun control conventions, the less likely it will be
that information from one user uill ever affect the system's approach to

problems posed by another.

NASL is not a typical programming language, since the user can intermix
fragments of plans and axioms governing the physics of problem domains uith
fully developed programs. On the other hand, it bears a stronger famiiy
resemblance to programming languages than to anything else, so | have included
a "programmer's guide" at the end of this chapter for those interested in

programming in NASL.

II.A The Natural History of Actions

The fundamental concept implemented by the NASL interpreter is the concept
of task. A task is an activity to which the interpreter is committed. The
basic drive of the interpreter is to accomplish all the pending tasks.
Examples of tasks from several domains are,

"Put Block A on Block B."

"Wait here for five minutes."

"Put the male chicks in this box, the females in that one."

"Win the war, and keep the peasants happy."

"Think of a fallible lrishman."

"Keep your promises."

"Convince yourself that all equilateral triangles are isosceles.”

In electronic design, tasks range from wiring tuo objects together, to
designing a hi-fi system, to finding a resistance that satisfies a constraint.

The reason for the broad definition is my goal that as much as possible of
wuhat the interpreter is doing should be explicit, so that reasoning about it

can be shallouw. For the same reason, it uwill be important that control

information be expressed in a notation compatible with everything else. So |

e — 2 - - S——

Il Expressing Knouledge in NASL 47

represent tasks as NASL formulas of the form
_ [/:TASK |name| < -input pvars- >
(A (-vars-) |action]|)
< -output pvars- >]
Unfortunately, | must pause here to describe the notation, both object and
meta. NASL formulas are aluays enclosed by [brackets]. When | am describing
a formula, | enclose syntactic variables in brackets like this: "|...|" or
like this: "-...-". The second kind indicates that a sequence of syntactic
constructs is wanted. So, for example, an instance of a task might be of the
form
[/:TASK (COUPLER PLAN#71) <' (BUFFER#72) ' (AMP#73)>
(A (STAGE1 STAGE2) (COUPLE ?STAGE2 ?STAGE1))
<" (CKTH74)>)
This describes a task, named [COUPLER PLAN#71], uhich requires taking the tuo
circuits [(AMP#73)] and [(BUFFER#72)] and COUPLing them to make something
which uill be called [(CKT#74)). (Notice that the NASL notation permits
tuples of objects delimited by <angle brackets>, and A-expressions to express
functions and predicates.) /:TASK is a predicate of four arguments. 1t
begins with the prefix "/:" which indicates that it is a built-in predicate
used by the interpreter in some way. A complete catalogue of built-in
predicates and functions appears in Appendix 1.

The word "pvars," for "plan variables," refers to terms, such as
[(BUFFER#72}) and ((CKT#74)), which are set equal to calculated quantities in
the course of executing tasks. They acquire values by appearing in "reurite
rules" of the form

[«/> '|term| |value])
(Cf. (Bledsoe and Tyson, 1975), uhere they are called "reduction rules.") In

my example, if («/> ' (BUFFER#72) DEV#75) and [=/> '(AMP#73) DEVH#76) appear in

the data base before execution of the task [(COUPLER PLAN#71], DEVH#76 and

1l Expressing Knouledge in NASL 48

DEVH#7S might be coupled to produce DEVH77; then the interpreter would add [=/>
'(CKT#74) DEVH77) tc the data base. (For an explanation of the single quotes,
see Appendix | or Sect. [1.B.2.) In defining actions {ike COUPLE, I will
indicate their outputs with the symbol "==>" thus:

(COUPLE |ckt 1| |ckt 2|) ==> <|new ckt|>
to shou what neu value formulas they leave in the data base.

Anyone familiar uith the Al languages (Bobrou and Raphael, 1374, Heuitt,
1372) uill recognize the concept of "present in the data base." In NASL,
there is aluays a current "data pool" for formulas to reside in. Formulas
found there are supposed to be true; those absent have unknoun truth values.
(See Sect. 11.B. The phrase "data pool" is meant to supersede the misleading
word "context." (McDermott and Sussman, 1973, Rutlifson et. al., 1972))

This notion of task already embodies a complexity not found in the action
languages of Sacerdoti (1375) and others (Sussman, 1975), namely, that tasks
will not be fully specified until their input pvars are knoun, and that tasks
can compute values to be used by subsequent actions. It will be seen that
this broadens the scope of the action system considerably, while making future
actions harder to analyze. 1t seems essential for automating design.

With just this much machinery, plus a simple forward deduction scheme, we
have a notation similar to that of a production system (Newell, 1973a,

Rychener, 1976). For example, we might have a deductive rule that says

[(DEV-TYPE ?A COMMON-EMITTER)
> 3B(/:TASK 7B <> (X () (BIAS ?A)) <>)],

meaning, "Every common-emitter amplifier must be biased." (I have introduced
standard logical notation for implication and quantifiers. (Suppes, 1957)
Variables are prefixed by "?"; free variables are supposed to be universally

quantified. The internal notation for implication will be explained below.)

Il Expressing Knouledge in NASL 49

This rule is analogous to a production in having a condition on the left and
an dction on the right, but it differs in certain crucial uays.

First, we are not limited to condition-action pairs. The more basic case
is "conditinn-condition." This enables us to treat deductive information
retrieval as a process distinguishable from plan execution. It can be
optimized separately, using techniques specific to the kind of search that
arises during deduction. (Moore, 1975, Fahliman, 1375b) HMore important, since
the system knous uhen it is doing deduction, and uhen action, it can keep more
revealing records for use in choosing courses of action, explaining uhat it
did, and recovery from errors. (In the future, such records could be used for
careful assimilation of neu, possibly unreliable, information. Cf. (Davis,
1976, McOermott, I974a3). By contrast, since the meaning of a condition-action
pair depends entirely on the meanings (some deductive, some not) given to
symbols by the behavior of the rest of the system as a uhole, it is impossible
to say uhether a neu rule of thisg kind is "correct" uithout extra commentary.)

Second, deducing /:TASKS before executing them gives an extra layer of
"carefulness" to the system. (Cf. (Sussman, 1975), where the term "careful
mode" is introduced.) A task is aluays noted in the current data pool before
being executed. Here it can trigger other tasks or be available for other
deductions. Furthermore, the system can note a task some time in advance of
when it actually decides to do it. For example, a task can appear before its
pvars’ values are knoun. More generally, a formula of the form

[/:SUCCESSOR |task name 1| |task name 2])
must mean that task 2 is to be postponed until task 1 has been "begun" (in a
sense explained belou). In this way, a netuwork of tasks |inked by /:SUCCESSOR
relations and variable flous is created (uhich the interpreter will munch

"from left to right"; cf. Fig. I11.1).

Il Expressing Knouledge in NASL 58

*acquire speaker ()

connect them

\
/ \ verify that the
\ /

* acquire amp assembly works

‘ blas it
: *enabled tasks

Figure I1.1 A Task Net, or "Plan"

Finally, a typical production-system action is aluays a primitive that can
be carried out immediately, while some NASL tasks require must be broken doun
into subtasks in order to be executed. This requirement is what makes NASL a
problem solver. In other words, a task can be as much a part of the problem
as of the solution; it looks like part of the solution to its superiors, and
part of the problem to its subtasks.

Thus, a task (or action) is either primitive or problematic. An action
may be primitive in two ways. It can have a LISP program for carrying it out,
or it can have a set of model manipulation statements that hold true of it,
These statements are the same as STRIPS's add- and delete-lists. (Fikes and

Nilsson, 1971) They are sufficient to represent completely only the simplest
of actions, but they make these actions easy to reason about. (Cf. Sacerdoti,
1975)

A problematic task must be "reduced" to one or more subtasks. This

relation betueen tasks is expressed by formulas of the follouwing sort:
SUBTASK |subtask name| |supertask name]]

A task can be the subtask of more than one supertask.,

Il Expressing Knouledge in NASL 51

Task reduction can occur in more than one way. The deductive system can
infer a complete set of subtasks of a task in the course of foruard deduction.
Houwever, this fails to give enough direction or pouer to the problem-reduction
process. As described in Section [1.B, the interpreter must have the concept
of one action being a way of carrying out another, expressed like this:

[/:T0-DO |task name| |action| < -output pvars- > |method]|].
This is intended to mean that the method is an effective, feasible, and
permitted way of accomplishing the task consisting of the action. Such
statements can be used in the creation of subtasks.

The "method" to which a task is reduced may consist of a single action, or
it may be a "macro action" which stands for an entire subnet of neu tasks.
This requires the notion of a plan schema, an abstract object, instances of
dhich may be thought of as hanging as little subnets off nodes in the task
netuwork. (Fig. 11.2) The manipulation of instances of these schemata is

described in Sect. [1.B.1.2.1.

T

Il Expressing Knouledge in NASL 52

&

o Subnc.ati> é \

B

—_—_—
Figure 11.2 Task Network with Subnets
Thus tasks may be classified according to whether their actions are

primitive or problematic. These classifications form one of the taxonomies

shoun in Fig. 11.3.

© ———

Il Expressing Knouledge in NASL 53

Problematicity
Primitive
Model manipulator
Macro
Primitive policy
Problematic
Monasticism
Inferential
HorIdly
Parasitism
Primary
Secondary
Figure 11.3 Logical Taxonomies of Tasks

The other tuo taxonomic classifications are independent of this one. One
classifies tasks according to "monasticism.” Every task is either
inferential, in uhich case it consists of inferring formulas from other
formulas supposed to be true; or "worldly," wuhen it or some of its subtasks
per form model manipulations. This classification is expressed by means of the
predicats /: INFERENTIAL.

The last taxonomy is the important classification by “parasitism.” A task
is either primary, meaning that it has steps to be pursued in order; or
secondary, meaning that its "execution” amounts to influencing or monitoring
the execution of primary tasks. Ongoing secondary tasks are somewhat
grandiosely called "policies." Hou they are handled is described in Sect.
I1.B. Some representative classes of policies, expressed in English, are

"Wait until ... is true."
"Notice if formula ... is removed."
"Take into account desired feature ... of the device you are

designing.”
"Constrain quantities ... to satisfy ..."

——

Il Expressing Knouledge in NASL 5S4

Policies, like primary tasks, may be primitive or problematic, worldly or
inferential.

A policy may have a scope, uhich is the primary task uhose execution (or
uhose subtasks® execution) it is intended to influence. As you might expect,
this is indicated thus:

(/:SCOPE |secondary task name| |primary task name|]
Policies do not outlive their scopes. In drauing task networks, | will put a
little cloud around a task to indicate that it is the scope of one or more
policies; the policies will be tied to these clouds with a line. (Cf. Figs.
I11.7 and 111.8.) ;

There is no mystery to the notion of policy. Al! computer programs embody
policies; the particular data-base and interrupt mechanisms | use to implement
them are commonplace in Al applications. The novelty is that the notion has
been made explicit, and, in a modest sense, put into the logical calculus.
This prevents tuo problems with the usual use of the implementation
mechanisms. First, typical Al-language "demons" (Charniak, 1972) fire off in
the middle of primitive data-base operations and get complete control of
operations. MWithout conventions, it is difficult for other processes to knou
uhat the intentions of these little monsters are.

Second, policies are to be used to express things [ike "foop invariants”
and "program assertions" (Floyd, 1967), uhich are usually extraneous to actual
program text and only indirectly related to individual program steps. But a
problem solver has need of the notion of a "partially-reduced" problem, some
of uhose subtasks have not been fully reduced to primitives. This is
difficult to capture without the concept of a policy. For example, consider a
program to count the prime numbers in a table. The text of the program

contains instructions to initialize a counting variable and inc-ement it just

g o PO

———

m

[l Expressing Knouledge in NASL 55

after a prime number has been discovered. The purpcse of this variable may be
expressed by an invariant of the form "x is the number of primes in the part
of the table already looked at." What | am trying to capture is the notion of
an early, unfinished version of the program, in which the pieces of text do
not yet exist, and the invariant is all there is.

A plan is, in a sense, this kind of unfinished program, uith the
difference that it gets executed uithout ever getting completely written.
Comments on a plan are not there to explain an existing text or to help prove
that it works; they are there to explain an ongoing course of action, and they

must be executable, Their individual steps may indeed involve initializing

and incrementing counters; these will become subtasks of the policy.
I wil) conclude this section by listing some |imitations of this plan
calculus. These fall into tuo categories: bad limitations and good

limitations.

The bad limitations are those due to the fact that | kneu the plan
language was going to be used for designing and | didn't have the time to
implement unnecessary features. So | didn't put in features such as other
agents' plans, or notions |like "prerequisite of an action." These and other
inadequacies are described at slightly greater length in Chapter VI.

The good limitations are those arising from these goals:

(1) Deductions about plans ought to be simple and shallou.
(2) Neuw knouledge must be expressed in a notation compatible with old.

By deductions about plans, | mean deductions about current plans, not "proofs
of plan properties." (Cf. Sect. VI.C) It ought to be easy to deduce uhat you
are doing. Otheruise, the executions of subplans cannot interact, and the
notion of policy uwill be meaningless. The second requirement is related to

our desire for flexibility. New knouwledge is worthless unless it is expressed

s

11 Expressing Knouledge in NASL 56

in a familiar language. There should be just one obvious way to express any
given piece of control information. (Keep this in mind as | expand on the set
of control concepts in the following sections.)

An example of a good limitation is that no loops and conditionals are
allouwed in the language. That is, all iteration and testing is done in the
deducer. There are no gotos in the system. There are instead much higher-
level concepts {ike "choosing." [t remains to be seen uhether | have been
successful in inventing transparent but pouerful control ideas. (I should
mention that recursion is not forbidden in the system; a plan-schema instance
can have subtasks derived from an instance of the same schema. It probably

should be forbidden, in this general form; | use it sparingly.)

I11.B Interpretation and Inference

One thing to do with the predicates | introduced in the last section is to
put them in axioms and prove things with them. For example, many of the
electronics and design facts in Appendices 2 and 3 have conclusions of the
form (/:TASK ...), meaning, "l should be doing" Clearly, a system uhich
just proved things of this sort without acting on them would be a perfect
catatonic. Its deductions would occur in a void. Their full meaning depends
on there being an "action system" uwhich interprets the result of such
deductions as commands to act. | will call formulas like this which directly
influence action pragmatic formulas; the characteristic functions of these
formulas are pragmatic functions or, more specifically, pragmatic predicates.
I have already observed the convention that the names of such functions and
predicates always start with "/:" to emphasize that their meanings depend

mostly on the action system. In this section | uill introduce more of them.

e P

Il Expressing Knouledge in NASL 57

(A complete catalog appears in Appendix 1.) All predicates not directly
influencing action mean, in some sense, only what the axioms they appear in
say they mean.

In this section | describe the operation of the interpreter and the

theorem prover it uses, called STP.
[11.8.1 The NASL Interpreter

The outer loop of the interpreter is to
Pick a task to work on;
If it is primitive,
Execute it or elaborate it;
Otheruise, find a way to work on it ("reduce" it):
Repeat until there are no more tasks
The first step of the interpreter cycle, "picking 2 task," is done by a
system of foruard deduction of /:SUCCESSOR relations. The axioms that 5ubport
these deductions are the user's responsibility. The system chooses at random
from the tasks that it is logically permitted to do next.
Much of the work is in the second arm of the conditional. The existence
of this step is uhat makes NASL a problem-reduction problem solver instead of

a programming-language interpreter. Reducing a task involves a call to the

theorem prover STP and some more powerful mechanisms. (Sect. 11.C)
11.B.1.1 Selecting a Task to Work On

The NASL interpreter interleaves planning and execution of plans. (C¥f.
(Nilsson, 1973).) Different tasks are in different states, which change as
time passes. The current state of a task is composed of its task-status, its

enablement status, and, for problematic tasks, whether it is reduced. (Fig.

Il Expressing Knouledge in NASL 98

I1.4) When a task is created, its state is PENDING and BLOCKED. When a
PENDING task is ready to be executed, it becomes FNABLED. While it is being
worked on, it is ACTIVE. When the interpreter is through with it, it is
FINISHED. The status of a task is expressed in a formula of the form

(=/> " (/:TASK-STATUS |task name|) |status]|]

uhere status is one of the three states [gave.

PENDING ACTIVE FINISHED
BLOCKEDIENABLED UBS-ENABLED | SUCCS-ENABLED

un-REDUCED REDUCED

- time

Figure [[.4 Life History of a Task

Meanuhile, as a task evolves, its enablement status changes to "gate"” its
subtasks and successor tasks. Recall from Sect. I1.A that the order of
execution of tasks is constrained by /:SUCCESSOR relations. In addition,
subtasks of a task may be deduced before the task itself becomes active; the
subtasks must be postponed. So there are three facts that must be true before
a task can be enabled: all its super-tasks must be ACTIVE; all of its input
pvars must be knoun; and all of its predecessors must have enablement status
"successors enabled." (Fig. [1.4) When a task is FINISHED, its successors
are aluays enabled, but the system must be flexible enough to allou execution
of successors to begin before this., For this reason, | intreduce the
independent concept of enablement status,

[«/> " (/:ENAB-STATUS |task name|) |status|],

uhere status is BLOCKED, ENABLED, SUBS-ENABLED, or SUCCS-ENABLED. These flags

SRS

Il Expressing Knouledge in NASL 59

are synchronized uith the grdinary task-status as shoun in Fig. Il.4. As a
task becomes active, the system checks its subtasks, and enables all those
With no other impediments; similarly, uhen the task enters SUCCS-ENABLED mode,
the system checks its successors. (!t should be clear that if a task has tuo
predecessors or super-tasks or some combination, all must be in the proper
state.)

A useful service provided by the system is that as soon as all the input
pvars of a task are knoun, wuhether or not there are other gating conditions
remaining unsatisfied, a formula of the form

(/: TASK-ACTION |task name| |action]|]
is recorded in the data base.

Figure [1.4 also shous the transition of a problematic task from being
"unreduced" to being "reduced." When a task has been completely replaced by
subtasks, the proposition

[/:REDUCED |task name|]
is supposed to hold true of it. The system will not bother to reduce a task
if such a formula has already been deduced; this enables task networks to be

built up entirely by foruard deduction.

11.8.1.2 Executing Tasks

When a task has been selected, it must be executed. [|f its action is of
the form (|F| ...), | cali r its action function. The system can tell by
looking in the data base or on the property list of [uhether the task is

primitive or problematic. I|f it is problematic, it must be reduced.

Il Expressing Knouledge in NASL 68

11.B.1.2.1 Primitive and Problematic Tasks

An action can be primitive in one of two ways: its action function can
have a defining LISP function on its property list, or it can be defined by
mode | -manipulation axioms. The latter are looked for first.

The interpreter calls STP to deduce formulas of the form

(/:MOD-MANIP |task name| |action| ?DELETELIST ?ADDLIST],
where the variables ?0ELETELIST and ?A00LIST are intended to become bound to
tuples of "senses," or quoted facts. (See Appendix 1.) For example, we might
have

((ON ?X ?B) >
(/:MOD-MANIP ?TASK (MOVE ?X ?A) <’ (ON ?X ?B)> <' (ON ?X ?A)>)]

in the BLOCKS world. The meanings of the addlist and deletelist are the
traditional ones. (Fikes and Nilsson, 1971} The model (data pool) is to be
updated in the obvious way: the formulas represented by the elements of the
deletelist are deleted, and those represented by the addlist are added. These
manipulations are called model effects.

It the primitive has a defining LISP function on its property list, that
function uill just be executed. |t can do something, return a value,
establish a policy, or annex a subnet. An example of the first kind is the
action (GRABBA [property|] in the design world, which creates an object with
the property. Values are returned by deductive actions like /:FIND, uhich
call STP to retrieve data.

The most important kind of primitive is the "macro," which annexes a
subnet. The typical member of this class is
[/:D0-SUBNET |plan schema| |vars-map|].

which is used to instantiate plan schemata and hang them off the net.

Il Expressing Knouledge in NASL 61

In the current implementation of NASL, plan schemata are not represented
as identifiable objects. Instead, they are defined implicitly through
statements of the form

[(/:PLAN-INSTANCE ?NAME |plan schema| ?SUPER-TASK)
> (AND (/:TASK |subtask 1] ...)
(/:TASK |subtask 2| ...)
(/:SUBTASK |subtask 1| ?SUPER-TASK)
(/:SUCCESSOR |subtask 1| |subtask 2])
-other connectivity relations-)]
by uwhich nets of subtasks are created and |linked together. Executing /:00-
SUBNET creates a neu plan instance and records
[/:PLAN-INSTANCE |plan instance name| |plan schema| |super task]|].
This will trigger the forward deduction of subtasks in the schema.

These subtasks uill compute and use the values of plan variables
("pvars"), some of uhich the super-task netuwork needs; the vars-map argument
of /:D0-SUBNET tells hou to map the schema's variable back to the calling
plan. To make this work, all the pvars used by the tasks in the schema must
be of the form [(|var name| |plan instance name|)]. (For an example of the
use of /:D0-SUBNET, see the formulas +DESI-1 and +DESI-2 in Appendix 2.)

A macro-expanded task uwill be FINISHED when all its subtasks are. It will
have enablement status SUCCS-ENABLED when all of its "main" sub‘asks are
FINISHED. This device is intended to capture the idea of a task reducing to
tho kinds of subproblem: things uhich must be done before going on to the
successors of the task, and things which can wait. An example is biasing one
stage of a complex circuit (see Appendix 3); this will appear as a subtask of
acquiring a circuit, but it should not be done when the circuit is first
obtained; instead, it may become a successor of, e.g., coupling the circuit
to something else. Subtasks labeled /:MAIN are those whose completion is a

necessary condition for enabling a supertask’'s successors. (See Fig. 11.5.)

11 Expressing Knouledge in NASL 62

Acquire Stage 1

Wire it

Acquire St~ye 2 P
7

O

/
A > — Successor
/7
Wire it,” ——- Implicit successor due
¢ to task being labeled
/sMAIN O MAIN
Bias it
Figure 11.5 Enablement Relations in Subnets

This is one of the ways in which the subtask relation differs from the
usual relation betueen a program step and its program.

Other macro actions are described in Appendix 1.

This concludes my description of the execution of macros and other
primitives. All other tasks have "problematic" actions. In such a case, NASL
calls STP with the request

(/:T0-DO |task name| |action| < -output vars- > ?WAY])
lf STP returns exactly one value for ?WAY, a neu task for the neu action is

created, enabled, and made the /:MAIN subtask of the current task (uhich

[I Expressing Knouledge in NASL 63

becomes /:REDUCED). 1f STP does not return exactly one value, special things

must occur uhich are the topic of Sect. 11.C.

11.B.1.2.2 Primary and Secondary Tasks

Primary tasks are those which do something or infer something. Primitive
primary tasks are those defined by /:MOD-MANIP and inferential functions.
Secondary tasks ("policies") are those uhich influence the execution of
primary tasks.

The principal primitive policy is
[/:MONITOR |formulal (XA (|v]}) |action|)],
which coes nothing unless some task removes the formulfa as a model! effect.
Then a new subtask will be created with the given action, with v bound to the
task that did the removal. This is used to implement protection.

Policies may cause the "intermittent" execution of primary actions. A
task with action [/:CONTINUE |policy task| |action|) will be executed in a
nonstandard way. |t causes a deduction of the form

[/:TO-CONTINUE |policy task| |action| <> ?UWAY]
and the resulting sub-action is attached to the original policy task node of
the task netuwork. (See the implementation of protection described in Chapter
I11.) Thus a policy may occasionally cause execution of real actions in the
process of executing /:CONTINUEs.

A problematic task may also be primary or secondary. This is not
determined uhen the task is reduced, but after its /:MAIN subtasks have been
set up. At that time, if any of its subtasks are discovered to be secondary,
and to have a scope larger than it, it is declared to be a policy.

The main difference betueen the execution of primary and secondary tasks

~zw—r

Il Expressing Knouledge in NASL 64

is in hou they are finished. A secondary primitive will not be finished until
the task which is its scope is finished; then the interpreter executes
[/:FINISH |policy|) to clean it up. Problematic tasks of both kinds are
finished when all their subtasks are.

Here is a summary of the ways in which policies influence primary actions:

(1) The primitive policy /:MONITOR is used to implement things |ike
"protection." (Sussman, 1975)

(2) The presence of formulas regarding the status of a task can |icense
deductions of various sorts. The conclusions can be of the form [/:TASK ...]
and [/:70-D0O ...], for example, and thus trigger things to do and uays of
doing them.

(3) In particular, policies often influence the "choice protocol!"
described in the next section.

(4) The use of /:CONTINUE can cause intermittent execution of primary
actions,

When policy-specifying formulas influence the interpreter's deductions, it
will record their influence in the form of /:SUBTASK assertions. That is,
uhen /:TASK formulas are deduced from policy task formulas, they become
subtasks of those policies. (Sect. [[.0) Thus, a natural structure evolves
in which a task can be a subtask of "make a filter" (primary) and "keep the

cost doun" (secondary).

[11.B.2 STP ~- The Stupid Theorem Prover

STP is a backuard-chaining, pattern-matching theorem prover. In R.
Moore’'s (1975) phrase, it is a procedural deductive system. Such a system may
best be thought of as a descendant of PLANNER (Heuitt, 1972) uhich emphasizes
ttas logical aspects instead of emphasizing its programming-!anguage features
as most other descendants have done. By this | mean that it manipulates, not

arbitrary list structures, but formulas that are supposed to represent

Il Expressing Knouledge in NASL 65

statements about entities. There are no side effects during deduction; the
action system is completely divorced from the operation of the theorem prover.
Thias means that the theorem prover can be optimized in various special uays.
(See Appendix 4.)

STP is used by the system for tuc kinds of deductions: those about tasks
and actions and those about the physics of the problem domain.

STP is not particulariy bright; it is to be used for information
retrieval, and it tends to balk at intricate reasoning. HMore sophisticated
reasoning is done as inferential tasks. (There are things to regret about
this organization. See Sect. VI.B.) Some kinds of reasoning do not naturally
fit into the theorem-proving paradigm at all. These will be discussed in
Sect. 11.C.

Actually, "theorem prover" is a very misleading term. The "theorems" such
programs prove would not be recognizable to a mathematician; tne way in uhich
they go about it would be even more incomprehensible. Nonetheless, | will
continue toc use this term, since by nou Al people are unlikely to read
anything very pretentious into it.

A theorem prover may be thought of as a problem-oriented interface betueen
a problem solver and bare data-base machinery, such as that described in
(McOermott, 1975). For example, an Al data-base manager implements the notion
of "da*a pool." This uill be used to implement the higher-level notions of
"packet" and "reference point." (See below.) The calculations involved can be
made invisible to the user, who thinks in the higher-level terms.

The basic data-base operations are three: putting things in, taking things
out, and finding things. These are handled by the three primitive (LISP)
operations RECCHD, ERASE, and STP. RECORD puts a formula into 2 data pool.

It also does foruard deductions from that formula in a way to be described.

Il Expressing Knouledge in NASL 66

The results of these deductions are recorded also, and conclusions are |inked
by "data dependencies" to the formulas which support them. (See Sect. [1.0.)
ERASE flushes a formula and everything it supporta from a data pool.

Uhen proving theorems, STP works, like every other "theorem prover,” by
matching goal formulas against "knouledge" formulas, detaching the output, and
repeating until a proof from atomic data is obtained. (Cf. (Bledsoe, 1975)
For technical reasons (R. Moore, 1975), SIP really attempts to refute the
negations of goals. See Appendix 4.)

Formulas are stored in the data base in clause form. Clauses are
implications uhose format tells hou they are to be used. The tuo most common
forms are

{-/> C {pl {q|), meaning, "to prove q, prove p"
and (-/> A |p| |ql|), mearing, "if p is recorded, record q."

(These correspond in an obvious way to Planner’'s consequent and antecedent
theorems. (Hewitt, 1372, Moore, 1975)) The arguments p and g to these
predicates can be clauses as well; my clauses have more pragmatic structure
than those of a resolution theorem prover. (Robinson, 1965)

Internal iy, these clauses are stored as (pragmatic) disjunctions of the
form

[7:CONSEQ |q| (NOT |p|)]
and [/:ANTEC (NOT |p]) |ql)

respectively. These forms are occasionally useful externally as well.

A third pragmatic disjunction is /:GEN. [(/:GEN |p| |q|), uhen "recorded,"
really causes counterexamples to p to be found and, for each one found, an
instance of g to be recorded. This may be also be expressed [-/> G (NOT |p]|)
lqll. For example, recording

[(-/> G (DEV-TYPE ?X COMMON-EMITTER)
(DEV-TYPE ?X AMPLIFIER))

Il Expressing Knouledge in NASL 67

calls STP to find all common-emitters and record that they are amplifiers. In
this uway backuard deductions may be triggered in the midst of foruard
chaining.

STP is oriented toward the task of information retrieval. When given a
goal uwith free variables, it doesn't interpret it as a request to prove that
objects exist which would satisfy the formula if substituted in; instead, it
considers it a request to find and return these objects. This is |ike PLANNER
(Hewitt, 1972) and QA3 (Green, 19639a,b). (See Appendix 4.)

For example, given the clauses

(P A)

(P B]

[Q B)

[-/> C (AND (P ?X) (Q ?X))

(R ?X)1
and the goal: Refute [NOT (R ?Y)],
STP chains backuard through the consequent clause to generate as subgoal
Refute [NOT (AND (P ?Y) (Q ?Y))].

This becomes tuo "conjunctive goals": "Refute [NOT (P ?Y)]" and "Refute [NOT
(@ ?Y)]1." STP finds Y « A and Y +» B as ansuers to the first goal, and
detaches [NOT (Q A)] and [NOT (Q B)) as alternative versions of the second.
Only the latter of these succeeds. The returned ansuwer is therefore Y = B.

The machinery to make this work reasonably well is described
in Appendix 4.

Some other interesting features of STP are these:

(1) Ability to call LISP functions for lou-level deductions. (Cf.
(Nevins, 1974a,b).) | have made an effort to keep all such LISP-implemented
concepts completely primitive and domain-independent. These are concepts for

manipulating simple inequalities, predicates on embedded formulas, etc.

(2) "Non-monotonic" inference rules, which are implemented by having

— ———

I1 Expressing Knouledge in NASL 68

certain predicates be evaluated by calling STP recursively. For example,
[/:CONSISTENTLY °* |pattern|] uill be handled by calling STP to see if pattern
can be refuted. (The single quote is used to flag an expression uithin uhich
substitution of equals for equals is forbidden; such an expression is called a
"sense.") McCarthy's "presumably" operator (McCarthy and Hayes, 1963) is
defined as

[(PRESUMABLY '?P ?USE) = (-/> ?USE (/:CONSISTENTLY '?P) ?P)]
meaning, “if you can't prove ?P is false, assume it's true.” Thus ue have, (VX
(BIRD ?X) o> (PRESUMABLY (CAN ?X FLY) C)], which means, "If X is a bird, then
if you ever need to check if he can fly, assume he can if you can't prove he
can't." (If the formula had had "G" instead of "C," the attempt to refute his
ability to fly would be done at the time he was deduced to be a bird.)

(3) Pragmatic handling of equality. The usual predicate-calculus notion
of equality does not correspond very closely to the programming notion of
evaluation. |[f you ask a theorem prover, "Find ?x such that 242 = 7x," it
uill tell you, "?x = 242," uhich is true but useless. An action module
communicating uwith a deductive system must have the concept of "useful
exprassion." In the midst of problem solving, some data structures are
inherently more oriented toward getting on with things. Consequently, STP
works closely with an evaluator (see Fig. [.9), wuhich applies rewriting rules
found in the model to expressions. We have already seen these rules in action
implementing pvars. They look like [=/> "(+ 2 2) 4]. The "sense" quote is a
way of forbidding applying the rules to subexpressions. (Otheruise, the rule
would reurite itself as [=/> 4 4],)

The evaluator is used by the interpreter, by user plans uhich use the
/tEVAL primitive, and by STP. (See Appendices 4 and 5.) Normal equality,

(= [»| [yl|), is used to express goals [ike, "prove tuo things are equatl."

T~

P ——

Il Expressing Knouledge in NASL 69

There is a "cheap" equality predicate called ":=". The only knouledge about

it is [:« ?THING ?THING). It is used in conjunctive subgoals to "set"
variables for future use. That is, the goal [:= ?X (FOO BAR)]) succeeds,
setting ?X to [(FOO BAR]. The system will not waste its time trying to prove a
goal like this if it doesn't succeed immediately.

When an equality is recorded in the course of trying to prove x and y
unequal, the system makes an effort to translate i: into a reuriting rule;
otherwise, it Will never interact with other deductions. Cf. (Bledsoe and
Tyson, 1975).

(4) "Packets." It often inconvenient to have to record a large
conjunction as a consequence of some forward deduction. For example, in

electronics, devices are of various types. If it is recorded that [DEV-TYPE

DEV#73 COMMON-EMITTER], this might trigger the recording (via "-/> A") of

scores of facts about DEV#73, most of which will never be looked at. This can

be avoided by writing the relevant antecedent implication as
(-/> A (DEV-TYPE ?CE COMMON-EMITTER)
(/:PKT CE-PKT (?CE)

| fact 1|
| fact 2|

fact nl)].
As explained in (McDermott, 1975), defining this formula will create a packet
uhich plays the role of the large conjunction with one free variable ?#H#CE.
It is actually implemented as a "data pool layer" which can be added cheaply
to the current data pool. The individual facts will be closed and indexed
only as they are accessed.
(S) A "modal" notation and inference mechanism. A general deductive

system should be able to reason about hypothetical situations, other times,

other creatures’' beliefs, etc. These concepts are in the domain of "modal"

-

S g e

Il Expressing Knouledge in NASL 70

logic (Hughes and Cressuell, 1972), a difficult study with many problems. |
have implemented a modest system for doing some very simple modal! deductions,
uhich uses the "data pool" mechanism to implement "reference points."
(Montague, 1974, Rescher and Urquhart, 1971)

The basic modal notation in the NASL language is [T |reference point|
|term|), which atands for the value of the term uith respect to the given
reference point. In principle, these reference points could be other
creatures’ minds, arbitrary points in time, or just "possible worlds."” Under
this last interpretation, logical necessity might be taken to mean (VR (T ?R
«..)], or "... is true in all possible worlds." Houever, this uould require
quantifying over reference points, a capability | have not had the time to
pursue. Instead, DES| confines itself to the use of constant reference
points. These are used (see Chapter 1V) for things like the DC and
sinusoidal-steady-state models of an electronic circuit.

This sort of mechanism is just a convenient notation for data pools li.e.,
"contexts") from within the logical language. To make it work, | have
introduced some notation for "frame" axioms. (Hayes, 1973a) A reference point
is often defined in terms of the differences betueen itself and some set of
super reference points from uhich it inherits most of its contents. These
definitions are uritten thus:

[FRAME |reference point| < -reference points- >] means that a statement is
to be assumed true in the given reference point if it is true in one of the
other reference points and cannot be proved false. The given reference points
are called frames of the neu one. That is,

[(FRAME ?REF ?FRAME-REFS) =
(YP (3F (?F ¢ ?FRAME-REFS) A (T ?F ?P))
5> (PRESUMABLY " (T ?R P) C))].
Of course, it isn't implemented in this way. Instead, a neu data pool is

conatructed using the FRAME axioms when it is required. This data pool has as
super iors the data pools corresponding to its frames.

I1 Expressing Knowledge in NASL 71

[N |reference point| "|fact|] means that the given fact is not inherited
from the reference point's frames.

Formulas of the form [T |reference point| |fact|] are used in constructing
neu reference points. Any such propositions lying around have their facts
shoved into the new data pool.

Examples of the use of these formulas are given in Chapter IV.

I1.C Choice and Rephrasing

As sketched so far, NASL resembles some more familiar problem solvers.
Except for the imposed distinction betueen deduction and action, it is a lot
like PLANNER. (Hewitt, 1972) The main difference is that it does no
backtracking past model manipulations, Since it is more disciplined in many
ways, it is better able to explain its actions.

Houever, it suffers from some of the same problems as PLANNER-Iike
systems. In particular, a certain amount of the additivity | wanted uill not
be found in this organization. Even though it is easy to add a neu plan
schema to a body of facts, the interactions of this neu material with the old
are not so easily handled. »

For example, if acquiring a common-collector amplifier is knoun to be a
good way of achieving high input impedance, this fact might be lying around in
a formula of the form

("high input impedance required"
5> (/:T0-DO ?T (MAKE AMPLIFIER) <?N>
(MAKE COMMON-COLLECTOR))).
(For a precise version of this, see Appendix 3.) Nou, say that the system is
to be told about field-effect transistors (FETs). Since they have a high

input impedance, an exactly similar fact will be recorded regarding the FET

common-source amplifier.

T

N ST A ——

11 Expressing Knouledge in NATI 72

Nou a request to make an amplifier will cause both these facts to he

retrieved. What can be done? (We have already ruled out just trying one

until it fails.) One approach uwould be to force the user to revise one or
both of the formulas to check for information that uill distinguish betueen
the tuo cases. However, this uill lead to large, impenetrable implications.

Fur thermore, in some cases of such confusion, neither choice is preferred, but
some synthesis of the two. We need a way to represent such "differential
diagnosis"” and "partial-solution composition" knouledge in an additive manner.
The solution is to face up to the necessity for treating "choice betueen
alternatives" as a basic situation of problem solving, and to create neu
pragmatic predicates for handling it. This is the subject of Sect. Il.C.1.
The complementary problem that this brings to mind is uhen the deductive
pattern-based backuard chaining of STP is unable to retrieve any possible
plans. This might be because there aren't any, and the user must provide neu
information, but it also might be because the relevant retrieval strateqy
depends upon pattern-manipulation operations uhich are less disciplined than
unification. For example, ue might want to express, "lf the problem mentions
MHz, try special high-frequency heuristics." Here the traditional Al language
solution is to allouw arbitrary list-processing operations upon formulas. (The
traditional predicate-calculus solution is to do aimiess equality
substitution.) Thus, in CONNIVER (McDermott and Sussman, 1973) a method with
pattern (LAMBDA !'>X !'>Y) can match the calling pattern (LAMBDA (X) (F (G X)))
and do anything it |ikes uith the pieces so generated. This is someuhat
abhorrent, since it tends to destroy the notion that formulas mean arv *t ng.
Who can rule on the consistency of a set of formulas that do things |ike that?
My apiroach to this problem is to try to impose some discipline on this

kirnd of manipulation., The idea is to signal explicitly when the system is

Il Expressing Knouledge in NASL 73

allouing itself to do things like that, and to impose restrictions on its
behavior and the results it computes. This idea is developed into the

“rephrasing” protocol of Sect. 11.C.2.

I1.C.1 The Choice Protocol

Under some circumstances, STP is asked to return all the ansuers it can
find (cf. Appendix 4), but it can be asked to return just one. In this
situation, if more than one ansuer is found, the system performs a ritual
invocation of information about choosing betueen them. This is called the
choice protocol. For example, this protocol is called wuhen DESI finds more
than one possible circuit for a general concept like "amplifier." In that
case, detailed information about the various types of amplifier interacts uith
information about what is required of this amplifier to force a choice.

The first thing the chooser does is to create an (abstract) choice
situation name and record in the data pool

[/:CHOICE |name| |context| |goal formulal)
(The context is the inferential task for which more than one ansuer is found.
In the case of the interpreter trying to deduce hou to do something, this is
just the symbol "EXEC.") For example, in trying to choose an amplifier, it
would record

[/:CHOICE C#S3S EXEC

(/:TO-DO TSK#437 (MAKE AMPLIFIER) <'(STAGEL CKT#747)>
?UAY])
The formal resemblance of this to /:1ASK formulas is suggestive; we have in
effect added a neu kind of entity, the choice. The intent is that this
formula will trigger foruard deductions of the kinds to be described in a

moment. The packet machinery of (McDermott, 1975) will allow the system to

el et SIS S

11 Expressing Knouledge in NASL 764

bring in farge packets of what may loosely be called "advice" appropriate to
this situation.

The use of "brackets inside brackets" is our first encounter with the
concept of "embedded formula." (See Appendix 1). The system is treating the
goal here as a dat~ structure to be analyzed.

For each of the »~ossible ansuers, a formula of the form

[/:0PTION |choice name| |option name| |ansuer formulal)
is recorded in the data pool. For our amplifier example, we might have
[/:0PTION C#535 A#450
[/:T0-DO TSK#437 (MAKE AMPLIFIER) <' (STAGEl CKT#747)>
(MAKE COMMON-COLLECTOR))]
(/:0PTION C#S35 A#45]
(/:T0-DO TSK#437 (MAKE AMPLIFIER) <' (STAGEL CKTH#747)>
(MAKE FET-COMMON-SOURCE))

Recording these formulas uwill trigger the deduction of formulas of the

form
[/:RULE-OUT |option name]|],
(/:RULE-IN |option name|],

or [/:RULE-TOGETHER < -option names- > |neu answer formulall.

The system first searches for conclusions of the form (/:RULE-OUT ...].
This is a call to STP, of course. |[f any are found, the options ruled out are
removed from consideration. Next, the system looks for conclusions of the
form (/:RULE-IN ...1. [If any of these are found, the system throws auway all
options except those mentioned. Finally, it looks for /:RULE-TOGETHERs. 1f
one of these occursa, the options it mentions are discarded in favor of the neu
ansuer formula.

If at any stage all options but one are eliminated, the protocol stops
with a winner. |f all the options are ruled out, the system enters an error

protocol to shou the user uhat it did and ask for corrections of its

misinformation. |1f more than one option survives, the system records

Il Expressing Knouledge in NASL 75

(/:QUIESCENCE |choice name|]
in an effort to trigger more foruward deductiona,

The intent of these devices is clear. Differential diagnosis i1s ic be
per formed by the first tuo kinds of formula, uhile /:RULE-TOGETHERs are
intended to be one !ocus of composition of partial solutions in the NASL
system. (The others are problem reduction (see above) and error correction
(see Sect. [11.0) in the context of patching electronic circuits.) The
/:QUIESCENCE trick enables the user to encode advice of the form, "All other
things being equal...," as a foruard implication |ike

(-/> A (/:QUIESCENCE ?C) ...1).

The choice protocol keeps track of the rules uhich contribute to weeding
out all but one option. These rules are used in building data dependencies
(sect. I1.0). In addition, uhen a policy is used in choosing a way to do
something, the choice is made a subtask of that policy. For example, say
there is a policy of the form "keep costs lou," plus a deductive rule like,

"When trying to make a device, and trying to keep costs lou, then, all

other things being equal, if a circuit with inductors is competing as an
option against a circuit without them, the one with inductors is ruled
out.”

Nou if the task of constructing some circuit is elaborated into a device
chosen on the basis of this rule, the task of acquiring the device is subtask
of both the construction task and the costs policy. This leads to clear

explanations by the system of its behavior. (Sect. V.A)

(The choice protocol was inspired by the design of Marcus's (1973, 1975)
"wait-and-see" parser, which does similar things in choosing directions in
which to parse.)

Il Expressing Knouledge in NASL 76

11.C.2 Rephrasing

I nou turn to one of the most important and least elegant subsystems of
NASL, the rephrasing protocol. This is the system uhich is invoked uhen STP
is unable to find a reduction of a task. Rephrasing consists in treating the
recalcitrant problem as an object to be transformed into a neu problem. The
pious hope is that the neu one is easier. This, of course, is precisely the
object of task reduction in the first place. So rephrasing may be thought of
as taking extraordinary measures to reduce a task.

The way this works is as follious. When the system is unable to find a way
/:70-D0 something, a task

[/:TASK |name| <>
(A () (/:REPHRASE |task| |action formula| < -output pvars- >)) <>]

is created, and made a predecessor of the losing task. This task is alloued
to carry out arbitrary inferences in order to reduce the unreduceable task.
For example, the design task DES#78, uith action

[DESIGN (X (X) (AND (IS AMPLIFIER ?X)
(= (VOLTAGE-GAIN ?X) 100)))]

is unlikely to trigger an indexed solution. Instead, it must be rephrased as
some set of simpler actions, by the use of electronics knouledge. So the task
[/:TASK TH849 <>
(A () (/:REPHRASE DES#78
[DESIGN (X (X) (AND (IS AMPLIFIER ?X)
(= (VOLTAGE-GAIN ?X) 108)))]
<|result pvar|>))
<>]
uill be put in the task netuork as a predecessor of the design task. Its
effect will be to reduce task DES#78.

The rephrasing protocol must exist in order to provide for deductions

beyond the scope of 5TP's simple strategies. These fall into tuwo categories,

T

Il Expressing Knouledge in NASL 77

one more elegant than the other. First, because it uses the interpreter, it
can take advantage of the choice protocol, flexible planning and policy
making, and even recursive rephrasing. Thus, for example, one can make finer
choices than is alloued by just running the chooser on a set of possible
reductions.

Second, and less happily, the rephrasing protocol manipulates the action
formula as an "embedded formula," and so is alloued to perform any operation
on its representation. So one can urite rephrasing plans uhich check to see
if the given action refers to "WIDGETS" anyuhere. In the next chapter, [will
shou hou, in the course of rephrasing design problems, A -expressions are
routinely dismembered. This seems to be indispensable, but it would be nice
if we could ingsist that the pieces be put back together in a legitimate uay.

This is a special case of the more general problem of making sure that the
interpreter and inference mechanisms actually do what they are supposed to do.
The difficulty is in specifying what the object of a task or protocol is. For
choice, the object is fairly clear: eliminate all but one option. (Inelegancy
creeps in uith /:RULE-TOGETHERS.) Elseuhere in the interpreter, | have
ignored this very important problem, except for token checks such as that
/:FINISH actually leave its task finished. In the case of rephrasing, the
problem is especially acute; rephrasing can be thought of as a device for
extending the pattern matcher by allowing arbitrary deductions about formulas.
Something like this is necessary, but it should be better constrained.

As it is, there are only a feu restrictions on the use of rephrasing: all
the actions under taken as subtasks of a rephrasing must be inferential, not
wor ldly; the rephrasing task must leave its target task /:REDUCED;: and the
subtasks resulting from a rephrasing must be syntactically legal (i.e., not

contain A's in funny positions or have any free variables, etc.).

~——

Il Expressing Knouledge in NASL /8

The rephrasing knouledge for the design domain, which | present in the
next chapter, is an example of uhat rephrasing ought to be. The formulas
involved are reduced to pieces by one task, and parsed together again by
others. [hope that this will prove to be an instance of some more general
recognition strategy that is more constrained than uhat the system nou allous.

I have nou described every module in Fig. 1.9. The search paradigm that |
have developed may be summarized as: let the theorem prover search, but not
too far or too deeply. All searches are intended to be short and sueet; the
search is used for exactly those spots uhere there is no applicable knouledge.
These short searches are organized by a plan interpreter, uhich decides uhat
gort of knouledge is to be accessed. It can ask for ansuers to questions
about hou to do things, the physics of the domain, choosing among
alternatives, or transforming its oun problem statements. Thus, as far as the
paradigm has been developed, it is in accordance uith R. Moore's (1975)
observation that theorem provers are most naturally applicable to information
retrieval problems, and that other control structures are needed for more

sophisticated tasks.

11.0 Dependencies Among Data and Tasks

1t is becoming generally realized that Al systems must record their
reasons for their conclusions and actions. (HcDermott, 1974a, Stallman and
Sussman, 1976, Shortliffe, 1976) These records have many uses:

(1) They can be used to explain reasoning and actions to a human user.

(2) They guide the system in undoing faulty deductions.

{3) They are a guide to correcting the effects of misguided actions.

(4) They can be used in assigning the blame to incorrect rules.

The basic relation among data is the deductive data dependency.

Il Expressing Knouledge in NASL 79

(McDermott, 1975) Every time STP or RECORD does a deduction, it attaches such
a dependency to the conclusion and the premisses; the latter become the
supporters of the dependency, the former, the supportee. (See Appendix 4.)
When the system does an ERASE, all the supportees of the erased item are
erased themselves if they have no remaining supporters.

These support relations are accessible to the problem solver as a set of
LISP-implemented predicates. In particular,

[/:SUPPORT < -formula names- > |formula name|]
is supposed to be true when the indicated dependency holds.

These support dependencies are also created by the inferential action
/:INFER (see Appendix 1)}). Other inferential tasks call STP and let it build
dependencies.

These devicee account for the second in the list of uses of dependencies
among data and tasks. The others are more complicated, because they involve
the relation between action and the world model. Here are examples of the
kinds of relations that can occur:

(1) A task can have model effects. The relation betueen the task and its
effects is non-deductive because erasing a task is not sufficient to undo its
effects. (Besides, some of the effects are erasures.)

(2) A task or pvar value can be based on choice information. HWe want to
record this relation, but erasing the basis of a choice does not erase the
choice, although it calls the uisdom of the choice into question.

(3) Facts in the current model can support task statements. A fact abnut
circuit topology supports a constraint on the physical quantities it
influences. Erasing sucih a model-effect formulas should cause the task

formulas to be erased too,

(4) Facts in the current model can trigger tasks. This is a quite
different situation from (3). NASL implements the common Al mechanism of
"demon" or "pattern-triggered interrupt" by allouwing /:TASK and /:SUBTASK
formulas to be deduced. For example, a BLOCKS-wor!d system may for a time
have a policy to the effect that a certain block B#72 is to have a clear top.

This gets translated into the principle,

e ——

Il Expressing Knouledge in NASL 80

[¥X (ON ?X B#72)
> (3T (/:TASK ?T <> (A () (REMOVE ?X B#72)) <>))]

Let B#74 appear on B#72. This will create a task to take it off. A model
effect of this task is the erasure of (ON B#74 B#72) and uith it the task!
This contradicts common sense, since once the interpreter starts to work on
something, its success should not erase it. There may even be serious errors
as a result of such an erasure, since the erased task may not have been
completed yet. [In any case, the user may uant to ask questions about tasks,
Wi thout worrying about which ones erased themselves.

It is clear that this problem has to do with the treatment of time. An
activity can become a task for one reason, but stay a task for another. This
is handled by the use of the modal operator S, defined as follous: [S '[fact]]
means "fact starts to be true." The conclusion of the given implication
should be [...(S (3T (/:TASK ?T...)))). Exactly the same fact uill end up in
the data base, but the supporting data dependency will be different. (It is a
bit uishful to call this a "modal operator" instead of a "patch." [f the
modal machinery uere better developed, it could be supported by axioms |ike

[T ?2R ((S "?P) A ((TIME) = ?%))
5> (Fi (VA (T 20 (?t < (TIME) < ?t+?i)
> ?P)))1],
but it isn't.)

To represent these nuances, the structure of data-dependencies must be
made more flexible. Before, the supporters list of a dependency was just a
list of data; nou ue make it a "labeled tree" of tuples of data. Each label
explains the role the supporters play in the dependency. For example, a
BLOCKS-uor Id program might execute the task

[/:TASK (FIND-DUMP) <>
(A () (:FIND (X (X) (IS PLACE ?X))))
<' (DUMP) >]
in order to find a place to get rid of a nuisance block. If it chooses X =
TABLE because of a choice principle C, the result
[=/> " (DUMP) TABLE)

uill be supported with the tuo labeled dependencies:

(DD-CHOICE ([]S PLACE TABLE)) (DD-CPRIN (C))) and
(DO-INFERER ((FIND-DUMP]))

where DOD-CHOICE, DD-CPRIN, and DD-INFERER label the roles of the formulas they

dominate in their trees. (1 am being a little casual about the format of

Il Expressing Knouledge in NASL 81

these structures; when they are attached to the data, pointers to the
suppor ting data themselves appear in place of their formulas.)
Here are some of the implemented labels:

(DD-ACT-RESULT (|task datum|)
(DD-APRIN -action principles-)
(DD-ATRIGGER -action triggers-))
relates a task to its results. The action principles are general
formulas (found in the main data pool GENERAL-DPx); the action triggers are
formulas that were true (perhaps transiently) when the action occurred.
Erasing the latter will not disturb the supportee of the data dependency.

(DD-CHCOICE (-inferential supporters-)
(DD-CPRIN -chaoice principles-)
(DO-CTRIGGER -choice triggers-))
records an inference for which an ansuwer had to be chosen. The rules
uhich contributed to this selection are sorted into triggers and principles
just the way they are for actions, but, for choices, the supportee is immune
from disturbances to either of the kinds of choice formula.

(DD-S (-triggers-))
labels supporters uhose erasure does not affect the suppor tee.
Deducing (S "|F|) will record [|F|] with the supporters insulated by a 00-S
label.

(DO-INFERER (}task datum}))
is attached to formulas deduced or inferred by inferential tasks. This
is used by other inferential tasks to refer to those formulas.

(DD-ISTATE (-data-))
is used to label formulas, like /:TASK formulas and pvar value
assertions, uhich define the state of the interpreter. These formulas are
"incorrigible," and are never erased.

(DD-EXEC (|task datum|) (-other data-))
records other miscellaneous relations betueen a task and a formula

(DD-T |data pool| (-data-))
links data across reference points. The intent is to record that the
presence of the data in the foreign data pool are responsible for the presence
of the supportee (uhich may be a DO-T itself).

This information can be dumped out in a revealing form, as described in

Chapter V.

Il Expressing Knouledge in NASL 82

I1.E Handling Mistakes

Consider situations |ike the follouing:

You are dialing a telephone number. Halfuay through, you feel your hand
slip and you know you have misdialed.

There is a pouer failure. You wonder if the refrigerator will be damaged.
You flick the kitchen light suitch on to have a closer look. Nothing happens.

Someone asks you to design an amplifier with a certain high gain-banduidth
product. You confidently pick a familiar circuit topology and begin to
compute the required component values. You discover there are no component
values that uill do the trick.

All of these are examples of "mistakes." (A finer classification is possible.
Cf. (Nilsson, 1373).) They all have in common, in the terms | have been
developing, that the plan for accomplishing a certain task has been shown not
to work. In each case, it is wholly or partiy useless to continue on the
plotted course.

Not enough work has been done in Al on correcting such mistakes. (But see
Nilsson, 1973, Philip Hayes, 1975, Sacerdoti, 1975.) Instead, we have spent a
lot of effort on seemingly similar search problems in uhich "blind alleys" are
searched, and real mistakes never occur. | discussed this briefly at the
beginning of this chapter. The problem with even the most sophisticated of
mechanisms for searching through blind alleys (Stallman and Sussman, 1976) is
that they rely on the ability to restore previous choice points. Previous
discussion of the problems associated with this (e.g., McODermott and Sussman,
1972) has focused on the difficulty in choosing a choice point to restore;
here | uish to call attention to the impossibility of restoring most choice
points in any useful way. The problem is that the range of choices previously
available may be obsolete. Sometimes this is because some of the choices have

been ruled out by other processes. This is handled nicely by Stallman and

Il Expressing Knouledge in NASL 83

Sussman's EL (1976). A uorse problem ig that non-monotonic inferences made at
the time of the old choice may have been rendered incorrect hy further
discoveries or changes since the old choice. (McDermott, 1374a) For example,
the range of choices available for instantiating an amplifier can change
dramatically after adjacent stages are instantiated. There is no way to
return to one choice point without considering all the choices and actions in
betueen.

The alternative scheme | am about to outline has not been implemented,
al though many of the pieces are in place.

The idea is to treat correcting a mistake as a task like any other. The
migstake is given a description by the primitive that failed. (For example, if
a constraint cannot be satisfied, the mistake is described as [CONSTRAINT-
COLLAPSE |losing constraint|].) The system sets itself the task

[/:GET-RID-OF |mistake description]|].
Often it will be necessary to re-describe the situation; this is a job for the
rephrasing protocol. A typical electronics-domain redescription might be
(IMPROVE ' (CAIN (STAGE#83))].
Plans are retrieved to carry this out. (Cf. Chapter I.)

The difference betueen this and and a routine situation is that the task
netuwork must be corrected in some way. Some of the tasks that existed hefore
the mistake are still "healthy," else there would be no reason to go on
living, but some of the subtasks are now "rotten," and may be replaced. A
subtask of a /:GCET-RID-OF task is allowed to alter certain parts of the task
netuork.

Making the netuwork-editing machinery uwork is the hardest part of
implementing this scheme. The kinds of edits that must be allowed include

> Adding new subtasks to correct the problem. The commonest reaction to

— -

W s

=~ —

Il Expressing Knouledge in NASL 84

an accidental "protection violation" (Sussman, 1975) is to re-establish the
protected fact without further fuss.

> Restarting old subtasks. For example, the string of tasks involved in
dialing the first digits of a misdialed telephone number must be resurrected.

> Detaching and redescribing old subtasks. For example, introducing too
much feedback can cause oscillation; its old description (that it did
something useful) must be discarded, and it must be seen as part of the
problem instead of part of the solution. Its old supertask must be marked un-
/:REDUCED again, and a neu uay must be found to solve it.

> Terminating active subtasks, especially policies, of a rotten task. In
electronics, constraints derived from circuit diagrams must be removed uhen an
IMPROVE task is executed and changes the topology of the circuit diagram.

The information about what edits are legal must be part of the mistake
handler. For exampie, the plans regarding constraint collapse (see Chapter
IT11) must specify that the highest task that is the scope of some of the
collapsed constraints is still healthy; some louer-level task (probably
associated with a particular canned circuit diagram) must be declared rotten
and its policies abandoned.

The reason uhy this scheme has not been implemented is that it depends on

the data-dependency machinery | described, which is still relatively untested

itse|f. Undoubtedly both of these systems will grow together.
11.F Programmer's Guide

As | said, NASL is not exactly a programming languaga, but it's not a
natural language either, so it is probably best for the programmer to approach
it first as the kind of formal language he understands best. To help with
this, | include "programmer's manuals" in each of these three tough chanters;

NASL has tuwo interpreters-- the theorem prover (STP) through uhich all
NASL formulas must pass, and the ptan interpreter (NASL proper) which takes

some conclusions to be instructions to act. The first design decision in

e ——

Il Expressing Knouledge in NASL 85

expressing a new set of facts in NASL is whether to rely entirely on STP or to
cast them as ruies which create and manipulate tasks.

In principle, everything could be handled tyy the theorem prover. For
example, axioms could be introduced defining a space of electronic circuits,
and constructively proving

[EXISTS (X) (AND (ELECTRONIC-CIRCUIT ?X)
(IP| ?X))]

could replace the action [DESIGN [P]].

As we all knou, houwever, all theorem provers of STP's class rely heavily
on the generate-and-test problem-solving method. Generating all circuits is
obviously ridiculous.

Here are some more general criteria for deciding uhether to represent a
body of facts as axioms or plans:

(1) As R. Moore (1975) has pointed out, it is a strong clue that a theorem
prover is out of place uhen side effects enter naturally into the statement of
a body of knouledge; this is certainly true for design. Any irreversible
action, such as asking a question or wiring a circuit, rules out the use of a
rau theorem prover.

(2) 1f you wish to take advantage of information relevant to a choice
point, the choice must come up as the choice of a uay to do a task or of the
ansuer to a /:FIND. (You should verify that the information is worth the
trouble.)

(3) If subgoals arise which must interact, you must put the goals in the
data pool, i.e., make them tasks. Similarly, if you wish to manipulate goals
as data structures, you must add rephrasing knouledge for tasks of that type.

Only if it appears that only brute-force deduction is necessary or
feasible should you cast the knouledge as pure axioms. An example is the
theory of frequency-picture manipulations developed in Chapter IV. Commonly a
class of tasks will be associated with a "mini-theory" of some characteristic
criterion for choosing betueen them; this little theory is expressed in terms

of pure axiome. For example, the theory of ordering the selection of

component values uith respect to other tasks (Chapter 111) is a small set of

——— ————— ——

Il Expressing Knouledge in NASL 86

axioms. (The merits of this "clever cogitation directed by brute-force

retrieval" organization will be discussed in Chapter VI.)

II1.F.1 Predicate-Calculus Techniques

Even after you “ave decided to represent a body of knouwledge as a set of
facts about tasks, 'hese facts must be expressed as predicate-calculus
implications. The approach to this that | have found useful is to think of
them independently of their use first, concentrating on uhat they are to mean.
Once this is done, the pragmatic content can be added. This approach forces
you to think about what you really mean to express. For example, uhen you
write an implication of the form [|P| > (/:TASK ...)], do you really intend
that this task exist only while P is true?

There are three pragmatic decisions to make: whether to express
implication as /:CONSEQ, /:ANTEC, or /:GEN; uhere to use packets; and uhich
version (/:=, =, or =/>) of equality to use;

The first decision is often simple. Systems of predicate-calculus rulas
develop in such a way that one layer of rules "feeds" the next during foruard
and backuard deduction. The rules usually work together to record in a
foruward fashion up to a point; then backuward (consequent) rules work their way
from deductive goals to the formulas recorded by forward rules. Generative
("-/> G") rules are useful in mixing these processes up. So, for instance, it
is no use having an antecedent rule if no one records an expression matching
its left-hand side. R. Moore (1975) has given some useful hints in deciding
uhich way implications can be used.

/:PKT should be used instead of AND on the right-hand side of an /:ANTEC

uhen much of the contents of the conjunction are not looked at for most

Il Expressing Knouledge in NASL 87

instantiations, or if it is not necessary that they trigger further /:ANTECs
immediately. This is true, for example, of circuit diagrams, where
information about the purposes of components is not aluways accessed; but not
true of plan schemata, uwhere all the tasks and subtask relations are going to
be recorded anyuway (and the interpreter must notice every task).

It is usually clear uhich version of equality to use. Goals are usually

phrase in terms of "=," but if you know there is only one simple ansuer, use

"/:=," uhich merely matches the tuo sides against each other. Simple "=" will

work harder in the case uhere they don't match. QOften "=/>" does not have to

mentioned in the rules where it it ig used; if rules like [=/> '(F A) Bl are

around, they uill be applied when the right-hand sides of implications like
[-/> A (P 2X) (O (F ?X))]

are detached with the variables bound. That is, recording [P Al uill cause [(Q

B] to be recorded.

Finally, remember that it is not aluays enough to supply axioms about
proving propositions with a certain predicate; if you ever uish to disprove
such propositions, you must¢ supply appropriate axioms. Often disproof
information can be summarized with a single PRESUMABLY statement. For
example, in the world of blocks, we might have

(-/> C (AND (ON ?X ?Y) (ABOVE ?Y ?Z)) (ABOVE ?X ?2))
(-/> C (ON ?X ?Y) (ABOVE ?X ?Y)]
[(PRESUMABLY ' (NOT (ABOVE ?X ?Y)) CI]
The effort to prove (NOT (ABOVE A B)] will cause (via /:CONSISTENTLY) an

effort to prove A 1s above B; if it fails, the conclusion is taken as true.

11 Expressing Knouledge in NASL 88

I1.F.2 NASL Programming Techniques

In applying NASL to a neu problem domain, one must supply model -
manipulation statements to actually get things done, and indexed plan schemata
to orchestrate them.

Tasks may be reduced in a foruard or backward way. In the former, the
presence of a task can trigger deductions of subtasks. For example, in the
world of blocks, one could specify a3 plan to the clear the top of a block
thus:

[-/> A (/:TASK ?N <> (A () (CLEAR ?2X)) <>)

(-/> A (=/> " (/:TASK-STATUS ?N) ACTIVE))
(FORALL (Y)
(-/> A {ON ?Y ?2X)
{S " (EXISTS (T}
(/:TASK ?T <>

(A () (PUTON ?Y TABLE))

<>))))))]
(Notice the use of "S" to indicate that these tasks are being triggered, not
suppor ted, by the statement [=/> ' (/:TASK-STATUS |[task|) ACTIVE].)

In backuard reduction, plan schemata are instantiated via /:00-SUBNET
calls. This requires a couple of formulas. In the same blocks world, wue

might have the formulas

[/:T0-DO ?TSK (ACHIEVE ' (ON ?X ?Y)) <>
(/:00-SUBNET (ACH-ON ?X ?Y) <>)]

[-/> A (/:PLAN-INSTANCE ?P] (ACH-ON ?X ?Y) ?SUPER-TASK)
(AND (/:TASK (CLEARER-1 ?Pl) <« (X () (CLEAR ?X)) <>)
(/:TASK (CLEARER-2 ?P]) «> (X () (CLEAR ?Y)) ex)
(/: TASK (PUTTER ?PI) <> (X () (PUTON ?X ?Y)) <>)
(/:SUCCESSOR (CLEARER-1 ?P1) (PUTTER ?PI))
(/:SUCCESSOR 'CLEARER-2 ?P1) (PUTTER ?P1))))

The interpreter, uhen it has decided to reduce [ACHIEVE "(ON ...)) using the
first rule, uill create an instance of the schema (ACH-ON ...]; the second

rule will then trigger the creation of several subtasks.

Il Expressing Knouledge in NASL 83

A corpus of NASL rules is often uritten as an incomplete set of plans and
axioms, which is then debugged by adding "interaction terms," i.e., knouledge
which influences the application of the first-order rules. This occurs
through the medium of these kinds of rules:

> Rephrasing rules which redescribe actions, usually by breaking them into
pieces and putting them back together.

> Choice rules which influence the way in which tasks are reduced.
> Rules specifying /:SUCCESSOR relations.

> Policies to watch for interactions betueen tasks or to influence
choices.

We will see plenty of examples of NASL plans and rules in the follouwing

chapters.

s

111 Design of Hierarchical Systems 90

III Design of Hierarchical Systems

Design is the production of an object to satisfy certain requirements.
The requirements may describe the desired object closely ("A stick 10 inches
long"), or they may be very remote from what is finally produced ("Something
to make this room look more friendly.")

Of course, designing does not mean actually manufacturing an object; uhat
is actually produced is a detailed description of one. In fact, design might
be described as the process of adding detail to a description until "full
detail" is reached relative to some basis.

In uhat follous, | will elaborate this theory, and then explain how it is
implemented as a set of NASL rules. (A close relative of this theory was
outlined by Freeman and Newell (1971) in a paper called "A Model for
Functional Reasoning in Design.")

The best way to explain it is to start at the bottom, near the "basis."
The basis for a design domain is a set of primitive artifacts. For example,
if sticks are primitive, designing a stick 18 inches long is merely a matter
of "inatantiating the stick primitive." "Instantiation" means creating a
symbol, such as X843, and recording that it denotes a stick. That is not ail,
houever. Associated with the primitive "stick" are attributes such as its
length, width, material, color, etc., which must be fixed for a concrete
instance of it. Because it is a primitive, we may assume that fixing a
atick's qualities is merely a matter of choosing them. (Wooden sticks are
cheaper than platinum, but | will not consider cost explicitly in this paper.
I emphasize finding any solution to a design problem, not finding the best
sofution.)

So designing a stick is just a matter of picking a name, a widih, and a

. -

e ———

T

Il Design of Hierarchical Systems Sl

length. (Assuming broun uooden sticks from now on.) [f the length is

constrained to be 18 inches, that is clearly the length to pick. The width,

i f unconstrained, may be picked arbitrarily, subject to the reasonable

constraint on all sticks that their uidth be no more than 18% of their length.
For a primitive artifact, then, "adding detail" is just selecting values

for its "control attributes," such as length and uidth.

This theory of design will not account for the design of “something to

"

make a room more friendly,"” mainly because "object that makes a room ook
friendly" is not a primitive artifact with a fixed set of attributes. In
general, a requirement may be arbitrarily remote in structure from the kind of
object that satisfies it.

So it is necesary to provide for for the indexing of partial solutions by
their important features. That is, the theory must just provide for
statements |ike,

"Funny posters make a room more friendly."

"Plants make a room more friendly."

"I f x makes a room more friendly, and y (distinct from x)

makes a room more friendly, usually the combination of x and
y makes a room more friendly."

etc.

A partial solution of this kind may be a primitive artifact, in which case
the problem has been solved, but more generally it consists of a structure of
design subproblems. These subproblems must be solved in much the same way as

the original problem, and the solutions must be connected up. Eventually the

original problem will have been completely reduced to primitives. (Fig.

i.n

I1l Design of Hierarchical Systems 92

REQ, REQ, REQ 5

STRy+_—_—{§TRy~———=STRy

W
/\ Connection /

REQq REQ{p (CONSTRAINT,

; STRy4 STR1.2 «— CONSTRAINT,

Figure 111.1 Function-Structure Graph
These primitives will be connected and constrained. Some of these
constraints come from the problem (e.g., "Amplifier uith gain = 18"), some

from the partial solution ("A common-emitter's gain is beta X Hlf“\ P

from connections (“"The current from RL is the current into the
and some from descriptions of primitives ("The resistance =
As uith the simple stick problem, the control attrit
must all be selected subject to the constraints
The design process suggested by F
having to do uith pragmat kr
Wwill be easier to talk

’nqun theory

partial s

=== Al

¥y

/7 AD=AQ43 964 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/6¢ 9/2
F FLEXIBILITY AMD EFFICIENCY IN A COMPUTER PROGRAM FOR NESIGNING ==ETC(U)

JUN 77 D V MCDERMOTT NOOO14=75=C=0643
UNCLASSIFIED Al=-TR=402

I1l Design of Hierarchical Systems 93

If a design requirement is very simple, it is is plausible to imagine it
as calling to mind a partial solution tagged with "specs" which match the
requirement. For example, the design problem "Make a common-emitter
amplifier" could plausibly match the specs on the common-emitter circuit
exactly.

For more complicated problems, this will not work. The description might
contain conjunctions, disjunctions, or quantifiers. It might consist of
simple pieces uhose solutions can be composed. It may be cluttered uith
numbers which have to be described more suggestively, as in the example of
Chapter I, in which "gain = 18" was replaced by "moderate gain." Finally, the
description might just be in the urong terms; a common example in electronics
is the translation betueen time-domain and frequency-domain descriptions of
signals.

So the theory must provide for manipulation of problem descriptions,
before the first partial solution can be proposed. This manipulation is aimed
at transforming a description into a form suitable for retrieving stored
partial solutions.

A version of this theory has been encoded in NASL. As coded, it is
independent of electronics, although enough restrictions have been placed on
it to keep me from claiming it is a complete general design theory. It is
meant to be a theory of engineering design, for which, to first order, all
effects can be thought of as local interactions among connected modules, each
of which is designed to accomplish some part of an overall objective. It is
biased toward systems whose interactions can be described numerically. | will
call this domain "design of hierarchical systems."

It is straightforuard to express in NASL most of the concepts | have

outlined:” The first step is to implement the notions of "requirement” and

Il Design of Hierarchical Systems 94

"structure fulfilling it" as tasks and subtasks. That is, a design problem is
expressed as a task, and the terminal nodes of the function-structure graph
are to be identified with primitive tasks of the form "grab a (primitive)
component." For example, a first-pass analysis of an electronics problem may

generate this structure:

O Make a cascade

/\

Acquire » (O Couple
Stage 1 e

Acquire Stage 2

Figure 111.2 A Tuo-Stage Cascade

Later elaboration will instantiate the coupling task:

- ———

— s L e AN T ST - ~> e e

P o = wdact bbb il e

T

P

11l Design of Hierarchical Systems 95

gAGE t (yCOUPLE
: STAGE 2 ;
/
l Q\\ /
| Y

Figure 111.3 An LC-coupled Amplifier

"Partial solutions" are implemented as a kind of plan schema. A
particularly important kind of partial solution is a device type, a packet of
facts clustered around a concept like "amplifier," or "operational amplifier,"
or "resistor.” Some of these facts describe the structure of the devices of
the given type, but many of them are concerned with hou such devices are used
in solving larger design problems. This last set of facts defines a set of
tasks for elaborating a device and connecting it to its peers.

Primitive devices are those with no internal structure, whose elaboration
consists mainly of selecting values for their control attributes. The system
represents these obligations as a set of "SELECT-VALUE" tasks. The
constraints that accumulate during a design are implemented as policies which

influence the execution of SELECT-VALUE tasks.

e — -

A I — - e

111 Design of Hierarchical Systems 96

Because we are using the NASL interpreter, all design subproblems are
represented explicitly in the data base as tasks. Partial solution plans are
recovered, as for all tasks, by using STP to retrieve them. Choice rules are
used to choose among or compose sets of partial solutions. Simultaneous
subproblems are represented by simul taneously active tasks. There are
frequent cases where it is important to start on one problem before another,
because the solution to the first will influence the choice of approach to the
other. This can be arranged by uriting rules to cause the deduction of
/:SUCCESSOR formulas.

The manipulation of requirement descriptions uhen routine indexing fails
to retrieve a partial solution is handled by a special design rephrasing plan.
It says to turn a recalcitrant design task into a task network of the
follouing kind (cf. Fig. 111.8): make a device of a knoun type, and constrain
it. The plan is to do this by tearing the given problem into pieces called
“"shards" (usually conjuncts from the design requirement), each of which is
classified as specifying either the device type or a constraint. The plan
succeeds only if every shard is accounted for in one of these ways. It is
generally the responsibility of rules from domain-dependent plans to make sure
this is true. In the electronics domain, as we shall see, there are many
rules for manipulating shards, ranging from those which convert shards
regarding gain i;(o control-quantity constraints, to those which change
signal-conversion shards from the time domain to the frequency domain.

This is a broad outline of the design theory encoded in the formal theory
of DESI. (Appendix 2) A point to notice in its exposition is that | appealed
to innate control concepts to explain notions of structure, purpose, and
constraint. It will be seerr that appeals |like this, appropriately formalized,

are the only kinds of knouledge of these concepts that DESI has. In a

i i e .

l T e—

I1l Design of Hierarchical Systems 97

primitive way, the program exhibits "machinomorphism,” the inclination to
understand other systems in terms of its oun kinds of motives. This allous a
certain computational economy, and makes assimilation of neuw information more
reliable by enforcing a sma!l vocabulary. A complicated and delicate (or
electronics-dependent) theory of purpose and commitment does not have to be
added by the user.

Before turning to a detailed exposition of the DESI implementation, |
should mention three issues | will have little to say about: learning, search,
and creativity., The last of these may seem the most important. Many people
would probably be skeptical about the ability of a machine to do design,
because creativity seems to be absent from machines and vital to design.
Indeed, "design" and "creativity" seem almost to be defined in terms of each
other. [f this issue bothers you, let me call your attention to the
distinction betueen "routine" and "imaginative" design. Routine design is the
production of an artifact in a field (such as electronics) such that anyone
else uwith an ordinary mastery of the field could have produced the same thing.
This kind of design is the only kind | can claim to have a theory of.

DESI does not learn anything from doing a design. Although at the
beginning of this chapter | described designing as adding more detail to a
description, the description at the end of a design is not represented the
same way as the problem description. The problem description is essentially a
A-expression, but the final result is a set of statements in the data base
about "X843," or whatever symbol! was chosen to represent the target device.

To learn, DESI would have to gather these statements together into a neu plan,
and index it under a useful generalization of the problem. Doing this is
difficult., (C¢. Sussman, 1975)

Other kinds of learning are also possible. One can imagine a program

111 Oesign of Hierarchical Systems 98

learning hou to order certain kinds of subproblems, or how to choose and
compose partial solution. These are examples of "trial and error” learning:
to attack them requires a theory of search.

DESI,)ike all NASL gystems, tries never to make a choice at random, and
never backs up to undo a choice. (See the discussions in Chapter 11.) Thus,
it can be said not to segrch at all. This is the right organization, but it
needs to be combined with a learning system that proposes neu choice
principles by watching what happens after it does make an arbitrary choice.
For example, if one amplifier circuit is chosen from several that satisfy the
known choice principles, and later its impedance is discovered to be too high,
the system should not back up, but should make up a neu choice principle to
rule that circuit out in case high impedance is required.

The system currentiy does none of these things. If its rules get it into
trouble, it will look for a correctibn\plan that fits the situation, but will
do the same thing all over again if the next problem is similar. This is a
serious, but (I hope) temporaray, defect in the theory, since it seems clear
that people learn something new in the course of all but the most routine
design tasks.

As | describe in detail DESI's design theory, | will point to the more
formal exposition of Appendix 2. By looking there, uou will be able to judge
the pouer of the NASL control language. It will be seen exactly hou often it
is directed and flexible, and hou often clumsy, arbitrary, or inextensible.
The important point at issue during this otheruise tedious exercise is one's
ability to represent various specialized control and debugging strategies
using the frameuwork of tasks, data-dependencies, and conflicts described in
Chapter |l. In uhat follous, references to the formulas of Appendix 2 are

indicated thus: <xformula-name>.

ol s IR SN s

g

S
e

', g

111 Design of Hierarchical Systems 99

Il11.A The Representation of Knouledge about Devices

Much of design is the manipulation of devices. A device is any
manipulable, "physical" object in a design domain. (Thus, signals uwill not be
devices, but nodes will be.) Familiar classes of devices that are useful are
called device-types. These classes may be formed in several ways. (Sect.
IT1.A.1) Each device in a class is described by a set of formulas arranged in
cer tain standard ways. (Sect [[1.A.2) A set of formulas describing a device
type is instantiated to form a particular device's description. Knouledge
about a device type is therefore convenientiy represented as a "packet"
(McODermott, 1975) of facts which is instantiated when a particular example is
considered. This packet is called a device schema. (Unfortunately, Broun and
Sussman (1974, A. Broun, 1975) have used the term "plan" for this purpose.
This conflicts with the usual range of meanings of this term in Al. | have
used this term in the more traditional meaning already in discussing the

interpreter.)

II1.A.1 Hierarchies of Device Types

Device types uhich have a recognizable function and circuit diagram (or
symbol) are called basic. Basic device types may be lumped into loose classes
called superordinate device types. <xDEVICE-CLASSES> (This terminology is
borrocued from (Bobrow and Winograd, 1976), but | am not sure | mean the same
thing by it that they do.) Sometimes such a higher class exists just hecause
people have a name for it and use it to specify problems. An example is
"amplifier." Sometimes there is some clasa of facts it is convenient to store

together, as for "2-terminals.” (See Chapter [V.)

B e - o

Il Design of Hierarchical Systems 108

Kinds of Device Type

Basic
Primitive (e.g., resistor)
Composi te (e.g., common-emitter amplifier)
General
Specialized
Ideal (e.g., current source)

Superordinate (e.g., amplifier, 2-terminal)

Figure I11.4 A Hierarchy of Types of Device Types

Basic device types may be further classified <xBASIC-DEVICE-CLASSES> as
primitive, composite, and ideal. Primitive devices are the terminals of a
complete function-structure graph. (See belou.) ldeal devices such as current
and vol tage sources behave as primitive devices, but must be "implemented."

Canned devices that are made up of simpler components are called composite
device types. Textbook diagrams of things like Hartley oscillators and
common-emitter amplifiers may be taken as standard examples of composite
device types. Often these textbook diagrams leave implicit uhat | take as an
important feature, that they exist in general and specialized versions. (Fig.
I11.4) <xGENERAL-DEFN> The general common-emitter amplifier, for instance, is
just a transconductance treated in a certain way, whereas the "typical common-
emitter" has biasing resistors hung all over it. (Cf. Watson, 1970) This is
expressed as

(DERIVED TYPICAL-CE GENERAL-CE).
The importance of this relation will be brought out shortly.
Thus a particular device will be at the bottom of a hierarchy of general

and superordinate devices. (Fig. 111.5)

111 Design of Hierarchical Systems 101

Faen 0] Seriaes SUPERORDINATE

SUB-DEV- TYPE
e 1

DERIVED
O Amplifier
!

—_—
= SPEC-DEV-TYPE
O Cmutter -Coupled Pair BASIC
)
O \
Z General
7 ECP
SPECIALIZED

7
7
O Dt Amp

Non- Inverting Inverting

Figure I11.5 Devices in The Type Hierarchy

The relation betueen the devices above the BASIC level in Fig. 111.5 is [SUB-

DEV-TYPE |dev type| |superordinate dev type|l. Belou that level, the relation
is (SPEC-DEV-TYPE |specialized dev type| |dev type|l. Thus we would urite
(SUB-DEV-TYPE COMMON-EMITTER AMPLIFIER] and [SPEC-DEV-TYPE TYPICAL-CE COMMON-
EMITTER). (The DERIVED relation uill be explained below, Sect. [11.A.2.)

A device uill be of several device types, uritten (DEV-TYPE |dev| |type|].

There is usually one, its MAIN-DEV-TYPE, uhich is the most specific category

it is knouwn to fall in.
I111.A.2 The Representation of Device Diagrams

A device is either primitive or composite, depending on its main device

type. A device is specified uith several kinds of information (most of them

are not necessary for primitive and ideal devices):

,{tjﬁ”}‘e o

Il Design of Hierarchical Systems 182

(1) The components of devices of that type. This is kept in formulas of
the form

[COMPONENTS |device| < -component names- >)

Each component is itself a device, whose main device type is expressed by a
separate formula. For exampie, for a voltage divider VO#21 ue might have

[COMPONENTS VD#21 <(R1 VD#21) (R2 VD#21)>)
(MAIN-DEV-TYPE (R1 VD#21) RESISTOR]
[MAIN-DEV-TYPE (R2 VD#21) RESISTORI]

(2) Connections and constraints betueen components. There can be no
domain-independent notion of connection between physical objects, since any
physical medium can be exploited. The only completely general thing that can
be said is that connecting devices "constrains" them in some way. ‘
(Otheruise, there would be no point in connecting them. Cf. "CONSTRAINT2" in
Fig. 111.1.) As we shall see belou, there is a rich theory of constraints
built into DESI.

(3) Control quantities. These are numerical-valued attributes of the
device that the designer has complete or partial control over. They are
represented by formulas |ike

{CONTROL [attribute| |device| |range| |degree of control]).

This declares attribute to be a contro? attribute; it means that the quantity
[|attribute| |device|]l may be assigned any value from the set of numbers
range. Since real components often vary from their nominal values, the
formula specifies the degree of control of the attribute, uhich is the
quotient of the highest and lonwest possible true values compatible uith the
selected value that appears in the data base. This value is actually the
(geometric) mean of highest and lowest values. These uncertainties will be
taken into account in reconciling constraints. As an example, in electronics
for a transistor Q#173 we might have

[CONTROL BETA Q4173 (INTERVAL 10 560) 18],

since the beta of a transistor is controllable only to within an order of
magni tude; while

(CONTROL POLARITY Q#173 <+1 -1> 1],

since every transistor is unambiguously PNP or NPN.

A distinction must be made betueen immediate control quantities and
derived control quantities, corresponding roughly to attributes of primitive
and composite devices. There are several relevant formula types for
expressing information about these matters:

(a) [IMMEDIATE-CQ '|control quantity]]
Example: [IMMEDIATE-CQ ' (RESISTANCE R#21)]

I1l Design of Hierarchical Systems 103

(b) (DERIVED-CQ ' |control quantity]|]

Example: [(DERIVED-CQ ' (V-GAIN AMP#34)) The actual function
relating the V-GAIN of the amplifier to the values of its components’
control quantities can be derived from constraints found in the
description of AMP#34. Often these will be found in the device schema of
uwhich AMP#34 is an instance.

(c) (GENERIC-CA |attribute]]

Example: [GENERIC-CA THEV-R) It would be tedious and uasteful to
derive a formula for each device or device schema relating its Thevenin
resistance to its components’ values. (A change of topology, for
instance, would force a recomputation.) Instead, some control attributes
can be declared generic, meaning the system knous hou to compute them and
Will when they are needed. (The current system can handle this to the
point of enqueueing a CALCULATE task, but the computational techniques
required have not been implemented.)

(4) Task information. Every device has a cloud of tasks floating around
it. These uill be of various sorts:

> The purposes of a device and its components are represented by a set
of finished tasks associated with acquiring them.

> Many devices will not function as they are supposed to uwithout further
work ("subrequirements” in Fig. 1l11.1); these active tasks are called
expansion obligations. These ride along on most composite devices and even
some primitive ones; a transistor, for example, must be biased into its
intended mode.

> A device carries along monitors on the topology of the connections
inside it and from it to other devices; some of these monitors are for
protection of important relationships, and some just to notice when something
must be recomputed.

These are characteristics of devices. A device schema is merely a canned
set of such formulas with a free variable to be bound to a particular device
uhen it is made. Device schemata are used to represent device types. They
are usually implemented as "packets." (McDermott, 1975) For example, the
packet for "voltage divider" will include the formula

(COMPONENTS ?#8VD <(R1 ?##VD) (R2 ?#4VD)>)
from uhich the formula given above for VD#21 will be derived. The prefix

"?88" specifies that ?#HVD is a variable loosely bound to an "abstract vol tage

divider." The formula says, "the typical VD ?X has components [R1 ?X] and (R2

B i S

B e

111 Design of Hierarchical Systems 104

2X)1.")

The tasks that wiil be liberated uhen a device schema is instantiated are
called frozen tasks, and the |iberation process is called "thauing." Frozen
tasks may be thought of as mummified remnants of actions that uere
(conceptual ly) executed when the device schema uas first put together.
(Device schemata are to be thought of an the result of previous designing
activity followed by summarizing what was learned, but this is just to help
your imagination; such a learning scheme dossn't exist yet.) One thing that
must be left around in a schema is a record of uhy the various components uere
acquired and connected as they are now found; in other words, the purposes of
the components. (If for no other reascn, these are necessary in case they
have to be undone during mistake correction.)

The simplest way to accomplish thie is to keep the tasks that uere knoun

at the end of the (imagined) design episode in a frozen state. Some of these

uill have been FINISHED; for example, the tasks that acquired the components
are there just to record uhy they were acquired. Others are still active.
For example, there will be ACTIVE constraints and protected model

manipulations.

By way of illustration, a voltage divider may be first inouy™t of as a uay
of setting a bias voltage in a particular amplifier design problem. A voltage
divider found in a schema must be associated with a policy of keeping that
bias voltage set,

An advantage of the frozen policy solution compared to a more apec al ced

implementation of purpose comments is that one mechaii.sm 18 used to hardlie
local cooperation and conflict of tasks as well as interactions of neu actiona
with old purposes. This is an example of the "machinomorphism” | ment ioned at

the beginning of this chapter,

I —— - — S ———

P ———

— —

IIl Design of Hierarchical Systems 185

Specialized device types are arranged in @ hierarchy according to the
DERIVED relation. This is a more complex relation than SUB-OEV-TYPE and SPEC-
DEV-TYPE (cf. Fig. 111.5), uhich are used mainly to cause properties of higher
types to be inherited by lower. <xSUB-DEV-TYPE-1, SPEC-DEV-TYPE-1> HMost of
the properties of a general circuit, such as its topology and components, are
not to be inherited by its specializations. Houever, there is an important
class of properties wuhich must be accessible from the specialization: the
frozen tasks of its more general counterpart. The relation betueen a general
circuit and its specialization is precisely that the expansion obligations of
the gereral circuit are fulfilled by the structure of the specialization.

To represent this relation, we need some more equipment. Every device
thauwed from a schema has a "deep freeze" of frozen tasks, which are collected
for convenience as the subtasks of an abstract task called the [(DEEP-FREEZE
|device|l. |f dev-type 1 is derived from dev-type 2, then a device of type 1
uwill have a "SOUL" which is a device of type 2. <xSOUL-ON-ICE> The important
relation betueen them is that every subtask of the soul's deep-freeze is to be
a subtask of the original device's deep-freeze. This inheritance is done»via
/:CONSEQ deduction, since it is not important to see every frozen task during
normal operation; most of them will have been reduced anyuay. Theg.c 2 maimly
valuable in explaining the purposes cf components.

For many examples of device schemata, see Appendix 3.

gt

111 Design of Hierarchical Systems 196

111.8 Design Actions and Plans

I can go no further in talking about devices without talking about design

actions. This is because devices' purposes are so intimately associated with

the purposes of their designer, in this case DESI; and DES|'s purposes are

expressed as tasks.

Design actions fall naturally into these classes (see Fig. 111.6):

(1) "Design something with property p": Starting with no structure or hint
af it, one is to produce such a thing.

(2) "Make an x": Here x is a device tupe, an example of uhich is to be
created. This kind of action breaks doun into subtypes, depending on what
kind of device type x is. Making a bagic type tends to be a matter of
choosing which version along the specialization scale to use, then plugging in
its frozen tasks. Making a superordinate type requires more involved and

careful choice, since the sub-types to choose from usualiy have incompatible
! properties.

(3) "Constrain something": Things that can be constrained are not devices,
\ but quantities. There are tuo classes: physical quantities such as voltages

and currents; and the control quantities, such as resisiances and power gains,
& that | described above.
t

(4) "Change a device": Given a structure, it can be altered in various
\ uays.
|

These actions include fixing a physical quantity, biasing a circuit,
adding feedback to improve stability, and coupling two stages. The actions

are defined by plan schemata that often come in specialization hierarchies

like those of devices. A major subdivision of these are actions which involve
changing the previously reigning plan netuork as uell, for example, altering a
control quantity uhich is already fixed by constraints.

This liast is derived by common sense, and from perusal of 100 Ideas for

Design (Electronic Design, 1964), among other works.

(Senturia and Wedlock,
197%)

Il Design of Hierarchical Systems 107

Design Actions

1 DESIGN

2 MAKE
superordinate
primitive
ideal
general
specialized

3 Constrain
CONSTRAIN
SELECT-VALUE

4 Change
FIX quantity
BIAS
COUPLE
Patch
IMPROVE gain, input-Z, selectivity,...

© ——

Figure 111.6 Design Action Taxonomy

The design problems uhich appear in books such as these include

"Design a power amplifier..." (Type 2)

"lncrease the current..." (Type 4)

"lsolate tuwo connected devices" (Type &)

“Make tihe quiescent output voltage 48V" (Type 3)

"Design a circuit with a high gain-banduidth product” (Type 1)

"Avoid loading" (Type 3)
(There are other kinds of actions, such as "simplify a circuit,” which | have
not counted as among these types. 1| hope they can be added, but | have no

plans to do so.)
,’ 111.8.1 DESIGN

There is only one action in this class.

{ [(DESIGN |prop|) e=e=> [(<|name)>)
This action usually arises at the top level. Successful execution of such

an action creates a model of a device that has property prop. In easy cases,

111 Design of Hierarchical Systems 108

this reduces quickly to an action of Type 2. <xEASY-DESIGN>

In the hard cases, processing turns upon a large body of domain-dependent
rephrasing knouledge, directed by the rephrasing plan DESI-REPHRASE -PLAN.
<x+DESI-1, +DESI-2> This plan netuork may be graphically expressed as

fol lous:

189

111 Design of Hierarchical Systems

_S)sej-apis ay) op

uay} ‘sainje’}
3y} Buipaay
‘9dA}-A3p-3i0d B
MeN. 19N sel
oju! Jayjer)

O

saimeaj-p puy ()

pieys AiaAd
lo} Junoddy :Adljod

O

s)sej}-apis
puly

adAy-aep-a100 ()
3asooyd ® puly

[d+¢ NDIS3

—mi

O

a| ssewyday

S g ——— e TGP ¥

Figure I11.7 Design Rephrasing Plan Schema

The plan

This is a plan to manipulate the design problem as an object.

network is set up using a formula <x+DESI-1> which extracts the desired

e —————

e —— e

11l Design of Hierarchica! Systems 110

predicate as the value of ?+P. In this context, the embedded formulas,
prefixed with the character "_", are being used essentially as SNOBOL patterns
(Farber et. al., 1964) to tear the goal to be rephrased into manageable
pieces. So ?4P uwill have value [[|prop|)]). (See Appendix 1.)

Remember that the final aim of a rephrasing task is a revealing reduction
of its target task. A detailed analysis of the problem may be postponed; the
impor tant thing in rephrasing is to make it "familiar." The goal in the case
of ths design rephrasing plan is to reduce the design problem to the following

net:

O

T side - tasks

D-NOTE R (usually CONSTRAINS)

policies on
MAKE O

/

O

Figure 111.8 Rephrased Design
The strategy of the designer is to "explode”" the given predicate into "d-
shards,” which are conjuncts of the original predicate. Discovering d-shards
Is occasionally straightforuard <x0-SHARD>, but usually depends &pon formul3as

for the domain involved. (See Chapter 1VY.)

The d-shards are valuable only insofar as they lead to one of three
things:

(1) A core-device-type the MAKing of which is the simple first step of the

rephrased design plan (Fig. 111.8);
(2) Side-tasks, typically to enforce numerical constraints discovered as

d-shards;
(3) D-reatures, qualitative predicates used as policies in making a core-

device-type.
This fact ias expressed as the policy task ACCOUNT-FOR-ALL, whick says to

2 e, e g e

T mmmm——

;‘3':‘9\" gt

Il Design of Hierarchical Systems 111

make sure that every d-shard leads to one of these three things. In the
current implementation, it is an error if a miscreant shard is discovered. A
mdre sophisticated implementation would know hou to try harder and attempt to
learn from its efforts.

The only other feature of interest in the general design rephrasing plan
is the step CORE-FINDER, during which NASL must find the core device-type to
be used. The core device type is often clear from a d-shard of the form [([X
(lv|) (DEV-TYPE ?|v| |dev-type|))] <xCORE-DT-1>. However, rules from
particular domains can and do suggest device-types based on more elaborate d-
shard processing. The interpreter must choose one. It is the responsibility
of the uriter of this knouledge to provide choice rules to get out of \hiﬁ
situation. However, there is one rule <xCORE-OT-CHOOSE> which is domain-
independent: if one device type is subordinate to another, reject it. (It
should be suggested later anyuay by the policies that grou out of d-features.)

This rephrasing method may be compared with the proposal of Moore and

Newel | (1974) for the MERLIN program. The idea there was to be able to "vieu"

any conceptual structure as another by a process of mapping the pieces of one

into the pieces of the other. DES| tries to view any design problem as

"making a ..., while noticing hints +44+, then doing ---"; this template may be

seen as a three-slotted structure, such that every piece ("d-shard") of a
design problem goes into one of these slots. The process is more structured
than MERLIN; in particular, this kind of rephrasing is not an operation which
can aluays be done by definition; it is capable of failing. The analogy may,
houever, be revealing. (It was su¢ =*sted by Marvin Minsky.) | suspect that
many rephrasing problems can be put in this paradigm form, and that the
rephrasing protocol can be made more specific. Houever, currently DESI does

things with rephrasing which cannot be seen as an instance of this paradigm.

I— ‘d]

111 Design of Hierarchical Systems 112

(An example is equation solving.)

111.B8.2 Making Things

(1) [MAKE |device type|] ==> [<|name|>]

The intent of this action is to create ("buy") a device of the indicated
type. [f the device type is basic <xMAKE-BASIC-PLAN>, a task net is set up
with a primitive GRABBA action, which will just generate a neu symbol and make
its main-dev-type be the basic type. Extra tasks are hung on the netuork,
depending on whether the device is primitive <xMAKE-PRIM>, composite <xMAKE-
COMPOSITE>, or ideal <xMAKE-IDEAL>. In the case of primitive devices, the
only commitment enqueued is to select the values of its control quantities.

In the case of composite devices, the plan subnetwork includes a subtask to
expand the device at some time in the future. Ideal devices receive a

commi tment to be implemented. (These new tasks are not marked /:MAIN in their
task networks, so they do not have to be finished before the successors of
their supertasks are begun; hence, they amount to future commitments.)

Expansion of a composite circuit means wiring up a circuit diagram for it.
Usualiy this just means selecting a specialized device type and declaring the
circuit to be that type; this is called "specializing" the circuit.
<xSPECIALIZE-DEFN> The system has a choice of circuit diagrams from the
specialization hierarchy. 1f one circuit is DERIVED from another (and hence
is "specialized"; see Figs. Il11.4 and 111.5), it will do the same task, but
may depend on more specialized assumptions. It is the user's job to write
rules that suggest circuit versions to match requirements, but the system
knous about two peculiar specializations of a circuit: its "most general"

specialization and its default specialization. <xMOST-GENERAL-DEFN, DEFAULT-

P

Il Design of Hierarchical Systems 113

SPEC-DEFN> [f either of these is available, it uill be suggested. Generally,
only one specialized device type of some basic type will come up in a given
context. The user must make sure that good choice rules are available uhen
more than one appears. The trade-offs should be clear: a general schema
involves more work on expansion-obligations, but using a specialized version
runs the risk of having to correct the circuit topology wuhen some assumption
proves unjustified.

[f the user’'s rules do not sufficientiy disambiguate, the system uses the
tuo rules <xSPEC-DEV-BETTER, TWO-SPEC-DEVS-WORSE-THAN-ONE>. The first
encourages the use of a more specialized device type if it has been suggested;
the second overrides this one by ruling out conflicting suggested
specializations.

Basic device types are just canned diagrams; the choice is wuhich version
of essentially the same circuit to take. That is uhy these special cases can
be distinguished. In choosing among superordinate devices, rules for zeroing

in on basic sub-types are entirely up to the user.

(2) [ACQUIRE |device type|) ==> [<|name|>)

MAKE a device type, unless there is already one around which can be used.
<xACQUIRE-DO-1, ACQUIRE-DO-2> For example, you should always re-use old
voltage sources instead of making a new one; you should never re-use a
transistor; and you should look around to see if you can bum a node before
making a new one. (This last information is purely domain-dependent. See

Appendix 3.)

Il Design of Hierarchical Systems 114

(3) [(EXPAND |device]|]

This action is required for devices uwhich are not fully specified by their
circuit diagrams. (See below, Sect. II1.A.2.) This task doesn't require
elaboration, but accumulates subtasks by deduction. For example, it picks up
expansion obligations from composite device schemata. These are actions which
become subtasks of the task of EXPANDing each instance of the device.
<xEXPANSION-0BLS-DO> Other tasks that are created involve finding all GENERIC-
CA's of the device that have been constrained and deriving the formulas uhich

define them. <xGENERIC-CAS-DO> (See Sect. 1V.B.4.)

(4) [CONFIG < -types- >
(A (-vars-) < -actions- >))

This is a "macro-action" which is an abbreviation for "ACQUIRE the types,
then bind the vars to the resulting devices to generate a list of actions to
per form." <xCONFIG-DEFN> The LISP program SET-UP-CONFIG which elaborates it is

not shoun in Appendix 2. CONFIG is used as an abbreviation in Appendix 3.

[11.8.3 Constraints

(1) (CONSTRAIN < -quantities- > |pred]|])

Executing this action commits the interpreter to making pred hold true of
the various physical quantities and control quantities. Thus, it is naturally
a policy. CONSTRAIN is a peculiar mixture of ACHIEVE and A°SUME. |f a
quantity is under control, you are permitted to ASSUME it has any value that
doesn’'t contradict what is already knoun about it. So, when CONSTRAINing, it
is often permissible to record any equalities deducible immediately from its

constraint plus other constraints and equalities to be found in the data base.

Il Design of Hierarchical Systems 115

(Cf. (Sussman and Stallman, 13975).) 1f these constraints and equalities
contradict the neu constraint, the action fails, (See Sect. 111.B.)
In detail <xCONSTRAIN-0O>, this is hou CONSTRAINing is done: if the number

of unknouns is exactly one, and the main connective of the constraining

predicate is "=, then the system is to try to solve the equation
immediately. <xCONSTRAINT-RESOLVE-DO> 1[If it is solvable, the result is to be
protected. (See belou.) In either case, the CONSTRAIN remains an established

policy (a "constraint").

Algebraic Symbol Manipulation

Several times in discussions of constraint and equality manipulation I
have assumed some sophisticated symbol-manipulation ability by the program.
The various tasks that | take for granted include solving equations, choosing
values to satisfy rather arbitrary constraints (including inequalities), and
finding the precise uay that a one control quantity depends on the variation
in another (see Sect. [11.B). In the long run, it would be enlightening to
see uhether the structure of the NASL system is sufficiently flexible for this
information to be encoded as a set of NASL formulas. Preliminary indications
are that this is quite feasible; very simple equations are already solved by
the tasks generated by <xEON-SOLVE-D0>. (Other equations might be handled by
the methods of (Bundy, 1975).) My judgment has been that to explore this byuay
in more depth would bog me doun. This decision is not obvious; after all,
flexibility of application is one of the main design goals of my system.
However, having an implementation of one domain is, for now, much preferable
to having curious fragments of several. Therefore, | depend upon calls to an
expert symbol-manipulation system to do this work for DESI. | might have used
some symbol-manipulation system |ike MACSYMA (Mathlab, 1974), but, for
simplicity, | chose myself as this expert subsystem. MWhenever a non-trivial
symbol-manipulation problem needs solving, the system types out a request for
a solution and waits for its human interlocutor to supply it.

It is to be hoped that this is not a permanent trend in computer science,
since it tends to reverse the usual practice of having humans do the creative
work while machines do the tedious chores.

11l Design of Hierarchical Systems 116

(2) [(SELECT-VALUE |control attribute| |primitive devicel]

This action is to be postponed until all tasks of Types 1, 2 and & are
finished. <xSELECT-POSTPONE> DESI makes all SELECT-VALUEs subtasks of a task
SELECT-EN-ALL which is a successor of every "topology-changing task.” 1t is
assumed that this kind of task is recognizable from its action function.
(MAKE and FIX (-quantity) are the only built-in topology-changers.)

When the system gets to a SELECT-VALUE task, either the control attribute
for this device already has a value; or DESI must pick a value uithin the
range of the control attribute which fits al! the knoun constraints on it
<%xSELECT-VALUE-DO>, and impose model effect

[=/> '(|control attribute| |primitive device|) |value]l.
It then PROTECTs the fact that the value satisfies the constraints,

If there is no such value, the system is faced with a "constraint
collapse” (see Sect. 111.B); that is, it has made a mistake.

Executing SELECT-VALUE tasks causes the resolution of all remaining

constraints of a network.

(3) [PROTECT ' |proposition]]

The intent of this action is that the system should become alarmed, i.e.,
realize it has made a mistake, when the fact is no longer true in the model.
This is not as easy as it sounds or as it is usually implemented (Sussman,
1975), because the given fact may be only indirectly related to atomic facts.

Because data dependencies are maintained by the system, it might be
possible in principle to make this a built-in action. That is, the syatem
could just wait for propagating erasures to wipe out a fact. Something
special would have to be done for the results of non-monotonic inference (that

is, using /:CONSISTENTLY), because in this case it is recording a fact that

= ey

111 Design of Hierarchical Systems 117

could upset the protected fact.

For this reason (and for the weak introspective reason that protection
does not seem to be a fool-proot operation), | have DES| treat protection as a
problematic action to be reduced to different subtasks in different cases.
This decision is under revieu. #

In the design domain, ue have need primarily of protecting values uhich
are derived from consigration of constraints. This is done <xQVAL-PROTECT>
by /:MONITORing the fact that the quantity has a value and /:CONTINUing the

protection policy uhen the value is removed. <xPROTECT-CONTINUE>

CPROTECT
'(SATISFIES '(R R#71)|C)]

o O

EPROTEC'_}

(R R#71)
changed

CVERIFY / [/ZMONITO%

C/:MONITOR '(SATISFIES...)]

[=/> (R R#71) 500k¢]

(A (T) O
(/:CONTINUE C/-EIND

(PROTECT...)))] new (R R#71)]

Figure 111.9 Quantity-Value Protection Plan Schema
Notice that the variabl!e may be getting a new value uhich satisfies the

constraints, so the system cannot jump to the conclusion that a protection

111 Design of Hierarchical Syatems 118

violation has occurred. The decision to continue the policy is generally
postponed. Upon continuing it, if a violation has occurred, DESI realizes its

mistake.

I11.B.4 Changing Devices

This is a catch-all category which includes biasing, feedback, coupling,
and fixing the value of a physical quantity. These actions are described in
the next chapter. Other domains would have other actions.

The last action in this list is the only one | feel there is anything to
be said about at the rarefied level of general design. Even for that one,
about all that can be said is that, for almost any domain, there exist uays of
fixing physical quantities, bringing them under control, creating "boundary
conditions." For electronics, this is done with sources, voltage dividers,
etc. In mechanical engineering, it might include fastening things doun,
hooking up motors, etc. Perhaps it is worth saying that "FIXing a physical
quantity means turning it into a control quantity,” but I'm not sure hou to
say that. It is likely that the way one's knouledge of this sort of
regularity is used is in assimifating a neu domain; namely, everyone knowus
that when he is learning about meta-hydraulic engineering he should be sure to
ask uhat methods there are for fixing meta-hydraulic quantities.

Besides these actions, uhich arise in the course of normal problem
solving, there are actions (subsumed under "patch" in Fig. Il1.6) required to
change a circuit because it is failing to meet its specifications. These are
described in Sect. 111.0D; they are not implemented, because the mistake-
correction machinery to support them does not exist.

Many design plan schemata are arranged in specialization hierarchies

R

R~ —

Il Design of Hierarchical Systems 119

similar to hierarchies of specialized composite device types. (Sect., I11.A)
This is especially true of the circuit-alteration plans discussed in the next
chapter. The reason for this is that a circuit-alteration plan for an action

like "bias ..." is close to being a device type. The difference is that the
procedural component is larger and the plan is more anonymous; the resistors
used for biasing do not become components of a "biasing device," but of the
circuit that is being biased.

Just as devices may be related by the predicate SPEC-DEV-TYPE, plan
schemata may be related by

[SPEC-SCHEMA |[plan schema 1| |plan schema 2]].

Any instance of the specialized schema (1) is an instance of the general
schema (2). <xSPEC-SCHEMA-OEFN> Choice rufes are provided for these plan
schemata uhich are completely analogous to the rules (Sect. 111.B.2) for
choosing among specialized device types. <xSPEC-1S-BETTER, TWO-SPECS-WORSE -
THAN-ONE >

Tuo other useful control predicates defined in the file DESI are STASK
<xSTASK-DEFN> and REDUCE. <«EDUCE-DEFN> The first is used to abbreviate in
the common case where a task is defined, and made a subtask of something else,
in the same breath. The second is used to express a common interaction among
design plans: uhen one plan accomplishes part of the function of another. In
that case, saying [REDUCE < -reducers- > |reducee|] means "the reducer tasks
are all the subtasks of the reducee task; don't bother to try to execute it

any further." (Cf. Sect. [1.B.1.)

Il Design of Hierarchical Systems 120

111.C Composition of Partial Solutions

One of the most interesting and complex events that can happen during the
career of any problem solver is the failure of the labela attached to its
canned plans to match all of the requirements of some task. In a design task,
this situaticn allous unlimited scope for the study of creativity. Of course,
our knouledge of such matters is as yet very slight, so that the approach my
system takes to the handling of such problems is not terribly brilliant,

When a DESICGN task does not immediately succeed, an attempt is made (Sect.
I11.B) to break it doun into @ core task plus several constraints and

"features." For example, the knouledge in ZORCH is sufficient to discover

o

that an amplifier is required given a uide range of requests for designs.
Then further choice information from ZORCH is used to select one that is
likely to meet all the amplifier constraints so generated. As mentioned in
Sect. 11.A, this sequence is called the "recognition protocol." Finally, the
constraints are resolved.

Often this approach fails. It may fail in more than one way:

(1) More than one "core device-type" (see Sect. [11.A) may be discovered.

(2) There may be more than one way to implement a core device type. (See

above, especially the discussions of "superordinate" device classes and
abstract device-types.)

(3) The constraints generated may not actually be satisfiable.

All of these probliems may call for composition of solutions to subproblems.

T —

The last problem is peculiar in some ways; | devote section I11.D to
describing constraint resolution.

The others are related by having to do with the choice protocol. For
example, problem (2) may arise if more than one amplifier fits some of the

requirements, and none fits well enough to exclude the others., In thia case,

e g cuncaeme o - — N———

111 Design of Hierarchical Systems 121

the response of the system uhen no further exclusions can be made is to record
[QUIESCENCE |choice name]) in the choice data pool.

It is here that choice rules with conclusions of the form [/:RULE-
TOGETHER...) are important. They allou options to be superaeded by neu
options. This is the most natural and painless place for composition to occur
in a NASL-based system.

This is the closest DESI comes to a universal composition method. This is
a defect in the system as it exists. A hetter system would recognize the need
for a /:RULE-TOGETHER and propose one; future episodes would exercise and
modify it. For example, some of the choice rules for amplifiers discussed in
the next chapter contain almost-general principles regarding cascading a
buffer amplifier to another amplifier when the first was picked for its input
impedance. It is not hard to see a more general principle regarding inputs
and outputs lurking behind this specific one. It lurks there still.

For nou, you must be content with the specialized composition rules in

Chapter IV.

I11.0 Constraint Collapse

As a design proceeds, the current data pool fills up with formulas
speci fying components, connections, quantity values, and constraints, |f
everything proceeds smoothly, eventually there will be a value for every
primitive component and the problem uill be solved. The most common thing to
go wrong With this scenario is to discover that some subset of constraints
cannot be satisfied. ODES| counts this as a mistake in the sense of Sect.
I1.E. AIll its previous machinations were based on the assumption that the

functional requirements could be reduced to constraints and satisfied. When

—~——

g —

111 Design of Hierarchical Systems 122

this turns out not to be the case, the task netuwork must be altered to reflect
what it should have been doing. On the other hand, 3s much as possible of the
netuwork must be salvaged.

As | pointed out in Sect. Il1.E, my theory of mistakes is as yet poorly
developed. This section must be taken as a continuation of the detailed
proposal | made there, not as a description of existing program.

As a concrete example, say that a lou-pass filter is required, which
filters out one radio station at 780KHz to leave the signal of another,

equally strong station at S00kHz.

KEEP FLUSH
A »
kH,
500 700
Figure 111.10 Radio Spectrum With Tuo Stations
This problem can be represented easily using the "frequency picture" language

I witl develop in Chapter IV. | will continue to use simple English in what

fol lous.
The chosen solution is an RC lou-pass filter, an instance of the schema
represented by Fig. 1.6. This schema and the frequency-domain methods used to

find it (Sect IV.B.1) generate these constraints and equalities:

Il Design of Hierarchical Systems

CON1 (from rephrasing of the problem):
V(7088 kHz) < .1V (5088kHz)
CON2 (from schema for RC filter or by analysis):

His) = 1
14RCs
CON3 (from knouledge of filters):
ry) = IH(j2nf))|
IH(j2nf5|

selectivitg(fl.

CON4 (from knouledge of |inear devices):

H(j2nr)) = Yo'l
VN

Figure 111.11 Relevant Constraints

123

From these constraints and the statement of the problem, we can build up

the follouwing "constraint network":

—r

Il Design of Hierarchical Systems 124

CON2(f1) CON2(f2)

IH(j2ﬂf2)l

selectivity (f1, f2)

vilty Vi(fp)
CON4(f1) CON4(f2)

Vo(fy) Vo(fo)

\O/

CON1

Figure [111.12 Constraint Netuork

(Cf. <xCQ-CLO> in Appendix 2.)

lf all the constraints are satisfiable, that is, if the output amplitude
ratio can be made small enough that the second station has negligible output
compared to the first, everything is fine. But, as it happens, there are noc
values of R and C which can be picked in order to bring this off. This is
referred to as "constraint collapse." This will be noticed uhen one of the
constraints proves unsatisfiable. HWhich conastraint it will be is
unpredictable; the problem is clearly a problem of the whole netuwork rather
than any task.

Recall from Sect. II.E that fixing a mistake involves altering the current

I11 Design of Hierarchical Systems 125

wor ld model and the task netuwork. In this case, there are several current
tasks that have caused the problem: the choice of an RC circuit to implement
the lou-pass filter, and the various CONSTRAINs, some thaued from the RC
schema, which led to the trouble. DESI has a record of every choice it made
in the process of setting this netuork up, so it could find a choice point
that would make a difference, restore the state of the world at that point,
and try something else; | have aiready discussed and rejected this in Chapter
II.

The design knouledge of DESI provides us uwith a better method of solving
this problem. This method amounts to the follouwing English summary:

(1) Find a control-quantity in the collapsed task network such that
changing it would get rid of the problem. This is not as easy as it sounds.
[t is counterproductive to consider "making VB(SQBkHz) larger," for instance.
Any method for doing that will probably make Vg(788kHz) larger as uell. In

the example, the proper ansuer is "selectvity." | assume symbol manipulation
pouer ful enough to handle this. (Sect. 111.8.3)

(2) Introduce a neu task [IMPROVE '|losing control quantity| |direction
and magnitude|)l. A task of type IMPROVE, unlike previous control-quantity
manipulators, has the aim of changing some already-set object rather than
fixing one that has yet to be set. To execute the IMPROVE task requires some
domain-dependent rephrasing, choice, etc., which by nou are routine. By one
route or another, a plan like that of Fig. 1.7 is recovered.

(3) The actual tasks associated with the IMPROVE plan perform the
acquisition and insertion of the neu pieces, an amplifier, capacitor, and
resistor, and the renaming of the output port. The resulting change in
topology flushes the old constraints on the system function and hence the
selectivity of the device and enables the design to be completed. This is not
too painful, since the control-quantity [(H ?0EV) ?F] is marked GENERIC-CA in
the data pool; when the old stored value is flushed, a task is enqueued to
recalculate it.

Except for the initial symbol manipulation, this seems fairly simple; the
IMPROVE task is no different from any other task, such as BIAS or COUPLE,
uhich alters the topology and part names of a circuit. The difference, of
course, is that the policies associated with the IMPROVE plan must specify

exactly what parts of the old task network encircling the RC filter are to be

s —

Il Design of Hierarchical Systems 126

preserved. The difficulty of implementing this scheme revolve around the

careful undoing of protections and other policies.

I11.E Programmer's Guide

DESI is a skeletal theory of design Within which the user’s domain-
dependent rules operate. These rules uwill fall into three classes: rephrasing
rules, device definitions, and device-choice rules.

The user’s rephrasing rules can be very simple. Any declaration that a
function is a CONTROL-ATTRIBUTE wifl cause the cq-shard machinery to turn a d-
shard of the form [[A (X) (= (|attribute| ?X) |value|)]) into a side-task to
CONSTRAIN the given control quantity.

More complicated rules can create entire inferential subtasks to make
finer discriminations. Examples uill be given in the next chapter.

In making up device schemata, the user will have to use his intuitions.
Superordinate device types are convenient slots to put inheritable
characteristics into. A basic device type is one uwith a "diagram" common to
every member of the type. (| assume that every domain DESI is likely to be
applied to will have the concept of diagram.) The "diagram" (device schema)
will not be attached to the basic device type directly:; instead, each node in
the DERIVED tree below the basic type (see Fig. 111.5) will have its oun
schema. (Remember that the details of the diagrams for a device type and one
of its specializations are likely to be inconsistent; the task netuorks of the
tuo will be related via the SOUL device.)

In wuriting choice rules, the user has a certain amount of freedom. There
are three stages in picking a device type or design plan: deducing

possibilities, running choice rules before QUIESCENCE, and running choice

T

111 Design of Hierarchical Systems 127

rules after QUIESCENCE. (See Sect. I1.C.1.) There is as yet no iron-clad
semantics for what each of these stages means, mainly because | lack
experience in interfacing rules.

Typically, the "possibility" rules are very lax; if a device could be
appropriate, given some piece of the current situation, some rule should
suggest it. Throuwing it auway or incorporating it into a larger structure is
the job of the choice rules. (Cf. CHOOSE-AMP, in Appendix 3, described in the
next chapter.)

The user should be careful in his use of /:RULE-OUTs if this is the
structure he chooses. |f there are tuo relevant variables in a situation, and
one is, strictly speaking, incompatible with a suggested device or plan, this
is not necessarily a reason to rule it out. After all, it would not be a
living option in the choice protocol if the other variable had not caused it
to be suggested. For example, input-impedance considerations may suggest a
common-col lector amplifier, while gain censiderations suggest something else.
It is clearly silly to throu away the common-collector suggestion on the basis
of gain. Instead, a /:RULE-TOGETHER is probably appropriate.

/:RULE-OUTs are useful mainly as a device for expressing "differential
diagnosis" information. Such a rule mentions tuo or more options, and throwus
one of them auay. Remember that the order of examination of these predicates
is /:RULE-OUT, then /:RULE-IN, then /:RULE-TOGETHER, and that the choice
protocol quits as soon as fewer than two options remain.

QUIESCENCE has no fixed meaning. Sometimes the system uses it to express
rules which are intended to take over if the user's rules can't make up their
minds; this is the case with the rules for choosing among SPEC-DEV-TYPEs.
(Sect. 111.B.2.) This freedom probably represents a deficiency in the choice

machinery.

IV Electronics 128

IV Electronics

Electronice knouledge falls naturally into three categories: the physics
and mathematics of electronic components, devices, and signals; the knouledge
necessary to do design, including rephrasing, composition, and patching; and a
catalogue of circuit diagrams and plans.

In this chapter as in the last, the notation <xformula-name> is a
reference to a formula in the appendices, in this case usually Appendix 3.
This Appendix is rather long, but has been laid out in an order which
corresponds as closely as possible with the presentation of this chapter.

This chapter is fairly dull. Given the vocabulary and conventions developed
in Chapter 111, it is routine to encode much of the information [will
describe.

Appendix 3, long as it is, can only be described as "sketchy." For each
important concept | will discuss, there is a representative circuit, plan, or
rule set in the appendix, but often several of its siblings will be missing.

I will describe these gaps in Sect. 1V.D.

IV.A Physics

IV.A.1 Connections and Constraints on Components

Recall from Chapter |1l that connections in a design domain are physical
configurations associated uith constraints. In electronics, these
configurations are called nodes.

Inter faces betueen electronic devices are of tuo types: terminals and
ports. | will discuss ports later. A terminal is a wire coming out of a

primitive or composite device. A group of terminals may be bunched into a

IV Electronics 129

"node."” One constraint on a node is "Kirchhoff's Current Lau" (KCL) (Senturia
and Wedlock, 1975), uhich says that the sum of the currents into a physical
node is zero. My "logical" nodes are treated as terminals themselves at a
"higher level," uhere they may themselves be joined into nodes. <xNODE-TRMIN>
(See Fig. IV.1).) KCL for nodes therefore states that the current into the

node, considered as a terminal, equals the sum of the currents out of the sub-

terminals defining the node. <xKCL-2>

i I [j i
i [I I I
[1 I [[
i | I
! t [[I
| I [[1
i I [I I
B sk i i RSP, | S, T

(@) (b)

Figure IV.1 Terminals and Nodes
Devices also satisfy Kirchhoff's Current Lau. <*KCL-1> A composite device's
terminals are almost aluays nodes themselves. These will be declared uith the

predicate DEV-TERMINALS. <xKCL-3> (Fig. IV.2)

e et et —————

il o s e s o -

(DEV-TERMINALS D~
< (N1 D¥) (N2 D¥)>

Figure [V.2 Composite Oevice

IV Electronics 139 %2

Terminals

A fundamental model manipulation in the electronics domain is to merge two

nodes, which makes them equal. <*xNODES-MERGE-MANIP> A less easily visualized

operation is DEV-INSERT <xDEV-INSERT-MANIP>, which breaks a node in two.

(Fig. 1v.3)
13
T2
14
N (DEV-INSERT D* N
<(#1 D*)><T2 T3 T4>
LA <(#3 D*)>< T1 T55)
o}
-
#3

Figure 1V.3 Inserting a Device

T3
T2 T4

N

#1

D e $2

#3

N
T T5

into a Node

Ports are pairs of terminals (uhich are almost always nodes of composite

devices), to be thought of as carrying signals.

The signals may be

S —

=

[V Electronics 131

implemented either as currents or voltages. <xPORT-TAXONOMY> A set of voltage
ports may be grouped into a nest, which is exactly analogous to a node formed
by grouping terminals. (In particular, every nest is considered a higher-
level port.) (tNEST-ﬁRh Ports may be combined into nests, and nests may be

merged, just as terminals are combined into nodes. <xNESTS-MERGE-MANIP>

Nest

Port

port 2

port

port 3

(a) (b)

Figure IV.4 Ports and Nests

Kirchhoff also had a voltage lau, which for our purposes merely amounts to
the fact that every point in space can be assigned a conventional voltage. To
enforce thig, the rule <xKVL-1> constrains all the node and terminal voltages
at a physical node to be the same.

All devices are given interface descriptions by the packets defining their
device types. The interface description (e.g., "?X is a 2-terminal”) interact
With formulations of Kirchhoff's voltage and current laus to generate standard
constraints. <x2-TERMINAL-DEFN> Composite device types (see Chapter [11) may
have terminal or port inter faces, or both.

An important class of devices are the "signal transmogrifiers" or SIG-
TRANSERS, by uhich | mean any device one of whose primary functions is to take
a signal in on its input port, or "INPORT," and put out 2 signal on its output

port, or "OUTPORT." <»xSIG-TRANSER-GLORIA-MUNDI>

L

IV Electronics ke

(Much of the notation in this and the follouing section has been
influenced by the notations devised by A. Broun (1975) and Stallman and
Sussman (1976).)

IV.A.2 Signals

Signals are abstract objects with three components: a time function, a
signal-medium (voltage or current), and a "home" (3 port). "A signal is any
physical variable uhose magnitude or variation with time contains
information.... When we speak of ‘signals,’... we refer ... to voltages and
currents." (Senturia and Wedlock, 1975, p.2)

A "homeless" signal is no' allowed in my notation. A signal may have more
than one home, but only if all its homes are in the same nest. <xKVL-2>
Given a port, the function PORT-SIGNAL should give its signal.

To make up for the absence of homeless signals, many actions manipulate
signal descriptions, lambda-expressions from signals to truth values. For
example, the formula

[CONVERT |device| |signal description| |signal relation]|]
means "device converts any signal appearing on its INPORT which satisfies the
description into an OUTPORT signal which bears the relation to the input
signal."” An example of the use of this predicate appears in Chapter 1I.

Another is,

e ——

IV Electronics 133

[DESIGN (X (X)
(CONVERT ?2X
(A (511}
(FORALL (F)
(IMPLIES (/> ?F 1MHz)
(= ((FOURIER-TRNSFRM (TFUN ?S1)) ?F)
8))))
(A (S1 S2)
(FORALL (F)
(AND (IMPLIES (/< ?F 1088kHz)
(= ((FOURIER-TRNSFRM (TFUN ?S2))
?F)
8))
(IMPLIES (/> ?F 108kHz)
(= ((FOURIER-TRNSFRM (TFUN ?S2))

7F)
((FOURIER-TRNSFRM (TFUN ?S1))
26)1)))))]

This formula illustrates the use of the Fourier transform of a signal.

The DESI+ZORCH system actually lacks any deep mathematical understanding
of transforms. Instead, it summarizes the frequency-domain behavior of a
signal with a frequency picture of its time function. A frequency-picture is
a tuple of "frequency features.” A feature is specified as (FF [freqj
| landmark |]. <xFF-FREQ, FF-LANDMARK> A |andmark may have a shape, height, and
width, uritten FL-SHAPE, FL-HEIGHT, or FL-WIDTH. In general any particular
characteristic is optional, but the assumption is that a feature has non-zero
size. These are similar to the human conventions for such descriptions.

Sigrial characteristics can have these values:

SHAPE -- may be SPIKE, HUMP

WIDTH -- a HUMP may be SHARP or FUZZY

HEIGHT -- a number

The notation [SERIES |freq| |delta freq| |shape| |fun|] defines an
infinite frequency picture consisting of a rouw of features of the given shape,
at interval of delta freq, starting at the given frequency. The height of the

nth landmark in the rouw is given by fun. This Functicn must be decreasing (as

it will be in all physicail applications),

IV Electronics 134

(This way of reasoning about the frequency domain is in many ways closer
than straight Fourier transforms to the way humans think about it, and reveals
more about the signals. This is a good illustration of the point that using a
logical notation does not commit you to a "mathematical" treatment of a
domain.)

For example, a square wave of frequency f offset by half its amplitude A
has frequency picture picture

[<(FF BHz LANDMARK#73)
'H(SERIES |F| ix 2 |¢|)
SPIKE (X (N) (x |A| (// &4 (x ?N PI)))))>)

uhere

(FL-SHAPE LANDMARKA#73 SPIKE]
and [=/> " (FF-HEIGHT LANDMARK#79) (// |A| 2)].

The usual graphical notation for the Fourier transform of an offset square

uave is, of course,

| N T + i - f Frequency
f 2f 3f af 5f 6f 7

Figure 1V.5 Fourier Transform of an Offset Square Wave
Time-domain signal attributes are also knoun to the system. A function
may be periodic with a certain period, expressed as (PERIODIC |tfun]|
|period|)l. I¢f so, [ONE-PERIOD |tfun|) is a function which is zero everyuhere
except from -1/2 to T/2, uhere [(ONE-PERIQD |tfun|) ?T] « [|tfun| ?T). (T is
the period of the function.) Others are (follouwing (A. Brown, 1975)) the OC
offset of the signal; amplitude, the height of a periodic signal; phase uith

respect to another signal; etc.

C=—

iV Electronics 135

A large set of formulas is concerned with computing the frequency picture
of periodic signal descriptions expressed in time-domain terms. <xPERIODIC-
FREQ-PIC>

Besides these intrinsic descriptions, there are "extrinsic" signal
properties like "carrier," or "modulation," or "distortion." These concepts
would be necessary for a system that designed or redesigned radios, which are
a level avbove that uhich | have focused on. (This is the chief difference in
emphasis betueen Broun's approach to signal description and mine.) It appears
to me that it would be easy and instructive to add this knouledge to DESI, but
that it would be a slight detour.

Of course, the descriptions of signals are of interest only so far as they
support comparison. We are interested in designing circuits which convert
from one kind of signal to another; given tuwo pictures, a good description of
the transformation from one to the other will help us to retrieve useful

plans. This will be described belou, in Sect. [V.B.

IV.A.3 Multiple Models of Linear Systems

A great advantage of a linear domain such as elementary electrical
engineering is that it may be profitably attacked by |inear, time-independent
methods in many cases. In addition, the fact that analysis is of a closed
netuork makes a foruard-deduction scheme practical. (Cf. (Nevins, 1974c, and
Sussman and Stallman, 1975).)

The folouwing types of quantities are to be dealt with by an electronics
analyzer (see Sect. IV.C):

physical quantities |ike voltages and currents
component control quantities |like resistances and capacitances

S ——

~z

TR —.

1V Electronics 136

The kinds of questiona to be ansuered are:

What is the the value of some physical quantity in a given circuit?

What are the values of derived control quantities like the Thevenin
resistance or gain of a circuit?

Often these questions are uwith respect to a circuit of interest as given,
but just as often explicit or implicit reference is made to a derived model of
a circuit. For example,

The DC gain of a circuit is the gain of the DC mode! of that circuit

The Thevenin resistance of a circuit is the resistance of the circuit when

it is disconnected from its environment and its independent sources are set to
zero.

The impedance of a circuit is its (complex) resistance in its "sinusoidal
steady state" model.

etc.

These models are generated by the use of FRAME, N, and T formulas (see
Sect. 11.B.2) in the data base. Many of these appear in the schemata for
various devices, but the FRAME axioms occur separately. Together they define

the models as fol lous:

(1) [((DC)) The DC model of a circuit is the same circuit with all frequency-
dependent features nulled in a device-dependent way. Thus we have <xFRAME-DOC>
plus formuias [ike

(IMPLIES (1S CAPACITOR ?X)
(AND (N (DC) * (IS CAPACITOR ?X))
(T (DC) (IS OPEN ?X)))]

(cf. <xCAP-PKT>) for frequency-dependent components |ike capacitors. The (DC)
of an already-DC model is itself, because these components can be nulled only
once. <%0C-iDEM> Thus (see Chapter 1), we have

(N (DC) (T ?R (FRAME (OC) <(HERE)>))]
(T (0C) (=/> '"(DC) (HERE))])

(2) [(INC)) The incrementa: model of a circuit. <xREF-INC, FRAME-INC, INC-
10EM>

—

1V Electronics 137

(3) (SSS [|s]] The sinusoidal-steady-state model for complex frequency s.
<xREF -SSS, SSS-10EM, FRAME-SSS> (In this model, all linear devices act |ike
resistors uith complex resistances or impedances.)

(4) [ISOLATE |trmin 1| |trmin 2|) The model obtained by disconnecting the
given terminals from uhatever nodes they appear in. <xISOLATE-DEFN-1, 2, and
3> (These terminals are usualiiy nodes in a composite device.) it is used tor
calculating Thevenin resistances. <xREF-150, FRAME-1SO, [SO-I1DEM>

(5) [(PASSIVE] The netuwork with all active sources set to zero. Also used for
calculating equivalents. <xREF-PASSIVE, FRAME-PASSIVE, PASSIVE-IDEM>

IV.B Electronic Design Knouledge

The knouledge in ZORCH is meant to mesh with the knouledge in DES! so as
to bring about useful behavior. Generally DESI provides the plan frameuork
and some quite general heuristics, while the solid stuff is in ZORCH. This is

true of knouwledge about design actions.

1V.B.1 Rephrasing Electronic Design Problems

When it comes to rephrasing design, DESI does little more than provide the
concept of "d-shard" and the policy that every shard in the initial explosion
must iead to something useful., (Chapter [1I) HMost of the knouledge is in
ZORCH. Here are defined the interesting control quantities of this domain:
voltage gain <xV-GAIN-SHARD>, and input and output impedance <xINPUT-Z-SHARD,
OUTPUT-Z-SHARD>. These lead to side-tasks which constrain control quantities
(via <xCQ-SHARD> in DESI), but they also lead to domain-dependent "d-features"
regarding the ranges of these quantities. These all end up affecting the way
in'uhich device schemata are selected.

Besides this sort of control-value redescription, more devious things can

-

A T e,

- o

IV Electronics 138

happen. 1f a d-shard of the form ([A (|v|) (CONVERT ...))]) appears in the
middle of the explosion, it causes an inferential subtask to appear. <xCVT-

EXPLOOE> This subtask mimics the supertask for exploding design properties, in

_that it manipulates formulas describing signals, breaking them into "signal

shards." These signal shards are then parsed into d-shards and ultimately
into d-features, side-tasks, and core device types.

There are tuo complementary paths this deduction can take. One <xFREQ-
DOM-REPHRASE> tries to compute the frequency pictures of the input and output,
then find a transformation ("FREQ-PIC-TRANS") between them. The output of
this deduction is an object of the form [LOW-PASS |cutoff|], [HIGH-PASS
|cutoff|], [MODULATE |freq|]l, etc. This transformation becomes a signal
shard. This language for describing freguency transformations is not as
general as it could be. On the other hand, it is quite extensible, and
reflects everything | know about the subject.

The other rephrasing method <xTIME-DOMAIN-REPHRASE> merely searches for
certain simple functional relationships betueen the time values of the input
and output. (This has not beeri implemented yet.)

The system tries to choose <xCVT-CHOICE> betueen these tuo ways of
rephrasing on the basis of simple criteria. For example, if the input
predicate to CONVERT doesn't mention the input at all, the transformation is

more !likely to be a function of signal values, so the time-domain is ruled in.

1V.B.2 Reconciling Partial Solutions

This kind of information arises in tuo places: generating and choosing

core device-types, and choosing ways of making devices. (As in Sect. [I[1.0, I

am not including information about patching failing constraints.)

T g

. -

—— &

e PP e e il A . . >

IV Electronics 139

1t Is important to note that computation regarding a circuit is to be
postponed uhenever possible until after the design rephrasing plan. This is
because (a) the ideological intent is for this phase to be concerned uith
problem, not solution, manipulation; and (b) the pieces of problen are lying
around in the urong form to be noticed during deductions.

So, during the d-explosion and subsequent re-parsing, DESI is more
interested in seeing the pieces than putting them together. This orientation
means that ordinarily the generation of tuo core device-types is an error; the
error uwill be revealed by tlie choice protocol for the CORE-FINDER step of Fig.
e 7

ZORCH makes up for this by allowing the design rephraser to pass the buck
under certain circumstances. <xLINEAR-GROUPING> 1f one of the competing core
device types is |inear, ZORCH rules them together into the artificial device-
type [(GROUP < -device types- >]. GROUPing means CASCADing in some as yet
undetermined order. <#MAXE-GROUP-1, MAKE-GROUP-2, MAKE-GCROUP-3> The idea is
to postpone deciding among them or composing them until the constraints and
features have been sorted out. After all, you can be pretty sure a |inear
device uill not interfere too badly with uhat it is connected to.

("Cascading" tuo device-types means making one of each and coupling them. See
belou.)

This is the someuhat bedraggled method by uhich core-device-type choice
can give rise tq cascades. This should be a rare event. Normally, the device
classes introduceé do their job harmoniously enough so that one superordinate
or basic category is natural for describing a desired circuit. In that case,
the category will wind up as éart of the central MAKE task of a design
netuork. (See Fig. I11.8.) Here cascading will reappear in a much more

disciplined way as the choice of which subordinate or specialized device type

——

i¥ Etectronics 140

to use.

In choosing a way to MAKE a knoun circuit type such as an amplifier, often
more than one suggested subtype comes to mind. This uill be because various
subtypes are indexed by associated 0-NOTES. «xMOD-V-GAIN, HIGH-V-GAIN, etc.>
[f more than one device is triggered by a constellation of D-NOTES, it may be
for two standard reasons. First, a contro! quantity like gain may fall into
tuo ranges. {(<xV-GAIN-SHARD> and its ilk specify overlapping ranges, for
example.) 1¢ so, a value falling in the ambiguous region may necessitate
differential diagnosis in the subsequent choice situation. One might have to
decide betueen an op-amp or common-emitter amplifier on the basis of cost,
convenience, etc.

Second, the tuwo suggestions may answer to different subreqguirements, in
which case they must be combined in some uay (or one subrequirement must be
foregone).

Rules for performing these functions for the device type AMPLIFIER are
given in the packets defined by <xCHOOSE-AMP>. This contains principles like,
"lf high banduidth is required, prefer a multi-stage amplifier to a single
high-gain stage"; and, "1f one option (e.g., a common-collector) has been
proposed because of its input impedance, and another for some other reason,
cascade them in that order."”

The fact that in using the rules of <xCHOOSE-AMP> the system is restricted
to a uell-defined situation helps to make those rules concise and to the
point. This attests to the organizing power of the concept of "superordinate
device type." Jt is difficult to think of a natural choice situation in uhich

the statement of the problem does not bring to mind a set of rules organized
around some such type. |t appears that a large part of the training of

technicians and engineers is the accumulation of these sets.

IV Electronics 141

Cascading tuo device types is MAKE-ing an object of the abstract type
(CASCADE |type 1| [type 2|]. <«MAKE-CASCADE> This consists of a
straightforuard plan to MAKE a device of each type and COUPLE them. The
components of the result are the tuo devices. In cascading two device types,
it is wise <xCOUPLE-GENERAL-1, COUPLE-GENERAL-2> to use the most general
specializations of the device types involved. These are defined by the
predicate MOST-GENERAL-SPEC (defined in Appendix 2). An example is the device
type GENERAL-CE, uhich is the most general common-emitter circuit.

Coupling comes under the heading of a circuit-change operation. (Cf.

Sect. 111.B.4)

1V.B.3 Changing Circuits

Except in the dullest circumstances, a circuit schema cannot be
instantiated merely by binding a feuw variables. After it has been plugged in,
its "expansion obligations" become active. (In the case of a productive
"device type" like [CASCADE ...), these obligations are part of the plan that
makes a device of that type.) These expansion obligations are the normal
place in uhich circuit-changing tasks arise. (If failure-correction uere
implemented, this would also be a common source of circuit changes, of
course.)

The circuit-changing actions defined so far include biasing, coupling, and
fixing voltages. These actions come in specialization hierarchies, and they
interact in interesting uays.

Biasing bipolar junction transistors (BJTs) is defined by <xBJT-BIAS-NET>
as three important tasks: fixing the collector current (IC). reverse-biasing

the collector-base junction, and fixing the base-emitter voltage (VBE). For a

—

IV Electronics 142

typical one-stage transistor amplifier, these tasks are subsumed by the

specific suggestions in <xTYPICAL-BJT-ONE-STAGE-BIAS-PLAN>.

Reverse
Fix -g?ars Fix BJT-BIAS-NET
| cB

@) O

SPEC
-SCHEMA
EDUCED REDUCE
BY

EDUCED
BY BY
TYPICAL -

BJT-ONE-
~ . STAGE -
Get Vg4 Connect Get Connect Get Connect
to base Voltage to Resistor to
Source Collector Emitter

Figure 1V.6 Bias Plans
This plan defines the bias netuorks of Fig. [.2.
The biasing plan interacts with the coupling plan for BJTs <%COUPLE-NET>,

which itself has several SPEC-SCHEMAs. The general plan is shoun in Fig.

Iv.7.

IV Electronics 143

CHOOSE (O () CONVERT PORT 1
SIGNAL
MEDIUM
CONVERT
O _PORT 2
SHae—= CONNECT
coupLe- O > O "poRrTS
TYPE

Figure 1V.7 General BJT Coupling Plan

The interaction starts with the rule that coupling is considered before
biasing. <xCOUPLE-BEFORE-BIAS> (Cf. Fig. 11.5.) The reasons for this rule
are that decisions made during coupling often influence the way in which
biasing is done; and that coupling components perform many biasing functions.
These interactions depend upon the particulaf coupling netuork chosen. The
rule packets <xCOUPLE-CE-X-HINTS, COUPLE-CC-X-HINTS> suggest particular
subnets to be used. One of these <xCE-DIR-VOL-COUPLE-PLAN> is shoun in Fig.

IV.8. (The others are as yet unuritten.)

IV Electronics 144

Convert

1
O Port + Vcc

P — — — — — — — — — —

i 1
I 4 |
e O '
|IGet Resistor Connect t !
| collector |
Reverse-Bias CB | :
) |
i I : f Couple-type
I Direct
| i Medium
| | Voltage
=]
| Get Connect to [
Power Supply Resistor |

Figure V.8 Common-Emitter Direct Voltage Coupling
Choosing this plan amounts to settling on direct coupling with voltage as the
medium. Picking it reduces tasks from the bias netuork and main coupling ptan
uwi thout further examination.
Tuo plans for fixing voltages is shoun in Appendix 3. <xVS-FIX-V, VD-FIX-
V> The first is used to set voltages absolutely. The second is used for
setting voltages, such as the base voltage of an transistor, uhich are to be

alloued to change incrementally.

IV Electronics 145

IV.B.4 Electronics Analysis Knouledge

In the usual case, there is no special electronics analysis knouledge.
Device properties are expressed by numerical constraints (Chapter I11), uhich
interact with each other and SELECT-VALUE tasks to produce results. In the
ideal case, the deductions involved are aluays "one-step deductions" (Stallman
and Sussman, 1976) of the value of one variable at a time. (I have taken much
of the analysis knouledge practically verbatim from Stalliman and Sussman's
data base.)

Besides calculations of physical quantities and component values, there is
also the problem of computing values of "generic control quantities" (Sect.
IT11.A.1). These are quantities like "voltage gain," uhich is defined

c=d
generically as, "The value of the voltage on the outport over the value on the

inport," but uhose symbolic and numerical valu;B depend on the circuit
involved. When a generic attribute value is c;nstrained. a task will be
created to calculate it., <xGENERIC-CAS-D0 in Appendix 2>

Hou this i3 done depends on the quantity to be calculated. For example,
to calculate the Thevenin impedance of a circuit from tuo terminals, you must
enter the reference point [ISOLATE |trmin 1| |trmin 2|), fix the voltage at
the tuo terminals, and calculate the current. (This technique is probably
beyond the current competence of NASL. For a precise account of hou to do it,
see Ooyle, 1977.)

Very little electronics analysis knouledge has been implemented. (See
Sect. IV.D. belou.) My implementation has focussed on qualitative reasoning
about design; it complements the work of Stallman and Sussman (1976) on

quantitative analysis.

[V Electronics 146

IV.C Device Schemata

The last part of Appendix 3 is a bag of devi e schemata. These include
primitive components and a feu composite devices. Most of the primitive
components are defined entirely by one or tuo constraints and some T and N
formulas describing their behavior from various derived models. The
transistor schema <*BJT-DEFN>, as you might expect, has a more complicated
atructure, Besides the physical constraints on its terminal voltages and
currente, every transistor must be biased into itsldéaired region. Thus, a
composite device schema that specifies that its transistor is active uill
automaticaily acquire an expansion obfigation to bias the transistor.

There are several device schemata for composite devices defined at the end

of Appendix 3:

GENERAL -CE -- The most abstract common-emitter circuit

TYPICAL -CE -- The circuit shoun most often in textbooks, which is derived
from the more abstract one

GENERAL -ECP -- The most abstract emitter-coupled pair

ECP-DC-AMP -~ One of many circuits that can be derived from the ECP

VD -- The humble voltage divider

RC -- The filter, not the cola.

The reiation betueen the ECP-DC-AMP and its "soul," the GENERAL-ECP, is

shoun in Fig. [V.9

IV Electronics 147

~ Bias i ECP DC-AMP

fix voltage

‘ fix current

'

GENERAL ECP

fix voltage Get Re —

Figure V.9 General and Specialized Emitter-Coupled Pairs
A aimilar relation existas betueen GENERAL-CE and TYPICAL-CE. In defining

these relations, extensive use is made of the predicates REOQUCE and FUNI TION,

fefined 1in Appendix /. REDUCE declares that some set of tasks is a complete
aubnetuork of the reduced task, [FUNCTION |dev| |reduced task|] is a special
case, used in device schemata, uwuhich declares the existence of an abstract

task for acquiring the device dev, and specifies that this task 18 sufficient

to accomplish the task to be reduced,
The function [0BL |dev| |action|] denotes an expansion task created by the

use of rule <xEXPANSION-OBLS-D0>, defined in Appendix 2.

~——

-

IV Electronics 148

1V.D Programmer's Guide

As | have pointed out in several places, the information in ZORCH is
sketchy. | hope this hasn't harmed the clarity of my presentation; | have
provided an example of every kind of construct | discussed. The knouledqge
shoun is still in the process of being debugged and assimilated into OESI;
there has not been time to be complete. As it is, implementation and
debugging cannot keep up uwith generation of neu formulas. (See Chapter V.)

This section is included as a guide to anyone who wishes to add
information to the DESI system (or its successor). It consists of a list of
all the kinds of information that are missing. (Filling in these holes should
be a matter of follouing the principles of Sect. 111.E and imitating the

formulas that already exist.)

> Rephrasing can be extended. More principles are needed for compar ing
frequency pictures; some knouledge of Fourier transforms (as opposed to .
frequency pictures) is necessary in order to generate precise side tasks,

> The time-domain information is non-existent in Appendix 3. The time-
domain rephrasing problem comes doun to trying to find a functional
relationship betueen tuo axiomatically described objects. This is not easy.

> Many more circuits are needed. Most of the amplifier types mentioned in
<%CHOOSE-AMP> and its satellites are undefined; pouer amplifiers are a glaring
omission. The superordinate category of "filter" is entirely absent. There
should be a theory of LC filters and uhen to use one of them. This should
work with a theory of matching impedances during coupling of pouer stages.
Time-domain rephrasing will be useless unless it is used to index clippers,
rectifiers, and other "operational" circuits.

> Coupling circuits are many and varied. Only one specialized circuit is
shoun in Appendix 3. (See Fig, !V.8,) One difficulty | didn"t mention in
discussing coupling is choosing polarities of bipolar transistors. These are
normally NPN, but coupling them directly often constrains them to be of
opposite polarities.

> Some of the information shoun hanging off circuit diagrams in Chapter 1,
especially interface constraints, has not been represented in the circuit
schemata of Appendix 3. For example, the system function of the RC filter
will not be uhat it claims to be if something is connected to it.

[V Electronics

These problems are the ones |'ve thought about, and sketched ansuers for.

There are many more | haven't thought of.

149

~T—

Y Resultsg 150

V Results

The major result of this research to date is the existence of NASL, DESI,
and ZORCH. The experience | have had in defining the NASL notation and
applying it to electronic circuit design is enough by itself to suggest
certain conciusions. These are the substance of Chapter VI|.

Of course, the claims | make there will be not be decigively proven until
the program has been debugged and the ZORCH knouledge base has been completed.
These activities are proceeding, and preliminary results are reported in Sect.
V.B belou.

Since DESI is intended to be a working system, and since people may uish
to experiment with it or with the NASL interpreter, these are describer from a
practical point of view in Sect. V.A, | would appreciate comments from those

who try it out.

Y.A Using DESI

Y.A.1 Loading and Running the Program

To run my programs on the MIT Al Lab time-sharing system, type

: | dvm;
at DOT, then

(load nas!)
at LISP. This uill load the interpreter and leave you in the LISP read-eval-
print loop. (The reader and printer are not the standard LISP mechanisma, but
that shouldn’t matter.) Nou you can load NASL assertions from any file you
choose (using DEFMLA; see Appendices 2 and 3). To load the designer in, tupe

(load desi) instead of or in addition to the above; to load the electironics

B —

V Resultg 151

knouledge, type (load‘zorch). (Or load the binary file TS DESI, to save a lot
of time.)

To run NASL, type

(start |action]|)
at LISP, uhere action is a formula or list structure of the form [/:TASK ...)
or [laction function|...]. (In the latter case, if the action has outputs,
type (start |action| |outputs|).) NASL will begin execution, adding the neu
action to its task netuork. When the network is empty, it will return the
output variables of action if any. It will also remain in the data pool of
the action performed, typically a DESIGN, so that you can run neu tasks in the

same environment. 5
V.A.2 DESI Talks to You

When NASL runs into trouble, or needs the ansuer to a symbol-manipulation

problem, it steps and asig'gdu questions to try to help itself out. "Trouble"
L]
is defined as the failure of the choice or rephrasing protocol to achieve its

aims. In either case.lthe system stops and tells you its trouble, then asks
various questions. For example, if it cannot make up its mind after applying
all the knoun choice rules, it will ask if it should choose at random. Yea/no
questions are ansuered by typing "yes," "y," "no," or "n." Other questions
uill be requests for formulas., (If you type an S-expression uhere a formula
is wanted, NASL will convert it.)

Three standard questions and the reactions to their ansuers are:

> "Do you uant to see the reasoning involved?" Ansuering affirmatively
causes NASL to re-run the most recent relevant deduction, uith the suitches
STP-TRACE-DEPTHx and RECORD-SEE-DEPTHx set to values that let you see the
stepa. (See belou.)

— —_— e . - - N v —

o

(= ——

V Results 162

> "Break?" [If you ansuer "yes," the system will give you a LISP break
loop. This is usually used for adding neu information to the system uith
further DEFMLAs. (DEFMLA may be used to redefine old formulas, too.) UWhen
you return from the break, the next question in NASL's list will be asked,

> "Try again?" Don't say "yes" uniess you've taken advantage of the break

loop and added a neu choice principle, a missing axiom that was needed hy the
last deduction, or some other rule.

V.A.3 You Talk to DESI

There are several useful programs for getting debugging information or
explanations of behavior from DESI.

(FASK-NET-DUMP) causes the entire active or pending task netuork under
your original request to be printed out in a someuhat readable fashion, uith
indentation, successor pointers, etc. (This function takes an optional task-
name argument; if it is omitted, your original request is used as a default.)

(WHY |task|) causes the task network above the named task to be dumpe,
Notice that asking this question about a frozen task will show you part of the
teleological structure of the device it appears in.

(SUPPORT |fact|) prints the supporters of the fact.

.

(PURPOSE ldeviée!{ p;;nts out the supertasks associated wuith MAKE-ing or
ACQUIRE-ing the device (depending on what kind of records of the history of
the device have been kept).

I am being a little vague about the precise formats of these functions,
both because the system encourages you to be vague (it will try to figure out
whether you are referring to formulas by name or pattern): and because the
features these functions support are changing rapidly.

Some useful statistics-gathering functions are defined in the file SNAP,
The statistics gathered include running times overall, time spent doing
matching and indexing (important lou-level functions of a rule-based syatem),
and success of the indexer in keeping garbage from reaching the matcher.

Typing " (SNAP)" at LISP causes these statistics to be printed out. " (SNAP

RESET)" resets them; this must be done once to turn them on. (Colliecting

-

PR e ——

V Resultsg 163

these statistics slous things doun someuhat.)

There are several suitches whose settings affect the verbiage duced by

the NASL system. These suitches are printed by the function SHOW-SWITCHES,

defined in SNAP. The suitch NASL-TRACE-DETAIL%, an integer from B to about 5,

defines hou much the interpreter will tell you about its every move. The

suitch STP-TRACE-DEPTHx controls printing of major sub-goal

information hy

STP; if zero, nothing is printed. Similarly, RECORD-SEE-DEPTHx controls

printing of data-base alterations. Both of these suitches are normally zero;

the system sometimes turns them on to display inferences or model effects,

(As in Sect. V.B, belowu.)

V.B Experimental Results

The DESI system is stiii being debugged. Consequently, it has never

designed a circuit all the wuay through. [t has done simple choice analysis,

trivial equation solution, and' some rephrasing of simple conjunctive design
problems.

Most of the time, the system runs well. Foruard deduction and task

reduction occur in a reasonable amount of time; watching the trace on the

screen is a pleasant experience. The NASL (anguage is easy to program in; it

encourages an incremental style of programming in which partial plans

interact. [|f an unforeseen interaction occurs, the presence of all tack

information in the data base usually makes the trouble easy to find; fixing it

is usually a matter of adding a new rule, When it isn't, the problem usually

turns out to be a syntactic error in a rule; | strongly recommend to future
designers of predicate-calculus systems with large rule bases that they

include checks of syntax (such as proper number and type of arguments to

S

V Results 154

predicates) at the time a rule is read. In such a system, a urong rule is
often over looked entirely.

Calls to the theorem prover tend to slou things doun. This not because of
any coryinatorial explesion, but probably because of the theorem prover's
carefulness in checking subsumption and other special cases uhich are normally
irrelevant. The theorem prover is probably too complex for its oun good: the
next such program | write uill be much more like Conniver. (McDermott and
Sussman, 1973)

Fur thermore, the evaluation mechanism (Appendix 4), uhich is normally
quite efficient, wuastes much time in other circumstances. The evaluator is
called uhenever the right-hand side of an implication is detached dur ing
deduction. It tries to apply reduction rules to every neuw subexpression of
the detached formula. This isn't nearly as expensive as it sounds, hecause
one quick index call is enough to check the (very common) case where there are
no applicable rules. Unfortunately, in detaching the right-hand side of Aa
farge 1bbiicatfon like <t¢UE§l—é> in Appendix 2, there is an embarassing
pause. | am putting up with this for the time being, but it is clear that
this is a job for some further pragmatic-predicate mechanism,

As it stands, the system with ZORCH loaded occupies a huge amount of core,
As incomplete as it is, it takes up about 226K of 36-bit word storage. About
SBK of this is the LISP system and my lou-level utilities, and 130K s liat

space, 78X (about 90K) of which 18 occupied. Of this, about 30K consiata of

circuit diagrams for the five device types defined in ZORCH! | am sure this
can be brought doun by judicious rearrangement of consequent vs. antecedent
deduction; the problem appears to be overenthusiastic forward reasoning uhile
setting up device schemata. Houever, a lot of storage is required to aet up

and index packets, uhether they are used later or not. To duck this probelm,

V Results 155

in the sample runs given belou, large conjunctions of the form [/:PKT ...)
were actually implemented as ordinary formulas like [AND ...). In the long
run, we are going to have to confront the question of organizing secondary
storage for use by Al programs.

There are three experimental results to demonstrate. First (Sect. V.B.1),
I present DESI's attempt to design a simple amplifier. Then | shou its
pitiful approach to the filter-design problem | descrited in Chapter I. In
both these cases, the program crashed due to bugs before going as far as it
is, in theory, capable. Finally, in Sect. V.B.3, | discuss some research with

Jon Doyle into the relation betuween NASL and NOAH. (Sacerdoti, 1975)

V.B.1 A Simpie Amplifier

Here is a sample output from a run of DESI on the first problem in Chapter
I, with NASL-TRACE-DETAIL% set to 3. My comments start with ";". The output
has been edited to relievé the tedium. The dots "..." indicate omissions. In
this and the next section, apparently random "''s" in the output are caused by
garbage collection, one exciamation point per coliection. Long strings of
these marks are indicative of long pauses betueen outputs.

:The system was started uith by typing
3 (start ' (design ...] '[<' (winner)>]:
(CREATING TASK
[: TASK (xDES=x) <> (LAMBOA NIL
(DESIGN (LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ?X) S)
(= (INPUT-Z ?X) 30000)))))
<" (WINNER) >T)
(ENABLED [(*DES%)])
(EXECUTING [(xDES%)]) ...)
(TASK [(xDES%)] BEING REDUCED)
(TASK [(«DESx)] TO BE REPHRASED)
(CREATING TASK [:TASK (REPHRASER (%DESx))

<>

V Results

(LAMBDA NIL
(:REPHRASE (xDESx) [DESIGN (LAMBDA (X)
(AND ...)))
<" (HINNER) >))
<>]}

(ENABLED [REPHRASER (xDESx)])
(EXECUTING ' [REPHRASER (xDESx)]
[:REPHRASE (xDESx) ([DESIGN (LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...} S}
(= (INPUT-Z ...) 380600)))]
<" (WINNER) >)
[<>]))
(TASK [(REPHRASER (xDESx)] BEING REDUCED)
(TASK [REPHRASER (xDESx)] REDUCED TO
[:DO-SUBNET (DESI-REPHRASE -PLAN
[(LAMBDA (X) (AND ...))] («DESx) <' (WINNER)>)
<>))
<>))
sHere are the tasks from the DESIGN rephrase plan <x+DESI-2>
(CREATING TASK [:TASK (EXPLODER PLAN#388)
<>
(LAMBOA NIL
(D-EXPLODE ((LAMBDA (X)
(AND ...)))))
<>])
(CREATING TASK [:TASK (ACCOUNT-FOR-ALL PLAN#380)
<>
(LAMBODA NIL
(ACCOUNT-FOR-ALL-SHARDS ((LAMBDA (X)
(AND ...))]))
<>))
(CREATING TASK [:TASK (CORE-FINDER PLAN#389)
<>
(LAMBDA NIL
(:FIND (LAMBDA (+DT)
(CORE-DEV-TYPE [...] ?2+40T7))))
<' (CORE-DT PLAN#380)>)) !
(CREATING TASK [:TASK (MAIN-TASK-INFERER PLAN#380)
<' (CORE-DT PLAN#380) >
(LAMBDA (40T)
(: INFER * (AND (STASK (MAKER ...) (xESx)
<>
(LAMBDA NIL
s vl
Cive)
(:MAIN (MAKER ...) (xDESx)))
<(CORE -F INDER PLAN#380)>))
<>))
(CREATING TASK [(:TASK (SI0DE-TASKS-FINDER PLAN#380)
<>

(LAMBDA NIL

\

156

Y Results

(: INFER * (FORALL (4ST) (-> G (SIDE-TASK ...)
(EXISTS ...)))
<>))
<>])
(CREATING TASK [:TASK (FEATURES-FINDER PLAN#380)
<>
(LAMBDA NIL
(: INFER ' (FORALL (+FT) (-> G (D-FEATURE ...)
(EXISTS ...)))
<>))
<>])
(CREATING TASK [:TASK (GATHERER PLAN#388)
<>
(LAMBDA NIL
(: INFER "’ (:REDUCED (xDESx))
<(CORE-FINDER PLAN#380)
(SIDE-TASKS-FINDER PLAN#380)
(FEATURES-FINDER PLAN#3808)>))
<>]) !
(BLOCKED [MAIN-TASK-INFERER PLAN#3880])
(BLOCKED (CORE-FINDER PLAN#380])
(ENABLED [ACCOUNT-FOR-ALL PLAN#388))
(BLOCKED (EXPLODER PLAN#380])
(BLOCKED [GCATHERER PLAN#388])
(BLOCKED [FEATURES-FINDER PLAN#388])
(BLOCKED [SIDE-TASKS-FINDER PLAN#388])

i The only task which is enabled is the policy-setup for shard
saccounting--

(EXECUTING [(ACCOUNT-FOR-ALL PLAN#388)
[(ACCOUNT -FOR-ALL -SHARDS [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30008)))1]
[<>]) !
(TASK [ACCOUNT-FOR-ALL PLAN#380]
BE ING REDUCED)
(TASK [ACCOUNT-FOR-ALL PLAN#388)
REDUCED TO (:PRIM »SETUP])

;:But the first real task is the exploder

(ENABLED (EXPLODER PLAN#3820])
(EXECUTING [EXPLODER PLAN#380)
(D-EXPLODE ((LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 300088)))]]
[<>])
(TASK [EXPLODER PLAN#380) BEING REDUCED)
(TASK [EXPLODER PLAN#388) REDUCED TO
[: INFER ' (D-SHARD ((LAMBDA (X) (AND ...))]

157

- |

V Results

[(LAMBDA (X) (AND ...))))
<>))

:The system prints out a lengthy list of deductions from this inferred
H "d-shard":

(INFERENCES MADE BY [EXPLODER PLAN#388)
--)
(RECORDING ([D-SHARD ((LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30000))))
((LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30000)))])
Q)

i1t turns the elements of the conjunction into shards
(RECORDING [:GEN (NOT (ELT ?+C”4 <I[DEV-TYPE ?X AMPLIFIER]
[« (V-GAIN ...) 5]
{= (INPUT-Z ...) 30008]>))
(D-SHARD [(LAMBDA (X)
(AND (DEV~TYPE ... AMPLIFIER)
(= ... 5)
(= ... 30000)))]
[(LAMBDA (X) _?4+C"4)1))
e) !

;The first of three major shards:
i,

(RECORDING [(D-SHARD ((LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
t« (INPUT-Z ...) 308000))))
[(LAMBDA (X) (= (INPUT-Z ?X) 30008))))
e)

1The "“«" tells DESI one side might be a control quantity:

(RECORDING (POS-CQ-SHARD [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30000)))]
(X] (INPUT-Z ?X] (30600]]
8)
(RECORDING [(:GEN (NOT (AND (NOT (CONTAINS (308008] (?? X]))
{=> "(DEN ...) 779}
(CONTROL-ATTRIBUTE ?F~"9)
(=> "(DEN ?4F7~3) ?F79)))
(SIDE-TASK [(LAMBDA (X)
(AND (DEV-TYPE ... AMPLIFIER)
(s «0s B)

158

E——

V Results 159

(= ... 30000))))
((LAMBDA (X) (CONSTRAIN <...> (LAMBDA ...)))])]
8)
(RECORDING (POS-CQ-SHARD [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30008)))]
(X1 (30808) (INPUT-Z ?X1]
0)
(RECORDING (:GEN (NOT (AND (NOT (CONTAINS [INPUT-Z ...]
(?? X1))
(=> "(DEN ...) ?2F"9)
(CONTROL-ATTRIBUTE ?F~9)
(=> ' (DEN ?+4F~3) ?F~9)))
(SIDE-TASK [(LAMBDA (X)
(AND (DEV-TYPE ... AMPLIFIER)
(= ... 5)
(= ... 30000)))]
[(LAMBDA (X) (CONSTRAIN <...> (LAMBDA ...)))])]
) !

iHaving noticed that [NPUT-Z is a control attribute, it uses the rule
:+ INPUT-Z-SHARD to classify the desired impedance:

(RECORDING [:GEN (NOT (= 30088 ?2°7))
(AND (:GEN (NOT (> ?Z~7 300008.0))
(D-FEATURE [(LAMBDA ...)]
[RANGER INPUT-Z VERY-HICH]))
(:GEN (NOT (AND (> ?Z77 1500.8)
(< 7277 500000.8)))
(D-FEATURE [(LAMBDA ...))
[RANGER INPUT-Z HIGH]))
(:GEN (NOT (AND (> ?Z*7 588)
(< 7277 2000.0)))
(D-FEATURE [(LAMBDA ...)]
(RANGER INPUT-Z MODERATE]))
(:GEN (NOT (< 7277 1000))
(D-FEATURE ((LAMBDA ...)]
[RANGER INPUT-Z LOW]))))
0)
(RECORDING [AND (:GEN (NOT (> 30000 300000.0))
(D-FEATURE [(LAMBOA (X) (AND ...))]
(RANGER [NPUT-Z VERY-HIGH]))
(:GEN (NOT (AND (> 30080 1500.8) (< 30000 500000.0)))
(D-FEATURE ((LAMBDA (X) (AND ...))])
[RANGER INPUT-Z HIGH]))
(:GEN (NOT (AND (> 30008 508) (< 38008 2606.8)))
(D-FEATURE [(LAMBDA (X) (AND ...)))
(RANGER INPUT-Z MODERATE]))
(:GEN (NOT (< 30000 1008))
(D-FEATURE [(LAMBDA (X) (AND ...))]
[(RANGER INPUT-Z LOW])))
8)

-

V Results

t1The winning feature is "high input impedance”:

(RECORDING [D-FEATURE [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30000))))
[RANGER INPUT-Z HIGH)]
0)

;A similar deduction is done for the case of voltage gain:

(RECORDING (D-SHARD [(LAMBDA (X)
(ANOD (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30080))))
((LAMBDA (X} (= (V-GAIN ?X) 5))1]]
9)

(RECORDING (POS-CQ-SHARD [(LAMBDA (X)
(ANO (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30000)))]
(X] [V-GAIN ?X] (S]]
0)

(RECORDING [POS-CQ-SHARD [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 30008)))]
[(X] (S) (V-GAIN ?X]]
8)

(RECORDING (SIDE-TASK [(LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 308008)))]
[(LAMBDA (X)
(CONSTRAIN <'...> (LAMBDA (G1) (= ... 5))))]]
e)

(RECORDING (AND (:GEN (NOT (> S 1808)) (D-FEATURE [((LAMBDA (X)
(AND ...))]
[RANGER V-GAIN VERY-HIGH]))
(:GEN (NOT (AND (> G 508) (< S 5080)))
(D-FEATURE [(LAMBDA (X) (AND ...)))
[(RANGER V-GAIN HIGH]))
(:GEN (NOT (AND (> 5 1) (< 5 100)))
(D-FEATURE ((LAMBDA (X) (AND ...)}]
[(RANGER V-GAIN MODERATE)))
(:GEN (NOT (=< 5 1)) (D-FEATURE [((LAMBDA (X) (AND ...)))

160

V Results 161

(RANGER V-GAIN LOW])))
f)

(RECORDING [(D-FEATURE ((LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(=« (V-GAIN ...) 5)
(=« (INPUT-Z ...) 3060608])}]
(RANGER V-GAIN MODERATE])
0)

:The last d-shard gives us the core device type:

(RECORDING (D-SHARD [(LAMBCA (X)
{AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...} 5)
(= (INPUT-Z ...) 300008))))
[(LAMBODA (X) (DEV-TYPE ?X AMPLIFIER))])
) !
(RECORDING [CORE-DEY-TYPE [(LAMBUA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ...) 5)
(= (INPUT-Z ...) 38008)))]
(AMPLIFIER])
8)
(xINFERENCES DONEx)

:This concludes the inferences of the exploder
;Nou the other tasks of the rephrasing plan assemble the features, core
;device type, and constraings into a new task netuork:

(ENABLED (FEATURES-FINDER PLAN#388])
(ENABLED (CORE-FINDER PLAN#388))
(EXECUTING [CORE-FINDER PLAN#388]
[:FIND (LAMBDA (+DT)
(CORE -DEV-TYPE [(LAMBDA (X)
(AND ..)))
2+07)1))
(<" (CORE-DT PLAN#388)>])
(TASK [CORE-FINDER PLAN#380] PRIMITIVE) !
(OLD TASK {MAIN-TASK-INFERER PLAN#388)
HAS ACTION [:INFER ' (AND (STASK (MAKER (xDESx))
(xDESx)
<>
(LAMBDA NIL (MAKE (DEN ...)))
<" (WINNER ...)>)
(:MAIN (MAKER (xDESx))
(xDESx%)))
< (CORE-FINDER PLAN#380)>))
(ENABLED (MAIN-TASK-INFERER PLAN#380])
(FINISHED (CORE-FINDER PLAN#388])

;Retrieval of the core device type enables the system to infer

V Results

s the main task:
(EXECUTING [MAIN-TASK-INFERER PLAN#388]
[: INFER * (AND (STASK (MAKER (xDESx)) (xDESx!
<>
(LAMBDA NIL (MAKE (DEN ...)))
<" (WINNER ...)>)
(:MAIN (MAKER (%xDESx)) (xDESx)))
< (CORE -F INDER PLAN#388) >)
[<>])
(TASK [MAIN-TASK-INFERER PLAN#380)
PRIMITIVE)
(INFERENCES MADE BY [MAIN-TASK-INFERER PLAN#380)
--)

(RECORDING [: TASK (MAKER (#DES%)) <> (LAMBOA NIL (MAKE AMPLIFIER))
<' (WINNER (xDESx))>]
g)
(CREATING TASK [:TASK (MAKER (%DESx)) <>
(LAMBDA NIL (MAKE AMPLIFIER))
<" (LINNER (%xDESx))>]1}
(RECORDING [:SUBTASK (MAKER (xDES%)) (xDESx))
)

(RECORDING [:MAIN [NMAKER (»DESx)) (xDES%))
2)

(xINFERENCES DONEx) !

tEnd of inferences by main task inferer

(ENABLED ([SIDE-TASKS-FINDER PLANH388))
(FINISHED [MAIN-TASK-INFERER PLAN#388])
(BLOCKED [MAKER (xDESx)))

:Nou the features of the desired device cause policies to be created:

(EXECUTING (FEATURES-F INDER PLAN#388]
{:INFER ' (FORALL (+FT) (-> G (D-FEATURE [...] ?+FT)
(EXISTS (T) (AND (STASK ...)
LUWROPE ...)
(:SUCCESSOR ...)))))
<>)
[<>]))
(TASK (FEATURES-FINDER PLANK#380)
PRIMITIVE)
(INFERENCES MADE BY [(FEATURES-FINDER PLAN#380)
-=)

(RECORDING (:GEN (NOT (D-FEATURE ((LAMBDA (X) (AND ...)))
(AND (STASK??ﬁléélllﬁs (xDESx)
?CAHBDA NIL (D-NOTE (DEN ?+FT)))
(:SCO;E)T'QBB/IIFS (MAKER (xDESx) 1)
- (: SUCCESSOR T1488/1165 (MAKER (xDESx))))]

162

V Results

(RECORDING [(:TASK T'488/1691 <> (LAMBDA NIL
(D-NOTE (RANGER INPUT-Z HIGH)))
<>)

)

(CREATING TASK [(:TASK T'488/1691 <> (LAMBDA NIL
(D-NOTE (RANGER INPUT-Z HIGH)))
<>])

(RECOROING (:SUBTASK T'1488/1691 (x0ESx)]

8)

;Noting the SCOPE of the task triggers several rules for
:suggesting uays to make an amplifier:

(RECORDING [:SCOPE T'4808/1631 (MAKER (xDESx))]
8)
(RECORDING [:ANTEC (NOT (:POLICY T7'488/1631
(0-NOTE (RANGER V-GAIN MODERATEN)))
(: TO-D0 (MAKER (xDESx)) (MAKE AMPLIFIER) <?DEV~29>
(MAKE CE)))
2)
(RECORDING (:ANTEC (NOT (:POLICY T'!'408/1691
(D-NOTE (RANGER V-GAIN HIGH))))
(: T0-DO (MAKER (xDESx)) (MAKE AMPLIFIER) <?DEV~29>
(MAKE N-STAGE)))
9)
(RECORDING (:ANTEC {NOT (:POLICY T'40@/16391
(D-NOTE (RANGER V-GAIN VERY-HIGH))))
(: TO-00 (MAKER (xDESx)) (MAKE AMPLIFIER) <?0EV~29>
(MAKE OP-ANMP)))
8)
(RECORDING [:ANTEC (NOT (:POLICY T'488/1631
(D-NOTE (RANGER FREQ-OP VERY-LOW))))
(:TO-DO (MAKER (xDESx)) (MAKE AMPLIFIER) <?DEV~29>
(MAKE DIFF-AMP)))
2) !
(RECORDING (:ANTEC (NOT (:POLICY T'400/1691
(D-NOTE (RANGER INPUT-Z HIGH))))
(:T0-D0 (MAKER («DESx)) (MAKE AMPLIFIER) <?DEV~29>
(MAKE CC)))
0)
(RECORDING [:ANTEC (NOT (:POLICY T'4008/1691
(D-NOTE (RANGER P-GAIN HIGH))))
(AND (:TO-DO (MAKER (xDESx)) (MAKE AMPLIFIER)
<?DEV~29>
(MAKE COMP-SYM))
(: TO-D0 (MAKER (xDESx)) (MAKE AMPLIFIER)
<?0EV~Z29>
(MAKE PUSH-PULL) M))
8)
(RECORDING (:ANTEC (NOT (:POLICY ?PTASK~29 (MAKER (xDESx))
(D-NOTE LINEAR)))
(:TO-DO (MAKER (xDES%)) (MAKE AMPLIFIER) <?DEV~29>

V Results

(MAKE CE)))
9)
(RECORDING (:SUCCESSOR T1480/1691 (MAKER (xDESx))]
8)

(RECORDING [:TASK T1'480/2156 <> (LAMBDA NIL
(D-NOTE (RANGER V-GAIN MODERATE)))

<>]

2)
(CREATING TASK (:TASK T'488/2154 <>
(LAMBOA NIL (D-NOTE (RANGER V-GAIN MODERATE)))

<>])
(RECORDING [:SUBTASK T'480/2154 (xDESx))
8)
(RECORDING [:SCOPE T'480/2154 (MAKER (xDESx)))
8)

;Similarly for this feature:
(RECORDING [:ANTEC (NOT (:POLICY T'!408/2154
(D-NOTE (RANGER V-GAIN MODERATE))))
(: T0-D0 (MAKER (xDESx)) (MAKE AMPLIFIER) <?DEV~29>
(MAKE CE)))
8)
:The same rules will be found again (a slight non-optimality
: in the phrasing of the these rules)

(RECOROING (:SUCCESSOR T1486/2154 (MAKER (xDESx))]
2)
(%INFERENCES DONE#) !

:End of inferences by features finder.

(FINISHED [FEATURES-FINDER PLAN#388])
(BLOCKED (T7'400/1631))
(BLOCKED (T7'4808/2154])

:+The side-tasks finder similarly turns side-task shards into CONSTRAIN
; tasks:
(EXECUTING (S1DE-TA6KS-FINDER PLAN#388)

[: INFER ' (FORALL (4ST) (-> G (SIDE-TASK [...] ?4ST)

(EXISTS (T) (AND (STASK ...)
(:SUCCESSOR ...)))))
<>])

[<>])
(TASK (SIDE-TASKS-FINDER PLAN#380]

PRINITIVE)
(INFERENCES MADE BY (SIDE-TASKS-FINDER PLANH#388)

--)

(RECORDING [:GEN (NOT (SIDE-TASK [(LAMBDA (X)
(AND ...)))
74ST))
(AND (STASK T'401/6707 (xDESx)

164

T~

V Results

<" (WINNER (xDESx)) >
(DEN ?245T)
<>)
(: SUCCESSOR (MAKER (xDESx))
11481/67087))]
8)

(RECORDING (:TASK T'481/3406 <' (MWINNER (%xDESx))>
(LAMBDA (X)
(CONSTRAIN < (V-GAIN ?2X) >
(LAMBDA (G1) (= 2G1 S))))
<>)
0)
(CREATING TASK [:TASK T'4081/3406 <' (WINNER (xDESx))>
(LAMBDA (X)
(CONSTRAIN <" (V-GAIN ?X)>
(LAMBDA (Gl1) (= ?G1 5))))
<>])
(RECORDING [:SUBTASK T'481/34P6 (xDESx))
)
(RECORDING (:SUCCESSOR (MAKER (xDESx))
T148]/3406)
f)
(xINFERENCES DONEx)

iEnd of inferences by side-tasks finder.

(ENABLED (GATHERER PLAN#328])
(FINISHED [(SIDE-TASKS-FINDER PLAN#388)) !
(BLOCKED [T7'481/3486))

;The "gatherer" just marks the design task reduced:
(EXECUTING [(GATHERER PLAN#330)
(: INFER * (:REDUCED (xDESx)) <(CORE-FINDER PLAN#388)
(SIDE-TASKS-FINDER PLANH380)
(FEATURES-F INDER PLAN#388) >]
{<>])
(TASK [GATHERER PLAN#380] PRIMITIVE)
(INFERENCES MADE BY (GATHERER PLAN#388)
--)
(RECORDING [:REDUCED (xDESx)] @)
(xINFERENCES DONEx)
:The interpreter uill see this message in a second.

(ENABLED [(%DESx)]) !
(FINISHED (GATHERER PLAN#388])

+Nou the task is reattempted:
(EXECUTING [(xDES%)] (DESICN (LAMBDA (X)
(AND (DEV-TYPE ?X AMPLIFIER)
(= (V-GAIN ?X) S)
(= (INPUT-Z ?X) 300808))))
[<' (WINNER) >])
(TASK [(xDESx)] ALREADY REDUCED) ;The /:REQUCED formula is seen

165

V Results

(ENABLED (T7'400/16911)
(ENABLED (T7'4008/2154))

:The policies are put into effect:

(EXECUTING (7'488/2154) [(D-NOTE (RANGER V-GAIN MODERATE))
[<>])

(TASK (T7'488/2154) BEING REDUCED)

(TASK (T1488/2154) REDUCED TO (:PRIM xSETUP])

(EXECUTING (T7'4008/1691) [D-NOTE (RANGER INPUT-Z HIGH)]
[<>])

(TASK (T71408/1691) BEING REDUCED)

(TASK [T'498/1691) REDUCED TO [:PRIM xSETUP))

iRecording these policies causes tuwo of the rules inferred above to
sfire...
.

(ENABLED [MAKER (%DESx)])

(EXECUTING [MAKER (xDESx)] [MAKE AMPLIFIER)]
(<" (WINNER (xDESx))>))

(TASK [MAKER (xDESx)) BEING REDUCED)

i...50 there are tuo ways, common emitter and common collector,
: to make an amplifier
(MAKING A CHOICE)
(RECORDING [:CHOICE CHOICE#482 EXEC(
[: TO-DO (MAKER (xDESx))
(MAKE AMPLIFIER) <' (WINNER (%xDESx))>
2WAY])
0)
:+The system records first the choice, then the options.
iRecording the choice causes a flock of choice ruies to be
sinstantiated: g
(RECORDING [:GEN (NOT (:= (MAKER (xDESx)) ?AMP-TASK~3))
(AND (CHOOSE -AMP-PKT CHOICE#482 ?AMP-TASK*3
(MAKER (xDESx)] [’ (WINNER ...)]) [?UAY])
(:GEN (NOT (:SCOPE ?PTSK~3 ?AMP-TASK~3))
TRUE)))
2)

;s The choice rules come in a packet:
(RECORDING (CHOOSE -AMP-PKT CHOICE#482 (MAKER (xDESx))
(MAKER (xDESx))
(" (WINNER (%DESx%))]
(?WAY])
0)
:1This odd-looking formula is intended to trigger antecedent
1 rules in the packet uhich would otheruise not be noticed
(RECORDING [:GEN (NOT (:SCOPE ?PTSK~4 (MAKER (xDESx%))))
TRUE)
g) !
$ ««. 8uch as this one:
(RECORDING [:ANTEC (NOT (:SCOPE ?PTSK1 (MAKER (xDESx%))))
(:GEN (NOT (ANO (:POLICY ?PTSK1 (D-NOTE LINEAR))

166

V Resultg 167

(:SCOPE ?PTSK2 (MAKER (%xDESx)))
(:POLICY ?PTSK2
(D-NOTE (RANGER P-GAIN HIGH)))
(=> "(DEN ...) ?PTSK2)))
(:ANTEC (NOT (:OPTION CHOICE#482 ?Al (:70-DO ...1))
(:GEN (NOT (OPT-SUPPORT ?Al1 ...))
(:RULE-TOGETHER <?Al> (:70-00 ...1))))}]
2)
(RECORDING (:SCOPE T'408/2154 (MAKER (xDESx))])
8)
(RECOROING (:SCOPE T1408/1631 (MAKER (xDESx))]
Q)

tHere ia the first option
(RECOROING (:OPTION CHOICE#4@2 OPT#4B3 (:T0-D0 (MAKER (xDESx))
(MAKE AMPLIFIER)
<" (WINNER (xDESx)) >
(MAKE CC) 1)
8)
slt finds a rule
(RECORDING [:ANTEC (NOT (:0PTION CHOICE#4B2 ?Al
[:TO-DO (MAKER (xDESx))
(MAKE AMPLIFIER) < 74N>
(MAKE _?240T1))))
(:GEN (NOT (OPT-SUPPORT ?2Al
[:POLICY _?2+PTASK (D-NOTE ...))))
(:ANTEC (NOT (:OPTION CHOICE#4B2 ?A2 (:(0-DO ...)))
(:GEN (= ?A1 ?A2) (:RULE-TOGETHER <?Al ?A2>
(:T0-00 ...1)))))
el
sand checks the support for the options to see if input impedance
s uas relevant
(RECORDING (:GEN (NOT (OPT-SUPPORT OPT#403
[:POLICY _?+PTASK"3
(0-NOTE (RANGER [INPUT-Z _...1)1))
(:ANTEC (NOT (:0PTION CHOICE#482 ?A2"3
(: TO-DO (MAKER ...) (MAKE AMPLIFIER)
€o00>
(MAKE _...))))
(:GEN (= OPTH4B3 ?A273)
(: RULE-TOGETHER <OPTH#4B3 ?A2"3>
[(:TO-DO (MAKER ...) (MAKE AMPLIFIER) <...>
(MAKE ...)1)))]
8) !
st was
(RECORDING (:ANTEC (NOT (:OPTION CHOICE#4B2 ?A2%G
(:TO-00 (MAKER (xDESx))
(MAKE AMPLIFIER) <'...>
(MAKE _?407274111))
(:GEN (= DPTHGB3 ?2A274)
(:RULE-TOGETHER <OPTH4B3 ?A2"G>
(:T0-D0 (MAKER (%DESx))
(MAKE AMPLIFIER) <'...>

V Results

(MAKE (CASCADE CC _...))))))
8)
(RECORDING [(:GEN (= OPT#483 OPTH#483) (:RULE-TOGETHER <OPT#403 OPTH#4B3>
(:TO-DO (MAKER (%DESx%))
(MAKE AMPLIFIER)
<" (WINNER ...)>
(MAKE (CASCADE CC CC)))))
Q)
iThe rule excludes cascading something with itself, so this line of
s inference dies.

i+Here is the second option:
(RECOROING (:0PTION CHOICE#4082 OPTH494
[: TO-DO (MAKER (xDESx))
(MAKE AMPLIFIER) <' (WINNER (xDESx))>
(MAKE CE))]
)]

i1t is checked for input impedance being relevant
(RECOROING (:GEN (NOT (OPT-SUPPORT OPT#404 (:POLICY _?+PTASK"3

(D-NOTE (RANGER INPUT-Z _

)1
(: ANTEC (NOT (:OPTION CHOICE#482 ?A2°3
[:T0-D0 (MAKER ...} (MAKE AMPLIFIER)
o>
(MAKE _...)]))
(:GEN (= OPT#484 ?A273) (:RULE-TOGETHER <OPT#404
?7A273>
(:T0-00 (MAKER ...)
. (MAKE AMPLIFIER)
' Cone?>
(MAKE ...)]1)))]
Q) !
i1t isn't. However, the /:ANTEC derived from the other option
s triggers,

(RECORDING [:GEN (= OPTH#4B3 DPT#484)
(:RULE-TOGETHER <OPT#483 OPTH4B4>
[: TO-00 (MAKER (xDESx))
(MAKE AMPLIFIER) <' (WINNER ...)>
* (MAKE (CASCADE CC CE))I1)]
e)
+ and the appropriate cascade is suggested:
(RECORDING [:RULE-TOGETHER <DPT#403 DPTH404 >
{(: TO-D0 (MAKER (xDESx)) (MAKE AMPLIFIER)
<" (HINNER (xDESx)) >
(MAKE (CASCADE CC CE))))
8) !
(RECORDING (:0PTION CHOICE#4B2 NEWOPT#4@S
[: TO-DO (MAKER (%DESx))
(MAKE ANMPLIFIER) <' (WINNER (%DESx))>
(MAKE (CASCADE CC CE))])
8)

168

V Results

:This new option goes through the mill also
(RECORDING [:GEN (NOT (OPT-SUPPORT NEWCPT#4BS
[:POLICY _?+PTASK"3
(D-NOTE (RANGER INPUT-Z _...))1))
(: ANTEC (NOT (:0PTION CHOICE#4Q2 ?A2°3
(:TO0-D0 (MAKER ...) (MAKE AMPLIFIER)
>
(MAKE _...))))
(:GEN (= NELIOPT#4BS ?A273)
(:RULE-TOGETHER <NEWOPT#40BS ?2A2°3>
[:TO-DO (MAKER ...) (MAKE AMPLIFIER)
€s0s>
(MAKE ...)1)))]
)

+A rather unpromising cascade is suggested:
(RECORDING [(:GEN (= OPT#483 NEWOPTH4BS)
(:RULE-TOGETHER <OPT#483 NEWOPTH#405>
[:TO-DO (MAKER (xDESx)) (MAKE AMPLIFIER)
<" (WINNER ...)>
(MAKE (CASCADE CC (CASCADE CC CE)))1)])
8)
(RECORDING [(:RULE-TOGETHER <OPT#483 NEWOPTH#405>
[: TO-DO (MAKER (xDESx)) (MAKE AMPLIFIER)
<' (WINNER (xDESx)) >
(MAKE (CASCADE CC (CASCADE CC CE)))1)
a)
sbut for some reason vanishes, (Notice that the rule should be,
+ "If x was suggested because of its input impedance and y uasn't,
3 cascade them." Then this cascade would never have been suggested.)

s The /:RULE-TOGETHER causes the old options to be flushed
(FLUSHED (:CONSEQ (:0PTION CHOICE#4B2 OPTH4B4 [:TO-DO (MAKER (%DESx))
(MAKE AMPLIFIER)
<' (MINNER ...)>
(MAKE CE)))
FALSE])
(FLUSHED [:CONSEQ (:RULE-TOGETHER <OPT#403 OPTH404>
(: TO-DO (MAKER (*DESx))
(MAKE AMPLIFIER)
<" (UINNER ...)>
(MAKE (CASCADE CC CE))))
FALSE])
(FLUSHED (:CONSEQ (:OPTION CHOIC=#4082 OPTH4O3
(: TO-0D0 (MAKER (xDESx))
(MAKE AMPLIFIER) <' (WINNER ...)>
(MAKE CC)))
FALSE])
(FLUSHED [:ANTEC (NOT (:0OPTION CHOICEH4B2 ?A27G
[: TO-DO (MAKER (xDESx))
(MAKE AMPLIFIER) <'...>
(MAKE _?4072%4)1))
(:GEN (= OPTH4B3 ?A274)

169

V Resulta 179

(:RULE-TOGETHER <OPTH4B3 ?2A27G>
[:TO-DO (MAKER (xDESx%))
(MAKE AMPLIFIER) <'...>
(MAKE (CASCADE CC _...)))))))
(FLUSHED [:CONSEQ (:RULE-TOGETHER <OPT#483 NEWOPTH4LDS >
[:T0O-D0 (MAKER (xDESx))
(MAKE AMPLIFIER) <' (WINNER ...)>
(MAKE (CASCADE CC (CASCADE CC CE))) D)
FALSC D)
(CHOICE CHOICE#GB2 DONF)

i The choice successfully reduced the design problem:

(TASK [MAKER (xDESx)] REDUCED TO (MAKE (CASCADE CC CE)])
(CREATING TASK [:TASK (GR248 <> (LAMBDA NIL
(MAKE (CASCADE CC CE}))
<" (WINNER (xDES%))>])
(NEW TASK [GB248] HAS ACTION (MAKE (CASCADE CC CE)))
(ENABLED (GB248))
(EXECUTING (GB248) [MAKE (CASCADE CC CE))
[<' (WINNER (xDES%))>])
(TASK [GB248) BEING REDUCED)

;There is a standard plan for doing cascades:
(TASK [GB248) REDICED TO (:DO-SUBNET (CASCADE-PLAN CC CE)
<CASCADE-NAME>]) !
(CREATING TASK [:TASK (MAKER-1 PLANHGOER)
<> (LAMBDA NIL (MAKE CC))
<" (FIRST-DEV PLAN#4BE)>])
(CREATING TASK [:TASK (MAKER-2 PLANH4BE)
<> (LAMBDA NIL (MAKE CE))
<" (SECOND-DEV PLAN#406) >])
(CREATING TASK (:TASK (GRABBER PLANHGRE) <>
(LAMBDA NIL
(GRABBA (LAMBDA (X)
(MAIN-DEV-TYPE ?X (CASCADE CC CE)))))
<" (CASCADE -NAME PLAN#406) >1)
(CREATING TASK [(:TASK (COUPLER PLAN#4B6)
<" (FIRST-DEV PLAN#4PE) ' (SECOND-DEV PLAN#4BG) >
(LAMBDA (D1 D2) (COUPLE ?01 ?02))
<>]) !

At this point a bug in the specification for the cascade plan caused the
system to crash. (This would have been caught by a syntax checker of the kind
I mentioned above.) In any case, the system currently lacks knouledge of
common-collector circuits and constraint analysis, so it could not have gone

much fur ther.

V Results 171

V.B.2 Converting a Square Wave into a Sine Wave

In this section | present the somewhat more disappointing behavior of OESI
on the job of converting a 1 kHz square wave into sine uave of the aame

frequency, expressed as follous

(design
(\ (ckt)
(convert ?ckt
(\ (in)
(and (periodic (tfun ?in) 1.8E-3)
(farall (t)
(and (implies (/< 2t @)
(= ((one-period (tfun ?in)) ?2t)
11
(imp|ieq (not (/< ?t B))
(= ((one-period (tfun ?in)) ?t)
-1))))))
(\ (in out)

(= (tfun ?out)
(\ (t) (sin (x 2888 pi ?t)))))))))
<'(filter)>])

1The initial part of the sequence is just as in Sect. V.B.1
(CREATING TASK
[!TASK (*U S%) <>
(LAMBDA NIL
(DESIGN (LAMBDA (CKT)
(CONYERT ?CKT (LAMBDA ...) (LAMBDA ...)))))

<" (FILTERY >k} |
(ENABLED [(xDES#)]))
(EXECUTING ((xDES%)])...)
(TASK [(»xDESx%)] BEING REDUCED)
(TASK [(xDES%)] TO BE REFHRASED)
(CREATING TASK [:TASK REPHRASER (xDESx))

(LAMBOA NIL

(:REPHRASE (xDESx) [DESIGN (LAMBDA ...)]
<" (FILTER)>))

<>])
(ENABLED [REPHRASER (#DESx%) 1)
(EXECUTING [REPHRASER (xDES%)]

[:REPHRASE (#DES%) [DESIGN (LAMBDA (CKT)
(CONVERT ?CKT (LAMBDA ...)
(LAMBDA ...)))]
<" (FILTER) 5]
[<>])

(TASK [REPHRASER {(»DES#%)] BEING REDUCED)
(TASK [REPHRASER (xDESx%)) REOUCED TO

V Resgults 172

(:DO-SUBNET (DEST -REPHRASE -PLAN
[(LAMBOA (CKT) (CONVERT ...))) (*DES») ‘' (FILTER))
<>]) !

i1 have elided the messages regarding setting up the rephrasing
3 netuork, (They are the same as for the preceding example.)

(EXECUTING [ACCOUNT-FOR-ALL PLAN#392)
[ACCOUNT -FOR-ALL -SHARDS
[(LAMBOA (CKT) (CONVERT 2CKT (LAMBDA ...) (LAMBDA ...)))]1]
[<>])
(TASK [ACCOUNT-FOR-ALL PLAN#332] BEING REDUCED)
(TASK [ACCOUNT-FOR-ALL PLAN#332] REDUCED TO (:PRIM xSETUP])
(ENABLED [EXPLODER PLAN#1S9))
(EXECUTING [EXPLODER PLAN#392)
[D-EXPLODE [(LAMBDA (CKT) (CONVERT 2CKT (LAMBDA ...) (LAMBDA ...))) 1))
[<>])
(TASK [EXPLODER PLAN#33.1 BEING REDUCED)

1Explosion begins as before...
(TASK [EXPLODER PLAN#392) REDUCED TO [:INFER ' (D-SHARD [(LAMBDA ...))
: [(LAMBDA ...} 1)
<>])

(INFERENCES MADE BY [(EXPLODER PLAN#392]

--)
(RECORDING (0-SHARD ((LAMBOA (CKT)

(CONVERT 2CKT (LAMBDA ...) (LAMBDA ...)))]
[(LAMBDA (CKT)
(CONVERT ?CKT (LAMBDA ...) (LAMBDA ...)))1]
a)

;But this time the main shard is too hairy to be handled by STP,
: 80 A subtask is set up

(RECORDING [:TASK T11379/2344 <>
(LAMBDA NIL (CVT-EXPLODE [(LAMBDA ...)] [(LAMBDA ...)1))
()]
9)
(CREATING TASK [:TASK T1!379/2364 <>
(LAMBDA NIL (CVT-EXPLODE ((LAMBOA ...)]
{(LAMBDA ...)]))
<>}
(RECORDING [:SUBTASK T11379/23464 (EXPLODER PLAN#392))
8)
(RECORDING (:MAIN T1'379/24 (EXPLODER PLAN#392)]
a)

;1 The same rule <xCONVERT-EXPLODE> also sets up a rule to infer
i SIG-TRANS d-shards from the "signal features" that fall out
3 of the convert explosion,..
(RECORDING {:ANTEC (NOT (SIG-FEATURE [(LAMBDA ...)] ((LAMBDA ...))
24FEATURE™GT7))
(D-SHARD [(LAMBDA (CKT) (CONVERT ...)))

T

V Results

[(LAMBDA (CKT) (SIG-TRANS CKT _...))]))

a)
(xINFERENCES DONEx)

iHork begins on this subtask
(ENABLED [T1'379/2394]))
(EXECUTING (T1'379/23935)

[CVT-EXPLODE ((LAMBOA (IN) (AND (PERIODIC ... @.001)

(FORALL ...)))]
[(LAMBDA (IN OUT) (= (TFUN ...) (LAMBDA ...)))]]

(<>]) !

(TASK ([T1'379/239%5) BEING REOUCED)

:But there is a choice uhether to look for frequency-domain
; or time-domain features of the signals
(MAKING A CHOICE)
(RECORDING (:CHOICE CHOICE#418 EXEC
[: TO-DO T1'379/4711
(CYT-EXPLOEE (...} [...]1) <
2UAY]]
2)
(RECORDING [:ANTEC (NOT (:0OPTION CHOICE#418 ?A1"3
(:TO-DO T1'!'379/4711 (CVT-EXPLODE ...)
<>
(FREN-DOMAIN-REPHRASE ...)1]))
(:ANTEC (NOT (:0OPTION CHOICE#410 ?A27°3
(:TO-00 ...1))
(AND (:GEN (NOT (AND ...)) (:RULE-IN ?A173))
(:GEN (NOT (AND ...)) (:RULE-IN ?A273))
(:GEN (NOT (AND ...))
(:RULE-QUT 2427311111
0)
(RECORDING (:0PTION CHOICE#G418 OPTH411 (:TO-DO T1'379/4711
EVT-EXPLOUE T..:)
R

<>

(TIME-DOMAIN-REPHRASE (...

" (...1))
9)
(RECOROING (:OPTION CHOICE#418 OPT#412 (:T0-00 T1'379/4711
(CVT-EXPLODE [...]
Gt

<>

(FREQ-DOMAIN-REPHRASE (...

Ve THN
f)
(RECORDING [:ANTEC (NOT (:OPTION CHOICE#41@ ?A275
(:TO-DO T1'379/4711 (CVT-EXPLODE ...)
(TIME-DOMAIN-REPHRASE ...)1))
(AND (:GEN (NOT (AND (:= ...) (NOT ...)))
(:RULE-IN OPT#412))

(:GEN (NOT (AND (:= ...) (NOT ...)))

173

T~

V Recsults

(:RULE-IN ?A2°5))
(:GEN (NOT (AND (:SUBTASK ...) (:TASK-ACTION ...)
(:= ... ACTIVE)
(D-FEATURE ...)))
(:RULE-OUT ?A275))))
8)

:The choice depends upon uwhat the signal-description predicates
: depend on. (See <xCVI-CHOICE> in Appendix 3.)
(RECORDING [:GEN (NOT (AND (:= [...) [...)) (NOT (CONTAINS ?+BODY"6
Seia)
(:RULE-IN OPT#412))
g) 111

iFrequency-domain is indicated--
(RECORDING [:RULE-IN OPTH#412] @)

(RECORDING [:GEN (NOT (AND f(:= [...) [...)) (NOT (CONTAINS ?+BODY"6
e i)
(:RULE-IN OPT#411))
@) it
;The /:GEN found nothing in this case, so time domain gets no
: votes.
; (Checking CONTAINment took a long time, as the rou of "!'s"
; attests. This is a typical example of the slouness of SIP
; on 3 straightforuard problem in which it did absolutely no
; combinatorial search.)

;This rule also ended up uith nothing:

(RECORDING ([:GEN (NOT (AND (:SUBTASK (DEN ...) ?SUP~6)
(: TASK-ACTION ?SUP~6 (D-EXPLODE ?+P76))
(:= (:ENAB-STATUS ?SUP~6)
. ACTIVE)
{0-FEATURE ?+P~6 [RANGER FREQ-OP VERY-HICGH])))

(:RULE-OUT OPTHG411))
a)

150 the vote for frequency-domain is decisive...
(CHOICE CHOICE#418 DONE)
(TASK (T1'379/2395] REDUCED TO
(FREQ-DOMATN-REPHRASE
[(LAMBDA (IN) (AND (PERIODIC ... ©.881) (FORALL ...))))
[(LAMBDA (IN OUT) (= (TFUN ...) (LAMBDA ...)))]1])
s...and execution proceeds
(CREATING TASK (:TASK GB241 <> (LAMBDA NIL
(FREQ-DOMAIN-REPHRASE [(LAMBDA ...))
[(LAMBDA ...)]))
<>])
(ENABLED (6GB2411)
(EXECUTING (GB241)...)
(TASK (GB241) BEING REDUCED) !
(TASK [GB241) REDUCED TO
[:SEQ (:FIND (LAMBDA (+FPT)

174

V Results 175

(EXISTS (FP1 FP2 FPT)
(FORALL (S1 S2) (IMPLIES ...)))))
(LAMBOA (FPT) (:INFER ' (SIG-FEATURE ...) <>)1])
:The plan is to find frequency pictures and compare them...,
(CREATING TASK [:TASK [TASK#414 <> (LAMBDA NIL
(:FIND (LAMBDA (+FPT)
(EXISTS (FP1 FP2 FPT)
(FORALL ...)))))
<" (FPT#413)>))
i...then infer signal features. (See <xFREQ-DOM-REPH-DO-1>.)
(CREATING TASK [:TASK MTASKH423 <' (FPTH413)>
(LAMBDA (FPT)
(: INFER ' (SIG-FEATURE ...)
<>))
<>])

(ENABLED [I1TASK#414)) !

(BLOCKED [MTASK#423])
(EXECUTING [ITASK#414])...)
(TASK [ITASK#414) PRIMITIVE)

;/:FINO is the user's way of calling STP,
sHere is what the STP tra-e looks like for this problem:
(STP TRACE 1 8 (NOT (IMPLIES (AND (IS SIGNAL S1'433/3330)
(AND (PERIODIC (TFUN ...)
0.001)
(AND CENBLIES «ov) (IVIPLIES . ..)))
(IS SIGNAL S2'434/3338)
(= (TFUN S2'434/3330)
(LAMBDA (T)
SINS e 1Y)
(AND (=> ' (FREQ-PICTURE ...)
7EPL)
(=> ' (FREQ-PICTURE ...) ?FP2)
(FREQ-PIC-TRANS ?FP1 ?FP2
?FPT)
(=> "(DEN ...) ?FPT)))]
NIL) 111

Unfor tunately, a bug in a very lou-level routine caused an infinite
recursion in the midst of this attempted proof. Therefore, the system never

got to the point of actuaily generating or comparing frequency pictures,

V Results 176

V.B.3 NOAH in NASL

Jon Doyle and | have done some preliminary experiments touward a "free
transiation” of Eari Sacerdoti’s (1375) NOAH program into NASL. As |
discussed in Chapter I, NOAH and NASL are based on rather different
presuppositions, so an exact translation would be someuhat contrived. NOAH is
organized around repetitive execution of a strict sequence of steps of the
form, "Expand the plan; criticize it." After the plan has been entirely
reduced to primitives, it is executed. In carrying out these steps, the NOAH
system assumes that all actions’ effects are fully computable in advance; it
reasons confidently about future states of the world, This assumption is
false for many of the actions NASL tries to accomplish.

Nonetheless, the parallels betueen the tuo systems are tempting. We
wondered if it was possible to encode NOAH "critics" as NASL "policies." The

J

critics ue concentrated on uere "Resolve Conflicts," which orders actionas to

prevént one from undoing ‘the prerequesites of another; and "Eliminate

Redundant Preconditions," uhich attempts to prevent the same action being done
tuice for tuwo different reasons.

We have done some preliminary coding (it only takes about 5 pages of NASL
expressions), but the unsettled state of the interpreter has made this mainly
a Gedanken experiment, The results so far are mixed. 0On the one hand, it
takes very little effort to express as deductive “mini-theories" much of uhat
is meant by concepts like "prerequisite" in a system |like Sacerdoti's uhich
has them built in.

On the other hand, ue had some disappointments. [t is more difficult than

[had hoped to distinguish problem reduction from execution. NASL assumes

that a netuork can be executed as soon as it is generated; to force it to he

e———m e o —

e S

V Results 177

more NOAH-like requires the user to urite explicitly the theory of elahnration
levels that is apparently built into the NOAH elaborate-criticize loop. The
user must explicitly tell the system to postpone execution of louer levels
until higher levels are reduced. In principle, there is nothing urong nith
having to do this, since this is just another mini-theory. What made us a bit
squeamish about it was the necessity of ignoring altogether NASL's use of
/:MAIN tasks (Sect. I1.B.1) in specifying what happens during task reduction,
and replacing it with an explicit theory of /:SUCCESSOR relations.

[think it is fair to conclude from this "experiment" that NASL is an
wor thuhile alternative to NOAH, especially for problems where there is much
user-supplied knouledge about plans, and only incomplete foreknouledge of the

effects of the basic actions.

VI Conclusions 178

VI Conclusions
"This ... may seem trivial,
but | think it is not without importance."
-- Mary Warnock, Ethics since 1900

I set out to construct a circuit designer so flexibly organized that it
could respond to all relevant aspects of a design problem, yet directed enough
to be efficient during its normal operation. | implemented a rule-baser
problem solver called NASL and have done preliminary experiments using as my
main vehicle DESI and ZORCH, sets of rules embodying theories of design and
electronics. The results are consistent with the hypothesis that the
organization of NASL has the right kinds of power. As with many exper iments
in Al, the results are not unequivocal. Our conclusions rest largely on
esthetic considerations.

The theories of design and electronics drew heavily on previous work by
others. (Freeman and Neuwe!!, 1971, Stallman and Sussman, 1976, A. Broun, 19375)
There are novel elements. The design process embodies a modified top-rdoun
strategy. Domain-dependent information, expressed in a modular uay, orcders
design choices and controls their interaction. MWhen the top-doun elahoration
reaches the level of canned "device schemata," the task structures stared
there become integrated uwith it. The theories embodied in the programs that
make this happen are further steps toward competing with human per formance in
these areas.

NASLL has severe |imitations. QOue to limited time, | was unable to develop
many domain-independent control features, because they were not needed for
electronic design. (Some of these limits were encountered in our attempt to
study NOAH with NASL. See Chapter V.) The logics of time and belief are

practically absent. Hence, | cannot claim that the current system could be

L

T —

VI Conclusions 179

iust as easily used, e.g., to understand stories. Even some features
important to electronic design, such as describing and correcting mistakes,
could not be implemented in the time [had.

Second, the system's flexibility in principle is offset by its lack of
patience and skepticism in assimilating uhat it hears. An untrained user
coufd bring its operation to a halt by telling it the urong things.

I have had some disappointing failures. The program is too big and slnou
to be practical, apparently because of the implementation of data-base
operations, rather than because of any combinatorial explosion. MHMore
substantively, the division of |abor betueen theorem prover and interpreter is
in many uays urong. The decision to use predicate calculus for representing
and using knouledge was the major theoretical gamble in NASL's design. This
gamble has had wildly equivocal results.

The style of knouledge encoding encouraged by NASL is, in my opinion,
quite exciting. These features in particular stand out:

> All control information is explicitly represented in the data hase.

> Most dependency information is automatically gathered by the system in a
complete and convenient uay.

> Plans can be described incrementally. Specification of crder and choice
depends on rules uhich can be combined in flexible ways.

> Predicate calculus is used as the notation for control and physical
information.

I will discuss first my successes, then my failures, and which uay

research might go to overcome the limitations | have discovered.

S —

VI Conclusions 180

VI.A Successes

In this section | want to put the NASL system in perspective, and arque
that it is a step touard understanding mental functions. Fig. VI.1 shous a
map of current artificial-inteliligence research. It may also be taken as a
map of mental functions, with the arrous taken as indicating the flou of
information. Either uay, the central box with the question mark is a major

mystery. MWe know that this center is concerned with "und.rstanding,"” "problem

solving," and "learning," and we knou that it contains many sub-boxes. [Iuch
of mainstream Al is concerned with the somewhat speculative pastime of

proposing and testing pieces of this box.

VI Conclusions 181

HEARING

LANGUAGE

Bt

SPEAKING
A

ACTING

VISION | :

Figure VI.1 Provinces of Artificial Intelligence
The thesis that rule-driven problem solving is an important technique
depends, [think, on a picture of the mystery box like that of Fig. Vi.2.
Normal cogitation is performed by a problem solver accessing a data base of
rules. Neu rules are created by a rule generator; the most direct way is by
translation from natural-language statements. The rules are not guaranteed
"correct"; they must be revised if faulty by a debugger. (McDermott, 1974a,

Sussman, 1975)

V] Conclusions 182

Hearing
Language

: RULE

i
|

/l/ GENERATOR | Speaking
| \ |

Vision

|

| 1
I PROBLEM I
I RULES |— | 5o1veR I
: \:‘ Acting
| |
| |
| |
| RULE I
{ DEBUGGER :
L

-------------_—--_—-———-J

Figure V1.2 The Rule-Based Utopia
To some degree, putting these last tuo functions in neat boxes is uishful
dood! ing, but the problem-solver box is intended to be real. The NASL system,
or some future descendent, resides in this box. To what degree do features of

NASL support progress on the rule-driven paradigm? In ansuering this

question, ! Will survey in detail uhat | consider the strengths of the current
system.

NASL is driven by a general predicate calculus that supports backuard and
foruard deduction. This feature forces the user to think in terms of truth
and falsehood, rather than in terms of, e.g., "demonic action." For example

(see Chapter !l), there is no uay to "deduce the erasure" of a formula.

Unlike a PLANNER-type system (Hewitt, 1972), NASL treats erasure entirely

VIl Conclusions 183

differently from recording. This enables more revealing records to he kept.
It forces the user to think in terms of true rules rather than apparently
useful ones, like productions, which might have to be changed later, or might
introduce arbitrary symbols with no presumed meaning. (Rychener, 197h, Neuell,
1971) This half of Minsky's (1974) "monotonicity” problem is no problem at
all, but a valuable kind of discipline.

The notational pouwer of the predicate calculus strikes me as a tool ue
cannot do uithout. Much of this power depends on providing a good vocabularys;
and, in the realm of control structure, | have done this. But the notation
itself is good, in my experience, independently of what it is talking about.
It allous you to think in terms of statements with truth values, its treatment
of quantifiers doesn't cramp your style, it provides powerful and natural
pattern matching, and it forces _ou to say what you mean.

This formal freedom is necessary to to support restrictions on the
substance cf rules. NASL formulas are not restricted to talking about
clinical parameters or values of physical quantities in a netuork, but they
are restricted (for practical purposes) in the way they talk about concepts
like action, decision, policy, and problem transformation. In order to get
something done in NASL, you must express yourself in terms of tasks, "rule-ins

and rule-outs," rephrasing actions, etc. The task language is restricted to
such a degree (there being no real loops, gotos, or conditionals) that many
things can be done only via these mechanisms.

These conventions enforce "intelligibility" at a useful level. At every
step, the system knous by way of quite shallow deductions almost everything
there is to knou about uhat it is doing, what its future tasks are, uhy it

chose to do what it did, etc. This knouledge is used heavily in the rules for

choosing, rephrasing, and mistake correction. Because the number of innate

VI Conclusions 184

concepts has deliberately been 2llowed to grow, shallow deductions are
possible and required; NASL does not have or need a theory of "program

g

understanding.” (Waldinger and Levitt, 1974) [believe this property is
essential to an intelligent program; it is no accident that the average person
is a good planner and a bad programmer.

A most important example of this reliance on innate control concepts is
the notion of "frozen tasks” which is so useful in the representation of
device schemata. {(Chapter 111) The instantiation of such a schema canses
information regarding the purposes of components to be activated, in the same
notation that is used for expressing explicit goals. These old tasks then
interact with neu ones in determing the solution. In this way, DESI exhibits
"machinomorphism." The purpose of a circuit is expressed as a frozen purpose
of the machine. No neu concept needs to be introduced, and the problem of
relating the special-purpose teleology of each domain to the machine's concept
of its oun purposes is avoided.

This organization of predicate calculus plus large innate vocabulary is
potentially of great value to the Rule Debugger module of Fig. VI.2. It is
knoun that debugging a data base requires keeping records of the use of data
uhich might be faulty. (McDermott, 1974a, Davis, 1376) The kinds of records
kept by NASL, deductive dependencies and task relations, are just the kinds
required.

Another power ful organization principle that emerged during this resecarch
uas the notion of "packet." (McOermott, 1975) This device enables NAGL to
represent large chunks of data at a relatively lou cost. 1t is used to
represent circuit diagrams and sets of related problem-solving rules.

From a distance, a packet looks like a large chunk of knouledge; up close,

it looks |ike many small pieces of knouledge. It may be used to implemont

VI Conclusions 185

"frames" (Minsky, 1974) in an "extensible" way. The knouledge is organized by
the dependencies | described before, but a neuw piece of knouledge can aluays
be added without immediate fear of interactions.

This is partly because NASL is organized around the expectation of
interactions. It expects that occasionally more than one or less than one
rule uwill appear relevant. In these circumstances, it enters special
protocols uhich first look for relevant higher-level rules, and then ack the

& o
user to supply them. Much remains to be done in this area. (Good work has
been done already by Davis (1976).) The results so far indicate that the
standard feeling that frames' contents are hopelessly "strongly coupled” (cf.
Sussman, 1975) is too pessimistic.

The fact that NASL's facts come in large chunks of small data has
implications for the design of the Rule Generator of Fig. VI.2. It is a very
appealing model of learning by discovery that large bites of information are
taken at one time, by copying an entire theory from one domain to another.
(Minsky, in progress) What is nice about rule-based theories in particular is
that they hint at the next step: altering particular rules that were faultily

transformed during the "copy," and adding domain-specific interaction
handlers.

Tﬁe kind of chunking that NASL currently supports would not handle this
kind of learning, but it is suggestive. [t might be worth making the effort
to recast the entire corpus of electronics information as an instantiation of
a more abstract (and smaller) theory of, say, common-sense physics. |f this
were successful, a start at capturing any similar domain would be to
reinstantiate this theory in a different way.

The conclusions | have draun so far can be summarized as follous: (1) A

flexible problem solver must have innate concepts of tasks, decisions, and

VI Conclusions 186

other similar control concepts; (2) predicate calculus is, at present, the
best language for expression of propositions in these terms; (3) the rules
expressed in the calculus must be tightly organized, |inked by dependencies

and bundled into packets.

V1.B Failures

The next questions are someuhat independent: s a predicate-calculus
theorem prover an effective mechanism for retrieval of information expressed
this way? In particular, can it be interfaced effectively with the
interpreter that uses it to decide houw to act? With respect to these
questions, the curr t version of NASL fails to provide satisfying ansuers.

As it stands nou, NASL is organized as follous. (See Fig. 1.9.) Control
resides in the interpreter, which decides what to do and hou to do it on the
basis of (a) foruard deduction triggered by plan and model assertions in the
data pool; (b) backuard deduction to find ways of breaking problems doun and
to ansuer questions in the domain of interest; (c) calls to the choice
protocol, uhich consists of a ritual of deductions regarding which
alternatives are good and uhich bad; and (d) calls to itself recursively uith
/:REPHRASE tasks (uhich are restricted te being inferential). The outstanding
features of this organization are:

(1) The action system aluays calls the theorem prover, never vice veraa,

(2) The system contains, in effect, tuwo independent interpreters, one for
plans, and one for implications (/:CONSEQ's and /:ANTEC's).

These features distinguish NASL rather sharply from the typical Al languages.
(Bobrow and Raphael, 1974)

The strengths of this organization are easy to see. The tuo interpreters

VI Conclusions 187

are optimized separately. For example, the theorem prover does not have to
worry avbout side effects, so it can re-order conjunctive goals and separate
goals into classes uhich share variables for backtracking purposea. (Gee
Appendix 4.) The interpreter, on the other hand, does no backtracking at Aall:
handling a failed action is a problem for the interpreter, not part of ita
solution mechanism. |t goes to great trouble to find reasons for its choices,
rather than just trying one alternative now, and another later if that one
fails.

These strengths are pleasing, but they do not outueigh the ueaknecces,
which are:

(1) The same knouledge must sometimes be put in tuo places, in tuo
notations, one for each interpreter.

(2) The deduction machinery is unable to use information about choice and
rephrasing.

(3) Additivity suffers from the user’'s uncertainty about uhich interpreter
to use. |f he guesses wrong, he may have to reorganize his data completely
uhen the chickens come home to roost.

Consider, for example, the notion of equation solving. DESI has a ueak
ability to do this (see Appendix 2 and Chapter [[[), uhich could he stronger
Without too much effort. Notice that this information has been expressar as
an "inferential plan" concerned with rephrasing manipulations of predicates on
constrained quantities. This seems entirely proper, clear, and elegant. Nou
consider the follouing deductive goal:

[= (+ 72X 3) 5)
Plainly, this requires exactly the same knouledge. (Cf. Bundy, 1975)

[t would be embarrassing enough to have to put the same information in tuo
places, but in fact the situation is even uworse: the necessary knouledge

cannot be given to STP at all! (Which is why it appears in an inferential

rephrasing plan.) [t would have to be put into an ad hoc LISP program.

VI Conclusions 188

Rather than do this, | have tried to make sure that deductive goals nf thisa
sort never appear. The absence of a choice protocol inside the theorem prover
hurts just as much. The most embarrassing consequence of this aukuardness is
that the user must plan his advice a little more carefully than is desirable;
he must decide what should be expressed as a task and what should be exprassed
as 3 deductive goal on the basis of his knouledge of the theorem prover's
limitations; this requires an unacceptable degree of knouledge of the
program's internal structure.

This problem evolved from seemingly innocuous beginnings: uhat started as
a single interpreter fissioned. It has been clear from the start nf this uork
{McOermott, 19374b) that the concepts of deduction and action were both going
to be necessary. As design and implementation proceeded, these tuo cateqnries
became more and more closely identified with the independent categories of

"blind search" and "careful mode," respectively. The theorem prover uas
written with feuer and feuer "careful" features, and more and more gener al
optimizatibn of the sort described above, while the action system abcsartied the
cleverness. This organization finally broke doun uhen [realized that «everal
sorts of “clever” foruard deduction, such as constraint resolution (Gtallman
and Sussman, 1976), would not fit into the framework of a stupid theorem
prover (STP). The inferential plan was created to fill this gap. 1t may turn

out to be the right solution (see belou), but if it does it will be an

accident.

To some degree this failure is due to sloppy thinking, but [belisve th
problem is more fundamental. The only way to make "carzful mode™ work
spend time asking and telling yourself uhat you're doing. 1
telling is itself "careful," things become intolerabiy

It might look as if asking and telling could be potentia

L-illIIl------.--.-..........._.._._.______r;

AN=AD43 964

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIF
FLEXIBILITY AMD EFFICIENCY IN A COMPUTER PR
JUN 77 D V MCDERMOTT

Al=TR=402

ICIAL INTE==ETC F/6 9/2
OGRAM FOR NESIGNING ==ETC(U)
NOOOL14=75=C=0643

=

VI Conclusions 189

the sense that they could normally proceed blindly, but, if trouble arises,
turn themselves into ongoing plan—language'p!ans. For example, with the
conjunctive goal [AND (P ?X) (Q ?X)], if the system "runs into trouble" on (Q
?X), it could turn itself into a plan of the form "Find a P; then verify it is
a Q," and use choice and rephrasing on the second subtask. There are tuo
problems with this. First, it is not all that easy to decide that you're in
trouble. The mere retrieval of tuo rules does not mean that a choice is in
order; the tuo rules could be functioning as a COND, or there may be no
intelligent criterion for selecting one or the other. Indeed, once one has
the notion that the theorem prover is the locus of "blind search," he tends to
urite rule systems of just this sort. However, | believe that the "meta-rule"
construct of MYCIN (Davis et. al., 1975) would go far toward solving this
problem cheaply.

Second, and much more difficult, is that the kind of sequencing done in a
backtracking theorem prover is just not the same as that in a planner.
Predicate calcuius is a non-deterministic language; it does no good to
transliate it into a formally isomorphic construction in a deterministic
language. Put another way, NASL is intelligible because many unintelligible
constructs have been covered by deduction or other built-in protocols: "map"
loops like those in LISP are done by generating items deductively and
generating a (sub)task for each; many search loops are done by finding one
such item; the choice protocol is a priceless piece of "canned loop" uhich
replaces specialized discrimination nets. To ask that any of these constructs
be translatable uhen necessary into NASL plans is to destroy this
intelligibility.

The situation is not hopeless; | have just learned less about this aspect

than | had hoped. Here are tuwo possible routes for avoiding this problem:

T A et s . W et

-

VI Conclusions 190

(1) Elevate this disorganization to the status of a theoretical conjecture
that "deductive information retrieval" is a separable activity that never
requires anything as complicated as solving an equation or rephrasing a roal.
(This is part of uhat R, Moore (1975) and Fahlman (1975) have been urging.)
Inferential plans uould be retained for these complex tasks.

(2) Provide deductive protocols analogous to those used by NASL. Dispense
with inferential plans. This will require careful identification of
situations uhere the protocol would be worth it (such as: choosing among
answers to a conjunctive goal, ordering conjuncts, choosing splits, ordering
implications to applyl: and a way of efficiently noticing wuhen there are no
applicable rules, in uhich case brute-force deduction is to he used.

The substantive difference betueen these alternatives is that alternative (1)
makes complex inference a kind of task, and hence deterministic, saving search
for the stupid theorem prover; while alternative (2) makes even complex

inference subject to backtracking, which is modified by the application of

rules.
V1.C Further Work

Let me list, in order of increasing difficulty, projects that are wuorth
doing to extend this reseérch: Some of them | may do myself.

(1) Encode more electronics knouledge. The gaps in ZORCH are deacrihed at
the end of Chapter III.

(2) Speed the system up. The system can undoubtably be made much faster
by abandoning some of my more elegant programming techniques.

(3) Implement the error-handling machinery | described in Chapters Il and
IIl. This will require careful reconsideration of data dependencies.

(4) Unleash the logical calculus. There are restrictions on NASL's
generality uhich | believe are due mainly to inadequate implementation of the
logical calculus. There are many domains which are beyond its grasp because

it lacks a notation for things |like time, belief, and the actions and beliefs

VIl Conclusions 191

of other people. To some degree these areas could be handled by the use of
modal reference points for time intervals and other people’s minds. The
system could simulate other persons' thought processes uith its oun theorem
prover, and avoid some of the problems associated with epistemic logic.
(Hintikka, 1962) Broadening the syntax of "/:TASK" to include an agent slot
would be a step toward representing other persons' purposes: the interpreter
could use itself to simulate them as a way of understanding their actions.
(Cf. McDermott, 1374a3) Houever, there is an "abductive" component to such
reasoning (Pople, 1973, Schank, 1975, Lehnert, 1975) that is beyond the
capability of NASL without more substantive revision.

(S) Endou the system with more "patience and skepticism." The greatest
weakness of NASL as it nou stands is its credulity. It accepts urong rules
(even syntactically urong ones) as readily as right ones. This is
unsatisfactory for a system uhich already understands its domain thoroughly;
surely one task it should be able to carry out is to estimate the plausibility
of a neu rule in the presence of its old ones.

In some simpie cases, a new formula may be disproved. In that case, the
sy'ten would be in an excellent position to claim that something nas urong.
Unfor tunately, this is not likely to happen very often. The less important
reason for this is that STP is not built to do interesting proofs. The more
important reason is that many theorems have conclusions defined only
pragmatically, by their meaning to the NASL interpreter. These are the
formulas of the form "Al and A2 and ... and Ak imply C," where C is in terms
of concepts having to do with choosing (e.g., "/:RULE-IN") or acting (e.q.,
"/:TASK"). These concepts are in a sense primitive; we want to define "good"
and "feasible" in terms of these concepts rather than vice versa. Thus, |

said that [/:T0-DO |task| |action| |outputs| |method|) meant, among other

I ————. .

-

VIl Conclusions 192

things, that the method was an effective, feasible, and permitted uay of
carrying out the task. But, since there is no independent theory of thece
concepts, a /:T0-D0 impiication cannot, except in the most trivial cases, he
disproved by shouing its method would not be permitted (or feasible or
effective) under the circumstances. Still another problem is that a typical
conditional of this sort is counterfactual; one of the antecedents is probhanly
false at the time the rule is heard, making a proof trivial. To disprove this
rule, the system would have to prove a modal theorem to the effect that "there
exists 7 ‘possible world' in which the antecedents are true and the consenuent
false.”

The solution to these problems is to integrate the theory of action
failure with the theory of assimilation of new information. In the early
stages, this uwill be probably require the co-operation of a human friend.
(Shortiiffe, 1976) The idea is to place a nen formula or set of formulas on
"probation.” (McDermott, 1374a) UWhen a contradiction, action failure, or
inability to choose occurs, the system will check the formulas involved to see
which are on probation and might contain errors. The idea is to see hou
things would work out differently if the formula were not there. [f, for
example, a choice fails because all alternatives are eliminated, and there is
a formula on probation involved whose absence would have left some
alternatives in, the system is justified in asking for clarification of the
neu rule.

Notice that this requires an "advice-taking protocol" for each class of
rules, that is, for each pragmatic predicate the system knows. [t would be
attractive if these were plan netuworks; and if the advice-taking actions in
certain circumatances could be framed as policies.

(6) Add a natural-language interface. This ie difficult in itself, and,

V1l Conclusions 193

in addition, its impact on the assimilation machinery | outlined is unclear.
Users will make fewer mistakes of notation if they use their oun languaqge, but
the language interface will inevitably pass ambiguities through for the
assimilation machinery to worry about.

{(7) Add a theory of learning so that the system will not forget its more

brilliant insights.

-

Appendix 1 194

Appendix 1 -- NASL Syntax and Informal Semantics

A formula is an S-expression enclosed in [brackets]. Redundant
parentheses may be dropped. Thus [(IS RESISTOR R#21)]) is written [IS RESISTOR
R#211.

The leftmost element of a formula or subpattern is its function. Functions
with range itrue, false! are predicates. The Boolean functions AND, OR,
IMPLIES, and NOT operate on truth values.

Besides functions and their arguments, there are "variable binders" uhose
job is to indicate the names and uses of variables in formulas. These are the
universal quantifier FORALL, the existential quantifier EXISTS, and LAMBDA,
which defines functions and is used for all other variable-binding chores,
(Lambda may be typed as "\" ("backslash") to my LISP system. | will use this
symbol instead of "A" throughout the appendices.) Thus the follouing are NASL
expressions:

[FORALL (X) (EXISTS (Y) (LOVES ?X ?Y))]
[FORALL (X) (SATISFIES ?X
(\ (Y) (EXISTS (2) (P ?X ?Y ?2))]

Variables are flagged with a "?" uhere used, but not where bound.

Many variables are not bound at all. As in most predicate calriilus-
oriented systems, all formulas are Skolemized (Nilsson, 1971) before being put
in the data base, so that there are no guantifiers at the "top level" of an
expression. (Expressions remain quantified inside lambda expressions and as
arguments to function.) Free (universally quantified) variables remain
prefixed with a question mark. A “skolem form" represents an existentially
quantified variable. Skolem forms look |ike

[SK |var| |id number| -dominating universals-].

For example, [FORALL (X) (EXISTS (Y) (LOVES ?X ?Y))) is internally reprecented
as [LOVES ?X (SK Y 79 ?X)): while [EXISTS (Y) (FORALL (X) (LOVES ?X ?Y))] is
represented as (LOVES ?X (SK Y 711). The program generally abbreviates the
general skolem form to "|var|!|id number|" on output; e.g., (SK Y 78 ?X) is
printed Y!78. | occasionally use this loose notation. (To avoid collision, 3
hash number derived from the skolem-form arguments is usually printed
follouing the variable.)

Because quantifiers are retained inside lambda expression3, the example of
a lambda expression above is skolemized to

(SATISFIES ?2X (\ (Y) (EXISTS (Z) (P ?2X ?Y ?Z))))

An important concept in predicate-calculus systems is matching, or
unification, of tuo formulas. (Robinson, 1965) Two formulas are said to match
If there is 3 substitution for their variables which makes them equal. The
variables are to be imagined subscripted with the name of the formulas they
came from, to avoid confusion. Thus [P ?X (F ?V)) matches [P (F ?2X) ?X] uith
the substitution

Xz - [F ?2v))

Appendix | 195

Internally, substitutions and subscripts are handled using a method der iver
from (Boyer and Moore, 1372). (See Appendix 4.)

There are tuo special cases of matching. F; subsumes F,, it F, is rqual
to the result of performing a substitution on Fl. F; and F, are variants if
they subsume each other; alternatively, if renaming the variables of fl makes
it equal to Fz.

These concepts are essential to the operation of the deductive ayatem,
{(Appendix 4.)

The matcher is not intended to be a complete unification algorithm for
nth-order logic, typed A-calculus logic, etc. A lambda expression uill match
another lamhda expression if their variables differ only in name. 0Of course,
free variables may not become bound to fragments of lambda expressions
containing bound variables. Thus [P (\ (X Y) (F ?2X (G ?Y)))] uill not match
(P (N (UV) (F 20 2U))]. The matcher uill not create lambda-expressions
without prodding. (See belou.) Thus, [(?F Al doesn't match (G (H A A)] uith F
- [N (X)) (G (H ?X ?2X))) or any of the alternatives.

The language allous formulas to refer to other formulas. Thus [(ABSIHT
[BROWN COW#221]) expresses a property of [BROWN COWH22). This is one nf tuo
Hays in uwhich NASL expressions may refer to other expressions. (It may be
considered equivalent to, but more convenient than, the use of Goedel numhersa
of formulas.) It has the following variants. First, every user-defined
formula has an atomic name. (See the description of DEFMLA in Appendix 2.) If
FMLA#33 is the name of [BROWN COWW22], we may write [ABSENT FHMLA#21). Second,
an embedded formula may have variable parts, called escape forms, uhich are
prefixed by "_": this indicates that the value of the prefixed exprecsion
(uhich should be a formula) is to be used to construct the formula. For
example, if FUN is a function that maps a formula into its first subformula,
[FOO [BAR _(FUN [F A)))) = [FOO [BAR F)). Escape forms are most useful in
conjunction with variables. Thus [FOO [BAR _?FMLA]] says, "For all formulas
?FMLA, the formula obtaihed by making the pattern of ?FHLA the arqument of BAR
has property FO0." (Each such embedded formula is equivalent to some open
term, such that substituting Goedel numbers for its free variables gives a
closed term uhose value is a Goedel number.)

Matching embedded formulas against formulas with escaped variables is a
way of decomposing formulas. This is used by some of the "meta-sustems" of
NASL. For example, the result of matching [P (FOO _?X)] against (P [FOU BAR]))
is the substitution X - [[FOO BAR]]).

For ease of manipulation of formulas, the primitive function DEN is
understood by STP to map formulas onto uhat they denote. Thus (DEN [+ 5 §]] =
{+ 5 5]. One convention | use is that variables ranging over formulas start
with the character "+"; thus ?+X might designate [[FO0)) and ?X designate
(FOO). This is purely a convention and not part of the lanqguage.

Notice that all NASL formulas in this paper are surrounded by [brackets],

For example, in the result of matching (P ?X] against (P (FOO BAR)], | write,
"?X has value [FOO BAR]," even though ?X was originally matched against A
subpattern without brackets. This enables you to tell unambiguous!y uhich

formulas are being used and which quoted. (Actually, when it comes to atomic
symbols, | rarely make the distinction between a symbol and a formula. |
allou myself to drop the brackets in a formula like (FOO].)

The "sense" construct using single quote is the second way in uhich NASL
expressions may refer to other NASL expressions. It allous one to refer to
the "meaning" of an expression and not its value. For example, even if.the
value of [= NIXON PRESIDENT) is false, (POSSIBLY '(= NIXON PRESIDENT)) may be

———E e

Appendix 1 196

true.

Substitution of equals is, of course, prohibited inside any emhedded
formula or sense.

The operator POSSIBLY is an example of a modal predicate. (Hughes and
Cressuell, 1972, Bressan, 1972) The basic system-supported modal operateor isg
[T |reference-point| |pattern|], meaning the value of pattern in "pnssible
wor ld" reference-point. (Prior, 1967) The second argument is implicitiy
quoted. Thus (T (1978) PRESIDENT) would have value NIXON;: and [T (1970) (-
NIXON PRESIOENT)] would have value true.

NASL contains tuples like those of QA4 (Rulifson et. al., 1977). They are
represented using <angle brackets>. Within a tuple, the prefix "!'#" me.ana
that the value of uhat follous is to be considered spliced in instead of
substituted directly. Such an expression is called a segment form. For
example, if [FOO BAR] = (<A B C>], [<P (FOO BAR) Q '#(FO0 BAR) R~) = (<P -A B
C>QABCR>). A similar notation, "'#_", is used inside embedded formulas,
1f (WHIZ BANG) = (<(A) (B) (C)>), ((P '#_(WHIZ BANG) Q]] = ([P ABC 0.

Segment forms make matching more complicated. Strictly speaking, these
tuo formulas

(P <'H?2X 'H?Y>) and (P <A B>]
should match three ways

X+ Lesl, ¥ + [<A B30,
X = [<A>], Y = []),
and (X » (<A B>), Y » (<)),

My matcher is too lazy. Occasionally this means deductive formulas have to be
framed in terms of list operations instead of in the most concise style.

Semantics

While I am in sympathy with Hayes's (1974) contention that the semantics
of a representation is very important, the subject seems much too complicated
for practical representation schemes. NASL is a modal calculus, which should
have an attractive model theory |like Bressan's (1972). However, operators
like "/:CONSISTENTLY" ruin it. Furthermore, there is a pragmatic component to
many predicates uhich could not be expressed model theoretically. For
example, "/:CONSEQ" and "/:ANTEC" both mean "OR," but they are used in
different ways. Consequently, the most precise description of the meanina of
the language is a description of STP (Appendix 4) to account for the strictly
gsemantic “meaning” of a symbol; and the following index of pragmatic
predicates uWith an informal description of the pragmatic meaning the system
assigns to each one.

Here is a list of built-in, pragmatic predicates, with an informal
description of each.

, ST

Appendix | 197

Predicates and Functions with Meanings to the Interpreter

Task Specification and Relation

[/:TASK |name| < -input pvars- >
(\ (-vars-) |action])
< -output pvars- >]
means task name, which consists of doing action with the values of the
input pvars substituted for the lambda-variables, is worth doing. [t uill
produce output values to be bound to the output pvars.

[/:SUBTASK |task name 1| |task name 2|)
[/:SUCCESSOR | task name 1| [task name 2|])
These relate tasks. A task uwill not be started until all its super tacks
enablement-status SUBS-ENABLED and its predecessors have enablement -
status SUCCS-ENABLED. These assertions may therefore be used to direct the
flow of control.

{/: TASK-STATUS |task name|l

[/:ENAB-STATUS |task name|]

[/: TASK-ACTION |task name| |action]]

{/:REDBUCED |task name|]

[/:ELABORATED |task name|)

These define the control state of a task as discussed in Sect. 11.B.1.

[/:POLICY |task name| |action]|]

[/:SCOPE |secondary task name| |primary task name|]

These functions are define policies. When a policy task has beqgun, it is
declared to be a /:POLICY, usually with some /:SCOPE. It will be explicitly
finished with a /:FINISH task. (See belowu.)

Primitives

{/:MOD-MANIP |task name| |action| |deletelist| |addiist]|]

[/:MONITOR |formulal (\ (|v]) |action|)]

(/:SET ' |expression| |valuel)

These are the non-macro worlidly primitives. /:MOD-MANIP defines the
deletelist and addlist of the given action. /:MONITOR creates a policy of
looking for the erasure of formula and creating a task with the given action,
(The variable v will be bound to the task that did the erasing.) /:5C1 is used
to change or set the value of the expreesion; this should be a model quantity
like voltage or resistance, not a pvar. |[ts effects are supported as though
they were model manipulations.

[/:INFER ' |proposition| < -task names- >)

(/:FIND (\ vyl oon dvp) Texpl)] ==> <fpvi| ... [pv,l>

[/:FIND-ALL |property|) ==> <|pvar|>

[/:EVAL '|expression|] ==> <|value|>

These are the inferential primitives. Their "effects" are supported hy
purely deductive dependencies. /:FIND, /:FIND-ALL and /:EVAL call the
inferential mechanisms of Fig. {.9; /:INFER augments them with extraordinary
deductions. /:FIND's argument is 3 \-expression of n arguments; STP is called
with its body as a request, and the values of the n variables in its anauer

e

Appendix 1 198

are assigned to the pvars. |[f a choice of ansuers is required, this uill he
reflected in the data-dependency supporting these values. /:FIND-ALL takes a
property of one argument, and returns a tuple of all the objects uhich satisfy
it. /:EVAL calis the evaluator and returns the value.

/:INFER is used to urite special inference rules. The proposition qiven
is recorded, supported by the propositions recorded by the specified tack
names. For example, the follouwing task net does the obvious

(/:TASK MINOR <> (\ () (/:FIND (\ () (MAN SOCRATES)))) <>]
[/:TASK MAJOR <>

(\ () (/:FIND (\ O (IMPLIES (MAN ?X) (MORTAL ?X))))) <>]
{/:TASK CONCLUSION <>

(\ () (/:INFER ' (MORTAL SOCRATES) <MINOR MAJOR>)) <>]

[/:0UTPUT < -vals- >) ==> < -pvars- >

[/:PRIM |type])

/:PRIN defines a primitive action; type should be one of *FINISHID, *5ETUP,
or *BEGUN. *FINISHED means the action is done; *SETUP means the action is a
policy whose successors may nou be enabled; *BEGUN means the action is A2
policy uhose successors may not be enabled until the policy is /:FINIGHLD.
/:0UTPUT is like [/:PRIM xFINISHED], but in addition the values are returner
to be made pvar values. Thus, the task [((FOQ)] in

[/:TASK (FOO) <'(PV1)> (\ (V) (/:0UTPUT <?V>)) <" (PV2)>]

sets [(PV2)] to the value of [(PV1)]) when it becomes available.

[/:CONTINUE |task name| |action]])

{/:FINISH |task name| |action]]

These functions are used to control policies. MWhen all the primary
subtasks of a policy’'s scope have been finished, a /:FINISH task uill he
created as a subtask of the policy; it is up to the user to supply rules to
reduce it. The user may also execute actions of the form [/:CONTINUE [policy-

task| Jaction|] to perform intermittent execution of the policy. (See Sect.
11.8.1.)

Macro Primitives

[/:00-SUBNET |plan schema| |vars map]|]

[/:PLAN-INSTANCE [plan instance| |plan schema| |supertask]]

[/:MAIN |subtask| |supertask]]

As explained in Chapter Il, these formulas are used in attaching
standardized subnetuorks to the current plan,

{/:SEQ |action 1| (\ (-vars-) |action 2|))

[/:FORK |action 1| (\ (-vars-) < -actions- >)]

{/:WHILE [primary action| < -secondary actions- >]

[/:D0-ALL < -actions- > |action|]

These macros elaborate into various standard structures. /:SE1 turns into
a net of tuo tasks, the first of which feeds pvars to the second:; the outputs
of the second are the outputs of the /:SEQ. /:FORK produces no pvar valursa;
it sets up one task per action, action 1 being the predecessor of each of the
other tasks. The values of action 1's outputs are fed to the succesaor tacks,
/:UHILE starts all the secondary actions as policy tasks with /:SCOPE equal to
the task for the primary action. /:00-ALL carries out all the actions in no

. - e e g —

Appendix | 193

particular order, outputting the values of action's pvars.

Task Reduction

[/:T0-D0 |task nmame| |action 1| |output pvars| |action 2|]

means, "action 2 is an effective, permitted, and feasible uay of doing the
task named which consists of action 1 and outputs the given pvars.” [leducing
formulas of this kind is the first resort in reducing problematic task-.

[/:REPHRASE |task name| |action formula| |output pvars]|])

This action, which must be reduced by user-supplied rules, is set up uhen
/:10-00 deduction fails. GSee Sect. I[.C.2. 1Its object is to leave the tack
/ :REDUCED.

Predicates with Meanings to the Choice Protocol

[/:CHOICE |choice name| |context| |formulall

means a task or the executive (context) requires 3 choice regarding ansuers
to formula. The choices are recorded by formulas |ike

[/:0PTION |choice name| |option name| |ansuer|]

[/:RULE-OUT (option|l

[/:RULE-IN |option|]

[/:RULE-TOGETHER < -options- > |neu formulall

These three kinds of formulas are looked for repeatedly, in this order on
each pass. So, for example, if a formula is /:RULED-DUT before the /:RUIE-IN
rules are looked at, it has lost its chance. See Sect. [[.C.1.

[/:QUIESCENCE |choice name|]

is recorded when no activity occurred on a choice cycle. [t is used to
cause further foruard deduction of /:RULE statements.

Functions and Predicates Defined by Built-in Axioms

[ELT |x]| |tuple|) means x is an element of the tuple.
[SET-OF -ALL |prop|] denotes the set of all objects with the property
prop.

[MAPCAR | f] |tuple|]l denotes the tuple obtained by applying f to
every element of the tuple.

[DEL |x| [tuple|]l denotes the tuple obtained by deleting the firat
occurrence of x from tuple.

[(SUBTUP |tup 1| |tup 2|) means every element of tuple 1 is an
element of tuple 2.

[CONTAINS |formula 1| |formula 2|) is true if formula 2 occurs
someuhere inside formula 1 (as a proper
subexpression),

[F-IS-ATOM |formulal) true of atomic-symbol formula like [[A))

(F-1S-VAR |formula|) true of formula of variable, like [[?X]]

[DEN |formula|) strips a layer of brackets off formula. (See above.)

[/:= |x| |yl|) true if x and y match; else assumed false.

gy TN —

Appendix 1 200

[= |x] Jy)) true if x and y designate the same thing. To test
this, the system first tries matching,
then evaluating (via "=/>") x and y
and trying the match «yain.

[PRESUMABLY ' |proposition| |use|]l if true, may assume the
proposition from inability to disprove it.
(See Sect. 11.B.2.)

[XOR1 |pat| < -propositions- >] means exactly one of the propositions
is true if the pattern is. E.q.,
(XOR1 (LIVING ?X)
<(ANIMAL ?X) (VEGETABLE ?X)>)

[NFUN |n| |f|) denotes a function of n arguments wuhich makes a |ist
of them and applies f to it. E.g.,
INFUN 3 (\ (L) (+ '#2L))]
= [\ (XY 2Z) (+ 2X ?Y 22)])

[+ -args-] (- |x| |yl) [x -args-] [// |x| |yl]
arithmetic functions. These are simplified by built-in LISP functions
called by the evaluator.

(/< Ix] 1yl) > Ix| Iyl [=/< x| |yl) (/>= x| |yl]
arithmetic inequalities

Predicates with Meanings to the Theorem Prover

Pragmatic versions of "OR":

[/:CONSEQ |p| |aql)

[/:ANTEC [p] |ql}

[/:GEN |p| |ql]

The first tuo are used during backuard chaining (a call to STP). The
second i8 also used during foruward chaining (a call to RECORD). /:GEN s
really a call to STP in the midst of forward chaining. See Sect. I1.B.Z.

[/:PKT |name| |packet vars| -conjuncts-]
Like [AND -conjuncts-], but indexed differently, and more efficiently if
most of the conjuncts uill never be referenced.

[(=/> "|left] |right])

means [= |left]| |[right|], but it also means that any expression subcumerd by
left should be replaced by right uherever it appears (except inside a quoted
expression). In practice, this replacement is done mainly in neuly detached
deductive conclusions,

[/:CONSISTENTLY ' |proposition]|]

ia true iff the proposition cannot be refuted by STP in the current data
base. |f the proposition has free variables, they uill be converted to Skolem
forms before trying the refutation.

Appendix | 201

[/:00 |supporter| |path| < -supporters- > |supportee]]

[/:SUPPORT < -supporters- > |supportee]l

are used to access data dependencies as though they were stored in the data
base. The /:00 formula is true if there is a data dependencu linking the
supporters to the supportee. These are tuple-fied versions of the latelaod
treelets described in Sect. [1.0. In particular, the element suppor ter must
appear in the supporters treelet, uith labels in path. For example, e might
have

[/7:00 ([/:TASK THEB7 <> (X () (PUTON A B)) <>)
<DD-ACT-RESULT >
<(DD-ACT-RESULT < (/:TASK THEB7 <> (A () (PUTON A B)) <]~
<0D-APRIN <MOVE-DEFN>>) >
[ON A B])

/:SUPPORT is simptified version in which the supporters must be just a list of
deductive supporters. [t is equivalent to [(FORALL (S) (IMPLIES (ELT 75 « -
supporters- >) (/:00 ?S <> < -supporters- > |supportee|))].

[T |reference point| |term]|]

[S '|proposition]]

These are the built-in modalities. The first is the value of term from the
given reference point; the term is usually a fact with value true or false.
[S "|fact|] means "S beqgins to be true"; it amounts to a special treatment of
the data dependency that supports it.

[FRAME |ref paint| < -ref pointg- >)

[N |[ref point| '|fact]|]

Computationally efficient uways of using modalities. MWhen the system triea
a deduction of a T-formula, it will try to smash the reference point to 2 data
pool using these formulas. See Sect. 11.B.2.

Predicates with Meanings to the Matcher
Formula fleaning
(/?2/? |sym|] Inside an embedded formula, matches a variable uith
the symbol sym.
Example: ([\ (_?24V) (F (/?2/? _?4V))1})
matches [\ (X) (F ?2X)]) with 4V & ((X]).

[IDN |n} |k]|) The identity function of n args that returns arg k.
Matches [\ (Xl...x'n’) ?X'k’]

K |In| [c]) The constant function of n args with value c.
Hatrhos [\ ()(l...)('n') 'C'l

T

—————

Appendix 1

[CMP | fun| < -funs- >]
The composition of fun with the funs. |f there are
n of them, each with m args, this matches
(\ (Xl...X,m') (| fun] -args-)],
uhere the ith "arg" is of the form
(Ifunil ?Xl ...?lell.

Examples: [(CMP SIN <?F>] matches [SIN] with F » [IDN 1 1).
[CHMP FOO <?F1 ?F2>]
matches [\ (X Y) (FOO (+ ?2X ?Y) (- ?Y ?X))]
with F1 - (4] and F2 - [\ (X Y) (- ?2Y ?2X)]

Appendix 2 -- A Listing of DESI

This is the current (June 27, 1977) version of the design knouledqge.
is complete except for the definition of LISP functions defining macro-actionsg

like CONFIG. (See Chapter 111.)

20

it

In Appendices 2 and 3, NASL formulas are defined and added to the data
base uith the function DEFIMLA, uhich is someuhat similar to MACLISP s DIFIIN,

The expression
[DEFMLA |name| |formulia| |destination]]

names the formula and adds it to the data pool that is the value of
destination. The destination is optional; if it is absent, the current
CURRENT-DOPx uill be taken.

(DEFMLA STASK-DEFN (-/> A (STASK 2TSK ?SUPER ?1 2R ?0)
(AND (/:TRSK ?TSK ?1 2R °0)
(/:SUBTASK ?TSK ?SUPER)))
GENERAL-DP¢)

(DEFNLA DEVICE-CLASSES .

(XOR1 (IS DEVICE-TYPE °D)

<(BASIC-DEV-TYPE 70)
(SUPERORDINATE -DEV-TYPE ?0)>))

(DEFNLA BASIC-DEFN (EQUIV (BASIC-DEV-TYPE ?X)
(NOT (EXISTS (Y) (SUB.DEV-TYPE ?Y ?X) »nn

(DEFALA MAIN-DEV-TYPE (-/> A (MAIN-DEV-TYPE 72X 70T) (DEV-TYPE ?X 20T)))

(DEFMLA SUB-DEV-TYPE-| (-/> R (SUB-DEV-TYPE 2071 °DT2)
(-/> A (DEV-TYPE 7X *0TI)
(DEV-TYPE 2X 20121))

pool

5
“

(DEFALA

(DEFALR

(DEFNLA

(DEFMLA

(DEFNALA

(DEFALA

(DEFNLA

(DEFNLA

(DEFALA

BASIC-DEVICE -CLASSES
[XOR1 (BASIC-DEV-TYPE *D)
<(PRINITIVE-DEV-TYPE 20)
(COMPOSITE-DEV-TYPE D)
CIOEAL -DEV-TYPE 20)>)
GENERAL -DPe)

COMPOSITE-DEVICE-CLASSES
[(XOR1 (CONPNSITE-DEV-TYPE 2D)
<(GENERAL -DEV-TYPE D)
(SPECIALIZED-DEV-TYPE 20)>)
GENERAL -DP+)

GENERAL -DEFN (EQUIV (GENERAL-DEV-TYPE ?X)
(NOT (EXISTS (Y) (DERIVED X ?Y) nn

SPEC-DEV-TYPE-1
(-/> A (SPEC-DEV-TYPE 0TI ?0T2)
(-/> A (DEV-TYPE >X ?0T1) (DEV-TYPE ?X ?0T2))))

SPEC-DEV-TYPL -2
[-/> A (DERIVED ?DT1 °0T2)
(-/> A (SPEC-DEV-TYPE 2072 ?DT3)
(SPEC-DEV-TYPE 20T1 207T3))))

SPEC-DEV-TYPE-3
[(-/> A (SPEC-DEV-TYPE 2071 20T2) (SPECIALIZED-DEV-TYPE 20T1))
GENERAL -DP)

SOUL -ON-I1CE
(-/> A (DERIVED °DT ?G)
(-/> A (MAIN-DEV-TYPE X 20T)
(AND (MAIN-DEV-TYPE (SOUL ?X) ?G)
(-/> C (/:SUBTASK 7T (DEEP-FREEZE (SOUL ?X)))
(/:SUBTASK 77 (DEEP-FREEZE X)))))))

EASY-DESIGN
(7:70-00 275K (DESIGN (\ OO (DEV-TYPE 72X 20T))) <?NAME>
(RAKE 20T)))

+DESI-1
(/1 70-00 T (/:REPHRASE >TSK (DESIGN _?4P] <?DEVNARE>)
«>

(/1DO-SUBNET (DESI-REPHRASE-PLAN 24P ?TSK ?DEVNARE) <>))

Appendix ¢

C———

-

———
P s e ——

-

GENERAL-DPe)

(DEFNLA +DESI-2

(~/> A (/:PLAN-INSTANCE 7P|

(DEST-REPHRASE -PLAN 24P 2TSK 2DEVNANE)
5uP)

(=/> R (/:= 74P [\ (_7+V) _748])

e e wow

(AND

(/:TASK (EXPLODER °P1) «>
(\ O (D-EXPLODE ?4P)) <>)
(/:SUBTASK (EXPLODER ?P1) ?SuP)

(/:TASE (ACCOUNT-FOR-ALL ?P1) <>

(\ O (ACCOUNT-FOR-ALL-SHARDS ?4P)) o)
(/:SCOPE (ACCOUNT-FOR-ALL ?P1) (EXPLODER °PI))
(/:SUCCESSOR (RCCOUNT-FOR-ALL ?PI) (EXPLODER ’P[))

(/:TRSk (CORE-FINDER ’Pl) <>
(N O (/:FIND (\ (40T)
(CORE-DEV-TYPE 24P 2407))))
<" (CORE-DT °P1)>)
(/:SUBTASK (CORE-FINDER ?PI) ?SUP)

(STASK (MAIN-TASK -INFERER *P1) ?SUP <' (CORE-DT ?PI)>
(\ (+DT) (/:INFER
' (AND (STASK (MAKER ?TSK) ?TSK <>
(\ () (MRXE (DEN 2+0T)))
<' (HINNER ?TSK)>)
(/:MAIN (MRKER ?TSK) ?TSK))
< (CORE-F INDER ?P1)>))

<>)

(/:SUCCESSOR (MAIN-TRSK-INFERER ?P1)
(SIDE-TRSKS-F INDER ?P]))

(STASK (SI0E-TASKS-FINDER *PI) ?SUP <>
(\ () (/:INFER
' (FORALL (4ST)
(~/> G (SIDE-TASK 74P ?745T)
(EXISTS (T)
(AND (STASK ?T ?TSK
<' (MINNER 2TSK) >
(DEN ?4ST)
<>)
(/:SUCCESSOR
(MAKER ?TSK)
M))))

«»)

(STASK (FEATURES-FINDER ?P1) ?SUP <>
(AN]

2

Appendix 2 204

T T

g@?&ﬁg -

Appendix 2 205

(/1 INFER
(FORALL (4FT)
(-/> G (D-FERTURE 24P 24FT)
(EXISTS (T)
(AND (STASK 2T ?TSK <>
(ANN$]
(D-NOTE (DEN ?4FT)))
<)
(/:SCOPE ?T (MAKER ?TSK))
¢/:SUCCESSOR
?T (MAKER ?TSK))) 1))

(STASK (GATHERER ’P1) ?SUP <>
(\ () (/:INFER ' (/:REDUCED ?TSK)
<(CORE-F INDER °P])
(SIDE-TASKS-# INDER 7P1)
(FEATURES-FINDER 2P1)>))

<>)

(/:SUCCESSOR (EXPLODER ?PI) (CORE-FINDER °P]))
(/:SUCCESSOR (EXPLODER °PI)

(SIDE-TASKS-F INDER 2P1))
(/:SUCCESSOR (EXPLODER ?PI) (FERTURES-FINDER ?PI))
(/:SUCCESSOR (MAIN-TASK-INFERER >PI) (GATHERER PI))
(/:SUCCESSOR (SIDE-TASKS-FINDER *PI)

(GATHERER ?P1))
(/:SUCCESSOR (FERTURES-FINDER *PI) (GATHERER ’P1))

(/:MAIN (GATHERER ’P1) 25UP))))
GENERAL-DP¢)

3 THE INTENT OF D-EXPLODE IS TO DISCOVER D-SHARDS, WHICH GENERATE

3 (1) CORE-DEV-TYPE, THE KIND OF DEVICE WHICH HRS THE DESIRED PROPERTY

y (2) D-FEATURES, WHICH WILL GUIDE (AS POLICIES) THE MAKER OF THE DEVICE
3 (3) SIODE-TASKS, WHICH TYPICALLY RRE CONSTRAINTS ON PROPERTIES OF THE

’ DEVICE

(DEFHNLA D-EXPLODE
(/:70-00 7T (D-EXPLODE ?4PROP) <>
(/1 INFER ’ (D-SHARD 24PROP 24PROP) «>)])

(DEFALA D-SHARD
(-/> A (D-SHARD 24P (% (_?+V) (AND '#_74CS)))
(FORALL (+C) (/:GEN (NOT (ELT 24C ?4CS))
(D-SHARD 24P [\ (_24V) _24C1)))
GENERAL-DPse)

(DEFALA ACCOUNT-FOR-ALL-D0

——

i

—

Appendix 2

(/:70-DO >T (RCCOUNT-FOR-ALL -SHARDS ?4P) <>
(/:PRIN «SETUP))
GENERRL-DP#)

(DEFMLA ACCOUNT-FOR-ALL-FINISH
[-/> A (/:TASK-ACTION ?FIN (/:FINISH (RCCOUNT-FOR-ALL °P1)))
(AND (/:REDUCED ?FIN)
(-/> G (AND (/:PLAN-INSTANCE ’P1
(DEST-REPHRASE-PLAN 24P ?24TSK
?+DEVNANE
24HAY)
2SUP)
(D-SHARD 24P ?4SHARD))
(STASK (SHARD-ACCOUNTANT 24SHRRD) ’F IN

<>

N O
(RCCOUNT-FOR-SHARD ?aSHARD
WP)
<))

(DEFMLA SHARD-ACCOUNT-DO
[/:70-DO ?TS¥ (ACCOUNT-FOR-SHARD ?4SHARD ?+P) <>
(/:CALL (SHARD-ACCOUNT-CHEAT ?4SHARD 74P})]
GENERAL -DP#)
4 THIS 1S HANDLED BY A LISP FUNCTION (NOT SHOWM)
s IN THE CURRENT IMPLEMENTATION

(DEFALA D-NOTE-00
(/170-00 >TASK (D-NOTE 2PROPERTY) <> (/:PRIN #SETUP)))

(DEFALA D-NOTE-FINISH
(/:70-00 ?TASK (/:FINISH ?PTASK (D-NOTE 2PROPERTY)) <>
(/:PRIN sF INISHED)))

(DEFALA CQ-FUNS-1 [/:ANTEC (NOT (DERIVED-CQ ’'(?F ?X)))
(CONTROL-RTTRIBUTE ?F)))

(DEFMLA CQ-FUNS-2 [/:ANTEC (NOT (IMMEDIRTE-CQ ' (?F 2X)))
(CONTROL-ATTRIBUTE °F)))

(DEFMLA CQ-SHARD
[/:ANTEC (NOT (D-SHARD 24P [\ (_2sV) (= _74EXP1 _?4EXP2))))
(AND (POS-CO-SHARD 24P 24V 74EXPL 74EXP2)
(POS-CQ-SHARD 74P 24V 74EXP2 24EXP1))))

(DEFALA POS-CQ-SHARD
[/:ANTEC (NOT (POS-CQ-SHARD 74P 24V 24EXP1 74EXP2))
(/:GEN (NOT (AND (NOT (CONTAINS 24EXP2 ((|??] _?eW))))
(/> "(DEN [\ (_24V) _24EXP1))
)

206

(CONTROL-ATTRIBUTE 7F)
(a/> " (DEN 24F) 2F)))
(SIDE-TASK 24P
0\ (_2aV)
(CONSTRAIN <’ (_2+F (|22] _2eV))>
() (s 2 _24EXP2) 1) 1)
GENERAL-DPs)

(DEFMLA CORE-DT-1
(/1ANTEC (NOT (D-SHARD 24P [\ (_?sV) (DEV-TYPE (/2/7 _2aV)
2010
(CORE-DEV-TYPE 24P 240T)])

3 CHOOSING CORE-DEV-TYPES

(DEFALA CORE-DT-CHOOSE
(/1tANTEC (NOT (CHOICE ?C ANSHER ([CORE-DEV-TYPE _?44P _?4401))
(-/> G (AND (/:0PTION 2C ?R1
[CORE-DEV-TYPE _?44P _?4401))
} (/:0PTION 2C ?R2
(CORE-DEV-TYPE _244P _24402))
(SUB-DEV-TYPE (DEN (DEN 2+401))
(DEN (DEN ?44D02))))
(/:RULE-OUT 2A1))))
1PLUS DONRIN-DEPENDENT INFO IN ZORCH

(DEFALA MAKE-BASIC
[(-/> A (BASIC-DEV-TYPE 2DEV-TYPE)
(/170-00 ?TSK (MAKE ?DEV-TYPE) <?NARE>
(/:00-SUBNET (MRKE-BRSIC-NET 20EV-TYPE) <DEVNANE>))])

B e

(DEFALA MAKE-BASIC-PLAN
(-/> R (/:PLAN-INSTANCE ’P1 (MAKE-BRSIC-NET ?DEV-TYPE) ?SUP)
(AND (/:TASK (GRABBER 7P[) <>
(AN]
(/:CALL
(GRABBA (\ (X)
(MAIN-DEV-TYPE X
0€EV-TYPE)))))

L AR — T e -

<' (DEVNARE °P1)>)
(/tMAIN (GRABBER *P) ?SUP)))
GENERAL -DPs)

! (DEFALA MAKE-PRIN
] (-/> A (PRINITIVE-DEV-TYPE DEV-TYPE)
(=/> A (/:PLAN-INSTANCE
P1 (MAKE-BASIC-NET ?DEV-TYPE) ?SUP)
(FORALL (@ D O)
(-/> 6
(FORALL (X)

Append i x

-
<

207

(INPLIES (DEV-TYPE X ?DEV-TYPE)
(CONTROL 2Q ?X 2D 2C)))
(EXISTS (SUB)
(STASK 7SUB ?SUP <’ (DEVNANE 7PI)>
(\ (X) (SELECT-VALVE
'eQ))
o)

(DEFNLA NAKE-COMPOSITE
(-/> A (CONPOSITE-DEV-TYPE *0EV-TYPE)
(-/> R (/:PLRAN-INSTANCE
7Pl (MAYE-BASIC-NET ?DEV-TYPE) >SUP)
(EXISTS (5uB)

(STASK 7SUB ?SUP <' (DEVNANE P1)>
(\ (X) (EXPAND ?X))
<>) nn

(DEFNLR MAKE-1DEAL
(/> A (IDEAL-DEV-TYPE >DEV-TYPE)
(/> R (/:PLAN-INSTANCE
?P1 INRKE-BASIC-NET ?DEV-TYPE) 2SUP)
(EXISTS (SUB)

(STASK 7SUB ?SUP <' (DEVNAME 7P[)>
00 (INPLEMENT 2X))
) nn

(DEFNLA COMPONENTS-NOTICE
(/> A (CONPONENTS ?X *PARTS)
(~/> G (ELT ?PART >PARTS)
(~/> A (RAIN-DEV-TYPE >X 2DT)

(EXISTS (P])

(AND (/:PLAN-INSTANCE ?PI

' (NAKE-BRSIC-NET 20T
(DEEP-FREEZE ?7X))

(7:FINISHED (GRABBER ?P1)))))))
GENERAL -0Ps)

JOEFINITION OF EXPAND

1 THE NOST GENERAL SPECIALIZATION AND ANY DEFAULT SPECIALIZATIONS OF R
+ DEVICE TYPE 7G ARE TREATED THE SANE HERE, BUT (A) THE CHOICE RULES

¢ BELOW WILL TAKE THE DEFAULT, OR (B) USER-SUPPLIED RULES WILL
3 FAVOR THE GENERAL.

(DEFALA NOST-GENERAL -DEFN
[(-/> A (NOST-GENERAL-SPEC 2G 0T)
(AND (SPEC-DEV-TYPE DT °G)
(/> C (MAIN-DEV-TYPE 72X ?G)

Appendix

-
<

208

ks T

Appendix 7

(/170-D0 ?TRSK (EXPAND ?X) <>
(SPECIALIZE ?x 20T))

(DEFNLA DEFAULT-SPEC-DEFN
(~/> A (DEFAULT-SPEC °C ?0T)
(-/> C (MAIN-DEV-TYPE ?X ?G)
(/170-D0 ?TASYK (EXPAND °X) <«
(SPECIALIZE 2X 20T) M)

(DEFMLA SPECIALIZE-DEFN
(/> C (MAIN-DEV-TYPE 2DEV >0LD-DEV-TYPE)
(/:MOD-MANIP (SPECIALIZE “DEV ?DEV-TYPE)
<" (NAIN-DEV-TYPE 2DEV ?0LD-DEV-TYPE)>
<" (MAIN-DEV-TYPE 2DEV 2DEV-TYPE)>)))

3 IF ONE DEVICE-TYPE IS A SPECIALIZED VERSION OF ANOTHER, TRY
3 TO TAKE THE NMORE SPECIFIC, OTHER THINGS EQUAL.

(DEFALR SPEC-DEV-BETTER
(-/> A (DERIVED °DT1 *DT2)
(-/> G (AND (=/> ' (DEN 240T1) 20T1)
(a/> ' (DEN 24DT2) 20T2))
(/> A (/:0PTION C Al
[/:70-00 _?+TSK (EXPAND _7+DEV) <>
(SPECIALIZE _?4DEV _240TD))
(/> A (/:QUIESCENCE >C)
(/> G (/10PTION 7C A2
[/170-D0 _74TSK
(EXPAND _?+DEV)
<>
(SPECIALIZE
_240T _2.072)))
(/:RULE-IN 2A1))))))
GENERAL -0P+)

(DEFMLA TWO-SPEC-DEVS-WORSE - THAN-ONE
(-/> A (DERIVED 2071 °0T@)
(-/> A (DERIVED >072 °0T@)
(-/> G (AND (NOT (/:= 0Tl ?0T2))
(/> ' (DEN ?+070) 2078)
(«/> "(DEN 2+0TD) 20TD)
te/> ' (DEN 74DT2) 2DT2))
(-/> A (/:0PTION °C ?Al
(/7:T0-00 _?+4TSK (EXPAND _?+DEV)
<
(SPECIALIZE _?+DEV _?40T1)))
(~/> A (/:QUIESCENCE °C)
(~/> G (AND (/:0PTION ?C ?R2
(7:70-00 _7¢TSK <EXPAND _?+DEV)

209

v

<>
(SPECIALIZE _?4DEV _24DT2)))
(/:OPTION 2C 7A@
(/:70-D0 _?+TSK (EXPAND _7+DEV)
<>
(SPECIALIZE _74DEV _74D78))))
(AND (/:RULE-OUT ?A1)
(/:RULE-OUT 7R2)))))))1)

sRUXILIARY SUBTASKES OF EXPAND
(DEFNLA EXPAND-LOO AHERD
[-/> A (/:TASK-ACTION ?TSk (EXPAND ?DEV))
(TO-BE-EXPANDED 20EV 2TSK)1)

(DEFNLA EXPANSION-0BLS-DO
[/:ANTEC (NOT (EXPANSION-0BL 2DEV ’8))
(/:ANTEC (NOT (TO-BE-EXPANDED 2DEV ?TN))
(/1 TASK (0BL ?0EV 78) <« (\ () ?8) <)1)}

(DEFMLA GENERIC-CAS
[-/> A (GENERIC-CA CR)
(AND (CONTROL-RTTRIBUTE 2CR)
(~/> R (/:POLICY ?TASK
(CONSTRAIN <'#2QS1 * (°CR ?DEV) 1#7Q52>
»)N
(-/> G (ELT ' (2CR ?X)
<'#7051 ' (°CA PDEV) '#7052>)
(-/> A (TO-BE-EXPANDED 20EV ?TSK)
(STASK (CA-CALC ?CA ?0EV) ?TSK
<>
N0
(CALCULATE
'(°CA ?0EV)))

<))
GENERAL-0Pe)

(DEFMLA ACQUIRE-DO-1
(-/> C (AND (REUSABLE ’DEV-TYPE) (DEV-TYPE ?X ?0EV-TYPE))
(/:70-00 ?TSk (RCQUIRE ?DEV-TYPE) <?NANE>
(/:0UTPUT <?X>))]))

(DEFALA ACQUIRE -D0-2
[/:70-D0 ?TSK (ACQUIRE “DEV-TYPE) <?NARE>
(HAKE 2DEV-TYPE)])

(DEFMLA REUSABLE-L [PRESUMARLY ' (NOT (REUSABLE >x}) CI)

Append i x

-
‘

210

(DEFMLA REUSE-CETERIS-PRARIBUS
(/> A (/:CHOICE 2C EXEC (/:70-00 _?+TASK (RCQUIRE _?+DT) <_ 74N>
_2WUAY])
(/> A (/:QUIESCENCE 2C)
(-/> A (/:0PTION 7C 7R}
(/170-00 _?+TASK (RCQUIRE _?40T) <_?4N>
(WAKE _240T))
(/:RULE-OUT 2A1)))))

3 IF SIMPLE EQUATION, TRY SOLVING IT
(DEFNLA CONSTRAIN-DO-1
i-/> C (1= <?UNK>
(/1 THF IND
o w
(AND (ELT ?U *QUANTS)
(/:CONSISTENTLY
' (FORALL (VAL)
(NOT (=/> 2U 2VAL))))))))
(/:70-D0 ?TASK (CONSTRAIN ?QUANTS (CHP = <«?F1 7F2>)) <>
(/1SEQ (CONSTRAINT-RESOLVE ?UNK ?F1 ?F2 ?QUANTS)
(\ (VAL)
(PROTECT
' (SATISFIES
PUNK (CHP = <?F1 7F2>) ?QURNTS))
M

1ELSE, JUST ESTRBLISH POLICY
(DEFALA CONSTRAIN-DO-2
(-/> C (OR (NOT (:= ?F «))
(FORALL (UNK)
(NOT (1= <?UNK>
(/1 THF INO
o w
(AND (ELT ?U QUANTS)
(/:CONSISTENTLY
' (FORALL (VAL)
(NOT (/> ?U ?VAL))
I DR R R D) 13}
(/:T0-DO >TASK (CONSTRAIN ?QUANTS (CMP ?F ?P1)) <
(/:PRIN «SETUP))))

yOEFINITION OF “CONSTRAINT" --
(DEFNLA CONSTRAINT-I
(-/> A (CONSTRAINT 205 °P)
(EXISTS (T) (/:POLICY 2T (CONSTRAIN 2QS ?P)) 1)

(DEFALR CONSTRAINT-2
[-/> C (EXISTS (T) (/:POLICY ?T (CONSTRAIN 7S *P)))
(CONSTRAINT 205 ?P)))

Appendix 7

Appendix 2 212

(DEFMLR CONSTRRINT-RESOLVE-REPH
(/:70-D0 *RTSK
(/:REPHRASE “TASkK
[CONSTRAINT-RESOLVE _?4UNK
(\ (_74VARS) _?+€XP1}
(\ (_?+VARS) _?2+EXP2)
<! # _>QUANTS>)

<IVALUE>)
(/:SEQ (EQN-SOLVE Y+UNK (LRMBOR-APPLY (\ (_24VARS) _24EXP1)
24QUANTS)
(LAMBOR-APPLY (\ (_7sVARS) _?4EXP2)
24QUANTS))
(\ (+ANS)

(/:INFER ' (AND (STASK (SETTER ?TASK) ?TASK <>
(\ O (/1SET (DEN ?4UNK)
(DEN ?+RANS)))
>)
(/:NAIN (SETTER ?TASK) ?TASK)
(/:REDUCED ?TASK))
«>) N

(DEFMLA EQN-SOLVE-D0-1
(-/> C (AND (ONE-OCCURRENCE ?+LFT ?4UNK)
(NOT (CONTAINS 24RGT ?4UNK)))
(/:70-D0 ?TASK (EQN-SOLVE ?24UNKF 24LFT ?24RGT) <?ANSV>
(ISOLATE 24UNK 24LFT 24RGT))))

(DEFALA EQN-SOLVE-DO-2
[-/> C (AND (ONE-DCCURRENCE 24RGT ?4UNK)
(NOT (CONTRINS Y4LFT 24UNK)))
(/:70-D0 ?TASK (EQN-SOLVE ?4UNKF 24LFT 74RGT) <?ANSV>
CISOLRTE 24UNKE Y4RGT 24LFTH])

(DEFMLA EQN-SOLVE-DO-3
(-/> C (NOT (ONE-OCCURRENCE (_?#LFT _?4RGT]) ?4UNK))
(/:70-D0 2TSK (EQN-SOLVE ?4UNK 24LFT ?24RGT) <?ANS>
(/:CALL (EQN-CHEAT 24UNK ?24LFT 24RGT)))])

y THE TERM “ISOLRTE" IS FROM BUNDY'S MINI-THEORY OF EQUATION SOLVING.
t HIS NOTION OF "COLLECTION" IS ALSO APPROPRIATE, BUT NOT INPLEMENTED.

(DEFALA ISOLATE-DO-1
(/:CONSEQ (/:T0-DO °TASK (ISOLATE 7sUNKF 24LFT 24REL 74RGT)
«7RV 7ANSV>
(OUTPUT <?4REL ?4RGT>))
(NOT (s« 24LFT 24UNKF))))

(DEFMLA [SOLATE-00-2

S e e S TR T ORIy T —

(/:CONSEQ (/:T0-DO >TASK (ISOLATE sUNKF 24LFT 24REL ?+RGT)
<?RV ?AN5Y>
(/:SEQ (ISOLATE-ONE-STEP 24UNKF 24LFT ?24REL ?4RGT)
(\ (4NEU-LFT +NEN-RGT)
(ISOLATE ?+UNKF ?4NEW-LFT
74REL ?4NEU-RGT))
(= 74LFT 74UNKF)])

(DEFALA 1SOLATE-ONE-DO-»
[/:CONSEQ (/:T0-DO ?TRSK
(ISOLATE-ONE-STEP ?4UNKF (s '#_?+RO0ENDS)
?4REL ?4RGT)
<?LV ?RV>
(OUTPUT «?+TERM [- _?4RGT (4 '#_?4TERNS))>))
(NOT (AND (ELT 24TERM ?+RDDENDS)

(CONTARINS ?+TERM ?4UNKF)
(= 74TERMS (DEL ?+TERM ?+ADDENDS))))))

(DEFNLA SELECT-VALUE-DO
[-/> C (/:CONSISTENTLY
' (FORALL (VAL) (NOT (=/> ?2QUANT ?VAL)))
(/:70-D0 7T (SELECT-VALUE ?QUANT) <>
(/:CALL (CHEAT 2QUANT (CQ-CLOSURE 2QUANT))))])
3 SELECT-VALUE IS HANDLED BY A LISP FUNCTION
3 IN THE CURRENT [MPLENENTATION

(DEFALA CQ-CLO-1
[=/> ' (CQ-CLOSURE Q)
(/:THFIND (\ (C) (CQ-CLOSURE-ELT 2>C @) N))

(DEFALA CQ-CLO-2
[-/> C (CONSTRAINT <'#°QT1 2Q '#°Q72> ?P)
(CO-CLOSURE-ELT (CONSTRAINT <'#2QT1 ?Q ?QT72> ’P)
)
I

(DEFMLA CG-CLO-3
(-/> C (AND (EQ-CLOSURE-ELT (CONSTRAINT 2QS ’P) 2Q)
(ELT a1 20%)
(EQ-CLOSURE-ELT 2C Q1))
(CQ-CLOSURE-ELT 2C 2Q) 1))

(DEFMLA SELECT-POSTPONE
(-/> A (/:TASK DTSK 7] (CHP DESIGN <?PF>) <’DEV>)
(-/> A (/:TASK 2?5 7] (CAP SELECT-VALUE <?0F>) <>)
(AND (STASK (SELECT-EM-ALL ?TSK) ?TSK <>

(\ O (DO-ALL-SELECT-VALUES ?TSK))
4),

(/:SUBTASK 7S (SELECT-EM-ALL ?TSK))

(/:REDUCED (SELECT-ER-ALL ?TSK))

(~/> A (TOPO-CHANGE -ACTION-FUN 7F)

Appendix / 213

W

Appendix 2 2164

(/> R (/:TRSK >T ?INS
(CNP 2F ?FS) 20UTS)
(/:SUCCESSOR

2T (SELECT-EM-ALL ?75K)))))))
GENERAL -DPs)

(DEFMLA NAKE-CHANGES-TOPOLOGY
(TOPO-CHANGE-ACTION-FUN MAKE])

(DEFMLA FIX-CHANGES-TOPOLOGY
[TOPO-CHANGE-ACTION-FUN FIX])

(DEFALA QVAL-PROTECT
[-/> C (AND (=/> ?Q >VAL)
(/> " (DEN 74FACT) («/> ?Q ?VAL)))
(/:70-D0 >TASK (PROTECT ' (SATISFIES ?Q ?C ?QUANTS)) <>
(/:MONITOR ?4FACT
o (M
(/:CONTINUE ?TRSK
(PROTECT

' (SATISFIES ?Q ?C 2QUANTS))) M)

(DEFALA PROTECT-CONTINUE
(/:T0-D0 ?TASK (/:CONTINUE ?PTASK
(PROTECT ' (SATISFIES ?Q ?C ?QUANTS)))

<>
(/:00-SUBNET
(PROTECT-CONTINUE-NET ?PTASK ?Q °C ?QUANTS) <>)))

(DEFMLA PROTECT-CONTINUE -PLRN
[=/> A (/:PLAN-INSTANCE 7P]
(PROTECT-CONTINUE-NET ?PTASK 2Q 2C ?QUANTS)
7SUP)
{(RND (STASY (RECHECIER ?P[) 2SUP <>
(\ () (VERIFY ' (SATISFIES 2Q ?C 2QUANTS))) o)
(STASK (VALUE-F INDER ?P1) PSUP <«
(\ O
(/:FIND
(\ (+NEUNON)
(EXIS5TS (NEMWVAL)
(AND («/> 2Q ?NEWVAL)
(=/> ' (DEN 74+NEWNON)
(=/> 70 7NENVAL))) M))
<" (NEWNON °P1)»)
(STASKE (REMONITOR 2P) ?SUP <' (NEWNON 7P])>
(\ (+FACT)
(/:MONITOR ?4FACT
(m
(/:CONTINUE ?PTRSK
(PROTECT

R, =St ————

o=

' (SATISFIES 7Q °C
2QUANTS)Y)) D))

(DEFMLR VERIFY-DO
[/:70-DO ?TSK (VERIFY '?P) <>
(/:FIND (\ O ?P))

(DEFALA SPEC-SCHEMA-DEFN
[-/> A (SPEC-SCHEMR >SCHI ?SCH2)
(-/> A (/:PLAN-INSTANCE ?PI ?SCH1 ’SuP)
(/:PLAN-INSTANCE ?P] ?SCH2 ?SUP))))

3 THIS PREDICATE IS USEFUL IN RELATING A SCHEMA TO ITS SPECIALIZERS
(DEFHALR REDUCE-DEFN
(-/> A (REDUCE ?TASKS ?TASK)
(AND (-/> G (ELT ?T ?TASKS) (/:SUBTASK ?T ?TASK))
(/:REDUCED ?TRSK))]))

3 THIS IS A USEFUL PREDICATE ON FROZEN TASKS
(DEFMLA FUNCTION-DEFN
[-/> A (FUNCTION 2DEV ?TSK)
(-/> A (MAIN-DEV-TYPE 2DEV 20T)
(EXISTS (ACQ)
(AND (/:TASK 2ACQ ?1 2R <?DEV>)
(/:TASK-ACTION ?ACQ (ACQUIRE 20T))
(/:REDUCED ?ACQ)
(REDUCE <?ACQ> ?TSK)) nn

; IF ONE PLAN-SCHEMR 15 A SPECIALICED VERSION OF ANOTHER, TRY
3 TO TAKE THE MORE SPECIFIC. (THIS IS REALLY HORE GENERAL THAN
3 THE WORLD OF DESIGN.)

(DEFMLA SPEC-1S-BETTER
(-/> A (SPEC-SCHEMA ?SCHI ?SCH2)
(=/> G (AND (=/> ' (DEN 74SCH1) ?SCH1)
(a/> " (DEN 743CH2) 75CH2))
(/> R (/:OPTION °C Al
[/1T0-D0 _?+TSK _?24ACT _240UTS
(/:D0-SUBNET _24SCH1 _?+VARSI)])
(-/> A (/1OPTION 7C A2
(/:70-00 _24TSK _?4ACT _240UTS
(/1DO-SUBNET _?4SCH2
_74VARS2) 1)
(/1RULE-IN 2A1)) 1))

(DEFMLA THO-SPECS-HORSE - THAN-ONE
(-/> A (SPEC-SCHEMA ?5CHI ?5CHB)
(-/> A (SPEC-SCHEMA ?SCH2 ?SCHEO)
(</> G (AND (NOT (/1= ?SCH1 ?SCH2))

Appendix 2

215

——

Appendix 2

(a/> ' (DEN ?4SCH®) ?SCH@)
(«/> " (DEN ?4SCH]1) ?SCH1)
(s/> ' (DEN ?4SCH2) ?SCH2))
(-/> R
(/:0PTION 2C °Al
(/7:T0-D0 _?+TSK _?+ACT _?40UTS
(/:00-SUBNET _?4SCHL _?+VRRS1)1)
(-/> G (RAND (/:0PTION °C °R2
[/170-D0 _7+TSK _74ACT
_?+0UTS
(/:00-SUBNET _?4SCH2
_?4VARS2)))
(/:0PTION ?C ?R8
[/:70-D0 _?+TSK _?4RCT
_?240UTS
(/100-SUBNET _?4SCH®
_7+VARS8))))
(ANO (/:RULE-OUT 2A1)
(/:RULE-OUT 2A2)))))N))

Appendix 3 -- A Listing of ZORCH

This is the current version of DESI's electronics knouledge. Much of

interacts uith the more general rules of the previous appendix.

C(INTSECT-DISPARITYe :w» 10808)
(ALLOC ' (LIST (100888. 1560008. 8.6)))

{PHYSICAL KNOMWLEDGE
JEVERY NODE IS A TERMINAL

(DEFALAR NODE-TRAMIN
[FORALL (X) (~/> A (DEV-TYPE ?X NODE) (DEV-TYPE ?X TERRINAL))))

yKCL FOR DEVICES
(DEFALA KCL-1
[-/> A (TERNINAL-NARES ?X ?TRAIN-TUP)
(CONSTRAINT (MAPCAR (LAMBDA (T) " (I (2T 2X)))
?TRAIN-TUP)
(NFUN (LENGTH ?TRRIN-TUP)
(LANBDA (L) (= (4 147L) O))))

KL FOR NODES
(DEFALA KCL-2
{-/> R («/> ' (NODE-TERMINALS NODE) TRMIN-TUP)
(CONSTRAINT <’ (1 7NODE)
TZ(MAPCAR (\ (T) *(1 2T))

216

B e

2TRAIN-TUP) >
(NFUN (s (LENGTH 2TRMIN-TUP) 1)
(LAMBDR (L) (= (& '47L) ®))N)))

3 ...AND COMPOSITE DEVICES
(DEFMLA KCL-3
(-/> A (COMPOSITE-DEV-TYPE >DT)
(-/> A (DEV-TERNINALS °DEV ?TRAIN-TUP)
(CONSTRAINT (RAPCAR (\ (T) ' (I °T))
?TRAIN-TUP)
(NFUN (LENGTH ?TRMIN-TUP)
(LANBDA (L) (=« (+ '420) B)
NN

jKVL FOR NODES
(DEFMLA KVL-1
[-/> A (=/> ' (NODE-TERMINALS NODE) >TRMIN-TUP)
(~/> G (ELT ?TRRAIN ?TRAIN-TUP)
(CONSTRAINT «'(V ?TRNIN) '(V ?NODE)> =))))

;SONE TERMINALS HAVE NODES THAT THEY ARE TERMINALS OF

(DEFMLA NODE-OF-1 (-/> R (=/> ' (NODE-TERMINALS ?N) ?TS)
(/> G (ELT T 2TS) (NODE-OF T 2M))))

(DEFAMLA NODE-OF -2 (PRESURNABLY ' (NOT (NODE-OF 2T ?N)) CI])

yNODES CAN BE MERGED
(DEFMLA NODES-MERGE-NANIP
(/> C (AND (=/> ' (NODE-TERMINALS *N1) ?T1)
(=/> ' (NODE-TERHINALS 'N2) 212))
(/:NOD-NANIP ?TASK (NODES-MERGE N1 7N2)
<'(=/> ' (NODE-TERMINALS N1} 2T1)
*(e/> ' (NODE-TERMINALS 7N2) 7T2)>
<’ (=/> ' (NODE-TERMINALS *N1) (UNION >T1 7T2))
*(a/> *IN2 N1D>)))

s TERMINALS CAN BE CONNECTED TO CRERTE NEW NODES OR MERGE OLD ONES

(DEFMLA TRMINS-CONNECT-DO-1
[(-/> C (AND (NODE-OF >T1 °N1) (NODE-OF ?T2 ?N2))
(/:70-D0 ?TASK (TRMINS-CONNECT ?T1 ?T2) <
(NODES-NERGE N1 ?N2))))

(DEFNMLA TRAINS-CONNECT-0D0-2
{-/> C (RND (NODE-OF >TL °NI1)
(CONSISTENTLY
' (FORALL (N) (NOT (NODE-OF T2 ?N))))
(=/> ' (NODE-TERNINALS ?N1) ?TS1))

Appendix 3

——

217

" e T —

(/:MOD-MANIP ?TASK (TRMINS-CONNECT ?T1 ?T2)
<'(=/> " (NODE-TERMINALS ’N1) 2TS1)>
<'(=/> " (NCDE-TERMINALS ?N1) <?T2 '#72TS1>)5)))

(DEFMLA TRMINS-CONNECT-DO-3
(-/> C (AND (NODE-OF T2 ’N2)
(CONSISTENTLY
"(FORALL (N) (NOT (NODE-OF 2T1 2M)))
(«/> ' (NODE~-TERMINALS 7N2) ?T§2))
(/:NOD-MANIP 2TASK (TRMINS-CONNECT >T1 7T2)
<’ (=/> " (NODE-TERMINALS ?N2) 7TS2)>
<'(=/> ' (NODE-TERRINALS ?N2) <?T1 187T52>)>)))

(DEFMLA TRAINS-CONNECT-DO-4
[-/> C (AND (CONSISTENTLY
' (FORALL (N) (NOT (NODE-OF 2Tl ?N))))
(CONSISTENTLY
' (FORALL (N) (NOT (NODE-QF 2?72 ?N)) M
(/1MOD-NANIP ?TASK (TRMINS-CONNECT ?T1 2T2)
<>
<' (EXISTS (M)
(=/> " (NODE-TERRINALS 7N) <?T1 ?T2>))>»)))

3 INSERTING A DEVICE INTO A NODE BREAKS IT INTO TWO NODES
(DEFMLR DEV-INSERT
[(-/> C (AND (=/> ' (NODE-TERMINALS ?NODE) ?TS)
(= (SET ?2TS1) (SET <1#7TS1 142152>)))
(/:HOD-NANIP ?TASK
, (DEV-INSERT 20 °NODE ?T1 >TS) 772 ?7S52)
<'(=/> ' (NODE-TERMINALS ?NODE) >TS)>»
<'(=/> " (NODE-TERMINALS ’NODE) <2T1 '#2TS1>)
*(EXISTS (NEWNODE)
(AND (DEV-TYPE >NEWNODE NODE)
(«/> " (NODE-TERMINALS ?NEMNODE)
<?T2 187152>)))»)))

(DEFMLA PORT-DEFN (PRINITIVE-DEV-TYPE PORT))

1PORTS CARRY VOLTAGE OR CURRENT
(DEFALA PORT-TAXONOMY (XORI (DEV-TYPE ?X PORT)
<«(V-PORT 2X) (I-PORT ?X)>)
GENERAL-DP9)

(DEFNLR PORT-NEDIUN-1
(/> C (V-PORT >X) (=/> '(PORT-MEDIUM ?X) VOLTAGE)))

(DEFALA PORT-MEDIUN-2
{(-/> C (1-PORT 2X) («/> '(PORT-MEDIUN ?X) CURRENT)))

yHOST PORTS ARE VOLTAGE PORTS

(DEFNLA PRES-V-PORT (-/> C (RND (DEV-TYPE ?X PORT)
(CONSISTENTLY ' (V-PORT ?7X)))

- T ———
PO, — — -

Appendix 3

218

A

PR~ = ———

(V-PORT 2X)1)

3R NEST IS NRDE UP OF PORTS AND IS ITSELF A PORT
(DEFMLA NEST-PORT [-/> A (DEV-TYPE ?X NEST) (DEV-TYPE >X PORT)))

(DEFMLA NEST-OF-1 [-/> A (=/> ' (NEST-PORTS ?N) ?TS)
(-/> G (ELT 2T ?2TS) (NEST-OF °T ?N))))

(DEFMLA NEST-OF-2 (PRESUMABLY ’' (NOT (NEST-OF 2T ?N)) C))
;PORTS ARE HOMES FOR SIGNALS

}KVL FOR PORTS
(DEFALA KVL-2
(-/> A («/> " (NEST-PORTS ’NEST) 2PORT-TUP)
(/> G (ELT JPORT ?PORT-TUP)
(AND (~/> A (SIGNAL-HOME ?SIG ?PORT)
(SIGNAL-HOME ?SIG ?NEST))))))

(DEFMLA SIGNAL -HONE
{-/> R (SIGNAL-HONE ?SIG ?PORT)
(«/> ' (PORT-SIGNAL ?PORT) ?SiG)))

3 THESE ACTIONS ARE ANALOGOUS TO THE NODE RCTIONS

(DEFMLA NESTS-NERGE -NAN]P
(-/> C (AND (=/> ' (NEST-PORTS °N1) ?T))
(/> " (NEST-PORTS ?N2) 2T2))
(/:NOD-MANIP >TASK (NESTS-MERGE N1 7N2)

<«'(s/> ' (NEST-PORTS ?N1) ?TD)
'(=/> "(NEST-PORTS 7N2) ?T2)>

«'(a/> "(NEST-PORTS ’N1) (UNION ?T] 272))
'(e/> "2N2 PND)>)))

(DEFALA PORTS-CONNECT-D0-1
[-/> C (AND (NEST-OF >T| °N1) (NEST-OF ?T2 7N2))
(/:70-C0 2TAS)Y (PORTS-CONNECT 2T1 272 >TYPE) o«
(NESTS-NERGE N1 ?N2))))

(DEFMLR PORTS-CONNECT-DO-2
[~/> C (AND (NEST-OF Tl °N1)
(CONSISTENTLY
"(FORALL (N) (NOT (NEST-OF 272 ?N))))
(«/> "(NEST-PORTS ?N1) 2TS1))
(/:NO0-NANIP 2TASK (PORTS-CONNCCT 2TL 272 ?TYPE)
«' (/> '(NEST-PORTS N1} ?TS1)>
<'(s/> "(NEST-PORTS 7N1) <272 '8771S515)5)))

(DEFMLA PORTS-CONNECT-00-3
(-/> C (AND (NEST-OF 2T2 °N2)

Appendix 3 219

e e . e e —————

e ——

Appendix 3 220

(CONSISTENTLY
' (FORALL (N) (NOT (NEST-OF 2TL ?N))))
(=/> "(NEST-PORTS >N2) ?T152))
(/:ROD-NANIP 2TASK (PORTS-CONNECT 2T 2T2 ?TYPE)
<'(=/> "(NEST-PORTS >N2) ?752)>
<'(=/> "(NEST-PORTS °N2) <?T1 '#71S525)>)))

(DEFMLA PORTS-CONNECT-DO-4
[~/> C (AND (CONSISTENTLY
P(FORALL (N) (NDT (NEST-OF 2T1 2M)))
(CONSISTENTLY
"(FORALL (N) (NOT (NEST-OF 2T2 N)))))
(/:NOD-MANIP >TASK (PORTS-CONNECT ?T| 2T2 >TYPE)

<>

<" (EXISTS (N) (=/> ' (NEST-PORTS ’N) <?T1 ?725) 1))

(DEFHLR PORTS-CONNECT-OIRECT-DO
(~/> C (AND (PORT-TERMINALS 1 PRTL < TOP]| R0OT2>)
(PORT-TERMINALS “PRT2 < TOP2 ?B0T2>)
(OR (/:NOD-MANIP YTASK (TRMINS-CONNECT 2TOPI ?T0P2)
?DEL 7RDD)
(/:MO0-MANIP 2TASK (TRMINS-CONNECT 28071 28072)
DEL PRDD)))
(/:MOD-NANIP 7TASK (PDRTS-CONNECT ?PRT1 ?PRT2 DIRECT)
?DEL °RDD) D)

(DEFALA PORTS-CONNECT-CAPRCITIVE DO
[-/> C (AND (PORT-TERMINALS *PRTL <?TOP1 ?BOTI>)
(PORT-TERNINALS ?PRT2 «?T0P2 *80T2>))
(/:70-D0 °TSK (PORTS-CONNECT ?PRTL ?PRT2 CAPACITIVE) <>
(CONFIG <CAPACITORS
o ()
<(TRMINS-CONNECT (#1 2C) *ToPl)
(TRAINS-CONNECT (#2 2C) ?TOP2)> 1))))

(DEFMLA PORTS-CONNECT-INDUCTIVE-DO
(-/> C (AND (PORT-TERMINALS PPRTL <2TOP1 ?B0TI>)
(PORT-TERMINALS PPRTZ <72TOP2 ’80T2>))
(/:70-0D0 2T15¢F (PORTS-CONNECT ?PRTL ?PRT2 INDUCTIVE) <>
(CONFIG «TRANSFORMER >
N av
<(TRMINS-CONNECT (#2 2LL) ?TOPI)
(TRAINS-CONNECT (24 2LL) 2TOP2) > mn

1 SIGNALS

(DEFNLA FL-SHAPE (ELT (FL-SHAPE °LM) <HUMP SPIKE>))

(DEFALA FF-FREQ (/> '(FF-FREQ (FF F 2LM)) 7F))

(DEFMLA FF-LANDNARK [«/> ' (FF-LANDNRRK (FF 2F 2LM)) ?LA))

(DEFNLA PERIODIC-FREQ-PIC
(-/> C (PERIOOIC 7S °T)
\ (=/> " (FREQ-PICTURE ’S)
(UNION (POSSIBLE-DC-SUB-PIC ?S)
; (SERIES-SUB-PIC ?S)))))

| (DEFMLA DC-FEATURE-1
[(-/> C (AND (PERIODIC ?TFUN ?T)
(= (OFFSET 2TFUN) ?V)
(/> (ABS 7V) 8))
(=/> ' (POSSIBLE-OC-SUB-PIC ?S)
<(FF @ (DC-LANDNARK 2TFUN ?V))>)))

(DEFALA DC-FERTURE-2
[(-/> C (AND (PERIODIC ?TFUN ?T)
(= (OFFSET 2TFUN) 8))
(=/> ' (POSSIBLE-DC-SUB-PIC ?S) <>)))

(DEFALA DC-LANDNARK-1
[=/> ' (FL-SHAPE (DC-LANDMARK ?TFUN ?V)) SPIKE]
GENERAL -0P#)

—_——

(DEFMLA DC-LANDMARK -2
[=/> ' (FL-HEIGHT (DC-LANDNARK ?TFUN ?V)) ?V]
GENERAL-0P+s)

(DEFALA FREQ-PIC-ELTS (IMPLIES (ELT ?X (FREQ-PIC ?S))
(IS FREQ-FEATURE ?X)))

| (DEFALA SPIKES
(-/> A (PERIODIC ?TFUN ?T)

(DEFALA SINUSOTDAL-SPIKE
(-/> C (ANO (PERIOOIC ?TFUN ?T)
(SINUSOIDAL ?TFUN)
(ARPLITUDE ?TFUN ?A))
' («/> ' (SERIES-SUB-PIC ?TFUN)
<(FF @ (SIN-LANDNARK ?TFUN 2T ?R))>)))

(DEFMLA EVERYOTHER-SERIES
(-/> C (AND (PERIODIC >TFUN ?T)
(NOT (SINUSOIDAL ?TFUN))
(FORALL 00
(= (2TFUN 2X) (2TFUN (o 2X (/7 2T 2))))

b
R

(FORALL (X) (-/> C (ELT *X (FREQ-PICTURE ?TFUN))
(s (FL-SHAPE ?X) SPIKE)))))

)

Appendix 3

221

e

Appendix 3 228

(«/> " (SERIES-SUB-PIC ?TFUN)

(SERIES (¢ 2 P1 (/7 1 ?21)) (0« 4 PL (/7 1 2T))

SPIXE

(AN}

(INTEGRAL 8 7Y
[AN{1}]
(¢ (OTFUN 2U)
(COS (¢ 2P1 (- (2270 1)
W71 N)
Nl

(DEFMLR STRRIGHT-SERIES
[(-/> C (RND (PERIODIC ?TFUN ?T)
(NOT (SINUSOIDAL ?TFUN))
(EXISTS (0
(NOT (= (?TFUN ?X)
OTFUN (e 2X (/7 2T 220)
(u/> ' (SERIES-SUB-PIC ?TFUN)
(SERIES (¢ 2 PI (/71 7°7)) (¢ 2P1 (/7 1 2T))
SPIE
[AWN{,)]
(INTEGRAL 8 7T
o w
(¢ (?TFUN 20)
(COS (¢ 2 PI °N
WY/))
»nn

(DEFNLA SIN-LANDNARK -SHAPE
{«/> "(FL-SHAPE (SIN-LANDNAARY 2TFUN 2T 2A)) SPIKE))

(DEFNLA SIN-LANDMARK -HE IGHT
[s/> "(FL-HEIGHT (SIN-LANDNARK ?TFUN 2T ?R)) ?R))

(DEFMLA SINU+ ([-/> C (AND (ELT ?SIN ?FS)
(SINUSOIDAL ?SIN)
(FORALL (F)
(EXISTS (R)
(INPLIES (ELT ?F (DEL ?SIN ?FS))
(7:s 2F (K 1 ?2))))
(SINUSOIDAL (CHP o+ 72FS))])

(DEFALAR SINUe (-/> C (AND (ELT ?SIN ’F5)
(SINUSOIDAL ?SIN)
(FORALL (F)
(EXISTS (R)
(IMPLIES (ELT ?F (DEL ?SIN ?FS))
(/1 2F (K 1 2R))))))
(SINUSOIDAL (CHP & ?FS))))

(DEFALA SIN-SIN (-/> C (LINEAR ?F)

(SINUSOIDAL (CHP SIN <?F>))))

(DEFALA COS-SIN (-/> C (LINERR °F)
(SINUSOTDAL (CHP COS <?F>))))

(DEFALA LINL [LINEAR (IDN °N ?K)1)

(DEFALA LIN2 [-/> C (AND (ELT ?LIN 7FS) (LINEAR 2LIN)
(FORALL (X}
(EXISTS (R)
(INPLIES (ELT 7K (DEL ?LIN ?FS))
(/:= 7k (K 1 ?2R))) M)
(LINERR (CMP ¢ ?FS))]))

(DEFALA LIN3 (-/> C (FORALL (F) (IMPLIES (ELT ?F ?FS) (LINEAR ?F))
(LINEAR (CMP + PFS)))

(DEFALA LING [-/> C (LINEAR (CHP « <?F1 (\ OO (- (?7F2 2X)) 1))
(LINEAR (CHP - <°F1 ?2F2>})))

(DEFALA LINS (-/> C (AND (LINEAR >F))
(/:= ?2F2 (K 1 ?A)))
(LINEAR (CMP // <F1 2F2>))))

(DEFALA SIN-PERICOIC (PERIODIC SIN (¢ 2 PD))

(DEFNLA COS-PERIODIC (PERIODIC COS (¢ 2 PD)))

(DEFNLA PRES-NOT-SIN [PRESUMABLY ' (NOT (SINUSOIDAL ?F)) C))

(DEFNLA OFFSET-DEFN (-/> R (PERIODIC ?TFUN ?T)
(/> " (OFFSET 2TFUN)
(/7 CINTEGRAL @ 2T ?TFUN) 2T))))

s LINEAR-DERIVED MODELS

3 (CISOLATE T1 T2) IS A WORLD IN WHICH THE CIRCUIT IS DECOUPLED
(DEFALA REF-1SO (IS REF (ISOLATE >TRNINL ?TRAIN2)))

(DEFALA FRAME-1SO ((FRANE (IS0 ’TRAINI ?TRMIN2) <(HERE)>)))

(DEFMLA ISOLATE-DEFN-)
(-/> C (AND («/> ' (NODE-TERNINALS °N1)
<'#77511 TRAINL '#77§12>)
(=/> ' (NODE-TERMINALS ?N2)
<' 877521 ?TRAINZ '#2T75225))
(T (ISOLATE ?TRAINL ?TRAIN2)
(AND (=/> ' (NODE-TERAMINALS ’N1)
<\ #7511 '#215125)
(s/> ' (NODE-TERMINALS ’N2)
<! 877521 ' 027822>)))))

Appendix 3

—

223

T

(DEFMLA ISOLATE-DEFN-2
(/> C (a/> ' (NODE-TERNINALS °N{)
< #2T511 PTRAINL ' 427512>)
(N C(ISOLATE ?TRMINL ?TRMIN2)
' (/> ' (NODE-TERMINALS ?N1)
<'#7TS11 ?TRAINL '#2TS12>0)))

(DEFMLA ISOLATE-DEFN-3
[(-/> C (a/> ' (NODE-TERMINALS >N2)
<! #77521 ?TRIINZ t#27522>)
(N (JSOLRTE ?TRRINL ?TRRIN2)

*(s/> ' (NODE-TERMINALS ?N2)
<! #7521 ?TRMINZ '#727522>))]))

yFOR THE FOLLOWING REFERENCE-POINT DEFINITIONS,
3 SEE CIRCUIT PACKETS FOR ALTERED COMPONENT PROPERTIES IN EACH REF

(DEFHLA REF-DC (IS REF (DC)))

(DEFNLA FRANE-DC [(FRAME (DC) < (HERE)>)])

(DEFALA REF-SSS (IS REF (SSS ?FREQ)))

(DEFMLA FRAME-SSS («FRAME (SSS ?S) < (HERE)>)])

(DEFALA REF-INC (IS REF (INO))

(DEFALA FRANE-INC ((FRANE (INC) < (HERE)>)])

(DEFALA REF-PASSIVE (1S REF (PASSIVE)))
(DEFMLA FRANE PASSIVE [(FRAME (PASSIVE) <(HERE)>)))
s INTERACTIONS - -

1 THIS REANS (T (DC) (DCY) = (DC)

(DEFALA DC-IDER (REF-JDEMPOTENT (DC) 1)

(DEFMLAR ISOLATE-10EM (REF-IDENPOTENT (1S0LRTE TRMINL 2TRMIN2)))
(DEFALA SSS-1DEM REF-IDENPOTENT (555 25)))

(DEFALA PASSIVE-IDEN (REF-JDENPOTENT (PASSIVE)]))

(DEFALA INC-TDERM (REF-TOEAPOTENT (INCI])

(DEFMLA DC-1SO (/> ' (T (DC) (ISOLATE *TRAINL >TRRIN2))
(T C(ISOLATE 2TRAINL ?TRRAIN2) (DC))))

Appendix 3

224

(DEFRLA PASSIVE-DC ([=/> ' (T (PRSSIVE) (DC)) (T (DC) (PASSIVE))))

3 INFORNATION ABOUT REPHRASING ELECTRONIC DESIGN PROBLEMS

yD-SHARDS ARE FRAGMENTS OF DESIGN PROPERTIES; THOSE DEALING WITH
3 CONTROL QUANTITIES RRE IMPORTANT

3 THESE APPLY TO "10" DEVICES

(DEFMLA CQ-V-GAIN [GENERIC-CA V-GAIN))
(DEFALA CO-P-GAIN [GENERIC-CA P-GAIN))
(DEFMLA CQ-1Z (GENERIC-CA INPUT-Z])
(DEFMLA CQ-0Z (GENERIC-CR OUTPUT-Z])

(DEFALA V-GAIN-SHARD
{(-/> R (D-SHARRD 24P [\ (_?4V) (= (V-GRIN (|22} _2+V))
_246)0))
(AND (SIDE-TRSK 74P
N (20
(CONSTRAIN <" (V-GAIN (|?7] _2eV))>
(\ (G1) (s 7G1 _?4+G) nn
(-/> G (= (DEN 24G) 2G)
(AND (-/> G (/> 7G [600)
(D-FERTURE 74P
(RANGER V-GAIN VERY-HIGH)))
(/> C (AND (/> G S®)
(/< 26 5000))
(D-FERTURE 24P
(RANGER V-GAIN HIGH)))
(/> G (AND (/> G 1)
(/< 26 100))
(D-FERTURE 24P
(RANGER V-GRIN MODERRTE))}
(«/> 6 («/. %G 1)
(0 “ERTURE 74P
[RANGER V-GAIN LOWI))N

1 "GAIN" ALONE MEANS V-GRIN AND P-GAIN
(DEFMLA GAIN-SHARD
[(</> A (D-SHARD 74P [\ (_?+V) (s (GRIN ()?27| _74V))
_240)))
(AND (D-SHARD 24P [\ (_?4V) (e (V-GAIN (|??7] _2sV))
24600
(-/> G (AND (e« (¢ 20 (LOG (DEN _?+G))) ?PG)
yCONVERT TO DECIBELS
(= (DEN 24PGC) 7PG))
(D-SHARD 74P

Appendix 3

22

Appendix 3 226

(\ (_74V) (= (P-GRIN (]??{ _?eV})
_24P6)IN))

(DEFALA [INPUT-Z-SHARD
[-/> A (D-SHARD 24P [\ (_24V) (= (INPUT-Z (|?27] _24V))
_2e20))
(-/> G (=« (DEN 742) ?2)
(AND (-/> G (/> ?Z 3.8ES)
(D-FEATURE 24P
(RANGER INPUT-Z VERY-HIGH)))
(-/> G (AND (/> ?2 1.5€3)
(/< 72 5.8E5))
(D-FEATURE 24P
[RANGER INPUT-Z HIGH]))
(-/> G (AND (/> 72 588)
(/< 22 2.8E]))
(D-FERTURE 24P
[RANGER INPUT-Z MODERRTE]))
(-/> G (/< 22 10888)
(O-FERTURE 24P
(RANGER INPUT-Z LOM)))))]))

(DEFMLA OUTPUT-Z-SHARD
(-/> A (D-SHARD 74P [\ (_24V) (« (DUTPUT-Z (]22] _24V))
_242)))
(/> G (= (DEN 242) °2)
(AND (-/> G (/> 72 1.8EG)
(D-FERTURE 74P
[RANGER DUTPUT-2 VERY-HIGH)))
(/> G (AND (/> 72 1.8ES)
(/< 1.5€6))
(D-FEATURE 74P
[RANGER OUTPUT-2Z HIGH)))
(~/> G (AND (/> 72 1.BEM4)
(/< 72 1.5E5))
(D-FERTURE 74P
[RANGER OUTPUT-2 MODERATE]))
(-/> G (AND (/> 72 180)
(/< 72 1.5€E8))
(D-FERTURE 74P
[RANGER QUTPUT-Z LOW]))
(/> 6 (/< 72 200)
(D-FEATURE 74P
[RANGER OUTPUT-Z VERY-LOW)))))))
jSOURCE: WATSON (1978), P. 68

§ SHARDS REGARDING SIGNAL CONVERSIONS MUST BE EXPLODED SPECIALLY

(DEFALA CONVERT-EXPLODE
(~/> A (/:TASKE-ACTION 7T (D-EXPLODE 24P))

(-/> R
(D-SHARD 24P
I\ (2e)
(CONVERT (|27 _24V) _24Q _2+R)))
(EXISTS (T1)
(AND (STASK ?T1 °T o
(\ () (CVT-EXPLODE ?4Q ?4R))
<«>)
(/:MAIN 2T1 ?T)
(-/> 9 (SIG-FERTURE ?4Q ?+R ?4FERTURE)
(D-SHARD ?+P
(\ (_72+V)
(SIG-TRANS 7.V

_?+FEATURE) 1)) Nl
GENERAL -DPe)

1 THERE ARE TWO WAYS TO DO THIS--

(DEFMLA CVT-EXPLODE -1
[/170-D0 ?TASK (CVT-EXPLODE 2+Q ?4R) <>
(FREQ-DONAIN-REPHRASE 240 ?+R)))

(DEFMLA CVT-EXPLODE -2
[/:70-D0 ?TASE (CVT-EXPLODE 240 ?4R) <>
(TIME -DONAIN-REPHRASE 240 24R)))

y BASIS ON WHICH TO CHOOSE ONE OR THE OTHER
(DEFMLA CVT-CHOICE
(/:ANTEC (NOT (/:CHOICE >C EXEC
(7:70-D0 _7«TASK
(CVT-EXPLODE _7+40 _744R) o
_244NETHOD)))
(-/> A (/:0PTION °C Al
(7:70-D0 _?+TASK
(CVT-EXPLODE 2440 _?44R)
(FREQ-DOMAIN-REPHRASE
240 eem)))
(-/> A (/:0PTION >C °R2
[/:70-00 _?sTRSK
(CVT-EXPLODE _244Q _?44R)
(TIME-DONA [N-REPHRASE
2440 244R)))
' IF OUTPUT RELATION DOESN'T MENTION INPUT, TRKE FREQUENCY-DOMAIN
(AND (-/> G (AND (/1= (DEN 744R)
(N (_245V1 _245V2)
_7+800Y1)
(NOT (CONTRINS ?+B00Y
(|72 _7+SV1)))
(/:RULE-IN ?A1))
' IF INPUT PREDICATE IS TRIVIAL, TAKE TIME-DOMAIN
(-/> G (AND (/1= (DEN ?+4Q)

Appendix 3 2

-

—yr-

==

[\ (_724V) _74B00Y])
(NOT (CONTRINS 74800Y
1)22] 2V
(/:RULE-IN 7R2))

' FOR VERY HIGH FREQUENCIES, TIME DOMAIN WON'T WORK

(/> G (AND (/:SUBTRSK (DEN ?4TASK)
250P)
(/: TASK-ACTION 2SUP
(D-EXPLODE ?4P))
(/1w (/:ENRB-STRTUS
7SUP)
RCTIVE)
(D-FEATURE 24P
(RANGER FREQ-OP
VERY-HIGH)))
(/:RULE-OUT ?R2))))))
GENERAL -DPe)

y FREQUENCY-DOMAIN REPHRASING INFO

(DEFNLA FREQ-DOM-REPH-DO-1
{/:170-D0 >TASK (FREQ-DOMAIN-REPHRASE 240 2+R) <>
(/:SEQ
(/:FIND
(\ (+FPT)
(EXISTS (FPI FP2 FPT)
(FORALL (5] 52)
(IMPLIES (AND (IS SIGNAL ?S1)
((DEN 2+Q) 2S1)
(1S SIGNAL 752)
((DEN ?+R) ?S1 ?S2))
(AND (/> ' (FREQ-PICTURE
(TFUN 2S1))
#P1)
(=/> ' (FREQ-PICTURE
(TFUN 752))
WP2)
(FREQ-PIC-TRANS 7FP1 7FP2
WHPT)
(s/> ' (DEN 24FPT) 2FPT)))
)
(\ FPM)
(/:INFER ' (SIG-FEATURE 740 ?+R (FREQ-TRANS _?4FPT))
o) N

JGENERATING FREQUENCY -DORAIN TRANSFORMATIONS

(DEFALA NFREQ-PICS-FILTER
(/7:CONSEQ (NOT (FREQ-PICS-FILTER ?FPL
<(FF ?FREQ 2LM2) 187FP2> 2C))

(NOT (FORALL (LMD
(NOT (ELT (FF ?FREQ ?LM1) ?FP1)) nl

(DEFNLA FREQ-TRANS-LOY
[/:CONSEQ (FREQ-TRANS “FP-IN ?FP-QUT (LOW-PASS ’M))
(NOT (RND (FREQ-PICS-FILTER ?FP-IN ?FP-OUT ?FP-GONE)
(FORALL (FL F)
(AND (EQUIV (ELT (FF ?F ?FL) ?FP-GONE)
(FORALL (FLL FD)
(INPLIES (ELY (FF 2F1 ?FL1)
7FP-GONE)
(/> % 1))
(/1e 7?8
(MAX ?FP-GONE
N\ (F G
(/> (FF-FREQ ’F)
(FF-FREQ 7G))
»nn mn

3 SIRILARLY FOR HIGH-PRSS AND BAND-PASS

(DEFALAR FREQ-PICS-FILYER-]
(FREQ-PICS-FILTER ?FP1 <> JFP1])

(DEFRLA FREQ-PICS-FILTER-2
(/:CONSEQ (FREQ-PICS-FILTER ?FP1 <«(FF ?FREQ ’LM2) '#7FP2> 2C)
(NOT (ANO (ELT (FF ?FREQ LML) 2FP1)
(= (FF-SHAPE ?LMI) (FF-SHAPE 2LN2))
(FREQ-PICS~FILTER (DEL (FF ?FREQ 2LNI) ?FPI)
P2 0NN

y TYPES OF FREQ-TRANS: (LOW-PRSS (CUTOFF (), (HIGH-PASS [CUTOFF),
3 (BAND-PASS |CUTOFF|), (MIX |SIGNAL-PRED|) (MOOULRTE...)

(DEFMLA LOK-PASS
[/tRNTEC (NOT (D-SHARD 74P
(N (_24V) (SIG-TRANS (|2?7] _74V)
(FREQ-TRANS
(LOW-PASS _?+CUTOFF)))]))
(CORE-DEV-TYPE 24P (LOW-PASS-FILTER _?+CUTOFF))))

(DEFRLA HIGH-PRSS
[/tANTEC (NOT (D-SHRRD 24P
(N (_24V) (SIG-TRANS (|?27] _74V)
(FREQ-TRANS
(HIGH-PASS _?+CUTOFF))))))
(CORE-DEV-TYPE 24P (HIGH-PASS-FILTER _?4CUTOFF))))

yCHOOSING DEV-TYPES --

Appendix 3

™
“«

-

(DEFNLA L INEAR-GROUP ING
[-/> R (/:CHOICE ?C ?TSK [CORE-DEV-TYPE _244P _2440))
(-/> R (QUIESCENCE 2C)
(-/> G (AND (/:0PTION °C ’R}
(CORE -DEV-TYPE
[_2++P) [(__2+4D01))

(/:0PTION 2C ?R2
[CORE-DEV-TYPE [__?744P) [_2+4D2)))

(LINEAR-DEV-TYPE (DEN (DEN ?4402)))

)
(/:RULE-TOGETHER <?RA1 ?RA2>

(CORE-DEV-TYPE _?44P

[GROUP <__744D1 __24402>10)0)))

1GROUPS MAY BE EXPRESSED AS SEVERAL KINOS OF CASCRODE

(DEFMLA NMAKE-GROUP-1
(/:CONSEQ
(/:70-D0 >T (HAKE (GROUP <?X ?Y '427>)) <’NANE>
(/:SEQ (RCQUIRE (GROUP °DT-REST))
(\ (G) (MAKE (CASCRDE 20Tl ?G)) 1)
(NOT (AND (ELT °DT1 <X Y 14725)
(/:= ?DT-REST (DEL 0TI <?X 2Y 14225))))]
GENERRL-DPs)

(DEFALA MAKE-GROUP-2
(/:70-D0 T (MAKE (GROUP <>DT1 ?072>)) <?NANME>
(RAKE (CASCADE °DT1 20T2))))

(DEFALA MAKE-GROUP-3
(/:T0-00 ?T (MAKE (GROUP <°DT1 ?DT2>)) <?NANE>
(MALE (CASCADE 2072 20T1i1)1)

JANPLIFIER IS A WIDE ("SUPERORDINATE") CATEGORY, FOR WHICH THERE ARE
y SEVERAL SPECIFIC TYPES

(DEFMLR RMP-DEV-TYPE (SUPERORDINRTE-DEV-TYPE RMPLIFIER]))

(DEFALR SUB-CE (SUB-DEV-TYPE CE ARPLIFIER])
(DEFRLA SUB-CC (SUB-DEV-TYPE CC ANPLIFIER))
(DEFALA SUB-CB (SUB-DEV-TYPE (B ANPLIFER))

3 IF MODERATE V-GAIN, COMRCN EMITTER
(DEFALAR NOD-V-GARIN
(/> A (/:TASK-ACTION TS} (NAKE ANPLIFIER))
(/> A (/:SCOPE ?PTISK ?TSK)
(/> A (/1POLICY ?PTSK
(O-¥DTE IRABCER Y-CRIN BODERRIEY)
(/:70-00 275k (NAKE ARNPLIFIER) < DEV>
(MAKE CEI Y
GENERAL -DPs)

Appendix 3

230

T

Jo-—=

CE=

Appendix 3

3 IF HIGH V-GARIN, SOME KIND OF N-STAGE
(DEFNLA HIGH-V-GAIN

(-/> R (/:TASK-ACTION ?TSK (MRKE RARPLIFIER))

(-/> A (/:SCOPE ?PTSK ?TSK)
(-/> A (/:POLICY ?PTSK
(D-NOTE (RANGER V-GRIN HIGH)))
(/:70-D0 ?TSK (MAKE AMPLIFIER) <?0EV>
(MAKE N-STRGE)))))
GENERAL-DPs)

3 IF VERY-HIGH, OP-ANP
(DEFNLA VERY-HIGH-V-CGAIN
(-/> A (/:TASK-ACTION ?TSK (MAKE ANPLIFIER))
(-/> A (/1SCOPE ?PTSK ?TSK)
(-/> R (/:POLICY ?PTSK
(D-NOTE (RANGER V-GRIN VERY-HIGH)))
(/:70-00 ?TSK (MAKE ANPLIFIER) <?DEV>
(NAKE OP-ANP)))))
GENERAL -DP¢)

3 IF VERY LOW FREQ OF OPERATION (E.G., DC) -- DIFF ANP
(DEFNLA VERY-LOW-FREQ
(-/> A (/:TASK-ACTION ?TSK (MAKE AMPLIFIER))
(/> R (/:SCOPE ?PTSK ?T5K)
(-/> R (/:POLICY ?PTSK
(D-NOTE (RRNGER FREQ-OP VERY-LOW)))
(/:70-D0 ?TSK (MAKE ANPLIFIER) <?DEV>
(RAKE DIFF-ANP)))))
GENERAL -DP#)

s IF HIGH INPUT 2, UP CC
(DEFALA HICH-INPUT-Z

[-/> R (/1 TRSK-ACTION ?TSK (MAKE AMPLIFIER))

(-/> A (/:SCOPE ’PTSK ?TSK)
(~/> A (/:POLICY ?PTSK
(O-NOTE (RANGER INPUT-Z HIGH)))
(/:70-00 ?TSK (MAKE ANPLIFIER) <?DEV>
(MRKE CCHI M)
GENERRAL -DP#)

3 IF HIGH POWER GRIN, UP COMP-SYM AND PUSH-PULL
(DEFMLA HIGH-PONER-GAIN
C-fs> @ (/:TASK-ACTION 7TSE (MAVE QMPLLF LERY)
(~/> R (/:SCOPE *PTSK >TSK)
(~/> A (/:POLICY ?PTSK
(D-NOTE (RANGER P-GAIN HIGH)))
(AND (/:T0-DO ?TSK (MAKE ANPLIFIER) <?DEV>

231

-

PR e ———

|

TR~

(MAKE COMP-SYM))
(/:70-D0 ?TSK (MAKE RAMPLIFIER) <?DEV>
(RAKE PUSH-PULL))))))
GENERAL -DPe)

3 IF LINEARITY REQUIRED, CE
(DEFMLA LINEARITY

(-/> R (/:TASK-ACTION >TSk (MAKE AMPLIFIER))

(-/> R (/:SCOPE ?PTSK ?1SK)
(-/> R (/:POLICY ?PTASK 7TSK
(D-NOTE LINERR))
(/:T0-D0 >TSK (MAKE ANPLIFIER) <?DEV>
(MARKE CENI)
GENERAL -DPe)

3 JF MORE THAN ONE TYPE APPERRS, A CHOICE IS IN ORDER

(DEFMLA CHOOSE-ANP
(-/> A (/:CHOICE ?C EXEC
[/:70-DO0 _?+TASY (MAKE AMPLIFIER) <_?+NANE>
_?+METHOD))
(</> G (/:= (DEN ?+TASK) 7ANP-TASK)
(AND .
(/:1PKT CHOOSE-RAMP-PKT
(°C PAHP_TASK ?4TASK ?+NAME ?+NETHOD)
(-/> R (/:QUIESCENCE °C)
(/:PKT QUi-CHOOSE -RMP-PKT
(2C ?AMP-TASK 24TASK
74NANE ?+METHOO))))
(-/> G (/:SCOPE ?PTSK ?ANP-TASK)
TRUE))))
GENERAL-DPe)

3 IF HIGH POMER AND LINEARITY ARE REQUIRED, REPLACE POWER-ANP
3 OPTION WITH LINERRIZED POWER-ANP

(DEFMLA L !MEAR-POWER
(/> A (/:SCOPE 7PPTSK] 2ANP-TASK)
(~/> G (AND (/:POLICY ?PTSK] (D-NOTE LINEAR))
(/:SCOPE PTSK2 ?ANP-TASK)
(/:POLICY ?PTSK2
(D-NOTE (RAMGZR P-GRIN HIGH)))
(/> "(DEN 74PTSK2! 7PTSK2))
(/> A (/:0PTION ?C °R)
(/:70-D0 _?+TASK (MAKE RANPLIFIER)
<_?+NRNE > (NAKE _’ODY)))

(-/> G
(OPT.SUPPORY 74l
[/7:POLICY _?+PTASK2

Appendix 3

232

Appendix 3

_7+ABOVE-ACT))
(/:RULE-TOGETHER <?Al>
[/170-D0 _?+TASK (MAKE AMPLIF IER)
<_7+NARE >
(/1SEQ (MRKE _?74DT)
(AN &4 ¢
(/:00-ALL
<(LINERRIZE 7X)>
(71 OUTPUT <?X>)))
IDRRRRD)
CHOOSE -ANP-PKT)

1 QUIESCENCE PKT
yDIFFERENTIAL DIAGNOSIS BETWEEN CE AND N-STAGE
(DEFNLAR DIFF-CE-N-STRGE
[(-/> A (/:QUIESCENCE °C)
(-/> G (AND (/:0PTION °C ’Al
(7:70-D0 _2+TASK (MAKE ANPLIFIER) <?_+NANE>
(HAKE CED D)
(/10PTION °C ?R2
[/:70-D0 _?+TASK (NRKE AMPLIFIER) <_?+NANE>
(MRKE N-STRGE))))
(AND
(-/> G (AND (/:SCOPE ?PTSK ?RARP-TASK)
(/:POLICY ?PTSK
(D-NOTE
(RANGER BANDWIDTH HIGH))))
(/:RULE-OUT 2R1))
(-/> G (NOT (EXISTS (PTSK)
(AND (/:SCOPE 2PTSK *RANP-TASK)
(/1POLICY ?PTSK
(0-NOTE (RANGER BANDUIDTH
HIGH)))) »
(/:RULE-OUT 2A2)))))
CHOOSE -ANP -PKT)

3 IF ONE OPTION WRS SUGGESTED BECAUSE OF TS INPUT-Z (E.G.,
4 CONMON-COLLECTOR), AND ANOTHER FOR SOMETHING ELSE,
1 VZU MAY CRSCADE THEN

(DEFMLA INPUT-CASCROE
(/> A (/:0PTION °C ’A}
[7:70-00 _?+TASK (MAKE AMPLIFIER) <_?4N>
(RAKE _7+0TD))
(~/> G (OPT-SUPPORT A
[/71POLICY _74PTASK
(D-NOTE (RANGER INPUT-Z _2+RAN))))
(-/> R
(/:0PTION °C ’RA2
[7:70-D0 _7+TASK (NAXE AMPLIFIER) <_7+N>
MAKE _7+0T2)))

233

-

(-/> G (NOT (= ?Rl ?R2))
(/:RULE-TOGETHER <?Rl ?R2>
(/1 70-D0 _?4TASK (NAKE ANMPLIFIER)

<_74N>
(MAKE (CASCADE _?+0TI
24072

NN
CHOOSE -ANP-PKT)

(DEFMLA OPT-SUPPORT (-/> C (AND (/:0PTION-SUPPORT ?0PT ?FMLAS)
(ELT 24F ?FMLAS)
(OR (1w 24F 245)
(SUPPORTS 245 24F)))
(OPT-SUPPORT 20PY ?745))
GENERAL-DP+)

(DEFALA SUPPORT-DEFN (-/> C (AND (/:D0 ?4S 2P 21 74F2)
(OR (:= 24F1 ?245)
(SUPPORTS 2+4F1 ?45)))
(SUPPORTS 24F1 24F2))
GENERAL-DP9)

(DEFALA NAKE-CASCROE
(/:7T0-D0 >TASK (MAYE (CASCADE 20TL 2DT2)) <?NEWDEV>
(/:DC-SUBNET (CASCADE-PLAN ?DT1 ?0T2) <CASCADE-NAME>)])

(DEFMLA CASCADE-PLAN-NET
[-/> A (/:PLAN-INSTANCE ’Pl (CASCRDE-PLAN "DT1 ?0T2) ?SUP)
(AND (STASK (MAKER-] 2P1) SUF <>
(\ () (nAYE 2071) <" (FIRST-DEV ?PI)>)
(STASK (MAKER-2 7P1) ?SUP «>
(. () (MALE 20T2)) <' (SECOND-DEV ?P[)>)
(5TASK (GRABBER °P1) 7SUP <>
(AN}
(GRABBA (\ (X)
(MAIN-DEV-TYPE
?X (CASCARDE 20T1 2072)))
<" (CASCADE-NANE ?P1)>)
(STASK (COUPLER ?P[) ?SyUP
<' (FIRST-DEV 7P]) ' (SECOND-DEV ?P1)>
(\ (01 D2) (COUPLE ’D1 202))
«>)
(STASK (COMPONENTS “AMER ?PI1)
«" (CASCADE -NANE °P1)
'"(FIRST-DEV ?P]) ' (SECOND-DEV ?PI)>»
(O (C 01 D2y
(/1 INFER * (COMPONENTS 7C <201 ?02>) <>))
<»)

(/:NAIN (GRABBER °P1) ?SUP)))

Appendix 3

234

GENERAL -DP¢)

$USE THE MOST GENERAL VERSION OF A CIRCUIT IN R CASCRDE

(DEFALA COUPLE-GENERAL-1
[(-/> R (/:CHOICE °C EXEC
[(/:70-00 (MAKER-1 _?4PI) (MAKE _?+DT) <_?4DEV>
_24HAY))
(-/> G (AND (=/> ' (DEN ?+DT) 2DT)
(MOST-GENERAL-SPEC 20T ?SPEC-DT)
(/> *(DEN ?+SPEC-DT) ?SPEC-DT))
(-/> A (/:0PTION 2C ’A
(/:70-00 (NAKER-1 _?7sP1) (NAKE _+DT)
<_74+DEV>
(MAKE _?+SPEC-DT)))
(/:RULE-IN ?2R)))))

(DEFALA COUPLE-GENERAL -2
(-/> A (/:CHOICE °C EXEC
{/:70-D0 (MAKER-2 _74P1) (MAKE _74DT) <_24DEV>
_74URY1)
(=/> G (RND (=/> ' (DEN 2+DT) ?DT)
(NOST-GENERAL-SPEC 20T ?SPEC-DT)
(/> ' (DEN ?4SPEC-DT) ?SPEC-DT))
(-/> A (/:0PTION ?C R
(/170-00 (MAKER-Z _?+PI) (MAKE _?+0T)
<_?+DEV>
(MAKE _?+SPEC-OT)))
(/:RULE-IN ?R)))))

sCIRCUIT ALTERATION ACTIONS

(DEFALA FIXING-CHANGES-TOPOLOGY (TOPO-CHANGE-ACTION-FUN FIX))

(DEFALA VS-FIX-V
{(/7:T0-00 ?TRSK (FIX '(V PNODE)) <>
(CONFIG (VOL TAGE -SOURCE)
(\ (VS)
<(TRAINS-CONNECT (#1 ?VS) ?NODE)>))))

(DEFALA VD-FIX-V
[/:70-00 ?TASK (FIX ' (QUIESCENT (V ?NODE))) <>
(CONFIG <VD NODE NODE >
(LAMBDA (VD N1 N2)
<(CONSTRAIN <'(V 7N1) ' (V 2NODE) >
N VIVY (/> v)
(CONSTRAIN <'(V 7N2) '(V 7NODE)>
V2 V) (/> vv))

Appendix 3

235

(NODES-NERGE >N1 (TOP ?VD))

(NODES-RERGE >N2 (BOT ?VD))

(NODES-HERGE °NODE (RID ?VD))>)))
GENERAL-DPs)

(DEFRLA DIF-FIX [/:70-00 TASK (FIX ' (- ?2X1 ?X2)) <«
(/:00-ALL <(FIX '2X1) (FIX '?2X2)>)))

1BIRSING

(DEFMLA BIAS-CHANGES-TOPOLOGY (TOPO-CHANGE-RCTION-FUN BIAS))

(DEFNLA BJT-BIAS
[/:ANJEC (NOT (DEV-TYPE >Q BJT))
(/:70-D0 ?TASK (BIRS 2Q ACTIVE) <>
(/:D0-SUBNET (GENERAL-BIAS-PLAN 2Q) ?TASK <>1)))

(DEFALA BJT-BIAS-NET
[/1ANTEC (NOT (/:PLAN-INSTANCE 2Pl (GENERRL-BIRS-PLRN 2Q) ?SUP))
(AND (STASK (VBE-FIXER ?Pl) 7SUP <>
(N O (FIX '(- (V (BRSE 2Q)) (V (ENI 20)))))

«>)

(STASK (CB-BIASER ?PI) ?SUP <>
(\ () (REVERSE-BIRS (CB-JUNCTION ?Q))) o)
(STASK (IC-FIXER ?PI) ?SUP o
(N O (FIx (1 (oL 2a))) <)
(/:MAIN (VBE-FIXER ?P1) ?50P)
(/:NRIN (IC-FIXER ?PI) ?5UP)))
GENERAL -DP+s)

(DEFMLA TYPICAL-BJT-ONE-STRGE-BIRS
(-/> A (/:PLAN-INSTANCE 7P|
(TYPICAL-BJT-ONE-STRGE-BIAS-PLAN ?Q) ?SUP)
(AND
(STASK (BVD ?P[) 7SUP <>
(\ O (RCQUIRE VD)) <'(BVD ?P1)>)
(STASK (SUPPLY-POMER ?P[) 7SUP «>
(\ O (ACAUIRE VS)) <’ (POUER-SUPPLY ?Pl)>)
(STASY (RESIS-GETTER ?PI) ?SUP <>
(\ () (RCQUIRE RESISTOR)) <'(RE 7P1)>)
(STASK (BASE-SETTER 2P1) ?5UP <’ (BVD ?P1)>
(\ (VD) (TRMINS-CONNECT (BRSE 2Q) (M]D >VD)))
o)
(STASK (COLLECTOR-POMER >P]) ?SUP
<" (PONER-SUPPLY ?P1)>
(\ (PS) (DEV-INSERT ?PS (CNODE Q)
(92 ?PS)
(NODE -TERMINALS (CNODE 2Q))
(1 7PS) <o) \
l),

(STASK (EMITTER-MUNGER ?P1) ?SUP <'(RE ?P1)>

Appendix 3

236

Appendix 3 237

(\ (R) (DEV-INSERT 2R (ENODE ’Q)
(#1 7R) <(EMI 2Q)>
(£2 2R)
(DEL (ERT 7Q)
(NODE-TERRINALS (ENODE *Q)))))
<>»)
(REDUCE <(BVD °P1) (BASE-SETTER ?P])>»
(VBE-FIXER 2PI))
(REDUCE <« (SUPPLY-POWER ?P1) (COLLECTOR-POUER ?P])>
(CB-BIASER ?PI))
(REDUCE <« (RESIS-GETTER ?PI) (EMITTER-MUNGER ?PI)>
(IC-FIXER 2PI)) "

(DEFNLA SPEC-TYPICAL-BJT
(SPEC-SCHEMA (TYPICRL-BJT-ONE-STRGE-BIAS-PLAN ?Q)
(GENERAL -BIAS-PLAN 2Q)))

;COUPLING HAS BEEN SPECIALIZED TO BJT ANPLS.

(DEFNLAR COUPLING-CHANGES-TOPOLOGY (TOPO-CHANGE-ACTION-FUN COUPLE])

(DEFALA COUPLE-DO-1
[/:70-D0 ?TRASK (COUPLE ?D1 °PORTL ?PORT2 702) <>
(/:00-SUBNET (GENERAL -COUPL ING-PLAN 701 ?PORT1 ?PORT2 ?02)
2TASKE <>)))

(DEFALA COUPLE-NET
(/:ANTEC (NOT (/:PLAN-INSTANCE P}
(GENERAL -COUPL ING-PLAN 201 ?PORTL ?PORT2 2D2)
7SUP))
(AND (STASK (SIGNAL -NEDIUN-CHOOSE ?P1) ?SUP <>
N 0O
(7:FIND
o
(ELT A <VOLTRGE CURRENT>) 3])

<' (MEDIUN 2P >)

(STRSK (COUPLE-TYPE-CHOOSE 7PI) ?SUP <>
N\ 0

(/:FIND
o «n
(ELY 2CY
<DIRECT CAPACITIVE
INDUCTIVE>)))

<' (COUPLE-TYPE 7PI)>)

(STASK (CONVERT-PORT-1 ?PJ) ?SUP <' (MEDIURN *P[)>
(\ (M) (PORT-CONVERT ?PORTL M))
<)

(STASK (CONVERT-PORT-2 ?PI) ?SUP <' (MEDIURN ?P1)>
(\ (M) (PORT-CONVERT ?PORT2 M))

ey e e . =

Appendix 3

<)
(STASK (CONNECTOR ?PI) ?SUP <’ (COUPLE-TYPE ?P1)>
(\ (TYPE)
(PORTS-CONNECT ?PORT1 ?PORY2 ?TYPE)) s
<>»)

(/:SUCCESSOR (SIGNAL-MEDTUN-CHOOSE ?PI)
(CONVERT-PORT-1 ?P1))

(/:SUCCESSOR (SIGNAL -MEDIUNM-CHOOSE 2P1)
(CONVERT-PORT-2 ?P1))

(/:SUCCESSOR (CONVERT-PORT-1 ?PID
(CONNECTOR 2PI))

(/:SUCCESSOR (CONVERT-PORT-2 ?PI)
(CONNECTOR 2P1))

(/+NAIN (CONNECTOR ?PI) 2SUP)

)]

GENERAL -DPs)

(DEFNLA COUPLE-BEFORE-BIAS
[-/> A (/:TASK-ACTION >CT (COUPLE 201 ?PRT1 ?PRT2 202))
(-/> G (AND (COMPONENTS 201 *DICS)
(CONPONENTS 2D2 ?D2CS)
(OR (ELT 20 ?0D1CS) (ELT ?Q ?02CS))
(MAIN-DEV-TYPE 2Q BJT))
(/:SUCCESSOR ?CT (BIASER 2Q ?MODE)))))

{SPECIFIC SITURTIONS --
(DEFMLA COUPLE-CE-X-HINTS
[-/> A (/:TASK-ACTION >CT (COUPLE D1 (QUTPORT 201) ?PRT2 ?02))
(/> G (DEV-TYPE 201 CE)
(/:PKT CE-COUPLE-HINTS (CT 201 ?PRT2 202)
(/:70-00 ?CT (COUPLE 201 (OUTPORT 201)
PRT2 202) <>
(/:D0-SUBNET
(CE-DIR-VOL-COUPLE 701 7PRT2 ?02)
«>»))
(/:70-00 CT (COUPLE 201 (OUTPORT ?B1)
PRT2 702) <>
(/:00-5UBNET
(CE-DIR-CUR-COUPLE 701 ?PRT2 202)
«»))
(/:10-00 >CT (COUPLE 01 (OUTPORT 201)
PRT2 702) <>
(/100-5SUBNET
(CE-CAP-VOL-COUPLE D1 ?PRT2 202)
)N

(DEFALA COUPLE-CC-X-HINTS
(/> A (/:TASK-ACTION >CT (COUPLE 201 (DUTPORY 201) ?PRT2 702))

L

(-/> G (DEV-TYPE 01 CC)
(/:PKT CC-COUPLE-HINTS (7CT 201 *PRT2 202)
(/170-00 >CT (COUPLE D1 (OUTPORT ?01)
7PRT2 202) «
(/100-SUBNET
(CC-DIR-VOL-COUPLE 701 ?PRT2 202)
oSNNI

(DEFMLA CE-DIR-VOL-COUPLE-PLAN
{-/> R (/:PLAN-INSTANCE P}
(CE-DIR-VOL-COUPLE 201 ?PRT2 ?02) ?SUP)
(AND (=/> ' (MEDIUM °P) VOLTAGE)
(e/> ' (COUPLE-TYPE °P]) DIRECT)
(/:REDUCED (SIGNRL-MEDIUN-CHOOSE °P1))
(/:REDUCED (COUPLE-TYPE-CHOOSE ?PI))

(STASK (GET-RESISTOR 2P1) ?SUP <>

(\ () (ACQUIRE RESISTOR)) <’ (RESISTOR ?Pl)>)
(STASK (GET-POUWER-SUPPLY 7PI) SUP <>

(\ O (RCQUIRE VOLTAGE-SOURCE)) <" (VS 2P1)>)
(STASK (BJT-FINDER ?P1) ?SUP <>

0N o0

(/:FIND
(AN {/}]
(EXISTS (CS)
(AND (COMPONENTS 201 7CS)
(ELT 2Q CS)
(MAIN-DEV-TYPE 20 BJT)) m

<' (TRANSISTOR 2PI)>)
(STASK (MIRER-1 ?P1) ?SUP

<" (RESISTOR ?P]) ' (TRANSISTOR °P1)>

(\ (R Q) (TRNINS-CONNECT (#2 ?R) (COL Q))

<>)
(STASK (MIRER-2 ?P1) ?SUP

<" (RESISTOR ?PI) (VS *Pl)>

(\ (R VS) (TRMINS-CONNECT (#1 ’R) (#2 ?VS);)

<»)

(REOUCE «(GET-RESISTOR *PI) (WIRER-1 ?PI)>
(CONVERT-PORT-1 ?PI))
(/> A («/> ' (TRANSISTOR *P1) 2Q)
(=/> A (/:PLAN-INSTANCE ?BIRS-PI
(GENERAL -BIRS-PLAN °Q) >SUP-BIRS)
(REDUCE < (GET-POMER-SUPPLY ?PI)

(MIRER-2 ?P1)>
(CB-BIASER ?BIAS-P1)))))))

(DEFMLA SPEC-CE-DIR-VOL
(SPEC-SCHEMA (CE-DIR-VOL-COUPLE 201 7PRT2 202)
(GENERAL -COUPL ING-PLAN 201 (OUTPORT ?01)

Appendix 3 239

S

7PRT2 202)))

(DEFMLA PORT-CONVERT
(-/> C (AND ([-PORT ?PRT)
(«/> "(PORT-TERMINALS ?PRT) <>TRMINL ?TRHIN2>)
(=/> ' (NODE-TERMINALS ?TRNINL) 2TS))
(/:70-D0 ?TASE (PORT-CONVERT ?PRT CURRENT VOLTAGE) <>
(CONFIG <RESISTANCE >
(\ (R)
<« (/:FORK
(DEV-INSERT 2R ?TRMINL
(#1 PR) ?TS (#,2 7R) o)
(ANNS]
<(RELABEL -PORT ?PRT 1-PORT V-PORT)
(CONSTRAIN <' (1 (#1 2R)) (1 ?TRAINL) >
O (IR IT)
(/>/> (RBS ?IR)
(RBS ?1IT)) N> N> N

(DEFMLAR RELABEL
(/:NOD-NANIP ?TSK (RELABEL-PORT ?PRT ?20LD ?NEW)
<' (70L0 ?PRT)> <'(?NEW ?PRT)>))

(DEFMLA ACQ-NODE (NOT (REUSABLE NODE) 1)

(DEFALA PRIN-NODE (PRIMITIVE-DEV-TYPE NODE) GENERAL-DPs)

(DEFALA 2-TERMINAL -DEFN
(/> A (DEV-TYPE >X 2-TERMINAL)
(/:PKT 2-TERMINAL -PKT (7X)
(TERMINAL -NRHES X <#1 #25)
(CONSTRAINT <' (1 (#1 7)) (1 (#2 >X))>
AN (111D (= 21121 N
(CONSTRAINT <*(V 2X) *(V (#1 2X)) "(V (#2 7X))>
(\ (Vv V1 V)
(= 2V (= 2V1 2V2)))]
GENERAL -DPs)

(DEFALA PRIN-RESIS (PRIMITIVE-DEV-TYPE RESISTOR))

(DEFAMLA RESISTOR-DEFN
(-/> A (DEV-TYPE X RESISTOR)
(/tPKT RESISTOR-PET(?X)
(DEV-TYPE *Xx 2-TERMINAL)
(CONTROL 7X R REALS 1.8)

Appendix 3

(DEFNLA

(DEFNLA

(DEFNLA

(DEFNLA

(DEFNALA

(DEFALA
(DEFALA

(DEFMLA

(CONSTRAINT <' (R 7X)>»
(LANBDA (R) (/>= 7R 8.0)))
(CONSTRAINT <' (R 2X) '(V (g1 ?2X))
YV (2 2X)) (1 81 X)) >
(LARBDA (R V1 V2 1)
(= (¢ 211 ?R) (- 2Vl ?V2)) Mm)
GENERAL -0P#)

ACA-RESISTOR (NOT (REUSARBLE RESISTOR)))

PRIN-OPEN (PRIMITIVE-DEV-TYPE OPEN))

OPEN-DEFN
(-/> A (DEV-TYPE X OPEN)
(AND (DEV-TYPE >X 2-TERMINAL)
(CONSTRAINT <' (1 (#1 ?2X))>
(LAMBDA (1) (= 21 @) 2]
(CONSTRAINT <" (1 (#2 2X))>
(LANBOA (1) (= 71 @) M)
GENERAL-DP#)

PRIN-SHORT (PRIMITIVE-DEV-TYPE SHORT))

SHORT-DEFN
(-/> A (DEV-TYPE >X SHORT)
(AND (DEV-TYPE >X 2-TERMINAL)
(CONSTRAINT <’ (V (£1 ?X)) *(V (#2 ?2X))>
(LANBDA (V1 V2) (= ?VI ?V2) m)
GENERAL -DPs)

PRIN-CAP (PRINiTIVE-DEV-TYPE CAPACITOR))
ACQ-CAP (NOT (REUSABLE CAPACITOR) 1)

CAP-DEFN
(-/> A (DEV-TYPE X CAPACITOR)
(/1PKT CAP-PKT (OX)

(DEV-TYPE X 2-TERMINAL)

(CONTROL ?X C REALS 1.2)

(CONSTRAINT <'(C ?X)>

(LANBDA (C) (/>« 7C 0.0) 3]

(N (DC) ' (DEV-TYPE >X CAPRCITOR))

(T (DC) (DEV-TYPE ?X OPEN))

(N (555 °S) ' (DEV-TYPE >X CAPACITOR))

(T (555 ?S) (AND (DEV-TYPE >X RESISTOR)

(«/> "(R 2X)
(/7 1.0 (s (C 2X) ?2S))))

(N (HIGH-FREQ) (DEV-TYPE X CAPACITOR))

(T (MIGH-FREQ) (DEV-TYPE ?X SHORT))))
GENERAL -DPe)

Appendix 3

261

=

(DEFNLA PRIN-INDUC [PRINITIVE -DEV-TYPE INDUCTOR])

(DEFMLA INDUC-DEFN
{-/> R (DEV-TYPE X INDUCTOR)
(/:PKT INDUC-PET (7X)
(DEV-TYPE X 2-TERMINAL)
(CONTROL 7x L REALS 1.5}
(CONSTRAINT <’ (L 72X)>
(LAMBDA (L) (/>= 2C 8.8)))
(N (DC) ' (DEV-TYPE X INDUCTOR))
(T (DC) (DEV-TYPE ?X SHORT))
(N (555 ?S) " (DEV-TYPE >X INDUCTOR))
(T (555 2S) (AND (DEV-TYPE ?X RESISTOR)
(/> ' (R 2X)
(s (L 20 28))))
(N (HIGH-FREQ) (DEV-TYPE 2X INDUCTOR))
(T (HICH-FREQ) (DEV-TYPE 72X SHORT))))
GENERAL-DP¢)

(DEFMLA XFMR-DEFN
(-/> A (DEV-TYPE X TRANSFORRER)
(/:PKT XFHR-PKT (X)

(TERMINAL -NANMES 2X <41 M2 M1 M2>)

(CONTROL ?X TURNS-RATIO REALS 1)

(CONSTRAINT «' (TURNS-RATIO ?X)>
(\ (N) (/> ?N @)))

(CONSTRAINT <’ (] (A1 X)) "(] (A2 2))>

l (N (11 12) (= (& 211 ?212) ®))

\
r (DEFHRLA CORNP-XFAMR (COMPOSITE-DEV-TYPE TRANSFORMER))

(CONSTRAINT <’ (1 (MR] 2X)) ' (] (#,R2 ?X))>
(N (13 14) (= (+213218) B)
(CONSTRAINT < (V (A1 2X)) ' (V (A2 X))
TV (RL X)) TV (R2 X))
L X)) T R X))
(\ (VL1 VL2 VRI VR2 IL IR)
(= (o (s (= PV VL) ?1L)
(¢ (= PVRI ?VR2) ?IR))
i 8 N

] 3 A TRANSFORMER MAY CONSIST OF THO INDUCTORS

(DEFALA DERIVED-XFHR
[/:70-D0 ?TASK (NAYE TRANSFORNMER) <?NANME>
(/:00-5UBNET (BUR-TWO-INDUCTORS) «XFHR>)]
GENERAL-DP9)

(DEFALA BUN-INDUCTORS-NET
(/> A (/:PLAN-INSTANCE °P1 (BUM-TUO-INDUCTORS) ?SUP)
(AND (STASK (GET-INDUC-1 *P1) ?SUP <>

Appendix 3 242

o ——

(\ () (RCQUIRE INDUCTOR)) <'(L1 ?PI)>»)
(STAZE (GET-INDUC-2 PI) ?SUP <>
(\ O (ARCQUIRE INDUCTOR)) <'(L2 ?P1)>)
(STASKE (ABRA *P1) 25UP <" (L1 ?PI) '(L2 ?PD)>
(\ (L1 L2) (GRARBA
o 00
(MAIN-DEV-TYPE ?X TRANSFORNER)
<" (XFMR ?P1)>)
(STASK (CADABRA °P1) ’SUP
<" (L1 ?PD) * (L2 ?PI) ' (XFAR ?P])>
(\ (L1 L2 XFMR)
(/: INFER ' (COMPONENTS >NANE <?L1 70L2>)
<«>))
«>)
(/:MAIN (RABRA ?P1) ?S5UP))])
GENERAL -DPs)

(DEFHMLA IDEARL-VS [IDEAL-DEV-TYPE VOLTAGE-SOURCE))
(DEFMLA REUSABLE-VS [REUSABLE VOLTAGE-SOURCED)
(DEFNMLAR VE-DEFN

(-/> A (DEV-TYPE ’X VOLTAGE -SOURCE)

(AND (DEV-TYPE ?X 2-TERMINAL)
(CONTROL V X REALS 1)

(R

(CONSTRRINT <" (V 2X) "(V (#1 ?X)) "(V (#2 7X))>

(N (V VI V2) (e 2V (= 2V1 2V2)))))
(DEFNLA PRIN-BJT (PRINITIVE-DEV-TYPE BJTI)

(DEFNLR BJUT-DEFN
(-/> A (DEV-TYPE 20 BJT)
(/1PKT BJT-PET (2Q)
(TERMINAL -NAMES 70 <BASE EMI COL>)
(CONTROL POLARITY 2Q <+l -1> 1) ;NPN VS PNP
(CONTROL BETA 2Q (INTERVAL 18 S88) (6.)
;BETA CONTROLLABLE UP TO ORDER OF MAGNITUDE
(CONTROL RPI 20 REALS 1.5)
3 INCREMENTAL BRSE RESISTANCE

(~/> A (MODE 2Q °M)
(STASK (BIASER 70 M) (DEEP-FREEZE M) «»
A0 (BIRS 20 M)) <))

(~/» R (NODE 2Q RCTIVE)
(AND
(CONSTRAINT <’ (1 (BRSE Q1)
'(1 (CoL 2Q)) ' (BETA 7Q)>
(LANBDA (I8 IC BETA!
(= 21C (e 7BETR ?18))

n

(CONSTRAINT <’ (1 (coL 2Q)) ' (1 (EAT 2Q))>

(LAMBOR (IC 1E)

Appendix 3

243

(=« (+ ?JC ?1E) 08.8)))
(CONSTRAINT «' (I (BASE 2Q))> ZEROP)
(CONSTRAINT «'(V (BRSE 2Q)) '(V (ENI °Q))
' (POLARITY 2Q)>
(LAMBOR (VB VE §)
(e (- 7VB ?VE) (¢ 8.6 ?5)))
(INEQ (V (BRSE ?Q)) (V (EMI 2Q))
(POLARITY 2Q))
(INEQ (Vv (COL 20)) (V (BRSE °Q))
(POLARITY 2Q))
CINEQ (I (COL ?7Q)) 8 (POLARRITY 2Q))
(INEQ (1 (BASE ?0)) @ (POLRRITY 2Q))
(INEQ 8 (I (EMI 2Q)) (POLARITY 2Q))))

(-/> A (HODE >Q CUTOFF)
(RND
(CONSTRAINT <' (1 (COL >Q))> ZEROP)
(CONSTRAINT <' (1 (BASE ?Q))> ZEROP)
(CONSTRAINT <’ (1 (EMI 2Q))> ZEROP)))

(-/> A (NODE >Q SATURATED)
(CONSTRAINT «<'(V (COL 2Q)) '(V (EMI 2Q))

} ' (POLARITY 2Q)>
(LANBDA (VC VE S)
(« ?VC (& ?2VE (// (s 8.6 ?3) 2.0))) M
(N CINC) ' (CONSTRAINT <'(V (BASE 20)) '(V (EN] °Q))
' (POLARITY 2Q)>
(LANBDA (VB VE S)
(= (- 7VB ?VE) (s 0.6 ?9)) M)
(T CINC) (CONSTRAINT <’ (V (BRSE 2Q)) '(V (EMI 2Q))
' (1 (BASE 2Q)) '(RPI 2Q) >
(\ (VB VE IB R)
(= (- 7VB ?VE) (s 1B ?R)))
)]
GENERAL -DP9)
(DEFMLA INEQ-1
[-/> R (INEQ 27X ?Y ?5)
(AND (-/> C (/5 25 B) (/> 2X ?Y))
{ (=/> C (/< 2?5 8) (/< 2X ?2Y)))))
i
¢ yCORPOSITE DEVICES

(DEFALA SIG-TRANSER-GLORIA-HUNDI
{-/> A (DEV-TYPE ?X SIG-TRANSER)
(PORTS ?X < (INPORT ?X) (OUTPORT ?X)5)))

(DEFALA NODES-DECL-DEFN
(~/> A (NODES 2DEV ’NODE-TUP)
(=/> G (ELY 7N ONDDE-TUP) (MAIN-DEV-TYPE ?N NODE)))

Appendix 3 244

(DEFNLA

(DEFNLA

(DEFALA

(DEFALA

(DEFNLA

(DEFNLA

GENERAL -DP¢)

PORTS-DECL-DEFN
[(-/> A (PORTS 2DEV ?PORT-TUP)

(-/> G (ELT ?PRT ?PORT-TUP) (MRAIN-DEV-TYPE ?PRT PORT))])

ANP-SIG-TRANS (SUB-DEV-TYPE AMPLIFIER SIG-TRANSER))

CE-BASIC (BASIC-DEV-TYPE CE))

CE-ANP (SUB-DEV-TYPE CE AMPLIFIER))

MOST-GEN-CE (MOST-GENERAL-SPEC CE GENERAL-CE))

[(-/> A (DEV-TYPE 2CE GENERAL-CE)

GENERAL -0P9)

(/1PKT CE-PKT (2CE)

(COMPONENTS 2CE < (Q CE)>)
(NODES 2CE <(BNODE >CE) (ENODE ?CE) (CNODE ’CE)>)

(DEV-TYPE (Q °CE) BJT)
(RODE (@ °CE) ACTIVE)
(/:SUBTASK (BIASER (Q 2CE) ACTIVE) (DEEP-FREEZE °CE))
(/:70-D0 (BIASER (Q °CE) ACTIVE) ’A «
(/:D0-SUBNET
(TYPICAL-BJT-ONE-STAGE-BIRS (Q ?CE)) <>))

(=/> ' (NODE-TERMINALS (BNODE ?CE)) <(BASE (Q ’CE))>)
(=/> ' (NODE-TERMINALS (ENODE 2CE)) <(EMI (Q ?CE))>)
(=/> ' (NODE-TERRINALS (CNODE 2CE)) <(COL (@ ?CE))>)

(I-PORT (INPORT °CE))
(PORT-TERMINALS (INPORT 2CE)
<(BNODE ?CE) (ENODE °CE)>)
(I-PORT (OUTPORT °CE))
(PORT-TERMINALS (OUTPORT 2CE)
<(CNODE ?CE) (ENODE ?CE)>)
))

(DEFNLA DEFAULT-CE (DEFAULT-SPEC CE TYPICAL-CE))

(DEFALA DERIVATION-TYP-CE (DERIVED TYPICAL-CE GENERAL-CE))

(DEFALA TYPICAL-CE-DEFN
[/1ANTEC (NOT (DEV-TYPE ?TYP-CE TYPICAL-CE))

(/:PKT TYPICAL-CE-PKT (?TYP-CE)

(DEV-TYPE ?TYP-CE CE)
(COMPONENTS ?TYP-CE «(Q ?TYP-CE) (Rl ?TYP-CE)

Appendix 3

245

"

= e

JFROZEN TASKS

(R2 ?TYP-CE) (RE ?TYP-CE)
(RL ?TYP-CE)>)

(MAIN-DEV-TYPE (Q ?TYP-CE) BJT)

(MODE (Q *TYP-CE) ACTIVE)
(MAIN-DEV-TYPE (Rl >TYP-CE) RESISTOR)
(MAIN-DEV-TYPE (R2 ?TYP-CE) RESISTOR)
(MAIN-DEV-TYPE (RE ?TYP-CE) RESISTOR)
(MAIN-DEV-TYPE (RL >TYP-CE) RESISTOR)

(NODES >TYP-CE «(BNODE TYP-CE) (CNODE ?TYP-CE)
(ENODE ?TYP-CE) (GND ?TYP-CE)
(PNODE ?TYP-CE)>)

(/> ' (NODE-TERMINALS (BNODE ?TYP-CE))
<(BRSE (Q TYP-CE)) (#2 (R1 ?TYP-CE))
(#1 (R2 PTYP-CE))>)
(/> " (NODE-TERMINALS (ENOQE >TYP-CE))
<(EM] (Q >TYP_CE)) (#) (RE ?TYP-CE))>)
(/> " (NODE-TERRMINALS (CNODE >TYP-CE))
<(COL (Q ?TYP-CE)) (#2 (RL >TYP-CE))>)
(a/> ' (NODE-TERMINALS (PNODE *TYP-CE)!}
<(#1 (R] PTYP_CE)) (#1 (RL ?TYP-CE))>»)
(=/> ' (NODE-TERMINALS (GND ?TYP-CE))
<(#2 (R2 PTYP-CE)) (#2 (RE ?TYP-CE))>)

(/:PLAN-INSTANCE (FROZEN-BIAS-PLAN 2TYP-CE)
(TYPICAL -BJT-ONE-STAGE-BIAS (Q >TYP-CE))
(BIASER (Q >TYP-CE) ACTIVE))

(/:REDUCED (BIRSER (Q >TYP-CE) ACTIVE))

(FUNCTION (R} ?TYP-CE) (BVD (FROZEN-BIAS-PLAN ?TYP-CE)))
(FUNCTION (R2 ?TYP-CE) (BVD (FROZEN-BIRS-PLAN ?TYP-CE)))
(FUNCTION (RE °TYP-CE)

(RESIS-GETTER (FROZEN-BIAS-PLAN ?TYP-CE)))

(STASK (PORT-CVT 2TYP-CE) (DEEP-FREEZE ?TYP-CE) <«
(\ () (CONVERT_PORT (OUTPORT ?TYP-CE)
CURRENT VOLTAGE))
«>)

(FUNCTION (RL ?TYP-CE) (PORT-CVT ?TYP-CE))

(EXPANSION-0BL ?TYP-CE (FIX '(V (PNODE ?TYP-CE))))
(/:SUBTASK (OBL >TYP-CE (FIX '(V (PNODE ?TYP-CE))))
(BIASER (Q TYP-CE) ACTIVE))

(CONSTRAINT «' (POLARITY (Q 2TYP-CE))
'(SIGN (V (PNODE ?TYP-CE)))>
=)
(CONTROL V-GAIN ?TYP-CE C(INTERVAL -50 58) 2)
(CONSTRAINT <’ (V-GAIN ?TYP-CE) '(R (RL ?TYP-CE))

Appendix 3

246

-

Y g e -

-

GENERRL-0Pe?

'(R (RE ?TYP-CE))>
(LANBDA (AV RL RE) (= ?AV (// 2RL ?RE))
3]

(DEFMLA BASIC-VD (BASIC-DEV-TYPE VD)

(DEFMLA VD-DEFN
(-/> R

1FROZEN TASKS

)
GENERAL

(DEV-TYPE VD VD)

(/1PKT VD-PKT (7VD)
(COMPONENTS VD <(R1 VD) (R2 >VD)>)
(NODES ?VD <(TOP ?VD) (MID ?VD) (BOT ?VD)>)

(MAIN-DEV-TYPE (Rl ?VD) RESISTOR)
(MAIN-DEV-TYPE (R2 ?VD) RESISTOR)

»

(s/> ' (NODE-TERRINALS (TOP ?VD)) <(#1 (RI >VD))>)

(/> ' (NODE-TERMINALS (MIOD 2VD))
<(#2 (R]1 VD)) (#1 (R2 ?VD))>)

(=/> ' (NODE-TERMINALS (BOT ?VD))
<(#2 (R2 ?VD))>)

(DEV-TERRINALS ?VD

<(TOP ?VD) (MID ?VD) (BOT ?VD)>)

(EXPANSION-0BL ?VD (FIX ' (V (TOP ?VD))))
(EXPANSION-0BL 2VD (FIX '(V (BCT ?VD))))

(CONSTRRINT <’ (V (TOP ?VD)) '(V (BOT ?VD))
'(V (RID PVD))
'(R (RL ?VD)) '(R (R2 ?VD))>
(\ (V1 V2 V Rl R2)
(= 2V (// (4 (s 7R2 V1) (& ?R1 ?V2))
(s ?R1 ?2R2)))))

(CONSTRAINT <' (1 (NID-NODE ’VD))
‘(1 (#,2 (R1 2VD)))>

((1 11 (/</< (RBS ?1) (ABS ?I1)) D)
(CONSTRARINT <'(1 (MID-NODE VD))
' (#1 (R2 2VD)))>

(\ (1 12) (/</< (RBS ?1) (RBS ?12))))

-0Ps)

(DEFALA ACO-VD [NOT (REUSABLE VD)))

Appendix 3

247

PR —

———

jRS HITH CE, THERE]S AN ARSTRACT EZP WHICH IS A CURRENT AMPLIF JER

(DEFMLA BASIC-ECP [BASIC-DEV-TYPE ECP])

(DEFALA ECP-1S-AMP (SUB-DEV-TYPE ECP AMPLIFIER))

(DEFMLA NOST-GENERAL-ECP (MOST-GENERAL-SPEC ECP GENERAL-ECP))

(DEFNLA ECP-DEFN
[-/> A (DEV-TYPE 2ECP GENERAL-ECP)
(/:PKT ECP-PKT (2ECP)
(COMPONENTS “ECP «(QL 7ECP) (Q2 7ECP)>)
(NODES ?ECP < (ENODE ?ECP)
(BNODEL ?ECP) (BNODEZ 7ECP)
(CNODEL ?ECP) (CNODE2 ?ECP)>)

(MRIN-DEV-TYPE Q1 *ECP) BJT)
(MODE (Q1 ?ECP) ACTIVE)
(MAIN-DEV-TYPE (Q2 2ECP) BJT)
(RODE (02 ECP) ACTIVE)

(/> ' (NODE-TERMINALS (ENODE 2ECP))
<(EM] (QL 2ECP)) (EMI (Q2 2ECP))>)

(/> ' (NODE-TERMINALS (BNODEL 2ECP))
<(BASE (Q1 ?ECP))>)

(/> ' (NODE-TERMINALS (BNODE2 ECP))
<(BASE (Q2 ?2ECP))>)

(=/> ' (NODE-TERNINALS (CNODEL ?ECP))
<(COL (@1 2ECP))>)

(=/> ' (NODE-TERMINALS (CNODE2 ?ECP))
<(COL (@2 ECP))>)

(PORTS 7ECP <OUTPORT-1 OUTPORT-2>)

(V-PORT (INPORT ?ECP))
(PORT-TERMINALS (INPORT 2ECP)
<(BNODEL 2ECP) (BNODE2 2ECP)>)

(1-PORT (DUTPORT-1 ECP))
(PORT-TERMINALS (OUTPORT-1 ?ECP)
<(CNODEL YECP) (ENODE 7ECP)>)
(1-PORT (OUTPORT-2 2ECP))
(PORT-TERMINALS (OUTPORT-2 2ECP)
<(CNODE2 YECP) (ENODE 2ECP)>)

(/:SUBTASK (BIASER (Q1 2ECP) ACTIVE)
(DEEP-FREEZE ’ECP))

(/:SURTASK (BIASER (Q2 ?ECP) ACTIVE)
(DEEP-FREEZE 7ECP))

(EXPANSTON-OBL 2ECP (FIX ' (1 (ENODE 2ECP)))))]))

(DEFMLA DEFARULT-ECP (DEFAULT-SPEC €CP ECP-DC-ANPI)

Appendix 3

248

(DEFMLA DERIVED-ECP-DC-ANP [DERIVED ECP-DC-ARP ECP))

(DEFMLA ECP-DC-ANP-DEFN
(/:ANTEC (NOT (DEV-TYPE ?TYP-ECP ECP-OC-ANP))
(/:PXY ECP-OC-ANP-PRT (2TYP-ECP)
(COMPONENTS *TYP-ECP
<(Q} 2TYP_ECP) (Q2 ?TYP-ECP)
(RL ?TYP-ECP) (RE ?TYP-ECP)>)
(DEV-TYPE (RL ?TYP-ECP) RESISTOR)
(NEV_TYPE (RE ?TYP-ECP) RESISTOR)
(DEV-TYPE (Q1 >TYP-ECP) BJT)
(DEV-TYPE (Q2 ?TYP-ECP) BJT)
(MODE (Q1 ?TYP-ECP) ACTIVE)
(MODE (Q2 TYP-ECP) ACTIVE)

(NODES ?TYP-ECP
< (ENODE ?TYP-ECP) (LOWNODE >TYP-ECP)
(HIGHNODE *TYP-ECP)
(C2NODE >TYP-ECP) (BINODE >TYP-ECP)
(B2NODE ?TYP-ECP)>)
(=/> ' (NODE-TERRMINALS (ENODE ?TYP-ECP))
<(EMT (Q1 ?TYP-ECP)) (EMI (Q2 ?TYP-ECP))
(#1 (RE 2TYP-ECP)I>)
(=/> ' (NODE-TERMINALS (LOWNODE ?TYP-ECP))
<(#2 (RE ?TYP-ECP))>)
(=/> ' (NODE-TERRMINALS (HIGHNODE ?TYP-ECP))
<(COL (Q1 ?TYP-ECP)) (#1 (RL ?TYP-ECP))>)
(=/> ' (NODE-TERMINALS (C2NODE ?TYP-ECP))
<(COL (Q2 >TYP-ECP)) (#2 (RL ?TYP-ECP))>)
(=/> ' (NODE-TERRINALS (BINODE ?TYP-ECP))
<(BASE (Q1 *TYP-ECP))>)
(s/> " (NODE-TERANINALS (BZNODE ?TYP-ECP))
<(BASE (Q2 ?TYP-ECP))>)

s THESE ARE WAYS OF DOING TASKS IN RBSTRACT ECP. .,
(EXPANSION-0BL ?TYP-ECP
(FIX ' (V (LOUNODE ’TYP-ECP))))
(EXPANSION-0BL ?TYP-ECP
(FIK ' (V (HIGHNOOE ?TYP-ECP))))

(REOUCE <(0BL *TYP-ECP
(FIX '(V (LONNODE >TYP-ECP))))>
(0BL (SOUL ?TYP-ECP)
(FIX ' (1 (ENODE (SOUL ?TYP-ECP))))))

(REOUCE «(DBL *TYP-ECP
(FIX " (V (HIGHNODE *TYP-ECP))))>
(BIASER (QL (SOUL ?TYP-ECP)) ACTIVE))
(REDUCE <(0BL ?TYP-ECP
(FIX ' (V (HIGHNODE *TYP-ECP))))>
(BIASER (02 (SOUL ?TYP-ECP)) ACTIVE))

(STASK (CVT-PORT 7ECP) (DEEP-FREEZE >TYP-ECP)

Appendix 3

249

Appendix 3 250

«> (\ () (PORT-CONVERT (QUTPORT ?TYP-ECP)
CURRENT VOLTRGE)) o)
(FUNCTION (RL ?TYP-ECP) (CVT-PORT 2€CP))

(FUNCTION (RE ?TYP-ECP)
(0BL (SOUL ?TYP-ECP)
(FIX * (1 (ENODE ?ECP)))))

(CONSTRAINT <' (1 (RE ?TYP-ECP))>
0 (1) (e 7] 8.062)))
(CONSTRAINT <’ (] (COL (QlL ?TYP-ECP)))
'(1 (COL (Q2 ?TYP-ECP)))>
=)

(DEFALA RC-DEV-TYPE
(-/> A (DEV-TYPE >RC RC-FILTER)
(/1PKT RC-PKT (?RC)
(DEV-TYPE 2RC SIG-TRANSER)
(COMPONENTS PRC <(R1 RC) (C1 ?RC)>)
(NDOES °RC < (NODEI °RC) (NODE2 RC) (NODE3 ?RC)>)
ta/> ' (NODE-TERRINALS (NODELl ’RC)) <(#1 (R1 ?RC))>)
(=/> ' (NODE-TERHINALS (NODE2 ?RC))
<(#2 (R1 ?RC)) (£1 (C1 ?RC))>)
(=/> ' (NODE-TERRINALS (NODE3 ?RC)) <(#2 (C1 ?RC))>)

(V-PORT (INPORT ?RC))
(PORT-TERNINALS (INPORT 2RC) <(NODEL ?RC) (NOOE3 ?RC)>)
(V-PORT (OUTPORT ?RC))
(PORT-TERNINALS (OUTPORT ?RC) <(NODE2 ?RC) (NODE3I ?RC)>)

(CONTROL CUTOFF-FREQ ?RC POS-REALS 1)
(CONTROL (H ?5) ?RC COMPLEX 1.2)

(CONSTRAINT <' (CUTOFF-FREQ ?RC)
'(R (Rl ?RC)) '(C (C1 ?RC))>
(N (FRC) (=2 (/7 1 (s« RIC))))

(CONSTRAINT <’ ((H ?5) ?RC) *(R (Rl ?RC)) ’(C (C1 ?RC))>
(N (HRO) (o 2H (/7 1 (o 1 (2R 2C 2SD))))
nm

Appendix &4 251

Appendix 4 -- Details of STP for Theorem Provers

The main requirement for an information-retrieval theorem prover is that
it halt. This is hard because it must return as many ansuers as possihle. |f
the theorem prover uere the top level, as is usually the case, ue could just
let it run until we ran out of money or patience, but the problem solver above
it needs its ansuers in a finite time. STP has been wuritten uith this
emphasis in mind; in its design, | have sacrificed "completeness” to this
"finiteness" requirement,

STP is organized as a backuard-chaining PLANNER-1Iike system. (Moore, 1975)
Given a goal, it finds implications to back through. For example, uith the
goal "Refute [NOT (P ?2X)]," it might back through [-/> C (AND (Q ?X) (R ?X))
(P ?X)), which is internally stored as the disjunction [/:CONSEQ (P 2X) (NOT
(AND (Q ?X) (R ?X)))]). The reason implications are internally disjunctions
ia that STP wants to retrieve /:ANTECs in the same fetch as /:CONSEQs, so it
must put the index pattern in the same place. It is for this reason that
atomic data are stored as [/:CONSEQ |pat| FALSE).

This backuard chaining creates a conjunction of subgoals, each of uhich is
treated similarly to the way the top-level one was. The other subgoals are
held in abeyance uhile the chosen one is worked on. This is called
"splitting" for reasons | uill explain belou. The chosen subgoal can sprout
neu subgoals, so the conjunction grous.

When a subgoal is reduced to FALSE, the resulting ansuer substitution is
applied to the remaining conjuncts before they are split. When there aren't
any more, the substitution ig the final result. [will say more about "ansuer
substitutions”" belou.

Backtracking is necessary because there may be more than one split, and
because there may be more than one ansuwer to try on remaining conjuncts.
Backtracking is implemented by saving the theorem-prover state uhen such a
choice arises; and restoring such states when branches run out of choices, and
after each top-level ansuer has been found.

To limit backtracking, failures are not allowed to cause backtracking to
an irrelevant choice point. Splits, when generated or augmented, are
partitioned into "split groups,” each member of which is a conjunction uhich
shares no free variables uwith the others. (Ernst, 1373, Moore, 1975) For
example, if [-/> C (AND (P ?x) (Q ?y)) (R ?x ?y)), the goal [NOT (R ?u ?v}]
gives rise to tuo independent subgoals [NOT (P ?u)] and (NOT (Q 2v)]. All the
ansuers are found to each, and the result is the "Cartesian product" of the
answass 342 of each. That is, if [P al and (P b), and (Q c] and [0 d) are
present, [R a c), [Radl, [Rbcl), and [R b d] are deducible.

A request to STP with free variables is interpreted as a demand for values
of those variables uwhich refute the request. In the example | just nave, the
request [NOT (R ?u ?v)] is satisfied by four such sets. These are called
answer substitutions. They are computed from the history of the matches from
the original request to the instances of [FALSE] that are ultimately der ived.
For exampie, given the request (NOT (P ?x ?yl] and the axioms (/:CONSE(] (P 2u
B) (NOT (Q ?u))) and [/:CONSEQ (NOT (Q A)) FALSE], the first backuard chain to
[NOT (Q ?x)] constrains ?y to be (B]; the chain to (FALSE] then sets ?x to
(A).

This bookkeeping is handled in STP by use of the Boyer-Hoore
representation of clauses. (Boyer and Moore, 1972) The idea is to represcnt
every clause as a pattern plus substitution. The substitution is called an
environment. A formula represented this way is called a closure. HMatching

e - . . — . ———— ————

p—— 4 i

Appendix 4 252

tuo closures creates a neu, more constrained environment uhich describes the
neuw substitution as a further specification of the tuo old ones. In this uay,
each environment really specifies a binary tree of super-environments uhich
parallel its deductive history. Boyer and Moore explain hou a numerical
"environment id" or envid can specify any branch of this tree. Giving tuo
envids specifies the node uhere the two branches meet.

STP uses this device to keep track of answers to goals. The variable ANS-
ENVID%x specifies the envid of the current main goal. The variable MATN-MAXx
specifies the size of the tree above the main goal's environment:; that is,
ANS-ENVIDOx and ANS-ENVIOx + MAIN-MAXx are tuo envids which uniquely specify
the environment of the main goal. The function ENV-COLLAPSE takes the
environment of a terminal [(FALSE) and these tuo numbers and produces an
environment with all the discovered constraints recorded. This mechanism
makes unnecessary the "ansuer-predicate" construct of (Green, 1967).

0f course, this mechanism is more specialized than Green's, since it ig
not able to return "disjunctive" substitutions. Thus, it will not work if the
request [NOT (P ?X)] appears with [/:CONSEQ (P A) (P B)], even though thece
formulas are provably inconsistent. (The [P B] detached by the first
resolution matches the original goal.) It won't work because there is no
assignment of one value to X uhich refutes [NOT (P ?X)]. This is not realliy a
deficiency in doing information retrieval, but ue must be careful to detect
it [will say hou this is done after a short digression.

STP is a refutation-driven theorem prover. This means that it doecn’t
just back through implications, it also records the formulas it is trying to
refute so that they can take part in deductions, When the prover returns, all
of these effects must disappear. This is accomplished by "pushing" the
current data pool!, doing recording formulas in it, and "popping" at the end,
(McDermott and Sussman, 1373) This is done for every subgoal as uell.

Nou the machinery can allow several kinds of interactions betieen goals.
The kind | mentioned tuo paragraphs ago is called "befuddlement.” This 15 uhen
tuo matching subgoals specify conflicting substitutions. This is handied by a
program (TP-STATUS-RECONCILE), uhich forces agreement betueen tuo conflicting
lines of deduction; it insists that just one ANS-ENVIDx be passed along.

Another kind of interaction is subsumption. 1f a new goal is subcumed by
a fact not in the pushed data poo!, it is abandoned. For example, even if
there are axioms for proving (P ?X], there is no point in trying to p ove (P
Al (that is, refute [NOT (P A)]), if INOT (P A)] is in the data base. [f you
succeeded in deriving such a proof, it would be of little value, since it
uwould just prove the inconsistency of the data base uith regard to this
question.

More interesting is the case uhere the subsumer is another goal. This
case must be noticed, since the subsumer may be a super-goal of the current
one, and therefore an infinite recursion may be impending. | any case, there
is usually no point in proceeding, so STP abandons this goal. (This puts the
program even further from deductive completeness.) Houever, there is an
important case in uhich mere abandonment is not enough. 1f the super -goal is
a main super-goal uwhich is a variant of the current one, the ansuers to the
super -goal must be applied to this one. For example, given the axioms

[/:CONSEQ (ABOVE ?X ?Y) (NOT (ON ?X ?Y)))
(/:CONSEQ (ABOVE ?X ?2)
(NOT (AND (ABOVE ?X ?Y) (ON ?Y ?2))))

oy

Appendix 4 253

(cf. (Moore, 1975)), the request "Refute [NOT (ABOVE A ?V)]" uwill create a
subgoal [NOT (ABOVE A ?Y)] uhich is subsumed by it. The resulting infinite
recursion i1s unimportant to a plain theorem prover, but important to us. The
solution is to connect the supergoal and subgoal in such a way that all
ansuers, past and future, to the supergoal are translated into subqgoal
ansuers. Thus, if the data base contains [ON A B), [ON B C), and (ON [[1],

the given request uill first generate V + [B]. The repeated subgoal uill be
noticed, and this first ansuer will be used, causing the detachment of aubqoal
(NOT (ON B ?V)]. UWhen this succeeds, the ansuer V =+ [C] will have heen found.

Nou this ansuer is used to reauaken the repeated subgoal again, this time
detaching [NOT (ON C ?V)) and given ansuer V -+ [0). The final goal (OH) ?V]
produces no neu ansuers,

The ability to notice and use repeated subgoals depends on the calculation
of ansuers to subgoals as uell as the main theorem-prover goal. This is
surprisingly difficult to accomplish in conjunction uith the split-group
sor ting mechanism. Because goals can be reordered, it is not obvious 1hen the
last subgoal of a goal has been finished. Every goal structure must store a
stack of its ancestors. The program ANSWERS-RECORD checks this stack tn ane,
for each ancestor, uhether there are any outstanding sibling goals. [f not,
an ansuer for that ancestor may be recorded.

While working on one split of a goal, STP does not record competing =plitsa
in the data base. Thus, some of the more devious kinds of reasoning discussed
by R. Moore (1375) are not noticed. This could be changed without too much
trouble. :

Other features:

Equality -- SIP uses equalities of the form [=/> '|x| |y]) routinely, much
as a programming lanquage does. (Cf. Bledsoe and Tyson, 1375) The function
FRLA-CLOSE-AND-DP-EVAL creates a Boyer-Moore closure, and attempts to evaluate
subexpressions uhich have heen changed by the new environment. Evaluatinn is
a call to STP with a request to refute [=/> '|neu pat| ?VAL). Before thin
call is made, the variables in the pattern are "marked universal," meaning
they are not alloued to be set by the matching done by STP; +%iis turns out to
be equivalent to the marking done in packets. (McDermott, 1975) If it were not
done, more than one "value" could be derived for the new pattern,

This evaluation is done uhenever a pattern is detached. For example,
given the axioms

[(=/> "(F (G A)) B) [=/> '"(F (G C)) D)
[/:CONSEQ (P (G ?X) ?Y) (NOT (Q ?X ?Y)))
[/7:CONSEO (Q A ?Y) (NOT (R ?Y))]

[R B)

and the request, "Refute (NOT (P 2U (F 2U)))," the system detaches firat [NOT
(@ ?2X (F (G 2X)))), with) » (G ?X). The attempt to evaluate [F (G ?X)] fails
because X would have to be bound to A and/or C. The next subgoal ia [(NOT (R
(F (G A)))], uwhich is evaluated to become [NOT (R B)], which succeeds. The
final ansuer ias U + [(B],

The same kind of substitution is done in a more limited way wuhen
equalities are to be refuted. For example, STP is told to prove (FORALL (X)
(IMPLIES (ELT ?X <A B C>) (P ?X))) by asking it to refute [IIPLIES (ELT X'0,3
<A B C>) (P X'69)), uhere X'69 is a skolem form, [t assumes (ELT X't9 <A B

Appendix &4 256

C>) and [NOT (P X'69)]. The first subgoal becomes, via the definition of ELT,
[OR (=/> "X'69 A) (=/> 'X'69 B) (=/> 'X'63 C)). UWhen this is split, the first
subgoal generated is [=/> 'X'69 Al. The only effect this can have is by
substitution, so the system finds all formulas that mention X'69 and does the
indicated replacements. (There uon't be very many, because X'63 is a neu
skolem form.) In this case, the subgoal [NOT (P A)) will be generated.
Similar things will happen in the other two branches of this split. To make
this work requires a bit of mechanism not usually implemented in theorem
provers; the data-base machinery of (McDermott, 1975) must be augmented so
that from any pattern one can retrieve all the formulas which contain it.

This is done by keeping track of all the positions an atom appears in, and
intersecting the index buckets corresponding to atom positions compatible uith
the pattern.

Modality -- Complications are introduced by the use of data pools to
implement "reference points.” (Sect. 11.B.2) When the system has a goal of
the form [T |ref| |fact|]l, it attempts to "coerce" the ref into a data pool.
It then pushes this data pool as it did the calling one, and puts the fact
into it for refutation.

Data Dependencies -- STP keeps track of the data that support its
conclusions. |Its caller uill use these to build data dependencies as
described in Sect. [1.0. The only tricky part to this is to make sure the
data pools are kept straight. Whenever uworking on a [T...] expression causrs
a jump to a neu pool, the supporters will be packaged up in the form (U011
|[pool name| |fact|). These ultimately end up in this form in the
dependencies. (See Sect. [1.0.)

Life with Boyer and Moore -- J Moore has informed me (personal
communication) that several people have used their representation for clauses,
(1972) For the benefit of those tempted to use it, | should report my
experiences with it,

My original motivation for wanting to represent formulas as closures uas
to preserve a perspicuous representation of goals for interaction with advice.
The usual predicate-calculus theorem prover renames all the variables in tuo
formulas before unifying them; this is called "standardizing them apart.”
Boyer and Moore’'s motivation uas to save storage by representing clauces
incrementally, as the differences betueen input clauses and output clauses of
deductions.

Neither of these reasons turned out to be important, so that this is A
classic example of the dangers of bottom-up programming, or anticipating
problems that never arise or are suamped by other effects. As | discusced in
Sect. VI.B, my deductive goals never interact with advice anyuay; and Boger
and Moore's effort to save storage is wasted in a system, like mine, uhich
must index each clause atom by atom. (Actually, the system is not quite that
stupid, but | think any savings incurred are minute.)

On the other hand, the representation has proven to have several very
natural uses. The packet machinery of (McDermott, 1375) "actualizes"
potential items by just replacing the potential environment with the real one,
The ansuer calculation described above is completely natural in a system that
represents clauses by their deductive histories. The evaluation machinery
that tries to evaluate only subexpressions with neuly instantiated variables
operates by traversing the expression to be evaluated, comparing variable

B e e

Appendix &4 255

values in the old environment uith those in the neu.

On balance, my conclusion is that these advantages do not outueigh the
disadvantages, uhich are considerable, The principal one is that CAR and COR
are useless for operating on closures, You cannot take the first atep into A
closure uithout setting up its environment. Every function that manipulates
them must treat assigned variables as though they uere transparent (i.e., o
straight to their values); and correctly handle envid's that direct attention
to the proper parts of the environment tree. Boyer and Moore shou in their
paper that it is easy to urite a unification algorithm for closures., Jndend,
it is easy to urite any one algorithm, but the fact that every manipulation
has to take the same tedious cases into account is something | didn’t faresen,
I solved this problem to some degree by writing a set of functions luith names
like FMAP and FHACK) uhich (,']nalngouglu to LISP's MAP functions) map
operations aver Bouyer Moore data structures. But these functions have tn bind
special variables and use MACLISP functional arguments, so they are of
necessity quite slou. To get the CAR of a formula, you have to urite (FHACK
(FUNCTION CAR) FMLA); this binds tuwo special variables, does an uncompilahile
property-list lookup on CAR, and still returns an object (such as " (#F CLO51RE
(P ?2X) 3)") uhich is meaningless without further bit-picking in the formula's
environment tree.

Alas, th=se problems are complicated an order of magnitude by interactions
uith seanent forms and embedded formulas. (See Appendix 1.) Praocessing an
embedded formula often requires setting up a stack of environments, uhich s
pushed and popped as you go into a pair of brackets or encounter an eccape
form.

Finally, it is veru hard to develop intuitions about the structure of
environment trees. A bugqgy program that manipulates envids doesn’t o
anything radically different from a correct program; it's just looking At the
urong parts of the environment tree., The envids it uses are just little
.integers uith little meaning. Debugging such a program usually comes doun to
experimenting uith different numbers until something works'

Bibliography

Abelson, Robert (1975) "Concepts for Representing fundane Reality in Plans,
in Bobrou and Coliins (1975),

Alexander, C. (1964) Notes on the Synthesis of Form, Cambridge: Harvard
University Press,

Asimou, M. (1962) Introduction to Design, Engleuwcod Cliffs, N.J.: Prentice-
Hall, Inc.

Bledsoe, W.W. (1375) Non-Resolution Theorem Proving, The University of Texas
at Austin, Departments of Mathematics and Computer Sciences Automatic
Theorem Proving Project Memo ATP 29. Based on a Tutorial talk given at
I1JCAI 4.

Bledsoe, W.W. and Mabry Tyson (1975) The UT Interactive Prover, The University

- e -

Bibliography 56

of Texas at Austin, Departments of Mathematics and Computer Sciences
Automatic Theorem Proving Project Memo ATP 17.

Bobrow, Daniel G. and Allan M. Collins (1375) (eds) Representation and
Understanding, Neu York: Academic Press.

Bobrow, Daniel G. and Bertram Raphael (1974) New Programming Languages far
Artificial Intelligence Research, Computing Surveys 6, No. 3, p. 145,

Bobrow, Daniel G. and Terry Winograd (1976) An Overview of KRL, A Knowledge
Representation Language, unpublished paper, version of May 28, 19/0.

Boyer, R.S5. and J.S. Moore (1972) "The Sharing of Structure in Theorem Proving
Programs," in Meltzer and Michie (1372).

Brand, Myles (1978) The Nature of Human Action, Glenview, Illinois: Seott,
Foresman, and Company.

Bressan, Atdo (1372) A General Interpreted Modal Calculus, Neu Haven: Yale
University Press.

Broun, A. (1975) Qualitative Knowledge, Causal Reasoning, and the localization
of Failures, Cambridge: unpublished MIT Ph.0. thesis,

Broun, A. and G.J. Sussman (1374) "Localization of Failure in Radio Circuits—-
A Study in Causal and Teleological Reasoning," Cambridge: MIT Al Lab Hemo
SLI6

Buh!l, H.R. (1962) Creative Engineering Design, Ames, lowa: The [oua State
University Press.

Buchanan, Bruce, Georgia Sutherland, and E.A. Feigenbaum (1369) "HEURIGTI(
DENDRAL: A Program for Generating Explanatory Hypotheses in Organic
Chemistry,”" in Meltzer and Michie (1969), p. 209.

Bundy, Alan (1975) "Analyzing Mathematical Proofs (Or Reading Betueen the
Lines)," in Proc. IJCAI 4.

Charniak, Eugene (1372) Toward a Model of Children's Story Comprehension,
Cambr idge, Massachusetts: MIT Al Lab TR 266.

Charniak, Eugene (1975) "A Partial Taxonomy of Knouledge about Actions,” Proc.
IJCAI 4, p. 91.

Chohan, V.C. and J.K. Fidler (1974) "Computer Aided Design of Filtera for Data
Transmission Using Frequency Modufation,” Proc. Int. Conf. on CAD 10/4.

Danto, Arthur C. (1965) "Basic Actions," Am. Phil. Quart. 2, p. l4l. Alco in
Brand (1970), p. 255.

Darlington, J.L (1969) "Theorem Proving and Information Retrieval,” in fMeitzer
and Michie (1969), p. 173.

Bibliography 257

Davis, Randall (1976) Applications of Meta Level Knowledge to the
Construction, Maintenance, and Use of a lLarge Knowledge Bases, Stanford Al
Lab Meio AIM-283.

Davis, Randall, B.G. Buchanan, and Eduard H. Shortliffe (1975) Production
Rules as a Representation for a Knowledge-Based Consultation Program,
Stanford University Al Laboratory Memo AIM-266.

Oavis, Randail and Jonathan King (1375) An Overview of Production Systems,
Stanford University Al Laboratory Memo AIM-271.

Director, S.W. (1374) "Touards Automatic Design of Integrated Circuits,” in
Spillers (1974), p. 303.

Doyle, Jon (1376) Analysis by Propagation ¢f Constraints in Elementary
Geometry Problem Solving., Cambridge: MIT Al Lab Working Paper 188.

Ooyle, Jon (1977) Truth Maintenance Systems for Problem Solving, Cambi tdqe,
Mass.:MIT Al Laboratory Report TR-419,

Eastman, Charles M. (1968) Explorations of the Cognitive Processes in Design,
unpub !l ished Ph.0. dissertation, Carnegie-Mellon Univers:ty.

Eastman, Charles M. (1969) "Problem-Solving Strategies in Design," Proc. Env.
Des. Res. Ass. Conf.

Electronic Design (1964) 400 Ideas for Design, compiled by the editors of
Electronic Design Magazine. Neu York: Hayden Book Company, Inc.

Elithorn, Alick and David Jones (1373) Artificial and Human Thinking,
Amsterdam: Elsevier Scientific Publishing Company.

Ernst, George W. (1971) "The Utility of Independent Subgoals in Theorem
Proving," Information and Control, April.

Er.iet, George W. (1973) "A Definition-DOriven Yheorem Prover," Proc. IJCAI 3,
p: Sl.

Ernst, George W. and Allen Newel!l (1969) GPS: A Case Study in Generality and
Problem-Solving, Neu York: Academic Press.

Fahiman, Scott (1373) A Planning System for Robot Construction Tasks,
Cambridge: MIT Al Lab Technical Report 283.

FarIman, Scott (1975) Thesis Progress Report: A System for Representing and
Using Real-World Knowledge, Cambridge: MIT Al Lab Memo 331.

Farber, 0.J., R.E. Grisuold, and I.P. Polonsky (1964), "SNOBOL, A String
Manipulation Lanquage," JACM 11, p. 21.

Feigenbaum, E.A. and J. Feldman (1963) Computers and Thought, Neu York:
McGrau-Hil | Book Company.

e . . .

Bibliography 258

Fikes, Richard and Nils J. Nilsson (1971} "STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving," Proc. TJCAI 2, p. CA%.

Fletcher, A.J. (1974) "EUREKA -- A System for the Automatic Layout of Single-
Sided Printed Circuit Boards," Proc. Int. Conf. on CAD 1974.

Floyd, Robert (1967) "Assigning Meanings to Programs,” in J.T. Schuartz (ed.),
Mathematical Aspects of Computer Science, p. 19.
£
Freeman, P. and Allen Neuell (1971) "A Hodel for Functional Reasoning in
Design," Proc. IJCAI 2, p. 621.

Furman, T.A. (1978) (ed.) The Use of Computers in Engineering Design, | ondon:
English Universities Press.

Glegg, Gordon Lindsay (1973) The Science of Design, Cambridge University
Press.

Goldman, Alvin 1. (1978) A Theory of Human Action, Englewood Cliffs, N, J.:
Prentice-Hall, Inc.

Grason, lohn (1970) Methods for the Computer-Implemented Solution of a Class
of "Floor Plan" Design Problems, unpublished Ph.D. dissertation, Carnegie-
Mellon University.

Gray, P.E. and C.L. Searle (1969) Electronic Principles: Physics, Models, and
Circuits, Neu York: John Wiley & Sons, Inc.

Green, C. Cordel!l (13969a) The Application of Theorem Proving to Question-
Answering Systems, Standford: Stanford University Computer Science
Department Report CS5-138,

Green, C. Cordell (1969b) "Theorem-Proving by Resolution as a Basia for
Question-Ansuering Systems," in Meltzer and Michie (1969).

Haney, Frederick Marion (1968) Using a Computer to Design Computer Instruction
Sets, Pittsburgh: Carnegie-Mellon University Computer Science Depar tment
Ph.D. thesis.

2

Hayes, Patrick J. (19735) "The Frame Problem and Related Problems in
Artificial Intelligence," in Elithorn and Jones (1973).

Hayes, Patrick J. (1973b) "Computation and Deduction," Proc. MFCS Symp. |,
Czech Acad. of Sciences.

Hayes, Patrick J. (1974) "Some Problems and Non-Problems in Representation
Theory," Sussex: Proc. AISB, p. 63.

Hayes, Philip (1975) "A Representation for Robot Plans," IJCAI 4.

Hayt, William H. and Gerold W. Neudeck (1976) Electronic Circuit Analysis and
Design, Boston: Houghton Mifflin Company.

Bibliography 259

Heuwitt, Carl (1972) Description and Theoretical Analysis (Using Schemata) of
PLANNER: A lLanguage for Proving Theorems and Manipulating Models in a
Robot, Cambridge: MIT Al Lab TR-258.

Hintikka, Kaarlo Jaako Juhani (1962) Knowledge and Belief: an Introduction to
the Logic of the Two Notions, lthaca: Cornel!l University Press.

Hoare, C.A.R. (1363) "An Axiomatic Basis for Computer Programming," CACM 12,
p. $76.

Hughes, G.E. and M.J. Cressuell (1372) An Introduction to Modal logic, | ondon:
Methuen and Co L td.

King, J. (1963} A Program Verifier, Pittsburgh: Carnegie-felion Universaity
Ph.D. thesis.

Koualski, Robert (1973) Predicate Logic as Programming Language, Edinbur gh:
University of Edinburgh Oepartment of Computational Logic Memo 70.

Koualski, Robert (1974) Logic for Problem Solving, Edinburgh: University of
Edingburgh Department of Computation Logic Memo 765.

Koualski, Robert (1975) "A Proof Procedure Using Connection Graphs," J. ACM
22, p. 52,

Kuo, F.F. and W.G. Magnuson (1969) (eds.)} Computer-Oriented Circuit Design,
[nr’lr‘a.‘vvvul Cliffa, N.J.: Prentice-Hall, Inc.

Langford, Glenn (1971) Human Action, Garden City, Neu York: Doubleday &
C ompany, Inc.

Latombe, Jean Claude (1976) Artificial Intelligence in Computer-Aided Design:
The "TROPIC™ System, Menlo Park: Stanford Research Institute Artificial
Intelligence Center Technical Note 125.

1

Lehnert, Wendy (1975) Question Answering in a Story Understanding System, Neu
Haven: Yale University Lomputer Science Research Report 57.

Marcus, M. (1973) Waft-an# See Strategies for Parsing Natural Language,
Cambridge: M.1.T. A.l. Lab Working Paper 75.

Marcus, M. (1975) "Diagnosis as a Notion of Grammar," Pre-prints of Work<hop
on Theoretical lssues in Natural Language Processing, June 18-13, 1975,
st

Mason, Mattheu (1976) Qualitative Simulation of Swine Production, Cambridge:
unpublished MNIT bachelgr’'s thesis.

Mathtab (1974) MACSYSMA Riéference Manual, Cambridge: MIT Artificial
Intelligence Laboratorgy.

McCar thy, John (19531 "Programs with Common Sense," Proc. Symposium on
Mechanization of Thought Processes I, London: Her Majesty’'s Stationery

Bibliography 260

Office. Also in Minsky (1968), p. 403.

McCar thy, John and Patrick J. Hayes (1969) "Some Philosophical Problems from

the Standpoint of Artificial Intelligence," in Meltzer and Michie (19691,
p. 463.

McOermott, D. (1974a) Assimilation of New Information by a Natural lLanqguage-
Understanding System, Cambridge: MIT Al Lab TR 291.

McDermott, 0. (1974b) Advice on the Fast-Paced World of Electronics,
Cambridge: MIT Al Lab Working Paper No. 71.

McDermott, D. (1975) Very Large Planner-Type Data Bases, Cambridge: MIT Al
Laboratory Memo 339.

McDermott, 0. and G.J. Sussman (1973) The Conniver Reference Manual,
Cambridge: MIT Al Lab Memo 259a.

Mel tzer, Bernard, and Donald Michie (1963) (eds.) Machine Intelligence 4, Neu
York: American Elsevier Publishing Company, Inc.

Meltzer, Bernard, and Donald Michie (1972) (eds.) Machine Intelligence 7, Neu
York-Toronto: John Wiley & Sons.

Michie, Donald (1968) Machine Intelligence 3, Neu York: American Elsevier
Pubt ishing Compang_ Inc.

Minsky, Marvin (1968) Semantic Information Processing, Cambridge,
Massachussets: MIT Press

Minsky, Marvin (1974) A Framework for Representing Knowledge, Cambridge: MIT
Al Lab Memo 306. Revised version in Winston (1975),

Moore, J. and Allen Neuel!l (1974) "How Can Merlin Understand?" in Greqgq, L.
(ed.) Knowledge and Cognition, Potomac, tarytand: Laurence Er ibaum
Associates.

Moore, Robert C. (1975) Reasoning from Incomplete Knowledge in a Procedural
Deductive System, Cambridge, Mass.: MIT Al Laboratory TR 347.

Nevins, Arthur (1374a) "A Human Oriented Logic for Automatic Theorem-Proving,"
JACM 21, no. 4, p. 606,

Nevins, Arthur (1974b) A Relaxation Approach to Splitting in an Automatic
Theorem Prover, Cambr idge, Massachusetts: MIT Al Lab Memo 382. Also
Artificial Intelligence 6, p. 25.

Nevins, Arthur (1974c) Plane Geometry Theorem Proving Using Forward Chaining,
Cambridge: MIT Al Lab Memo 383.

Newell, Allen (1962) "Some Problems of Basic Organization in Problem-Solving
Programs,” in Yovitts, N,, G.T, Jacobi, and G.D. Goldstein (eds.) Selfl-
Organizing Systems--1962, “%ew York: Spar tan.

NI ~=== g g

Bibliography Pd

Newell, Allen (1973a) "Production Systems: Models of Control Structur: r
Chase, W.C. (ed.) Visual Information Processing (Neu York: Academic Froas),
p. 4B63.

-

Neuell, Allen (1973b) "Artificial Intelligence and the Concept of Mind,
Schank and Colby (1973}, p. 1.

Nilsson, Nifls J. (1371} Problem-Solving Methods in Artificial Intelligence,
Neu York: McGrau-Hill Book Company.

Nilsson, Nils J. (1373) A Hierarchical Robot Planning and Execution System,
Menlo Park, California: SRl Artificial Intelligence Center Technical Hote
76.

Pople, H.E., Jr. (1973) "On the Mechanization of Abductive Logic," Proc.
IJcar 3.

Pouwera, Gary J. (1372) "Computer Aided Synthesis of Chemical Processing
Systems,” Proc. 6th Princeton Conf. on Information Sci. and Systems. p. 4Z2.

Pouwers, Gary J. (1973) "Non-Numerical Problem Solving Methods in Computer
Aided Design," in Vlietstra and Wielinga (1973).

Pouwers, Gary J. and Dale F. Rudd (1974) "A Theory for Chemical Engineering
Design," in Spillers (1974).

Prior, Arthur N. (1957) Time and Modality, Oxford: Clarendon Press.
Prior, Arthur N. (1967) Past, Present, and Future, Oxford: Clarendon Preas,

Rescher, Nicholas and Alasdair Urquhart (1971) Temporal Logic, Neu York:
Springer -Ver | ag.

Rieger, Charles (1976) "An Organization of Knouledge for Problem Solving and
Language Comprehension," Artificial Intelligence 7, No. 2, p. 89.

Robinson, J.A. (1965) "A Machine-oriented Logic Based on the Resolution
Principle," JACM 12.

Rosenbrock, H.H. (1974) Computer-Aided Control System Design, London:
Academic Press.

Rulifson, J.F., J.A. Derksen, and R.J. Waldinger (1972) QA4: A Procedural
Calculus for Intuitive Reasoning, Menlo Park: SRl Technical Note 73,

Rychener, Michael D. (1975) The Studnt Production System: A Study of [ncoding
Knowledge 1n Production Systems, Pittsburgh: Carnegie-Mellon Univer«ity
Depar tment of Computer Science.

Rychener, Michael 0. (1376) Production Systems as a Programming languaqge [or
Artificial Intelligence Applications, Pittsburgh: Carnegie-flellon
University Department of Computer Science, in preparation.

|

Bibliography 262

Sacerdoti, Earl D. (1975) A Structure for Plans and Behavior, SRl Artificial
Intelligence Center Technical Note 189.

Schank, Roger (1975) "The Structure of Episodes in Memory," in Bobrou and
Collins (1975), p. 237.

Schank, Roger and Robert Abelson (1975) "Scripts, Plans, and Knouledge,” Proc.
IJCAI 4.

Schank, Roger and Kenneth Mark Colby (1973) Computer Models of Thought and
Language, San Francisco: W.H. Freeman and Company.

Senturia, Stephen D. and Bruce D. Wedlock (1975) Electronic Circuits and
Applications, Neu York: John Wiley and Sons, Inc.

Shortliffe, Eduard H. (1976) Computer-Based Medical Consultations: MYCIN, Neu
York: American Elsevier Publishing Company, Inc.

Siklossy, L. and J. Roach (1973) "Proving the Impossible is Impossible is
Possible: Disproofs Based on Hereditary Partitions,” in Proc. IJCAI 3, p.
383.

Slagle, James R. (1371) Artificial Intelligence: The Heuristic Programming
Approach, Neu York: MNclrau-Hi)) Book Company.

Spillers, William R. (1974) (ed.) Basic Questions of Design Theory, Neu York:
American Elsevier Publishing Company, Inc.

Srinivasan, Chitoor V. (1976a) Introduction to the Meta Description System,
Neu Brunsuick, N.J.: Rutgers University Dept. of Computer Science SOSAP-TR-
18.

Srinivasan, Chitoor V. (1976b) "The Architecture of Coherent Information

System: A General Problem Solving System," IEEE Trans. on Computers C-25,
no. 4, p 390.

Stallman, Richard M. and Gerald J. Sussman (1976) Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided Circuit
Analysis, Cambridge: MIT Al Lab Memo 388.

Stickel, Mark E. (1975) "A Complete Unification Algorithm for Associative-
Commutative Functions," Proc. IJCAI 4.

Suppes, Patrick (1957) Introduction to Logic, Neu York: Van Nostrand Reinhold
Company.

Sussman, Gerald J. (1375) A Computer Model of Skill Acquisition, Neu York:
American Elsevier Publishing Company.

Susaman, Gerald J. and D.V. MNcDermott (1972) "From PLANNER to CONNIVER -- A
Genetic Approach," Proc. FJCC 41, p. 1171.

Sussman, Gerald J. and Richard M, Stallman (1975) "Heuristic Techniques in

D —

Bibliography K3

Computer-Aided Circuit Analysis," IEEE Trans. on Circuits and Systems 22,
p. 857.

Tarnlund, Sten-Ake (1975) "An Interpreter for the Programming Lanquage
Predicate Logic," Proc. IJCAI 4, p. 60l.

Tate, Austin (1975) "Interacting Goals and Their Use," Proc. IJCAI 4.

Travis, Larry, Charles Kellogg, and Philip Ktahr (1972) Inferential Question-
Answering: Extending CONVERSE, mimeo.

Tulving, Endel and Wayne Donaldson (1972) Organization of Memory, MNeu Yor k:
Academic Press.

Viietstra, J. and R.F. Wielinga (1973) (eds.) Computer-Aided Design,
Amsterdam: North-Holland Publishing Company, [nc.

Waldinger, Richard J. and K.N. Levitt (1974) "Reasoning about Programs,”
Artificial Intelligence.

Warren, David H.D. (1974) WARPLAN: A System for Generating Plans, Edinburqh:
University of Edinburgh Department of Computational Logic Memo. No. /G,

Watson, J. (1978) Semicanductor Circuit Design: for a.f. and d.c.
Amplification and Switching, London: Adam Hilger Ltd.

Winston, Patrick H. (1975) The Psychology of Computer Vision, McGrau-Hill,

s

