
An—A 014 3 96U !lAssAcHusnTs INst or TECH CAMBRIDGt ARTIFICIAL INTE—EIC F.’G g’2FLEXIBILITY AND EFFICIENCY IN A COMPUTER PROGRAM FOR
~ESIGNXNe ——ETCUJI.M4 77 D V MCOCRMOTT N0001* 75—Ca0fl3UNCLASS IFIED AI—TR—4Ot NL

“3
~~~~~l~~~9c . i

• FJ1 __ 

_ _ _

_!r _ _

~

fl 
_ _ _F! IDrt n_~~~~~~~

I___
_ 

~iIL~



• — 
• - --

~~~~ p

AI -TR- 402

I• FLEHJBILITY AflO EFFICIEflCY
3 (AAft~ COMPUTER PROGRfl~

~rOR OEIIGfIIflG CIRCUIT! •

0r Vkicsiit lflcOsrmouI.
~~Jvn 1977

,
.

,
0~~~ ,

____ ~1

D - ‘
~~~~

_ _  

‘V

I ~~ _ _ _ _ _ _

_ _ _ _  ~~~iEIIn.~iiflt ~~V,I1VI

-



• ~~~~~~~~~~~~~~~

UNCLASSIF IED
CuP V C L A S S I F I C  A T I O N  OF T H I S  P AG E  (WPI.n D.i. Enh.r•d)r D ~~~~~~~ ~~~~~~~~~ T A Y I f l~~ 

READ INSTRUCTIONS
L “ U~~fl’ U l#’J~~VM  !~ ~ BEFORE COMPLETING I ORM

R L P G R I  ~~~~~(R 2. GOVT ACCESS ION NO. 3 R E C I P I E N T S  C A T A L O G  NU M B F R/ / ~ AI -TR -40?
4 T~~~~~~~F end SubtlLt* I _ . .

~~~~
. . ,. 5 TYPE O~ RE PORT 6 PERIOD C O V E R E D

~ F lex i b i l i t y and Eff ic iency in a Computer I Techn i cal Report
Proqram for Designing Circui ts .- -~~. .J ___________________________

S. P IRVONM ING ORG. R E P O R T NUM B ER

7 A~~T~~O R a ~ S. CONT RACT OR G R A N T NUMSER(. ,

~
) Drew Vincent / Mc De rmott ‘I. YN000l4-75-C-o643 /

S P E R F O R M I N G O R G A N I Z A T I O N N A M E AND ADD R ESS 10. PROGRAM EL E MENT P R O J E C T . T A S K
/ A R E A 6 WO RK UNIT j~~ MBERSArt i ficial Intell igence Laboratory .

-

545 Techno l ogy Square .~ / .~~~, - ((.

Cambrid ge , Massachusetts 02139 --
~ :/

T Q N T R O L L ! N G O F F I C E N A M E A N D ADDRESS IL.16 4 O~~~,~~~~(
Adva n ced Research Projects Agency uUflt

1400 Wilson Blvd . .
. I3. 4W~~

U E R O F PAGES

Arlington , Virg inia 22209 ________________________
~T M O N I T O R I N G A GENCY NAME 6 AODRESS(II dIIf.r~~ i from Co.~trollIn4 0111cC) I I . SICURITV CLASS. (of Thu. ~.port)

Office of Nava l Research UNCLASSIFIED
Information Systems ___________________________
Arlington , Virg inia 22217 “ • OCC~~A S$ IF I CAT IO N ’ DOWNGR A DI NG

16 D I S T R I B U T I O N ST A T E M E N T (0! IbID R.porI)

Distribution of this document is unlimited .

Ii D I S T R I B U T I O N S T A T E M E N T (of A. ab.Iract ~~~~~~~ In block 20. If dI1I.r ~~Ii Ire., R.porf) O__ \~.~

IS SUPPL E M E N T A R Y NOTES
-______

None

IS K E Y W OROS (Conilnu. oil r.~.r.. .ld. II iICC•11 7 1d id eUlY by block n, bsr)

Logic Representation

Prob lem Solving S

Circuit design
Artificial Intelligence

20 AB S T R A C T (Co~ IIflu. on ‘•~ •r.C aid. if n•CSi•~~v id i d.ntily by bi.ck ni i6.,)

This report is concerned wi th the problem of achieving f lexibi lity (additiv-
ity , modularity) and efficiency (performance , expertise) simultaneously in
one A l program. It deals with the domain of elementary electronic circuit
design. The proposed solution is to provide a deduction-driven problem solve i
w ith built-in control-structure concepts. This problem solver and its knowl-
edge base in the application areas of design and electronics are described .
The projram embodying it is being used to explore the solution of some modest
problems in circuit design. It is concluded that shallow reasoning abou t

DD ~~~~~~~~ 1473 COIT ION OP ‘ NOV SS I$ OISOLITI UNCLASSIF IED
S/N 0~~02-flI 4 660 1

SECURITY CL.AS$IPICA I ION OP TH IS PAG! (~~ i.n D.t. 6 •

I

I
problem-solver plans is necessary for flexibility , and can be imp le-
mented with reasonable efficiency .

V — — ~~~~~~~~~ ~~~~~~ - -
~~~~~~~~~~~~~~~ 

- - 
~~~~~~~~~~~~~~~ — - —


4 -

This report describes research done at the Artificial Intelligence
La boratory of the Massachusetts Institute of Technology. Support

- for the laboratory ’s artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department

• of Defense under Office of Naval Research Contract N00014-75-C-0643.

FLEXIBILITY ANG EFFICIENCY

IN A COt1PtJTER PROGRAM FOR DESIGNING CIRCU I TS

Qr-ew Vincent McDermott

• flagsa~hueetts Insti tute of Techno logy

June 1977

Illustrat ions by Karen Prendergast

Rev ised vers ion of a th-sgertat ion submitted to the Department of E e c t r i c a l
Engineer ing and Computer Sc ience in partial fu l f i l lment of the requirement,
f or the Degree of Doctor of Philosophy.

- - - - ~~~~
.4

PAGE 2

\ .~ 4 BST RACT

This repor t is concerned w i t h the prob lem of ach i ev i ng flex i b i l i t y
(additivity , modu l arity) and efficiency (performance , expertise)
simultaneousl y in one Al program. It deals with the domain of elempnt.i ri~
electron ic circuit desi gn . The proposed solution is to provide a rlerli,r t inn-
driven prob l em solver w ith b u i l t — i n control—structure concepts. Thi s p rnlilc ’m
so l ver and its know l edge base in the application areas of desi gn and
elec tronics are descr i bed. The program embody i ng it is be i ng used to u- xp lore
the solution of some modest prob l ems in circuit desi gn. It is conc l ij dprl t ha t
shallow reason i ng abou t prob l em—so l ver plans is necessary for fle x ih i Ii t~~, and
can be imp l emented with reasonable efficiency.

— —i--
-

-— - ,• - i-- - - - -~ -

PAI;E 3

,lck now ? edgmen ts

I thank Gerald Su’,sm.in. my adv i sor . for much good advice; Sussm~n .inrl A l l r ’ n
Brown for help w i t h Ploc tron Ics; Flit ch Marcus and Charles R ich for i ’ t ~- I

control; Rot) Floore ~ind Arthur Nevi ns for predica te calc u lus; flay if Fl.i,
Scott Fahlrn.lrl for (I e o t i r J I c . ~~l consul tation ; my reacjer 9 Marv in Fu r y - I l 1 I ’ I

Vaughn Pratt for useful comments; and Jon Doy le for careful re.i itiru j .1,111

substantive sutjqections in the later stages of this research . I1.lr r , f l 1 I 1 I r k

Win ston , Guy Steele , and ceve ral others also made good sugge s tion c tn i nl $ Ir Ovn
the organ i zation of this work.

Fin a l l y. I thank Jud i for , among other thin gs , moral support: ann nl i~~r .l

for typ ing many drafts of what seemed like mean i ng less g i bber i sh

—~ __V - - - — ~~~
_ ._ ___ - - - I— - . -.-

PAI,E 4

Contents

I Introduction 7

l .A The Prob l em
1.8 A Rule-Based Problem Sol ver 16
I.C Suppl y ing Rules for Desi gn 22
1.0 Relation to Previous Work 33

1.0.1 Prob l em Solving and Reason i ng 33
1.0.2 Electronics and Desi gn 39

II Expressing 1(now?edge in NASL 43

lI .A The Natural History of Actions
11.8 I n t e r p r e t a t i o n and Inference 56

lI .B.1 The NASL Interpreter
II.B.1 .1 Sel ecting a Task to Work On 57
11.8 .1.2 Execut ing Tasks 59

II.B .1.2.1 Pri m i t i v e and Problematic Tasks GB
11.B.1.2.2 Primary and Secondary Tasks

-
lI .B.2 SIP -- The Stupid Theorem Prover 64

I1.C Cho ice and Rephrasing 71
Il.C.1 The Choice Protocol 73
II.C.2 Rephrasing 76

11.0 Dependencies Among Data and Tasks 78
II .E Handling Mistakes 82
II.F Programmer ’s Guide 86

ll .F.1 Predicate -Calculus Techn i ques 86
II.F.2 NASL Progr amm i ng Techniques 88

III Design of Hierarchical Systems 98

lIl .A The Representation of Knowledge about Devices 99
II1 .A.1 Hierarch ies of Device Types 99
IlI .A.2 The Representation of Device Diagrams 181

11 1 .8 Desi gn Actions and Plans 106
111 .8 .1 DESIGN 107
111.8.2 Mak i ng Things 112
111.8.3 Constraint , 114
111.8.4 Chang ing Devices 118

III.C Composition of Partial Solutions 128
111.0 Constraint Collapse 121
III.E Programmer ’s Gu i de 126

‘~ — ---‘-~~
- -

~
- -- - -

~~~~~~~~ 
— — 

&



PAGE S

IV Electron ics 128

IV .A  Physics - 178
IV .A.1 C o n n e c t i o n s  anni C o n s t r a i n t s  on Components 12%
lV .A.2 Si gna ls
IV .A.3 Mu l t i p l e  Modp I~ of Linear Systems

IV .B Electronic Desi gn Know l edge 117
IV .B.1 Rephrasing Electronic Deci gn Prob l ems 117
IV .B.2 Reconci l in q Par t ial Solutions 138
IV .B.3Chang in c j C i rcuits 161
lV .B .4Eectron ic s Ana l ys isKnowledge 165

IV .C D e v i c e  Schemata 165
IV .O Programmer ’s Gu i de 148

V Results 150

V .A Us ing DES!
V .A.1 Loading and Runn i ng the Program l~ Ii
V .A,2 OESI Tal ks to You I~~I
V ,A ,3 You Talk to  DESI 15

V .8 Experimental Re sults
V.8.1 A Simp le A mplifier 155
V.8.2 Converting a Square Wave into a Sine Wave 111
V .8.3 NOAH in NASL 175

VI Conc lusions 17~

VI.A Successes 1~ fl
VI.B Failures 185
VI.C Further Work 190

Appendix 1 -- NASL Syntax and Informal SemantIcs 19’,

AppendIx 2 -- A List ing of DESI 707

AppendIx 3 -- A Listing of ?ORCH 216

AppendIx 4 -- Details of STP for Theorem Provers 751

Elbitography 2SS

— — -
~~~ - 4


PAGE 6

F igures

Fi gure 1.1 Redes cribing a Desi gn Prob l em 9
Fi gure 1.2 Two Circuits Suggested by Parts of the Prob l em 10
Fi gure 1.3 A Cascade of the Tuo Partial Circuits 11
Fi gure 1.4 Si gnal Conversion Prob l em 12
Fi gure 1.5 Spectrum of Square Wave 13
Fi gure 1.6 Spectrum of Sine Wave 13
Fi gure 1.7 RC F ilter 14
Fi gure 1.8 A Circuit for Add ir~g a Pole 15
Fi gure 1.9 Structur e of DESI 23
F i gure 1.18 A Rephrasing Subtask 29
Fi gure 1. 11 Rephrased T~,ck Network 30
Fi gure 1.12 Retrieved Circuit and Constraint Task Network 31

- Fi gure 11. 1 A Task Net , or ‘P lan SO
Fi gure 11 .2 Task Network with Subnets 52
Fi gure 11. 3 Log ical Taxonomie s of Tasks 53
Fi gure 11 . 4 Life History of a Task 58
Fi gure 11 .5 Enablement Rel ations in Subnete 62
Fi gure III.! Function-Structure Graph 92
Fi gure 111 .2 A Two-Stage Cascade 94
Fi gure ff1. 3 An LC-coup led Amplifier 95
F i gure 1 1 1 . 6 A Hi e r ar r h~ of Iyp~ s of Device Types 100
Fi gure 111 .5 Dev ices in The Type Hierarchy 101
Fi gure 11 1 .6 Desi gn A c t i o n Taxonom y 107
Fi gure 1 1 1 . 7 Desi gn Rephrasing Plan Schema 109
Fi gur e 111 . 8 Rephrased Desi gn 110
F igu re 1 1 1 .9 Qua ntit y—V alue Protection Plan Schema 117
Fi gure 111 .1 0 Radio Spectrum With Two Stations 122
Fi gure 111. 1 1 R e l e v a n t C o n s t r a i n t s 123
Fi gure 11 1.1 2 C o n s t r a i n t Network 124
Fi gure IV .1 Terminals and Nodes 129 -

Fiqur e IV .2 Composite Device Terminals 130
Fi gure IV .3 Inserting a Device into a Node 130
Fi gure IV ,4 Por ts and Nests 131
F i gure IV .5 Four i er Transform of an Offset Square Wave 134
Fi gure IV .G Bias Plans 142
Fi gure IV .7 General BJT Coupling Plan 163
Fi gure IV .8 Common-Emitter Direct Vo l tage Coupling 164
Fi gure IV .9 General and Specialized Emitter-Coupled Pairs 147
Fi gure V 1.1 Prov i nces of A r t i f i c i a l Intelli gence 181
Fi gure VI .2 The Rule-Based Utopia 182

5 -

I In troduct Ion 7

I Introduct ion

l .A The Prob l em

This thesis reports on the exploration of a classic Al controversy

regarding the representation and use of know l edge: the trade-off between

flex i b i l i t y (or modu l arity or addit i vity) on t he one ha nd , and efficiency (or

exper t lee or performance) on the other. It focuses on the knowledge required

for design i ng elementary electronic circuit s . The conclusions I have reached

are that this kind of fle x i b i l i t y requires all i mpor t an t operations to be

mediated by expl i c i t rules dr i ven by changes to an associative data base: and

that the inevitable inefficiency of this organization can be contro lled. The

proposed approach has been tested by imp l ementa tion of an extensible desi gn

program called DES!.

The theory of desi gn that 1 have imp l emented is based on the idea of

“f unctiona l reason i ng.” (Fre eman and Newell , 1971) A prob l em is stated as a

proper ty wh i ch an electronic circuit is to have. The system searches its

memory for circuits whose known functions fit the requirement. In the

attemp t , it constrains the conn ectivity and componen t values of the circuit

until enough constraints have accumulated to find values which satisf y the

or i gi nal property. This simple theory mu et be complicated In var i ous ways: A

requirement may not be expressed in a form which tri ggers suggestions of

familiar circuits; it may be necessary to transform the requirement until it

does. More than one device type may be brought to mind in a situat ion; there

must be cr i teria for deciding among them , or ways of synthesizing new circuit s

that perform the functions of all the ones retr i eved. A suggested circuit may

rio t work outt the theory must specif y how plans are changed.

I require that the embod i ment of this theory be “additive ” ; tha t is, to

-. —.—- -- ..

- -

-

I Introduction 8

the extent po8si b le that new know l edge be expre9sed by new formulas rather

than by changes to old. Th is is partl y because of the ease with which such a

system can absorb new information; and partl y because a creat ive desi gner

requires the abi l i t y to see the individua l parts of i t ~ var i ous, often

conflicting, plans and goals. For this reason , the theory is embodied as a

“rule-based” system.

By a “rule-based ” system I mean a system -4h ich makes progress by pattern—

driven o p e r a t i o n s on a data base. There are several parad i gms for such

systems; the classical ones are predicate-calculus theorem provers (Nevins ,

1974a), production systems (Newell , 1973a), and Al l anguages u ith pattern-

directed procedure i nvocation. (Hewitt , 1972, Bobrow and Raphael . 1974) I n

what follows , I w i l l attempt a synthesis of good features of al- f of these.

The result may be descr i bed as a system in wh i ch plans are assemble d piece by

piece. The rules used resemble predicate-calculus implications. They d i f f e r

in these ways: they may be used to infer what tasks are required or what

solut ions are possible : they are less constrained in the kind of inference

rule and “ sel f-referential” deductions allowed; they specif y how they are to

be used; and they come in larger , better organized chunks than is traditiona l

In predic ate-calculus appli cations.

Befor e elaborating further on these requirements , let me br i ng these

problems to l i f e with two examples from elementary electronic design .

il l u s t rating as I go how DESI deals with them. The first examp le shows how

choices must often be based on knowledge of current plans. The second example

illustrates some of the other comp lexities I mentioned. (These informal

scenarios are meant to g ive you a p ictur e of the desi gn problems DES! is mean t

to handle , not the structure of the program or its actua l behavior . I w i l l go

over these problems again , once in this chapter to illustrate the

I Introduction 9

representation and use of know l edge by the system , and again in Chapter V to

show the performance of the actual imp l ementation.)

Redescr lblng Problems and Choosing Solutions

I mag ine that DES! is g iven the prob l em , “Desi gn an amplifier with an i nput

resistance of 30 kohm and a voltage gain of 5.” For now , let us assume this

problem w i l l be broken into the three subrequirements , “ampli fier ,” “inpu t

resistance — 30 kohm ,” and “v-gain - S,’ (This must be done with care, since

these three characteristics are of rather different kinds.) This is onl y par t

of the prob l em , for these fragments of the ori g i n a l problem are too precise to

be suggestive; DES! must further alter the description so tha t these numbers

become “range descriptions ” lik e , “hi gh i nput i mpedance ” and “moderate voltage

gain. ” (See Fi g. 1.1.)

“amplifier with i nput resistance — 30 kohm and
voltage ga in 5”

I I becomes
I I
V

“amp lifier ” <---- thing to make
“input resistance 30k” <---- high i nput resistance
“voltage gain 5” <---- moderate v-gain

Fi gure 1.1 Redescribing a Desi gn Prob l em

Once the problem has been descr i bed in this form , i t s fragments tri gger

suggestions of possible solutions. For example , In the context of mak i ng an

amplifier , “hi gh i nput i mpedance” should suggest “common-collector am p l i f e r ,”

and “moderate voltage gain ” should suggest “common-e dlitter amplifier .” (Fi g.

1.2.)

_ -— - —---——-—-— —- - — - - S

I Introduction 10

high input resistance POWER high voltage gain POWER

4convert current
bias bias to voltage

OUTPORT

INPORT INPORT
OUTPORTbias convert bias

- current to
voltage

-

COMMON COLLECTOR COMMON EMiTTER

Fi gure 1.2 Two Circuits Suggested by Parts of t he Prob l em

If just one of these had been suggested . the problem wou 1d be easy; DES!

could se l ec t a standard schema for the type tha t came to mind and make sure

the g iven numerical constraints could i ndeed be satisfied. What must it do

when two or more options occur? In some cases , all but one may be exc l uded on

the basis of further considerations beyond the simple prob l em features that

suggested the c o m p e t i n g o p t i o n s ; o f t e n , however , what i s r e q u i r e d i s a

synthesis uhich comb i nes two suggestions to prov i de the functions of both. In

this case, DES! must possess information to the effect that an option

suggested because of what it does for an amplifier ’s i npu t resistance may he

“cascaded” with another option.

So far , I have drawn these circuits as if they always contained the parts

shown. However , the notions of “common-col lector ” and “common-emitte r ”

- a

I Introd uction 11

amplifier each corresponds to a range from general to specialized circuits.

Uhen a common-emitter amp l i f ier simpli c-iter is desired , the circuit of Fi g.

1.2 is se l ected almost without thought. But a practiced desi gner knows tha t

‘he “abstrac t i dea” of this circuit may be realized in other w a y s . To cascade

the two circuits ~ f Fi g. 1.2, DES! would not just “draw ” the same two pictures

and cram them together in some way. Instead , it chooses more general diagrams

o f these ci rcu i ts , and reconsiders how they are to be biased and coup l ed.

This w i l l i nvo l ve further cho i ces. The result is the circuit of Fi g. 1.3.

+15V

bias I
.1 .~ convert current

_ _ _ _ _ _ _ _ _ _

lOkii

¶

to voltage

INPORT j OUTPORT
- - - bias 50k�i _ _ _ _ _ _ _ _ _ _

~bias &
4kf2~~~coupIing sets 1c

Fi gure 1,3 A Cascade of the Two Partial Circuits

Finall y, the numerical constraints set as i de in favor of more revealing

descriptors are taken up again to give the componen t values shown in the

f i gure.

- ~~~~~~~~ —
.

— - - ---- - ~-. — --—— -- —--- - ______ - - -4

I Introdu ction 12

Transforming Problem and Solution

In this second example , I wish to show how much more comp licated the

phases of desi gn can get. I mag i ne tha t the prob l em g iven is

Oesi gn a network wh i ch con’~.erts a 1kHz square wave of amplitude 1V into a
sine wave w ith the same frequency and amp litude .

1kHz _ _ _ _ _ _ _ _ _
1kHz

4 ftJ1IL~
? “\J\J\~, 4

Fi gure 1.4 Si gnal Conversion Prob l em

Even if you know nothing abou t elect ronics , it may be worth think i ng abou t

this prob l em for a minute before going on. (You don’t have to , but the

prob l em can be amusing, and illustrates an interesting and common phenomenon

of prob l em solving.)

* * *

- - ,—

I Introduct ion 13

If you know some elementary mat hematics , it probab l y occurred to you to

take the Four i er series of each of these si gnals. In th i s “frequency domain,”

the prob l em becomes:

Desian a network which converts a signal with spectrum

height:4/nw

— t t I I 4 I + I I I ~
kHz

1 2 3 4 5 ~~~7 8 9 1 0 11 12 13

Fi gure 1.5 Spectrum uf Square Wave

into a signa l with spectrum

1 2 3 4 5 6 7 8 910 11 12 13

Fi gure 1.6 Spectrum of Sine Wave

such tha t the amplitude of the spike at 1kHz is IV.

If you know some electronics , it mi ght then have occ~irred to you to try a

low-pass filter circuit like

— — — r L

—wr~ -

I In troduction 14

R
_ _ _ _ _ _ ______ ____ When used for low -1 pass filtering above

INPORT c ~~ OUTPORT cutoff frequency f.

I 2~rf

System Function
1+ ~Cs

(if not loaded)

Fi gure 1.7 RC Filt e r

as your answer , and then try as before to fini g h the prob l em off by assign i ng

va l ues to the primitive components (here , the capacitor and resistor) which

satisf y the constraints we have discovered,

The interesting constraints on this circuit may be stated as follows .

“Make the amplitude of the output spike at 3 kHz less than 10% of the
amplitude of the output spike at 1 kHz.”

“Make RC be the rec i procal of the frequency 1 kHz (in rad/sec).”

“The ratio of the amplitudes of the outputs at two frequencies depends on
the amplitudes of the i nputs and the se l ectivity of a dev i ce.”

“The se l ectivity of an RC filter is ... “

DES! can der i ve thege constraints from the etate~nent of the prob l em (starting

with a lot of know l edge about RC filter s and frequency-domain operations).

Unfortunatel y, these constraints canno t be solved simultaneousl y. The

circuit given wi l l make a square wave l ook “rounder ,” but the approximation to

a sine wave wi l l not be good enough. The constraint that deserves the blame

in this case is that on the se l ectivit y of an RC fitter . How can thi e be

i mproved? One way is by “add i ng a pole” to it s system func don with this

c i rcu i t:

- — - - - - ~~_ r --________ - - - - “ - . -

I In troduc t ion 15

- A

~~~~~~~~~~~

R. 

_

-

~~~~~~~~~~~~~ 
1—

connect to
J_ New

old OUTPORT c’ _ _ _
OUTPORT

- New system function old x 1
1+RC’~s

(Remember to implement A.)

Fi gure 1.8 A Circui t for Add ing a Pole

Thi, makes DES!’ s view of the solution much more promising. (I won’t pur sue

this example any further , because the current implementation l acks the

competence to go any further.)

Let me list the var i ous types of information that I appea l ed to in my

brief overview of how such prob l ems may be solved. First , DESI needs

know l edge about transforming the problem into a tractable form; this ranges

from a relative l y simple sorting out of multiple requirements , to a mor e

d if f i c u l t transformation from a time-domain to a frequency-domain descript ion

of a prob l em. Second, and quite I mportant, there had to be a basis for

choosing among more than one approach. Third , several constraints had to be

ea ti e fied in a consistent way. This required know ledge of the physics of

el ectronic circuits. Fourth, we had to be able to change plans when our f i r s t

try f ailed.

To make al l these kinds of information usable, DES! has to be able to

reason abou t its current plans and goals , Transforming a prob lem may be seen

-
~~~ 

-— a



I Introduct ion 16

as redescrib ing the topmost goal. Cho i ce of a solution to one problem often

depend, on the other prob l ems under consideration. The calculation of a

desi gn quantit y to satisf y one constraint is pointless unless all the other

constraints on that quantity are taken into account, And, of course, one

cannot change plans without know i ng what they are. An organization which

makes using such know l edge practical has been the goal of this research.

I.B A Rule-Based Prob lem So l ver

Here is my thesis: prob l ems are solved by reduc i ng them to subprob l ems .

Some of these subprob l ems result in action , others in constraints on action.

As the solution progresses, the way in whi ch new suhprobtems are approached

depends more and more on the state of other subprob l em solutions , that is, on

the requirements derived from the physics of the evolving solution and on the

goa l structures that have already been elaborated. It is i mpossible to know ,

as new facts are discovered, what subsequent suhprob l ems w i l l  depend on them ,

so all such facts mu8t be stored in the game communa l data base and accessed

whenever they become relevant to a later prob i em reduction ,

This is accomp lished by imp l ementin g DES! as a set of rules ma nipulated by

a rule-based problem solver called NASL. A rule-based system (Short liffe , . 1
1976, Davis and King, 1975) is one in wh i ch know l edge is expressed as

conceptuall y smal l  units ca l l ed  rules.

There are two sources of ine f f i c iency  in a system organized th is  way: the

overhead paid for s tor ing  almost all know l edge in the same associative data

base, and the nondetermini sm i nherent in the possibility that more than one

rule may app ly to a prob l em. The first kind of inefficiency is the price of

fle x ib i lity, but it can be limited by proper organization. One i mpor tan t

— - -
~~~~~~~~- r - - - - 1 __~~~_  - 

r - -— - -——— — - - - —- — — — -

I Introduct ion 17

pr i nciple or organ i zation is allow rules to come in well -organized chunks. In

DES!, these “packets ” of rules (McDermott , 1975) are used to represent circuit

diagrams , si gna l description s , parti al plans for solving prob l ems , and groups

of rules for mak ing choices ,

The second source of inef f ic iency, nondeterminism , can be cont ro l led by

confining it to the information retrieval module. Above this l owest level ,

potential nondeterminism is shut off by app l y ing “choice rules ” in amb i guous

s i tuat ions.

In this section and the next , I wi l l sketch the form and content of DESI’s

rules. This sketch wi l l be fille d in in Chapters II , III, and IV . Chapter V

g ives the resul ts that have been obtained by imp l emen t i n g it.

In any rule-based system , eath rule is associated with a pattern by which

the system accesses i t . The system also maintains a data structure , the

“ac t i ve processing s i t e ,’ that is intended to descr i be i mportant aspects of

the current s i tuat ion. Rules ar~ matched against this structure, and rules

whose pattern, match are applied in some way.

The potent ia l advantages of a rule-based syste m are these: (1) the system

can see wha t it is do i ng because i mportant steps occur at standard times in a

standard way; (2) the system can keep track of its deductions and/or act ions

in order to explain or undo them; (3) the system can be augmented simp l y by

add i ng new rules.

Realizing these potential advantages has not been easy. There are three

classic types of rule-based systems:

~(1) Predicate-Calculus Theorem Provers -- Here the rules are ax i oms and
the currentl y ac t ive processing s i t e is that rule wh ich is being treated as a
goal. Appl y ing a rule generates new rules or answers to the prob l em at hand.
(Robinson , 1965, Nilsson , 1971, Nevlns , 1974a, R. Moore, 1975)

(2) Production Systems -- Here the rules are condition-action pairs, or
“product i ons,” and the currsnt s i t s is • small list called the ‘Short-Term

.- ---. --— .- - - — -- -

I I ntroduction 18

Memory, ” or STM. Appl y ing a rule consists of performin g man i pulation s on the
SIM or do i ng simp le i nput/output operations. (R ychener , 197G . Newell , l9fla)

(3) ArtifIcial In te l l i g enc e Progranrslng Languag es -- These l anguaqe~ may
be said to be rule based if pattern- direc ted procedure invocation is taken as
rule application and if such procedures are taken as rules. ThQ proce ssing
site is a flexible record-or i ented data base , in particular , the records
currentl y being added , deleted , or retrie ved. These l anguages inc l ude PLANNER
(Hew i t t , 1972) and its descendants 0A4 (Ruli fso ri et. a)., 1972) and Conn i ver
(Suesman and McDermott , 1972).

(More specific example s w i l l be mentioned for compar i son with NASL later.)

A l l of these sygtems have suffered from pr ob l ems which have kept them from

rea ’izing their potentia l . The predicate-calculus systems are the least

deterministic of the group . The control of application of predicate-calcu lus

ru l e s has not itself been rule -directed or directed by much k nowledge o f any

kind. However , one of their strong points is that the proofs they generate

play a natural role in keeping track of their actions or justifying them to a

human user.

Production systems have very low-le vel rules. The system provides simple

symbol- manipulation abi l i t y , but each programmer must provide his own control

concepts, starting at the level of the subrout ine call. thi s tends to defeat

rea l extensibilit y, since two sets of rules pr obab l y have different calling

conventions. (Production systems have been evolving toward greater richness.)

Al l anguages provide mor e direction and control over problem solving, hut

at the cost of mak i ng “rulishnes s ” onl y a token aspec t of procedures. The

small patte rned interface between a program and it s callers is usu al l y duar fed

by the body of the procedure. Other procedures know that thi s one is there ,

but they do not know what it is do i ng.

A general problem of all these systems is t hat they are insensitive to

i mpor t ant aspects of their own operation. Production systems and pattern-

directed procedures generall y do not m,~ ipulate themse l ves, (That is , systems

- -.- - -— - — .- - . —-—-----—. ----- . - --— — a

I Introduct ion 19

built on them do not encourage or simplify this any more than the LISP

interpreter in wh i ch they are generall y embedded.)

To remedy these defect s , I have imp l emented the NASL rule-based system to

depend heavil y on explicit r e p r e s e n t a t i o n of control. NASL ’s acti ve

processing site is a PLANNER-type data base of ruleq , but more is stored there

than In the typ ical A l-language system. Besides a mode l of the current

prob l em situation , the data base inc l udes a r e p r e s e n t a t i o n of the “current

plan .” Rules are used, not to tri gger actions directl y, but to add tasks to

this representation. When the rules are used in a forward-deductive way, they

resemble pr— duct ions , with an extra l ayer of “carefulness ” between application

of the rule and actual execution of the task . (Sussman , 1975) When the rules

are used in a backward -deduct ive way, when the interpreter i s attempting to

find a way of carry i ng out a task , they augment the plan much the way a

PLANNER-li ke l anguage i nvokes procedures.

The difference between a p lan and a procedure is that a plan may represent

act ion at a more abstrac t level. In particular , the order of steps within and

be t ween subp lans is i t s e l f rule-governed. Furthermore , not all tasks

correspond to subroutine calls to br i ng something about or calculate

something. Some tasks are intended to represent “parasitic ’ actions which

influence the execution of other tasks, or wh i ch require occasiona l commitment

of resources. Examples from circuit desi gn are the actions , “Constrain RC to

be 1/2m f,” “Make sure every requirement in the g iven desi gn problem is

accounted for ,” and “Take note of the high-gain requirement in mak ing th is

amp I i f i er.”

These secondary task s, or “policies ,” are part icular ly useful in choice

si tuations , in wh i ch the prob l em solver tries to dec i de among more than one

course of action. The existence of a poli cy often amounts to the existence of

- _ _ _ _ _ _ _ _ _ _ _ a -

I Introduction 28

certain rules for suggest ing options or deciding among them.

Another i mpor t an t differ ence between Al-language procedures and NASL p lans

is that plans are completel y deterministic. A l l search is done in the rule-

app l i e rs t hat t r y to r e t r i e v e , co nst ruc t or choose among p lans . If the

result ing p lan does not work , a “mistake correction ” plan must be sough t whi ch

is appropriate to the kind of mistake that occurred.

I nab i l i t y to retrieve a solution plan via the simp le deductive retrieval

mechan i sm does not cause any kind of “ failure. ” Instead , the system attempts

to transform , or “rephrase ,” the prob l em until it is in a more fam i l i a r form,

This requires that the rules and records of the system be man i pu l able
~
y

rephrasing tasks.

To explain it s actions and correc t its mistakes , the syste m must keep

records of wh y it did what it did. These are of two kinds: stored chains of

rule applications , and relations between tasks. The user may ask for an

exp I~anation of a task in terms of the tasks it was desi gned to accomplish.

The system may edit these networks of relations when it runs into trouble.

I mentioned at the beg inn i ng of this section that rule-based systems are

potentiall y “extensible ,” that is , able to accep t new information additive l y,

without major reorganization. We can distin guish short- from l ong-range

extensibility. Over the l ong range, putting new information in is par t of a

simp le but i mportant kind of learning -- “ tak i ng advice. ” It is not the onl y

par t , because reorganizing descriptive structures and debugg i ng or

disa mbi guating what one i s t o l d are also crucial.

Therefore , it is easier to see the i mpor t ance of extensih i Ii t y over the

shor t range. It is common in Al research these days to assume that knowledge

is represented in large , well-organized chunk, (usuall y called “frames ”).

(Mi nsky, 1974) Assum i ng this to be true, we st i l l have the problem of

— - -~~~~~~~~
_______________ 4

4
I Introduction 21

interactions of two simultaneou sl y active chunks. This is just the

exten s ibility prob l em in the small , since each chunk appear s to the other to

contain new Information that may be relevant. Unless all frame interactions

have been foreseen in advanc.e (wh i ch is normal in most computer sc i ence , hut

not in Al) , the information in each chunk must be expressed in terms the other

can understand. (This is why programs appear to me to be such a poor frame

representation , since a program is ju,t a large chunk of lines of code , none

of which Means anything outside of its particu l ar context.) A t the very

least , a system must notice potentiall y relevan t interactions and ask fnr

further information when it doe’.

I n NASL , each rule resembles a S~c,lemi zed formula of predicate calculus.

(Robinson , 19651 (in fact , few subst antive rest ri ctions on predicate calculus

have been preserved in this notati on.) The r u les are man i pulated by a

PLANNER-like theorem prover . (Cf. R, Moor e, 1975) However , the rules can come

in large chunks called “packets. ” (McDermott , 1975) Packets can inc l ude other

packets (since they are log icall y just large conjunctions of formulas). One

use of th is is the-imp l ementation of hierarchies like those of “semantic

ne t work ” systems. (E.g., Bobrow and Winograd , 1976) C ircuit diagrams , among

other t hi ngs , are stored as packets.

There are several “ framish” concepts used in impl ementing NASL . For

example , the active tasks of the curren t plan mi ght correspond to the

“impo rtan t questions ” terminals of a Min,k i an frame. (llinsky, 1974) However , I

have felt free to diverge from the orthodox conventions of frame theory, and

one must not assume that “plane ” or “packets” correspond directl y to frames.

I Introduction 22

I.C Supp l y ing Rules for Desi gn

To app l y NASL to a prob l em domain , know l edge about that domain must be

supplied in the form of rule s. The major rule sets I have developed are for

desi gn in general and e lec t ron i cs in part icu lar . When they are added to NASL ,

the system has the structure shown in Fi g. 1.9.

— - - - --- - - - - - —~~- - - -— a

I Int roduct ion 23

Design Electronics Current Data
Knowledge Knowledge Pool

NASL Rules
— — . ii. u.. Ui.. ul. i.i .. u..~_,iiiIl~ ——— ~~~~~~~~ — —

SIP NASL Plan Interpreter I
/ \ / \

EVAL LCHOOSEI I REPHRASE I
Fi gure 1.9 Structure of DESI

The program , loose l y known as OES I, has the follow i ng hierarchical

organizat ion (f rom the bot tom up):

STP -- A PLANNER-like theorem prover
EVAL , CHOOSE, REPHPASE -- non-standard inference mechan i sms
NASL -- the interpreter for plans
OESI (proper) -— A set of rules for design ing hierarchical systems
ZORCH —- Rules embody ing electronics knowledge -

The rules themselves are hi ghl y structured. Some of them specify physical

re la t ions among things l i ke nodes and si gnals. Hi gher-level rules are used to

Influence prob l em choice and transformation , Almost all of them have some

- -a

I Introduct ion 24

procedural component , in that they refer to the current task network. For

example , even the simplest statement of Ohm ’s law , that the current through a

resistor equals its volt age over its resistance , is stated as a con str aint on

the values of these phys ica l quant i t ies.

Most of the “ raw i n f o r m a t i o n ” in the system is stored in packets def ining

known c i r c u i t s , such as common-emitter amp l i f i e r s, vol tage d iv ider s . etr .

Uhen a c i r c u i t of a g i ven type i s c reated , i t s packet w i l l be instant ia ted.

Each such packet contains information of these kinds:

(1) Component definitions like

[COMPONENTS ?##VOITAGE- DIVIOER
< (Ri ?##VtJITAGE-OIV IOER) (R2 ?##VOITAGE-OIV IOF Rh’)

(NASL formulas are alway s enc losed in (bracketsi . See Appendix 1 for de t a i l s
of this and subsequent NASL notation . The pref ix “? ind i cates a predicate-
calculus var iable; in a packet , “?##X ” refer s to an objec t that w i l l he bound
later to a part icu lar instance of the concep t the packet descr ibes.
(McDermott , 197S) . Angle brackets enclose tup les .)

(2) Connection spec i f ica t ions l ike

(NODES ?##VO1.TACE-OIV IOER
c(TOPNOOE ?##V OLTACE-O IVIO ER)
(MIONODE ?##VOITAGE-DIVIDER)
(BOTNOOE ?##V O1TACE-OIVlOE R),~(NODE-TERMINALS (MIDNOOE ?##VOLTAGE-OIVIDER)

<(# 2 (Ri ?##VOLTAGE-O IV IOER))
(# 1 (R2 ?##VOL.TAGE-DIV IOER)h’)

(3) Constraints and other “frozen tasks” wh i ch wi l l be awakened when an
instance of the packet is created, These are used to assoc ia te w i t h a dev ice
a description of its purposes and further requirement s. The commentary
appear i ng around the diagrams in Fi ç” . 1.2, 1.7, and 1.8 is represented as a
set of such tasks.

These circuits come in hierarchies of var i ous kinds. The components of a

circui t may themselves be c i rcu i ts . Circui ts may be arranged in c lasses (such

as “amplifier ”) wh i ch share propertie s . One circuit may he der i ved from

another by assum ing special conditions: for example , the spec i f i c and general

common-emitter c i r c u i t s I pointed out in Sect. l .A are of this type. A l l of

- ~~~~~~~~~~~~~~ a

I Introcluc t ion 25

these hierarchies may be represented by the device of a l l o w ing packet s to

include other packets.

A solution to a desi gn problem is represented as a structure of

instantiated circuits , with primitive-component values selr ’rted . A top-level

des i gn problem is of the form . “Find a circuit structur e with propertu”

I t is the in fo rmat ion required to go from property to c i r c u i t that is of

most i n te res t . This f a l l s into several c lasses: (1) knowled ge about

t ransforming problems , (2) rules for making choices , (3) plans for alter i ng

and i mprov i ng circuits , and (4) knowled ge about physical t on str ain ts on

quantities. Each of these categories is represented by rules in DES1 and

ZORCH. DESI is a small ~et of desi gn rules that are intended to be

i ndependent of any one phys ical domain ; it prov i des a vocabu lary and task

structure within wh i ch ZORCH’s rules can operate.

For example , DESI prov i des a standard framewor k for rephrasing deei qn

problems. The idea is to trans form an unfami l ia r desi gn pr oblem into the

mak i ng of a familiar kind of circuit obey ing physical constraints, using more

suggest ive hints like “make it linear ” or “notice the hi gh gai n.” (Cf. Sect.

l .A .) ZORCH provides rules to do this decomposition and then to use the hints

and constra ints to zero in on a diagram.

The DESI rephrase plan contains tasks to

“Exp lode ” the g iven proper t y into “shards. ”

Classi fy shards as to whether they suggest a familiar device type . a
constraint , or a ‘desi gn features ” l i ke “ l inear i ty. ”

Gather the suggestions into a new task network.

In th ie process, rules like this (from ZORCHI become i mpor t ant:

I Introduction 26

[- I > A (0-SHARD ?+P (A (_ ‘?+V) I— (V - GAIN (/? /? _? +V)) _ ?+ G) J)
(-I> 6 (I> (DEN ?+G) 50)

(0-FEATURE ?+P (RANGER V-GAIN HIGHJ)))

Thi s says that a vo l tage gain greater than 50 should be not iced as “hi qh. ”

The symbo l “— I> ” si gnifies implication; the letter a f t e r it i dentifies the way

in wh i ch the rule is to be used. (See Chapter II. The “A” means when the

l e f t side is recorded , reco rd the r i ght ; the “6” means call the theorem prover

to f ind answers to the l e f t side , and record the r i ght side for each

subs t i t u t i on returned. The actual rules in Appendices 2 and 3 are mor e

indirect and g ive more information .)

Once the task network has been transformed , ot her ZORCH ru le g come into

play. These rules are of these kinds: (i) definitions of -fundamental w iring

operations; (2) physical laws like Ohm ’s which constrain numerical quantities;

(3) plans and pieces of p lan for biasin g, coupling, and performing other

standard operat ions on c i r c u i t s ; (4) rules for choosing among sub-types of

inclusive circuit categories suggested by the rephrase rules.

Fundamental w i r i n g operat ions are def ined using the b u i l t - i n r e l a t i o n

/:MOD-MANIP (for “model manipulation ”). For example , connecting terminals to

form nodes may be defined by this rule

I/:llOO-MANIP ?TASK (CONNECT ?T1 ?T2) >

< ‘ (EXISTS (N) (AND (0EV-TYPE ?N NODE)
(NODE—TERMINALS ?N <711 712>)) I>] .

This defines an “add l ist ” (Fikes and Nilss on , 1971) for this action. (Its

“deleteli e t ” is empt y.)

Physical l aws are def ined by rules l ike t h i s :

I Introduction 27

(—I> A (0EV-TYPE ?X RESISTOR)
(EXISTS (T)

- (/ ;TASK 71 <>
(A (I (CONSTRAIN <‘(V ?X) ‘(I ?X) ‘(R ?X)>

(A (V I R) (— ?V (* 71 ?R)) H)
<>))I

wh i ch commits the desi gner to the g i ven c o n s t r a i n t . CONSTRAIN is a kind of

po l i cy act ion def ined in DESI; again , OES I prov ides the vocabu l ary for ZORCH.

Choice rules are used for differential diagnosis or synthesis of partial

solutions , For example, in choosing an amplifier , the rule

(—I> A (/:OPTION ?C ‘Al (1:10-DO _?+TASK (MAKE AMPLIFIER) .c_?+AMP>
(MAKE COMMON-COLLECTOR)))

(—I> A (/:OPTION ?C ?A2
(/:TO-DO _?+TASK (MAKE AMPLIFIER) <_?+AIIP>

(MAKE COMfION-EMI TIER)))
(/:RUIE-TOGETHER <?A1 ?A2>

(/:TO-DO _?+IASK (MAKE AMPLIFIER) <_?#AI1P>
(MAKE (CASCADE COMMON-COLLECTOR

COIt1ON-EI1ITTER))))))

This rule says that a common -co l lector amp l i f i e r and common-emit ter a m p l i f i e r

may be cascaded to accompli sh the purposes of both. (The actua l rule comes

closer to say ing this.) The conclusion (/:RUIE-TOGE TI-IER. ..J is used by the

cho i ce protoco l of Fi g. 1.9. It is used to specif y composition of separatel y

unsatisfactory choices: /:R(LE-IN and /:RUIE-OIJT are used to narrow the list

of options.

Many aspects of the ope’-atlon of the system cannot be brough t out by this

kind of summary. In the next three chapters . I w i l l describe it s knowled ge

more systematicall y. The major omission so far has been a good description of

the task network and its evolution. Without this descr iption , much of the

content of the rules is lost.

To compensate, let me sketch DESI’s behav i or on the second prob l em I used

as an example In Sect. l.A . indicating points of interest as I go along. The

prob l em is presented as the problem of design i ng a circuit to conver t si gnals

.
- — i ---

,. . - .
‘

I Introduction 28

satisfying an i nput predicate to those satisfy ing an output predicate. (See

Chapter IV .) Thie is written

fOES I GN
(A (CKTP

(CONVERT ?CKT
(A (IN)
(AND (PER I OOIC (TFUN ?IN) iO.OE-3)

(FORALL (1)
(AND (—I> C (/< ?T 0)

(. ((ONE-PERIOD (TFUN ?IN)) ?T)
1))

(-I> C (NOT 11< ?T 0))
(. ((ONE-PERIOD I TFUN ?lN)) ?T)

—1)))))
(A (IN OUT)

(. (IFUN ?OtJT) (A IT) (SIN (* 2000 P1 71)))))) H

The i npu t predicate is just a time-domain definition of “1kHz square wave, ”

The output predicate defines the time funttion (TIUN) of the output to be a

sine wave. (C after “-I> ” means; to prove the ri ght-hand side , detach the

left as a subgoal.)

The desi gn prob l em i~ used to star t a task network or plan. The goa l of

the prob l em so l ver is to accomplish every extant task. In the course of do i ng

this, subtasks of var i ous kinds may be generated , wh i ch must be gotten rid of.

In the case at hand, the complicated desi gn prob l em does not match any

stored eubp lan directl y. The resulting failure of the theorem prover causes

the NASI.. interpreter to set itself the task of “rephr asfn g” the desi gn task.

- - - —- -~~~ — -~~~~~~~~~~- - - a

I Introduction 29

o design...

f
O rephrase

super-task

find d-features

ode f~~~~~~~~~~~ make

° prop~rty~~
0 0 subn~et

constraints

Fi gure 1.10 A Rephrasing Subtask

Ibis rephrasing process notices the conversion problem in the descr i ption

of the desired circuit, and spends some time try ing to calculate and compare

the frequency spectra of the i nput and output si gnals. This process results

In the re-descr iption of the prob l em as a low-pass filter i ng prob l em. (The

comp l ex details of this example are described in Chapters IV and V .)

This operation of rephrasing the ori g inal prob l em is carried out by the

NASL interpreter , operating at a different log ical level. In particular , its

behav i or is rule-governed in the same way. The only differen ce is that

prob l ems at the l ower level become objects of man i pulation at the hi gher

level. The result of this man i pulation ultimatel y appears as a new prob l em

network at the ori gina l level.

The signa l descriptions I showed earlier are subject to rules from ZORCH

wh i ch suggest l ook i ng at them in the frequency domain (Fi gs. 1.5 and 1.6), and

l ooking for a simple transformation between them. The transformation

- - —---—
—

~
-- -..‘--——-- .-- . -

-
—

I Introduc tion 30

discovered , name l y (LOU-PASS 10801 , generates the desi gn shards

- (A (CKT) (0EV-TYPE ?CKT LOU-PASS-FILTER))
(A (C~T) I- (LOU-CUTOFF-FRED ?CKT) 1008))

wh i ch in turn suggest a basic device type (low-pass filter), constrained to

reduce its output at all frequencies above 1 kHz to neg li g ible value,.

The task net has now been “elaborated” to the structure of Fig. 1 .11.

Q design...

make a constrain
low-pass 0 0 it...

filter
Fi gure 1. 11 Rephrased Task Network

The prob l em has become “make a low-pass filter , and constrain it to fit the

exact desired characteristics. ” The first subprob l em in th is structure is

much simp ler than the ori g ina l, and results in the retrieva l of a useful plan ,

In the form of a “device schema ” for an RC filter . (I w i l l defer the

possibilit y of more than one schema be i ng brought to mind until later.)

_______________ a

I Intr oductio n 31

R 0 Design... ~~.

~W r i
C ~~ make _ _ _ _ _ _ _ _ _ _

Constrain
_ _ _ _ _ _ _ _ _ _

low pass selectivity

Get
~~~ Q select R

an 

0 select C

“Frozen constraints’
on R. C,, and System Function

Fi gure 1.12 Retr ieved Circuit and Constra int Task Network

The prob l em now (see Fi g. 1.12) is to satisfy the const ra in ts  g i ven. Some

of these came with the prob l em statement , but many more tag along with the

schema for RC filter (wh i ch inc l udes facts abou t filters in general). A

useful feature of the NASL l anguage is that we can express the purposes of

devices in the same l anguage the system uses to express its own: as tasks. To

use an RC filter is to insist that its resistor and capacitor have values

compatible with it s desired system function. Such tasks are called “frozen

policies.”

Such already established tasks are not the onl y useful kind that ride

along in device schemata. There are also “expansion obligations ” which remain

to be done. An example of this techn i que is the definition of “active

transistor .” as a “raw ” transistor plus the commitment to bias it in whatever

context it appears. In the case of the filter , the only expansion obli gations

are to se’ect values for the primitive components. These tasks (see Fi g.

1.12) are carried out by interactions with the new and frozen constraints ,



I Introduction 32

4

( In the curren t implementat ion , most al gebraic symbo l man ipulat ion is carr ied

out by the human user.) Values are to be found wh i ch satisfy a ll the

constraints. When they are found , the fac t tha t they satisfy the constraints

is to be “protected.” (Sussman , 1975) This can be a complex task in itself.

(Chapter III. )

As we saw before , there are no va l ues wh i ch satisfy all the constraints.

Even for eng i neer i ng purposes, an RC filter canno t quite do the job. In this

case, a failure occurs, wh i ch causes the insertion into the network of a

correction task. This task may have to edit the task network as well as the

current circuit mode l in order to solve the desi gn problem adequatel y. (The

current implementation stops before this point. )

I have g lossed over the prob l em of choice in this examp le. It is mor e

obv i ousl y relevant in the case of the first example of Sect. l .A . desi gn i ng a

buffered amplifier . In this case, rephrasing is relatively simp ’e , be i ng a

matter of unpack i ng a l ambda expression such as

(A 00 (AND (0EV-TYPE ?X AMPLIFIER )
(.  (V-GAIN ?X) 5)
I- (INPIJT-R ?X) 38000))).

However , these fragments suggest more than one kind of amplifier , as we saw,

(Fi g. 1.2) In other words , the system ha, converted a prob l em with no

apparen t solutions into a prob l em with two apparent solution,, This

embarrassment of riches is handled by invok i ng the choice mechan i sm , a simple

“protocol” for calling the theorem prover . In this mode, a series of staccato

deductions are made wh i ch attemp t to rule out alternatives , vote in favor of

alternatives , or synthesize new ones. (See Chapter 2.) The relevan t rule is

the one tha t says. “if you are try ing to choose among different ways of mak i ng

an amplifier , and option 1 was suggested because of its i npu t resistance , and

option 2 for some other reason, replace these options with (CASCADE ~opt ion i i

— . - - - a



I Introduct ion 33

l o p t i o n  2 1 ) . ” (A s i m p l i f i e d  version of this ru le appear s above. )

Other choices that occur in these example s are handled sim ilar l y. Ther e

is a rule that the general common-emitter circuit i 9 the starting point for

implementing a common -emitter coup l ed to something else. In the second

example problem , if the system is ever told abou t LC filter s, we w i l l  also

have to g ive it rules like

“Use an LC filter if the power i nvo l ved is hi gh.”

“Other things equa l , don ’t use an i nductor circuit if you can help it. ”

For OESI’s actua l behav i or on these problem s , see Chapter V .

1,0 Relation to Prev i ous Work

1.0.1 Problem Solving and Reasoning

The problems I am attack i ng in this research are not new. The problems of

generality vs. expertise were ori g inall y stud i ed by Allen Newell and hi g

coworker s around 1960. (Newell , 1962) Their efforts produced a “General

Problem Solver ” wh i ch we have been try ing to debug ever since. (Ernst and

Newell , 1969) GPS was a “means-ends ana l ysis ” prob l em so l ver which applied

state transformation operator s to br i ng it to its goal. (IcCarthy (13S9 ) gave

us the term “advice taker ” to descr i be a progr am which can take new

Information and use it to do better . The creation of such a program is s t i l l

my l ong-term goal and , in a sense, that of most other researchers.

While this research was in progress , a tide of “rule-based” Al programs

has risen which NASL seems to be a par t of. Its ancestors are the sy~ t~ ms I

descr i bed in Sect. 1.8. More recent , special-purpose rule-based systems have

sough t to overcome their limitations. Short l if fe ’s (1976) MYCIN is a limited

but elegant medical-diagnosis system which uses a backward-chaining deductive



I Introduction 34

system. Suseman and Stal lm an ’s (1975) EL does electronic circuit anal ysis by

forward deduction. Both of these systems keep a record of deductions. EL

uses these records to rethink deductions based on unworkable assumptions.

(Stalim an and Suseman , 1976) Both systems use them to exp lain their deductions

to a human user .

The NASL system differs from these in that it s control l anguage is aimed

at a hi gher level of abstract ion. Its rules , expressed in a predicate

calculus , spec i fy conclusions rather than actions , A ction is achieved by

having certain conclusions be interpreted as “required tasks ” by the action

interpreter . The notion of “ task” is intended to be very inclusive.

MYCIN and NASL can both be g iven new rules , which , if they are not buggy .

interac t with the rest of the system in efficie nt ways. However , MYC IN ’s rule

l anguage is deliberatel y restricted to the domain of fault diagnosis in poor l y

understood systems. (Davis et. .1., 197S) (MYCIN is superior to NASL in

hav i ng a more deve l oped procedure for graceful assim ilation of new rules.

(Oa vi ,, 1976)) EL’s rules have sty lized LISP code bodies. They can do

anything, in pr i nciple , but the system functions most elegantl y when organ i zed

around the satisfaction of numerical constraints. IIYCIN does almost entirel y

backward chaining dur i ng deduction : EL, forward chaining.

The most i mportan t conceptua l prob l em I have found in working on NASL is

the requiremen t that the control structures of a prob l em solver ough t to be

simple enough to be inspectab le , but contain enough hi gher-leve l concepts to

be useful when inspected. The IIYCIN group express this as a demand for

“ sty lized programming ” (Da vis et. al., 1975). They have achieved i mpr essive

result s in two areas. First , by use of “meta-r ules ,” their diagnostic program

can gu i de its own flow of control. This is something like my “choice

protocol” in which NASL uses choice rules to dec i de how to proceed. Second, 

- 
— - - . . - ~~. ______— a



I Intro d ir t o n  35

their knowled ge-acqu isition program knows enough about the ‘sty ) iz at inn ’ to

par t icipate in w r i t i n g  and debugg ing new rules. I qh~~l l mak ’ a more ct p t a i l e r l

compar i son of these two cap a bilitie s with actual and potential a b i l i t i e s  of my

program in Chapter V I.

The main l i m i t a t i o n  of MYC IN’ s s t y le of rule-based programming is that it

is wholl y or i ented toward mak i ng tests and letting them “cast votes ” fnr a

result. There is no concept of plann i ng or even acting. Davis et . al .

(1975) acknow l edge that for a domain with a more precise theory than medical

diagnosis , a different control structure is called for . I hope DESI is an

example.

Sta llman and Sussman ’s (1976) EL is imp lemented using a l anguage c a lled

ARSE which is embedded in LISP. The primitives in ARSE implement a system of

forwar d deduction and “guessing, ” aimed toward findin g a consistent assi gnment

of var i able values in a constra int  network. ARSE has been used exper i mentall y

on other tasks involving constraints (Mason , 1976, Doy le , 1976), and so has

modest pretensions to generality. ARSE ’s control structur e is form a l l y close

to NASL ’, (and hel ped inspire it). ARSE maintains “demon queues” generated by

ongo ing deductions. However , EL lacks the need or power t o  i nspec t th~~ce

queues efficien t l y. NASL embeds the control structures in an associative data

base, and general izes the notion of queue to a task network.

In th is respec t , the closest control structure to NASL i9 Sacerdoti ’ s

(1975 ) NOAH. This is a bril l i a n t program for plann i ng a mechanical assemb l y

and advising a per son carry ing it out. The plann i ng par t constructs a

h,erarchical network of ever more detailed plan s . These plans are not

programs; in particular , they do not have to be totall y ordered. Ag parts of

the plan are expanded, their interactions with each other are noted and

corrected for by enforcing order i ngs.



I Int roduction 36

The main difference between this par t of NOAH and NASI is that NOAH is a

plan compiler , while NASL is an interpreter : that is , it expands and executes

pieces of plan as it goes. Th i s is necessary because NOAH has a simp le

STRIPS-like (Fikes and Ni lg son , 1971) assumption about actions wh i c h  NA~4

doesn ’ t share. In particular , NA SL is not as sanguine as NOAH a t n i t  expanding

a future ac t io n , because it has a limit e d  model of the world at that p oint .

It does not a t t emp t  to summarize the e f f e c t s  of a l l  tasks as ‘ t a t e  changes , so

it cannot have a domain-indep endent al go rithm for checkin g int n ract ion s

between steps. In particu l ar , actions like “De si gn... ” and “Con strai n... , ”

whose effects depend on how they are carried out and/or what else is being

executed , do not fi t  into Sacerdoti ’ s framework. This makes room for more

sophisticated knowledge about action , but it is a p it y that I cannot u s e

Sacerdoti ’ s simple and (within their l i m i t s )  powerful al gor ithms.

I have also profited from read i ng papers by Ni lss on (1973) and P h i l i p

Hayes ( 1975 ) on i n t e r l eav ing  plann ing and execut ion.  Several  receaccher g

(Schank and Abel son , 1975, Abel son , 197S, Rieg er . 1976. Charniak , 1975) have

done research on classification of plans analogous to my taxonomie s of Chapter

II. Usua ll y, however , they have been mor e concer ned wit h anal yzing na rratives

than with actuall y solving prob l ems , which has led t~ d ifferent criter i a for

classification. Perhaps some synthesis of these approaches w i l l  be possibl e.

A class of systems with which NASL shar~
g certain propert ies a r e  the

“u t i l i t y ” A l systems wh ich have appeared recentl y. These are systems which

provide data and control repr esent at ions for users , who are expect ed to use

these fac i I i ties for pr h em- spec if .c programs. Exain p lee i r e  t h~ Al I Inguages

(
~lnh rnw and Raphael , P-3 i ~ ) , Bohrow and Wino g rad ’s (1976) Knowl eddi ’

e~~~ni -i t on Lan juage ,” and ~ r inivasan ’s (1976a ,h) “Meta lloscr i pt on

The Al l anguages provide asser t on-baserl data bases like N A t  ‘ s .



I Intro duction 37

(NASL and STP are descended in thi s direction from the Al l anguage Conn i ver .

(Sussman and McDermott , 1972)) The other two systems are more semantic-network

oriented. (Woods , 1975) This is in many ways merel y a formal d i ff c ’r pnr m .

Other differences between these research efforts depend on health y diff e r ences

of focus. For example , the KRL group is more concerned with recognition

problems than I have been.

A bigger philosophical differ ence is that NASL is an attempt to provide a

plan descr i ption l anguage rather than a programm i ng la nguage. The distinction

may be who l l y metaph ysical; how eve r , I believe that several features of NASL

plans , espec ia l l y the notion of “po l icy , ” i f  imp lemented properly,  be long to

plan descr ipt ion rather than programm ing. A concret e d i s t i n c t i o n  between NASL

and the traditiona l “Al ut i lity ” (Hewitt , 1972) is tha t NASL. far from

requ ir ing a pr ogr am to s p e c i f y a p iece of knowled ge, requires a body of

knowled ge to spec i f y  a prog ram. I believe tha t Srinivasan ’s MOS results from

a similar or i e n t a t i on , but he is more concerned with general puzzle solvin g

than captur ing the knowledge in a r ich domain.

In any case, the older , less pretent ious A l l anguages are the onl y members

of  th is l i s t  of systems (NASL inc l uded) wh i ch are matur e enoug h for their

flaws and strengths to be visible. Wh i ch features of the new er sy s t em s w i l l

endure remains to be seen.

Unlike mo’t of the problem so l vers mentioned , NASL uses a theorem prover

to do sophisticated deductive informatio n retrieval. This use of theor em

prover s has been suggested by marty peop le. (Travis et. al., 1972 , Darlington ,

1969, Moore , 1975) My theorem prover , STP , resembles most close l y that of

Nevirt , (1974a) , w i t h  feature s from the work of Bledeoe (197S) and Ernst (1971 ,

1973). Those f a m i l i a r  w i t h  the theorem- proving l i te ra tu re  w i l l  enjoy Appendix

4 , wh i ch describes its features,

a



I Introduction 38

Other people have stud ied somewhat diffe rent uses of theorem prov er s in

prob l em solving. (E.q., likes and Ni ls son . 1971) In the past coup le of years ,

one group of  pe op l e  has been urg ing the use of a pr edicate-cal culus theorem

prover as the only interpreter of a prob l em solver. IKowal ek i , 1973, 1974,

Warren . 1974 , Hayes, 1373b , Tarnlund , 1975) I think this view is mis guided.

Generall y one does not go very far with thi s approach before he starts add i ng

corruptive features , such as ordering the axiom s , putting in dummy predicates

to control search , allow i ng rules to refer to formulas , etc. (Warren , 1374)

My conclusion was that it is better to admit defeat from the star t , so I put

control features in as concepts mani pu l able by the calculus and defined by the

interpreter , and tried to preserve some of the purity of the theorem pr over

itself . I shall have more to say abou t the success of th is attempt in the

conclusion.

I should mention that the concepts of action and decision have concer ned

philosophers for hundreds of years. Recentl y, a whole branch of anal y ti c

philosoph y has sprung up around them . lLang ford , 1971 . Brand , 1970. Dan t ri .

1965 , Goldma n , 1970) (lang of the workers in this $~ eld have inter e stin g

things to say abou t the log ic of action. b c  example , the comp uter

sc i entist ’s notion of a ‘p r i m i t i v e ” is reflected (somewha t diml y) in

s t a t e m e n t s  like , “ ... those a c t i o n s , . . .  performed by M , which he canno t he

said to have caused to happen . . .  I shall desi gnate as bas f c  ac t. fons . ” (IJanto ,

1965) Unfortunatel y, these ph ilosophers are m iii ii too reluctant to imag ine

that the mind behaves like a d e v i c e  w i t h  a real st r uc t ure : a ll of their

d e f i n i t i o n s  are in ter ms of phenomerrolog i c al rather than technol og i c a l

categories. For ex;im f Ie , Go l dman (1970) g ives t t e  follow i ng Pxi’ le~~Is of f t p

not i on of “ t i~~ i c at t i on ” A b a s i c  a i s an u t A ‘j l J r  h that “ if S ii n t  nil t o

exemplif y A (at t) , he ~i’ j l u i e x emplif y A (at tI. ’ H~ then must spend no



I Intro d uc tion 39

l i t t l e  effor t explainin g away par al ytic s . I think that in the lonu i run

philosophers exposed to Al ideas are most likely to arrive at j sef j l concepts

in this fi eld by exp laining “want ” and “ act ” in te r ms o f  hypothesized interna l

constructs.

1.0.2 Electronics and Desi gn

The usua l prob l em domain for a researcher with my pretensions is some

clas3 of puzzles (Ernst and Newell , 1969) or ‘narrative understanding. ”

(McDermott , 1974a , Charniak , 1972). I have chosen elementary electronic

circuit desi gn instead , for these reasons:

(1) It is not as broad and 3loppy a domain as “ story understandin ’l. ’ One
can reach “critical mass” with a data base much faster . There are cleac’~,
cri t e r i a  for success. Electronics i nvo l ves , I hope, as few mental compi~tences
as poss ib le  in an in te res t i ng  domain.

(2) On the other hand , there is room for a variet y of kinds of know l edge.
The domain canno t be , and doesn ’t have to be , represented full y by a state
space and a set of cperators. Puzzles are both too easy and too hard at once;
they are probab l y a mislead i ng examp le of problem s that succumb to human
think i ng.

(3) The subject matter is already formalized to some degree , so that I can
focus on f o r m a l i z i n g  the contro l  know l edge that is necessary.

(4) Electronics is simp l er than other eng i neer i ng domains in that i t
requires less knowledge of space , time , and mot ion. Expertise in the~ n areas
presumab l y draws on i nnate ab i l i t i e s  we have dif f i c u l t y  br i ng ing to l i g ht.

(5) My research has had the benefit of be i ng par t of an ongoing M I T  Al
l aboratory projec t in au t omating electronics reason i ng. Concepts used by
Suesman and Stal lman (1975), Stal lean and Sussman (1976 ), and A. Brown (1975),
have been taken over , sometimes with some modification , into OESI’s knou~edge
base. (This is especiall y true of the parts concerned with signal description
and electronic anal ysis,)

(6) My wretchedness as an electrical eng ineer should make it easy to
construc t a program as good as i t s  creato r .

The main drawbacks to electronics are

(1) It is somewhat inaccessib le to the average Al researcher or

- ~~~~~~~~~~~ — - ,~. _________



I Introduction 40

psycho l ogist. People lose interest in documents regarding something they know
l i t t l e  about. (Who knows uhat OENORAL (Buchanan et. el ., 1369) reall y (SOPS?)
1 have tried to keep large sections of this text i ndependent of electroni cs.
Onl y Chapter IV and Appendix 3 rel y on i t.

(2) Electronic , t’ nouledqe as presented in introduc t ory texts leans on
spatial representations to some degree , even if not as much as other branches
of eng ineer i ng. Frequency-domain man i pulations and pole -ze ro p lots are
examples of this. I have tried to preserve the structure of thi o knowled ge in
formal expressions (see Chapter lv) , but I am aware that humans proba bly use
more “wired—in ” modes o f spatial reasoning, whatever that may turn out to
mean . I doubt that one could choose a better domain than electronics for
avo iding this prob l em , however.

My knowledge of electronics is mainl y der i ved from books. (Senturia and

Wedlock , 1975, Ha y t and Neudeck , 1976 , Watson, 15370) This is reflected in the

fac t that the problems DESI hag been exposed to are “prob l em set” problems ,

not the sor t that a technician would encounter in dail y practice.

There is a large literatur e on the theory of desi gn, a r t i f i c i a l

i n t e l l i gen~ce and desi gn, and ‘ computer-aiaed desi gn .” So far , however , the

intersection of these fields is almost emp t y. Book s about the desi gn process

(Alexander , 1964 , A s i m ow , 1962, Buh I , 1962, Glegg , 1973) consist mainl y of

adv ice for avoidin g over l ook i ng thing s in ponder i ng problems and workin g out

solutions. Abou t proposing solutions to star t w ith , mo st of these author s say

th nge l i ke  th is :

“What enables us to draw from the warehouse of our exper i ence just the
ri gh t set of e l e m e n ts , and to put them into just the ri ght combination so
that they have a sense of fitti n g  the situation , we do not know , since no
de finite solution exists. ” (Asimow , 1962 , p. 45.)

This author is certainl y correct that we do not know; programs like UESI are

onl y ti ny steps toward a theory of creativity , Of course, as a working

hypothesis , we take issue with the claim that no solution exists.

Oes i gn has attracted a r t i f i c i a l - i n t e l l i gence researchers , particu la r l y at

Carneg ie-Mellon University, for some time. Broad l y speak i ng, areas like

automatic programm i ng, m u , indeed , al l  prob l em solving, fal I under the 

- 
- - — —--- — --—~~-



I Introduction 41

head i ng of “des i gn.” However , t he theory o f des i gn narrow l y construed has

been explored by workers like Grason (1970), who studied resolution of

constraints on floor plans; Eastman (15368), who did a forma l pycho l og ic a l

study of performance on the task of redesi gn i ng a bathroom; Haney (1968), who

stud ied the automatic desi gn of compute r Instruction sets; and Latombe (1976 ),

whose rule-based desi gn sy stem is an interesting alternative to mine. I have

found espec i a l l y useful the theory paper by Freeman and Newell (1969) on a

general theory of design , from wh i ch 1 have borrowed heavil y. (See Chapter

III. )

One mi ght expec t the field of “computer-aided desi gn” (CAD) (Vlietstra and

Wie l i nga , 1973 , Kuo and Magnuson , 1969, Furman , 1970 , Rosenbrock , 1974 ) t o

have produced many exper t programs for a general Al program to compete with.

This is not yet the case; “CAD” usuall y has li t t l e  to do with the automation

of the actua l desi gn process , but concerns itself u t h  graphics packages .

ana l ysis programs , and other interactive aids to it, For example, one author

d i s t i n g u i shes “ three modes of (computer ) operation:

(i) A n a l y s f s .  An eng ineer i ng situation is specified in f u l l
mathematical detail by the desi gner , and the computer draws certa n
further mathematical consequences....

(ii) Synthesfs. The desi gner specifies in detail the properties which
his system must have , to the point where there is onl y one possi b le
solution. The computer finds this solution. An example is optimal
control .

( i i i )  DesSgn, This is the creative act of a desi gne r , gu i ded by
cal cu lati o r.~ on the computer and interacting with them in a sequential
manner to produce a satisfactor y solution. ” (Rosenbrock , 1974, p. 29)

The electr inics synthesis tasks to which computers have been put inc l ude very

low-level operations such as printed-circuit l ayout (e.g.. Fletcher , 1974 ) and

filter design (e.g., Chohan and Fidler , 1974). The approaches taken by most

people in thi s f ield are usuall y very “mathematical ,” and concentt ate on

techn ique. for d iscre te  or continuous o p t i m i z a t i o n .  For example , one approach

______________ ______________



I Introductio n 42

to c ir c u i t  des i gn in the literatur e (Director , 1974) consists of putting in as

many components as one deems plausible and letting the program find the

optimal component values for the task given. Many of these components w i l l

assume null values and “van i sh” ; thus this approach starts w ith a bi g circuit

and finds the subset that does the job ’

CAD i s onl y beg inning to become aware of non-numerical techn i ques. (But

see Powers , 1973.) DESI relies almost entirel y on non-numerical techn i ques,

and is very poor at constraint resolution and component-value opti ifl i7atiO rl. A

practica l system would have to combine the two approaches.

It is i mpossi ble to survey this field in detail here. It inc l udes its own

journa l , Co,mvputer Aided Design , and supports per i odic conference,.

I 

- — - a



II Expressing Knowledge in NASL 43

II Express ing ~now1edge In P4AS [

The hear t of DESI is the NASL interpreter , and the SIP theorem prover

wh i ch it dr i ves. The theorem prover gives the system a general and fl e x i b l e

notation; the interpreter i mposes an i nnate interpretation on some of ‘he

expressions of this notation. In thi g Chapter , I u i l l  g ive a discursive

introduction and overview of the interpreter , describing STP and other

Inferential protocols as they come up. (See Fi g. 1.9.)

The NASL interpreter is a prob lem solver of the “prob lem reduct ion ” t ype.

(Nileson , 1971) That is , i t  so lves  prob lems by reduc i ng them to simp ler

subprob l ems. The differences between this structure and a programm i ng

language are: that a prob l em sol ver must dec i de upon the order in which to

attack subprob l ems; that a problem solver often has subprob l ems of the form

“reduce prob lem so-and-so ,” where a programm ing language has onl y the

subroutine c a l l ;  and that a prob lem so l ver must occas ional l y choose between

a l t e rna t i ve  approaches.

The designer of a problem so l ver must confron t the prob lem of search. For

prob lem—reduct ion prob lem so l vers , th is  c l a s s i c a l l y takes the form of a search

through an AND/OR graph of possible approaches. (Nilsson , 1971 , Fahlman , 1973,

McDermott , 1974a) Whether the search strategy is depth-first or more clever ,

it depends upon be i ng able to save and restore states of the prob l em solution

and hence of t he “world model” ; this has recentl y tended to be implemented

u s i n g  a “conte x t ” mechanism. (Sussman and McDermott . 1972)

I believe tha t searching w i l l  always be a par t of A r t i f i c i a l  I n t e l l i gence

techn i que. However , it seems to me that search among alternative sequences of

eubprob l ems and world models is a mistake. My princ i pa l re ason for th i s

belief is the observation tha t in the norma l course of human prob l em solving,

— l_.~ -~~~~--— - -,.- 
- - - ____- - 

-
-- ~~~~~~~ 

_ i  -v



II Expressing Knowledge in NASL 44

a rather different facu l ty is used more heavil y, name ly, the ab i l i t y  to

correct one’s errors. The difference between these alternatives is this: if a

“etate of the world ” is though t of as an internal data structure , comp l e t e l y

known and under control , it is just as easy or easier to return to an earlier

state to try somet hing else as it is to generate a new one. But if states of

the wor l d are reall y states of the whole world , about wh i ch one’s info rmation

i s  l i m i t e d  and h i s  con t rol s l i ght, quite the opposite is the case.

So the quest ion , for electronic circuit desi gn, is whether the unfolding

circuit mode l is to be thought of as an intern al data structure or as a

diagram on a p iece of paper . A l i t t l e  reflection on this choice has drawn me

to the second alternative. Since useful plans wi l l  ultimatel y have to be

applied to the rea l world , whose surpr i ses wi l l  always cause mistakes and

revision , the prob l em of correcting errors rather than “popp i ng them off the

context tree” wi l l  have to be faced eventuall y. There is no point in

perfecting a plan down to the last detail if circumstances wi l l  wreck it.

This is probab l y why people worry so litt l e  about producing optima l plans.

If search isn ’t through states of the world mode l , but it i8 necessary,

what is it that is searched? I t h i n k  i t  ~, knowledge about courses of action.

People can correct states of the world created by the wrong p lan , but they

don’t nor mall y do thu as a way of stumbling on the ri ght plan. Instead , they

use know l edge like

“Under circumstances ..., plan ... will work.”
“If ..,, don’t do .... “

Consider the difference between human and machine play i ng of chess. I

w i l l  assume the reader is familiar with the usua l program organ i zation around

the i dea of m inimax tree search. (Slag le , 1971) A human, by contrast , learns

to play. His initial plan is simply to make a legal move, wait for h ig

~

-- - - a



II Expressing Knowledge in NASL 45

opponent’s rep l y, and repeat this until the opponent wins. As time goes by .

and he sees and hear s mor e and more about the game. where does he put what he

learns? According to the theory I am presenting, it becomes par t of the

advice surround i ng the “make a move ” step. This advice is usuall y in terms of

board patterns , phases of the game . etc. Eventuall y, more sophisticated

advice in terms of anticipating possible opponent replies is assimilated , If

the deductive system for man i pulatin g this advice is adequate , simple tree

searches wi l l  appear as a trace of i t s  manipulations , But this w i l l  never be

assimilated to the overall planning level. The plann i ng level does not become

nondeterm in is tic, Instead , what beg in to appear there as the player becomes

more confiden t of his powers are “game plans ,” long-term st rateg ies which

influe nce hi g choice of moves.

This sor t of search through know l edge about alternative courses of action

is worth spend i ng a lot of effor t on. It has three loc i in the NASL system.

The pr i nc i pa l one is the theorem prover SIP. (Sect. 11.8.2) Thi s ig

supp l emented by “cho ice Information .” (Sect. II.C .1) If a l l  else fails , the

system calls it8e l f recursivel y to “rephrase” an action. (Sect. II.C .2) I

have worked hard to make these devices sophisticated. 1 have g iven tess

thought to the prob l em of undo i ng mistakes (Sect II.E) , and none to the

question of l earning search knowledge.

Because deductions about courses of action are so central to the theory,

NASI.. must be a l anguage for describing prob l ems , plans , and physics. The

categories it uses for descriptions , and the inference al gor i thm it can call

upon to man i pulate them , determine its abilities and limitations. The

limitations are in some ways as i mportan t as the abilities. The fewer ways

there are to express somethin g, the more likel y it is that the formu l as

related to it w i l l  be noticed dur i ng rule application , and the more fle x ibl e

_________ __________ a



II Expressing Knowledge in NASL 46

and extensible the system w i l l  be. Conversel y, to the degree that each user

is forced to make up hi s own control convention s , the less likel y i t  w i l l  be

tha t information from one user w i l l  ever affec t the system ’s approach to

problems posed by another.

NASL is not a typical programm i ng l anguage, s i nce the user can intermix

fragments of plans and axioms governing the physics of prob lem domains with

f u l l y developed programs. On the other hand , it bear s a stronger famil y

resemblance to programm i ng l anguages than to anything else , so I have inc l uded

a “programmer ’s gu i de” at the end of this chapter for those interested in

programm i ng in NASL.

II .A The Natural History of Actions

The fundamental concept imp l emented by the NASL interpreter is the concept

of task. A task is an activity to wh i ch the interpreter is committed. The

basic drive of the interpreter is to accomplish all the pend i ng tasks.

Examples of task s from several domains are,

“Put Block A on Block B.”
“Wait here for five minutes, ”
“Put the male chicks in this box , the females in that one.”
“Win the war , and keep the peasants happy. ”
“Think of a fal l i b l e  Ir i shman.
“Keep your prom i ses,”
“Conv i nce yourself that all equilateral triang les are isosceles, ”

In electronic desi gn, tasks range from wiring two objects together , to

desi gn i ng a h i -fi system , to f ind i ng a resistance that satisfies a constraint.

The reason for the broad definition is my goa l tha t as much as possible of

what the interpreter is  do i ng should be explicit , so tha t reason i ng abou t it

can be shallow. For the same reason, it w i l l  be i mpor t an t that control

information be expressed in a notation compatible with everything else. So I

— - - - - -~~~~~~~ a



II Express ing Know l edge i n NASL 47

represent tasks as NASL formulas of the form

- (/ : TAS K I name l < -input pvars- >
(A ( -vars- ) laction i
< -outpu t pvars— >1

Unfortunatel y, 1 must pause here to descr i be the notation , both object and

meta. NASL formulas are always enclosed by (brackets ) . When I am describing

a formula , I enclose syntactic var i ables in brackets like this: “I ... I” or

l ike thi s~ 
“- ... - “

. The second kind indicates that a sequence of syntactic

constructs is wanted. So, for example , an instance of a task mi ght be of the

f orm

(I: TASK (COUPLER PLAN#71) <‘(BUFFER#72) ‘(AMP#73)>
(A (STAGE1 STACE2) (COUPLE ?STAGE2 ?STAGEI)
< ‘ (CKT#74)>)

This descr i bes a task , named (COUPLER PLAN#71), which requi -es tak i ng the two

ci rcuits 1(AIIP#73)) and ((BIJFFER#72)) and COUPL i ng them to make something

which w i l l  be called ((CKTN74)1. (Notice that the NASL notation permits

tuples of objects delimited by <ang le brackets> , and A-expression s to express

func t ions and predicates.) /:TASK is a predicate of four arguments. It

beg ins with the prefix ‘I:” which indicates that it is a bui l t - i n  predicate

used by the interpreter in some way. A complete catalogue of built-in

predicates and functions appear s in App endix 1.

The word “pvars,” for “plan var i ables .” refers to terms , such as

((BUFFERN72)J and ((CKIU74)I , wh i ch are set equal to calculated quantities in

the course of executing tasks. They acquire values by appear i ng in “rewrite

ru l e s ” of the form

(—I> ‘Iter m i Iva lue l J

(Cf. (Bledsoe and Tyson. 1975), where they are called “reduction rules. ”) I n

my example, if (—I> ‘(BUFFER#72) OEVN7SJ and (.1> ‘(AMP~73) OEV~761 appear in

the data base before execution of the task (COUPLER PIAN#71), OEV#76 and

_________ ______ a



Ii Expressing Knowledge in NASL 48

OEV#75 mi ght be coupled to produce ~J~Vfl7 7~ then the interpreter would add (-I>

(CKT#74) OEV#771 to the data base. (For an exp l anation of the sing le quotes ,

see Appendix 1 or Sect. 11.8.2.) In defining actions like COUPLE, I w i l l

ind icate their outputs with the symbo l ~~~~~~ thus:

(COUPLE Ickt ii Jckt 2$) — — >  <Inew ckt l >

to show wha t new value formulas they leave in the data base.

Anyone fam il i a r  with the Al l anguages (Bobrow and Raphae l . 1974 , Hewitt ,

1972) w i l l  recognize the concept of “present in the data base. ” I n NASL .

there is always a current “data pool” for formulas to reside in. Formulas

found there are supposed to be true; those absent have unknown truth values.

(See Sect. 11.8. The phrase “data pool” is mea n t to supersede the mislead i ng

word “con tex t . ” (McDermott and Sussman , 1973 , Ru~ ifson et. a?., 1972))

This not ion of task already embodies a comple xit y not found in the action

la nguages of Sacerdoti (1975) and other s (Sussman , 1975), name l y, that tasks

w i ll not be fu l l y specified until their i nput pvars are known , and that tasks

can compute values to be used by subsequent action,. It w i l l  be seen that

this broadens the scope of the action system considerab l y, whi l e  mak i ng future

act ions harder to ana l yze. It seems essential for automating desi gn.

With just this much machinery, plus a simple forward deduction scheme , we

have a notation similar to that of a production system (Ne..iell , 1973a ,

Rychener , 1976). For examp le , we mi ght have a deductive rule that says

((0EV-TYPE ?A COfIt1ON-E?IITTER)

~ 
]8( I :TAS K ?B <> (A () (BIAS ?A)) <> )J,

mean i ng, “Every common-emitter amplifier must be biased. ” (I have introduced

standard log ical notation for implication and quantifiers. (Suppes , 15157)

Var i ables are prefixed by “?“
; free var i ables ace supposed to he universall y

quantified. The interna l notation for implication w i l l  be exp lained below. )



II Expressing Knowledge in NASL 49

T hi s rule is analogous to a production in hav i ng a condition on the l e ft and

an action on the ri ght , but it differs in certain crucial ways.

Fi r,t , we are not l i m i t e d  to condition-action pairs. The more hasir case

is “conditi on-condition. ” This enables us to treat deductive information

retrieval as a process distingu i shable from p lan execution. It can be

opt imized separatel y, using techn i ques spec ific to the kind of search tha t

ar i ses dur i ng deduction. (Moore , 1975 , Fah l man , 1975b) More impor t an t , since

the system knows when it is doing deduction , and when action , it can keep more

revealin g records for use in choosing courses of action , explaining what it

did , and recovery from errors. (In the future, such records could be used for

careful assimilation of new , possibl y unreliable , inform ation. Cf . (Davis ,

1976, McDermott , I’974a). By contrast , since the mean i ng of a condit ion-act ion

pa ir depends entirel y on the mean i ngs (some deductive , some not ) g iven to

symbols by the behavior of the rest of the system as a whole , it is i mp os .ib le

to say whet her a new rule of th ig kind is “correct without extra commentary.)

Second , deducing /:TASKS before executing them g ives an r’xtra l aynr of

“carefulness ” to the system. (Cf. (Sussman , 1975), where the term “careful

mode ” is in troduced.) A task is always noted in the current data pool be f o r e

bei ng executed. Here it can tri gger other tasks or be available for other

deduc t ions. Furthermore , the system can note a task some time in advance of

when it actuall y dec i des to do it. For examp le , a tas k can appear before its

pvars’ va l ues are known. More generall y, a formula of the form

t/ :SUCCESSOR )task name II tack name 2$)

must mean that task 2 is to be postponed until task 1 has been “begun ” (in a

sense explained be l ow), In this way, a network of tasks linked by /:SUCCESSOR

relations and var i able flows is created (which the interpreter w i l l  munch

“ from l e f t  to r i ght” ; Cf .  Fi g. 11. 1 ) .

_ _ _ _ _  _ _ _ _ _  - .  - _ _ _  - a____________ • ~~~— E 1  ______— ~~ —~~~~~~~ — -~



II Exp ressin g Knowled ge in NASL 50

*acquire speaker 0
0

connect them

verify that the

*acquire amp° 

~~~~ 

assembly works

bias it
-

*enabled tasks

Fi gure 11. 1 A Iask Net , or “P lan ”

F i n a l l y, a typ ical production-s ystem action is always a p r i m i t i v e th at can

be carried out i mmediatel y, while some NASL tasks require must be broken down

into gubtasks in order to be executed . This requirement is what makes NASL a

prob l em gohe r. In other words, a task can be as much a par t of the prob lem

as of the solution; it looks like par t of the solution to its super i or s, and

part of the problem to its subtasks.

• Thus , a task (or action) is either pr imit ive or prob lematic. An action

may be pri m i t i v e in two ways. It can have a LISP program for carry ing it out ,

or it can have a set of mode l manipulat ion statements that hold true of it.

These statements are the same as STRIPS ’s add- and delete-l i sts. (likes and

,N ilsson , 1971) They are sufficient to represent comp l e t e l y onl y the simp l est

of action ,, but they make these actions easy to reason ahout . (Cf. Sacerdoti .

1975) .

A problemat ic task must be “reduced’ to one or more subtasks, This

relation between tasks is expressed by formulas of the follow i ng sort:

(/:SUBTASK $ subtask name$ $ supertask name l]

A task can be the subtask of more than one super task.

II Express ing Knowled ge in NAr L 51

Task reduction can occur in more than one way. The deduct ive system can

infe r a complete set of subtask, of a task in the course of forwar d d~~r lii r t ion.

However , this f a i l s to g ive enough direction or power to the p ro blem- r r~ lic t ion

process. As described in Section 11 .8 , the interpreter must have the concept

of one action being a way of carry ing out another , expreesed like this:

1/:TO-DO Itas k name l laction i < -output pvars- > Im e tho d $1 .

This is intended to mean that the method is an effective , fea s ible , and

permitted way of accompli shing the task consisting of the action. Such

statements can he used in the creation of subtacks.

The “met hod ” to which a task is reduced may consist of a sing le action , or

it may be a “macro action ” wh i ch stands for an entire suhnet of new tasks.

This requires the notion of a plan schema , an abstrac t ob jec t . instances of

-~hich may be thoug ht of as hang ing as l i t t l e subnet, off nodes in the task

network. (Fi g. 11 .2) The man i pulation of instances of these schemata is

descr i bed in Sect. II.B .1.2.1.

II Ex pressing Know l edge in NASL 52

0 •0
Subnets

~~~~~~~~~~~~

Figure 11 .2 Task Network with Subnets

Thus tasks may be c l a s s i f i e d  according to whether their ac t ions  are

p r i m i t i v e  or prob l ematic. These classifications form one of the taxonomies

shown in Fi g. 11.3.

____________________________________________ _ _ _ _ _  _ _ _ _  a



II Expressing Knowledge in NASL 53

Problemat ic lty

- Primitive
Mode l man i pulato r
Macro
Prim i t i v e  policy

Prob l ematic

Monast ici sm

I r ;ferentia l
Worldl y

Pa ras i t ism

Pr i mary
Secondary

Fi gure 11.3 Log ical Taxonomies of Tasks

The other two taxonomic classifications are independent of this one. One

cl a s s i f i e s  tasks according to “monas t i c i sm . ” Every task is either

inferential , in which case it consists of inferrin g formulas from other

formulas supposed to be true; or “wor ldly, ” when it or some of its suhtasks

perform mode l man i pulation s. This classification is expressed by means of the

pr.dica e I: I NFERENTIAL .

The last taxonomy is the i mportant classification by “parasitism . ” A task

is either pr imary, meanin g tha t it has steps to be pursued in order ; or

secondary, mean ing that its “execution ” amounts to influenc i ng or monitor i ng

the execution of pr i mary tasks. Ongo ing secondary tasks are somewhat

grandiosel y called “policies. ” How they are hand l ed is descr i bed in Sect.

11.8. Some representative classes of policies , expressed in Eng lish , are

“Wait un til ...  is true. ”
“Notice if formula .., is removed.”
‘Tak. into account desired feature ... of the device you are

design i ng.”
“Constrain quantities ... to satisf y ...“



II Expressing Knowledge in NASL 54

Polic ies , l i k e  pr i mary ta sks, may be primitiv e or prob l ematic , worldl y or

inferential.

A policy may have a scope, wh ich is the pr i mary task whose execution (or

whose subtasks’ execution ) it is intended to influence. As you m i ght expect ,

this is indicated thus:

(/:SCOPE I secondary task name l $pr i mary task name$)

Policie s do not outlive th eir scopes. In draw i ng task networks , I w i l l  put a

l i t t l e  cloud around a task to indi cate that it is the scope of one or more

policies; the policies w i l l  be tied to these cljuds with a line. (Cf. Fi gs.

11 1.7 and 111 .8.)

There is no mystery to the noti on of policy. Al ? computer programs embody

policies; the particu l ar data-base and interrupt mechan i sms I use to implement

them are commonp l ace in A l applicati on s . The novelty is that the notion has

been made explicit , and , in a modest sense, put ~to the logical ca’culus .

This prevents two prob l ems with the usua l use of the imp l ementation

mechan i sms, First , typ i ca l Al-language “demons’ (Charni ak, 1972) fire of f in

the middle of primitive data-base operations and get complete control of

operations. Withou t conventions , it is difficult for other processes to know

what the Intentions of these litt l e  monster s are.

Second , policies are to be used to express things like “loop invar i ants ”

and “program assertions ” (Floyd , 1967), wh i ch are usuall y extraneous to actua l

program text and onl y indirectl y related to individua l program steps. But a

prob l em solver has need of the notion of a “partiall y-reduced” prob l em , some

of whose subtaske have not been full y reduced to primitives. This is

d i f f i c u l t  to capture withou t the concep t of a policy. For examp le , consider a

program to coun t the pr i me numbers in a table. The tex t of the program

contains instructions to ini t i a l i z e  a counting var i able and inc— ement it just

__________________________________________________________ _ _ _ _ _ _ _ _ _ _ _  -S



(I Expressing Know l edge in I’4ASL 56

after a pr i me number has been discovered. The purpose of this var i able may be

expressed by an invar i an t of the form “x is the number of pr i mes in the par t

of the table alread y l ooked at. ” What I am try ing to captur e is the notion of

an ear l y, unfinished version of the program , in wh i ch the pieces of text do

not yet exist , and the invar i ant is all there is.

A plan is . in a sense , this kind of unfinished program , with the

difference that it gets executed without ever getting completel y written.

Comments on a plan are not there to explain an existing text or to help prove

that it works; they are there to explain an ongoing course of action , and they

must be executable, Their in dividual steps may i ndeed i nvolve in i t i a l i z i n g

and incrementing counters; these wi l l  become subtasks of the policy.

I w i l l  conc l ude this section by listing some l imitations of this plan

calculus. These fall into two categories: bad limitations and good

limitations.

The bad limitations are those due to the fac t that I knew the plan

l anguage was go i ng to be used for desi gn i ng and I didn ’t have the time to

imp l emen t unnecessary features. So I didn ’t put in features such as other

agents ’ plans , or notions like “prerequisite of an action. ” These and other

i nadequacies are descr i bed at sli ghtly greater l ength in Chapter V I.

The good limit ations are those arising from these goals:

(1) Deductions abou t plans ought to be simple and shallow.
(2) New knowledge must be expressed in a notation compatible with old.

By deductions about plans , I mean deductions abou t curren t plans, not “proofs

of plan properties. ” (Cf. Sect. VI.C ) It ought to he easy to deduce what you

are do i ng. Otherwise , the e iecutions of subp lans canno t interac t , and the

notion of policy wi l l  be meaning less. The second requirement ig related to

our desire for flexibility. New know l edge is worthless unless it is expressed 

- -- •,  _ _ _ _ _ _ _ _ _ _  a



II Expressing Know ledge in NAS~ 56

in a f a m i l i a r  language. There should be just one obv ious way to express any

given piece of control informat ion . (Keep this in mind as I expand on the set

of contro l concepts in the f o l l o w ing sec t ions . )

An example of a good l i m i t a t i o n  is tha t no loops and conditionals are

allowed in the l anguage. That is , all iteration and testing is done in the

deducer. There are no gotos in the system. There are instead much hi gher -

le vel concepts l ik e “choosing. ” It remains to be seen whether 1 have been

successfu l in i nventing transparent but powerful control ideas. (I should

mention that recursion is not forbidden in the system; a p la n-schema instance

can have subtasks derived from an instance of the same schema. It probab l y

should be forbidden , i n this general form; I use it spar i ng l y.)

II .B Inte rpretation and Inference

One thing to do with the predicates I introduced in the last section ig to

put them in ax i oms and prove things with them. For example , many of the

e lec t ron ics and des i gn facts in Appendices 2 and 3 have conclusions of the

for m (/ :TASK . . . I , meaning, “I should be do ing .... “ Clear l y, a system which

just proved things of this sor t without act ing on them would be a perfect

cataton ic. Its deductions would occur in a void. Their f u l l  mean ing dependg

on there be i ng an “act ion system ” which i nterprets the result of such

deductions as commands to act. I w i l l  call formulas , like this which directl y

Influe nce action pragmatic formulas; the characteristic functions of these

formulae are pragmatic functions or , more specificall y. pragmatic predicates.

I have already observed the convention that the names of such functions and

predicates always star t with ~I:~ to emphasize tha t the ir meanings depend

mostly on the action system. In this section I w i l l  introduce more of them.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  _ _ _ _ _  -4



II Expressing Knowledge in NASL 57

(A complete catalo g appears in Append ix 1.) Al l  pr edicates not dir ~ r t l y

in fluenc i ng action mean , in some sense, onl y what the ax i oms they appear in

say they mean.

In th is  sec t i on  1 descr ibe the operat ion of the interpreter and the

theorem prover i t  uses , c a l l e d  SIP.

11 .8.1 The NASL Interpreter

The outer l oop of the interpreter is to

Pick a task to work on;
I f  i t  is primitive,

Execute i t  or elaborate i t ;
Otherwise , f ind a way to work on i t  (“ reduce” i t) ;

Repeat until there are no more tasks

The fi rst step of the interpreter cycle , “pick i ng a task ,” is done by a

system of forward deduction of /:SUCCESSOR relations. The axioms that suppor t

these deductions are the user ’s responsibility. The system chooses at random

from the tasks that i t  is log icall y permitted to do next.

Much of the work is in the second arm of the cond i t iona l ,  The ex i s tence

of th is  step is  what makes NASL a prob lem-reduction prob lem solver ins tead of

a programm i ng- l anguage interpreter. Reduc i ng a task involves a call to the

theorem prover STP and some more powerful mechan i sms. (Sect. Il .C)

11.8.1.1 Se lect ing a Task to Work On

The NASL interpreter interleaves plann i ng and execution of plan,. (Cf .

(Ni lseon , 1973).) Differen t tasks are in different s t a t e s , which change as

t ime  passes. The current s t a t e  of a task is composed of i t s  t a sk - s t a tus , its

enablement status, and, for problematic tasks, whether it is reduced. (Fig.

‘~~-.——-—-- - - -= - - - 
- - - - ——--— —- __________ -



II Expressing Know l edge in NASL 58

11,4 ) When a task is created , its state is PENDI NG and BLOCKED. When a

P~NOINC task is ready to be executed , it becomes ENABLED. While it is be i ng

worked on, it is ACTIVE . When the interpreter ig through with it , it is

FINISHED. The status of a task is expressed in a formula of the form

(—I> ‘ (/:TASK-STATIJS Itask namel ) Istatus l i

where s tatus is one of the three states 1 gave.

PENDING I ACTIVE FINISHED

BLOCKEDIENABLEDISUBS-ENABLED 1 SUCCS-ENABLED

un-REDUCED 
- I REDUCED 1

‘t ime

Fi gure 11 .4 Life History of a Task

Meanwhile, as a task evo lves , i t s  enab l ement s ta tus  changes to “ga te ” i t s

subtaske and successor tasks. Recall from Sect. l I .A that the order of

execution of tasks is constrained by /:SUCCESSOR relations. In add ition .

subtasks of a task may be deduced before the task itself becomes active; the

eubtacks must be postponed. So there are three facts tha t must he true before

a task can be enab l ed: all its super-tasks must be ACTIVE ; al l  o f i t s  input

pvar s must be known; and all  of its predecessor s must have enablem ent status

“successor s enabled. ” (Fi g. 11 .4 ) When a task is FINISHED. it c successor s

are a l w ays enab led , but the sy stem must be f l e x i b l e  enough to allow execution

o f successo r s to beg in before this. For this re,1~~nn , I ,ntredi j e the

i ndependent concep t of enab l emen t status ,

(—I> ‘ (/:ENAB—STATUS I task name l) Istatu ,I )

where statue is BLOCKED, ENABLED , SUBS-ENABLED , or ¶1?ICS— [NA BtIO . 1Pr ’eø flags



II Expressing Know l edge in NASL 59

are synchronized with the ordinary task-status as shown in Fi g. 11 .4. A~ a

task- becomes active , t he sy s tem checks i t~ suh tas k s , and enables al l  those

with no other impediment s; similar l y, when the task enters SUCCS-ENABLED mode ,

the system checks its successors. (it should be clear that if a task has two

predecessor s or super-tasks or some comb ina t i on , all must be in the proper

state.)

A useful service prov i ded by the system is that as soon as all the i nput

pvars of a task are known , whether or not there are other gal ing cond itions

remaining unsatisfied , a formula of the form

L/:TASK-ACT ION Itask name l l action l i

is recorded in the data base.

F i gure 11.4 also shout the transition of a prob l ematic task from be i ng

“unreduced” to be i ng “reduced. ” When a task has been completely rep l aced by

subtasks , the proposi t ion

1/ :REDIJCEO Itask names)

is supposed to hold true of it. The system w i l l  not bother to reduce a task

if such a formula has already been deduced; thi g enables task networks to be

built up entirel y by forward deduction.

11.6. 1.2 Executing Tasks

When a task has been selected, it must be executed. If its action is of

the form (It I ...I, I cal f its action function. The system can tel l  by

l ook ing in the data base or on the proper ty list of f whether the task is

primitive or prob l ematic. If it is problematic , it must be reduced.

_ _ _ _ _  - -  

a



II Exp ressing Knowledge in NASL 60

II.B.1.2.1 Primitive and Prob l ematic Tasks

An action can be pri m i t i v e  in one of two ways: its action function can

have a definin g LISP function on its property l i g t , or it can be defi ned by

mode l -man i pulation axioms. The latter are l ooked for first.

The inte rpreter c alls SIP to deduce formulas of the form

(/:MOO-IIANIP task name l ta ction i ?DELETELIST ?ADOLIST),

where the var i ables ?OELETEL (ST and ?AOOLIST are intended to become hound to

tuples of “ senses ,” or quoted facts. (See Appendix 1.) For ex amp l e , we mi ght

have

((ON ?X ?B) D
(/:MOO-MANIP ?TASK (MOVE ?X ?A) < ‘ (ON ?X ?Bl> < ‘ (ON ?X ?A) ‘ii

i n the BLOCKS world. The meanin gs of the add l i st and delete l ist are the

t raditional ones. (Fikes and Nil e son , 1971) The mode l (data pool ) is to be

updated in the obvious way: the formulas represented by the elements of the

delete l ist are deleted , and those represented by the addlist are added. These

man i pulations are called mode l effects.

I f the p r i m i t i v e  has a defining LISP function on its proper t y l i st , t ha t

func t ion w i l l  just be executed. It can do something, return a value ,

establish a policy, or annex a subnet, An example of the first kind is the

actio n IGRARBA fpr operty fl in the des i gn wo r ld , which creates an object with

the property. Valu es are returned by deductive a c t i o n s  like /:FINO , which

call STP to r e t r i e v e  data.

The most important kind of primitiv e is the ‘macro , ” wh ich annexes a

subnet. The typ ical member ~f this class is

(/:DO-SUBNET Ip lan schema~ Ivar s-map il.

which is used to i nstanti a te plan schemata and hang them of f the net.



II Expressing Knowledg e in tWI 61

In the current implementation of NASL , plan schemata are not relliresented

as i dentifiable objects. Instead , they are defined i m p l i c i t l y through

statements of the form

((/:PLAN-INSTANCE ?NAIIE Ip l an schemal ?SUPER-TASK )
D (AND (/:IASK I suhtask 1~ . . . )

(/:TASK I subtask 21

(/;SUBTASK I subtask L I ?SUPER-TASK )
(/:SUCCESSOR I subtask i i I subtask 21)
-other connectivity relations- )]

by which nets of subtasks are created and linked together . Executing /:00-

SUBNET creates a new plan instance and records

(/:PLAN-INSIANCE Iplan instance name s Ipl an schemal I super task i ).

This w i l l  tri gger the forward deduction of suhtask s in the schema.

These subtasks w i l l  compute and use the values of plan var i ables

(“pvar s”) , some of wh i ch the super-task network needs; the vars-map argument

of /:DO_SUBNE T t e l l s  how to map the schema ’s var i able back to the cal l i n g

plan. To make this work , all the pvars used by the tasks in the schema must

be of the form I (tvar name l Ip lan instance namel)). (For an example of the

use o f /:DO-S(JBNEI, see the formulas +UESI-1 and +DESI-~ in Appendix 2.)

A macro-expanded task w i l l  be FINISHED when all its subtask, are. It w i l l

have enab l ement status SUCCS-ENABLEO when all o f its “ma i n ” su b ’asks are

FINISHED. This device is intended to capture the idea of a task reduc i ng to

two kinds of subproblem: things which must be done before going on to the

successors of the task , and things wh i ch can wait. An example is biasing one

stage of a complex c i r c u i t  (see Appendix 3); this w i l l  appear as a subtask of

acquir ing a circuit , but it should not be done when the circu it is first

obtained; instead , i t  may become a successor of , e.g. , coupling the c i r c u i t

to something else. Subtack s l abe l ed /:MAIN are those whose completion is ~i

necessary condition for enabling a supertask ’s successors. (See Fi g. 11.5.)

- 
a



Ii Expressing Knowledge in NASL 62

Acquire Stage 1

/:MAIN 0- — 0 Couple them
Bias it

Acquire St-’~e 2 ,‘
4—
. ,

o 

/

~~~~~~~~~ 
,
/‘ Successor

W ire iV — —-“- Implicit successor due
to task being labeled

/:MAIN 0 MAIN
Bias it
0

Fi gure 11.6 Enab l ement Relat ions in Subnets

This is one of the ways in wh i ch the subtask relation differs from the

usua l relation between a program step and its program.

Other macro actions are descr i bed in App endix 1.

This conc l udes my description of the execution of macros and other

pr imitives. A l l ot her tasks have ‘proble matic ” actions. In such a case , NASL

cal l , SIP with the request

(/:10-DO Itask name~ laction i < -output vars- ‘. ?UAY)

If SIP ‘ r ’ turn s exactl y one value for ?WAY . a new task for the new action ig

created , enab l ed , and Marie the /:MAIN subtask of the current task (which

II Expressing Knowledge in NASL 63

becomes /:REOUCEO). If SIP does not return exactl y one value , specia l things

must occur wh i ch are the topic of Sect. II.C.

11.B .1.2 .2 Primary and Secondary Tasks

Primary tasks are those which do something or infe r something. P r i m i t i v e

primary taskg are those defined by /:MO0-MANIP and inferential functions.

Secondary tasks (“pol icies ”) are those which influence the execution of

pr i mary tasks.

The pr inc i pa l pr im i t ive pol icy is

(/:IIONI TOR Iformul a l (~ (l v I) I ac t ion l fl ,

which does nothin g unless some task removes the formu la as a mode l e ffer t .

Then a new subtask w i l l be created with the g iven action , with V bound t o the

task that did the removal. This is used to imp lement protecti o n .

Pol icies may cause the ‘i ntermittent’ execution of p r im aru a ctions. A

task with action t/:CONIINUE ~pol icy task i I acti ~ n I I w i l l he executed in a

nonstandard way. It causes a deduction of the f o r m

1/:10-CONTINUE Ipo l icy task i a r t inn i ~~

and the resulting sub-action is attached to the ori g ina l policy t,i~ k n’~~1~’ of

the task network. (See the implementation of protection described in Chapter

III.) Thus a pa1 icy may occas ionall y cause execution of real actions in the

process of executing /:CONTINIJEs.

A prob l ematic task may also be pr i mary or secondary. This is not

determined when the task is reduced , but after its /:IIAIN suhtasks have been

set up. At that t ime , i f any of i t e subtasks are discovered to be secondary ,

and to have a scope la rger than it , it is dec l ared to be a policy.

The main d ifference between the execution of pr i mary and secondary tasks

____________________________________ - - a

II Expressing Knowledge in NASt~ 64

is in how they are finished. A secondary pr i m i t i v e w i l l not be fini shed u n t i l

the task which is its scope is finished ; then the interprete r executes

t/:FINISH Ipo l ic y l) to clean it up. Problematic tasks of both kinds are

finished when all their subtasks are.

Here is a summary of the ways in which policies influence p r inl .1r~~ actions:

(1) The p r i m i t i v e policy /:MONITOR is used to imp l ement things like
“protection. ” (Sussman , 1975)

(2) The presence of formulas regarding the status of a task can license
deductions of var i ous sorts. The conclu sions can he of the form (/:TASK . . . J
and (/:10-DO ...J , for example , and thus tri gger th ing s to do and ways of
do ing them.

(3) In particular , policies often influence the “choice protocol ”
described in the next section.

(4) The use of /:CIJNTJNtJE can cause intermittent execution of pr i mary
act ions.

When policy-specif y ing formulas influence the interpreter ’s dedu c t io ns , it

w i l l record their influenc e in the form of /:SUBTASK assertion s . That is ,

when /:TASK formulas are deduced from policy task formulas , they become

subtasks of those policies. (Sect. II.D) Thus , a na t ural structure evolves

in which a task can be a subtask of “make a filt e r ” (primary) and “keep t he

cost down ” (secondary).

11.6.2 SIP -- The Stupid Theorem Prover

SIP is a backward-cha ining, pattern-matching theorem prover . In FL

Moore’s (1975) phrase , i t is a procedural deduc tive system. Such a sgstem may

he~~t be thoug ht of as a decrendant of PLANNER (Hewitt , 1972) which emphaeizes

i t ~~ log ica l ‘i~i n r t g insto ;ot of empha sizing it s pr o g r am m in g-lantpi ~o1e feat u r e s

as most rit ~~,~t descendants have done. By this I mean that it m a ni (ula t~~s, not

arbitrary li s t struc t ures , but formulas that are supposed to represent

___________________ _______ a

II Expressing Knowled ge in NASL 65

ctat em ent s ahout entities. iher e are no side e f f o r t s during dr iro t ion : the

action system is comp letel y divorced from the operation of the theorem prover .

This means that the theorem prover can he optimized in var i ous ‘~;ir(i~~l ways.

(See Appendix 4.)

SIP is used by the system for twc kinds of deduction s : those about tacks

and act ionu and those about the physics of the problem domain.

SIP is not par icu lar l y bri ght; it is to he used for information

retr eval , and it tends to balk at intricate reason i ng. More sophisticated

reason i ng is done as inferential tasks. (There are things to regret about

this organizati on. See Sect. VI .B.) Some kinds of reasoning do not natu rall y

f i t into the theorem-prov i ng parad i gm at a l l . These w i l l be discussed in

Sect. II.C .

Actual l y. “ t heorem prover ” is a very mislea d ing term. The “ theorems ’ suc h

programs prove would not he recognizable to a mathematician; t u e way in which

they go about it would be even more incomprehens ible. None the les s , 1 w u I

continue to use this term , since by now Al peop le are unlikel y to read

anything very pretentious into it.

A theorem prover may he thought of as a prob l em-or i ented interface be tween

a problem solver and bare data-base machin ery, such as that described in

(McDermott , 1975). For example, an Al data-base manager imp lements the notion

of “da t a pool. ” Th ig w i l l be used to imp lement the hi gher-level notions of

“pac ke t ” and “reference point. ” (See be l ow.) The calculations involved can be

made in v i s i b l e to the user , who t h ink s in t he h i gher-level terms.

The basic data-base operations are three: putting things in , takin g thi ngg

out , and finding things. These are handled by the three p r i m i t i v e (LI~~P)

operat ions RECOHD , ERASE . and STP. RECORD puts a formula into a data I I .

It also does forward deduc t ions from that formula ri a way to be de’o r ibed .

__ - - — - ~~ - _______ a

II Expressing Know l edge in NASL 66

The results of these rtnrj ’,~ t ions are recorded also , and corir lu si on c are linked

by “data dependencies ” to the formulas which suppor t them . (‘~‘ee ‘
~r e r t . 11 .13.)

ERASE flushes a form u la and every thing it supports from a ri ati pool.

When proving theorems , SIP works , like every other “ theorem prover , ” by

matching goal formul as a ;a in st “knowledge ” formulas , det ac hing thr nii tp tit , and

repeating until a proof from atomic data is obtained. (If. lBl~~d i r , 1175)

For technical reasons (R. Moore , 1975), SIP reall y attemp t s to refut e the

negations of goals. See Appen dix 4.)

Formulas are stored in the data base i n clau se form. Clauses are

imp lications whose format t e l l s how they are to he used. The two mo st r nmm on

forms are

L-/> C l p l I g I J , mean ing, “ to prove g, prove p’
and (— I> A I~ l I g I ~~

, iiea ring . “ ‘i f p is recorded , record q.”

(These cor r e s; nnrt in an ot)v I ous way to Planner • s consequen t and anter eden

theorems. (Hewitt, 1972 , Moore, 1975)) The arguments p and q $n thece

predicates can be clau ses as well; my clauses have more pr agmatic ~ tr ur tr,u e

than those of a resolution theorem prover . (Robinson . 1%5)

Internall y, these clauses are stored as (pragm atic) disjunctions of the

fo rm

(/:CONSEO Iq) (NO T ~p I)]
and 1/:ANTEC (NO T Jp I) 1q 1 1

respective l y. These form s are occasionall y use ful externall y as well.

A third pragm at ic disjunction is /:GEN. (/:GEN 101 1 q 1 1 . when “ r ei orded , ”

real l y causes counterexampl es to p to be found and , for each one found , an

Insta nce of q to he recorded. This may be also be expressed 1-/s 6 (NOT a p I)

1q 1 1. For examp le , re or di n g

(- / -~ 6 (0EV-TYPE ~~ COMMON-EMITTER)
(0EV-TYPE ?X AMPLIFIER))

— — _ _ _ - a

II Expressing Knowledge in NASL 67

calls STP to find all common-emitters and recor d that they are amp l i f i e r s . In

this way backward deduc t ions may be tri ggered in the midst of forwar d

chaining.

SIP is oriented toward the task of information retrieval. When g iven a

goal with free var i ables , i t doesn ’t interpret it as a request to prove that

objects exi st which would satisfy the formula if substituted in: instead , it

considers it a request to find and return these objects. This i~ l ike PLANNER

(Hewitt , 1972) and 0A3 (Green , 1969a ,b). (See Appendix 4.)

For examp l e , g iven the clauses

(P Al
(P B)
(0 B)
(-I> C (AND (P ?X) (0 ?X))

(R ?X))

and the goal: Refute [NU T (R ?Y)J.

SIP chains backward through the consequent clause to generate as subgoal

Re fute (NOT (AND (P ?Y) (0 ?Y))).

This becomes two “con junctive goals ” ; “Ref ute [NOT (P ?Y))” and “Refute [NOT

(0 ?Y)J . ” SIP f inds V ~ A and V -. B as answers to the first goal , and

detaches [NOT (0 A)) and (NOT (0 B)) as alternative versions of the second.

Onl y the latter of these succeeds. The returned answer is therefore V -. B.

The machinery to make this work reasonab l y well is descr i bed

in Appendix 4.

Some other interesting features of SIP are these:

(1) A b i l i t y to call LISP functions for low-leve l deductions. (Cf.

(Nevine, 1974a,b).) I have made an effor t to keep a ll such LISP-imp lemented

conc e p t s c o m p l e t e l y pr i m i t i v e and domain-independent. These are concepts for

man i pulating simple i nequalities , predicates on embedded formulas , e t c .

(2) “Non-monotonic ” inference rules , which are imp l emented by hav i ng

II Expressing Knowled ge in NASL 68

certain predicates be evaluated by ca llin g SIP recursivel y. For examp le ,

(/:CONSISTENTLY ‘Ipa t t e rn i l w i l l be handled by cal l i n g SIP to see i f pattern

can be refuted. (The sing l e quote is used to flag an expres’~ion w i t h i n wh i ch

substitution of equals for equals i5 forbidden; ~urh an expression is called a

“ sense. ”) McCarthy ’s “presumab l y” operator (McCarth y and Hayes. 1919) is

def ined am

[PRESUMABLY ‘7p ?USE) • (-I> ?USE (/:CONSISTENTLY ‘?P) ?P)I

mean i ng , “ i f you can ’t prove ?P is false , assume it ’s true. ” Thus we have , (YX

(BIRD ?X) D (PRESUMABLY (CAN ?X FLY) C)), which means , ‘If X is a bird , then

if you ever need to check if he can fl y, assume he can if you can ’ t prove he

can ’t. ” (If the formula had had “6” instead of “C ,” the attemp t to refute his

a b i l i t y to fl y would be done at the time he was deduced to be a bird.)

(3) Pragmatic handling of equa lit y. The usua l predicate -calculus notion

of equality does not correspond very close l y to the programm i ng notion of

evaluat ion. If you ask a theorem prover , “F ind ?x such that 2+2 - ?x ,” i t

w i l l t e l l you , “?x — 2+2,” wh i ch i~ true but useless. An action module

c o m m u n i c a t i n g w ith a deductive system must have the concept of “us e f u l

expression. ” I n the midst of prob l em solving, some data structures are

i nherentl y more or i ented toward getting on w i th things. Consequentl y, SIP

works c l o s e l y w ith an evaluator (see F i g. 1.9), wh i ch applies rew ri t t hg rules

found in the mode l to expressions. Lie have alread y seen these rules in action

implementing pvars. They l ook like (-I> ‘ (+ 2 2) 4). The “ sense ” quote is a

way of forbidd i ng app l y ing the rules to subexpressions. (Otherwise , the ru l e

would rewrite itself as [— I> 4 4).)

The evaluator is used by the interpreter , by user plans which use the

/:EVAL mit i v e , and by STP. (See Appendices 4 and S.) Normal equality.

1— HI I y I J ~ is used to express goals like , “prove two things are equal. ”

~~~~~~~~~~~~~~~~~~~ a



II Express ing Knowled ge in NASL 69

There is a “cheap” equalit y predicate called “ :- “ . The onl y knoulr ’rlr ;e about

i t is ( : — ?THING ?IHING). it i~ used in conjunctive subgoals to “ set ”

variables for future use. That is , the goal I:- ?)( (FOD BAR)) succeeds ,

setting ?X to (FDO BAR) . The system w i l l  not waste its time try ing to prove a

goa l like this if it doesn ’t succeed immediatel y.

When an equality i s  recorded i n  t he course of t ry ing to prove x and y

unequal , the system makes an e f f o r t to  translate i ; into a r e w r i t i ng  rule;

otherwise , it w i l l  never interact with other deductions, Cf. (Bledsoe and

Tyson , 1975) .

(4) “Packets. ” It often i nconven ient to have to recor d a large

conjunction as a consequence of some forward deduction. For example , in

elec t ronics , dev ices are of var i ous types. If it is recorded tha t [0EV-TYPE

OEV#73 COIIMON-EI1ITTER), this mi ght tri gger the recording (via “-I> A ”) of

scores of facts about OEV#73, most of wh i ch w i l l  never be l ooked at. This can

be avo i ded by writing the relevant antecedent implication as

(-I> A (0EV-TYPE ?CE COt1IION-EMI TIER)
(/:PK T CE-PKT (?CE)

~f a c t  i i
Ifac t 2~

Ifac t nJ )).

As explained in (McDermott , 1975), defining thi s formula w i l l  create a packet

wh i ch p lays t he role of the large conjunction with one f r e e  var i able ~~~~~
It is actuall y imp l emented as a “data poo l l ayer ” which can be added cheap l y

to the current data pool. The individual facts w i l l  be closed and indexed

onl y as they are accessed.

(5) A “m o d a l ”  notation and inference mechan i sm. A general deduct ive

system should be able to reason about hypothetical situation s , ot her times,

other creatures ’ beliefs , etc. These concepts are in the domain of ‘m odal”

______________  - - , — a



Ii Expressing Know l edge in NASL 70

log ic (Hughes and Cre sswell , 1972), a dif f i c u l t  study with many prob l ems. I

have imp leme nted a modest system for do i ng some very simple moda l deductions,

w h i c h  uses t he “data pool ” mechanism to imp l ement “ r e f e rence  poi n t s . ”

(Montague , 1974, Reecher and Urquhar t . 1971 )

The b a s i c  moda l n o t a t i o n  i n  the NASL l anguage is (I Ireference point I

I te rm lj , which stands for the va l ue of the term with respec t to the g iven

reference point. in pr i n cip le , these reference point s could be other

c r e a t u r e s ’ minds , arbitrary p o i n t s  in t i m e ,  or j u s t  “poss ible worlds. ” Under

this last i n t e r p r e t a t i o n , log ical necessity mi ght be taken to mean [YR fT ?R

...)l , or “ ... is true in all possible worlds. ” However , this would require

quantif y ing over reference po ints , a capab i l i t y  I have not had the time to

pursue. instead , DESI confines itself to the use of constant reference

p o i n t s .  These are used (see Chapter IV ) for thin gs like the DC and

sinusoidal-stead y-state models of an elect ronic circuit.

This sor t of mechan i sm is just a convenient notation for data pools (i .e.,

“ conte x ts ” )  f r o m  w i t h i n the  log ical l anguage. To make it work . I have

introduced some notation for “f rame ” ax i oms. (Hayes , 1973a) A r e f e r enc e po in t

Is often defined in terms of the differences between itself and some set of

super reference point s from which it i nherits most of it ~ contents. These

definitions are written thus:

(FRAME I reference p o int~ < -reference points- -.1 means t hat a statement is
to be assumed true in the given reference point if it ‘s true in one of the
ot her reference point s and cannot be proved false. The g iven reference po ints
are ca lled frames of the new one. That is ,

((FRAME ?REF ‘,F pAMr 
~f F ~ ) •

(VP (IF (?F ~ ?F RAI1E - REFS) A (T ?F ?P))
D (PRESIJI1ABL V ‘(I ?R P) C))).

Of cour°e . it ign ’ t imp lemented in t h i s way. instead , a neu data pool is
cjn q t r i j c ’ d u s i n g  the FPAtI[ axioms when i t 5 required. This data pool has as

super i ors the data pools correspond i ng to i t ~ frames.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  a



Ii Expressing Know l edge in NASL 71

[N Ireference point i ‘I fact i ) means that the g i ven fac t is not i nherited
from the reference point ’s frames. 

-

Formulas of the form (I Ireference p oint i I fact l l are used in con structing
new reference points. Any such propositions l y ing around have their facts
shoved into the new data pool.

Examples of the use of these formulas are g i ven in Chapter IV .

Ii.C Choice and Rephrasing

As sketched so far , NASL resembles some more fami l iar prob l em solvers.

Except for the imposed distinction between deduction and action , it is a lot

like PLANNER. (Hewitt , 1972) The main difference is that it does no

backtrack ing past mode l man ipulat ions. Since i t  is more d i s c i p l i ned  in many

ways , it is better able to explain i ts  actions.

However , it suffers from some of the same prob l ems as PLANNER-like

systems. In particu l ar, a certa in amount of the additi v it y I wanted w i l l  not

be found in this organization. Even though it is easy to add a new p lan

schema to a body of facts , the interactions of this new material with the old

are not so eas i l y handled.

For example , if acquirin g a common-collector amplifier is known to he a

good way of achieving hi gh i nput i mpedance , this fac t mi ght be l ying around in

a formula of the form

j (“hi gh i nput i mpedance required”

~ (/:10-DO ?I (MAKE AMPLIFIER) <?N>
(MAK E COMMON-COLLECTOR ))) .

(For a prec i se version of this, see Appendix 3.) Now , say that the system is

to be told abou t field-effect transistor s (FETs). Since they have a high

input impedance , an exac t l y s im i la r  fac t w i l l  be recorded regarding the FET

comMon-source amp lifier .

— - — - ~ ~~~~~~~~~~~~~ - —  - _______, a



II Exp ressing ~rou I nil i’ in t~ A ‘ .1

Now a request to make an amp l i f i e r  w i l l  cause both these t n  te to I n

retrieved. What can be done? (We have alread y ru led n i t  jii~~t t r t 1 i r i ( 1  nc.

until it fails.) One approach would be to force the user to revu ’e ur~~ or

both of the formulas to check for information that w i l l  di s tingu i sh between

the two cases. However , this w i l l  lead to large , impenetr able imp lications.

Furthermore , in some cases of such confusion , neither choice is preferred , but

some synthesis of the two. We need a wag to represen t such “d i fferenti a l

diagnosis ” and “partial-solution composition ” knowledge in an additive manner.

The solution is to face up to the necessity for treating “choice between

alte rnatives ” as a basic s i tuation of prob l em solvin g, and to create new

pragmatic predicates for handlin g it. This is the subjec t of Sect. II.C.1.

The comp l ementary prob l em tha t thi s br i ngs to mind is when the ded u ctive

pattern-based backward chainin g of SIP is unable to retrieve any possibl e

plans. This mi ght be because there aren ’t any, and the user must prov i de new

info rmation , but it also mi ght be because the relevant retrieval strategy

depends upon pattern-man i pulation operations which are less disc i plined than

un ification. For examp le , we m i g ht wan t to express , “ If the prob l em mentions

MHz , try special hi gh-frequency heuristics. ” Here the traditional Al l anguage

solution is to allow arbitrary list-p rocessing operations upon formulas. (The

trad tiona l predicate-calculus solution is to do aimless equality

substitution. ) Thus, in CONNIVER (McDermott and Sussman , 1973) a method wi t h

patte rn (LAMBDA !>X ‘ >Y) can match the callin g pattern (LAMBDA (X) (F (C, X)))

and do any thing it likes with the pieces so generated. This is somewhat

abhorrent , since it tends to destroy the notion that formulas mean a~. ‘ : bi g.

Who can rule on the consistency of a set of formul as that do things like that?

My •u ‘r oach to th i g ti r t i l p ~ is to tr y to i mpose some d i s ci p line on th i9

1 of manipulation. The idea is to signa l e x p l i c i t l y when the system is



II Expressing Knowlerl ym in NASL 73

allow i ng itself to do thin gs like that , and to i mpose restrictions on its

behav i or and the results it computes. Thi s idea is developed into the

“rephrasing” protocol  of Sect .  iI.C .2.

II.C. 1 The Choice Protocol 
-

Under some circumstances , SIP is asked to re tu rn  a l l  the answers i t  can

find (cf. Appen dix 4), but it can be asked to re turn  j u s t  one. In thi q

situation , if more than one answer is found , the s y s t e m  p e r f o r m s  a r i t u a l

i nvocation of inf ormation about choosing between them. This is called the

choice protoco l . For example , th is protocol is called when DESI finds more

than one possible circuit for a general concept like “amplifier. ” I n that

case , detailed information about the var i ous types of amplifier interacts with

information abou t what is required of this amplifier to force a choice ,

The first thing the chooser does is to create an (abstract ) choice

s i tuation name and record in the data poo l

(/:CHUICE I namel Icontext i Igoa l formula l )

(The context is the inferential task for wh i ch more than one answer i s  found.

I n the case of the Interpreter try ing to deduce how to do something, this is

just the symbo l “EX EC. ”) For example , in try ing to choose an amp l if ie r , it

would record

(/ :CHO ICE C#536 EXEC
(/:10-DO TSK#437 (MAKE AMPLIFIER) < ‘(STAGE I CKT#747)>

?WAV ) I

The forma l resemb l ance of this to /:TASK formulas is suggestive; we have in

effect added a new kind of entity, the choice. The inten t is that this

formula w i l l  tri gger forward deductions of the kinds to be describ ed in i

moment. The packet mach i nery of (McDermott , 1975) wi l l  allow the system to

m •~~~~~~~~~~~~ — —-—- - - —  - - ~~~~~~~~~ -



- -

II Expre ssing Knowledge in NA5L 74

br i ng in large packets of what may loosel y be cal led “advice ” appropriate to

this situatio n,

The use of “bracket s inside brackets ” i s our f i r st encounter wi t h  the

conce p t o f “embedded formula. ” (See Appendix 1). The system is treating the

goa l here as a dat ’ st ructure to be ana lyzed.

For each of the ‘osgihle answers , a formula of the form

(/:OPT1ON Ichoice nampi loption name l lansuer formula l l

is recorded in the data pool. For our amplifie r example , we mi ght have

(/:OPTION C#535 A#450
[ 1: 10-DO TSK#437 (MAKE AMPLIFIER ) ~~ (STAGE1 CKT#747)>

(MAKE COMMON-COLLECTOR))]

(/ :OP T ION C#535 A#45 1
(1:10-00 TSK#437 (MAKE AMPLIFIER) ~

‘ (STAGE1 CKT#747)>
(MAKE EEl-COMMON-SOURCE )])

Recording these formulas w i l l  tri gger the deduction of formulas of the

form

(/:RULE-OUT lopt ion namel ) ,
[/:RULE-IN l opt ion namel) ,

or (/:RULE-TOGETHER < -option names- > m e w  answer formula l ) .

The system f i r s t  searches for conclusions of the for m (/:RULE-OUT ...i.

This is a call to SIP, of course. If any are found , the option s ruled out are

removed from consideration. Next , the system l ooks for conclusions of the

for m (f:RULE-IN .,.I. If any of t hese are  found , the system throws aw.ly all

options except those mentioned. Finall y, it looks for /:RULE-TOC,ETHERs. if

one of these occurs, the options it mentions are disc arded in favor of the new

answer for mu ’a.

I f  at any stage all options but one are eliminat e d , the protocol stops

w ith a winner . If all the options are ruled out , the system enters an error

prot -col to show the user what it did and ask for corrections of its

misinformation, if mor n than one option survive s , the system record s

- - - - - 



II Expressing Know l edge in NASL 75

(f:OIJIESCENCE Ichoic a n a m e l )

in an effor t to tri gger more forwar d deductions.

The intent of these devices is clear , Diff erential d i a q n n s i s  i’, ~r li~

per formed by the first two kiod~ of formula , while I:RI JLE -TOC,f THIRs are

intended to be one l ocus o f  c o m p o s i t i o n  of  partial solutions in the NA ’ L

system. (The others are problem reduction (see above) and error correl li on

(see Sect. 111 .0) in the context of patching electronic circuits. ) The

/:0(JIESCENCE trick enables the user to encode advice of the form , “All ot her

things be i ng equal ...,” as a forward implication like

(- I> A (/:OtJ1ESCENCE ?C) . . .] .

The choice protocol keeps track of the rules which contribute to weeding

out all but one option. These rules are used in building data dependencies

(sect. 11.0). In addition , when a policy is used in choosing a way to rio

someth ing , the choice is made a subtask of that policy. For example , say

there is a policy of the for’i, “keep cos ts  low ,” plus a dedu ctive rule like ,

“When try ing to make a device, and try ing to ~ee~ costs lou , then , at I
other things being equal , if a circu i t  w ith i nductors is competing as an
option against a circuit withou t them , the one with i nductors is ruled
out.

Now if the task of constructing some circuit is elaborated into a device

chosen on the basis of this rule , the task of acquiring the device is subtask

of both the construction task and the costs policy, Th a l eads to clear

exp l anations by the system of its behavior . (Sect. V ,A )

(The choice protocol was inspired by the desi gn of Marcus ’s (1973 , 1975)
“wa it-and-see ” par ser , which does similar thin gs in choosing d irections in
wh i ch to parse.)



II Expressing Know l edge in NA5L 76

l I .C.2  Rephrasing

I now turn to one of the most importan t and least elegant subsystems of

NASL , the rephrasfng protocol. Th is is the system wh i ch is invoked when SIP

ig unable to find a reduction of a task. Rephrasing consi sts in t r n a t i n q  the

recalci trant problem as an object to be transformed into a new prn h lem. The

pious hope is that the new one is easier. This , of course , is precis el y the

objec t of task reduction in the fir st place. So rephrasing may he thoug ht of

as tak i ng extraordinary measures to reduce a task.

The way th is works is as follow s. When the system is unable to find a way

/:10-00 something, a task

(/:TASK I name l <>
(~ () (/:REPHRASE Ita s ki laction formu la l < -ou t pu t p v a rs -  >)) <>]

is created , and made a predecessor of the losing task. This task i~ allowed

to carry out arbitrary inferences in order to reduce the unreducea ble task.

For example , the desi gn task DES#78, with action

(DESIGN ~~. (Xl (AND (IS AMPLiFIER ?X)
(.  (VOLTAG E-GAIN ?X) 100)) ))

is unlikel y to tri gger an i ndexed solution. Instead , it must be rephrased as

some set of simpler actions , by the use of electronics knowled ge. So the task

[/:TASK T#849
(), () (/:REPHRASE 0ES1178

(DESIGN ~ (X) (AND (IS AMPLIFIER ?X)
(.  (VOLTAGE-GAIN ?X) 100)) H

ci result pvar~ >)

w i l l  be put in the task networ k as a predecessor of the desi gn task. Its

effect w i l l  be to reduce task OES#78.

The rephrasing prot n ol must exist in order to provid e for deduc t ions

beyond the scope of SIP’s simple strateg ies. These fall into two categories,



II Expressing Knowledge in NASL 77

one more elegan t than the other . Fir st , be rati qe it  uses  the inter preter , it

can take advantage of the choice protocol , fle x i b l e  planning and policy

mak i ng, and even recursive rephrasin g. Thus , for example , one can make finer

choices than is allowed by just runn ing the chooser on a set of possible

reductions,

Second , and less happ il g, t he rephrasin g protocol man i pulates the action

formula as an “embedded formula ,” and so is allowed to perform any operation

on its representation. So one can writ e rephrasing plans which check to see

if the g i ven action refers to “WIDGETS” anywhere. In the next chapter , 1 ui II

show how , in the course of rephrasin g desi gn problems , )~ -expressions are

routinel y dismembered. Th is seems to be ind i spensable , hut it would be nice

if we could insist that the pieces be put back together in a leg i t i m a t e  way.

This is a special case of the more general problem of mak i ng sure tha the

interpreter and inference mechan i sms actuall y do what they are suppoced to do.

The d i f f i c u l t y  is in specif y ing what the objec t of a task or protocol is. For

choice , the object is fairl y clear : eliminate all but one option . (Inelegincy

creeps in w ith /:RULE-TOGETHERS.) Elsewhere in the interpret ’ , I have

i gnored this very important prob l em , except for token ch er k~ such as th at

• /:FINISH actuall y leave its task fini shed. In the case of rephra sing, the

problem is especiall y acute: rephrasing can be though t of as a device for

extend i ng the pattern matcher by allowing arbitrary deductions about formulas.

Something like thi e is necessary, but it should he better constrained.

As i t  I s , there are onl y a few restrictions on the use of rephrasing: al l

the act ions undertaken as subtasks of a rephrasing must be in ferential , not

wor ldl y; the rephrasing task must leave its target task /:R[L)t)IEfl; and the

subtacks resulting from a rephrasing must be syntacticall y legal (i.e., not

contain ~
‘s in funny positions or have any free var i ables , etc. ).



f~ [ xpr e’i q i nq Know n r l q r ’  i ri NA~ t 78

The rephra sing knowled ge for the de9i yn doma in , w h i r t  I pr i.Sent in the

next chapter . is an examp le of what rephrasin g oug ht to he. The f o r m u l a s

involved are reduced to pieces by one task , and parsed together arj .~ in hy

others. I hope that this w i l l  prove to he an inqtan ( e of some more qr r i o ra l

reco gnition strateg y that is more constrained than wha t the qi~ q t ern now a l l o w s .

I have now decc r  i bed every module in Fi g. I .9. The q e , u r  r i  j iu r  u t  gm t lu . i  t I

have developed may he summarized as: let the theorem prover ~earch , h i t  not

too far or too deepl y. A l l  searches are intended to he ch ri r t ~ nd qr i r .n t  the

search is used for exactl y those crots wher” there i~ no appl ic ahl e know led ge.

These short searches are organized by a p lan interpr eter , which dec i des what

sor t of know l edge i9 to he accessed. It can ack for answers to (luest ions

about how to do things , the physics of the doma in , choosing among

alte rnative s , or transforming its own prob l em statements. Thus , ac far as the

parad i gm has been developed , i t  is in accordance wi t h  R. Moor e’s (1~375)

observation that theorem provers are most naturally applicable to information

retrieval problems , and that other control struct u re s are needed f~~r more

sophisticated tasks.

11 .0 Dependencies Among Data and Tasks

It i s  he~ nmin g qerrer il l y reali ze d that Al systems must record their

reasons for their conclusions and actions. (Mrtlprmntt , 1974a , S t a l l m a n and

Sussman , 197~~, ¶ihnr I H f fe , 197~ ) These rerord s have many uses:

(I) They can he use l to r x p l a in r r - i~ oninq arot a ionS to a human ucer
(2) They gu i de the sjc tem in undoing f i ’ i i  1 1 deduc I inr ~~i.
(3) They are a gu i de to cor re r ting the ntfe ç t q of m i~~quided a c t i o n s .
(4) They ran be ii r ’ l  in ass ignin g the blame to ‘nrorru-u t rules.

The basic r e l a t i o n  im ir i f dat -i q t i n  d e d u c t i ve  data dep end ency.



II Expressing Knowledge in NASL 79

(McDermott , 197S) Every time SIP or RECORD does a deduction , it attaches such

a dependency to the conclusion and the premisses ; the latter become the

supporters of the dependency, the former , the supp ortee. (See Appendix 4.)

When the system does an ERASE , all the supportees of the erased item are

erased themselves if they have no remaining supporters.

These suppor t relations are accessible to the problem solver as a set of

LISP- imp l emented predicates. In particular ,

(/:SUPPORT < -formula names- > Iformu la nam ell

is supposed to be true when the indicated dependency holds.

Ihese suppor t dependencies are also created by the inferential action

I: INFER (see Appendix 1). Other inferential tasks call SIP and let it b uild

dependencies.

These device s accoun t for the second in the li s t  of uses of dependencies

among data and tasks. The others are more comp l i cated , becaus e t hey involve

the relation between action and the world model. Here are example s of the

k inds of relations that can occur :

(1) A task can have model effect s. The relation between the task and its
effect s is non-deductive because erasing a task is not sufficient to undo its
effects. (Besides , some of the effects are erasures. )

(2) A task or pvar value can be based on choice i ’uf orm ation . We want to
record this relation , but erasing the basis of a choice does not erase the
choice , althoug h it calls the wisdom of the choice into question.

(3) Facts ir the current model can suppor t task statements. A fact ab~ u t
circuit topology supports a constraint on the physical quantities it
influences. Erasing such a mode l -effect formulas should cause the task
formulas to he erased too ,

(4) Facts in the current mode l can trfgger- tasks . Thi s is a quite
different situation from (3). NASL implements the common Al mechan i sm of
“demon ” or “patte rn-tri gge red inte rr up t ” by allow ing /:TASK and /:SUBTASK
for mulas to be deduced. For example , a BLOCKS-wor l d system may for a time
have a polic y to the effect that a certain block 8#72 is to have a clear top.
Thi, gets t rans la ted into the pr incip le,



II Expressing Knowledge in NASL 80

[YX (ON ?X 81172)

~ (JT (/:TASK ?T <> (?, () (REMOVE ?X 81172)) <>))]

Let ~#74 appear on B#72. This w i l l  create a task to take it off. A mode l
effect of this task is the erasure of (ON 81174 81172) and with it the task t
This contradict s common sense , since once the inte rpreter starts to work on
somet hing, its success should rio t erase it . There may even be serious errors
as a result of such an erasure , since the erased task may not have been
comp l eted yet. in any case , the user may want to ask questio ns about tasks ,
without worry ing about which ones erased themselve s .

I t  i~ clear that this prob l em has to do with the treatment of time. An
act iv i t y  can become a task for one reason , but stay a task for another . This
is hand l ed by the use of the moda l operator 5, d e f i n e d  as follows: (S ‘I fact ~~

]
means “fact starts to he true. ” The conclusion of the g iven i m p l i c a t i o n
should he ( . ..  (S (31 (/:TASK ?T...H)). Exactl y the same fac t w i l l  end up in
the data base , but the supporting data dependency w i l l  he different. (It is a
b i t  wishful to call this a “modal operator ” instead of a “patc h. ” If the
moda l ma chinery were better developed , it could be supported by ax i oms like

[I ?R ( ( 5 ‘?P ) n ( ( T !ME )  ? t ) )
D (3i (VQ (I ?O (?t < (TIME ) < ?t+?i)

~ ?P)))],

but it i sn ’ t . )

To represent these nuances, the structure of data-dependencie s must he

made more flexible. Before , the supporte rs li s t  of a dependency was just a

li s t  of data: now we make it a “l a be l ed tree ” o f tuples of data. Each l abe l

explains the role the supporters pla y in the dependency. For examp le , a

BLOCKS-world program might execute the task

(/:TASK (FIND-DUMP) < >
(
~u (1 (:FIND (~ (X) (IS PLACE ?X) ))
< ‘ (OUI1P) >1

in order to find a place to get rid 0f a nuisance block. I f  i t  chooses X —

TABLE because of a choice pr i ncip le C. the result

(—I> ‘ (DUMP) TABLE )

w i l l  he supported w i t h  the two l abeled dependencies:

(DO-CHOICE ((IS PLACE TABLE)) lDO-CPRIN (C))) and
(DO—INF ERER (LI INn-DUMP) I)

where OD-CHOLIF , UO-CPRIN , and OD-INFERER labe l the roles of the formula q they

dominate in their trees. (I am be i ng a l i t t l e  casua l abri uu t the fo rmat of

__________________________________________________________________________ - ~~~~~~~~~~~~~~~~



II Expressing Knowledge in NASL 81

these st ructures ; when they are attached to the data , poin ters to the

supporting data themselves appear in pl ace of their formulas. )

Here are some of the implemented l abels:

(DO—ACT-RESULT (ftask datum~ )
(DD-APRIN —action pr i ncip les- )
(DD- AIRIG GER —action tri ggers-))

relate s a task to its results. The action pr i nciples are gener al
formulas (found in the m ain data poo l GENERAL-DP*); the action tri gge r s are
formulas that were true (perhaps transientl y) when the action occurred.
Erasing the latte r w i l l  not disturb the supportee of the data dependency.

(DO—CHO I CE (-inferential supporters- )
(DO-CPRLN -cho i ce pr i nciples- )
(DD-CTRIGGE R -choice tri ggers-))

records an inference for which an answer had to he chosen. The rules
which contributed to this selecti on are sorted into tri ggers and p ri nc i p les
ju9t the way they are for  a c t i o n s , but , for choices , the supportee is immune
from disturbances to either of the kinds of choice formula.

(DO—S (—tri ggers-))
l abels supporters whose erasure does not affect the supportee.

Deducing (S ‘1 f f ) w i l l  record [ff1 ) with the supporters insul ated hy a DO-S
I abel.

(DO-INFERER (f task datum l ))
is attached to formulas deduced or inferred by inferential tasks. This

is used by other inferential tasks to refer to those formulas.

(DO-1STATE (-data- ))
is used to l abel formulas , like /:TASK formulas and pvar value

assertions , wh i ch define the state of the interpreter. These formulas are
“incorri g ible ,” and are never erased.

(DD-EXEC ( J  task datum f ) (-other data- ))
records other miscell aneous relations between a task and a formul a

(DO-- I Ida ta pool l (-data- ))
l inks data across reference points. The inten t i s  to record that the

presence of the data in the forei gn data poo l are responsible for the presence
rf the supportee (which may be a DO-I itself).

4 This information can be dumped out in a revealin g form , as described in

Chapter V.



Ii Expressing Knowled ge in NASL 82

Ii .E Hand l ing M istakes

Cons i der situations like the foll ow i ng:

You are d ialin g a telephone number. Ha l fway through , you feel your hand
slip  and you know you have misdialed.

There is a power failure. You wonder if the refr i gerator w i l l  be damaged.
You flick the kitchen li ght switch on to have a closer l ook. Nothing happens.

Someone asks you to desi gn an amplifier with a certain hi gh gai n-bandwidth
product. You confidentl y pick a familia r circuit topo l ogy and beg in to
compute the required component values. You discover there are no component
va l ues that w i l l  do the trick.

A l l  of these are examples of “mista kes.” (A finer classification is poss ible.

Cf.  (Nilsson , 1973) .) They all have in common , in the terms I have been

developing, that the plan for accomplishing a certain task has been shown not

to work. In each case, it is wholl y or partly useless to continue on the

plotted course.

Not enough work has been done in A l on correcting such mistakes. (But see

Nilsson , 1973 , Ph i l i p  Hayes, 197S , Sacerdoti , 1975.) Instead , we have spent a

lot of effor t on seem i ng ly similar search prob l ems in which “b l i nd a l l e y s ” are

searched , and real m istakes never occur . I discussed this briefl y at the

beg inn i ng of this chapter. The problem with even the most sophisticated of

mechan i sms f o r  searching through blind alleys (Stallman and Sussman , 1976) i s

t hat they re ly on the a b i l i t y  to restore previous choice points. Previous

discussion of the pr oblems associated with this (e.g., McDermott and Suseman ,

1972) has focused on the dif f i c u l t y in choosing a choice point to restore :

here I wish to call attention to the i mpossibility of restor i ng most choice

p o i n t s  in any useful way. The problem is that the range of choices prev iou sl y

available may be obsolete, Sometimes this is because some of the choices have

been ruled out by other processes. This is handled nicel y by Stal lm aru and



II Expressing Knowledge in NASL 83

Sussman ’s EL (1976). A worse problem is tha t non—monotonic inferences made at

the time of the old choice may have been rendered incorrect by further

discoveries or changes since the old choice. (McDermott , 1974a) For example ,

the range of choices available for ins tantiating an amplifier can change

dramatically after adjacent stages are instantiated. Ihere is no way to

return to one choice point withou t consider i ng all the cho i ces and actions in

between.

The alternative scheme I am about to outline has not been imp l emented ,

a l t h o u g h many of the p ieces are in place.

Ihe idea is to treat correcting a mistake as a task like any other . The

mistake is g iven a description by the primitive that failed. (For example , if

a constraint cannot be satisfied , the mistake is descr i bed as (CONSTRAINT-

COLLAPSE Ilosing constraint iL ) The system sets itself the task

[/:GET-RIO-OF Imista ke de scription fi .

Often it w i l l  be necessary to re—describe the situation; this is a job for the

- rephrasing protocol. A typical electronics-domain redescript ion mi ght be

(IMPROVE ‘ (GAIN (STAGE#89))).

-~ Plans are retriev ed to carry this out. (Cf. Chapter I. )

The difference between this and and a routine situation is that the task

network must be corrected in some way. Some of the tasks that existed before

the mista ke are s t i l l  “hea l thy, ” e l se  there w o u l d  he no reason to go on

l i v ing , but some of the subtasks are now “ r o t t e n . ” and may be replaced. A

eubtask of a /:GET-RID—OF task is allowed to alter certain parts of the ta8k

network.

Mak i ng the network-edit ing machiner y work is the hardest part of

imp l ementing this scheme. The kinds of edits that must be allowed inc l ude

> Add i ng new subtasks to correct the prob l em.. The commonest reaction to

— 
_____j 

----.-—--——.-- ---.- - —--- -.- 
a



- - - - -

Ii Expressing Know l edge in NASL 84

an accidental “protection viol ation ” (Sussman , 1975) is to re-establish the
protected fact without further fuss.

> Restarting ol d subtasks. For example , the string of tasks involved in
dialing the first di g its of a mi sdialed telephone number must be resurrected.

> Detaching and redes cribing old subtasks. For examp le, introducing too
much feedback can cause oscillation; its old description (that it did
something useful) must be discarded , and it must be seen as par t of the
problem instead of par t of the solution. Its old supertask must be marked un—
/:REOUCEO again , and a new w ay must be found to so l ve it.

> Terminatin g active suhtasks , especiall y pol i c i es , of a rotten task. In
elect ronics , constraints derived from circuit diagrams must be removed when an
IMPROVE task is executed and changes the topology of the circuit diagr am.

The information about what edits are lega l must be par t of the mistake

handler . For examp le , the plans regardi ng constraint collapse (see Chapter

ii i )  must specif y that the hi ghest task that is the scope of some of the

collapsed constraints is s t i l l  health y; some l ower-level task (probab l y

associated with a particular canned circuit diagram ) must be declared rotten

and i t s  p o l i c i e s  abandoned,

The reason why thi s scheme has not been imp l emented is that it depends on

the data-dependency machinery I descr i bed , which is s t i l l  relativel y untested

iteejf. Undoubted l y both of these systems will  grow together .

II.F Programmer ’ s Gu ide

As I said , NASL is not exactl y a programming l anquaga , but it ’s not a

natural l anguage either , so it is probably best for the programmer to approach

it first as the kind of formal l anguage he understands best. To hel p with

this , I inc l ude “progr.ir’r rre r ‘s manuals ” in each of these three tough etiap ters .

NASL has two  i n t e r p r e t e r s - -  the theorem prover (SIP) through which a l l

NASL for mula, must pass , and the p lan interpreter (NASL proper ) which takes

some conclusions to he instructions to act. The first desi gn d~~i is ion in



II Expressing Knowledge in NASL 85

expressing a new set of facts in NASL is whether to rel y entirel y on SIP or to

cast them as rules which create and man ipulate tasks.

In pr i nciple , everything could be hand l ed ty the theorem prover. For

example , ax i oms could be introduced definin g a space of electronic circuits ,

and constructively prov i ng

(EXISTS 00 (AND (ELECTRONIC-CIRCUIT ?X)
(fPf ?X))J

could rep l ace the action (DESIGN IPI).

As we a l l  know , however , a l l  theorem provers of SIP’s c lass rel y heavil y

on the generate-and-test prob l em-solvin g method , Generating all c ircuits is

obv iousl y r id iculous.

Here are~some more general criteria for deciding whether to represen t a

body of facts as axioms or plans:

(1) Ag R. Moore (1975 ) has pointed out , it i3  a strong clue that a theorem
prover is out of place when side effects enter naturall y into the statement of
a body of know ledge; th i s  is ce r ta in l y true f or desi gn. Any i r r e v e r s i b l e
action , such as ask i ng a question or wiring a circuit , rules out the use of a
raw theorem prover.

(2) if you w ish to take advantage of information relevant to a choice
po i nt , the choice must come up as the choice of a way to do a task or of the
answer to a /:FINO . (You should ver i fy that the information is worth the
trouble. )

(3) If subgoals ar i se wh i ch must interact, you must put the goals in the
data poo l , i.e., make them tasks. Similar l y, if you wish to manipulate goals
as data s t r u c t u res , you must add rephrasing knowledge for tasks of that type.

Onl y if it appears that onl y brute-force deduction is necessary or

feasible should you cast the know l edge as pure axioms. An example is the

theory of frequency-picture man i pulations developed in Chapter IV . Common l y a

class of ta8ks wi l l  be associated with a “mini -theory ” of some characteristic

criterio n for choosing between them; this l i t t l e  theory is expressed in terms

of pure ax i oms. For example , the theory of ordering the selection of

component values w i t h  respec t to other tasks (Chapter l i i)  is a smal l  set of

____________________________________________________ _____



ii Expressing Knowledge i n NASL 86

ax i oms. (The merits of this “clever cog itation directed by brute-force

r e t r i eva l”  organizat ion w i l l  be discussed in Chapter V I.)

i 1.1.1 Predicate -Calculus Techniques

Even a f te r  you ‘iave dec ided to represent a body of knowledge as a set of

f ac ts  abou t tasks , hese facts must be expressed as pred icate-calculus

implica tion s . The approach to this that I have found useful is to think of

them independentl y of their use f i r s t , concentrat ing on what they are to me an.

Once th ig is done, the pragmatic content can be add€d. This approach forces

you to th ink about what you reall y mean to express. For examp le , when you

write an implication of the form (IPI ~ (/:TASK ...)1 , do you reall y intend

that this task exist onl y while P is true?

There are three pragmatic decisions to make: whether to express

imp l ication as /:CONSEQ, /:ANTEC , or /:GEN; where to use packe ’~s; and wh i ch

version (I:— , — , or —I> ) of equality to use;

The f i r s t  decision is o f ten simple. Systems of predicate-calcu lus rulas

develop in such a way tha t one layer of ru les “ feeds ” the next during forward

and backward deduction. The rules usuall y work together to record in a

forward fash i on up to a point; then backward (consequent) rules work their way

from deduct ive goals to the formulas recorded by forward rules. Generat ive

(“ —I> G” ) rules are useful in mixin g these processes up. So, for instance, i t

is no use having an anteced ent rule i f  no one records an expression m atching

it ~ left-hand side. R. Moore (1975) has given some useful hints in deridin g

which way implications can he used.

/:PK T should be iJ ’3 eri instead of AND on the ri ght-hand gide of an /:ANIEC

when much of the contents  of the conjunct ion a f e  not l ooked at for most



II Expressing Knowledge in NASL 87

instant iations , or i f it is not necessary that they tri gger further /:ANTECs

i mmediatel y. Thi g is true, for example, of circuit diagrams, where

info rmation about the purposes of components is not always accessed; hut not

true of plan schemata , where all  the tasks and subtask relations are going to

be recorded anyway (and the interpreter must notice every task).

It is usuall y clear wh i ch version of equality to use. Goals are usuall y

phrase in terms of “— ,“ but if you know there is onl y one simple answer , use

“I:— , ” wh ic h merel y matc hes the two sides against each other . Simple “
~~
.“ iii I

work harder in the case where they don’t matc h. Often “—I> ” does not have to

mentioned in the rules where it it is used; if rules like [~ ./>  ‘(F A) B) are

around , they w i l l  be app lied when the ri ght-hand sides of implications li ke

(-I> A (P ?X) (0 (F ?X)))

are detached w i t h  the var i ables bound. That is , recording (P Al w i l l  cause (0

B) to be recorded.

Finall y, remember that it is not always enough to supp l y ax ioms about

proving propositions with a certain predicate ; if you ever wish to d,sprov e

such propositions , you mus t supp l y appropriate axiom s . Often disproof

information can be summarized with a sing le PRESUMABLY stateme nt, For

example , in the world of blocks , we mi ght have

[-I> C (AND (ON ?X ?Y) (ABOVE ?Y ?Z)) (ABOVE ?X ?Z)l
[ — / . .  C (ON ?X ?Y) (ABOVE ?X ?Y))
(PRESUMABL Y ‘ (NO T (ABOVE ?X ?Y)) Cl

The effor t to prove [NOT (ABOVE A B)) wi l l  cause (via /:CONSISTENTLY) an

effor t to prove A Is above B; i f  it fails, the conclusion is taken as true.

- _ _ .L  - —— - - ~ -—- - -_



ii Expressing Know l edge in NASL 88

Ii.F.2 NASL Programm i ng Techn i ques

in apply ing NASL to a new problem domain , one must supp l y model—

manipulation statements to actuall y get th ings done, and i ndexed plan schemata

to orchestrate them,

Tasks may be reduced in a forward or backward way. In the former , the

presence of a task can tri gger deductions of subtasks, For example , in the

world of blocks, one could specif y a p lan to the clear the top of a block

thus:

(—I> A (/ :TASK ?N <> (A () (C1~~AR ?X)) <>)

(—I> A (—I> ‘ (/:TASK—STATUS ?r~4) ACTIVE ))
(FORALL lv)

(—I> A {ON ?Y ?X )
~S 

‘(EXiSTS IT)
(/:TASK ?T <>

(A () (PUTON ?Y TABLE )
<), ) ) ) )  ) ) )

(Notice the use of “5” to indicate that these tasks are being triggered , not

suppo r te d , by t he s t a t eme n t [-I> ‘ (f:TASK-STATUS fta s k f ) ACTIVE). )

in backward reduction , plan schemata are instantiated vIa f:DO-SUBNE T

calls. This requires a coup le of formulas. In the same blocks world , we

mi ght have the formulas

(1:10—DO ?TSK (ACHIEVE ‘ (ON ?X ?Y) ) ~~,

(/:DO—SUBNE T (ACH-ON ?X ?Y) <> )1

(-I> A (/:PLAN - iNSTAIICE ‘P1 (ACH-ON ?X ?Y) ?SUPER-TASK )
(AND (/:TASK (CLEARER-I ‘P1) <> (A () (CLEAR ?X) ) 

~~ >)

(/:TASK (C~EARER-2 ‘P1 ) ~~~‘ (A I) (CLEA R ?Y) ) 
~~‘)

(/:TASK (FHTTER ?PI) ‘- >  (A () (PUTON ?X ?Y) ) ,-- ~ )
(f:Sl c[1F~~~flR (CLEARER-i ?Pl) (PUTTER ?PI))
(/:SULCES~OR rLEARER_2 ?PI ) (PUTTER ~PI)))l

The interpreter , when it ~ decided to reduce EACU IEVE ‘ (ON . . . ) ]  using the

first r i l e , w i l l  c r p~~t r  an i n s t a n c e o f  the schr’m i (ACH—ON ...J; the ‘~ Pt  flfld

rul e w i l l  then tri ;qr r the creation of severil subt ai ks .



II Express ing Knowledge in NASL 89

A corpus of NASL rule s is often written as an incomplete set of p lans and

ax ioms , which is then debugged by add i ng “ interaction terms ,” i.e., knowledge

wh i ch in fluences the appli cation of the first-order rules. This occurs

throug h the medium of these kinds of rules:

Rephrasing rules which redescr i be actions , usuall y by bt~ -a king them into
pieces and putt ing them back together .

> Choice rules wh i ch influence the way in wh i ch tasks are reduced.

> Rules spec i f y i ng  /:SUCCESSOR relations ,

> Policies to watch for interactions between tasks or to influence
choices.

Ue w i l l  see plent y of examples of NASL plans and rules in the follow i ng

chapters.



Ii! Desi gn of Hierarchical Systems 90

III Des ign or Hierarchica l Systems

Desi gn is the production of an objec t to satisfy certain requirements.

The requirem ents may describe the desired object close l y (“A stick 10 inches

long”), or they may be very remote from what is fin a l l y produced (“Something

to make this room l ook more friendl y. ”)

Of course , desi gning does not mean actuall y manufactur i ng an object : what

is actuall y produced is a detailed description of one. In fac t , des i gn m i ght

be descr i bed as the process of adding detail to a description until “ful l

detail” ig reached relative to some basis.

In what follows , I w i l l  elaborate thi s theory, and then explain how it is

imp l emented as a set of NASL rules. (A close relative of this theory was

outlined by Freeman and Newell (1971) in a paper called “A Model for

Func t i onal Reason i ng in Des i gn.”)

The best way to exp lain it is to star t at the bottom , near the “basis. ”

The basis for a desi gn domain is a set of pr im itive artifacts. For example .

i f  s t i c ks are pr i m i t i ve , des i gning a stick 10 i nches l ong ig merel y a matter

of “in stan t iating the stick primitive. ” “ Instantiation ” means creatin g a

symbo l , such as X043, and recording tha t it denotes a stick. That is not all .

however , Associated with the primitive “ stick ” are at tributes such as its

length , width , material , co lo r , etc., which must be fixed for a concrete

instance of it, Because i t  is a pr i m i t i v e , we may assume that fixing a

gti c k ’g qualit ie , is merel y a matter of choosing them. (Uooden sticks are

cheaper than platinum , but I w i l l  not consider cost e x p l i c i t l y in th i s paper .

I emph asiz~ find i ng any solution to a design prob l em , not findin g the he~~t

eolut ion. )

So design i ng a st ic k is just a ma tter of p icking a name , a wi r l h , and a



I I I  Desi gn of Hierarchical Systems 91

length. (Assum i ng brown wooden sticks from now on.) If the leng th is

constrained to be 10 inches , t hat is clear l y the length to pick. The w idt h ,

if unconstrained , may be picked arbitraril y, subject to the reasonable

constraint on all  sticks that their width be no more than 10% of their l ength.

For a prim i t i v e  artifac t , then , “adding detail ” is just selecting values

for its “contro l attributes , ” such as l ength and width.

This theory of desi gn w i l l  not account for the design of “ something to

make a room more friend l y, ” m a i n l y because “objec t that makes a room l ook

f r i endl y” is not a primitive artifac t with a fixed set of attr i butes. In

general , a requirement may be arbitraril y remote in structure from the kind of

object that sat isfies it.

So it is necesary to prov i de for for the Index ing of partial solut ions by

the i r i mportant features. That is , the theory must just provide for

statements l i ke ,

“Funny posters make a room more fr i endl y.”
“Plants make a room more fr i endl y.”
“ If x makes a room more fr i end l y, and y (distinct from x)

makes a room mor e friend l y, u s u a l l y the comb i nation of x and
y makes a room more fr iend ly. ”

etc.

A par t i a l solut ion of this kind may be a primitive artifac t , in wh i ch case

the prob l em has been solved , but more generall y it consists of a struc t ure of

des ign subprob l ems. These subprob l ems must be solved in much the same way as

the ori g inal problem , and the solutions must be connected up. Eventually the

ori g ina l prob l em w i l l  have been completel y reduced to prim itives. (Fi g.

111 .1)

_ _ _ _ _ _ _ _ _ _ _ _  - ~~ TT



I l l  Desi gn of Hie rarchical Systems 92

REQ1 REQ2 REQ3

STR l~.____STR ————-..~STR2

/~~~~~~~~~~~~

REQ11 REQ12 \ CONSTRAINT2

SIR 11 STR 12 
~~~~~~~~~~~~~~~ 

CONSTRAINT
1

Fig ure 11 1 . 1 Function-Structure Graph

These prim i t i v e s w i l l be connected and constrained. Some of there

constraints come from the problem (e.g., “Amplifier with gain - 1R ’ l , some

from the partial solution (“A common-emitter ’s gain is beta X “) . ~~~~~~

from connections (“The current from
~L

ig the current into U r ’ r n I c

and some from descri ptions of p r i m i t i v e s (“The req ct i nr e ‘, , ‘ ~~
,

As with the simple stick problem , the control at t r t ‘ eq , i

must al l be ‘~el er te d suh jer : t to the conslra rt e .

The desi gn ; r ocecs sugges t e t hy Fi g . I I I ‘~~~

hay i eq to do w t h r r .1 1rr i I i k n -
~ i I

w i I I he eari c’r to ta ’k at ri~ ‘ ~. ‘~ r

desig n t~ pr t r y. ‘

par ‘ a I . - --

7 A n— A o43 964 MASSACHUSETTS INST or TECH CAMeRIDGE ARTIFICIAL INTE——ETC F/s 9
~2FLEXIRILITY AND ErFICIENc Y IN A COMPUTER PROGPAV FOR RESIGNING ——ETc (’i).Md 77 D V MCOCRMOTT N000111e75_C—061,3UNCLASSIFIED AI—TR—4O2 It

I rn ________
• .i~~~ri

_ _ I

_ _

I

_ _ _ _

I

Il l Ossi gn of Hierarchical Systems 93

If a desi gn requirement ts very simple , it is is plau sible to i mag ine it

as catting to mind a partial solution tagged with “specs” which match the

requirement. For example , the desi gn problem “flake a common-emitter

amp li fi er ’1 could plausibl y match the specs on the common-emitter circu it

exactly.

For more complicated problems, this w i l l not work. The description mi ght

contain con junctions , disjunctions , or quantifiers. It mi ght consist of

simple pieces whose solutions can be composed. It may be cluttered with

numbers wh i ch have to be descr i bed more suggestive l y, as in the example of

Chapter I, in wh i ch “gain — 10” was rep l aced by “moderate gain. ” Finall y, the

description mi ght just be in the wrong terms; a common example in electronics

is the translation between time-domain and frequency-domain descriptions of

e~gnaIs.

So the theory must prov i de for man i pulation of prob l em descriptions,

before the first partial solution can be proposed. This manipulation is aimed

at transforming a description Into a form suitable for retrieving stored

partial solutions .

A version of this theory has been encoded in NASI. As coded , it is

i ndependent of electronics , although enough restrictions have been placed or’

it to keep me from claiming i t is a comp lete general desi gn theory, It is

mean t to be a theory of eng ineer i ng design , for which , to first order , all

effects can be thought of as local interactions among connected modules , each

of wh i ch is desi gned to accomplish some par t of an overall objective. It is

biased toward systems whose interactions can be descr i bed numericall y. I w i l l

call this domain “desi gn of hierarchical systems. ”

it is st ra i ghtforward to express In NASL most of the concepts I have

outIined~ The first step is to imp l ement the notions of “requirement” and

—a— .. - -. -~~ ~,-

III Desi gn of Hierarchical Systems 94

“structure fulfilling i t” as tasks and eubtasks. That is. a desi gn problem is

expressed as a task, and the termina l nodes of the function -structure graph

are to be i dentified with primitiv e tasks of the form “grab a (primitive)

component.” For example , a first—pass anat ,sie of an electronics prob l em may

generate thie structure:

Make a cascade

Acquire
~ 0 Couple

Stage l
Acquire Stage 2

Fi gure 111 .2 A Two-Stage Cascade

Later elaboration will instantiat e the coupling task:

I

i— .- — - ~~~~~~~~—
.

~~~~~~~~~~~ -
--

~~~~~~~--~~ 
-

~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—. -- .-- --~~---‘- - ___________



III Desi gn of Hierarchical Systems 95

STAGE 1
I
,-.
’ 

COUPLE
‘
~T
’ STAGE 2 /

I (Th /
I /

[

1LJ1_J
Figure 111 .3 An LC-coupled Amplifier

“Partial solutions ” are imp l emented as a kind of plan schema. A

particu l arly i mportant kind of partial solution is a device type , a packet of

facts clustered around a concept like “amplifier .” or “operationa l amplifier ,”

or “resistor .” Some of these facts descr i be the structure of the devices of

the given type, but many of them are concerned with how such devices are used

in solving larger design prob l ems. This last set of facts defines a set of

tasks for elaborating a device and connecting it to its peers.

Primitive devices are those with no interna l structure , whose elaboration

consists mainly of selecting values for their control attributes. The system

represents these obligations as a set of “SELECT-VALUE” tasks. The

constraints that accumulate dur i ng a design are imp l emented as policies which

influence the execution of SELECT-VALIE tasks.

- - — - ~~a~ .-~~—---- --- --,—,— ..—~~~?- =~~~~~~~ — - . - -  r — -



Ill Desi gn of Hierarchical Systems 96

Because we are us i ng the NASL interpreter , all desi gn subprob l ems are

represented expl i c i tl y in the data base as tasks. Partial solutio n plans are

recovered, as for all tasks, by using SIP to retrieve them. Choice rules are

used to choose among or compose sets of partial solutions. Simultaneous

subprob l ems are represented by simultaneousl y active tasks. There are

frequent cases where it is i mportant to star t on one prob l em before another ,

because the solution to the first wil l  influence the choice of approach to the

other. This can be arranged by writing rules to cause the deduction of

/:SUCCESSOR formulas.

The manipulation of requirement descriptions when routine i ndexing fails

to retrieve a partial solution is handled by a special desi gn rephrasing plan.

It says to turn a recalcitrant design task into a task network of the

fol lowing kind (cf. Fig. 111.8): make a device of a known type, and constrain

It. The p lan is to do this by tear i ng the given problem into pieces called

“shards” (usuall y conjuncte from the design requirement), each of which is

classified as spec i fy ing either the device type or a constraint. The plan

succeeds on l y If every shard is accounted for in one of these ways. It is

generally the responsibility of rules from domain-dependen t plans to make sure

th is Is true. In the electronics domain, as we shall see, there are many

rules for manipulating shards, rang i ng from those wh i ch conver t shards

regarding gain into control-quantity constraints, to those wh i ch change

signal —conversion shards from the time domain to the frequency domain.

This is a broad outline of the design theory encoded in the forma l theory

of DESI. (Appendix 2) A point to notice in its expoettion is that I appea l ed

to i nnate control concepts to explain notions of structure, purpose, and

constraint , It w il l  be seer: that appeals like this, appropriatel y formalized .

are the on ly kinds of know l edge of these concepts that DESI has. In a

~ 

, - -  
- _ _ _ _ _ _ _  

4



III Desi gn of Hierarchical Systems 97

primitive way, the program exhi bits “machinomorph i sm ,” the inclination to

understand other systems in terms of its own kinds of motives. This allows a

certain computational economy, and makes assimilation of new information more

reliable by enforcing a sma l l vocabu l ary. A complicated and delicate (or

electronics-dependent ) theory of purpose and comm i tment does not have to be

added by the user.

Before turning to a detailed exposition of the DESI imp l ementation . I

should mention three i ssues I w i l l  have little to say about: learning, search,

and creativity. The last of these may seem the most impor t ant. Many peop le

would probab l y be skeptical about the ability of a machine to do desi gn.

because creativity seems to be absent from machines and vital to desi gn.

Indeed, “design ” and “creativity ” seem almost to be defined in terms of each

other. If this issue bothers you, let me call your a t t en t i on to the

distinction between “routine ” and “imaginative ” desi gn. Routine desi gn is the

production of an artifac t in a field (such as electronics ) such that anyone

else with an ordinary mastery of the field could have produced the same thing.

This kind of desi gn is the only kind I can claim to have a theory of.

DESI does not learn anything from do i ng a desi gn. Although at the

beg i nn i ng of this chapter I descr i bed designing as adding more detail to a

descr i ption , the description at the end of a desi gn is not represented the

same way as the prob l em description. The prob l em description is essentiall y a

k—expression , but the final result is a set of statements In the data base

about “X043,” or whatever symbo l was chosen to represent the target device.

To learn, DESI would have to gather these statements together into a new plan ,

and i ndex it under a useful generalization of the prob l em. Doi ng this is

diffIcu ’t . (Cf. Suseman, 1975) ‘.

Other kinds of l earning are also possible. One can imag i ne a program

- 
_ _ .. .L .. 

- - -



I ll Design of Hierarchica l Systems 98

learning how to order certain kinds of subprob l ems, or how to choose and

compose partial solution , These are examples of “ trial and error ” learning:

to attack them requires a theory of search.

OESI . like all NASL 
p~

istems. tries never to make a choice at r andom , and

never backs up to undo ~~choice. (See the discussions in Chapter II. ) Thus.

it can be said not to ge~rch at a l l. thi s is the ri ght organization , hut it

needs to be comb i ned with a learning cystem that proposes new choice

pr i nciples by watching wha t happens after it does make an arbitrar y choice.

For example , if one amplifier ci rcuit is chosen from several that satisf y the

known choice pr i nc i p les , and later its i mpedance is discovered to be too hi gh.

the system should not back up, but should make up a new choice pr i nciple to

rule ti-rat circuit out in case high impedance is required.

The system currentl y does none of these things. If its rules get it into

trouble , it w i l l  l ook for a correction plan that fits the situation , hut w i l l

do the same thing all over again If the next prob l em is similar . This is a

ser i ous, but (I hope) temporarag, defect in the theory, since it seems clear

that people l earn something new in the course of all but the most routine

design tasks.

As I descr i be in detail 0(51’s design theory, I w i l l  point to the mor e

forma l exposition of Appendix 2. By l ooking there, you will be able to judge

the power of the NASL control l anguage. U will be seen exact ly how often i t

is directed and flexible, and how often clumsy, arbitrary, or inextens ible.

The i mportant point at issue dur i ng this otherwise tedious exercise is one’s

ability to represent var i ous specialized control and debugg ing strateg ies

using the framework of tasks, data-dependencies , and conflicts descr i bed in

Chapter II. In what follows, references to the formulas of Appendix 2 are

Indicated thus: *Tormu la-name>.

~
— ---- —-- - -“ - . . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — -  -—



III Desi gn of Hierarchical Systems 99

II I .A The Representation of Know l edge about Devices

Much of desi gn is the man i pulation of devices. A device is any

man i pu l able, “physical” object in a desi gn domain. (Thus, si gnals w i l l  not he

dev i ces , but nodes w il l  be.) Familiar classes of devices tha t are useful are

called device -types. These classes may be formed in several wags. (Sect.

11I .A.1 ) Each device in a class is descr i bed by a set of formulas arranged in

certain standard ways. (Sect III.A.2 ) A sat of formulas describing a device

type is instantiated to form a particular dev i ce~s description. Know l edge

about a dev i ce type is therefore conven i ently represented as a “packet ”

(McDe rmott , 1975) of facts which is instantiated when a particu l ar example is

consi dered. This packet is called a device schema. (Unfortunatel y. Brown and

Sussman (1974 , A. Brown, 1975) have used the term “plan ” for this purpose.

This confli ct , with the usua l range of mean i ngs of this term in Al. I have

used this term in the more traditiona l meaning already in discussing the

Interpreter.)

III .A .1 Hierarchies of Device Types

Dev i ce types wh i ch have a recognizable function and circuit diagram (or

symbol) are called basic. Basic device types may be l umped into loose classes

calle d superordinate device types. c*DEVICE-CLASSES, (This terminology ig

borrowed from (Bobrow and Winograd , 1976), but I am not sure I mean the same

thing by it that they do.) Sometimes such a higher class exists just because

people have a name for it and use it to specif y problems. An example I,

“amp lifier. ” Sometimes there is some clasa of facts it is convenient to store

tog.ther , as for “2-terminal,.” (See Chapter IV.)



III Desi gn of Hierarchical Systems 1BB

Kinds of Device Type

Bas ic
Primitive (e.g., resistor )
Composite (e.g. , common-emitter amplifier )

General
Specialized

I deal (e.g., current source)

Superordinate (e.g.. amplifier , 2-term~~~l )

Fi gure 111. 4 A Hierarchy of Types of Device Types

Basic device types may be further classified ~*BASIC—DEVICE-CLASSES> as

primitive , composite , and i deal. Primitive dev i ces are the terminals of a •

complete function-structure graph. (See be l ow.) I dea l devices such as current

and voltage sources behave as primitive devices . hut must be “imp lemented. ”

Canned devices that are made up of simp l er components are called composite

device types . Textbook diagrams of things like Hartley oscillato r s and

common—emitter amplifier s may be taken as standard examples of composite

device types. Often these textbook diagrams l eave implic i t  what I take as an

I mportant feature , that they exist in general and specialized versions. (Fig.

111 .4) .c*CENERAL-DEFN> The general common-emitter amplifier , for instance , is

just a transconductance treated in a certain way, whereas the “typi cal common-

emitter ” has biasing resistors hung all over it. (Cf. Watson , 1970) This is

expressed as

(DERIVED TYPICAL-CE GENERAL-CEI .

The i mportance of this rel ation wil l  be brought out shortl y.

Thus a particular device wil l  be at the bottom of a hierarchy of general

and euperordinate devices. (Fig. 111 .5)

~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- - - -

III Desi gn of Hierarc hical Systems 101

0 ~ Tr ..~ SUPERORDINATE
SUR DE~ T Y PE

---0’
[)(RIV ED

Amplifie r

8

~ SPF 0EV - TYP E

!nr tter Coupled ~~~i r BASIC

SPECIALIZED
0 DII Amp 0 0

Non -- Invert rig Inver rig

Figure 111.5 Devices in The Type Hierarchy

The relation between the devices above the BASIC l evel in Fi g. III .S is (SUB —

0EV—TYPE Idev type l I superordinate day typal). Be l ow tha t l eve l , the relation

is (SPEC-OEV-TYPE I specialized dcv typel I dev tt jpe lJ. Thus we would write

(SUB—0EV-TYPE COMMON-EMITTER AMPLIFIER) and ISPEC-DEV-IYPE TYPICAL-CE COMMON-

EMITTER). (The DERIVED relation wil l be explained be l ow. Sect. III .A.2.)

A device wil l be of several device types. wr itten (0EV-TYPE ~dev I Itup el l .

There is usually one, its MAIN—DEV—TYPE, which Is the most speci fic category

it I, known to fall in.

llI.A.2 The Representation of Device Diagrams

A device is either primitive or composite, depending on its main device

type. A devIce is spec i f ied w i t h several kinds of information (most of them

are not necessar y for primitive and ideal devices) :

__
-~~~~~ - - - -

- _____ a

III Oesi gn of Hierarchical Systems 102

(1) The components of device s of that type. This is kept in formulas of
the form

[COMPONENTS Idevice l < -componen t names- >)

Each component is i t s e l f a device , whose main device type is expres sed by a
separate formu la. For example , for a vo l tage divider VO#2 1 we mi ght have

[COMPONENTS VO#21 <(Ri VO#21) (R2 VO#21h.J
(MAIN-DEV-TYPE (Ri V01121) RESISTOR)
(t1A IN-OEV-TYPE R2 VD#211 RESiSTOR) -

(2) Connections and constraints between component s . There can he no
domain-independen t notion of connection between physical ob jec t s . since any
physical med i um can be exploited. The onl y completel y general thing tha t can
be said is that connecting devices “constrains ’ them in some way.
(Otherwise , there would be no point in connecting them. Cf. “CONSTRAINT2” i n
Fi g. 111.1.) As we shall see below , there is a rich theory of constraints
built into OESI.

(3) Contro l quantities. These are numeric al-valued attribute s of the
device that the designer has complete or partial control over . They are
represented by formulas lik e

(CONTROL iatt ri bute l Idevice l Jrange j ~degree of con t ro li J.

This dec l ares attribute to be a control attribute; i t means that the quantity
(Iattribute l Idevice l] may be assi gned any value from the set of nt ”rbers
range. Since real components often vary from their nom i na l values , the
formula specifies the degree of control of the attribute , which is the
quotien t of the hi ghest and l owest possib le true values compatibl e with the
selected value that appears in the data base. This value is actuall y the
(geometric) mean of hi ghest and lowest values. These u n c e r t a i n t i e s w i l l be
taken into accoun t in reconci l ing constra ints . As an examp le , in e lec t ron ics
for a transistor 011173 we mi ght have

(CONTROL BETA 011173 (INTERVAL 10 500) 10) .

since the beta of a t ransistor is controllable onl y to within an order of
magn i tude; while

(CONTROL POLARITY 011173 <+1 -1> 1) ,

since every t rans is tor is unamb iguousl y PM’ or NPN.
A distinction must he made between irrtsedlate control quantities and

derived control quantiti e s, correspond i ng roughl y to attribute s of primitive
and composite devices. There are several relevan t formula types for
expressing information about these matters:

(a) (IMVIEOIATE-CQ ‘$contro l quant ity ll
- Example: IIr1f1EOIATE-CQ ‘ RESISTANCE R1121iI

— S -
- - - -- — —fl— - - 4 J

I I I Des i gn of Hie rarchical Systems 103

(b) (OERIVEO-C0 ‘
~~control quan tity~)

E.~a’nple: (DERIVED-CO ‘ (V-GAIN AF1P#34)) The actual function
relatin g the V-GAIN of the amplifier to the values of its c~~mf ’ r i r ient9 ’
cont rol quantities can be der i ved from c o n s t r a i n t s f ound in the
description of AIIP#34. Often these w i l l be found in the device schema of
which AMP#34 is an instance.

(c) [GENERIC-CA Ia t t r i bu te l l
Example: [GENERIC-CA THEV-R] It would he tedious and wasteful to

der i ve a formula for each device or device schema relatin g it s Thevenin
resistance to its components ’ values. (A change of topolog y, for
instance , would force a recomputation.) Instead , some control attribute s
can be declared generic , mean i ng the system knows how to compute them and
w i l l when they are needed. (The curren t system can handle th is to the
point of enqueue ing a CALCULAT E task , but the computationa l techn i ques
required have not been imp l emented.)

(4) Task information. Every device has a cloud of tasks floating around
it. These wi l l be of var i ous sorts:

> The purposes of a dev i ce and its components are represented by a set
of fin igh ed tasks associated with acquiring them.

> Many devices w i l t not function as they are supposed to without further
work (“ subrequiremen ts ” in Fi g. 1 1 1. 1) ; these active task s are called
expansion obligations. These ride along on most composite devices and even
some primitive ones; a transistor , for example , must be biased into i t s
intended mode.

> A device carries along moni tor s on the topology of the connections
in side it and from it to other devices; some of these monitors are for
protection of i mpor t ant relationships , and some just to notice when something
must be recomputed.

These are characteristics of devices. A device schema is merel y a canned

set of such formulas with a free var i able to be bound to a particular device

when it is made. Device schemata are used to represent device types. They

are usuall y imp l emented as “packets. ” (IlcOermott , 197S) For examp le , the

packet for “voltage divider ’ wil l inc l ude the formula

(COFFONENTS ?N#VD < (Ri ?##VO) (R2 ?#ilVDh)

from which the formula g i ven above for VD#21 w i l l be derived. The prefix

‘?Nø” specifie s that ?11#V0 is a var i able loose l y bound to an “abstrac t voltage

divider .” The formula says, “ the typical VO ?X has components (Ri ?X) and (R2

_ _ _ _ j

I I I Desi gn of Hierarchical Systems 104

?X1 .“)

The tasks that w i l l be liberated when a device schema is in stanti ated are

called frozen tasks , and the liberation process is cal led “ thauing. ” Frozen

tasks may be though t of as mummi fied remnants of actions that were

(conceptuall y) executed when the device schema was first put together.

(Device schemata are to be though t of a” the result of previous desi gn i ng

a c t i v i t y f o l l owed by summarizing wha t -~ s learned , but this is just to h~~Ip

your imag inat ion; such a learning scheme do”sn’ t e x i s t y e t .) One thing that

must be left around in a schema is a record of why the var i ous components were

acquired and connected as they are now found; in other words , the purposes of

the components. (If for no other reason , these are necessary in case they

have to be undone dur i ng mistak e correction.)

The simple st way to accomplish th i e is to keep the tasks that were known

at the end of the (imag i ned) desi gn episode in a frozen state. Some of these

w i l l have been FINISHEO: for exampi., the tasks that acquired thp rnmpnnpnts

are there just to record uhy they were acquired. Other s are ~~t I I ii t ‘ye.

For example , there w i l t be ACTIVE con straints and p r n t e r t e d mode l

man ipulat ions.

By way of illustration , a voltage d i v i d e r may be f i r q ’ “ir. ,~~’’ ‘ + .~~~ • i i r - ~~~

of setting a bias voltage in a particular amp l i f i e r rIe~~ign Ir , nhlPm . A v r . I I . ~q~

divide r found in a schema must he 3,snciat,.rI in ‘I -i p et ‘ - ~~ I I. .•.-~~.rrg ‘‘ . ‘

bias voltage set.

An advantage of the frozen po t c~~ ~o lut I nn c m : i i I I~~i .i ’ . - q ;. , i~ I

Imp l ementation of purpoi~e commen
t s is that nne mer fr~i.,sm i s i”~ to l i i f t p

local cooperation and conflict of tasks as we t I iq inte r ar l in ri’~ C f rre.i ~ ‘ ~f~~m

with old purposes. This is an examp lm of the “machiriomo , ri~~ ’i nr I m p . i t i - ‘ i ~t

the beg inn i ng of this chapter .

- ._ ~i
—. - - - - ‘5- - - - — .— -——-5--

III Desi gn of Hierarchical Systems 105

Spec ia l i zed device types are arranged in a hierarchy according to the

DERIVED re la t ion, Thi , is a more complex r e la t i on than SUB-0EV-TYPE and SPEC—

0EV-TYPE (cf, Fi g. 111.5) , wh ich are used mainl y to cause p roper t ies of hi gher

types to be i nherited by l ower. <sSUB-OEV ---TYPE-1 , SPEC-OEV-TYPE-1> Most of

the properties of a general circuit , such as its topo l ogy and components . ar.e

not to be i nherited by its specializations. However , ther e is an important

class of properties wh i ch must be accessible from the specialization: the

frozen tasks of its more general counterpart. The relation between a general

circuit and its specialization is prec i se l y that the expansion obli gations of

the ger’leral c i rcu i t are f u l f i l l e d by the structure of the spec ia l i za t i on .

To represent this relation , we need some more equ i pment. Every device

thawed from a schema has a “deep freeze’ of frozen task,, which are collected

for conven i ence as the subtasks of an abstrac t task called the (DEEP-FREEZE

I devicel]. If dev-type 1 is der i ved from dev-type 2, then a device of type 1

w i l l have a “SOUL” which is a device of type 2. <*5011-ON-ICE> The i mpor t an t

relation between them is that every subtask of the soul’s deep-freeze is to be

a subtask of the ori g ina l device ’s deep-freeze. This i nheritance is done via

/ :CONSEQ deduction , since it is not i mportan t to see every frozen task dur i ng

norma l operation; most of them wil l have been reduced anyway. They ~ m a i n l y

va l uable in explaining the purposes of components.

For many examples of device schemata, see Appendix 3.

-~~~~~~~~~ .~~~
- - - -- -5- - ---

III Desi gn of Hierarchical Systems 106

111 .8 Design Actions and Plans

I can go no further in talking about devices without talking about desi gn

actions. Thi, is because devices ’ purposes are so intimatel y associated with

the purposes of their desi gner, in this case DESI; and OES(’s purposes are

expressed as tasks.

Desi gn actions fall naturall y into these classes (see Fi g. 111.6):

(1) ‘Design something w i t h property p” : Start ing w i t h no structure or hi nt
of it . one is to produce such a thing.

(2) “Make an x ”: Here x is a dev i ce tgpe, an example of uhich is to he
created, This kind of action breaks down into subtypes, depend ing on wha t
kind of device type x is. Mak i ng a baSic type tends to be a matter of
choosing wh i ch version along the spec ialization scale to use, then plugg ing in
its frozen task,. Mak i ng a superordinate type requires mor e i nvolved and
careful choice , since the sub-types to choose from usua ll y have incomp atible
properties.

(3) “Const rain something ” : Things tha t can be constrained are not devices.
but quantities. There are two classes: phys ical quantit ies such as voltage s
and currents; and the control quantities , such as re~ is~ances and power gains.
that I descr i bed above,

(4) “Change a device ”: Given a struc ture, i t can be altered in var i ous
ways. These actions inc l ude fixing a physical quantity, bias in g a c i r c u i t ,
add i ng feedback to i mprove stability, and coup)ing two stages. The action s
are defined by plan schemata that often come in speciali zation hier arthies
like those of devices. A major subdivis ion of these are actions wh i ch snvo lva
chang i ng the previously reign i ng plan network as well , for examp le, alter i ng a
control quantity wh i ch is already fixed by constraints.

This list is der i ved by common sense, and from perusal of 100 Ideas for

Design (E l ectronic Oesign, 1964), among other works. (Senturia and Wedlock ,

1975)

III Oes i gn of Hierarchica l Systems 107

Desi gn Act ions

1 DESIGN

2 MAKE
superordinate
primitive
i deal
general
specialized

- - 3 Constrain
CONSTRAIN
SELECT-VALUE

4 Change
FIX quantity
BIAS
COUPLE
Patch

IMPROVE gain, input-Z , se le c t i v i t y

Fi gure 111.6 Oesi gn Action Taxonomy

The desi gn prob l ems wh i ch appear in books such as these inc l ude

“Desi gn a power amp lifier... ’ (Ty pe 2)
“Increase the current... ” (Type 4)
‘Isolate two connected devices ” (Type 4)
“Make tne quiescen t output voltage 40V” (Type 3)
“Desi gn a circuit with a hi gh gain-bandwidth product ” (Type 1)

— “Avoid l oad i ng” (Type 3)

(There are other kinds of actions , guch as “simplify a circuit ,” wh i ch I have

not counted as among these types. I hope they can be added, but I have no

plans to do so.)

111 .8. 1 DESIGN

Ther e is only one action in thi, class.

(DESIGN ~pr op~1 —— > t<lnam.I 3

This action usually ar i ses at the top l evel. Successful execution of such

an action creat .. a mode l of a dev ic. that has propert y prop. In easy cases ,

5.- --—-- —.-- 5 -5 — 5 -
- - -

— - —
~~~~



III Desi gn of Hierarc hical Systems 108

this reduces qu i ck l y to an action of Type 2. .c*EASY-DESICN>

In the hard cases, processing turns upon a large body of domain-dependent

rephrasing knowledge , directed by the rephras i ng plan DESI-REPHRASE-PLAN.

c*+DESI-1, +DESI-2> This p lan network may be graphically expressed as

follows: - - 

- — - -  - — -  -5 - - : -.



III Des i gn of Hierarchical Systems 109

U)

(I)
(V> ~

O~~~t.~~
2Q’,

D)U~~~
~~~~~~ c !~
~~~~~~~~~~~(
~~- cU ,~~._v

0

\U)

1~

O~~’0> Cow~~~, 

/

I.-

‘DO
CC) C‘D

0 0 0+

z
0
LU

‘Ca.
o’E$4-

w o_08+
~~~

• Figure 111.7 Design Rephrasing Plan Schema

This Is a plan to man i pulate th. design prob l em as an object. The plan

network is set up us i ng a formula cs+DESI-1> wh i ch extracts the desired

- -~~~~~~~~~ —- - -- ~- - - ~~~~~~ - - a - -~~~~.- ______ _____________

— —.-‘~~~~~~~~~~ - - --——-•— •—-——— --—---•-—- - - - ,. — - —

III Desi gn of Hierarchical Systems 110

predicate as the value of ?-.-P. In this context , the embedded formulas.

prefixed with the character “
_

“
, are be ing used essen t i a l l y as SNOBOL patterns

(Farber et. al., 1964) to tear the goa l to be rephrased into manageable

pieces. So ?+P wi l l have value ((tpropl)J. (See Appendix 1.)

Remember that the final aim of a rephrasing task is a revealing reduction

of its targe t task. A detailed analysis of the prob l em may be postponed; the

impor tant thing in rephrasing is to make it “familiar .” The goal in the case

of ~~~~ desi gn rephrasing p lan is to reduce the design prob l em to the fo llow i ng

net:

0 side-tasks

D-NOTE Q4~~~ 91 ~~~~~~~ 0 (usually CONSTRAINS)

policIes On 0 0
MAKE 0

Fi gure 111. 8 Rephrased Desi gn

The strategy of the desi gner is to “exp l ode” the g i ven predicate into “d-

shards,” which are conjuncts of the ori ginal predicate. Discover i ng d-shards

Is occasionally straightforward .c*O-SHARD>, but usuall y depends upon forniu I~ s

for the domain invo l ved. (See Chapter IV.)

The d—shards are valuable onl y insofar as they l ead to one of three

th i ngs:

(1) A core-device-type the MAK ing of which is the simple first step of the
rephr ased desi gn plan (Fig. 111.8) ;

(2) Side-tasks , typic -i ll y to enforce numerical constrai nts discovered as
d-shards;

(3) D-teatures, qualitative predicates used a. policies in mak i ng a core-
device- type.

Thie fac t is expressed as the policy task ACCOIJIT-FOR-ALI, which says to

——- -5— --- —--5---—-— —A----- - - —-- —

- _____________________________________

III Des i gn of Hierarchica l Systems 111

make sure that every d-shard leads to one of these three thing s . In the

current implementation , it is an error if a miscrean t shard is discovered . A

mdre sophisti cated imp l ementation would know how to try harder ar~cl attempt to

l earn from its efforts.

The onl y other feature of interest in the general desi gn rephrasing p lan

i s the step CORE-FINOER , dur i ng wh i ch NASL must find the core device-type to

be used. The core device type is often clear from a d-shard of the form (IA

($v ~
) (DEV—TYPE ? lv I Idev-type l)11 c*CORE-DT-1>. However , rules from

particular domains can and do suggest device-types based on mor e elaborate d-

shard processing. The interpreter must choose one. It is the responsibility

of the writer of this know l edge to prov i de cho i ce rules to get out of this

situation. However , there is one rule <eCORE-OT-CHOOSE> which is domain-

i ndependent: if one device type is subordinate to another , rejec t it. (It

should be suggested later anyway by the policies that grow out of cl-features.)

This rephrasing method may be compared with the proposal of Moore and

- Newell (1974) for the MERLIN program. The i dea there was to be able to “view ”

any conceptua l struc ture a. another by a process of mapp i ng the pieces of one

into the pieces of the other . DES) tries to view any desi gn prob l em as

“mak i ng a ..., while noticing hints +4+, then do i ng --- “
; this template may be

seen as a three -slotted structure, such that every piece (“d-sharcl”) of a

design prob l em goes into one of these slots . The process is more struc tured

than MERLIN; in particular , this kind of rephrasing is not an operation wh i ch

can always be done by definition ; it i s capable of failing. The analogy may .

however , be revealing. (It was sut • “.t.d by Marvin Minsky.) I suspec t that

many rephrasing problem. can he put in this parad i gm form , and that the

rephrasing protoco l can be made more specific. However , curr entl y DESI does

things with rephrasing which canno t be seen as an instance of this parad i gm.

— ——--i--- - - . — - - __________________ -~~~~~.. -- a

III Desi gn of Hierarchical Systems 112

(An example is equation solving.)

III.B.2 Making Things

(1) (MAKE I dev i ce type~) —— > (<Inamel>)

The inten t of this action is to create (‘buy’) a device of the indicated

type. If the device type is basic c*FIAKE-BASIC-PLAN> , a task net is set up

with a primitive GRABBA action , which wil l just generate a new symbo l and make

its ma i n—dev-type be the basic type. Extra tasks are hung on the network .

depend i ng on whether the device is primitive <*MAKE-PRIM> , composite <*MAKE-

COMPOSITE>, or i deal <*I1AKE-IOEAL>. In the case of primitive devices, the

onl y comm i tment enqueued is to se l ect the values of its control quantities.

In the case of composite dev i ces, the plan subnetwork includes a subtask to

expand the dev i ce at some time in the future. Ideal devices receive a

comm i tment to be imp l emented. (These new tasks are not marked /:MAIN in their

task networks, so they do not have to be finished before the successors of

their supertasks are begun; hence, they amoun t to futur e commitments ,)

Expansion of a composite circuit means wiring up a circuit diagram for it.

Usually this just means selecting a specialized device type and dec l ar i ng the

circuit to be that type; this i~ calle d “specializing ” the circuit.

c*SPECIAL IZE-OEFN> The system has a cho i ce of circuit diagrams from the

specialization hierarchy. If one circuit is OERIVEO from another (and hence

is “specialized” ; see Fi gs. 111 .4 and 111 .5) , it w i l l do the same task , but

may depend on more specialized assumptions. It is the user~s job to write

rules that suggest circuit versions to match requirements, but the system

knows abou t two peculiar specializations of a circuit: Its “most general”

specialization and it. default spec ialization. <*MOST-CENERAL-DEFN, DEFAUL T—

_______- —~~~ — — a

III Desi gn of Hierarchical Systems 113

SPEC-OEFN> If eit her of these is availabl e , it w i l l be suggestorl . Generall y,

onl y one specialized device type of some basic type w i l l come up in a g i ven

context. The user must make sure tha t good choice rules are available when

more than one appears. The trade-offs should be clear : a general schema

i nvo l ves more work on expansion -obli gations , but using a specialized version

runs the risk of hav i ng to correc t the circuit topo l ogy when some assumption

proves unjustified.

If the user’s rules do not sufficientl y disam b i guate , the system uses the

two rules .c*SPEC-DEV-BETTER , TIJO-SPEC-DEVS-Wc3RSE-THAN-ONE> . The f i r s t

encourages the use of a more specialized device type if it has been suggested;

the second overrides this one by ruling out con f l i c t i ng suggested

specializations.

Basic dev i ce types are just canned diagrams; the choice is which version

of essentiall y the same circuit to take, That is why these special cases can

be distingu i shed. In choosing among superordinate devices , rules for zeroing

In on basic sub—types are entirel y up to the user .

(2) (ACQUIRE Idevice type~ J - -> (<m acel>)

(lAKE a device type, unless there is already one around which can be used.

.c*ACOU IRE-OO-1 , ACOUIRE-OO-2> For example , you should always re-use old

voltage sources Instead of mak i ng a new one; you should never re—use a

transistor ; and you should l ook around to see if you can bum a node before

mak i ng a new one. (Thl~ last information is purel y domain-dependent. See

AppendIx 3.)

_ _ - .- . •
~~~~~~~

- -  -- ~~~~~~~~~~~~~



III Des i gn of Hierarchica l Systems 114

(3) (EXPAND I device ll

This action is required for devices which are not full y specif ied by their

circuit diagrams. (See be l ow , Sect. III .A.2 .) This task doesn’t require

elaboration , but accumulates subtasks by deduction. For example, it picks up

expansion obligations from composite device schemata. These are actions wh i ch

become subtasks of the task of EXPANO i ng each instance of the device.

<*EXPANSION-OBLS-DO> Other tasks that are created involve find i ng all GENERIC—

CA’. of the device tha t have been constrained and deriving the formulas wh i ch

define them. c*CENERIC-CAS-DO, (See Sect. IV .B.4.)

(4) (CONFIG < -types- >
(A (— vars-) < —act ions-  > Fl

Thie is a “macro -action ” wh i ch is an abbreviation for “ACQUIRE the types,

then bind the var s to the resulting devices to generate a list of actions to

perform. ” <*CONFIG-DEFN> The LISP program SET-UP-CONFIG wh i ch elaborates it is

not shoun in Appendix 2. CONFIG is used as an abbreviation in Appendix 3.

111.8.3 Constraints

(1) (CONSTRAIN < —quantities- > ~pred )J

Executing this action commits the interpreter to cak i ng pred hold true of

the var i ous physical quantities and control quantities. Thus, it is naturally

a pol icy. CONSTRAIN is a peculiar mixture of ACHIEVE and (-3UME . If a

quantity is under control , you are permitted to ASSUME it has any value that

doesn’t contradict what is already known about it. So, when CONSTRAINing, it

is often permissible to record any equalities deducible i mmediatel y from i ts

constraint plus other constraints and equalities to be found in the data base,

5
— - .- - - . - -5—-- —- --5- 

a



III Desi gn of H i e r a r c h i c a l  Syntr’mo 115

(Cf. (Suesman and Sta liman , 1975).) Ii these constraints and e qualities

contradict the new constra int , the act ion fail s . (See Sect. I I I .B .)

En detail <*CONSTRAIN-DO> , this is how CONSTRAI N ing is done: i f the number

of unknowns is exactl y one, and the main connective of the con straining

predicate is “ — ,
‘ then the system i s to try to sol ve t he equat i on

i mmediat e l y. c*CONSTRAINT-RESOLVE-DO > I f it is solvable , the result is to he

p rotecte d. (See be l ow.) In either case, the CONSTRAIN remains an established

po l i cy  (a “const raint ”) .

Algebraic Symbo l Manipu lation

Several times in discussions of constr aint and equa lit y man i pul a tion I
have assumed some sophisticated symbol—man i pulation a b i l i t y by the progr am.
The var i ous tasks that I take for granted include solving equation s , choosing
values to satisf y rather arbitrary constraints (inc l ud i ng inequa l ities ) , and
find i ng the prec i se way that a one control quantity depends on the variation
in another (see Sect. III .B) . In the l ong run , it would be enli ghtening to
see whether the structure of the NASL system is sufficientl y f l exible for this
information to be encoded as a set of NASL formulas. Preliminary indications
are that this is quite feasible; very simple equations are already solved by
the tasks generated by <mEaN-SOLVE-DO> . (Other equations mi ght be handle d by
the methods of (Bundy, 1975).) My judgment has been that to explore this byuay
in more depth would hog me down. This lecis ion is not obvious: after a l l ,
f l e x i b i l i t y  of application is one of the main desi gn goals of my system.
However , havi trg an implementation of one domain is , for now , much preferable
to hav i ng cur i ous fragments of several. Iherefore , I depend upon ca lls to an
exper t symbol-man i pulation system to do th is  wo rk fo r DESI. I mi ght have used
some symbol-man i pulation system like MACSVIIA (Mathlab , 1974). but , for
simplicity, I chose myself as this exper t subsystem. Uhenever a non - trivial
symbol-man i pulation prob l em needs solving, the system types out a request for
a solution and waits for its human inter l ocutor to supp l y it.

It is to be hoped that this is not a permanent trend in computer science ,
since it tends to reverse the usual practice of having humans do the creative
work while machines do the ted i ous chores.

__________ a



III Desi gn of Hierarchical Systems 116

(2) (SELECT-VALUE Icontro l a t t r i b u t e s  I p r i m i t i v e  dev ice l )

This action is to be postponed until all tasks of Types 1 . 2 and 4 are

fini shed. <*SELECT-POSTPONE> DESI makes all SELECT-VALUEs subtacks of a task

SELECT-EM-ALL wh i ch is a successor of every “topo l ogy-chang ing task. ” It is

assumed that this kind of task is recognizable from its action function.

(MAK E and FIX (-quant i ty ) are the onl y built-in topo l ogy-changers.)

When the system gets to a SELECT-VALUE task , either the control attribute

for this device already has a value; or DESI must pick a value within the

range of the control attribute wh i ch fits al! the known constraints on it

c*SELECT-VALUE-DO> , and i mpose model effect

(—I> ‘(Icontro l attribute l J primitive device l ) lva l ’i e l ) .

It then PROTECTs the fact that the value satisfies the constraints.

If there is no such value , the system is faced with a “constraint

co l lapse ” (see Sect. III .B ); tha t is , it has made a mistake.

Executing SELECT-VALUE tasks causes the resolution of all remaining

constraints of a network. -

(3) (PROTEC T ‘ Ip rop osition h i

The intent of this action is tha t the system should become alarmed , i .e.,

realize it has made a mistake , when the fac t is no l onger true in the model.

This Is not as easy as it sounds or as it is usuall y imp l emented (Sussman ,

197S), because the g i ven fac t may be onl y indirectl y related to atomic facts.

Because data dependencies are maintained by the system , it mi ght be

possible in pr i nciple to make this a built -i n action. That is , the system

could Iu~ t wait for propagating erasures to wipe out a fact. Somethin g

special would have to be done for the results of non-mono tnnic inference (that

is , using /:CONSISTENTLV), because in this case it is recording 1 fac t that

I;



I I I  Oes i gn of Hierarchical Systems 117

could upset the protected fact.

For this reason (and for the weak introspective reason tha t Protecti on

does not seem to be a fool-proof operation ) . I have DESI treat protection as a

problematic action to be reduced to different subtaske in different cacr’s.

This decision is under review.

In the desi gn domain , we have need pr i maril y of protectin g va l ies Lihich

are der i ved from consi~~rat ion of constraints. This is done -*QVAL--PROIECI>

by /:MONITORing the fac t that the quantity has a value and /:CONTINUing the

protection policy when the valu e is removed. <xPROTECT-CONTINUE>

[PROTECT 
[PROTECT

‘(SATISFIES ‘(R R*71)ICI)] ...]

[VERIFY j  [/:MONITOR
[I:MONITOR ‘(SATISFIES...)] ’

[ / >  (R R#71) 5OOk~] /(
~(T)

(/:CONTINLJE C/ FIND‘(PROTECT. . )))] new (R R#71)]

Figure 111.9 Quanti ty-Value Protect ion Plan Schema

NotIce that the var i able may be getting a new value which sati sfie s the

constra ints, so the system cannot jump to the conclusion that a protection



I I I  Des i gn of Hierarchical Systems 118

v i o l a t i o n  has occurred. The decision to continue the policy is generall y

postponed. Upon continu i ng i t , if a violation has occurred. DESI rea lizes its

mistake.

I1l.B .4 Chang ing Devices

This is a catch-all category wh i ch inc l udes biasing, feedback , coupling,

and f ixing the value of a physical quantity. These actions are described in

the next chapter . Other domains would have other actions.

The last action i n this lis t  is the onl y one I feel there is any thing to

be said about at the raref ied level of general desi gn. Even for that one ,

about all that can be said i s that , for almost any domain , there exist ways of

f i x i ng  physical quant i t ie s , br i ng ing them under control , creatin g “boundary

conditions. ” For electronics , this is done with sources, volt age d iv ider s,

etc. In mechanical eng ineer i ng, it mi ght inc l ude fasten i ng things down ,

hook i ng up moto rs, etc. Perhaps it is worth say ing that “F iXin g a phys ical

quantit y means turning it into a control quantity. ” but I’ m not sure how to

say that. It is likel y that the way one’s knowledge of this sor t of

regu l arity is used is in assimilatin g a new domain; name l y, everyone knows

tha t when he is learning about meta-h ydrau lic eng ineer i ng he should be sure to

ask what methods there are for fixing meta -l~ydr a u l ic quant~~ties.

Besides these actions, wh i ch ar i se in the cour se of normal problem

solving , there are actions (subsumed under “patch ” in Fi g. 11 l .~~) requir edi to

change a circuit because it is failing to meet it ~ specifications. Th~~ e are

descr i bed in Sect. 111. 0 ; they are not imp lem ented , because the mi stake-

correction machiner y to suppor t them does not ex i st.

Many design plan schemata are arranged in specialization hier archie s



I I I  Des i gn of Hierarchical Sy9tems 119

s im i l a r  to hierarchies of specialized composite device types. (Sect. I I I . A )

Th is is e speciall y t rue of the circuit-alteration p la ns discussed in the next

chapter , The reason for this is that a circuit-alterat ion plan for an action

like “bias ... “ is close to being a devi ce type. The d i f f e r e n c e  is tha t  the

procedural component is larger and the plan is more anonymous: the resistors

used for biasing do not become components of a “biasing device ,” but of the

circuit that is be i ng biased.

Just as devices may be re la ted by the predicate SPEC-DFV-TYPE , plan

schemata may be related by

(SPEC-SCHEMA iplan schema 1 1 ~p Ian schema 211.

Any instance of the specialized schema (1) is an instance of the general

schema (2). <mSPEC-SCHEMA-OEFN> Choice rules are prov i ded f or these plan

schemata which are completel y analogous to the rules (Sect. III .B .2 ) for

choosing among specialized device types. <eSPEC-IS-BETTER , TWO-SPECS-WORSE -

THAN -ONE>

Two other useful contro l  predica tes def ined in the f i l e  DES I are STASK

<*STAS K- DEFN> and REDUCE. <*PEOUCE-DEFN> The first is used to abbreviate in

the common case where a task is defined , and made a subtask of something else ,

In the same breath. The second is used to express a common interaction among

desi gn plans: when one plan accomp lishes par t of the function of another. In

that case , say ing (REDUCE < -reducers- > Ireduceel) means “the reducer tasks

are a~ l the eubtasks of the reduces task: don’t bother to try to execute it

any further .” (Cf. Sect. II.B .1.)

_________ a



III Desi gn of Hierarchical Systems 120

III.C Composi t ion of Parti al Solutions

One of the most interesting and comp lex events tha t can happen dur i ng the

career of any prob l em solver is the failure of the l abe~ s attac hed to i t s

canned plans to match all of the requirem ents of some task , In a desi gn task ,

thi e situati on allows unlimited scope for the study of creativity. Of cour se,

our know ledge of such mat te rs i s as yet very s l i ght , so that the approach my

system takes to the handling of such prob l ems is not terribl y b r i l l i a n t .

When a DESIGN task does not i mme diatel y succeed , an attempt is made (Sect.

III .B) to break it down into a core task plus several constra ints and

“ features. ” For examp le , the knowledge in ZOACH is su f ficie n t to discover

that an amplifier is required given a wide range of requests for desi gns.

Then further choice information from ZORCH is used to select one that is

li kel y to meet all the amplifie r constraints so generated. As mentioned in

Sect. I1.A , this sequence is called the ‘recognition protocol. ” F i n a l l y, the

constraints are resolved.

Often this approach fails. It may fa il in more than one way:

(1) More than one “core device-type ’ (see Sect. III. A ) may be discovered.

(2) There may be more than one way to imple ment a core device type. (See
above , espec ia l l y the discussions of “superordina te ” dev ice c lasses  and
abstrac t device-types. )

(3) The constraints generated may not actuall y be satisfiable.

A l l  of these problems may call for composition of solutions to subproblems .

The last prob l em is peculiar in some ways: I devote section 111 .0 to

describing constra int  reso lu t ion.

The other s are related by having to do with the choice Protocol. For

example , pr ob l em (2) may ar i se if more than one a mplifi e r f i t s  some of the

requ irements, and none fits well enough to ew clude the other s, In t hi s case ,

—

~ 

— - - r.—



I I I  Des i gn of H ierarchical Systems 121

the response of the system when no further exc lu sions ran be marie i s  to  record

(QUIESCENCE lchoic e namej) in the choice data pool.

It is here that choice rule e with conclusions of the form (/:RI ILE-

TOGE THER.. .J are i mportant. They allow options to he superseded by new

options. This is the most natural and painless place for compo sit ion to occur

i n a NASL-based system.

Th is is the closest DESI comes to a universal composition method , Thi, is

a de fec t in the system as it exists. A better system would recognize the nee d

for a /:RULE-TOGETHER and propose one; future ep i sodes would exert cm and

modif y it. For example , some of the choice rules for amplifiers discussed in

the next chapter contain almost-general pr i nciples regarding cascading a

buffer  a m p l i f i e r  to another amp l i f i e r  when the f i r s t  .~‘as picked for its i nput

i mpedance. It is not hard to see a more general pr i nciple regarding inputs

and outputs lu rking beh i nd this spoc i fic one. It lur kg there s t i l l .

For now , you mu8t be content with the specialized composition rules in

Chapter IV .

111 .0 Constraint Collapse

As a desi gn proceeds, the curren t data poo l f i l l s  up with formulas

specif y ing components , connections , quantity values , and constraints. If

everything proceeds smoothly, eventually there wi l l  be a value for every

primit ive componen t and the problem w i l l  be solved. The most common thing to

go urong with this scenario is to discover that some subset of constraints

canno t be satisfied. DESI counts this as a mistake in the sense of Sect.

II.E. All  it s prev i ous machinations were based on the assumption that the

functiona l requIrements could be reduced to constraints and satisfied. When



III Des i gn of Hierarchical Systems 122

this turns out not to be the case, the task network must be altered to reflec t

what it should have been do i ng. On the other hand , as much as poss ible of the

network must be salvaged.

As I pointed out in Sect. 11.E. sy theory of mistakes is as get poor l y

deve l oped. This section must be taken as a continuation of the detailed

proposal I made there , not as a description of existing program.

As a concrete example , say that a low-pass filter is required , which

filter s out one radio station at 700KHz to leave the si gna l of another ,

equall y strong station at 500kHz.

KEEP FLUSH

— kH~500 700

Fi gure 111 .10 Radio Spectrum With Two Stations

This prob l em can be represented easil y us i ng the “frequency picture ” l anguage

1 w I l l  deve l op in Chapter IV . I wi l l  continue to use simple Eng lish in wha t

follows.

The chosen solution is an RC low-pass filter , an instance of the schema

represented by Fig, 1.6. This schema and the frequency-domain methods used to

find it (Sec t (V .8.1) generate these constraints and equalities:

---- - - - _-,-~-~~~~~~~~~~~~ __~= --.-- - -.~~~. -~~----~ -~~~~ - - — - .- — —V-—. —-—



Ill Desi gn of Hierarchical Systems 123

CONL (from rephrasing of the prob lem) :

V0
(798 kHz) < .1V 0(SOOkHz)

CON2 (from schema for RC filter or by ana l ysis ):

H(s) —

1 -,.RC s

CON3 (from know l edge of filt ers ) :

sele ct ivit g (f 1, ~~ 
IH (j2nf1

)~
IH(i2nf 2 1

CON4 (from knowledge of li near devices):

IH (i2nfl l -

V 1(f)

Fi gure 111.11 Relevant Constraints

From these constraints and the statemen t of the prob l em , we can build up

the follow i ng “constra int network” :

14

______________ —~~~~~~~ .. -  ‘.4



III Desi gn of H ierarchical Systems 124

CON2(f 1) CON2(f 2)

IH(j2rf2)I

selectivity (fl , f2) 
I

cQN4(f 1) 
~~~~~~V1(f1) 

co~~~
v0(f1) v0(f2)

CON1

Figure 111. 12 Constraint Network

(Cf. <sCO-CLO> in Appendix 2.)

If all the constraints are satisfiable, that is , if the output amplitude

ratio can be made small enough that the second station has neg li g ible outpu t

compared to the first, everything is fine, But , as it happens, there are no

values of R and C wh i ch can be picked in order to br i ng this off. This is

referred to as “constraint collapse. ” This wi l l be noticed when one of the

constraints proves unsatisfiable. Which constraint it w i l l be is

unpredictable; the problem is clear l y a problem of the whole network rather

than any task.

Recall from Sect. II .E that fixing a mistake involves alter i ng the current

______________ ‘ -. -~~~~~~~~~-— -- - _~~~- ~_- _~~~

I I I Desi gn of Hierarchical Sy’tem s 125

world mode l and the task network. In this case, there are several current

tasks that have caused the prob l em: the choice of an PC circu it to impl ement

the low-pass filter , and the var i ous CONSTRAINs , some thawed from the RC

schema, which led to the trouble. DESI has a r-’ ord of every choice it made

in the process of setting this network up, so it could f i n d a choice point

that would make a difference, restore the state of the world at that point ,

and try someth ing else; I have alread y discussed and re jected this in Chapter

II ,

The desi gn know l edge of DESI prov i des us with a better method of solving

this prob l em. This method amounts to the fol low i ng Eng lish summary:

(1) Find a control-quantity in the collapsed task network such that
chang ing i t would get rid of the prob l em. This is not as easy as it sounds.
It is counterproductive to consider “mak ing V0fSBBkHz) larger .” for instance.
Any met hod for do i ng tha t w il l probab l y make V0(700kHz) lar’ger as well. In
the example , the proper answer is “ se iectvit y . ” I assume symbo l man i pulation
powerful enough to handle this. (Sect. 111 .0 .3)

(2) Introduce a new task (IMPROVE ‘I l osing control quantity l I rli re c t i on
and magnitude~J. A task of type IIIPROVE . unlike previous control-quantit y
man i pulator ., ha, the aim of chang ing some alread y-set objec t rather than
fixing one that has yet to be set. To execute the I MPROVE tack requires some
domain-dependent rephrasing, choice, etc., which by now are routine. By one
route or another , a p lan like that of Fi g. 1.7 is recovered.

(3) The actua l tasks associated with the IMPROVE plan per f orm the
acquisition and insertion of the new piece ,, an amp l i f i e r , capacitor , and
res i s to r , and the renaming of the outpu t port. The resulting change in
topo l ogy flushes the old constraints on the system function and hence the
se l ectivity of the device and enables the desi gn to be completed. This is not
too painful , since the control-quantity ((H ?OEV) ?FJ is marked CENERIC-CA in
the data pool; when the old stored value is flushed , a task is enqueued to
recalculate it.

Except for the initial symbo l man i pulation , this seems fairl y si mple: the

1I’IPROVE task is no different from any other task , such as BIAS or COUPLE.

which alter, the topo l ogy and par t names of a circuit. The difference , of

course , is that the policies associated with the IMPROVE plan must specify

exactly what parts of the old task network encircling the PC filter are to be

a

III Oeei gn of Hierarchical Systems 126

preserved. The dif f i c u l t y of implementing this scheme revolve around the

careful undo i ng of protections and other policies.

III .E Programmer ’s Gu i de

DESI is a skeletal theory of desi gn within wh ich the user ’s doma i n-

dependent rules operate. These rules wi l l fall into three classes: rephrasing

rules , device def initions , and device-choice rules.

The user ’s rephrasing rules can be very simple. Any dec l aration that a

function is a CONTROL-ATTRIBUTE wi l l cause the cq-shard mach i nery to turn a d-

shard of the form ((A (X) (— (lattribute l ~X) Iva lue l) J J into a side-task to

CONSTRAIN the g i ven control quantit y.

(lore complicated rules can create entire inferential subtasks to make

finer discriminations. Examp les wi l l be given in the next chapter .

In mak i ng up device schemata , the user wil l have to use his intuition s .

Superordinate device types are conven i ent slots to put i nheritable

characteristics into. A basic device type is one with a “diagr am ” common to

every member of the type . (I assume tha t every domain DESI is likel y to be

applied to w i l l have the concept of diagram.) The “diagram ” (device schema)

wi l l not be attached to the basic device type directl y: instead , each node in

the DERIVED tree be l ow the basic type (see Fi g, 111 .5) u i l l have its own

schema. (Remember that the details of the diagr ams for a device type and one

of it s specializations are l ike l y to be incons istent ; the task networks of the

two w i l l be related via the SOUL device.)

In writing choice rules , the user has a cmi ta m amoun t of freedom. There

are three stages in pick i ng a device type or desi gn plan: deduc i ng

possi b i l i t i e s , runn i ng cho ice rules before OIJIESCENCE, and runn i ng choire

_ _ _ _ _ _ 4

I I I Des i gn of Hierarchical Syste ms 127

rules after QUIESCENCE . (See Sect. II .C.1.) There is as yet no iron-clad

semantics for uhat each of these stages means , mainl y because I lack

exper i ence in interfac i ng rules.

Typicall y, the “possibility ” rules are very lax; if a device could he

appropriate, given some piece of the current situation , some rule should

suggest it. Throw i ng it away or incorporating it into a larger structure is

the job of the choice rules. (Cf. CHOOSE-AMP , in Appendix 3, described in the

next chapter.)

The user should be careful in hi s use of /:RULE-OUTs if this is the

structure he chooses. If there are two relevant var i ables in a situation , and

one is , st ri c t l y speaking, incompati ble with a suggested device or plan , this

is not necessar i l y a reason to rule it out. After all , it would not be a

li v i ng option in the choice protocol if the other var i able had not caused it

to be suggested. For example , i nput-impedance considerations may suggest a

common-collector amp l i fier , while gain considerations suggest something else.

It is clear l y s i l l y to throw away the common-collector suggestion on the basis

of gain. Instead , a /:RULE-TOGETHER is probab l y appropriate.

/:RULE-OUTg are useful mainly as a dev i ce for expressing “differential

diagnosis ” inform ation. Such a rule mentions two or mor e optio ng , and throws

one of them away. Remember that the order of examinatio n of these predicates

is /:RIJLE-O(JT, then /:RULE-IN , then /:RUIE-TOGETHER , and that the choice

protocol quits as soon as fewer than two options remain.

QUIESCENCE has no fixed mean i ng. Sometimes the system uses it to express

rules wh i ch are intended to take over if the user ’s rules can’t make up their

minds; this is the case with the rules for choosing among SPEC-OEV-TYPEs.

(Sect. (11.8.2.) This freedom probab l y represents a deficiency i n the cho i ce

mach i nery.

_ _ _ _ _ 4
________ ________________

IV Electronics 128

IV Electronics

Electronics knowledge falls naturall y into three categories: the physics

and mathematics of elect ronic components, devices, and si gnals : the know l edge

necessary to do desi gn, inc l uding rephrasing, composition , and patching : and a

catalogue of c ircuit diagrams and plans.

In this chapter as in the last , the notation <*formula-name > is a

reference to a formula in the appendices , in this case usuall y Append ix 3.

This Appendix is rather l ong, but has been laid out in an order which

corresponds as close l y as possi ble with the presentation of thi g chapter .

Thig chapter is fairl y dull. Give n the vocabu l ary and conventions developed

in Chapter Iii , it is routine to encode much of the information I w i l l

descr i be.

Appendix 3, long as it is , can onl y be described as “sketchy. ” For each

i mportant concept I w i l l discuss , there is a representative circuit , pla n, or

rule set in the appendix , but often several of its siblin gs u i l l be missing.

I w i l l descr i be these gaps in Sect. IV.D.

(V .A Physics

IV.A.1 Connections and Constraints on Components

Recall from Chapter III that connections in a desi gn doma in are physical

confi gurat ions associated wi th constraints. In electronics , these

confi guration, are called nodes.

Interfaces between electronic device , are of t~.o types: termin a l s and

ports. I w i l l discuss ports later . A termina l is a wire com i ng out of a

or composite device , A group of terminals may be bunched into a

_ t_ a
- — - ~~~~~~~~~~~~~~~~ - .. - :

~~~~~~~— - -- -~~~~~~~~~— — -  - .-



IV Electronics 123

“node. ” One constraint on a node is “Ki rchhoff ’, Current Lau ” (KCL ) (Sr’nturia

and Wedlock , 1975), which says that the sum of the currents into a phijc ica l

node is zero. My “l og ic al” nodes are treated as terminals thems elvc”~ at a

“hi gher level , ’ where theij may themse l ves he joined into nodes. .-*NIJDE--TRI1IN>

(See Fig. IV .1),) KCL for nodes therefore states that the current into the

node , considered as a terminal , equals the sum of the currents out of the sub-

terminal , defining the node . <*KCL-2>

I— — — — — — — —
‘i — — — —,

(a) (b)
Fi gure IV .1 Terminals and Nodes

Devices also sat isfy Kirchh off ’s Current Law . ‘c*KCL-l> A composite device ’s

terminals are almost always nodes themselves. These w i l l  be dec l ared with the

predicate 0EV-TERM I NALS. ‘~*KCL-3 ’ (Fi g. IV .2)



IV Electronics 130

(0EV-TERMINALS D”
< (Ni Dx)(N2 D”)>

Figure (V .2 Composite Device Terminals

A fundamental mode l man i pulation in the electronics domain is to merge two

nodes , wh i ch makes them equal. c*NOOES-MERGE-IIANIP> A less easi l y visua lized

operation is 0EV-iNSERT ‘r*DEV-INSERT-IIANIP> , wh ich breaks a node in two .

(Fi g. IV .3)

T3

T2 

N 

T3 

T4 

(0EV-INSERT 0” N 

T2 

N 

T4

<(ipi D”)~i’c T2 13 T4> *1
Ti <(*3 D”)>.c Ti T5>) D #2

*3

*3

15

Fi gur e IV .3 Inserting a Device into a Node

Ports are pairs of te rminal s (which are almost always nodes of composite

dev ices) , to be though t of as carry ing s i gnals. The si gnal. may be

— - - 
- 

- ~~~~~~~~~~~~~~~~~~~-- -- - -—- -- - - —  4



IV Elect ronics 131

imp l emented either as currents or voltage s. <*PDRT-TAXONOMY> A ~e t  of v o l t a g e

p o r t s  may he grouped i n t o  a nest , which ig exactl y analogous to a node formed

by grouping terminal s . (In particu lar , every nest is considered a hi gher-

leve l port.) ~*NEST-~~RT~ Ports may be comb i ned into nests , and nests may be

merged , just a, terminals are comb i ned in to nodes. <*NESTS-MERGE-MANIP>

Nest

EjE

t

jj t

:

(a) (b)
F i gure IV .4 Ports and Nests

Kirchhof f  also had a volta ge law , which for our purposes merel y amounts to

the fac t that every point in space can be assi gned a conventiona l voltage. To

en force th is ,  the rule ~*KV L-1> co nstrains a l l  the node and ter minal volta ges

at a physical node to be the same.

Al l  devices are g iven interface descriptions by the packets definin g the ir

device types. The inter f ace description (e.g. , ‘?X is a 2-terminal ”) interac t

with formulations of Kirch hoff ’s voltage and current laws to generate standard

constraints. ~.2-tERfllNAL-0EFN> Composi te device types (see Chapter III )  may

have termina l or por t interfaces , or both.

An i mportant clas, of devices are the “si gnal transmogrifier s” or SW-

TRANSERS. by wh i ch I mean any dev i ce one of whose pr i mary functions is to take

a si gnal in on i ts  i nput por t , or “INPORT ,” and put out a si gnal on its outpu t

por t , or “OUTPOPT. ” eSIG-TRANSER-GLORIA-MUNOI>

— .

~ 

— — 
—~~ - - - 

- —-  —- — 
- 

4 J



IV E l ec t r o n i c s  t.

(Much of the notation in this and the follow i ng section has been
influ enced by the n o t a t i o n s  devised by A. Brown (1975 ) and Sta llman and
Sussman (1376).)

IV .A .2 Si gnals

Si gnals are abstrac t objects with three components: a time function , a

si gnal-med i um (voltage or current) , and a “home ” (a port ). “A signa l is any

physical var i able whose magnitude or variation with time contains

inrorniatlon.... When we speak of ‘si gna ls ,’... we refer ... to voltages and

currents. ” (Senturia and Wed l ock , 1975 , p.2)

A “homeless ” signa l is rio ’ allowed in my notation. A si gnal may have more

than one home , but onl y if a l l  its homes are in the same nest. <*KVL-2>

G i ven a por t , the function PORT-SIGNAL should give its si gnal.

To make up for the absence of homeless si gna ls , many action s man i pulate

si gna l descr ipt ions , l ambda-expressions from si gnals to truth values. For

example , the formula

(CONVERT I device l ~si gna l description i ~signa l relation i )

mean. “device convert, any si gnal appear i ng on it s INPOR T which satisfies the

description into an OUTPIIJRT si gnal which bear s the ‘e l ation to the input

si gnal. ” An example of the use of this predicate appear s in Chapter I.

Another is ,

- 
- -~~~~~ — - - — - - —- -  4



IV Electronics 133

(DESIGN (A IX)
(CONVERI ~X

(A (Sil
(FORALL (Fl

(IMPLIES (I, ?F 1MHz)
(- ((FOURIER-TRNSFRM (IFUN ?Sl)) ‘iF )

0) ) )
(A (SI 52)

(FORALL (F)
(AND (IMPLIES (1< ?F 100kHz)

(‘. ((FOURIER-TRNSFRM (TFUN ?S2))
?F)

Oi l
(IMPLIES (I> ?F 100kHz)

(- ((FOURIER-TRNSFRI1 (TIUN ?S2))
?F)
((FOURIER-TRNSFRM (TFUN ?S1))
?F))J)) )))J

This formula i l l u s t r a t e s  the use of the Fourier transform of a si gnal.

The DESI+ZORCH system actuall y lacks any deep mathematic al understand i ng

of t ransforms. Instead , it summarizes the frequency—domain behav i or of a

si gnal with a frequency pictur e of its time function. A frequency-pictur e is

a tuple of “ frequency f e a tu res . ” A feature is specified as (FF (freq ~

Ilandmark l ) . <*FF-FREO , FF-LANOMARK> A la ndmark may have a shape , he ig ht , and

width , written FL-SHAPE , FL-HE I GHT , or FL-WIDTH. In general any particular

characteristi r is option a l , but the assumption is that a feature has non-zero

size. These are s imil ar to the human conventions for such descriptions.

Si g ral characteri stics can have these values:

SHAPE -- may he SPIKE. HUMP
WIDTH - -  a HUMP may be SHARP or FUZZY
HEIG HT -- a number

The notation (SERIES ~freq~ ~de lta freq i ~shape I ~fun $1 de fines an

in f i n i t e  frequency p ictur e consisting of a row of features of the g i ven shape,

at interval of de lta freq, starting at the g i ven frequency. The hei ght of the

oth l andmark in the row is g iven by fun . Th is funct ion must be decreas in g (as

it w i l l  be in all  physica l application s ) .

_ _ _ _ _ _ _ _ _  _ _ _  ---- . -----



IV Elect ronics 134

(This way of reason i ng abou t the frequency domain is in many ways closer

than strai ght Four i er transforms to the way humans think abou t it , and reveals

more abou t the si gnals. This is a good illustration of the point that using a

log ical notation does not commit you to a “mathematical” treatment of a

domain. )

For example , a square wave of frequency f offset by half its amplitude 4

has frequency p icture picture

(c(FF 0Hz LANOIIARK#79)
‘U (SERIES If I ~* 2 I f I )

SPIKE (A (N) (* 14 1 (II 4 Is ?N P 1 ) ) )  ) ) > 1

where

(FL-SHAPE LANOMARK#79 SPIKE)
and (-I> ‘ (Fl-HE I GHT LANOtIARK#79) (II IA I 2)1.

The usua l graphical notation for the Four i er transform of an offset square

wave is , o f course ,

I t f Frequency

Fi gure (V .5 Four i er Transform of an Offset Square Wave

Time-domain si gnal attributes are also known to the system. A function

may be pdr i odic with a cert ain per i od, expressed as (PERIODIC Itfun i

I per i odi). If so , (ONE—PERIOD Itfun i ) is a function which is zero everywhere

excep t from -T ,2 to 1/2 , where ((ONE-PERIOD Itfun i ) ?TJ — t i t f u n i 71). IT i~

the period of the function. ) Other s are (follow i ng (A. Brown , 1975)) the OC

offset of the signal; amplf tude , the hei ght of a per i odic si gnal; phase with

respec t to another signal : etc.

- -I-- . - - — - - 
- - - — -- ~~-_____ 4



V Electr onics 135

A large set of formulas is concerned with computing the frequency picture

of per i odic si gnal descriptions expressed in time-domain terms. <ePERIODIC-

FRED -P IC>

Besides these intrinsic descriptions , there are “extrinsic ” si gnal

properties like “carrier ,” or “modulat ion ,” or “distortion. ” These concepts

would be necessary for a system that desi gned or redesi gned radios , wh~ch are

a level above that which I have focused on. (This is the chief difference in

emphasis between Brown ’s appro~ich to si gna l descr i ption and mine. ) It appear s

to me that it would be easy and instructive to add this know l edge to DESI. hut

that it would be a sli ght detour .

Of course , the description s of si gna ls are of interest onl y so far as they

suppor t compar i son. We are interested in desi gn i ng circuits wh i ch conver t

from one ki nd o f s i gnal to another : g i ven two pictures , a good description of

the transformation from one to the other w i l l  help us to retriev c~. use ful

plan.. This w i l l  be descr i bed be l ow , in Sect. IV .B.

IV.A.3 Multiple Models of Linear Systems

A great advantage of a linear domain such as elementary electrical

eng i neer i ng s that it may be profitab l y attac ked by linear , time-independent

methods in many cases, In addit ion , the fact that ana l ysis is of a closed

network makes a forward-deduction scheme practical. (Cf. (Nevin., 1974c, and

Sussman and Sta llm an , 1975).)

The folow i ng types of quantities are to be dealt with by an electronics

ana l yzer (see Sect. IV .C ):

phy sical quantities like vo l tages and currents
component control quantities like resistances arid capacitance.

— ~~ _ A _  
- -____________________________________ - - ~~, ~~‘



(V Electron ics 136

The kinds of questions to be answered are:

Wha t ig the the value of some phys ica l quan t i t y in a g iven circuit 7
What are the value s of der i ved control quantities like the Thevenin

resistance or gain of a circuit?

Often these questions are with respec t to a circuit of interest as g iv en.

but just as often explicit or implicit reference is made to a derived mode l of

a circuit. For example ,

The DC gain of a circuit ie the gain of the DC mode l of that circuit

The Thevenin resistance of a cir cuit is the resistance of the circuit when
it is disconnected from its environment and its i ndependent sources are set to
zero.

The i mpedance of a circuit is it s (comp l ex) resistance in its “sinusoida l
steady state ” model.

etc.

These models are generated by the use of FRAME , N, and T formulas (see

Sect. II.B.2) in the data base. Many of these appear in the schemata for

var i ous devices , but the FRAME ax i oms occur separatel y. Together they define

the models as follows:

(1) ((DC)) The OC mode l of a circuit is the same circuit w i t h  all frequency—
dependent features nul led in a dev i ce-dependent way. Thus we have <*FRAIIE-OC>
plus formulas like

(IMPL iES (IS CAPAC I TOR ?X)
(AND (N (DC ) ‘(IS CAPACITOR ?X))

IT (OC ) (IS OPEN 7)0)))

(cf. csCAP-PKT>) for frequency-dependent components like capacitors. The (DC )
of an already-DC mode l is it s elf , because these components can be nulled onl y
once. *DC-IDEM> Thug (see Chapter II ) , we have

(N (DC ) ‘( 1  ?R (FRAME (DC ) < (HERE)>))]
(1 (DC ) (—I> ‘ (DC) (HERE)))

(2) ((INC)J Th~ increment ,i~ mode l of a circuit. <sREF-INC , FRAME-INC . (NC-

- —  ~~~~~- — - .-  - ‘-  - - ___________
— a



(V E lect ronics 137

(3) (SSS I s l i The sinu soi rt al steady-state mode l for comp lex frequency s.
<*REF-SSS, 555-WEll, FRAME-SSS> (In this mode l , all linear devices act like
resistor s with complex resistances or i mpedances.)

(4) (ISOLATE l t r m i n  i i ~trm in 2 1) The mode l obtained by di sconn e ct ing the
given termina l s from whatever nodes they appear in. <*ISOLATE—DE FN--1 , ~~~. and
3> (These te r m i n a l s  are usual l y nodes in a composite device. ) it is used for
calculating Thevenin resistances. (*REF-ISO , FRAME-ISO , ISO-IDEII>

(5) (PASSIVE ] The network with all active sources set to zero. Also us~ d for
calcu lating equivalents. <*REF-PASSIVE , FRAME-PASS I VE , PASSIVE—WEll >

I V .B Electronic Desi gn Know l edge

The know l edge in ZORCH is mean t to mesh with the know l edge in DESI so as

to br i ng about useful behavior . Generall y DESI prov i des the plan framework

and some quite general heuristics , while the solid stuff is in ZORCH. This is

true of knowledge abou t desi gn act ions.

(V .0.1 Rephrasing Electronic Desi gn Prob l ems

When i t comes to rephrasing design , DESI does li t t l e  more than provide the

concep t of “d-shar d” and the policy that every shard in the in i t i a l  explosion

must l ead to something useful , (Chapter III) Most of the knowledge is in

ZORCH. Here are defined the interesting control quantities of this domain:

voltage gain <*V-CAIN-5HARO> , and input an~ output i mpedance <sINPUT-Z-SHARD,

OtJTPUT-Z-SHARO>. these lead to side-tasks which constrain control quantities

(v ia <*CQ-SHARO> in OESI), hut they also lead to domain-dependent “d-feature s ”

regarding the ranges of these quantities. These all end up affecting the way

In which device schemata are se l ected.

Besides this sor t of control-value redescription , more ‘levious things can

— - —~. ‘— — —
~~ -- —

~~~~~
,‘r

~~~ ‘ - — ,—~~ ——-- - — —.——



IV Elect ronics 138

happen. If a d-shard of the form ((A (lv i ) (CONVERT . . . ) ] J  appears in the

m iddle of the explosi on , it causes an inferential subtask to appear . <*CVT-

EXPLODE> Th ig subtask mimics the supertask for explod i ng desi gn propert ies , in

that It mani pu late s forrnv1as des~ribin g si gnals , break i ng them into “si gnal

shards. ” These si gnal shards are then parsed into d-shards and ult i m a t e l y

into d-features . side-task s, and core device types.

There are tuo comp le mentary paths this deduction can take. One <xFREO-

0011-REPHRASE> tries to compute the frequency pictures of the i npu t and output ,

then find a transformation (“FREG-PIC-TRANS”) between them. The output of

th is deduction ig an object of the form (LOU-PASS Icutoff i ), (HI GH-PASS

Icuto ff l i ,  (MODULATE I freqi] . etc. Thi s transformation becomes a si gnal

shard. Ihis l anguage for describing frequency transformations is not as

general as it could he. On the other hand, it is qu i te extens ible, and

r e f l e c t s  eve rything I know abou t the subject.

The o her rephrasing method <slIME-DOMAIN-REPHRASE> merel y searches for

certain simple functiona l relationships between the time values of the i npu t

and output. (This has not beer~ imp l emented yet.)

The system tries to choose ‘c*CVT-CHOICE> between these two ways of

rephrasi ng on the basis of simple criteria. For example , if the i npu t

predicate to CONVERT doesn’t mention the i nput at all , the transform ation is

more li kel y to be a function of si gna l values , so the time -doma in is ruled in,

(V .0.2 Reconciling Partial Solutions

This kind of infor m ation ar i ses in two places: generating and choosing

core devic e-t ypes, and choosing ways of mak i ng devices. (As in Sect. 111 .0 . I

am not inc l ud i ng information about patching failing constraints.)

— -- — —~~~~~~~~~~~ - -- - - - - —~~~~~~~- - — ~~- - - --~~~~~~~ --~~~ 4



IV Electr onics 139

It Is i mpor tan t to note that computation regarding a c ircuit is to he

postponed whenever po ssible u ntil after the desi gn rephrasing p lan. Thi g i s

because (a) the ideolog ical inten t is for this phase to be concerned with

problem , not solution , man i pulation; and (b) the p ieces of prob les are l y ing

around In the wrong for m to be noticed dur i ng deductions.

So, dur i ng the d-exp losion and subsequent re-parsing, OESI is more

inte rested in seeing the pieces than putting them together . This orientation

means that ordinaril y the generation of two core device-t ypes is an error : the

error w i l l  he revealed by the choice protocol for the CORE-F I NDER step of Fi g.

II.7 .

ZORCH makes up for this by allow i ng the desi gn rephraser to pass the buck

under certain circumstances, <sL~~~AR-CROtJP)NC> I f one of the competing core

device t ypes is linear , ZORCH rules them together into the arti f i c i a l  device-

type (GROUP -dev ice types- >1 . GROUPing means CASCAOir g in some as yet

undetermined or rj e r . . 
~~~~E -GRO (JP-1 , MAKE-GROUP-2 , MAKE-GROUP-3> The idea is

to postpone il.riiing among them or composing them until the constraints and

features have been sorted out. After all , you can be pretty sure a linear

device w i l l not interfere too bad l y w ith what it is connected to.

(“Cascad i ng” two device -typ es means mak i ng one of each and coupling them. See

be l ow.)

This is the somewhat bedragg led method by wh i ch core-device-type choice

can g ive rise tq cascades. This ehould be a rare event, Norm all y, the device

classe, introduced do their job harmon i ously enough so tha t one euperordinate

or basic category is natural for describing a desired circuit. In that case,

the categor y w i l l wind up a, par t of the central MAKE task of a desi gn

network. (See Fi g. 111. 8.) Here cascad i ng wi l l reappear in a much more

discip lined way a. the choice of wh i ch subordinate or specialized device type

__________ _____________
a

_____L

~~

1 ~~~~~~~~~~~~ ~~~~ - .
--

IV Elect ron ic9 148

to use.

I n choosing a way to MAKE a known circuit type such as an a m p l i f i e r , often

more than one suggested subtype comes to mind. This w i l l be hecausc’ var i ous

subtypes are i ndexed by associated 0-NOTES. <*1100-V-GAIN . HIGH-- V -GAI N , etc.>

If mor e than one device ig tri ggered by a constellation of 0-NOTES. it may he

for two standard reasons. Fir st , a control quantity like gain may fall into

two ranges. (<tV-GA IN-SHARD> and i t s i lk 8pectfy over l app i ng ranges, for

example .) I f so. a value falling in the amb i guous reg i on may necessitate

diffe r ential diagnosis in the subsequent cho i ce situation. One mi ght have to

dec i de be t ween an op-amp or common-emitter amp lifier on the basis of cost .

conven i ence. etc.

Second. the two suggest i ons may answer to different subrequirements , in

wh i ch case they must be combined in some way (or one subrequiremen t must be

foregone).

Rules for performing these functions for the dev i ce type AMPL IFiER are

gi ven in the packets defined by <*CHOOSE-ANP>. This contains pr i nciples like ,

“I f high banduidth is reqtnred, prefer a multi-stage amplifier to a sing le

hi gh-gain stage” ; and, “ i f one option (e.g. . a common-collector) has been

proposed because of i t, input impedance, and another for some other reason,

cascade them in that order .”

The fac t that in us i ng the rules of <*CHOOSE-AiIP> the system is res t r i c ted

to a well-defined situation helps to make those rules conc i se and to the

point. This atte,~s to the organizing power of the concept of “superordinate

dev ice type. ” It is d i f f i c u l t to think of a natural choice situation in which

the statemen t of the problem does not br i ng to mind a set of rules organ i zed

around some such type. It appear s that a large par t of the training of

techn ician, and eng ineers is the accumulation of these sets.

IV Electronics 141

Cascad ing two (1ev ice types is MAKE-ing an objec t of the abstract type

(CASCADE (t ype I I (type 211 . <sh AKE—CASCADE> This consists of a

strai ghtforwar d plan to MAKE a device of each type and COUPLE them. The

components of the result are the two devices. In cascad i ng two device t ypes ,

it is wise <*COIJPLE-GENERAL-1, COUPLE-GENERAL-2> to use the most general

spec ializations of the device types invo lved. These are defined hy the

predicate MOST-GENERAL-SPEC (defined in Appendix 2). An examp le is t he dev i ce

type GENERAL-CE , which is the most general common-emitter circuit.

Coupli ng comes under the heading of a circuit-change operation. (Cf.

Sect. III.B.4)

IV .B.3 Chang ing Circuits

Except in the dullest circumstances , a c i r c u i t schema cannot he

instantiated mer el y by binding a few var i ables. After it has been p l uqged in ,

its “expansion obli gations ” become active. (In the case of a product ive

“dev i ce type ’ li ke (CASCADE ...), these obli gations are par t of the plan that

makes a device of that t ype.) These expansion obli gat ions are the norma l

place in which circuit -chang ing task, ar i se. (If failure-correction were

imp lemented . thi , would also be a common source of circuit changes , of

course.)

The circuit-chang ing actions defined so far include biasing, coupling, and

fixing voltage s . These actions come in spe c ia h i 7a t ion hierarch ies , and they

inte rac t in interesting ways.

B iasing bipo l ar junction transistor s (BJTs) is defined by <*BJT-BIAS-NET >

as three I mportant tasks: fixing the collector current 11 c~
reverse -bi asing

the collector-base junction , and fixing the base-emitter voltage (VBE). For a

_______________________________________ - - —
.4

IV E lec t ron ics 142

typical one-stage transistor am plifier , these tasks are subsumed by the

spec if i c suggest ions in <*TVP I CAL-BJT-ONE-STAGE-BIAS-PLAN>.

Reverse
Fix -Bias Fix BJT BIAS NET

I~ CB VBE

0 0
SPEC
-SCHEMAA L ~~~DUCED

/ B Y
\

BY
___________ TYPICAL -

BJT -ONE’
STAGE-w O O

Gei~~d Connect Get ~ ~~
w- Q BIAS
ConnectConnect et

to base Voltage to ~esistor to
Source Collector Emitter

Fi gure (V .6 B ias Plans

This plan defines the bias networks of Fig. 1.2.

The b iasing plan interacts with the coupling plan for BJT, <sCOUPLE-NET> ,

wh ich itself has several SPEC-SCHEMA.. The general plan is shown in Fi g.

(V.7.

- - _ ___________ a

IV Electron ics 143

CHOOSE
~~

~ 0
CONVERT PORT 1

SIGNAL N.
MEDIUM N \

N
N
*~~CON RT

CHOOSE
~

CONNECT
COUPLE- PORTS

TYPE

Fi gure IV .7 General BJT Coup ling Pla n

The interaction starts w jt h the rule that coupling is considered before

bi asing. <tUOIJPLE-REFORE-BIAS> (Cf. Fi g. ((.5.) The reasons for thi s rule

are that deci sions made dur i ng coupling often influence the way in wh ich

biasing is done : and that couplin g components perform many b iasing functions.

These interactions depend upon the particular coup ling network chosen. The

rule packets .r*COhJPLE_CE_X~H I NTS , COUPLE-CC-X-HINTS> suggest particular

subnets to be used. One of these *CE-OIR-VOL-COUPLE-PLAN> is shown in Fi g,

(V .8. (The others are as yet unwritten.)

____________ - - -r-

IV Elect ronics 144

Convert

o Port 1 ÷ ~~~

r~~~~~~~~~~~~~~~~~~~~~~~i

IGet Resistor Connect ~~ I
collector I

Reverse -Bias CB

_ _ _ _ _ _ _

~~~~oTtag:
-
~~~ ____________  I 

Assumed~I ()
Get Connect to
L
P0WeI Supply Res istor I

Fi gure (V .8 Common-Emitter Direc t Voltage Coupling

Choosing th is plan amounts to settling on direct coupling w i t h voltag e as the

med i um . Picking it reduces tasks from the bias network and main coup lin g ~ tan

withou t further exam i nation.

Two plans for fixing voltages i~ shown in Appendix 3. <*VS-FIX-V , VO—FIX -

V> The first is used to set volta ges absolute l y. The second is used for

setting voltages , such as the base voltage of an trans istor , which are to be

allowed to change i ncrementall y.

(V Ele ctron i r:’i 145

lV .B .4E lectr oni cs Ana l~~sis Know l edge

In the usual case , t here is no specia l electronics anal ysis know l iqo .

Device properties are expressed by numerical constraints (Chapter I I I) . LJ hiCh

i nterac t with each other and SELECT-VALUE tasks to produce result s . In the

ideal case , the deductions involved are always one—step deductions (Sta hi m a n

and Sussman , P37G) of the value of one var i able at a time. (I have taken much

of the ana l ysis knowled ge practical l y verbatim from Sta ll m a r -i and Sussman ’s

data base.)

Besides calculations of physica l quantities and component valu es , the re is

also the problem of computing values of generic control quant i ties ” (Sect.

III. A . 1) . these are quant itie s like “voltage gain ,” which is d e fin ed

generica l ly as , “The va l ue of the v o l t a g e on the oUtpor t over the v a l u e on the

i npor t ,” but whose sgmhol ic and numerical value .s depend on the ci r c u i t

involved. When a generic attribute value is constrained , a task w i l l lie

created to c,i l i , I at p i t . .~ 1rNF RIC -CA ~ -DO in A ppendix 2 -.

How thi s i~~ done depends on the quantit y to lie c i lcul ate d. [or examp le ,

to calcul a te the Theven in impedance of a circuit from two terminals , gow mu st

enter the reference point (ISOLATE t rm in H trmin 21) , fi x the v o l t c~qe at

the two terminal s , and ca lculate the current. (Thi , technique is probab l y

beyond the current competence of NASL . For a precise account of how to do i t ,

see Doy le , l~ 77.)

Very l i t t l e pie r t r oni r~ anal ysis know l edge ha5 been imp leme n ted . (See

Sect. IV .D. be l ow.) My imp l ementation has focussed on quali t a t i v e reasoning

about desi gn; it i nm ii l ements the work of Sta l lman and Sussman (1976) on

quantitative ana l ye~~.

-~~ —~~~ - -~~~~~~~~ - - - - - - . __—----i- -- - -~~~~ - - - —— - - - -

I V Electronics 146

IV .C Device Schemata

The la st par t of A ppend ix 3 I s a ti , i- ~ o clev .‘ schemata. The se in c I ide

p r i m i t i v e components •3n.~ a few Com p o sit e levices . M (’~ of the p r i m i t i v e

compon ents are define d entirel y by one or two con str ,i int s anit some I and N

formula s descri b ing their behavior from var i ous d e r i v e d mode ls . The

tran s istor schema -*P IT—[1 EIN-., as you mi ght expect . has a more comp lic ated

St ruc ti j i e , Besides the phi isical constraints on to terminal voltages and

cur r e n t s , e v e r t i t r an s isto r must be bia se d i n t o i ts desired reg ion . Thi ~~, a

compos te rfc’-.’ ire si h. r’ma t ha t specifies that i t s transistor is al $ i ye u i I I

aut srn.i tir aH~ acq u ire an exp.insion obli gat ion t o bias the tr in s i s ’oc.

Ther e ar e several devne schemata tar c o m p o s i t e devic es (jet n o d -it the end

of A ppendix 3:

GEN[PAI 1[- - The mo st abstract common-emitter cir c u i t
T~’PII Al [F —— the c i r c u i t shown most often in t e x t b o o k s , w h i c h is derived

from the mon p a h st r as t one
(T,1N [RAL f1P -- Thp most abst rac t e m i t t e r - c o u p led pair

~jP-DC AMP - - One of m - ir i q c ircuits that can be derived from the ECP
VU - - The humb le v o i t a q o divider
RE -- The f i l t e r , not th e cola.

Th~ rel a tion between the ECP-OC-AMP and its “ soul ,” the GENERAL-ECP , is

shown in Fi g. (V .9

(V E l e c t r o n i c s 167

— bias ECP DC~AMP

fix voltage

Get P L

fix current

GENERAL ECP
L::::: ::~~~~

Q1 Q2

f ix voltage Get Re

[i q i r e IV .’I - i r r , r r ~~~l and ~t e r i a l i~~~prl [mi tter _ C crij p Iorl Pa irs

A 9 i m i I ~ r e l a i on e ’- ’st s between ,EN [PAL—C [and InPIli A L- -CE. In r io ’ f l i ng

‘~~re~ ,o rel.i t ions . ex ’n n i g i ~~~
o ‘i5” is made of the pro J d e c P[Olj[[an ‘I

l e f i n p c j in A ;~~..’ l i~ 2. PEP I IPE dec l ares tha t some - i ’ of ta cks 5 a comp ’ ’’’”

‘ uj t r n r p ~~ j o r~~ I i thp m i on t i c k . (FliNi TI1)N IdO v i r r’ lu, i’d ~,Ic. k~~) iS 1 ‘~~Pi~ I ’

~~~~~~~~ 
i n S e r t in d~~. cr’ ci 1 ,,m a’ 1, whi ’ ii ’ Ian es t i - i ’  ,~~w s t i ’ :  p ot an ahs t r ic

t a c ~’ for in q n i i r  n iq  l ire  n i ’ ’ v i r  p ‘ i cy , a~~rt spec t i e s  t t - .,t t h i s  t i ’ ,~ is  su f f ic i ’ ’ n t

to a’ romp I i  sh t i ”  t ,i’ ’~ t~ he r c i ’ , ’  ‘‘ it .

The fu nction (lift Id ev i a tion (I denotes an exI~~nsion tas k cr r ,i tr ni by the

use of rul ~ *1 ~(l’At J l  1 -OULS--DO> . il ef  i neil in Appendix 2.

_ _ _ _  I’



(V Electronics 148

(V.0 Programmer ’s Gu i de

A s I have pointed p in t in several p laces , the information in ZflPl,l-4 i~~

sketch y. I hope this hasn ’t harmed the cl a r i t y of my presentat ion; I have

pr ovided an examp le of every kind of con stri n I I ( t i c r i cqed .  The know ledrie

shown is s t i l l  in the process of bein g debugged and ass i m i l a t e d  into DESI;

ther e has not t een time to be compl ete. As it is , imp l ementati on and

debugg ing canno t ~ocp up with gene ration of new fo r r ri l a s . (See Chapter V .1

Thi , sect inn is incl u d e d as a g in i r le to anyone who w ’:hes $ o ,i(t(I

inf o r matio n to the DESI sqstein (or its successor). I t c o n sis ts of -i I is i ‘if

a l l  the i n-,cjq of information that are mi s sin g. (F i l l i n g  in ‘ l u - n - .  , I e ~ chr , i i lrl

be a ma t fer of follow i n g the pr inc i ç3 les of ‘
~rs’ t - 111  . E arid i c i  f -TI Ii “q ‘in, ’

for mulas that alr ead y exist .)

f leir t i r  as i rrq ‘ in hi’ ex t end ed, Mn , r’ prior ii  Ies ar p necitod f i n  i 0151 - i n i 11 . 11
f r i- l ion q p ic t o n  05 .- ’ ,n15e k no w l e i t q e  o f  Four ie r t r  in fo rms i t o  nl’;’ r’’ ’-d t o  ,n

f r o r 1 , j ~ ’n nr q p i c  t n i r  c’~~) is nor “scan q in order to r ; r o n e i  ;ilo precise ~~i rIn ’ t, i k

> The ti me -r t n rra in informat i on ig  no n - ex i s t e n t  in A ppendix 3. The time -
domain rephrasing prob lc ’ rn comes down to try ing to fi nd a fu~arT t i r i r i ,a I
r e l a t i o n s h i p  between two ax i o m a t i c a l l y described objects. Th is is rot eang .

Many mo re ci r c u i t s  are needed. Most of the a m p l i f i e r  types mentione d in
<*CHDO~E-AM P~ and it s  s,itel ii tes are undefined : power amp l i f i e r s are a q l ,ir ing
omission . The sulierordin ate category of “ f i l t e r ” is e ntirel y absent. There
should he a theory of LC fi l t e r s  and when to use one of them. This should
work with a theory of matching i mpedances dur i ng coupling of power st ,ln ir ’s.
Time-domain r~~phr asing w i l l  be useless unless it is used to index ci ippers ,
rect i fiers , and other “operational ” circuits ,

> Coup ) i nçj ci r r ii t g  are many arid va r i ed .  Onl y one s p e c i a l  i z r’d r i r w i t  is
ghown in Appendix ~~. (See Fi g, !V .8,) One di f f i c u l t y  I didn ’ t mention in
discussing coupling is choosing po l a rities of bipo l ar transistors. These are
normall y NPN, hut cciisp l in q them dir ectl y often constr ,ains them to he of
opposite po l arities.

~ nme of the i nformation shown hang i ng off circuit dia gram s in Chapter I ,
especia ll y  int er f ace con str a ints , has not been represented in the circuit
schemata of Ap~iendi x 3. For example , the system function of the RC f i l t e r
w i l l  not be what it claims to be if something is connected to it. 

-:- = 
- - -- -- --- -- . .-



(V Electronics 149

These prob l ems are the ones I’ ve thoug ht about , and sketched answers for .

There are many more I haven ’t though t of.

‘I

b ~~~~~~~~
‘ —_ ~ — - ~~~~~~~~~ —



V Res ult s 150

V Resu lt s

The major result o~ this research to date is the existence of NASL , ()E’1,

and ZORCH. The experience I have had in defining the NASL n o t a t i o n  and

app l y ing it to electronic ci r c u i t  desi gn is enough by itself to siJ Ilg os t

certain conclusions. These are the substance of Chapter V I .

Of cour se , the claims I make there w i l l  be not be d e c i s i v e ly proven m i n t  i i

the program has been debugged and the ZORCH knowled ge base has been comp le te rl .

These a ctivities are proceeding, and preliminary results are repo rt eml in ’i’- .m t.

V .B be l ow.

Since OES I is intended to be a working system , and since peop le maw u i sh

to exper i ment with i t or wi t h the NASI interpreter , these are desrrihr’ n-l frr im a

prac t i ca l  point of v i ew  in Sect.  V .A. I would appreciate comme nts frnm t in s e

who try it out.

V .A Using DESI

V .A.1 Loading and Runn i ng the Program

To run my programs on the M IT A l Lab time-shar i ng system . type

: i d vm;

at OUT , then

(load nasH

at LISP . This w i l l  load the interpreter and leave you in the LISP rear l -~- . v a i —

print l oop. (The reante, and printer are not the standar d LISP merhan i ces , hut

that shou ldn’ t matter. ) Now you can load NASL assertions from any f i l e  y i n ’

choose (using DEF MLA; see App endices 2 and 3). To load the de siynn ’r in , t y1ip

(load desi) instead of nr in addition to the above: to load ft p p l p c Ir nni c s

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - —~~ — - - a



V Ri’’,ij I t ’ i 1~
,(

knowled ge , type (load zorch). (Or load the binary f i l e  TS DESI , to savr’ a lot

of t i m e . )

To run NASL , ty pe

(s tar t l action i )

a t LISP , where action is a formula or list structure of the form (/:TASK . . .1

or (tact ion funct ion i ... ] . (In the latter case, if the action has ouif 1 m i i t ’ i ,

type (star t laction i loutput s~).) NASL wi l l  beg in execution . add i n ;  the niul

a c t i o n  to i t ~ task network, When the network is empty,  it w i l l  return the

output variables of action i f any. It w i l l  also remain in the data poo l of

the action performed , typicall y a DESIGN , so that you can run new tasks in the

same envi ronment .

V .A.2 OES( Talks to You

When NASL runs into trouble , or needs the answer to a symho l-m an i p iila t inn

problem , it stops and asks you questions to try to help itself out. “Tr oub le ”
S

— 
is defined as the fai lur e of the choice or rephrasing protocol to act,ievr ’ to

aims. In either case , the system stops and tel l s  you its trouble , th,’ ,r isk~

various questions. For example, if it cannot make up its mind aft er app l y i ng

a l l  t he known choice rules , it w i l l  ask if it should choose at r,ariclnm. ‘j e t/ no

questions are answered by typing “yes,” “y,” “no,” or “n.” Other quest i n n s

w i l l  be requests  for formu l as. (If you type an S-expression where a In, m it l a

is  wanted , NASL w i l l  conver t i t . )

Three standard quest ions and the reactions to their answers are :

> “Do you want to see the reason i ng i nvo l ved?” Answer ing a f f i r m a t i v e l y
causes NASL to re-run the most recent relevan t deduction , w i t h the sii itc i i ” o
STP—TRACE-OEPTI-4* and RECORO-SEE-OEPTH* set to values that let you see the
eteps , (See be l ow.)

1. 
_ _ _  -- - - -  - —  - -



V Resul ts 152

> “Break?” If you answer “yes ,” the system w i l l  g ive you a LISP In s s ’ - k
l oop. This i g  usuall y used for add i ng new information to the system ii i t h
further OEFMLAs. (DEFMLA may be used to redefine old formulas , t oic .) W hen
you return from the break , the next question in NASL ’s li s t  w i l l  lie ;t’ ,i’ r’,l .

“Try again?” Don ’ t say “yes” unless you’ve taken advantage of thr . ~ e,ik
l oop and added a new choic e pr i nc i ple , a missing ax i om that was nepileml t m i ~ the
last deduction , or some other rule.

V .A .3 You Talk to DESI

There are several useful programs for gett ing debugg i ng infor ma ti r ,n or

explanat ions of behavio r from DESI.

(TASK-NET-DUMP ) causes the entire active or pend i ng task network wirier

your ori g inal request to be print ed out in a somewhat readable fa~ t ,ion , w i t h
inde~itat i on , successor pointers , etc. (This function takes an optional ta c k -
name argument: if it is  o m i t t e d , your ori g inal request is used as a d e fa u l t .)

(WHY Itask i ) causes the task network above the named task to he rli Jm l ieni .
Notice that ask i ng this question about a frozen task w i l l  show you par t of the
teleo l og ical structure of the dev i ce it appears in,

(SUPPORT I fact i ) prin ts the supporters of the fact.

(PURPOSE ~device I ) pr -ints ~ut the supertacks associated with MAKE- jug or
ACOUIPE- ing the device (depend i ng on what kind of records of the histor y of
the device have been kept).

I am be i ng a li t t l e  vague about the prec i se formats of these f unction s ,

both because the system encourages you to be vague (it w i l l  try to fi gur e out

whether you are referring to formulas by name or pattern) ; and because the

feature, these functions suppor t are chang ing rap idl y.

Some useful statistics-gather i ng functions are defined in the fi l e  SNAP.

The statistics gathered inc l ude runn i ng times overall , time spent doin

matching and i ndexing (important low-leve l functions of a rule-based system) ,

and success of the i ndexer in keep i ng garbage from reaching the matcher .

Typ i ng “ (SNAP)” at LISP causes theem statistics to be printed out, “ (SNAP

RESE T)” resets them; this must be done once to turn them on. (Colle ct i n n  

~~~~~~~~ ——- —


V R e s u l t s 1~ iI

these stati s t i c s ~ Inws things down somewhat,)

There are several switches whose settings affect the verhia~je ; r r t m p m - ~d my

the NASL system . These switches are printed by the function SHOW-SI-i l II h f ’ ,,

defined in SNAP . The s w i t c h NASL-TRACE-DETAIL* , an intege r from 0 to ;ul r , , t ~~i .

defines how much the interpreter w i l l tell you about i t s every move. T Ime

switch STP-TRACE-DEPTH* controls printing of major sub-goal infrjrr ’,at ion t”j

SIP; i f zero , nothin g is printed. Similar l y, RECORO-SEE-DEPIH* control s

printing of data-base alterations. Both of these switches are no r m a l i m i ~ r ’nn ;

the system sometimes turns them on to disp lay inferences or moda l e f f c ’r t o .

(Ag in Sect. V .B, be l ow.)

V .B Exper i mental Results

The OESI s y s t e m i s s t i M being debugged. Consequentl y. it has nevei

dem ir ;ne nt a c i r c c i t a l l the uiay through. It has done simp le c h o i ce i n r i l i; ’ I ’ i ,

tr u ’ i a l equation solmn t ion , aod some rephrasing of simple conjunctive m t r ” m i n ; n

prob l ems.

l1~~~t n il the t i ~~p , the system runs well. Forward deduction and t ,~ok

reduction n c r in in a r easonable amount of time ; watching the trace on the

screen is a p leasan t exper i ence. The NASL language is easy to progr am ni; i t

enco~Jr aqe, an incremental st y le of programm i ng in which partial p t inns

inte r ‘1 t . I f ann unfnres~~~n i n t e r a c t i o n occur s , the presence of a l l t i - .

i nformation in the data base usua l l y makes the trout) Ic easy to find; f i i ny i t

is u su al l y a matter of am bl in g a new rule. When it isn ’ t , t he pr oblem t r i a l l y

turns out to he a syntactic error in a rule; I strong l y recommend to t u t u e

desi gners of predicat e-calculus systems with large rule bases tha t t tm r ’ i ;

inclu de checks of syntax (such as proper number arid type of argument s tin

— - - - - -
‘-

- - - - _ _ _ _ _ _ - — — - - a

V Res u lt s 156

I

pr educ ales) at thp t ime a r u l e is read. In such a system , a wrong ruI n ’ is

often over l ooked ~ntir ~ l y.

Calls to the theorem prover tend to slow things down. This not tier i m , ’ p of

any coir ’in a t o r i a l explosion , but probab l y because of the theorem prov er ’s

carefulness in checking suhsumption and other special cases which are finn m.i l l y

irrelevant. The theorem prover is probabl y too complex for its own good; the

next such progr am I write w i l l be much more like Conniver . (McDei mott ,innni

Suseman, 1973)

Furthermore , t he eva lijat ion mechan i sm (Appendix 4), which is non m allt j

quite effic i ent , wastes much time in other circumstances. The evalu .atnr ‘n

c a l l e o whenever the ri ght -hand side of an implication ig de tan - Fmcil iti j , iii ;

deduction. lt t r i e s to app l y reduction rules to every new suhexpr r’ss unn of

the detached formula. This isn ’t near l y as expensive as it souj onl - n , her i m i - ~~’

one qu i ck i ndex call is enough to check the (very common) case wher e t i , , ,’ in .’

no applicable rules. Unfort unatel y, in detaching the ri ght-hand ~ i nle n i l i

la rge i iip li cat on lik e < nir.OE’S(-2> in Appendix 2. there ig an em ln ,a r a c s u n i r ;

pause. I am putting up with this for the time be i ng, but it s clear li ii

thi e is a job for some further pr agmatic-predicate mechan i sm .

Ag i t stands . thp sys tem w i t h ZORCH l oaded occupie , a huge am ’ nm,vit i f n in e ,

As incomp lete as it us , u t takes up about 228k of 36-bit word stor - ti; ’ . A i 1(

5ø~ of this i s the LISP system and my low-level u t i l i t i e s , and 1 ~~ u~~ I ‘it

space , 70t l~~ t n n m j t ‘t~t V l of which u , occupied. Of th i s, at~out ~0k rnncu - .n t q m ’ f

c i r c u i t diagr ams for t ine fiv e device t ypes defined in ZDRCH I I am era ’ r’ t h i s

can he t n n m j n j ht down t i n 1 j nj d i c i sue rearrangement of consequent vs. ,intr ’n c m b i n t

d pr l?mn I, on; the pr n~b pm appear s to be overenthus ast ic forward r p a no t- j w i n , In-

setting nip dev i n e cm tn ,~m, u t a , However , a l o t of storage is requi red t o u I i ;

and i n m t e ~~ packe t s , whethe i they are used later or not, To duck t i n t s mr n m t n ” l m ,

V Rpq u , I t s 155

in the sample runs g iven be l ow , la rge conjunctions of the form (/:PK E . . .1
were actuall y imp lemente d as ordinary formulas l i k e (AND ...). In the l rmni j

ruin , we are go i ng to have to confront the question of organizing secondau mj

storage for use by Al programs.

There are three exper i men tal results to demonstrate, Firs t (Sect. V .B . 1).

1 present DESI’s at temp t to desi gn a simple amplifier . Then I shot-s i t s

p i t i f u l approach to the f i l t e r -desi gn prob l em I descr i bed in Chapter I. In

both these cases, the program crashed due to bugs before go i ng as far as it

is . in theory, capable. Finall y, in Sect. V.8.3, I discuss some research w ith

Jon Doy le i nto t he re la t i on between NASI and NOAH. (Sacerdoti . 1975)

V .8.1 A Simple Amplifier

Here is a sample output from a run of DESI on the first problem in i h.ipter

I , with NASL - TRACE-OETA IL* set to 3. Ny comments star t with “
;

“ . The n u itpu it

has been edited to re liev e the tedium, The dots “ ,,, “ indicate o m is s i o n s . In

t h u g and the next section , apparentl y random ‘I’ g” in the output are c,i’,senI by

garbage col l ection , one exclamation point per collection. Long sIr ionic nf

these marks are io d u c a t u v e of l ong pauses between outputs.

:The system was started with by typ ing
(st art ‘ (desi gn ...) ‘ (mn ’ (winner)- ,.):

(CREATING TASK
(:TAS K (*DES*) c> (LAMBDA NIL

(DESIGN (LAMBOA IX)
(AND (0EV-TYPE ?X AMPLIFIER)

(- (V-GAIN ?X) 5)
I- (INPIJT-Z ?X) 30889)))))

< ‘(WIN NER) 1)
(ENABLED ((eDESs)))
(EXECUTING (1* 1*5*1) ...)

(TASk I(*[)E5.)J BE I NG REOIICED)
(TASK ((.015.)) TO RE REPHRASED)
(CRE ATING TASK (:TASK lR[PI-(RASER (*OES*))

-- — - - -— - -
a

V Resu I t~ 1~ nh,

(LAMBDA NIL
(:REPHRASE (cOES.) (DESIGN (LAMBDA IX)

(AND ...)))

< ‘ (WINN ER) >))
‘C)’) I

(ENABLED IREPHRASER (*DES*)))
(EXECUTING (REPHRASER (eDES.))

(:REPHRASE (*DES*) (DESIGN (LAMBDA IX)
(AND (0EV-TYPE ?X AMPLIFIER)

I- (V-GAIN ...) 5)
(— (IN PUT-Z ...) 38800))))

< ‘ (WINNER)>)
(‘C),))

(TASK (REPHRASER hiDES.)) BE I NG REDUCED)
(TASK IREPHRASER hiDES.)) REDUCED TO

(:00-SUBNE T (DES I -REPHRASE-PLAN
((LAMBDA (Xl (AND ..M) (tOES.) < ‘(WINNER)>)

‘C>)
‘C>))

;Here are the tasks from the DESIGN rephrase plan <*÷OESI-2>
(CREATING TASK (:TASK (EXPLODER PLAN#388)

‘C >
(LAMBDA NIL

(D-EXPLODE ((LAMBDA (X)
(ANti ...W))

‘C,) I
(CREATING TASK (:TASK (ACCOIJNT-FOR-ALL PLAN#380)

‘C,

(LAMBDA NIL
(ACCOUNT-FOR-ALL-SHARDS ((LAMBDA IX)

(AND ...)))))

‘C>)
(CREATING TASK (:TASK (CORE-F I NDER PLAN#388)

‘C,

(LAMBDA NIL
(:IIND (LAMBDA ROT)

-

(CORE-OEV-TYPE 1...) ?+OT))))
mn ’ (COR E-OT PLAN#388)>))

(CREATING TASK (:TASK (MAIN-TASK-INF ERER PLAN~380)
< ‘ (CORE -N PLAN#388)>
(LAMBDA (-#01)

(:INFFR ~(AN 0 (STASK (MAKER ...) (uESe)
‘C>
(LAMBDA NIL

‘ C . , . >)

(:MA IN (MAKER . . .) (tOES.)))
~

- (CORE-F I NDER PLAN#388R))
‘- >))

(CREATING TASK (:TASK (SIDE-TASKS-F I NDER PLAN#380)

(LAMBDA NIL

- -- ~~~~ - - -
-
- -~~~~~~~~~~ - - -_ _ _ _

V Re sults 157

(:INFER ‘ (FDRALL (+ST) (-> 6 (SIDE-TASK ...)

(EXISTS . . .
< ‘I)

•->1
(CREATING TASK (:TASK (FEATURES-F I NDER PLAN#380)

‘C,

(LAMBDA NIL
(:INFER ‘ (FORALL (+ FT) (- > 6 (0-FEATURE . . .)

(EXISTS . . .)))
‘C,) I

< niH
(CREATING TASK (:TASK (GATHERER PLAN#380)

‘C >
(LAMBDA NIL

(:INFE R ‘ (: R EOUCED (tOES.))
< (CORE-FINDER PLAN~380)

(SIDE-TASKS-F IMJER PLAN#380)
(FEATURES-FINDE R PLAN#380)>))

‘C)’]) u
(BLOCKED (F1AIN-TASK -.INFERER PLANfl38O))
(BLOCKED (CORE-FINDER PLAN#389])
(ENABLED (ACCOUNT-FOR-ALL PLAN#3881)
(BLOCKED (EXPLODER PLAN#3801)
(BLOCKED (GATHERER PLA N#3801)
(BLOCKED (FEATURES-FINDER PLAN#380))
(BLOCKED (SIDE-TASKS-F INDER PLAN#380])

;The onl y task which is enab l ed is the policy-setup for shard
accoun t i ng- -

(EXECUTING (ACCOUNT-FOR-ALL PLAN~380)
(ACCOUNT-FOR-ALL-SHARDS ((LAMBDA IX)

(AND (0EV-TYPE ?X AMPLIFIER)
(. (V-GAIN ., .) 5)
I— (INPUT—Z . . .) 38980)))])

(‘-> 1)
(TASK (ACCOUNT-FOR-ALL PLAM#3881

BE I NG REDIJCEO)
(TASK (ACCOUNT-FOR-ALL PLAN#3801

REDUCED TO (:PRIM *SETUP))

:But the fir s t real task is the exp l oder

(ENABLED (EXPLODE R PLANU I~ B1)
(EXECUTING (EXPLODER PLAN#3801

(0-EXPLODE ((LAMB DA IX)
(A ND (0EV-TYPE ?X AMPLIFIER)

C. (V-GAIN ...) 5)
I— (INPIJT-Z . ..) 38000)))))

(c,))
(TASK (EXPLODER PLAN#3801 BE ING REDUCED)
(TAS K (EXPLODER PLAN#]8111 REDUCED TO

(:INFER ‘ (0-SHARD ((LAMBDA (Xl (AND ...))J

___ _ _ _ _ _ _ - - - ,. —

V Resu l t s 158

((LAMBDA (Xl (AND ...))J)
<n’.))

;The system prints out a lengthy lis t of deductions from this inf err en l
ed-shard ” :

(INFERENCES MADE BY (EXPLODER PLAN#380]

(RECORDING (0-SHARD ((LA MBDA (XI
(AND (0EV-TYPE ?X AMPLIFIER)

I. (V—GAIN ...) 5)
(- (INPUT-Z . . .) 30008))))

((LAMBDA (XI
(AND (DEV-IYPE ?X AMPLIFIER)

(~ (V-GAIN ...) 5)
(- (INPUT-Z ...) 30800)))))

8)

;I t turns the elements of the conjunction into shards
(RECORDING (:GEN (NOT (ELI ?+C”4 < (0EV-TYPE ?X AMPLIFIER)

1— (V-GAIN ...) 5)
1— (INPUT-Z ..,) 300801>))

(0-SHARD ((LAMBDA IX)
(AND (0EV-TYPE ... AMPLIFIER)

(- ‘‘. 5)
30888))))

((LAMBDA (XI _?÷C~4))))
B)

;The first of three major ghards:

(RECORD I NG (0-SHARD ((LAMBDA IX)
(AND (0EV-TYPE ?X AMPLIFIER)

I- (V-GAIN . ..) 5)
“. (INPUT-Z . . .) 30000))))

((LAMBDA (XI I- (INPUT- Z ?X) 30000))))
0)

;The “.“ tells OESI one side mi ght be a control quantity :

(RECORD ING (POS-CO-SHARD ((LAMBOA (If)
(AN D (0EV-TYPE ?X AMPLIFIER)

I- (V-GAIN ...) 5)

I- (INPUT— Z . . .) 30808)))]
(XI (INPUT-Z ?XJ (30000) 1

8)
(RECORD I NG (:GEN (NOT (AND (NO T (CONTAINS (30800) 1?? I f)))

I- - ‘ (DEN .. .1 ?F”9)
(CONTROL-ATTRIBUTE ?F~9)
I- -. ‘ (DEN ?-#F~3) ?~~9)))

(SIDE-TASK ((LAMBDA IX)
(AND (0EV-TYPE ... AMPLIFIER)

I— - .. 5)

.~_______________________________________ -J

V Rpqmj I t q

I- ... 30000))))
((LAMBDA (If) (CONSTRAIN < ...> (LAMBDA ...))))))

0)
(RECORD I NG (P05-CO-SHARD ((LAMBDA (If)

(AND (0EV -TYPE ?X AMPLI FIER)
(. (V -GAIN ...) 5)

C. (INPUT-Z ...) 30000))))
IX] (300001 (INPU T-Z ?XI J

0)
(RECORDING (:GFN (NOT (AND (NOT (CONTAINS (INPUT-Z ...]

I?? I f)))
C. ‘ (DEN . . .) ?F ”9)
(CONT ROL-ATTR IBUTE ?F~9)
(-~ ‘ (DEN ?+F~9) ?F~9)))

(S!DE_TA ~~ ((LAMBDA (X)
(AND (0EV-TYPE .., AMPLIFIER)

- . . 5)
(- . . . 30000))))

I (LAI1DI1A (I f) (CONSTRAIN <. ..> (LAMBDA . . -))))))
8) I

:Hav i ng noticed that INP IJT _ Z is a control attribute , it uses the rul e
I NPUT-Z-SHARD to cla ssi f y the desired i mpedance:

(RECORD I NG (:GEN (NOT I. 30000 ?Z~7))
(AND (:6[N (NOT C. ?Z~’7 300000.0))

(0-FEATURE ((LAMBDA ...))

(RANGER I NPUT-Z VERY-HIGH]))
(:GEN (NOT (AND C. ?Z ’ 7 1500.0)

Cc ?Z’~7 500000.0)))
ID-FEATURE ((LAMBDA . . .))

(RANGER I NPUT-Z HIGH)))
(:GEN (NOT (ANO C. ?Z”7 500)

Cc ?Z’7 2000.0)))
(0-FEATURE ((LAMBDA ...)l

(RANGER INPUT-Z MODERATE)))
(:GEN (NOT 1< ?Z ’7 1000))

(0-FEATURE ((LAMBDA ...))

(RANGER INPUT-Z LOW)))))
0)

(RECORD I NG (AND (:GEN (NOT l~ 30000 300000.0))(D-FEAIIJPE ((LAMB DA (If) (AND ...)))

(RANGER I NPUT-Z VERY-HIGH]))
(:GEN (NOT (AND I> 30000 1500.0) 1< 30000 500000.0)))

([)-FEATURE ((LAMBDA (If) (AND ...)))

(RANGER I NPUT-Z HIGH)))
(:GEt4 (NO t (AND 1> 30800 500) (< 30008 2808.0)))

(9-FEATURE ((LAMBDA (If) (AND , . .)))

(RANG ER INPUT-Z MODERATE)))
(:GEN (NO T I’ 38000 1800))

(D-FEATIJOE ((LA MBOA (If) (AND . ..)))

(RANGER I NPUT-Z LOW))))
B)

V Re s u l t s 1~ 0

;The winning feature is ‘ hi gh i nput i mpedance ” :

(RECORD I NG (0-FEATURE ((LAMBDA (If)
(AN0 (0EV—TYPE ?X AMPLIFIER)

(. (V-GAIN ...) 5)
(- (INPtJT-Z .. .) 30000))))

(RANGER I NPUT-Z HZGHI J
0)

;A s i m i l a r deduct ion is done for the case o f voltage gain:

(RECOROING (0-SHARD ((LAMBDA (XI
(AND (0EV-TYPE ?X AMPLIFIER)

I.. (V-GA IN ...) 5)
(- (INPUT- Z . ..) 30800))))

((LAMBDA (Xl I— (V-GAIN ?X) 5))))
0)

(RECOROING (POS-CO-SHARO ((LAMBDA (If)
(AND (0EV-TYPE ?X AMPLIFIER)

I- (V-GAIN ...) 5)
(— (INPUT-Z ...) 30000))))

(Xl [V-GAIN ?XI (511
0)

(RECOROING (POS-CO-SHARD ((LAMBDA IX)
(AND (0EV -TYPE ?X AMPLIFIER)

(- (V-GAIN ...) 5)
(— (INPUT-Z . . .) 30000))))

(X I [5) (V -GAIN ?X) l
0)

(RECORDING (SIDE-TASK ((LAMBDA IX)
(AND (0EV_TYPE ?X AMPLIFIER)

(— (V-GAIN .. .) 5)
(— (INPUT- Z . . .) 30000)))]

((LAMBDA (If)
(CONSTRA IN <

‘ . . .> (LAMBDA (61) (- .. . 5))))])
0)

(RECORDING [AND (:GEN (NOT I> 5 1008)) (0-FEATURE ((LAMBDA (XI
• (AND ...)H
-

[RANGER V-GAIN VERY-H I GH)))
(:G EN (NOT (AND I> 5 50) Cc S 5000)))

(D- F EAT ~
)
~

((LAM BDA (If) (AND ...)))

(RANC,[R V_ GAIN HIGH)))
(:G EN (tJH T (AN D Cc 5 1) (~ 5 100)))(D- FEAH t ’~I

((LAMBDA IX) (AND . . .)) 1
(PA Nl ml l~ V -GAIN MODERATE)))

(:GEN (NOT (-~ 5 1)) (0-FEATURE [(LAMBDA (If) (AND . . .)))

_ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ - - a

V Re s i j i t -i 11 ,1

(RANGER V-GAIN L O W))))
0)

(RECORDiNG (D-~ EAT UF 1E ((LAMBDA IX)
(AN ~] (0EV-TYPE ?X AMPLIFIER)

I. (V-GAIN . ..) 5)
I- (INPUT-Z ,.,) 30000))))

(RANGER V- GAIN MODERATE))
0)

;The las t d-shard g ives is the core device type:

(RECORD I NG (0-SHARD ((LAMBDA (If)
iAND (0EV -TYPE ?X AMPLIFIER)

C. (V -GAI N ...I 5)
(- (INPUT-i ...) 30000))))

((LAMBDA IX) (0EV-TYPE ?X AMPLIFIER))))
0)

(RECORD I NG (CORE-DEV-TYPE ((LAI100A (Xl
(AND (0EV -TYP E ?X AMPLIFIER)

1— (V-GAIN . ..) 5)
I- (INPUT-Z ~~..) 39000))))

(AMPLIFIER] I
0)

(mINFERENCES DONE.)

;Th is conc l ude, the inferen ces of the exploder
;Now the other ta~~s 0~ the rephrasin g plan assemb le the features , roro
;device type , and constr ainj s in to a new task network:

(ENABLED [FEATURES-F I NDER)‘[AN#380))
(ENABLEO [CORE - I NOER PLAN~~~01)
(EXECUTING (CORE-FINDER PLAN#380)

(:F IND (LAMBDA ROT)
(CORF-D EV - TYPE ((LAMBDA (If)

(AN D ..)))

?+OT) 1)
(<~ (CORE-Oh PLAN#380 ~])

(TASK (CORE-FINDER PLAIJtfl~ 1~ PRIMITIVE) I

(Ot 0 TASK (MA IN-TA SK-IN IEDER PLANU380I
HAS A C T I O N (:INFER ‘ (AND (STASK (MAKER (tOES.))

(tOES.)

(LAMBDA NIL (MAKE (DEN . . .)))

< ‘ (WINNER . . .) >)

(:MA IN (MAKER (tOES*))
(tOES,)))

< (COHE-EINflFR PLAN#380C.))
(EN ABLED (MAIN - TA~K-IN FERI 0 PLANII380))
(F INISHED [CORE-FINDE R PLAN#3801)

;Ret r iev al of the cor e d~ vjce t ype enables the system to In fe r

.1

V Rp9(J lt q I F,?

;the main ta— k:
(EXECUTING (F1 AI N— TAS K- I N F ER) B PLAN#3801

I: INFER (AND (STA y’ (MAKER (*0) ~~*) I (tOES.)
‘C >
(LAMBDA NIL (MAKE (DEN ...)))

- ‘ (WINNER . . .) >)

(:t1A IN (MAKER (tOES.)) (tOES.)))
< (COR E -F I NDER PLAN# 180) nil

[<>1)
(TASK (IIA IN-TASK-INFLRER PLANII38O)

PRIMIT IVE)
(IN FERENCES MADE BY (MAIN-TA SK-INFERER PIAN#3801

(RECORDING [:TASK 1114fr1 0 (tOES.)) <> (LAMBDA NIL (MAKE AMPLIFIER))
~~~

‘ (WINNER tIlE S.)),)
0)

(CREATING TASK 1 :T ~~~ (MAKER I tOES.)) <,

(LAMBDA NIL (MAKE AMPLIFIER ))
< ‘(WINNER (*DES*))~~])

(RECORDING (: n’URTASK (MAKER (*DES.)) (tOES.))
0)

(RECOF1DINC (:MAJN (MAKER (*PES*)) (tOESt))
0)

(.INFERENt E~ DONEx) I

;End of in fe r ence, by main task inferer

(ENA BLED (SI DE-TA ~K~ FINDER PLAN~380] )
(FINISHED (MA IN -TA ~K INI EBE R PLAN#380) )
(BLOCKED (MAKER (tOES .)))

;Nou the features of the desired device cause policies to he c r ea t e d :
( EXEC tI T I N( ,  [FEATURES F(N(1F R PLANU380I

[: INFER ‘ (FORALL ( + F T )  ( -‘  6 (0 FEATURE I...) ?+IT)
( EXISTS IT )  (AND (STAS K

I:SCOPE . .,)
IsSUCCESSOR ...)))))

<>1
1<> ))

(TASK (FEATURES-F I NOER PLA Nff380 )
PRIMITIVE )

( INFERENCES MADE BY (FEAT UR ES-F INDER PLAN#380)

(RECORD ING ( :GEN (NOT (0-FEATURE [(LAMBDA IX) (AN0 . ..)))

?~ 1))
(AND Ii~TA~ K TI400/11~ S (~ [iI -,*)

(LAMbDA NIL (0-NOTE (DEN ? - # F T ) ) )
,)

~ 1 f)P[ T ’ ‘~00/1 1t- ~, (MAK ER (*DES.I I I
(:S(JCCESSDR TI400/1165 (MAKER (tOES.)))))

0)



V Rp ’wltq 11,1

(RECORD I NG ( : T A S K  T 1400/ 1F,3 1 — n i  (LAMBDA NIL
(0-NOTE (RANGER I NPUT-? HIGH)))

‘C;. )

0)
(CREATING TASK (:TASK T’400/1G91 <> (LAMBDA NIL

(0-NOTE (RANGER I NPUT-Z HIGH)))
•~>) )

(RECORD ING [ :SUBTAS K T 1400/1691 (xO ES*)J
0)

;No tin g the SCOPE of the tas k  tri ggers several rules for
;suggesting ways to make an amp l i f i e r :

(RECORDING [:SCOPE P400/1631 (MAKER (tOES,)))
0)

(RECORD I NG (:ANTEC (NOT (:POLICY T’400/1691
ID-NOTE (RANGER V-GA IN MODERATE))))

(:TD-DO (MAKER (.DES.)) (MAKE AMPLIFIER ) <?DEV”29’
(M AKE CE))]

0)
(RECORD I NG (:ANTEC (NOT (:POLICY T’400/1591

(0-NOTE (RANGER V-GAIN HIGH))))
(:TO-DO (MAKER (tOES.)) (MAKE AMPLIFIER ) <?DEV~ 29>(MAKE N - S T A G E ) ) ]

0)
(RECORD I NG (:ANTEC (NO T {:POLICY P400/169!

(0-NOTE (RANGER V-GAIN VERY-HIGH ))))
(:TD-DO (M AKER (tOES.)) (MAKE AMPLIFIER ) <?DEV 29,

(M AKE OP-AMP))J
0)

(RECORD I NG (:ANTEC (NOT (:P1)LICY 11409/1691
(0-NOTE (RANGER FRED-OP VERY-LOW ))))

(:TO-D O (MAKER (.DES*)) (MAKE AMPLIFIER ) <?DEV”23,
(M AKE Ol~~ -AflP))]

0)
(RECORD I NG [:ANTEC (NOT (:POLICY T’409/1691

(0-NOTE (RANGER I NPUT-Z HIGH))))
(:TO-flO (MAKER (tOES.)) (MAKE AMPLIFIER) <?OEV”29>

(MAKE CC)))
0)

(RECORD ING (t ANTEC (NOT (:POLICY P409/1691
(0-NOTE (RANGER P-GAIN H I G H ) ) ) )

(AND (:TQ-flIJ (MAKER (tOES.)) (MAKE AMPLIFIER )

(MAKE COMP-SYM ))
(:TO-OO (MAKER (tOES.)) (MAK E AMPLIFIER )

~ ?OEV~~9,
(M AKE PUSH-PULL) H)

0)
(RECORDING (:ANTEC (NOT (:POLICY ?PTASK’~29 (MAKER (tOES.))

(0-NOTE LINEAR )))
(:10-DO (MAKER (tOES,)) (MAKE AMPLIFIER) <?DEV~ 29,

_________ S



V Resu l t s  11,4

(MAKE CE)))
0)

(RECORD I NG (:SUCCESSOR 11400/1691 (MAKER (tOES.))]
0)

(RECORDING [ :TA SK T’400/21S4 -c > (LAMBDA N I L
(0-NOTE (RANGER V-GAIN MODERATE)))

<>1
8)

(CREATING TASK (:TASK T1400/?154 <ni
(LAMBDA NIL (0-NOTE (RANGER V-GAIN MODERATE)))

‘C ; , ) )

(RECORDING (:SIjBTASK T’600/2154 (‘siOESt)I
0)

(RECORD I NG [:SCfJPE T’400/2154 (MAKER (tOES.)))
8)

:S imilar (y for this feature:
(RECORD I NG [:ANTEC (NOT (:POLICY T’408/2154

(0-NOT E (RANGER V-GAIN MODERATE))))
(:10-00 (MAKER (tOES.)) (MAKE AMPLIFIER ) <?DEV”29,

(MAKE CE)))
0)

;The same ru les w i l l  be found again (a sli ght non-opt ima lity
in the phrasing of the these rules)

(RECORDING (:SUCCESSOR T’400/2154 (MAKER ( tOES.)))
0)

(t INFERENCES DONE.) I

;End of inferences by features finder .

(F INISHED [FEATURES-F INDER PLAN#380J )
(BLOCKED (11400/ 1691))
(BLOCKED (T’400/2154))

;The side-task , finder simil ar l y turns side-task shards into CONSTRAIN
tasks:

(EXECUT I NG (SIDE - T~~KS-F I NDER PLAN#380)(:INFER ‘ (FORALL (+ST ) I-, G (S IDE-TASK I,..) ?+ST)
(EXISTS U) (ANti ISTASK ... )

(:SUC CESSOR . . .) ) ) ) )

<>1
[<>1 )

(TASK (SIDE-TASKS-FINDER PLAN#380)
PR IM) TIVE )

(INFERENCES MADE BY (SIDE-TASKS-FINDE R PLAN#380)

(RECORDING I :GEN (NO T (SIDE-TASK ((LAMBDA (If)
(AN D . . .) ) )

(AND (STASK T’401/6707 (tOES.)

— —- - -  - .- — - - --— - — -_ —— _______



V Resu lts IGS

— ‘ (WINNER (tOES.))>
(DEN ‘~~ T)

(:~~IJ ([t5SOR (MA KER (.OES.))
1 601/6707))]

8)

(RECORD I NG t :TASK P401/3406 < ‘ (WINNER (tOES.))>
(LAMBDA (If)

(CDN~~T RA I N  ‘ (V-GAIN ?If),
(LAMBDA (Cl) I— ?G1 5))))

‘C>)
0)

(CREATING TASK (:TASK 1 11401/3406 < ‘ (WINNER (tOES.))>
(LAMBDA IX )

([1it J~ TRA (N < ‘ (V—GA IN ?X)>
(LAMBDA (Cl ) C. ?G1 5 ) ) ) )

(RECORDING I:SUI3TA5K 11401/3406 IxCESt))
0)

(RECORD I NG (:SUCCESSOR (MAKER (tOES.))
P401/3406]

0)
(.INFERENCES DONE.)
:End ~ f inferences hj  c ide - t a , ks  f inder .

(ENABLED (GATHERER PLANb3~0))
(FINISHED (SIDE-TASKS-FINDE R PLAN#38O] ) I

(BLOCKED ( T 401/~~6OId

;The ‘ gatherer just ma i ks the desi gn task reduced:
(EXECUTING (GATHERER PLANII~ S0]

[:(NFER ‘ (:REDEJCEO (tOES.)) < (CORE-FINDER PLAN#380)
(SIDE-TASKS-F I NDER PLAN#380)
(FEATURES-F I NDER PLAN#380) ~)

-
e [<>1?

H (TASK (GATHERER PLAN#3801 PRIMITIV E )
(INFERENCES MADE BY (GATHERER PLAN#380)

(RECORD I NG (:RE[JI JCED (tOES.)) 0)
(tINFERENCES DONE.)
;The interpreter w i l l  see this message in a second.

(ENABLED ((tOES.)])
(FINISHED (GATHERER PLAN#380])

:Now the task is re atte nip ted :
(EXECUTING [(tOES.)) (DESIGN (LAMBDA (If )

(AND (0EV-TYPE ?X AMPLIFIER )
C. (V-GAIN ?X) 5)
(. (INPUT-Z ?If) 30000 )) ) )

( — ‘ (WINNER).))
(TASK [(tOES.)) ALREADY REDUCED) ;The f:REOUCEO for mula I9 seen

- _~_ - - - - —.--- ~~ - — - -  ~~~~~~~~~~~~



V Req u l t ~ 116

(ENABLED (T ’4 00 / l ) 331 ] )
(ENABLED (T ’4 00/2 154 1)

:The p o l i c i e s  are put into effect:
(EXECUTING (11600/21S6] (0-NOTE (RANGER V-GAIN MODERATE))

[<>1)
(TASK (T’400/2154] BE I NG REDUCED)
(TASK (11409/2154] REDu CED TO [:PRIM .SETUP)) I

(EXECUTING IT 1 400/1691] ID-NOTE (RANGER I NPUT-Z HIGH))

(TASK (T’400/1691) BE I NG REDUCED)
(TASK (11499/1691) REDUCED TO f:PR)t1 *SETUPJ )

;Recording these policies causes two of the rules inferred above to
;fire ,, .

(ENABLED (MAKER (tOES.)])
(EXECUTING (MAKER (tOES.)] (MAKE AMPLIFIER)

1< ’ (WINNER (tOES.))’)
(TASK [MAKER (*DES*)) BE I NG REDUCED)

:...so there are two ua 4~~, common emitter and common collector ,

~to make an amplifier
(MAK ING A CHO ICE )
(RECORD I NG (:CHO I CE CHO I CE#602 EXEC (

[:TO-00 (MAKER (tOES.))
(MAKE AMPLIFIER ) < ‘ (WINNE R (tOES.))>
?(.JAY)J

0)
;The system records f i rst the choice , then the options.
;Recor d fng the cho ice  c a i j ~ ec a flock jf choice rules to he
; i ng t a n t ia t e d :  -

(RECORD I NG (:GEN (NO T I:- (MAKER (tOES,)) ?AMP-TASK~3))
(AND (CHODSE- AF1P-PK T CHOICE#402 ?AMP-TASK’~3

(MAKER (tOES.)] (‘(WINNER . . . ) )  (?UAY) )
(:GCN (NOT (:SCOPE ?PTSKA3 ?AMP-TASK~3))

TRUE)))
0)

;The choice ru les  romp in a packet:
(RECORD ING I1HH1~~~F AMP PKI CHOICE#402 (MAKER (tOES.))

(MAK ER ( tIlES.)]
(‘(WINNER (tOES.)))
(?L.JAY))

0)
;Th is odd- look ing  formul a i~ intended to tri gger anteceden t

rules in the pa ck e t wh ich uould otheri-jise not he notic ed
(RECORD I NG [:tFN (NOT I:SCOPE ?PTSK~4 (MAKER (tOES.))))

TRUE ]
8) I

suc h as t h i s  one:
(RECORD ING I:A NT EC (NOT ( : r C1I( ~E ?PTSK 1 (MAKER (t OES .) ) ) )

(:GEN (NOT (AND (:POLICY ?PTSK1 (0-NOTE LINEAR ))



V Rerei l t~~ 11.1

(:SCOPE ?PTSK2 (MAKER (tOES.)))
(:POLICY ?PTSK2

(0-NOTE (RANGER P-GAIN HIGH)))
I-> ‘ (DEN ...) ?PTSK2)))

( :AN T EC (NOT ( :OPT ION CHOICE# 1402 ?A 1 [:10-DO ..,fl )
(:GEN (NOT (OPT-SUPPORT ?Al . . .1)

( :RULE-TOGETHER <?Aj > [:10-00 . . . J ) ) ) ) J
0)

(RECORD I NG [:SCOPE T’400/2154 (MAKER (tOES.)))
0)

(RECORD I NG t:SCOPE P40011691 (MAKER (*DES*))J
8)

;Here is the fir st option
(RECORD I NG (:DPTION CHO I CE#402 OPT#403 (:10-DO (MAKE R (tOES.))

(MAKE AMPLIFIER )
< ‘(WINNER (*DES.))’
(MAKE CC)))

0)
;It  f inds a rul e
(RECORDING (:ANTEC (NOT (:OPTION CHO I CEII4B2 ‘Al

[:TO-DO (MAKER (tOES.))
(MAK E AMPLIFIER ) ~~?4N~(MAK E j +DT 1)J H

(:GEN (NOT (OPT-SUPPOR T ?A1
[:POLICY _?+PTASK (0-NO TE .. I ) ) )

(:ANTEC (NOT (:OPTION C(-4O I CEU6O2 ?A I: ID-DO - . .1 ))
(:GEN I— ?A1 ‘A2) (:RULE-TOCETHE R —‘ Al 2A~ ;.

(:10—DO ..,))))))
8)

;and check~ the suppor t for the options to see if input impedance
was relevant

(RECORDING (:GEN (NO T (OPT-SUPPOR T OPT#403
(:POLICY _?iPTASK ’i

(0-NOTE (RANGER I NPUT-? _ . . ) ) ] ) )

( :A NT EC (NOT (:OPTION CHIJICE#402 ?A2’3
( :TO-0O (MAK ER . . .)  (MAKE AMPLI FIER )

‘C . • .>

(MAKE ...H))
(:GEN I. OPT#1403 ?A2”3)

( :RUIE-TO G ETH E R <OPT#483 ‘A2~3>
( :10—DO (MAK ER . . . )  (MAKE AMPLIFIER ) ‘C ,,,>

(MAK E . . . ) ) ) ) ) l
9) I

* g i t  was
(RECORDING ( :ANTEC (NOT (:OPTION CHOICE#402 ?A2”4

(:10-110 (MAKER (tOES.))
(MAK E AMPLIFIER ) ‘C

’
... -

~

(MAK E _ ?+072”4)1 1)
(:GEN I- OPT#403 ?A2”4 )

(:RULE-TOGEIHER OPT#403 ?A~~’4
(:10—DO (MAKER (tOES.))

(MAKE AMPLIFIER ) < ‘... >

-~~~~~~ - ~~~~~~~~~~~~~~~~~~~ 
- — —  - -  —____ S



V Result s 1S~

(MAKE (CASCADE CC . . ) ) ) ) ) )

8)
(RECORDING (:GEN C. OPT#403 OPT#493) (:RULE-TOGETff R rOP t~ 403 OPt#’a03~[:10-DO (MAKER (.DES.))

(MAKE AMPLIFIER )
< ‘ (WINNER . . .) - ~
(MAKE (CASCADE CC CC))])]

8)
;The ru le  exc l udes cascading someth ing w i t h  i t s e l f , so this li ne of

inference dies.

;Here is the ~
pcond npt ion:

(RECORD iNG (:OPTEON CHOIITF#602 OPT#404
[:10-DO (MAKER (.DESt))

(M AKE AMPLIFIER ) < ‘ (WINNE R (*tESt))>
(MAKE CE)))

8)

;I t is checked for i nput impedance be i ng relevant
(RECOROING (:GEN (NO T (OPT-SUPPOR T OPT#404 (:POLICY J+PTASK’3

(0-NOTE (RANGER I NPUT-Z —

...)))))
(:ANTEC (NOT (:OPTIDN CHOICE#402 ?A2~3

(:10-00 (MAKER . * . )  (MAKE AMPLIFIER )
‘C.  • ,>
(MAKE _ ..,)H)

(:GEN I. OPT#404 ?A2”3 ) (:RIJIE-TOGETHER *cOPT#404
?A2 ‘~3>

(:TO-OO (MAKER . . .)

(MAKE AMPLIFIER )
‘C. •

(MAKE .,.HW)
8) I

;It  isn ’ t. However , the / :ANTEC der ived from the other option
tri ggers ,

(RECORDING (:GEN (‘. OPT#403 DPT#404)
(:RULE-TOGETHER <OPT#403 0PT#404>

[:10-DO (MAKER (tOES.))
(MAKE AMPLIFIER ) < ‘ (WINNER . . . ) >
(M AKE (CASCAOE CC CE))])]

0)
and the appropr iate cacrar le is suggested:

(RECORDING I:RULE-TDGETFI [R -OPT#403 OPT#404>
[:10-DO (MAKER (.DES.)) (MAKE AMPLIFIER )

< ‘ (WINNER (.OES*))>
(MAKE (CA’ I.ADE CC CE))))

0) I

(RECORD I NG (:OPTION CHOIC [11402 NEL-JOPT#405
[:10-DO (MAYER (tOES.))

(M AKE AMPLIFIER ) < ‘ (WINNER (tOES.))>
(MAKE (CASCADE CC CE ) ) ) )

0)



V Req~~l t q  IG’]

:Thi s new option goes th r ough the m i l l  also
(RECORD I NG (:GEN (NOT (OPT—Su PPORT NEWOP T#405

(:POLICY j#PTASK ’3
(0-NOTE (RANGER I NPUT-Z _ . . . ) ) ) ) )

(:ANTEC (NO T (:OPTION CHO I CE#402 ?A2 3
(:10-00 (MAKER ...)  (MAKE AMPLIFIER )

<. -

(MAK E _ .. , ) ) ) )

( :G EN C. NEL-JOPT~40S ?A2”3)
(:RULE-TOGETHER <NEWOPT#405 ?A2”3>

(:TO-DO (MAKER • . .)  (MAKE AMPLIFIER )
< . - . >
(MAKE . , . ) ) ) ) ) )

0)

:A rather unpromisin g cacr adp is suggested:
(RECORD I NG (:GEN C. I)PT#493 NEWOPT#405)

(:RULF -TOGETHER <OPT#403 NEWDPT#405>
[:TO-DO (MAKER (tOES.)) (MAKE AMPLIFIER )

‘-
‘ (WINNER - . . ) >

(MAKE (CASCADE CC (CASCADE CC CE))))))
0)

(RECORD I NG [:RULE_ T1]LETHER —OPT#403 NEI-)OPT#405>
[:10-DO ((lAKER (tOES.)) (MAKE AMPLIFIER )

< (WINNER (tOES,))>
(MAKE (CASCADE CC (CASCADE CC CE)))))

B)
;bui for som e reason vani~~hpq, (Notice that the rule should he ,

“ If was suggested horai se of it s i nput impedance and y wac n ’ t .
cascade them .” Then th i s cascade would never have been suggested. )

;Ihe / :RULE-T OI ,ETHER caices the old options to he flushed
(FLUSHED [:CONSEO (:OPTION CHOICE#402 OPT#404 (:TO—00 (MAKER (*DES*))

(MAKE AMPLIFIER )
< ‘ (WINNER .,.) >

(MAKE CE)))
FALSE ))

(FLUSHED L:CONSEO (:RULE_Tfl1I,ETHER <DPT#403 OPT#494>
[: 10410 (MAKER (tOES.))

(MAKE AMPL IFIER )
< ‘ (WINNER . . .

(MAK E (CASCADE CC C E ) ) ) )
FALSE))

(FLUSHED (:CONSEQ (:UPTII)N CHfl (C #492 OPT#403
(:10-DO (MAKER (tOES.))

(MAK E AMPLIFIER ) < ‘ (WINN ER . . .C.
(MAKE CC)])

FALSE ))
(FLUSHED [:ANTEC (NOT (:OPTION CHOICE#402 ?A2~4

[:TO-OO (MAKER (tOES.))
(MAKE AMPLIFIER ) < ‘. . - >

(MAKE _?+OT2~4))))( :G EN (. OPTII14O1 ?A2”4)

_____ ________



V R e c i l t o  170

(:RULE - TIH 1 THER <OFT#403 ~Ai”~4~
[:10-DO (MAKER (tOESt))

(MAKE AMPLIFIER) < ‘ - . - ,
( MA ~ [ (C ASCADE CC — . . ) )] ) ))

(FLUSHED [:CONSFI) (:RULE-Tfl~1THER <OPT#403 NEWOPT#405>
(:10-00 (MAKER (tOES.))

(MAKE AMPLIFIER ) < ‘(WINNER - - - C.
(MAKE (CA ~~ A [1E CC (CASCADE CC ITE )H]l

FAL1-H
(CHIl I CE CH’ I [E#60 ’ fl’N~

The c h c i c p  s u c c e s s f u l l y reduced the desi gn prob l em:

(T ASK [MAKER ItMES.)] REDHCED TO (MAKE (CASCADE CC CE)))
(CREATIN ( TA~ k [:TA ~- fr ‘ -0’ e~ ~

- -
‘ (LAMBDA N I L

(MAKE (CASCADE CC CE)))
I L-i l ~JNF P (iDES.))>])

(NEt.] TA~ K i ( - 0 .~~) HAS AC T I I1N [MAKE (CASCADE CC CE)))
(ENABLED (G 0. e~~)
(EXECUTIN 1~ L~i:4~~ [h AKE (CASCADE CC CE))

(< (L-~I NNER (iflESi l C.))
(TASK [G024~ ) BE INr, REDUCED)

;There is a s t a r v i e - c i  p lan for do ing cascades:
(TAS K (G0268) REI)IJCEO 10 [:D0-SUBNE T (CASCADE-PLAN CC CE)

-CASCADE-NAME> ])
(CREAT ING TASK I: IA~K (MAKER -I PLAN#406)

(L AMBDA N IL (MAKE CC))
.- ‘ (FIft~1-DE V PLAN#406C.])

(CREATING TASK (:TASK (MA ~~ fl-2 PLAN#406)

~> (LAMBDA NIL (MAKE CE))
< ‘ (SECONI I --DEV PLAN #406)>])

(CREATING TASK (:TASK (GRABBER PLAN#406) <>
(LAMBDA NIL

(GRABBA (LAMBDA ( I f )
(MAIN-DEV-TYPE ?X (CASCADE CC CE)))))

< ‘ (CA ~ LAflF -NAME PLAN#406C.))
(CREATING TASK ( : T A S K  ([HI ll I ER PLAN#406)

~~~
‘ (F I P H T - E I E V PLAN#406) ‘(SECONO-DEV PLAN#406)-.
(L AMBDA (Dl 02) (COUPLE ?Dl ?O2))
‘ C >]) I

At th is point a hug in the s p e c i f i c a t i o n for the cascade p lan c~ i.,spc l t i .

ey9tem to crash. (T h is uo ce ld have been caught by a syntax checker of fho k ind

I men t i nnpr) 1I nvr* .) In .lnij ~I9P , the system ci e rr en t I y l acks I. 111) 14 I ~~ ~‘

common—co l lp(i i ’ c ii (1 t q - e nd constraint ana l ys is , so i t could not h ev .~ i n c

much fur ther .

- - -
- — —~~~~~~~ --s, - - -

~~~
-—

~~~~~~~~ -~~~~~~~~ S


V Re sult s 171

V ,B,2 Converting a ‘)rf litre’ Wave into a Sine Wave

I n this section I prec ’nt the somewhat more disappointing he iiivin r of DI Hi

on the j ob of r n n v o r t i n c ; a 1 k(-4 z square wave into sine wave of the same

frequency, expresse-i is follows

(des r;n

(\ (ckt)
(conver t ~ - kt

(\ (in)
(and (p eriod i c (tfun ~in) 1.0E-3)

(f or - e l i It)
(and (i m p l ies (1< ‘t 0)

C. ((one—p eriod (t f u n ?in)) ?t)
1))

(imp l i e s (rio t (1< ?t 0))
C. ((one - pot od (t f i ,n ? i n)) ?t)

— 1))))) I
I \ (in out)

I— f I r m ?out)
(\ I t) (sin I. 2000 pi ?t))) I))))

— ‘ (f i i f i r 1 ,))

;T~ c n i t i - e l ~~i’ o f t I i~ ~ . I m onr T p i 9 just as in Her t . V _ B. 1
(CREAT I1 i 1A~ k

(: TA - ~ h f -
*~~

(L A r f r~ ‘A N IL
(OESI’N If A ‘~~~

- ‘ (Ki)
If H -I P T ?LKT (L~~’HflA . - .) (LAMBDA - - - 1)1) 1

< ‘ IF IL IE RI >1)
(E~JA r u f f 1 ((*H . 1) 1

I I ~l UT I NH (C.’ .1 - -
(TA ~~ [~~*1 5*)] RE I Nf ~ DI. f~ED)
(I A ’-k [•)] ~fl (~ HI
(GREAT IN~

, TA ~ I : TA~~ I- HNA [P (tOES,))

ILAMI HA NIL
(: ‘~ HA - ; I*DE .I [U~S I b N (LAtililTA - - - I

(1 ILTE R) ,)
> 1)

f[r~A fff E D [ME I - l i l A - F ~ It F i .1])
—
~~

r i~ T IN HI I HHA -, I Ii I - .))

~f) MRA’ I I * 1W * 1 (DES I I N (LAMBDA Ii K TI
(1 imr j v~ NT ‘I ~ I (LAMBDA . . .)

(LAMBDA .. ,)))]

— ‘ (FILTE R)>]
(‘>] I

(TASK [ME IMPA l El .[t ~,)] 1 IN REDUCED)
TASK IREPH)4ASER (*[l [,s)J REDUCED TO

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _

______ _____ A

V Dp~ u l t s 112

(:00 ‘ I lf iNI I ([II I -RE i i hA~ f — PLAN
((I AMI1 [)A II KT) (CONVERT . . .))) (tOES.) ‘(FILTER))

:1 have ‘‘I I t ,’ I I t ’ rn .-c ’ i~~e~ re ga r fu ; s ettin g up t t ~~ ro ldir . I’ r if lq
net w ork . (T i c 1 er p t i , c i m ~ 3s icr the precedinq examp le .)

(EXi ~ I T I N - 1A ~ ‘N I 1 r(m A l t PLAN #192]
(A l 1 111 ‘N I fl It AL~ — IIA N f 1

(LA M E ’ T ’ A (C~ T I (1 N~ H I ~~ I (LAMBDA - . -) (LAMBDA . - - II))
[‘—)i

(TA ’ fr~ H ‘N~ If IH A f f b~’(N~ 1 B~ (NI
, REPIJCED)

(TA -~ A~~ HI NT IM ‘.~ ‘ F L ” t i ; : I ’) PEDdlED 10 (:PRIM iHI TIIP)
I I’ LE~ I ’ I flOI R T I ANt : - • , j i

(E~ F l i J T I N . i _ I ~ ‘ ,II f Im I itf2l 1 ,)

(D i ‘I ODE (I A 1’Hl-A (: • ~) ‘ f l~JV[MI ?[KT (LAMBDA ...) (LAMI m I 1A . - . 1 1 1 1 1
(.- >] I

(j A - ~ 1 . 1 1 ifl[f l PL’,H ::~ ~.] B F I !~ PELII I1 E D)

;i ~t los fln ti er rm n S l’ hr- f
I [A K ff ~IH I ‘(‘I Ii PLAN’! ~ , l ‘1 PUrEE) TO I: INFER ‘ (D HHAHH I (t A ’ i ’ — _ - I)

- [(LAMBDA ,,. i))

‘C)))
(INFERENCES MA f BY ~i- ~I’ - [~ ~ ~‘f AN/Pfi~~)

IT- ’Ef’IHIl(N L , (0— MA O f P A ~~~ ‘~ (C kTI
N ’IHT ‘CKT (LAMBDA - , .1 i~~~ ripfl.~ • ,

I U A M f l I ;, (- T i

N~ I R I ~‘l~ I (LAMBDA - . .) (LAMBDA - - -) I)])0)

;Bijt t his t r’c the rca in ~i~~~ r ‘I is ‘oo ar rq t n tie har r i l o f ~y MTP ,
an -e suht.e ’-~ 5 3p t

(RECORD i NG 1: NA~ K Ti ‘J”~/2T’.e -

IL A T1Ft I1A N IL [VT_EXPLODE [(L AMBDA - - - I) ((LAMBDA - . . I] 1)

0)
(GREAT I NG TA NK (: I A l . 11 1 f j / ’

~4(~
(LAMBDA NIL (CVT- EXPL O OE ((LAMBDA ... I I

((LAMBDA ...)]))

(RECORD I NG (:1 I IRTAHK T 1! 3 7 ’l / , l’~ (E XPLODER PLAN#3~32)10)
(RECO RD I NG (:MA IN T 1’ ~~ii/ ’. (EXPLODER PLA N#392))

0)

;The same rule ~ .[11NVI 111 1 ~PLOOE -, also sets up a rule to inf er
510-TRANS d-c ha rds from t i p “ si gnal features ” t hat f a l l out
of the conver t c’xp lnfit nn. . -

(RIC I)RDINC, I: AN IF I (P1)1 (SIr I F AT IIHE ((LAMBDA - . -) I I (I AMBI1A . . - I)
‘4FLATURfl67))

(0-SHARD ((L AMBEJA (CKT) (CONVER T ,..))

— - . ~~- — - _ _ _______

--- ~~-
-- — -

V Rpq iih t ’ , l 1 ~

((LAMBDA (CKT) (SIG-TRANS CKI . . .)))))

0)
(.1 NIEPI Ni F ~ H INI * I

Work t o r ~ na on th i s cieb task

(ENARI ED IT i~ ~7 I/ 7 1 1 6]
(EXECU T INN (T i ’ ~7 I/2 l it I

[CVT-EXPLODE ((LAMBDA (IN) (AND (PERIODIC ... 0.001)
(FORALL ...))))

((L AMBDA (IN OUT) I- (TFUN ...) (LAMBDA ...)))]1
[. .,)) I

(TASK (Ti I
~7’(/ ’ l’~S] BE I NG REDUCED)

:But there is -i r - f o r , r e whether to l ook for f requency-domain
or t me — do ma in fe a t u r e s of the si gnals

(MAK I NG A C HOI IF)
(RECORD I NG t:CHI)ICE [H flI i F t IelB EXEC

I : TO-DO 111379/6711
(CVI)‘~~ F’(I IDE (. . .) 1...)) ~>
?t-JAY]]

0)
(RECORD I NG (:ANTEC (NOT (:OP T ION [F-1011E114)0 ‘A1~~1

(:T0-[Jf) T1’ (79/4711 (CVT-EXPLODF - - -

‘ C -.

(FP(II-DOMAIN-RT F HRASE .,.)]))
ANTEC I NI IT (: OPT I [IN I MI) ICE #410 ?A -’ ~~

(: TO — ~jU . . .)))

(AND (:G EN (NOT (AND . .)) (:RIJLE-IN ‘AV3))
(:GEN (NOT (AND . . .)) (:RIJLE-IN ~A2~~))

(:C,IN (NOT (AND - . .))

(:RUIE-OUT ?A2~ 3UH1
0)

(RECORDING [:OPTION CHO I CF#410 OPT#411 (:10-DO T11379/4711
(CVT-EXPLDDE I...

(. ~,1)
‘C,

(TIME -DOMAIN-REPHRASE I...)
(. . .))])

0)
(RECORD ING (:OP TIIJN CHO I CE#410 OPT#412 (:TO-OO TIH7’f/47!1

(C VT-EXPLODE I...]
I...))

‘C>
(FRE Q-OOMAIN-PEPHRASE I...)

1...])])
0)

(RECORD I NG (:ANTEC (NOT (:RPTION CHOICE#410 ‘A2”5
1 :10-DO T1’17g/4711 (CVT-EXPLODE ...)

‘C)

(TIME-DOMAIN-REP HRASE - .J)))
I ANt) (: IF N til t (A N Il (: — - . . I (NOT . . . I I

(: 1 1 11 1 1 - I N OP T #412)
I :GEN (Nih (AND (: . . ,) (NOT . . ,)

V llc , ,j l t r u 116

I :RtJ LE— IN ~A~~N)
(:GFN (NO T (AND (:SUBTASK . ..) (:TASK—ACT ION - - .

- ACTIVE)
(0-FEATURE ...))I

(:RUL E -flUT ?A2”5))))
0)

;The rhoice d~ prnds upon whit the s i g n a l - d e s c r i p t i o n p r e d i c a t e s
lr~”nd on. (5cc -tL V T -[I(OI[[> in Appendix 3.)

(RECORD I NG (:1,1- N (NO T IAN) U — [, .,j [. - . I) (NOT (CONTAiNS ~4 El l I I Iu ’C
- - — I)))

(:RULE— IN OP T#4]2))
0) I I I

:Fr eqimo nc y - doma in is ind i~~a tocI——
(RECORD I NG (:RULE-IN 11PT11412I 0)

(RECORD ING (:NEN (NOT (AND I:- (...) (...J) (NOT (CONTAiNS ~+BODY G
.,.))))

(:RIJLE-IN OPT#411)]
0) I I I I I I I

;The /:GEN b unt) n oth in r 1 in this case , so time doma in gets no
vo~~eg .

(Check ing [l INlA INm ont took a long time , as the row of “ I’ s”

att ests , This is a t~~ -’ u C 1 (exam ple of the slowness r b SIP
on a s tr aug htf r r rm iarrl pr rrt -’Iem in which it did absolut e l y no
comb i natorial search.)

T h i g r u l e a) on enr ip u l up iii lb noth ing:
(RECORD I NC, (n UN (NOT (AND (:‘ I l[ITASK (DEN . . .) ?SUP”6)

(:TA SK -Ar T ION ~SUP
”
~ (0-EXPLODE ‘-~P~ b))

U - (:ENAB-STATUS ?SUP~~~)
ACTI VE)

(0 FEA T UNE 7-4-P”~ [RANGER FREG-OP VERY-HIGH))))
(:R ULE—OU T O P T # 6 1 1))

:So l’ ue v o t e for freq m ”nc y- do rn ain is decisive,..
(CHOICE CHOICE#4 10 flhi’lI)

• (TASK (TI i 3 7 1 / ,~~~l r) RI Dl I1:FD TO
(ER LIJ— DO MA I N— H F 1I I HA I

((LAMBDA (IN (AND P ERIO DIC ... 0.001) EORALL ,.. IH)
(LAF1BEJA (IN (lIlT) I— (TFU N - . - I (LAMBDA - . - II) I

..a nd p x r ’ r iat i r,ru pr ncro ’ lr
(1 111 A l l NI lAN k I: tA’~ 1,11 . 61 , (LAMBDA NIL

(FREO-DOI1AIN--RE PHRASE ((LAM B[1A . . - I)

((LAMBD A ...)H)
.-
~] 1

(ENABl ED ((M . f i l l)
(I XECUT INN f1ft ’.I - - -(TASK I /M . ’.l] ill INI , P1 (‘ i ~~ l I

(TASK 11 ,
~L .1) PE I)I ’l ID TO

(:S EQ (:FIM) (LAMBDA I .FPT I

_ _

V R es u l t s 175

(EXISTS (FP1 FP2 FPT)
(FORALL (Si 52) (IMPLIES ...fl)))

(LAMBDA (FPT) (:INFER ‘ (SIG-FEATURE .,.i <>))])
:The plan is to find freq’moncy pictures and compare them.
(CREATING TASK [:TASI(ITA SK#414 <> (LAMBDA N I L

(:FINO (LAMBDA (+FPT)
(EXISTS (FPI FP2 FPT)

(FORALL . . .)))))

< ‘ (FPT#L+13C.])
; . . . t h e n infer si gnal features. (See <*FREO-DOM—REPH-00-1> .)
(CREATING TASK (:TASK MTASK#423 < ‘(FPT#413)>

(LAMBDA (FPT)
I: INFER ‘ (SIG-FEATURE . . .1

‘C>)
‘C>) I

(ENABLED EITASK#414)) I

(BLOCKED (MTASK#423])
(EXECUTING (ITASK#614]...)
(TASK (ITASK#414) PRIMITI VE)

;/:FINO - g the user ’s way of calling SIP.
;Here is what the SIP tra-e l ooks l i k e for this prob l em:
(SIP TRAC E 1 0 (NOT (IF1PLIE~ (AND (IS SIGNAL S11433/3330)

(AND (PERIODIC (IFUN . ..)

0.001)
(AND (IMPLIES .. .) (IMPL!ES ,..))I

(IS SIGNAL S21434/3330)
(- (TFUN 521434/3330)

(LAMBDA (I)
- - (SIN . . .))) I

(AND I..> ‘ (FRED-PICTURE ..)
?FP1)

C.-. • (FRED-PICTURE . ..) ?FP2)
(FRED-PlC-TRANS ?FP1 ?FP2

?FPT I
I— > ‘ (OEN ...) ?FPT)))I

NIL) ! ‘~
Unfortunatel y, a bug in a very low-le vel routine caused an i n f i n i t e

recursion in the m ids t of t h ig at tempted proof . Therefo .-e , the s y s t e m rur-v

got to the point of actual i y generatin g or compar i ng frequency p ictures.

V Resu lts 176

V.0,3 NOAH in NASL

Jon Doy le and I have done some preliminary exper i ments toward a “ free

transIation ’
~ of Ear l Sacerc l o t i ’ s (1975) NOAH program into NASL . Ag I

d i scus sed i n Chapter I , NOAH and NASL are based on rather different

p r e s u p p o s i t i o n s , so an exact translation would be somewhat contrived. NOAH is

organized around repetitive execution of a strict sequence of steps of the

form , “Expand the plan; c r i t i c i z e it. ” A fter the plan has been entir el ’l

reduced to p r i m i t i v e s , i t is executed. In carry ing out these steps , the NOAH

system assumes that a l l ac t i ons ’ e f f e c t s are ful l y computable in advance; i t

reasons con f iden t l y about future st ates of the world, This assumpt ion is

fa l se for many of the ac t ions NASL tries to accomp lish.

Nonetheless , the para l lels between the two systems are temptin g. We

wondered i f it was possible to encode NOAH “critics ” as NASL “p o l i c i e s .” The

c r i t i c s we concentrated on were “Resolve C o n f l i c t s ,” wh i ch orders action s to

prevent one from undo i ng the prerequesites of another ; and “ Eliminat e

Redundant Preconditions ,” which attempts to prevent the game action be i ng clone

tuice for two different reasons.

We have done some pre l iminary cod ing (i t on 1 y takes about S page’s of NASL

expressions) , hut the unsettled state of the interpreter has macic thi s mainl y

a Ge danken exper i ment. The results so far are mixed. On the one (ujuuul , i t

takes very l i t t l e e ffor t to express as deductive “mini-theories ” m ui rh nf idia t

is meant by concepts l i ke “p re requ i s i t e ” in a system like S,irr’u do ’ i ’ ’r w hich

has them bu i l t in.

On the other t i er n), i-ic i ii) some disa ppointments. It is more cli i f ct,) t I t i n

I had hoped t~~ di g) i nyu i ~l r prob lem redui r I ion from exeru on. NASL accuser’,

that a network can be exei j t ed as soon as i t i s generated : tn force i t in t ’e

V R e s u l t s 177

more NOAH —like requires the user to write e x p l i c i t l y the theory of n) ilr n ra tin n

l e v e l s that i s apparentl y b u i l t into the NOAH elaborate -c riticiz e 1onp . T fu e

user must e x p l i c i t l y te l l the system to postpone execution of l ower level s

u n t i l hi gher leve!s are reduced. In pr incip le, there is nothing wrong w i t h

having to do t h i s , s ince this i s just another mini-theor y. Uhat marie as a b i t

squeam i sh about it was the necessi ty of i gnoring altogether NASL ’tu uisr of

/:MAIN tasks (Sect. II .B .1) in specif y ing what happens dur i ng task reriuc t ion ,

and replacin g i t with an exp l i c i t theory of /:SUCCESSDR relations.

I think i t is fair to conc l ude from this “exper i ment” that NASL is ,iii

worthwhile alternative to NOAH , especiall y for prob l ems where there is mu c h

user—suppl ied knowledge about plans , and onl y incomplete foreknowle dge of the

effects of the basic actions.

VI Conclus ions 178

VI Conclusions

“Thi s . . . may seem trivial ,
but I think i t is not without importance. ”

-- Mary Warnock , Ethics sInce 1900

I set out to construc t a circuit desi gner so f lex ib ly organized th at it

could respond to al l relevant aspects of a desi gn prob l e m , yet dir er ted enroigh

to be efficient dur i ng its normal operation . I imp l emented a rule- ha cerl

prob l em solver call ed NASL and have done pre l im inary exper iments usin g -is my

main vehicle DESI and ZDRCH, se ts of r u l e s embody i ng t h e o r i e s of desi gn anti

electronics. The results are consisten t with the hypothesis that the

organization of NASL has the righ t kinds of power . As with many experiments

in Al , the results are not unequ i vocal. Our conclusions rest largel y on

esthetic considerations.

The t h e o r i e s of des i gn and electronics drew heavi l y on previous is nrk lug

others. (Freeman and Newe l l , 1971. Sta l l man and Suseman , 1976 . A . Brown , P375)

There are novel elements. The desi gn process embodies a modifie d top- clown

strategy. Domain-dependent information , expressed in a modu l ar way, nr e-l rrs

desi gn choices and controls their interaction , When the top-down e la l u n r a t i o n

reaches the leve l o f canned “device schemata ,” the task structures qtnrerj

there become integrated with it. The theories embod i ed in the prngramc that

make this happen are further steps toward competing with human per fo, mancc’ in

these areas,

NASL has severe l i m i t a t i o n s , Due to l i m i t e d t ime , I was unable to develop

many doma in- i ndependent control features, because they were not neerleti f~~r

el e c t r o n i c desi gn. (Some of these li m i t s were encountered in ow att r ’n rpt to

s t u d y NOAH wit h NASL . See Chapter V.) The log ics of time and he) cf a ce ’

practicall y absent. Hence. I cannot c lai m that the curren t sys t e m u c r i j i r l lie

- —-- — - ——- - . - —— - - — - —••- —________ -

V I Conclusi on s 179

just as easil y used , e.g. , to understand stories. Even some features

i mportan t to electronic desi gn, such as describin g and correcting mi st- i ke ’s ,

could not be implemented in the time I had.

Second . the system ’s f l e x i b i l i t y in pr i nciple is offset by i t ~ l ark of

patience and skeptici sm in assimilatin g what it hears. An untrained ris”r

could bring its operation to a halt by t e l l i n g it the wrong things.

I have had some disappointing failures. The program is too b i g anul slow

to be practical , apparentl y because of the imp l ementation of data- hace ’

operations , rather than because of any combinatorial explosion. flare’

substantivel y, the division of l abor between theorem prover and in te r p r e ’te ’r iS

in many ways wrong. The dec is ion to use predicate ca lcu lus for rep rec r ’ nt inc j

and u s i ng kno wl e d ge was the major theoretical gamble irs NASL ’s desi gn. Th is

gamble has had w i l d l y equivocal resu l t s,

The style of knowledge encod i ng encouraged by NASL i s, in my opin u on.

quite exciting. These features in particular stand out~

> A l l control information is e x p l i c i t l y represented in the data hase’

> Most dependency information is automaticall y gat hered by the stjot em in a
comp lete and convenient way.

> Plans can be described incrementall y. Specification of crder anti cl in ice
depends on rules wh i ch can be comb i ned in flexible ways,

> Predicate calculus is used as the notat ion for control and phys i cal
information.

I w i l l disc uss first my successes, then my failures , and which way

reeearch mi ght go to overcome the limitations I have discovered.

- - -

VI Conclusions 180

VI .A Successes

In th is s e c t i o n I want to put the NASL system in perspec t ive , arscl argue’

that i t is a step toward understanding mental funct ions. Fi g. V I . 1 sl inui q a

map of current a r t i f i c i a l - i n t e l l i genca research. It may also be t,ikr’ru -is -i

map of mental functions , w i t h the arrows taken as indicat in g the f loec of

information. Either way, the central box with the question mar k is a m a jn r

mystery . We know that th i s center i5 concerned with “un,l rstan rl i nq, ” “proh lem

so l v ing, ” and “ learn ing. ” and we know that i t contains many sub-boxes . Ilu jr h

of ma instream Al is concerned with the somewhat speculative past ime of

proposing and testing p ieces of this box.

V I Conclusions 181

J
HEARING

LANGUAGE

_ _ _ _ _ _ _ _ _ _

[SPEAKING J

I [ACTING 1

Fi gure VI.! Provinces of Ar t i f i c i a l I n t e l l i gence

The thesis that rule-dr i ven prob l em solving is an i mportant techn i que’

depends . I think , on a p ic tu re of the mystery box l i ke that of Fi g. V I . Z .

Norma l cog itation is performed by a prob l em solver accessing a data l ace nf

rules. New rules are created by a rule generator : the most direc t way ig by

translation from natural-language statements. flue rules are not guarante’r’cJ

“correct” : they must be revised if fau l ty by a debugger. (McDermott . 1974a.

Su,sman , 197S)

a

VI Conc lusions 182

Hearing
Language— a — a —

_-‘~~~~~~~

“

I
GENERATORJ

“

~~~~~~~~ 
Speaking

Vision I

I I
I RULES —

RULE 

SOL ER 

Acting

DEBUGGER— — — — a — — — a — — — — — — — — — — — — —

-. Fi gure V l ,2 The Rule-Based Utopia

To some degree , putt ing these last two functions in neat boxes is iiu ’ - l ’ fu , l

doodl ing, hut the problem-solver box i~ i ntended to be real. The NASL cu i r tem ,

or some future descendent , resides i n this box. To what degree do fp it ej rn q of

NASL support progress on the rule-driven parad i gm? In answering t h u ~

quest ion , w i l l  survey in det a i l  wha t I consider the strengths of  fl u e ’ re ic rent

eye tern .

NASL is driven by a gencral predicate calculus that supports Ii a r k s e u r rl anti

forward deduction , Thi s feature forces the user to think in terms of t r u t h

and f a lsehood , rather than en te~ ms of , e.g.,  “ demonic ac t i on . ” F u r  e’x .iruu~u l r

(see Chapte r I I) , there is no way to  “deduce the erasure ” of a for m u jl ,i,

Unl ike a PLANNER-type sys tem ( Hew i t t , 1972), NASL treats erasure e n t i u r ’ l y

a.- — - - - - -r - - — _______ *



V I Conclusio ns 183

differentl y from recording. This enables more revealing records to hr. ~‘ r’pt.

It forces the user to think in terms of true rules rather than apparentl y

usefu l ones, l i k e product ions , wh i ch mi ght have to be changed later , or m i ght

introduce arbitrar y symbols with no presumed mean i ng. (R ychener , 197 1 , Nr’wr ’ll ,

1971) This half of Minsk y ’s (1974) “monotonic i ty ” prob l em i~ no probl em at

all , but a valuable k i n d  of discipline .

The notational power of the predicat e calculus strikes me as a tool up

cannot do without. Much of this power depends on providin g a good vocabu l ary:

and , in the realm of control structure , I have done th is .  But the not-i t ion

i ts e l f  i s good , in my exper i ence , independently of what i t  is  talkin g - ilu n us t.

It allows you to think in terms of statements with truth values , i t s  treatment

of quantifier s doesn ’ t cramp your sty le , it provides powerful anti natural

pa t t e r n  match i ng, and i t  forces ,ou to say what you mean.

This forma l freedom is necessary to to suppor t restr ictions on the

substance of rules. NASL formulas are not restricted to talkin g about

c lin i c a l  parameters or values of physical quantities in a network , hut thc’tj

~re restricted (for practical purposes) in the way they talk about conrc ’pts

li ke action , decision , pol icy, and prob l em transformation . I n order Io c;e’t

something done in NASL , you must express yourself in terms of tasks. “ru le -ins

and rule-outs ,” rephrasing actions , etc. The task l anguage 9 restricte d to

9uch a degree (there being no real l oops, gotos , or conditionals ) tha t  many

things can be done onl y v~a these mechanisms.

These conventions enforce “ i n t e l l i g i b i l i ty ” at a useful level , At evr’i-y

step, the systrrn knows by way of quite shallow deductions almost everi~ t ) u u r i g

there is to knoii about what it is do i ng , what its future tasks are , Si l t i t

chose to do what it dirt , etc. This knowledge is used heavil y in the ruu l r ” u for

choosing, rephrasing, and mistake correction. Because the numher of i nn ate ’



Vi Conc l uisi oru s 184

concepts has d e l i b e r a t e l y been ~‘l low ed  to grow , sha l l o w  deduct ions are

poss ible and required; NASL does not have or need a theory of “program

understand i ng .” (Waldinger and Levitt , 1974) I be l i eve this property i s

essential to an i n t e l l i gent program ; it is no accident that the average’ person

is a good pla nner and a had programmer .

A most i mportant example of th is  re l iance on innate contro l  conce pt’~ u s

the not ion of “ f ro zen tasks ” wh ich is so use ful in the represe n ta t i on of

dev ice schem ata.  (Chapter I I I)  The i ns tan t i a t i on  of such a schema r.au, ce’

i n fo rma t ion  regarding the purposes of components to be activated , in thr’ same

notation that is used for expressing explicit goals. These old tacks thpn

interac t with new ones in cieterm ing the solut ion. In this way, DE’iI px h ih it ~~

“machinomorph i sm. ” The purpose of a circuit is expressed as a f r oze ’ n l~~t p ~~~

of the machine. No new concept needs to be introduced , and the pro b lem of

r e l a t i n g  the special-purpose teleo l ogy of each domain to the machine ’ s rou t op t

of i t s  own purposes is avoided.

Th is organization of predicate cal culus plus large innate voc a li u c l a r y is

potentiall y of great value to the Rule Debugger module of Fi g. ~~~~ It i s

known that debugg ing a data base requires keep i ng records of the cisc . of clat ,i

wh i ch mi ght be faulty. (McDermott , 1974a , Oav is , 1976 ) The kinds of recor ds

kept by NASL , dedu ctive dependencies and task relations , are ju8t the kind s

required.

Another powerful organization principle that emerged dur i ng th is rc” ,’ eu h

was the notion of “packet .” (McDermott , 1975) Thi g device enable ’s PAd tn

represent large chunk ne o f data at a relativel y low cost. It i s uc cer t to

represent circuit diaqu am and sets of related problem-solv in g rul e ’s.

From a distance, a pa ck et l ooks like a large chunk of know l edge; c~~u

it l ook s l i ke many small p ieces of know l edge. I t may be used to i m l ,les u ui r c t



VI Conclu sion s 185

“ frames ” (N in~ ky, 1974) in an “exte nsible ” way. The knowledge is orr~a r u i z r r l  by

the dependencies I describe d before , but a new piece of knowledge can ilu i a ’~’c

be added w ithout immedi ate fear of interactions.

This is partl y becaujse NASL is organized around the expectation of

interactions. It expects that occasionall y more than one or les s than one’

rule w i l l  appear relevant. In these circumstances , it enters sp e cial

protocols which first look for relevan t hi gher-level rules , and then .i’k tf cr .

user to suppl y them. Much remains to be done in th i s  area. (Goon u jnr ~~ f i - i q

been done a l ready by Dav is  ( 1976) .)  The r esu l t s  so far i n d i c a t e  tha t fi r ’

standard feeling that frames ’ contents are hopelessl y “ stro ng l y coup l e r )  ( c f ,

Suesman , 1975) is too p e s s i m i s t i c .

The fac t that NASL ’s fac ts come i n  large chunks of sma l l  da ta  has

i m plications for the design of the Rule Generator of Fi g. V I . 2 .  it  i~ t ve ry

appealing mode l of l earning by discovery that large bites of inform a tio n ire

taken at one time , by copy i ng an entire theory from one domain to innthr. r

(Min9k y, ir, progress) What is  nice abou t rule-based theor ies  in p a r t i r u l i r  i s

that they h int at the next step :  a l t e r i ng par t i cu la r  ru les tha t  were f a u l t i l y

transformed dur i ng the “copy, ” and add i ng doma in-specific interaction

hand lers.

The kind of chunkinçj that NASL currently supports would not h i ru d l e ’  t h is

kind of learning, but it is sugge st ive .  It mi ght be wor th  mak i ng the r ’ f f r c r

to recast the entire corpus of electronics information as an i n s t a n t i a t i i i u  of

a more abstrac t (ann sm a ller) theory of , say, common-sense physic s . If t h u s

wer e s u c c e s s f u l , i star t at captur i ng any similar doma in wou ld  he to

re in stanti at e thi s theor y in a different way.

The conclusions I have drawn so far can be summar i zed as follo ws : (1) A

f l e x i b l e  problem solv er mus t have i nnate concepts of tasks , decision s , ~nrl

_ _______~__ L____ _ 
-—-~~ --~~~~~~--~~~ — -~~~~~~~~ --- - --.~~—--~~~~~~~~~ — - - -—- - —— — --~---— -



V I Conc lusions 186

ot her simil a r  control concepts; (2) predicate calculus is, at presen t , the

best l anguage for expression of propositions in these terms; (3) the rui l ec

expressed in the calculus must be ti ghtl y organized , linked by depenrlenc i r’s

and bundled into packets.

V1.B Failures

The next questions are somewha t i ndependent: Is a predicate-calc u lus

theorem prover an effective mechan i sm for retrieva l of i n fo rmat ion  ex pr r ’sced

th i s  way ? In par t icu lar , can i t  be interfaced e f f e c t i v e l y w i t h  the

interpreter that uses i t  to decid e how to act? With respect to these ’

quest i ons , t he cur r u t version of NASL fails to prov i de satisf y ing answer’- .

As it stands now , NASL i9 organized as f o l l o w s .  (See Fi g. I,EL ) C o r u tr ol

res ides  in the i n te rp re te r , wh ich decides what to do and how to do i t  on f l ue

basis of (a) forward deduction tri ggered by plan and model assertions ui the

data poo l ; (b) hac kuar ci r I ,’ c l ij c  t ion to find ways of breakin g p roblem s down and

- 
to answer questions in the domain of interest; Ic) calls to the c hn uu , ’

protoco l , which consists of a ritua l of deductions regarding which

a l ternat ive s are good anti which had; and (d) calls to itsel f recursiv e l y u u u t h

/:REPHRASE tasks (which are restricted to be i ng inferential). The ou tc t irurl in g

feature3 of this organization are:

(1) The action system always calls the theorem prover , never vice ver si .

(2) The system contauns , ii effect , two indepen (ient interpreters . one’ f i r e

p l a ns, and one for imp l i c a t i o n s  lf:CONSEQ’s and /:ANTEC’ s).

These features d i s t i n g u i s h  NA ’~L rather sharpl y from the typ ic a l Al l u u i i u u i r . r .

(Bobrow and Raphae l , I’J 7’4)

The streng ths of th is organization are easy to see. The two int e r u etr ’r ~

__________________________________________ — ——---r--—----- -— — —-
~~~~

---- - — --

V I Conc lui q inir u ’ , 187

are opt im ized separat el y. For example , the theorem prover doe’s run t tcavr ’ t 0

worry about side effects , so it can re-order con junctive goals i nn sr’)r 0 a t e ’

goa ls in to classes wh i ch share var i ables f o r backtracking purpos es . (~~c , .

A ppendix 4.) The interpreter , on the other hand , does no t)ack~ r ar ki ru r I ut i l l :

handling a fa i l ent a c t i o n is a problem for the interpr eter , not pau t of i t s

s o l u t i o n mechani s m. I t ~~ i~ s to great trouble to fin d reasons for i t ~ r h o i r ’ s ,

rather th an jus t t r y ing roe alternative now , and another later if t h a t nor’

fai Is.

These strengths are p lea s in g, but they do not outwei gh the s-ur’ ikrr c ’c -r ” .

which are:

(1) The same knosJ l e’dlge must sometimes be put in two p l aces , in tuun

notations , one for each interpreter.

(2) The r lr i fruc t ion machinery is unabl e to use information about c i , c i i r c - arid
rephrasing.

(3) A d d i t i v i t y suffer s from the user ’ s uncer t a i n t y about which i n t e r i c r c. t r,r
to use, I f he guesses i- irony, he may have to reorganize h i s data rom l) l r ’ l~’ l i s
when the chickens come house to roost.

Consider , for examp le , the ’ no t ion of equat ion so lv ing . DESI has a ru e ’ iI ~

a b i l i t y to do t h i s (see A ppci nr l ix 2 and Chapter I I I) , which could f ip s tr n n lc l e r

w i t hout too much effor t . Notice that this information has henri px l i r e’ , ’ e r l is

an “inf e r e n t i a l p lan ” concerned with rephrasing manipulations of ~ir edu it es tin

const rained qei antiti o s. This seems entirel y proper , clea r , and e l e q , u r u t . Now

cons ider the f o l l o w i n g d e d u c t i v e goal:

1— 1+ ?)(3) 5)

P l a i n l y , t h i s r c ’q u i i r e~~ nw - u ’ l y the sam~ knowled ge. (Cf. Biuni dy , I ’ $,’ r)

I t wn ij I rf he e- m i .e r cc ~~~~ enouigh to have to put the same in for m u t i c un i Cu t i j O

p laces , but in f e t t i a . ’ i i I n a t e on is even wo rse : the ne r e s s a r c i k r r r u u i i

c a r i n r , t f u r . g i v e u I SIP e l a l l t (Wh ich ig why u t , q c ; c e - i r g in In i n f u ’ r ~‘ c u i i i i

rephr asing) i e) I t wou l ri have to be put un to an ant hoc L I ’~
) ’ pr c r y am,

V I Conclusions 188

Rather than do t h i s , I have t r u e d to make sur e that deduc t i ve goa ls of t h i n

sor t never appear . The absence o f a choice prot or ol ins i c it . the ’ tho r n err ~ìn u uve ’r

hurts jus t as much, The mos t embarr ass ing conseq i” • of t h i s alit ’uI.i r c li ,’ ‘c 5

that the user must p lan his advice a l i t t l e more carefull y thin ’ is nl e s i n able ’;

he must dec ide wha t should lie expressed as a task and what should i c r ’ r’ w ; u u esse’rI

as a deduc t i ve goa l on the bas is of hi~ knowledge of the theorem)urovr’r ’ s

l i m i t a t i o n s ; t h u ~~ req u ires an unaccept able degree of know l edge of the

program ’ s in te rna l s t ruc tu re .

Th is prob l em evo l v ed f rom seem ing l y i nnocuous beg inn ings : what ~ t c i I ’ d as

a sing le interpr ete r fissioned. I t has been clear from the star t of t h i s wor k

(t lcOermott . 1374h) that the concepts of deduct ion and action were both c ; ru i nq

to be necessary. As desi gn and imp l ementation proceedenl, those t u r u r~~) i ~~’ c t c r i ns

became more and mor e c l o s e l y i d e n t i f i ed w i t h the indepe nden t ra t r ’qn r ins o f

‘ hf m d search ” anti “careful mode, ” respect ive l y. The theorem prover r u e

wru tten wu th fewer and fern er “c a r e f u l ” fea tu res , and more and mor e l c ’ r c c ’ u il

o p t i m i z a t i o n of the sor t rtesr ribed above , while the a c t i o n sys tem abson f u r l the

cleverness. Th is or ganization fina l l y broke down when I realiz er) h i d ‘rver ,il

s o r t s of “ c I ’- ’v” r “ f o rw a r d deduc t ion , such as constraint resol cut ion (~u t a l l rn .ini

and Sussma n , P371 1 , wou ld cot f i t i n t o the framework of a stup id tIo cc u err

prover (STP) . The i n fe r e n t u a l p lan was c r e a t e d to f i l l t h i s c la p . It err iq f u n

out to w e tic’- r i gh t 901w t i u ric (see below) , hut if i t t ines i t w i l l hp in

a c c i d e n t .

To some lecj r em t h u s Ia i I t i re i s nine to sloppy th ink i ny. lii, I Ice I u , ‘ ‘, •

prob l e’ rui i s more fund;innr ’ r c t i l . The onl y way to ma I~” “ c ar r ’ f e u) mt ’uie” e c u ’

spend t i m e ,-uqk i r u t ,unnl t e l I io’i yo ur s e l t what you ’ re ‘ I n nq. I I c c

I I inn3 i I s e l f “ r i’ r f u l , “ things t e u me’ inI~~1 Pt d l ’ y ‘ I (iLl -

I t migh t loo k e° u I ,~‘ - l c’q a n i ~~~ I I cog c n iu l 1 ‘ ‘‘ POt •‘ O~~

Afl A0 ’4 3 96~e MASSACHUSETTS INST OF TECH CAMBRIDSE ARTIFICIAL INTE—ETC FIG 912FLEXIBILITY AND EFFICIENCY IN A COMPUTER PROGRAM FOR flESIGNINS ——ETc (ti).*JN 77 0 V MCDERMOTT N000 1*—75—C—0613UNCLASSIFIED AI—TR—4Ot NL

3o€ 3
i~43964I

END
DflE

0 —77

VI Conclusion s 18’)

the sense that they could normally proceed blind l y, but , if trouble ari ’e ’~.

turn themselves into ongo i ng plan -language plans. For example , wit h thc

conjunctive goal lAND (P ?X) (0 ?X)J , if the system “runs into trouble ” on 10

?X1 , it could turn itself into a plan of the form “Fi nd a P; then ve ri f y it is

a 0,” and use choice and rephrasing on the second subtask. Ther e are tizo

problems with thi s . First , it is not all that easy to dec i de tha t you ’re in

trouble. The mere retrieval of two rules does not mean that a choice us in

order ; the two rules could be functioning as a CUND, or there may be no

intelli gent criter i on for se l ecting one or the other . I ndeed , once one hi~

the notion that the theorem prover is the l ocus of “blind search ,” he tends to

w rite rule systems of just thi s sort. However , I believe that the “rnet ;i-ru le ”

construc t of IIVCIN (Oavis et. a7., 1975) would go far toward solving th i ’~

prob l em cheap l y.

Second, and much more difficult, is that the kind of sequenc i ng door’ in a

backtrack i ng theorem prover is just not the same as tha t in a planne r .

Predicate calculus is a non -dete rmini stic l anguage; it does no good to

translate it into a formall y i somorphic construction in a determi n ,st ic

l anguage. Put another way, NASL is intelligible because many un i n t e l l i q i b l e

constructs have been covered by deduction or other built-in protocols : ‘ map ”

‘oops like those in LISP are done by generating items deductive l t; and

generating a (sub) task for each; many search l oops are done by fin di n ç i ‘~n~

such item; the choice protocol is a pr i celess piece of “canned l oop” which

rep l aces specialized discrimination nets. To ask that any of these constructs

be translatable when necessary into NASt. plans i~ to destroy this

I ntelligibility.

The situation is not hopeless; I have just l earned less about this a~ pr’ct

than I had hoped. Here are two possible routes f or avoiding th is problem:

r — — - - — ,——-——-— -—

V I Conclu,iorii 1~ie

(1) Elevate this disorqaniza t ion to the status of a theoretica l con;orture
that “deductive informat ion retrieval ” is a separable activity t hat nevr’r

requires any thing as complicated as solving an equation or rephrasinri a r~o .il.
(This is par t of what A. Noore (1975) and Fahlman (1975) have been ur r; iny .)
Inferent ial plans would be retained for these complex tasks.

(2) Prov i de deduct ive protocol s analogous to those used by NASL . Oi~ pen~e
with inferential plans. Thi s w i l l require careful i dentificat ion of
situations where the protocol would be worth it (such as: choosing avnc.nrj
answers to a conjunctive goa l , order i ng conjuncte . choosing g 1il its, ordr’r i ncj
imp lications to app l y); and a way of efficient l y not icin g when thc’re am no
applicable rules, in which case brute-force deduction is to be USPd .

The substantive diff erence between these alternatives is tha t alt ern at ive (1)

makes comp l ex inference a kind of task , and hence deterministic, ~av i nq crarch

for the stupid theorem prover ; while alternative (2) makes even complex

inference subject to backtrack i ng, which is modified by the app lication of

rules,

VI,C Further Work

Let me list , in order of i ncreasing difficulty, projects tha t are worth

do i ng to e tend this research. Some of them I may do myself ,

(1) Encode more electronics know l edge. The gaps In ZORCH are dencr i hed at

the end of Chapter I I I .

(2) Speed the system up. The system can undoubtab l y be made much fa’ ter

by abandon i ng some of my more elegant programming techniques.

(3) Imp l emen t the error-handling mach i nery I descr i bed in Chapter s II antI

III. This wi l l require careful reconsideration of data dependencies.

(4) Unleash the logical calculu s . There are restrictions on NASI ’q

general ity wh i ch I believe are due mainly to inadequate imp l ementation of the

logical calculus. There are many domains which are beyond its grasp hc’tii.qc

it l acks a notation for things like t ime, belief , and the actions and be lief s

____________________ - •- t— - - — —

- - - - - - -

VI Conclusions 1~31

of other people. To some degree these areas could be hand l ed by thø is” uf

moda l reference point s for tim e intervals and other peop l~~ s mind s . l hr.

system could simulate other per sons’ thought processe, with i t s nun tIi,’ru~ ’in

prover , and avoid some of the prob l ems associated with epi stemi c log i .

(Hintikka , 1962) Broaden i ng the syntax of “/:TASK ” to inc l ude an agent s lot

would be a step toward representing other persons’ purposes; the i n t e rp r r . tr ’ r

could use itself to simulate them as a way of understand i ng their act inns .

(Cf. McOermott , 1974a) However , there is an “abductive ” component to ~iir h

reason i ng (Popte. 1973. Schank , 1975, Lehner t , 1975) that is beyond the

capability of NASL withou t more substantive revision.

(5) Endow the system with more “patience and skepticism. ” The greatr’ct

weakness of NASL as it now stands is its credulity. It accepts .-ironq rules

(even syntacticall y wrong ones) as readil y as ri ght ones. This is

unsatisfac toi y for a system wh i ch already understands its domain thoroug hlt ;;

surel y one task it should be able to carry out is to estimate the plaus i b i l i t y

of a new rule in the presence of its old ones.

In some simple cases, a new formula may be disproved. In that case, the

syttem would be in an excellent position to claim that something was I,rnnq .

Unfortunatel y, this is not likely to happen very often. The less imp nrta nt

reason for this is that STP is not built to do interesting proofs. The more

i mportant reason is that many theorems have conclusions defined onl y

pragmaticall y, by their mean i ng to the NASL interpreter. These are the

formulas of the form “Al and A2 and .,. and Ak Imp l y C,” where C iq in term,

of concepts hav i ng to do with choosing (e.g., “/:RUIE-IN”) or actin g (c’ q.~

“/:TASK”). These concepts are in a sense primitive; we want to cle f i.ie “quod”

and “feasible ” in terms of these concept, rather than vice versa. Thus , I

said tha t t/;TO-DO Itask i lact ion i Ioutputel Imethodli mean t , among other

_____________ ______________
- - — -, a

VI Conclusions 192

4

things, tha t the method was an effective, feasible , and permitted ua~.i of

carry ing out the task. But , since there is no i ndependent theory of tti” c’

concepts, a /:TO-OO implication cannot , except in the most trivial ca’-c”~. hp

disproved by showing i t s method would not be permitted (or feasible or

effective) under the circumstances. Still another prob l em is that a t ip ic al

conditiona l of this sor t is counterfactual; one of the antecedents is pr obab l y

false at the time the rule is heard, making a proof trivial. To dispr ove t hi g

rule , the system would have to prove a moda l theorem to the effec t that “ there

exi sts .~ ‘possible world ’ in wh i ch the antecedents are true and the con~~eri ’ient

false. ”

The solution to these prob l ems i~ to integrate the theory of action

failure with the theory of assimilation of new information. In the ear l y

stage,, this w i l l be probab l y require the co-operation of a human friend .

(Shortliffe , 1976) The i dea is to place a new formula or set of formul as on

“probation. ” (llcOermott , 1974a) When a contradiction , action failur e, or

i nability to choose occurs, the system will check the formulas involved to see

wh i ch are on probation and might contain errors. The i dea is to see hon

things would work out differentl y if the formula were not there. If , for

example , a choice fails because all alternatives are eliminated, and ther e is

a formula on probation i nvolved whose absence would have left some

alternatives in , the system is just ified in ask i ng for clar ifl cation of the

new rule.

Notice that this requires an “adv i ce-tak i ng protocol” for each class of

rules, that is, for each pragmatic predicate the system knows. It would be

attractive if these were plan networks; and i f the advice-tak i ng actio ns in

certain circumstances could be framed as policies.

(6) Add a natural-language interface. This i s difficult in itsel f , anti,
-

VI Conclusions 193

in addition , its impact on the assimilation machinery I outli ned is un rlr ’ar

Users wi l l make fewer mistakes of notation if they use their own lanquar~r.. hut

the l anguage interface w i l l i nevitab l y pass amb i guities through f or tb”

assimilation machinery to worry about.

(7) Add a theory of learning so that the system wi l l not forge t its mor e

brillian t insi ghts.

4’-

~~. .~~~~~~~~~~ - a

Appendix 1 194

Append ix .1 -- ?IASL Syntax and Informal Semantics

A formula is an S—expre ssion enclosed in (brackets] . Redundant
parentheses may be dropped. Thus ((IS RESISTOR R#21)) is written (IS RESISTOR
R#211.

The l e f t m o s t e lement of a formula or subpattern is its function. Fu nctions
with range itrue , falsel are predicates. The Boolean functions AND . OP.
IMPLIES, and NOT operate on truth values.

Besides f unctions and their arguments , there are “variable binder s ” ijhn ’~~~’

job is to indicate the names and uses of var i ables in formulas. Thece .lrr’ the
universal quantifier FORALL , the existential quantifier EXISTS, and LAIIBRA ,
wh i ch defines functions and is used f or all other var i able-b i nd i ng chorn’~.
(Lambda may be typed as “\“ (“backslash”) tc. my LISP system. I w i l l ucr’ th is
symbo l instead of “A” throughout the appendices,) Thus the follo w i ng .~rn rJASL
expressions:

[FORALL (X) (EXISTS (Y) (LOVES ?X ?YUJ
(FORALL (XI (SATISF I ES ?X

(\ (Vi (EXISTS (Z) (P ?X ?Y ?Z)))))

Var i ables are flagged with a “7” where used, but not where bound.
Many var i ables are not bound at all. As in most predicate c a i r i l t i s -

or i ented systems , all formulas are Skolemized (Nilsson , 1971) before hr’in~ put
in the data base, so that there are no quantifier s at the “ top le v e l” of an
expression. (Expressions remain quantified inside l ambda expressior’9 anti as
arguments to function.) Free (un i ver sall y quantified) var i ables rem ain
prefixed with a question mark. A “s~o7ent form” represents an ex i ste n ti a l l y
quantified var i able. Skolem forms look like

[SIC I van l id number s -dom i nating un i versals—).

For examp le , (FORALL IX) (EXISTS IV) (LOVES ?X ?V))J is internall y rel)r c”-”nte (l
as (LOVES ?X (SIC V 70 ?X)): wh ile (EXISTS IV) (FORALL (X) (LOVES ‘?X ?VJ)) is
represented as (LOVES ?X (SIC V 71)). The program generall y a bb r e v ia te s t he
general skolem form to “ I va n $!I id number l” on output; e.g., (SIC V 70 ?X h is
printed V’70. I occasionall y use this loose notation. (To avoid colli sion , a
hash number derived from the sko l em-form arguments is usuall y printed
follow i ng the var i able.)

Because quantifier s are retained inside lambda expres9~nn3. the e x a m p l e of
a l ambda expression above is skolemized to

(SATISFIES ?X (\ (VI (EXISTS (Z) (P 7K ?Y ?Z))))

An i mportant concept in predicat e-calculus systems is matching, or
unif ication , of two formulas. (Robingon , 1965) Two formulas arc. said to s’iatch
if there is a ~ub g t itut ion for their var i ables wh i ch makes them equal. Ti~c.
var i ables are to be i mag ined subscripted with the name of the formula~ t hey
came from , to avoid confusion. Thus [P ?X (F ?ViJ matches [P IF ?X) ?XJ w ith
the substitution

K 1 -. (F (F
K2 -. [F ?V13

- ~
- ‘ F-

Appendix 1 195

lnt ern~ l l y, ‘; ‘,bstit utio n ’; anti subscr ipts are handled using a method il’~ veil

fr om (Boyer and Moore, 1972). (See Appendi x 4,)
There are two special cases of matching. F1 subsumes F2, i f F2 i s

to the result of performin g a subst itution on F1. F1 and F2 are variant.; if

they subsume each other ; alternativel y, if renaming the var i ables of f
~

makpq

it equa l to F2.
These concepts are essential to the operation of the dedu ctiv e q 1 st r ’m .

(Appendix 4.)
The matcher is not intended to be a complete unification al gorith m f u r

nth-order log ic , t yped A-c a lcu lus log ic , etc. A l ambda expression iii I I m it ch
another l ambda expression i f their var iables d i f f e r onl y in name. Of rri,I, ce ,
free var i ables may not become bound to fragments of l ambda expres sir irlo
containing hound var i ables. Thus (P (\ (K VI (F 7K (6 ? V))) J w i l l not m a tr h
(P (\ (U V) (F ?U VU))). The matcher w i l l not create l ambda-expression -

~
without prodd i ng. (See below.) Thus , (?F A) doesn’t match (6 (H A A)) i i i t h F
-. (\ (K) IC (H ?X ?X))) or any of the alternatives.

The l anguage a l l o w ’ ; f o r m u l a s to refer to other formulas. Thus (AD~ F (iT
[BROWN COLJ#22fl expresses a property ~f [BROWN COW#22J . This is one of t~~o
ways in which NASL expressions may refer to other expressions. (It m aij t in

considered equivalent to , but more convenient than, the use of Goncl et r ’ijn il- ,r’rq

of f ormulas.) It has the f o l l o w i n g var iants. F i rs t , every u s e r - de f i n e d
formula has an atomic name. (See the description of OEFMLA in Appendix ‘.) If
FMLA#39 is the name of (BROWN COW#22), we may write [ABSENT FMLAIIr1.11. ‘ r’r o,iri ,

an embedded formu la may have var i able parts , called escape forms. uh irh ;ir r’
prefixed by “ “ ; this indi cates that the va l ue of the pre fixed exp r c~~ r J i u i

(which should he a formula) is to be used to construct the formula. For

example , if FUN is a function that maps a formula into its first s~jh frit nui l a ,
[EDO [BAR _ IFUN IF A)))) - (FOO [BAR F)). Escape forms are most ti~~pf i j l in

conjunction w i t h var i ables. Thus (FOO [BAR _?EI1LA)) says, “F or all f o r m i j l i o

?FMLA , the formula oI~taii,ed by mak i ng the pattern of ?Ft1LA the anii uimr ” il of RAP
has proper t y FOO . ‘ (Each such embedded formula is equivalent to some n~icn

term , such that substituting Goede l numbers for its free var i ables g ive’- a
closed term whose va l ue ig a Goede l number,)

Matching embedded formulas against formu l as with escaped var i ables is -i

way of decomposing formulas. Thi, is used by some of the ‘ meta-sustern ’~” of
NASL . For example , the resu lt of matching (P (EDO _?X)) against (P (1111 1 PAR))
is the substitution X .. ((FOO BAR)).

For ease of man i pulation of formu l as, the primitive function DEN is
understood by STP to map formulas onto what they denote, Thus (DEN (+ 5 ~i)
(+ 5 5). One convention I use ig that var i ables rang i ng over formu l -io star t
with the char acter ‘ +“ ; thus ?+X mi ght designate ((FOOl) anti ?X de’;itjnate
(FOCI . Thi s is purel y a convention and not par t of the language .

Not ice that al l NASL formulas in this paper are surrounded by [hi .iu
For examp le , in the r e s u l t of ma tching (P ?Xl against (P (FOO BAR)). I ii it t’ ,
“7K has value (EDO BAR),” even though 7K was orig inall y matched aqairi ~~t -1

subpattern without brackets. This enables you to tell unamb i guou sly i ,h i r l,

formulas are be i ng used and which quoted. (Actuall y, when it comes to at omic
symbols . I rare l y make the d i s t i n c t i o n between a symbo l and a formula. I
allow myse l f to dr op the l,rackets in a formula like (FOOL)

The “sense” construc t using sing le quota is the second I-say in ii h i rh (JA 1
expressions may refer to other NASL expressions. It allows one to refei (ii
the “mean i ng” of an expression and not it s value. For example , even if - the

val ue of (. NIXON PRESIDENT) is false, tPOSSIBLV ‘ (- NIKON PRESIDENT)) m ii i he

- -

— . - z -
~~~~ - ~~ a



Appendix 1 1%

true.
Substitution of equals is , of course , prohibited inside any eml-,euldc ’ I

formula or sense.
The operator POSS I BLY i s  an examp le of a modal pred icate , (Huqhc-’o arid

Cre sewell , 1972, Bressan . 1972) The basic system-supported mod al npr’t ; it .i i s
IT Irefere nce-point i Ip attern i ] , meanin g the value of patte rn in ‘pn c’-ilile
world” reference -point. (Pr i or , 1967) The second argument is imp l i r i t  l~
quoted. Thus IT (1970) PRESIDENT) would have value NIXON : and (1 (19711 ) 1-
NIXON PRESIDENt)) would have value true.

NASL con ta ins  tup les  l i ke  those of 0A4 (Rulif son et. al.. 137i . Ile y .lr m

represented using <ang le brackets> . Within a tuple , the prefix “
~~~#“ mr-iri s

that the value of what follows is to be considered spliced in i ns t e a d of

substituted direct l y, Such an expression is called a segment form. r~example , if (FOO BAR] — (<A B C>), (<P (FOO BAR) 0 ‘#(FOO BAR) P—I (4i .A P
C> U A B C R>] . A si m ilar notation , “t # _ ” , is used inside embedde ,I f t mi ii as .

If (WHIZ BANG) — (< (A) (B) (C)>). ((P ‘#_ (WHIZ BANG) 0)) — ((P A B C 1)1).
Segment forms make matchin g more complicated. Strictl y speaking , fI r- se

two formu l as

(P .d#?X !#?V>) and (P <A B>]

should match three i-says

IX .. (<>) , V -. (<A B>) I
IX - (<A>) . V •~ ()) ,

and IX -. (<A B>), V -. (<>1).

My matcher is too lazy. Occasionally this means deductive formulas havn to he
framed in terms of list operations instead of in the most conc i se st y le.

Sema n t ics

Wh i l e I am in sympath y with Hayes’s (1974) contention tha t the ‘;c ’m.it i t ic~
of a representation is very i mpor tant , the subject seems much too comp liu.i terl
for practical representation schemes. NASL is a moda l calculus . whit- h ‘~h riulrl
have an attractive mode l theory like Bressan’s (1972). However , operatot s
l i ke “/:CONSISTENTLY” ruin it. Furthermore , there i s a pragmat ic component to
many predicates wh i ch could not be expressed mode l t h e o r e t i c a l l y. For

example, “/:CONSEO” and “/ :ANTEC” both mean “OR ,” but t hey are used in
different ways. Consequentl y, the most prec i se description of the me aninu of
the l anguage is a description of SIP (Appendix 4) to account for the ‘;t’ ict l y
semantic “mean i ng” of a sy!nl)ol; and the follow i ng i ndex of pragmatic
predicates with an informal description of the pragmatic mean i ng the sqotc’m
assi gns to each one.

Here is a list of built-in , pragmatic predicates, with an informal
description of each.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_ - -:.~~~
- _~~Li ‘ - 

- - -
~~~~~

—-.-—

Append i x 1 1 t) 7

Predicates and Functions with Meanings to the Interpreter

Task Sped f icat ion and Relation

(/~ TASK (name (< - input pvars- >
(\ I -vars-) (action ()
< —o utput pvars— >1

means task name , which consists of do i ng act ion with the values of the
i npu t pvars suh 9ti tu ted for the l ambda-var i ables , is worth doing. I t iii I I
produce output values to be bound to the outpu t pvars.

[/:SUBTASI< (task name 1 ((task name 21)
[/:SUCCESSOR (task name 1((task name 2(1
‘hese relate tasks. A task w i l t not be started until a l l its c~ipei $a’k’s
enablement-statu s SUBS-ENABLED and its predecessors have enab lrrn nrit-

stat us SUCCS-ENABLED. These assertions may therefore be used to d i r e r ? f b i ’
flow of control.

[1:145K-STATUS (task name (J
(/:ENAB-STATUS Ita sk name ()
(I:TASK-ACTION (task name (laction i)
(/:REDUCEO (task name (I
(/:ELABORATEO (task name (]
These define the control state of a task as discussed in Sect. II.P.1.

[/:POLICY (task name ((action ()
(/:SCOPE (secondary task name l Ipr i mary task name (]
These fun c t i o n s are define policies. When a policy task has begun , i t i’;

dec l ared to be a /:POLICV , usuall y w ith some /:SCOPE. It w i l l be exp l i c i t l y
finished with a /:FINISH task. (See be l ow.)

Pr imi tive ~

(/:I100—rIANIP (task name ((action ((de l et eli st i (ad dl i st (1
(/:IIONITOR (formula((\ ((v () laction i)I
[/:SET ‘(expr ession ((value ()
These are the non-macro wo r l d l y p r i m i t i v e s . /:1100-MANIP defin e ’; the

de l ete l ist and adc il i s t of the given action. /:MONITOR creates a poli cy ~f
l ooking for the erasur e of formula and creating a task with the g ivr ’n a ’t ,n n.
(The var i able v w i l l be hound to the task that did the erasing.) /:~ iI i o
to change or set the value of the expression; thi g should be a mode l quint it y
like v o l t a g e or r e s is t a n c e , not a pvar . Its effects are supported as thoug h
they were mo del man i pulations ,

(/:INFER ‘(p r o p o s i t i o n (< -task names- >)
(/:FINO (\ ((v 1 (. . . (v~ (P (ex p i l J — — > c(pv~~ ... IP”n l>
(/:FINO—ALL (property (J — .> <(pvar (>
(/:EVAL ‘(expression () --‘ c(value (>
These are the inferential primitives. Their “e ff ects ” are supp rii - t e r l I t ~

purel y deductive dependencies. /:FINO , /:FIND-ALL and /:EVAL call the
inferential mechan i sms of Fig. 1.9; /:INFER augments them with extr an di t t i,

deductions, /:FINO ’s argument is a \-expression of n arguments : SIP is r , i l l ~~t-l
with its body as a request , and the values of the n var i ables in it s .-lncsse r

- . ,. . .
- -

a

Append i 1 1 ~~

are assi gned to the pvars. If a choice of answers is required , t h i s ~s i I I t ic ’

reflected in the data-dependency supporting these values. /:FINO-ALL t ,i k n ’ ; - s
property of one argumen t , and returns a tuple of all the objects i s h i r t ‘- s t i’; f y
it. /:EVAL calls the evaluator and returns the value.

I: INFER is used to write special inference rules. The pr Opo siti on (5iVPn
is recorded , supported by the propos it ions recorded by the s p e c i f i e d t a ’~k
names. For example , the following task net does the obviou s

(/:TASK MINOR <> (\ (1 (/:FIND (\ () (MAN SOCRATES)))) <> 1
(/:TASK MAJOR <>

(\ () (/:FIND (\ () (IMPLIES (MAN ?X) (MORTAL ?X))))) ~~I
(/:TASK CONCLUS ION c>

I\ () (/:INFER ‘ (MORTAL SOCRATES) <MINOR MAJOR>)) <>)

I/:DUTPUT < -vats- >] -~~~> < —pvar s— >
I/:PRIM (type))
/:PRIM defines a primi t i v e action ; type should he one of *FINI~ H1D , *‘~[1IlP .

or *BEGUN. *FINISHED means the act ion is done: *SETUP means the ii t i n in

p o l i c y uhose successors may nou be enab led; *BEGUN means the a c t i o n in i
p o l i c y whose successors may not he enabled until the policy i s /:FINI~ PT.P.
/:OUTPUT is l i k e tI :PR IFI *FINISHEO) , but in addition the values are ret i , nr’d
to be made pvar values. Thus , the task ((EDO)) in

[/:TASK IFOO) < ‘ (PV l) > (\ IV) (I:OIJTPUT <?V >)) < ‘ (PV 2) >)
se ts ((PV2)) to the value of (IPVI) I when i t becomes a v a i l a b l e .

(/:CONTINUE (task name) (action))
(/:FINISH (tas k name) (action)]
These functions are user) to control policies. When all the prima r y

subtacks of a pc i icy ’s scope have been finished , a /:FINISH task Ii t~~
created as a subtask of the policy : it is up to the user to supp l y ru l es to
reduce it. The user may also execute actions of the form [/:CONTINUE Il inl i r y-
task) (action)) to perform intermittent execution of the policy. (See Sect.
II .B. 1.)

Macro Primitives

(/:DO-SUBNE T (plan schema) I var s map))
(/:PLAN-INSTANCE (plan instance) (plan schema) (supertask))
(/:MAIN (subtask) (s uper tas k))
As explained in Chapter II , these formulas are used in attach ing

etandardized subnetuorks to the curren t plan .

[/:SEQ (action 1) (\ I -vat-s.) (action 2)))
(/:FORK (action 1 ((\ I -vars-) < -act ions- >

I/:UHILE (primary action) < -secondary actions- >1
(/:00—ALL .- -actions --- -

~ (a c t i o n))
These macros elab orat e into var i ous standard structures. /:SEQ t ist nc ti to

a net of two tasks , the first of which feeds pvar s to the second : th u’ o ui t ; ” ito
of the second are the output s of the /:SEO. /:FORK produces no pv-i r v i l i , ’ n :
i t sets up one task per act ion , action 1 be i ng the predecessor of cacti ri f the
other tasks. The values of action l’ s outputs are fed to the succnc nr t a- k s .
/:WHILE starts all the secondary actions as policy tasks w ith /:5(1)1 1 eci ..ll to
the task for the pr i mary action , 1:00-ALL carries out all the action ’; in rim

-j .
~~~~~~~- - —~~ — - - -  J



Appe ncl i I 1~
) I

particular order , outputting the values of action ’s pvars.

Task Reduction

[ 1 :10-00 (tack name ) (action 1) (output pvars ( (action 2))
means . “ art ion 2 i5 an effective , permitted , and fea sible ii-i~ of rl i i i i i ;  tSr ”

ta sk namer) which c o n s i st s  of  a c t i o n  1 and outputs the g iven pvars, “ (li-il ’ ,, i i i r ;

formulas of  this kind is thr - f i r s t  resor t in reduc ing p r o b l e ma t i c  ta’t’ ’~.

(/:REPHRASE (task name ) la ction formula ) (output pvars()
This action , which must be reduced by user—supp lied rule s , i~~ n i t  r ip uih r- ,i

/:10-00 deduc t ion fai Is . See Sect. II.C.2. It s object is to  leave ti ,, t i k

I: REDUCED.

Predicates with lleanings to the Choice Protocol

(/:CHO I CE (choice name ) (context) (formula))
means a tank or th~ executive (conte xt) requires a choice recjardin’; 1,i’;i,r’r ’;

to formul a . The choi ce ’; -ire recorded by formulas like
(/:OPT!ON (choice name ) (option name ) (answer))

[/:RULE-OU T (option )]
(/:RULE-IN (option )]
(/:RULE-TOr,ETHER - eiit ion s- > m e w  formula))
These three kinds of for mulas are l ooked for repea ted ly .  in this orde, on

each pass. So. for ex.imp le , i f  a form ula is / :RULED—OUT be f o r e  the /:Rh tl i~~ I tJ
rules are l ooked at , it has lost its chance. See Sect. II.C. 1 .

(/:OUIESCENCE choice name))
i~ recorded when no a c t i v i ty  occurred on a choice cycle. It is u sed to

cause further fori-jarci deduc t ion of /:RIJLE statements.

Functions and Predicates Defined by Built-In ~xloms

(ELI (x) (tup le )) me-inc x i~ an element of the tuple.
(SET-OF-ALL )prop(1 denotes the set of all objects with the proper ty

prop -
(MAPCAR (f) (tupl e () rienotes the tupl e obtained by app l y ing f to

every element of the tup le.
(DEL ( x (  (t rip le)) denotes the tuple obtained by d e l e t i n g  the f i r s t

occurrence of s from tuple .
(SUBTUP (tup i i (tu 1- r i~(1 means every elemen t of tup le I is an

elemen t of tup le 2.
(CONTAINS (formula 1) (formula 2 (1 is true if formula 2 occur s

somesihere insid e formula 1 las a proper
stibex press ion) .

(F-IS-ATOM (formula )) true of atomic-symbol formula like (IA ))
(F-IS-VAR (formula )) true of formula of var i able , l ike Ii?X1)
(OEN (formula)) etrip s a l ayer of brackets off formula. (See above , I

1/:— (x ( (y() true if x and y match; else assumed false ,

— __ _ & . _ _ .__ _ I1 
— — — -

~. .__~~ - 
,.. — ----——-—— - -— — — __________--- -;__--_ - —



- —-—--,%

A ppeirr i i w I ;‘~~

I— Ix ) (g o true i f  x and y desi gnate the same thing. To test
thi s , the system first tries match i ng.
then evalu a t i ng  (via “ —/ > “ )  x and y
and t r y ing  t he m a t c h  ~~ain.

(PRESUMABL Y ‘(p roposition ) (use) ]  if true , m ay assume the
proposition from i n a b i l i t y to d i sprove it.
(See Sect. II.B.2.)

[XOR 1 (pat) < - p r o p o s i t i o n s -  >] means exac t l y one of the propos i t i r i r in
is true i f  the pattern is.  E.i..
[XOR L (LIVING ?X)

< (ANIMAL ?X) (VEGETABLE ?X)>]

(NFUN (n( )f )) denotes a function of n arguments i-,h i ch makes a l i n t
of them and appl ies f to i t .  E.g..
(NFUN 3 I\ (L) I-i- !fl?L ) ))
• (\ IX Y Z) (+ ?X ?Y ?Z ) J

1-i- - args - )  [- ( x (  ly) ] 1* -args- ) (II )x~ (y()
a r i t h m e t i c  functions. These are simplified by bu ilt-in LISP f ri nct i o r i s

c a l l e d  by the evaluator .

(1< Ix) ) y ( 1  (I> ~x ) )y )l (.1< ( x (  ly ) )  (I>. (x) kit)
arithmetic inequalities

Predicates with tleanings to the Theorem Prover

Pragmatic versions of “OR ” :
(/:CONSEQ (p 1 (go
[/ :ANTEC )p( (go
(/:GEN (p 0 (g O )
The fir s t two are used dur i ng backward chaining (a call to SIP). the

second is also ti ~~pr t dur i ng forward cha inin g (a call to RECORD). 1:1.1- N i s
reall y a call to ~TP in the midst of fo~uard chaining. See Sect. II. B . ’.

(/:PK T (name ) (packet vars ( -conjuncte-)
Like (AND - - nnju n r:tc--I , but inde xed differentl y, arid mor e e ff i r i p u t  ltj i f

most of the con juncts wi I I never be referenced.

(—I> ‘ ( l e f t )  ( r i gh t )
means [— ( l e f t )  ( r i gh t ) ) , hut it also means tha t any expression ‘;ril ,~~i , r iu ”r I by

l e f t  ghould be rep laced by r i ght wherever it appears (except inside a u~i u r t r i l

expression), In p ra ctice , th is  rep lacement is done mainl y in newly d e l  iriuc ’ rl

deduc t i ye conc Iris ions.

(/:CONSI’~I F N T L Y  ‘(p ropo sition ))
is true if f  the pr o l )osi tiuun cannot be refuted by STP in the current i l i t i

base. If the proposition has free var i ables, they w i l l  be converted to ~l~o lpm
forms befor e tr ying the re futati on. 

‘. —— .- —--—---—---7.-— — -—*------ —



- 

A pperu il  i ~ 1 21i1

( / :00 ‘ ; u J p t r -  te r  ( pi ll  < —supporters— > ( suppor t e e ) ]
( / :SUPP)1R T - n i pp o r  t e r c—  supportee))
arc’ usr’d t~ acce ’ l i t  i dependencies as though they were s t r i  C r !  i i i  ~~~ ) i t 1

ba’” . ihe /:00 f n r nu~~!i i s true i f  there is a data dependencu :~~~ lull t i ~~~
q u j f l ) u~~ r - t cc to  thp ni j ; p r  4 . These are tup I e— f i erl ver 51 on’; of i t ’  I i t ’  t ‘‘i
t r ee  l e t s  de~ i r i t  u r l  in ~Pr t . II .0. In p a r t ic u l a r , the eleme nt c ui l i l urir i i i  ni l Jr

appe ar in the r p~~r~~
- - t er s tre e let • w i t h  l abe ls  in path. For e x i r t  Ic ’  • i i’  ru i i 1 h

have

[/ : 00 [ / : T A V 1111 07 ~, ~ (I (PUTON A B) )  <>1
~0[1-AC T -f ~E’~t It T~
(DO A l T - h E  III T (I: TASK T#~B7 (A (I IPUTON A B)) .1

-[)D-APRIN <MOVE-OEFN ,>)>
(ON A 81 )

/:SUPPIJRT is s i m p H f i e r l  version in which the supporters must he j i i ~~t a l i n t  o f
deductive supporters. It is equival ent to (FORALL IS) (II1PLIE ~ (ELT ~~~~ ‘ —

supporters— >1 (/:00 ?S <> < -supporters — ‘ (suppor tee)))).

( I ( r e f e r e n c e  po i n t )  ( t e r m ) )
(S ‘ )propor~r t i o n ) )
These are the hi ii I t  — in m odalities. The first is the va I n e  o f  ter m I r nni the

g iven refer ence poin t : the te rm is usuall y a fact with value true nr false.
[S ‘ I f - -ic t ( 1  means “S lrc-- ;’ ri~ to be true ’: it amounts to a special I, pit r r i’ u it  o f
the data dependency t l u - i t  ‘;uil)por t S i t .

(FRA?1E (ref po int ) - re f  po in t s— ,)
(N (ref poi nt I ‘ fact ]

Cru nip i tat ona I Iu ~ e f f i c i e n t  ways of using modal it i es. LJhen the r i ) ’  I em t i in s
a rip l ir t ion o~ a T-lo rn u u la , it  w i l l  try to smash the reference point to -i d i t i
pon i using t iui” ;p f u u r rnu j l .is’;, See Sect. 11.8.2.

Predicates with (‘lean ings to the Hatcher

or mu I a Me in u r ~ j

(/?/? (sym () I ns i - I r ’  in embedded formul a , matches a var i able r u t h
the ~~i lrol sym.
f ,,~~r.i !p :  ((\ IJ+V) (F (I?/? _?+V))))
m 3t rui ’ c ((\ IX) (F ? X ) J )  w i t h  -s-V -o ((X]).

[ION (n )k)) Th~ l o u t i t y function of n args that returns ary k.

~ ~ ~~1’’~~~Jn )~ 
?X J k J

)

(K In ) )c () Ju~ r n, r - c s r i i function of n args with value c.
rI~r ti ~~q (\ (X 1. , .X

1~~1
) ( c o

—~~ -.-———--- ___ __L ~~~ — — -- —— — - - - - -, -- - - .- — —



Append i 1 :‘ø:~

(CMP (fun ) < -f uns -  -
~1

Th~ comp o sition of fun with the fun~ . If there arc’
- n o f  them , each with sit args , this matches

(\ (X 1...X
f~~0

) ((fun ) —args— )) ,

where the ith “arg ” is of the for m
( fun

~ I ?X1 •~~
?X (mI

)
~

Examples: [CMP SIN ~z?F~ 1 matc hes (SIN] with F -. (ION 1 1).
LCMP FOO .- ?F1 ?F2>)

mat ches (\ (X Y) (EDO (-s- ?X ?Y) I- ?Y ?X)))
w ith Fl -. (#1 and F2 -. (\ (X Y) (- ?Y ?X)]

~ppe ndlx 2 -- A Listing of DESI

Thig is the current (June 27. 1977) version of the desi gn k n n w l , I j , . I t

is complete except for the d e f i n i t i o n  of LISP func t ’ons def i n i ng m .s ’ u . 5 r t s r r r i n

like CONFIL;. (See Chapter I I I .)
In Appendic es . ann 3. NASL formulas are de f ined  and added to t s r ’  d i l l

base w i t h  the f u n c t i o n  DEFI1LA , uhich is somewhat sim i l a r  to MA CLICuP ’ ’;
The expression

(OEFF1LA (name (formula) (destination) ]

names the formula and acids it to the data poo l that is the value of
destination. The dest ination is optional : if it is absent , the curr ent 1 1  ‘I
CURRENT-OP* w i l l  be taken.

(Otflhl_ fl STflS~—OUN t — / ~ A (STAS~ ‘TSE ‘SUPER fl ‘A ‘0)

(AND (/: lASS ~TSE ‘I ‘A ‘0)
(/ : S U B TA S E ‘TS E ‘S UPER)))

GENE PAi -DPs)

(OErnla DEVICE-C LA sSES -

Iit ORI (IS DEVIC E-TYPE ‘0)
..(BASIC.D(V-IVPE ‘0)
(SUPERORPINAT (-DEV-TYPE ‘0)~ I)

(OIrttI. A ~ASIC -0( 1N ((Du ly (BRS IC - OE V- TY P E ‘it)
(NOT (EXISTS IV) (SU~—OEV— TVPE ~Y ‘it) I)))

(DErMIA I1RI N- OEV— TY PE (—/ ~ P SflAI N- OEV- TY PE ‘it ‘Ofl (0EV—TYPE ‘K ~OT ) I )

( OEc1iLR ~)JR - D ( V - T Y P E - i  ( - /~ P ( SU B - 11 EV-TYPE ‘OT! ‘OT2
(- ‘b P 10 EV _ TYP E ‘it ‘ O T t )

( 0 EV—TYPE ‘it ‘ 0 T 2 ) ) ) )

- ~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ W - ~ 

y — -
~~ ~~~~~~~~~~~~~~~~~~

Append i 3

(DEFIIIR RR SIC- DEVICt- -CL PS~15

(tORi (RASV flI~ TiP E ‘0)
i (PRIII!T (V f 1 T V TYPE ‘0)

(COIWOSITE -Nv - TYP (‘0)
(IDEA L (i(V TYP E ‘0)~ l

GENE RAt -OP.)

SDEFPIIA COIiPOSITE-D (VIC (-CLRSSES
(tORI)CO1IPN,ITE-0(V-TYPE ‘0)

~(GENt PPL-fl(V-T YPE ‘0)

(SP (CIAL IZ (O_ D EV_ TYPE ‘O)~ l
G ENERAL -OP.)

(DEF1ILA CE NERA L-DE rN ((OUIV (GEPIE RA L-OEV-T Y PE ‘K)
(NOT (EXISTS (VI (DERIVE O ‘K ‘Y) I)))

(DEFtiLA SPEC—OE V-TY PE-I
(—In A (SPEC-OEV-TYPF ‘051 ‘052)

(— I > A (0EV—TYPE ~X ‘051) (0EV—TYPE ~k ‘012))))

(-OLFMLR SP(C-O EV-TYP ~ -2
(— 1 A (DERIV E D ‘ OT t ‘0T2)

(— I , A (SP EC- D(V -TYP (‘OT2 ‘0T3)
(SP (C—O EV—TYP E ‘011 ‘0T3) J)

(OEFIIIA SPEC-D EV-TYPE-3
I — / n A (S P (C- OE V-TYP E ‘011 ‘052) (SPECI R(JZEO -OEV—TYP E ‘ OTt))
GENERAL-OP.)

(DEI1ILA SOUL-ON-ICE
i — / n A (DERIVED ‘OT ‘G)

(— I , A (IIR I N- OE V-T Y P E ‘it ‘OT)o (AND (IIAIN-OEV-TYPE (SOUL TX) TG)
I — / n C (/ :SUBTRSK ‘T (DEEP-FREEZE (SOUL ~X)))

(/ s SU BTP S K ‘1 W EEP—FRE EZE ‘ X))))) l)

(OEFflt_ R EASY-DESIGN
I/ iTO- DO ,TS~ (DESIGN (\ (Xl (0EV—TYP E ~X ‘01))) TNPflE,

(MAt E ‘ O S)))

(O(FML R •OESI-I
(/,10—00 ‘1 (/ nR IPHRA3I ~T5t (DESIGN ‘,P) ‘O(VNAM ()

(/,00.SUSNE T (O ESI- RIPHRAS E-PL RN ~.P ‘15K ‘DE YNSiME) n))

Appen dix ;‘ 204

GENERA L-OP.)

(OEFMLA .OES I— 2
I— /n A (/:PIAN-IWSTANC (‘P1

(OES I-REPHRASE-PLPN ‘,P ‘TSE ‘DE VNAIIE)
‘SUP)

(—I . A (I • ‘ .P (\ (.V) ‘.6))
(AND

(/ :T PSV (EX PLODER ‘P1) ~n

(\ (I (0-EXPLODE ‘i P)) <,)

(/:SUBTASI (EXPLODER ‘P1) ‘SUP)

(/!TASS (A CCOUNT -FOR—ALL VP))
(\ () (RCCOIJNT- FOR—RLL- SHAROS ‘,P)) +~‘)

(/:SCOPE (ACCOUN T-FDA—A lL ‘Pt) (EXPLODER ‘P1))

(/:SUCCESSOR (ACCOUNT- FOR-All ‘P1) (EXPlODER ‘P1))

(/ (TASt (COPE — FIN DE R ‘P1) ~,

(\ (I (/:FIND (\ (.01)

(CORE-DEV-TYPE ‘eP ‘,OT))))

~‘(CORE—OT ‘PI)n)

(/~ SUBTASE (CORE- FINDER ‘P1) ‘SUP)

(STASE (ttAIN-TflS)-1NFER (R ‘Pt) ‘SUP ~‘ (C0RE-DT ‘Pt),
(\ (+01) (/~ IWFE R

(AND (STASE (MPEER ‘TSE) ‘ISE +n
(\ (I ((tREE (DEN ‘+05))

‘ (WINNER ‘TSK)n)
t/:IIAIN (MAKER ‘TSK) ‘15K))

,(COR (—EINDER ‘P1),)

(/:SUCCESSOR IMPIN -TASE-IHFER ER ‘P1)

(S l OE-TASKS—FINDER ‘P1))

(S1’ASK (SIO(-TASLS-FINO (R ‘P1) ‘SUP c
(\ (I (/~ INr (R

(FORA LL (.55)
(—I , ’ C (SI DE—TASK ‘.P ‘-.ST)

(EXISTS (T I
(AND (STASK ‘1 ‘TSK

c ’(UINN(R ‘ISK)n
(DEN ‘.ST)

(/:SUCC ESSOR
(MAKER ‘ISKI
IT))))

~~) I

(STAS K (FEATUR ES - FINDER ‘Pt) ‘SUP ~~
(\ ()

-r -
- -- ~:—r~- r —~~~~--~ - -- ---—— - ~~ - -

Appendix 2 205

(/ t INFER
(FORAIL (e FT)

(— In G (D—FEATURE ‘.P !iFT)
(E XISTS (1)

(AND (STA SK ~T ‘15K ~
,

U
(0-NOTE (OEN T ,FT))

c n)
(/ nSCOP (‘1 (MAKER ‘TS K))
I / n SUCCESSOR

~T (MAK ER ~TS K))) I)
c ,)

(STA S K (GATHERER ‘P1) ‘SUP ‘
(\ (I (I n INFER ‘(/ :RE DUCE O ‘ISo

c (CORE —FIN OER ‘P1)

(SIDE—T ASKS~-FINDER ‘P1)
(F EA TURES— FINDER ‘P1),) 1

(/nSUCCE SSOR (EXPLOD ER ‘P1) (COlE—F INDER ‘PS))

(/ :SUCCESSOR (EX PLODER ‘Pt)

(SIDE-TASKS—FINDER ‘P1))
(/ : SU CCE SSO R (EXPLODER ‘P1) (FEATURES—FINDER ‘ P1))
(/nSUCCESSOR (MA IN— TA SE—I NFER ER ‘P1) (GATHERER ‘P1))
(f:SUCCESSOR (SIO (-TRSES—F INOE P ‘P1)

(CAOIERER ‘P1))
(/ ~Sur r (s S OR (FEATURES— FINDE R ‘Pt) (GA THE RER ‘P U)

(/ :M A IN (GATHERER ‘P1) ‘SUP))))
GEN ERAL-OP .)

1 THE INTE NT OF 0-EXPLODE IS ID DISCOVE R 0-SHARD S , UHICH GENERATE
(1) COR E—DEV-TY PE , THE EIN D OF DEVICE UHICH HAS THE DESIRED PROPERTY
(2) 0—FEATURES , WHICH Will GUIDE (AS POLICIES) THE MA K ER OF THE DEVICE
(3) SID E-TAS K S , WHICH TYPI CALL Y PR(CONSTRA INTS ON PROPERTIES OF THE

DEVICE

(DEFMLA 0-EXPLODE
11:10—DO ‘T (0-EXPLODE ‘.PROP) +,

(i s INFER ‘ (0-SHARD ‘.PRQP ‘.PROP) .,)))

(OEFMIA 0-SHARD
I—/, A ID—SHARD T ,P (‘~

(j ,V) (AND ‘I_? .CS) I)
(FORALL (,C) (itG (N sNOT (ELI ‘+C ?.C5))

(0-SHARD ‘.P I\ (_~,V) _‘.Cl)))I
GENERAL -DP*)

(OEFMIA ACCOUNT-FOR-All-DO

Appendix 2 206

i/ iTO-DO ‘T (ACCOUNT-FOR-All-SHARDS ‘.P) cn

(/ n P R I M .SETUP))
GENE RAL-OP.)

(DEFIIL A ACCOUNT-FOR-ALL-F INISH
I—/> A (/:TASE-RCT !ON ‘FIN (/:FINISH (ACCOUNT—FOR-ALL ‘P1)))

(AND (/ :R E DUCEO ‘FIN)
(— I n C (AND (/iPIAN—INSTANC E ‘RI

(DES I-REPHRASE—PLAN ~,P ‘.150

‘.DEVNAtIE
,,URY)

‘SUP)
(0-SHARD ~.P ‘.SHARO))

(STAS E (SHARD-ACCOUNTANT ‘,SHRR O) ‘F IN
c,

(\ U
(ACCOUNT -FOR-SH A R D ‘,SHARQ

c ,)))))

(OEFML R SHARO-ACCOUNI-0O
(/:10—DO ‘TS I (ACCOUNT-FOR-SHARD ‘eSHARO ‘+P) ,

(/:C RII (SHARD-ACCOUNT-CHEAT ‘,SHRRQ ‘.PUI
GENERAL-OP .)

;T HIS IS HRNOLEO BY A L ISP FUNCTION (NOT SHOWN)

~IN THE CURRENT JMPLEPIEN TATION

(OEFMI_A D-NOTE-OO
1/i TO-DO ‘TASK (0—NOTE ‘ PROPERTY) c, (/n PRIM ISETUP)))

(DEFIILA 0-NOT E-FINISH
i/ iTO-DO ‘TASK (/ :F INISH ‘PTASE (0—NOTE ‘PROPERTY)) ~~

(/ PRIM sF I N IS HEO)))

(DEEMIP CO—r UNS-i 1/s ANTEC (NOT (DERIVE D—C O ‘ (‘F ‘ K)))
(CONTROL—ATTRIBUTE ‘ F)))

(O(FRL A CQ— FUNS-2 1/ ANTE C (NOT (IMM EDIAT E-CO ‘(IF ? X)))
(tO NT ROL-RTT R1BU T E ‘F)))

(OU MLR CO-SHARD
1/tAN T EC (NOT (0-SHARD ‘ ,P (\ (j ,V) (. _‘sEX PI _‘,EX P2) I))

(AN D (P05-ca -SHARD ‘.P ~.V ~.CXPI ?,(KPZ)
(POS-C O-SHARO ‘ .P ‘.V T,EXP Z ‘eEX PI))))

(DEFilE R P05-CO-SHARD
1/s A NT EC (NOT (P05-CO-SHAR D ‘,P T .V ‘.EXPI ‘.EX PZ))

(/n G FN (NOT (AND (NOT (CONTAINS ‘.EXP2 (
~l’’l _T,V) J))

(.1. ‘ (DEN It. (~~ .V) ,,‘,EXPI))
‘F)

—— - --— — - - -

Appendix 2 207

(CONTROL—ATT RIBUTE ~F)
(• / > ‘(DEN ~,F) IF)))

(SIDE— IPSO ‘.P
I\ (_ ‘#V)

(CONS t RAIN c ’(_~.F (l’~I _7.V))n
It. (XI (. ~K _?.(XP2))) I)))

GENERAL-OP.)

(OEFMLA CO RE-DT- i
i/ A NTEC (NOT (0—SHARD ‘.P I\ (_~,V) (0EV—TYPE (P1’ _‘.V)

_~,0T))))
(CORE — OEV — TYPE ‘.P ~.0T)))

;CHOOSING CORE- DEV-TYPE S

(DEFilER CO*E-DT-CHOOSE
1/ RNTEC (NOT (CHOICE ‘C A NSWER 1CORE- DEV—TYPE _~..P _‘..O)))

(— I C (AND (/ i OPT ION ‘C ‘Al
ICORE -OEV—TYP E _‘..P _‘.,Ol))

(/s OPTION ‘C ‘P2
(CORE- OEV-TYPE _ ‘.-.P _ ‘..021)

(SUB-0EV-TYPE (DEN (DEN ‘+iOL))
(DEN (DEN ‘.42))))

(/: RULE — OUT ‘A l))))
;PLUS DOMAIN-DEPENDENT INFO IN ZORCH

(DEflhLA MAKE—BASIC

I—/, A (BASIC—DEV—TYPE ‘0EV-TYPE)
(i s TO—DO ‘150 (MAKE ‘0EV-TYPE) c ’NPMEn

(/s OO—SUB NET (MA KE-BAS IC-NE T ‘0EV—TYPE) cOEVNAIIEn))1)

(DE FIIEA IIAKE-B RSIC-PLAN
I—/p A (/:PLAN-INS TANCE ‘RI ((lAKE-BASIC—NE T 70EV—TYPE) ‘SUP)

(AND (/ TASO (GRABBER ‘Pt) cn
(\ U

(/: CA LL
(GRABBA It. (K)

(IIAIN-OEV—TYPE ‘K
‘0EV—TYPE) I))

c ’(O(V NAI’SE ‘RI),)
(I MAIN (GRA BBER ‘P1) ‘SUP)))

GE NERAL-OP.)

(DEFMLA MAKE-PRIM
i—/ , A (PR INIT IV E —Q EV-TYPE ‘0EV—TYPE)

I—In A (/ : PLAN — INSTANC (
‘RI ((lA KE-BASIC-NE T p0EV—TYPE) ‘SUP)

(FORALL (0 0 C)
(— i n C

(FORA LL (K)

____________ a- - .~~~~~~.— — —
- -=-~~~~ ‘- — —.—-- I--

-
- - i ’ —

App endix 2 20~

(IMPLIES (0EV-TYPE ‘K ‘0EV— TYPE)
(CONTROL ‘0 ‘K ‘0 ‘C))

(EXISTS (SUB)

(STASK ‘SUB ‘SUP < ‘ (OEVNAM (‘PS),
(\ (K) (SELECT—VALUE

‘(‘0 ~K))
c ,)))))))

(DEFIlE R MAKE-COMPOSITE
1— in A (CO MPOSIT E-DEV-TVP(‘0EV—TYP E)

(-I, A (/ :PIP N- INSTAN C E
‘P1 (h A s 1-BASIC—NE T ‘0EV-TYPE) ‘SUP)

(EXISTS (SUB)

(STA lK ‘SUB ‘SUP c ’ (DEVI(AIIE ‘PI)
(\ (it) (EXPAND ‘K) I
c ,)

(DEFi lER (lAKE-IDEAL
1—In A (IOEA L-D EV- TY PE ‘0EV-TYPE)

(—I, P (/:PLAW -INST ANCE

‘P1 (MASt - BA S IC—Nfl ‘0EV—TYPE) SUP)
(EXISTS (SUB)

(STAS K ‘SUB ‘SUP ‘(DEVNAME ‘PUn
(\ (K) (IMPLEMENT ~X)
c ,)))))

(DEEMIA COIlPONENTS-NOT ICE
1—In A (COMPONENTS ~X ‘PART S)

(—I n C (ELI ‘PAR T ‘ PARTS)
(— In A (110 115 t V-TYPE ‘K ‘DT)

(E X I S T S (PJ)
(AND (/ PLPN— JNSTANCE ‘Pt

(MAK E -BASIC-NET ‘01)
(DEEP—FREEZE ~K))

(/ FIN ISH(O (GRABBER ~P1))) I)))
GENER AL -OP.

~OE FJN IT ION OF EXPAND

; THE (lOST GENERAL SPECIALIZATION AND ANY DEFAUL T SPECIALI ZA TIONS OF A
DEVICE T YPE ‘C API TREATED THE SAME HERE , BUT (A) THE CHOICE RULES

i BELOW 11111 TAl E THE DEFA ULT , OR (B) USER-SUPPLIED RULES Mlii.
FAVOR THE GENERA L .

(OE X MIR MOST-GENERAL -DEEM
(— I , A (MOST -GENERAL-SPEC ‘C ‘OT)

(AND (SPEC—OEV-TYPI ‘01 ‘C)
(—In C (MA IN—D EV — TYPE 7k ~C)

ii
_

Append 2 20’)

(I, TO-DO ‘TASK (EXPAND ~K) cn

(SPECIALIZE ‘K ‘OT))))))

(DE FML A OEFAULT-SPEC-0 (FN

I—In A (DEFAULT-SPEC ‘C ‘DT)
(—I n C (I1AIN-D (V- 1YP(‘K ‘6)

(is TO—DO ‘TASK (EXPAND ‘K) cn

(SPECIAL IZE ‘K ‘OT) 1)1)

(DEFIlER SPECIALIZE-DEEM
1—In C (PlAIN-D IV-TYPE ‘0EV ‘OLD-DIV-TYPE)

(IsM OO-MANIP (SPECIALI ZE ‘0E V ‘0EV-TYPE)
c ’ (IIAIN-D (V-TYP(‘DIV ‘OLO-bEV—TYPE)>
c’rnAIN-D(V-TYPE ‘0EV ‘OEV—IYP()n)))

11F ONE DEVICE-TYPE IS A SP ECIAL IZE D VERSION OF ANOTHER , TRY
TO TAKE THE MOPE SPEC IF IC , OTHER THINGS (DUAL .

(DEFilER SPEC-Of V-BE TIER
(—In P (0(RIVE D ‘OTI ‘012)

(—In C (AND (.1, ‘(DEN ‘.OTI) ‘OTt)
(.I ‘ (DEN ‘.0T2) ‘0T2))

(—I , A (/ :O PT IO N ‘C ~Al
(/n TO—DO ‘.TSK (EXPAND _‘,OEV) c~

(SPECIALIZE _~.0EV _~,0Tt)))

(—i n A (/:OUIESC(NC(‘C)
(— In C (I OPTION ‘C ‘P2

(Is TO-DO _‘,TSK
(EXPAND _‘,OEV)

(SPEC IRS. IZE
_‘.OT _~.0T2U)

(/ RULE—IN ‘Al))))))

GENERAL -DR .)
p

(DEFilE R TUO-SPEC-O (VS-WORSE-THAN-ONE

1— /n P (DERIVED ‘DII ‘DIR)
(—I n A (DERIVE D ‘012 ‘018)

(— In 6 (P150 (NOT (i:e ‘OTt ‘DT2))

Se/n ‘ (DEN ~.DTt) ‘OTS)
(sin ‘ (DEN ‘.DTI) ‘011)
(.1, ‘(DEN ‘.012) ‘DTZ))

(— I, A (I OPTION ‘C ‘Al

(I s 10-00 _ ‘.TSK (EXPAND ..‘.OEV)

(SPECIALIZE _‘eOEV _‘.OTI)))

(— I, A (/ DUIESCINC (‘C)

(— I, 6 (AND (/ OPT ION ~C ‘P2
(Is 10-00 _ ?,T5K (EXPAND _X..OEVI

r ‘ ~~~~~~~~~~~~~~~ • - ~~~~~~~~~~~~~~~~~~~ ~~
-

-
-a

Ap pendi- 7 210

(SPECIA LIZE J.DEV _~,DT2)))
(/:O PIION ‘C ‘Al

I f : TO-DO _‘,TSK (EXPAND _‘,O(V)
C,

(SPECIALIZE _‘.-DEV _‘,DTI)fl)
(AND (/ :RUIE—OU T ‘Al)

(/:R UL E— OUT ‘A 2 f l)))))))

;AU XILI AR Y SUBTASS S OF EXPAND
(DEEPI LA EXPAND-LOO S AHEAD

I— in A (/:TAS) —ACTION ‘15) (EXPAND ‘0EV))

(TO-BE—EXPANOED ‘0EV ‘ISO(S)

(DEEPIL A EXPANSION-D ILS-DO

t/ :ANTEC (NOT (EXPANSION-OIL ‘0EV ‘B))
(/:ANTEC (NOT (10-BE-EXPANDED ‘DIV ‘TN))

(/s IA5K (081 ‘DIV T5) c, (\ (1 ‘8) c,))J)

(DEEJILA & ENERJ C- CAS
i—h A (GE N ER IC -CR ‘CA)

(AND (CON TROL -AII RI B UTE ‘CA)
(— in A (/ : PDL ICY ‘TAS E

(CONSTRAIN c ’I’OSI ‘(‘CA ‘Dlv) 1 I’QS2n

,P))

(— /n C (ELI (‘CA ‘X)

c ’I’QSI ‘(‘CA ‘0EV) IS’0S2>)

(— In A (TO—BE—EXPANDED ‘0EV ‘ISO)

(SIASK (CA -CAL C ‘CA ‘Dlv) ~TSO

C,

St. U
(CAL CUL A TE

‘(~CA ‘0EV))
C,))”))

GENERAL -OP.)

(DEFIlE R AC QUIRE-DO-I

i—I , C (AND (RE U SA BLE ‘0EV-TYPE) (0EV—TYPE ~K TDEV~TYP(I)

(I~T0-00 ‘151 (AC QUIRE ~OEV—T YPE) C~NAME ,

(/5OS JT P UT c ’Xn)I))

(DEF IlER AC QUIRE -DO-?

f/iTO-DO ‘ISO (AC QUIRE ‘0EV-TYPE) C~NAM E,

(((PIE ‘0EV-TYPE)))

(DIEMLA RE USABL E—I IPRES TIMABI Y • (NOT (REUSABLE ‘K’) C))

Appendix 2 211

(DEFIlER REUS E-CET (RIS-P PRIB US
1—/ n. A (/sCH O ICE ‘C EX E C I/n TO-DO _~.1A5~ (AC QUIRE _~,OT) c _’.N,

_‘,URYI)

(— I, A (/nOUIESC ENCE ‘C)
(— I , A (/~0PT ION ‘C ‘Al

(In TO—DO j. TASO (ACQUIRE j .i-OT) cj.N
(MAK E j,OT)))

(/ :RULE—D(T ‘Al)))))

;IF SIMPLE EQUATION , TRY SOLVING IT

(DEFIlE R CONSTR AI N-DO-I

(— In. C (i. c ’UNK
(in THE INO

(\ (U)

(AND (ELT ‘U ‘DIJANTS)
- (inCONSISTENTL Y

(FORALL (VA L)
(NOT (s / n ‘U ‘VA!..))))))))

(/nTO-DO ‘TASK (CONSTRAIN ‘QUANTS (ClIP • c~Fl ‘F2n)) cn

(1sSEQ (CONS IR PINT—RESOLVE 7UNK ~Fl ‘F2 ‘QUANTS)

Et. (VAI l
(PROTECT

‘ (SATISF IES
‘UNE (ClIP c?F l 7F2n) ‘OURNIS))

I))))

1(LSE , JUST ESTABLISH POLICY

(DEFIlER CONSTRAIN-DO-?
i—I, C (OR (NOT (: . ‘F •))

(FOR ALL (LINE)

(NOT (s . .‘UN Sn.

(Is 1(401150
(\ (U)

(AND (liT ‘U ‘QURNTS)
(I:CDNSISTENTLY

‘(FORALL (VAt)

(NOT (sin ~U ‘VAt))
))) (a))))

(/n TO—DO ‘TASK (CONSTRAIN ~OIJANTS (ClIP ‘F ‘P1)) cn

(/:PRSII eSETUP))))

;DEFINIT ION OF CON ST RAINT - -

(DEFIlER CONSTRAINT-I
i—In A (CONSTRAINT ‘OS ‘P)

(EXI STS (11 (i:POLICY ‘T (CONSTRAIN ‘OS ‘P)) I))

(OEFPILA CONSTRAINT-?

(—In C (EX ISTS (T) (InP OL ICY ‘T (CONSTRAIN ‘OS ~PJJ
(CONSTRAINT ‘OS ~P)))

_ __ __ _ _ - ~~- - - - - -- - - — . . .~~~~~~~~~~ . - a

Appendi x 2 212

(OEEMLA CONSTRAINI-RESOL VE-REPH
1/sTO-DO ‘RISE

(/:R (PHRRSE ‘IASI

(CONSTRA INT-RESOLVE _‘.(JP(K

(\ (_‘,VRRS) _ 7,EXP5I
(\ (_~,VPRS) _.).EXP2)
• I_ ’QUANTS,J

•‘VAI (it,)

4/slED (EON-SOL VE .UNS (LAMBOA-APPLY (\ (j.VAPS) ‘,EXPI)

‘,QUANIS)
(LAMBDA-APPLY (t. (_‘.VARS) _‘+EXP2)

‘,OUPNTS))

(\ (cAN S)
(I, INFER ‘ (AND (SIASK (SETTER ~TASO) ‘TASK c

(\ U (/nSET (DEN ‘i-UN))
(DE N ‘i-ANSI)

(/:M AI N (SETTER ‘TRSK) ‘TASK)
(/:REDUCEO ‘TASK))

.,)))))

(DEFIIL A EON-SOLVE-DO-I
(—in C (AND (ONE-OCCURRENCE ‘,LET ‘,(jNI)

(NOT (CONTAINS ‘i-Rd ‘i-LINK)))
(/:10-00 ‘TASK (EON-SOLVE ‘,UNOE ‘ctFT ?.RCT) •‘ANSVn

(ISOLATE ‘,UN E ‘,LF T ‘i-PCI))))

(DEFIlE R EON-SOLVE-DO-?
I—/n C SAND (ONE-OCCURRENCE ‘,RCI ‘i-LINE)

sNOT 5CON Ti~IN S ‘i-LET ‘i-LINE)))
(f :TO-DO ‘(ASP (EON-SOLVE ‘.UNKF ‘i-LET ‘i-PCI) c’ANSVn-

(ISOLATE ‘cUNE ‘.RGT ‘i- LET))))

(DEEMLA EON-SOL VE -DO-)

1—h C (NOT (ONE-OCCURRENCE 1 .’.IET _‘eRGT) ‘.UNK))
(/n T O— I) O ‘TI) ((ON _ SOLVE ~,UNK ‘,LFT ~i-R~T) c ’PNS

(/ CPII (EON-CHEAT ‘,UNE ‘i-LET ‘i-PCI)))))

1 THE TER M ‘ ISO LATE IS TROll IUNOY’S MINI -TH EORY OF EQUATION SOLVING.
HIS NOIION OF C DL L E CT ION ’ IS ALSO APPROPRIATE , BUT NOI IMPLEME NTED.

(DUMLA ISOI.AT E-O O - l

(/ :CO NSEQ (/:I O-OO ‘IA,P (ISOL A TE ‘i-UNIT ‘.LFT ‘cR11 ‘- i-RGT)
•‘RV ~PNSV,
(OUTPUT c ’,R(L ‘,RCT n))

(NOT rn ‘i-LET ~,U NKE))))

(OEFML P ISOLATE- DO-?

_ _ _ _ _ a

Appendix 2 211

1/n CO MSE Q (/ : T O ~DO ‘ IRS) - (I SOLATE ‘+IJNIE ‘i-IFT ‘cR11 ?,RGI)

.‘RV ‘ANSV ~
(1:510 (ISOLATE -ONE—STEP ‘i-UN IT ‘i-LET ‘i-Rh ‘,RGT)

(\ (,N~U—L FT .151W—ACT)
(ISOLATE ‘i-UNIT ‘ i-NEW—LET

‘i-REL ‘,NEU— RGT))))
(. ‘i-LIT ‘,UNIF)I)

(DEEPIL A ISOLATE-ONE-DD -i-
i /n CONS (O (/ n TO -DO ‘IASL

(ISOLA TE -ONE-STEP ‘i-UNIT f e 5 I ’ cAOOENDSJ
‘i-All ‘i-ACT)

•‘LV ‘RV>
(OUTPUT ~‘.TERM I— j. RCT ti ‘I ’ ,T E P I I S) b))

(NOT (AND (ELI ‘i-TERM ‘.RDOENOS)
(CONTAINS ‘i-T ERM ‘i-UNIT)

rn ‘eTER SI S (DEL ‘i- TERM ‘.A OOE NDS)))) I)

(OEFMIA SELECT-V A LUE-DO

1— /n C (/ :CON SISIENI LV

(FORfl(1 (VRL) (NOT (i / n ‘OUANT ‘VAIl) I)

(/nTO-DO ‘I (SELECT-VALUE ‘OUANT) ‘n.
(/:CALI (CHEAT ‘QUANT (CO-CLOSURE ‘Q(JANT))))))

SELECT—VRIU(IS HANDLED BY A LISP FUNCTION

;IN THE CURRENT IMPLE ME NTATION

(OEFMLA CO-CLO -l

(s / n ‘ (CO-CLOSURE ‘0)
(/:THFINO (\ (C) (CO-ClOSURE—lIT ‘C ‘0)))))

(OEFML A CO-CEO-?

I— /n. C (CONS TRAINT • ‘I’QTI ~Q
I I’QT2n ‘P1

(CO—CLOSURE-ELI (CONSTRAINT < ‘I’QTI ,Q ‘QT? n ‘PS

‘0)))

(DEFIlER CQ—C LO- 3
i— /n. C (A ND (tO-CLOSIJRE--EIT (CONSTRAINT ‘OS ‘PP ‘0)

(ELI ‘UI ‘OS)
(EO-CLOSUR (- (LT ‘C ‘01))

(CO-CLOSURE-ELI ‘C ‘ 05))

(DEFMLA SEL EC I-POSTPONE
(—I n A (m IPS) ‘151 ‘I (CA P DESIGN < ‘PT ,) n ’D(V)

(— / , A (in TAS K ‘S ~I (ClIP SELECT-VALUE •~QF,) ci -)
(AND (ST A Ir (SELECT—EM-ALL ‘ ISO) ‘TSK ~n

St. (1 (0O-All—SELELT —VALUE S ‘TS K)
<,1

(i:SUBTASE ‘S (SELECT—E lI-ALL ‘TSK))

(i :REOUC(O (S El ECT—U I—ALL ‘151))
(- i n. A (IOPO-CNANG E-ACT ION-FI)N ~F)

____________________ -
a J

Appr’ndc~ ‘ 216

(— i n P (/ :TASE ‘I ‘ INS
(ClIP ‘F ‘ES) ‘OUTS)

(I: SUC CE S SOP
‘1 (SELECT—ElI—ALL ‘TSK~~

)))))

GENERAL -OP .)

(DEFMLA MAKE-CHANGES-TOPOLOGY
(TOPO-CHANGE—A CTIO PI --FUN (IA) (I)

(DE FMI.A FIX-CHANGES -IOPOLD &Y
(TOPD-CHANCE-RCTION-FUN FIX))

(DEEMLA OVAL-PROTECT

(— I > C (AND (
~~/ , ‘0 ~VRL)
(./, ‘ (DEN ‘i-TA CT) (./> ‘U ‘VA L)))

(/ : 10—DO ‘TPS) (PROTECT ‘ (SATISFIES ‘U ‘C ‘QUANTS)) cn
(/:AONITOR ‘i-FAC T

(\ (TI

(/ : COPI T INU E ‘TASK
(PROTECT

‘(SATISFIES ‘0 ‘C ‘QUANTS))) 1))))

(DEEPILA PROTECT-CONTIN UE

1/iTO-DO ‘TAS I (/nCONTINUE ‘PTRSK

(PROTECT ‘(SATISFIES ‘U ‘C ‘01JAN15)))

(I : 00—SUBNE I
(PROTECT—CONTINUE-NET ‘PTASK ‘0 ‘C ‘QUANTS) <nfl)

(DIEM1A P ROTECT-CONTINUE-P IRN
(— I , . A (/ : PLA N_ I NST R NCE ‘P1

(PPOIECI-CONYINU E-NE T ‘PTPSE ‘0 ‘C ‘OUANTS)
‘SUP)

(AND (5105) (RECHEC (ER ‘PS) ‘SUP <,
(\ 5) (VERIFY ‘ (SATISE III ‘0 ‘C ‘OIJANTS)) I cn)

(STA lK (V AL UE-FINDER ~PI) ‘SUP ci
-(\ 5)

(f : F IND
(\ (,NE UIION)

(EXIST S (NEUVAL)
(AND (./ ‘Q ‘NEUVAL)

(.1, ‘ (DEN ‘,NEWIION)
(s / n . ‘0 ‘NEWVAL))) 1))

‘ (NIWTON ‘PI)n)
(SIPS) (PE rIONIT OR ‘PI P ~SUP c ’ (NE WION ‘PI)n

(\ (i-TACT)

(/n?IONITOR ‘ i-TAC T
(\ (TI

(f CON IINUE ‘PIASK
(PROTECT

- _________ a

App endix 2 215

‘(SATISFIES ‘0 ‘C

‘01JAN15))) 1) 1))))

(OEFMIA VERIFY-DO
(/nTO—DO ‘ISO (VERIFY ‘‘P 1 •,

(/nEIND (\ U ‘P1)))

(DEFIlER SPEC-SCHEMA-DUN

i—/ n. A (SPEC-SCHEMA ‘SCHI ‘SCH2)

(—In. A (/:PLRN-INSTANC (‘RI ‘SCHI ‘SUP)
(/:PLAN-JN5TANC (‘P1 ‘SCH2 ‘SUP))))

5 THI5 PREDICATE IS USEFUL IN RELATING A SCHEMA TO 1TS SPECIRL IZERS
(DEFIILA REOUCE-DEF N

i—in A (REDUCE ‘TASI S ‘IASE)

(AND (— I, C (ELY ~T ‘TAS KS) (/s SU BTA5K ‘T ~TA SO))
(/:REDUCEO ‘TAlE))))

;THIS IS A USEFUL PRE DICATE ON FROZE N TASKS
(DEFPILA FLINCTION-D EEN

1—/, A (FUNCTION ‘DEV ‘TS))

(—In A (IIAIN -DEV— TYPE ‘DIV ‘DI)
(EXISTS (RCO)

(AND (/:TASK ‘RCO ‘I ‘A c’OEVn)
(/:TPSU— PCTION ‘RCO (ACQUIRE ‘01))

(/:REDUCEO ‘ACQ)

(REDUCE •‘ACOn ‘ISO)))fl)

5 1 F ONE PLA N-SCHE MA IS A SPECIALIZED VERSION OF ANOTHER , TRY

TO TAKE THE MORE SPECIFIC. (THIS IS REALLY IORE GENERAL THAN
THE WORLD OF DESIGN .)

(DEFMIA SPEC —IS-BE TTER
1—/n A (SPEC-SCHEMA ‘SCHI ‘SC M?)

$ (—I n C (AND (. / n . ‘(DEN ‘iSCHI) ‘SCHI)
(s in. ‘(DE N ‘i-SCM?) ‘SCH2I)

(—h A (/nOPT ION ‘C ‘Al

(/ nTO —DO ,‘i- ISO ,, ‘.ACT ,,, ‘i-OUTS
(/ nDO-SUBNE T _‘.SCHL _‘,VA PS I)))

I — / n . A (/ , OPTION ‘C ‘A?
i/ iTO — DO _‘i-TSI _‘i-AC T .,~.DUTS

• (/nDO—5 UBNET ,Y.SCH2
_~,VAP52)))

(/nRULI— IN ‘Al))))))

(DEFMLA IUO-SPECS-WORSE - THPN-ONE
i— In A (SPEC-SCHEMA ‘SCM!. ‘SCHI)

(—I, A (SPEC-SCHEMA ‘SCM? ‘SCHI)
(-in. C (AND (NOT (Ii. ~SCH1 ISCH2))

______ a

Appendix 7 216

(rn /n ‘ (DEN ~,SCH~) ‘SCHI)
(s / n . ‘ (DEN ‘.SCI4I) ‘SCHI)
(.1, ‘(DEN ‘,SCH2) ‘SCM?))

(— I, A
(/:OP IION ~C ‘Al

(1:10-DO _‘i-TSK _ ‘.ACT _‘eOUTS

(/ sOO —SUB NET _‘.SCHL .,‘cVARSI?I)
(-I, C (AND (/ :OPTI ON ‘C ‘P2

I/n TO—DO _‘.TSP _‘,PCT

.,‘.OUTS

(/nDO-SUBNLT ‘.SCH2

,‘,VAR S?) I)
(/:OPTIQM ‘C ‘RB

i/ n TO—DO _‘i-TSK _ ‘,ACT

_‘.OUTS

(/sD O-SU BNET _‘i-SCHI
_‘.VAR S S))))

(AND (/:R(JL(—OIJT ‘RI)
(/:RULE—OUT ‘AZ))))))))

Appendix 3 -- A Listing of ZORCH

This is the current ver sion of DESI’s electronics know l edge. Much of it
inte racts with the more general rules of the previou s appendix.

(INT S EC I— D ISPAR I IY . rn lOOP)
(AELOC ‘ftI ST U00000. 150000. 0.6)))

1 PHYS ICRL KNOWLEDGE

1 EVE RY NODE IS A TERMINAL

(DEFMIR NOOE -T RM I N
(FORALI (K) (_ I , A (DIV-T YPE ‘K NODE) (0EV—TYPE 71 TERMINAL))))

10C1 FOR DEVICES
(DEEMLA (ti—I

1—/, A (TERPIINAL -NAPI(S ‘K ‘TRMIN-TUP

(CONSTRAIN T (MAPCAR (LAMBDA (I) ‘(I (‘T 71)) 1
‘TRMIN—TUP)

(NEUN (LENGTH ‘IRMIN-TUP)
(LA MBDA (1) rn (, !S’L) I))))))

5 K~ L FOR NODES
(D(FMLA ICL-2

1— /n A ‘.1. ‘(NOOE-TFPMINALS ‘NODE) ‘TRM)N—TUP)

(CONST RAINT c ’ (I ‘15001)
‘S(MAPCPR (\ IT) ‘(I ‘TI

- - - - . _~~~~ a

Appendix 3 217

‘TRMIN-TUP),

(NFIJN 5. (LENGTH ‘TPPIIN—TUP) I)
(l AMBDA (L) rn (• I~L) S))))))

.AND COMPOSITE DEVICES

(DEFML A OCL—3

I—/n A (COMPOS IT E- OEV - TYPE ‘DT)
(— In. A (0EV— TERMINAL S ‘0EV ‘TRPIIN—TUP)

(CO NSTRAINT $1IAPCAR (\ (T) ‘(I ‘1)

‘TAR I N— TUP)

(NFUN (LENGTH ‘TAM IN-TUP)

(L AMBDA (LI I. (i- ‘I’L) I)
)) S)J

~KVL FOR NODES
(OEFPILA OV L— l

I—/n A (.1, ‘ (NODE-TERMINALS ‘15001) ‘TRMIN—T (JP)

I—/n C (ELI ‘TRAIN ‘TRMIN—TUP)

(CONSTRAINT < ‘(V ‘TRIIIN) ‘(V ‘NDOE)n .1)3)

;SOME TERMINALS HAVE NODES THAT THEY ARE TERMINALS OF

(OEFMLA NODE—OF—I i— In . A (.1. (NODE-TERMINALS ‘N) ‘IS)

(— in C (ELI ‘I ‘T5) (NODE—Of ‘T ~N)))i

(DEFMLA NODE—OF-? (PRESUMABLY ‘(NOT (NODE—OF ‘T ‘N)) C))

;NO DES CAN BE MERGED
(OEFMLA NODES -MERCE-MAN IP

i—/n C (AND (.1, ‘ (NODE-TERMINALS ‘Ni) ‘TI)
(s/ n ‘(NOOf-IER?IINRLS ‘N21 ‘121)

(/nMOD-IIANIP ‘TRI P (NODES—MERGE ‘NI ‘N?)

< ‘ (s/ n ‘(NODE-TERMINALS ‘NI) ‘TI)
‘ (r n / n . ‘ (NODF-TERSIIPIAIS ‘N?) ‘12)—

< ‘(.1. (NODE- ERMSNALS ‘Xl) (UNION ‘71 ‘12))
‘ (r n / n . ‘‘N? ‘Ni)n)I)

1 TERM1NRL S CAN BE CONNECTED TO CREAT E NEW NODES OR MERGE 05.0 ONES

(OIFMIA TRMINS -CONNECT -DO-I

1—In C (AND (NODE-OF ‘TI ‘NI) (NODE-OF 712 ‘N?))

(/:10-00 ‘TASK (TRMSNS-CONNECT 71! ‘72) ci-

(NODES-MERGE ‘Ni ‘N2)))S

(DEFilE R TRIIINS -CONN ECT-O O-2

1-/n C (AND (15001-OF ‘Ij ‘NI)
(CONSISTENTLY

‘(FORALI. (N) (NOT (NODE—OF ~T 2 TA)) 5)
(r n / n . ‘ (NOD E-T ERMINPILS ~Nl) YTS I))

App endiw ~3 718

(/:lIOO-SIANIP ‘TASK (TRMINS-CONNECT ‘TI 7TV

< ‘(rn/n ‘(NOOE—TERM INALS ‘NI) ‘TSl)n
c ’ (./ -. ‘(NODE—TERMINALS ‘Ni) c ’TZ I7TS 1n)n)))

(DEF ilER TRMINS-CONNECT-00 3

I—/n C (AND (NODE-OF ‘12 ‘152)
(CONSISTENTLY

‘ (FORALL (N) (NOT (NODE—OF ‘Ti TN))))

(s/n ‘ (NODE -TERMINALS ‘152) ‘TS2))
(/:MQ0—MRNIP ‘TASK (TRAINS—CONNECT ‘71 ‘T2)

n ’ (.1> ‘ (NDDE-TERIIIPIALS ‘N2) ‘TS2)n.
< ‘ (./ n. ‘(NODE-TERMINAL S ‘152) <‘11 II~TS2 n) n)))

(DEFIlER TRMINS—CONNECT-DO-*

1—/n. C (AND (CONSISTENTLY

(FORALL (N) (NOT (NODE—OF ‘TI ‘N))))
(CONSISTENTLY

‘ (FORAIL (N) SNOT (NODE-OF ‘T2 TA)))))
(/1MDD—MPNIP ‘TASK (IRMINS—CONNECT ‘TI ‘12)

< ‘(EXISTS (N)

(r n / n . ‘ (NODE-TERMINALS ‘N) < ‘TI ‘T?n)) n)))

p INSERTING A DEVICE INTO ~ NOOE BREAF S IT INTO TWO NODES
(DETMIA 0EV-INSERT

i—/ i - C (AND (. I n . ‘ (NOD(-T IRMI NRIS ‘NODE) ‘TSP
rn (SET ‘TSI) (SET -clI’TSi ‘I?1S2n.)))

(/:MOD-ARNIP ‘TASK

(DIV-INSERT ‘0 ‘NODE ‘TI ‘TSI ‘12 ‘TS2)
< ‘ (r n / n . ‘ (NOO (-IERIIINRL5 ‘NODE) ‘TSFn.

< ‘ (‘ / - . ‘(NODE—TERMINALS ‘NODE) < ‘TI II’TSIn.)

‘(EXISTS (NE UNOOF)
(AND (0EV-TYPE ‘NEWNODE NODE)

(rn / n. (NODE-TERMINALS ‘NEUNODE)

<‘I? ‘I’IS?n.)) In)))

(DETMIR PORT-OIFN (PRIMITIVE-DIV-TYPE PORT))

;PORTS CARRY VOLTAGE OR CURRENT

(DE FilER PORT-TAXONOMY I*DRI (0EV-T YPE ~‘X PORT)

< (V— PORT ‘K) (I—POR T ~X)n)
GEN ERAL-OP.)

(011 lIL A PORT-MEOIUII-1

(—I, C (V-PORT ‘ K) (./n ‘ (PORI-IIEDIUII ‘K) VOL TAGE)))

(DE FML A PORT-MEDIU?I- 2
f - / n C (I— PORT ‘K) (r n / n . ‘ (PORT-M EDIUM ‘ K) CURRENT)))

5 MOST PORTS ARE VOLTAGE PORTS
(DEFilE R PRES-V-POR T I-In C (RHO (0EV-TYP E ‘1 PORT)

(CONSISTENTLY ‘(V—POR T XX)))

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~ — . -- -  

- - -



Appendix 3 219

(V—PORT ‘K)))

p A NEST IS MADE UP OF PORTS AND IS ITSELF A PORT

(DEFMLA NEST—PORT i-/ n A (0EV-TYPE ‘K NEST) (0EV-TYPE ~X PORTS ))

(DEFIlER NEST —O F— i i— /n A (./> ‘ (NEST-PORTS ‘N) ‘TS)
(—in C (ELI ‘I ‘IS) (NEST—Of ‘T ‘N)) I)

(DEFIlER NEST—O F—? IPRESUMABLY ‘(NOT (NEST—OF TI ‘N)) C))

;PORTS ARE HOMES FOR SIGNALS

1 OVE FOR PORTS

(DEFMIA OV L— 2
(—In. A ( rn / n .  ‘(NEST-PORTS ‘NEST) ‘PORT—hiP )

( — /  C (ELI ‘PORT ~P0RT—TUP)

(AND (-In A (SIGNAL-HOME ‘SIC ‘PORT)

(SIGNAL-HOME 7510 ‘NEST))))))

(DEFIlER SIGNAL -HOME

i— /n A (SIGNAL-HOME ‘SIC ‘PORT)

(.1. ‘(PORT-SIGNAL ‘PORT) ‘SIC)))

p THESE ACTIONS ARE ANALOGOUS TO THE NODE ACTIONS

(DIEML A NESTS-MERGE -MANIP

i— /n C (AND (.1,. ‘(NEST-PORTS ‘Xl) TTI)

(./, ‘(NEST—PORTS ‘N?) ‘12))

(/:MOD-MPNIP ‘TASK (NESTS—MERGE ‘NJ ‘N2)

< ‘( . 1> ‘ (NEST-PORTS ‘NI) XI I)

‘Is/n ‘(NEST—PORTS ‘N?) ‘T2)n

< ‘(rn/ n ‘(NEST-PORTS ‘NI) (UNION ‘11 ‘12))
‘(rn/n ‘‘N2 ‘ N i ) n . ) ) )

(DEFILA POR TS-CONNECT-DO- i

I—/ n C (AND (NEST—OF ‘Ti ‘Ni) (NEST—Of ‘12 ‘152))

(/:TO~CO ~?AS) (PORTS-CONNECT ‘Ti ‘12 ‘TYPE) ,
( NEST S-MERGE ‘NI ‘ N ? ) ) ) )

(DEE CLA PORTS-CONNECT-DO-?

I—in C (AND (NEST-OF ‘TI ‘Ni)

(CO NSISTENTLY

(F0~RLL (NJ (NOT (NEST—OF ‘Ti ‘N)) I)

( r n / n  ‘ (NI5Y—PORTS ‘Xl) ‘IS)))

(/:MOO-MANIP ‘TASK (PORIS—CQNN)1T ‘Ti ‘72 ~T YPE)

< ‘ ( r n/ n  ‘(15(51-PORTS ‘NI) ‘TSl)n

.‘(s/n. ‘(NEST—PORTS ‘Xl) < ‘12 ‘S?TSI n)n)))

(DEFilE R PORTS-CONN (C1-OO-3

i—/, C (AND (NEST-OF ‘12 ‘152)



Appe nhnc ~

(CONSISTENTL Y
(FORRI L (N) (NOT (NEST—OF ‘TI ‘N)) ))

(~~/, ‘ (NES T-PORTS ‘N?) ‘TS2))

(/:MOO- IYflN IP ‘TA5 ( (PORTS _ CONNECT ‘TI ‘T? ‘TYPE)

‘ (NEST_ POR TS ‘ 152) ~T52),
(./ -, ‘ ( N E S T — P O R T S  ‘N?) < ‘Ti ‘S’TSmn. )n)))

(DEFMLA PORTS-CONNECT-Do- K

i—/ n C (RHO (CONSISTENTLY
• (F O RA I L ( N)  (40! (NEST—OF ‘Ti ‘N)) I)

(C ON c IS TENTI Y
• (V OPAI L (N) (NOT (NEST—OF ‘T2 ‘N ) )  ( ( I

(/:M OO-MA N IP ‘TP ~~J (PORTS-CONNECT ‘Ti ‘12 ‘TYPE )

< ‘(EXISTS (N) (./‘ (NEST— PORTS ‘N) < X II ‘T2,)

(OEFMLA PORTS— CONNE CT-OIPEC T-OO

(—/, C (AND (PDRT-TE RMINRI S ‘PPTI ~‘TOPI ‘ POT ? > )
(PO RT—TER M I N R I S PRT2 < ‘TOP? ‘BOT2n)
(OR (/:I100-MRNIP ‘TASK (TRMINS-CONNECI ‘TOPI ‘TOP?)

‘DEL ‘ADD)

( f : M O O-AA ~ f P ‘TRIO (IRMIN S- CON NEC T ‘8071 ‘8012)
‘OIL ‘flflO ) )

(/:I100-MA N IP ‘TRSP (PORTS-CONNECT ‘PRTI ‘PRT2 DIRECT )

‘DEL ‘RDD)I)

(DEFMLA POR IS-CONNE CT-CR PACI T IvE DO
( - / ,  C (AND (PORT TERMINR( S ‘PRTi < ‘TOPI ‘BOll.)

(PO RT_T (RM(NT ( S ‘PRT2 < ‘TOP? ‘POT?,))

f / n  TO-DO ‘TSP (PORTS-CONNECT ‘PRTi ‘PAT? CAPACITIVE ) <n

(CONFIC .CR PRCITOR n.
(\ (C)

< (T RA INS-CONNECT (Si ‘C) ‘TOP!)
(T PPI INS- CONN( LT (I? ‘C) ‘TOP2h )))))

(DEFMIA PORTS— CONNECT -INO UCT IVE-OO

I— /n. C (AND (PORT -T (PMINflIS ‘PATI .‘TDP ) ‘BOIl.)

( PO PT -- T EPMINR L S ‘(‘PT? .‘T~~2 ‘B012i-))
(/nTO-D O ‘ T5P  (PORTS-CONNECT ‘PRII ‘PRT? INDUCTIVE ) ni-

(CONFIC <T R P(NSFOP1IER,
(\ ( ( I )
,(TP NINS-CONP4[CT (I? ‘Li) ‘TOP!)

(TPM!NS— (ONNECT (14 ‘EL) ‘TO P2)n. ) ) ) I )

1SIGNRLS

(DEOMIR FL-SHAPE lILT (FL-SHAPE ‘till <HUMP SPI K E-) )

(DEFIlER FF—Fft10 Is/ -n. ‘ (FE -KR IO (FE ‘F ‘LM)) ‘F))

_~~~ :.— ~~~_ - — -  -
. — —



Appendix 3 221

(DEFIlER FE-LANDMARK Is/n (FF-LRNOIIRRK (FE ‘F ‘Il)) ~LMJ )

(D(FME A PERIODIC-FRED-PlC
1— /n. C (PERIODIC ‘S ‘I)

(rn / n ‘ (FR ED—PICTURE ‘SI
(UN ION (POSSIBLE—DC-SUP —PIC XS)

(SERIES—SUB—PlC ‘5)))))

(OEF II.R DC—FEATURE -i
(—I n C (AND (PERIODIC ‘IFUN ‘TI

(. (OFFSET ‘TFUN ) ‘VI
(in (A BS TV ) • ))

(rn /n. ‘(POSSIBLE-OC-SUP-PIC ~SP
<(FF S (DC-LAND MAR K ‘TFUN ‘V )) n)))

(OEFIIR DC-FEATURE-?
I— /n. C (AND (PERIODIC ‘TFUN ‘T)

(. (OFFSET ‘TFUN) 0))

(rn/n ‘ (POSSIBL I—OC—SUB-PIC ‘3) ~~)))

(OEFME R DC-LANDMARK-i

( rn/ n. • (FL-SHAPE (DC-LANDMARK ‘TFUN ?V ) ) SPIKE)
GENERAL-OP. )

(DEFIIEA DC-LANDMARK-?

( rn / n .  ‘(FL-HEIGHT (DC-LANDMARK ‘TFUN ‘VI ) ‘VI
GENERAL-OP.)

(OEFIILA FREO—PIC— (LTS 1IMPLIES (ELI TX (FRED—PlC ‘SI)

( IS FRED—FEATURE ‘ K ) ) )

(DE FIlER SPIKES
1—/n A (PERIODIC ‘TFUN ‘T )

(FORAIL (K) (—i n C (ELI ‘K (FRED—PICTURE ~TFIIN))
rn (Fl—SHAPE ~K) SPIKE)) 1))

(DEFIlER SINUSOIDAL-SPI KE
1—/, C (AND (PERIODIC ‘IFUN ‘1)

(SINUSOIDAL ‘TFUN)
(AMPLITUDE ~TFUN ‘A ) )

(rn / n. ‘ (SERIES-SUB-P l C ‘TEUN)
n( FF I (SIN—LANDMARK ‘TFUN ‘1 PR)) )))

(OE FMLA EVERYOTNIR-SIRIES
(—I, C (P140 (PERIODIC ‘TFUN ‘I)

(NOT (SINUSOIDAL ~TflJN))
(EORRI.L (XI

rn (
~ TFUN ‘K) (XTfl~ I. ‘K (~ / 71 2 ) ) ) )  I)

-~~~~~ -~~ -— r — - 
- a



A pp endix ~ 222

(rn/n ‘ (S (RIES—SUB-PIC ‘TEUN)

(SERIES (s 2 P1 (ii 1 X T ) )  ($ 4 P1 (ii 1 11))
SPI KE
(\ (N)

(INIEGRRL S ‘T
(\ (U)

I. (‘TFUN ~U)

(COS (. 2 P1 (— (. 2 ‘N) 1)

‘U (ii 1 T T ) ) ) )  I)
))I

(DEFIlER STRAIGHT-SERIES
i—/ n .  C (AND (PERIODIC ‘TFU N ‘1)

(NOT (SINUSOIDAL ‘IFUN))

(EXISTS (X i

(NOT rn (‘1(1)15 ‘K)

(‘IFLJN (. ‘K (Ii ‘1 2))))) I)

(.1. ‘ (SERIES-SUB-Plc ‘TFUN)

(SERIES (e 2 P1 (/1 1 ‘TI) (e 2 DI (ii 1 ‘1))
SPIl l
(\ (N)

(INTEGRAL 1 ‘1
(\ (U)

(. (‘TFUN ‘U)
(COS (. 2 P1 ‘N

,U (/1 1 IT ) ) ) )  I)
‘ I ) )

(DEFIlER SIN-LANDMARK-SHAPE
1./n. ‘ ( F L—SHAPE (SIN-LANDMARK ~TF UN ‘I ‘A ))  SPIKE ))

(DEFIILA SIN—LANDMAR K-HEIGHT
Is/n ‘ (FL-HEIGHT (SIN-L ANDMARK ‘TFUN ‘T ‘A )) TA ))

(DEFIlER SINUs f — / n .  C (AND (ELI ‘SIN ‘FS)
(SINUSOID AL ‘SIN)

(FORALI (F)

(EXISTS (A)

(IMPLIES ((IT ‘F (DEL ‘SIN ‘ES))
(in . ‘F (K 1 T A ) ) )  I) )

(SINUSOIDAL (ClIP • 1.5)11)

(Off ill A SINU. (—In C (AND ELI ‘SIN ‘ES)
(SINUSOJOAL ‘SIN)

(FDPALL (F)

(EXISTS (A)

( IM PLIES (ELI ‘F (OIL ‘SIN ~ES ))
( Ins ‘F (K i TA))) I))

(SINUSOIDAL (IMP . ‘ ES )) ) )

(DEFIlER SIN—SIN I—/n. C (LINEAR ‘F)

!~‘— ~~~~~~~~~~~~~~~ — ~~~‘— —--- - - - - — - — — --—-——-—--‘—--——--- --—-~~~~
—-- 

~~~~~— -—--———-—- - — - — — -~~~~—-- - - . .


Appendix 3 223

(SINUSOIDAL (CMP SIN (?Fn))))

(OEFMLA COS-SIN I-/n. C (LINEA R ‘F)

(SINUSOIDAL (CMP COS <‘Fn.))))

(OEFMIA LIN I (LINEAR (ION ‘N ‘K)))

(DE FIlER LIN2 1— /n C (AND (ELI ‘LIN ‘ES) (LINEAR ‘LIN)
(FORALE (K)

(EXISTS (A)
(IMPLIES (ELI ‘K (DEL ‘L IX IFS)’

(i n . ‘K (K 1 ‘A))) 1))

(LINEAR (ClIP . ‘FS))J)

(DEFMLA 11N3 I—/n C (FORALL (F) (IMPLIES (ELI ~F ‘ES) (LINEAR 1.))
(LINEAR (IMP • ‘ES >)))

(DEFMLA LINK I— /n. C (LINEAR (CAP • < ‘Fl (‘n (K) (— (~F2 T K))) i -))
(LINEAR (IMP — -c ’FI ‘E2n))))

(DEFML P LINS i-/n. C (AND (LINEAR ‘(1)
(Ins ‘F? (K I T A)))

(L INEAR (ClIP II < ‘Fl ‘F2n))))

(OEFIIA SIN—PERIODIC IPERIOO IC SIN (. 2 P1)))

(DEFMLA COS— PERIOOIC (PERIODIC COS (. 2 PIll)

IDEFILA PRES— NOT-S IN (PRESUMABL Y ‘(NOT (SINUSOIDAL ‘F)) Ci)

(DEEMLA OFFSET—DEEM I—In. A (PERIODIC ‘TFUN TI)

(rn /n ‘ (OFFSET ‘TFUN)

(1/ (INTEGRAL S XT ‘TFUN) IT))))

1LINEA N—D ERIV E D MODEL S

; (ISOX. RTE TI 12) I S A WORLD IN WHICH THE CIRCU IT IS DECOUPLED

(DE F IlER REF—ISO (IS REF (ISOLATE ‘TRII INI ~TRflIN 2)))

(O (FMLR FRAME-ISO ((FRAME (ISO ‘TRT N i ‘TRMIN2) (HER ()n)i)

(DEFIlE R ISOLRT(-OEEN-I

(—I n. C (AND (rn/ i- ‘ (NODE - TERMINALS ‘Ni)

•‘S’TSii ‘TRM JN I ‘I’TSI2,)
(s/n ‘(NODE-TERMINALS ‘N2)

‘I’T52i ‘TA JIIN? ‘I’T522n1)
(I (ISOLATE ‘TRMINi ‘TRMIN 2)

(AND (.1— ‘ (NODE -TERMINALS ‘NI)

(I’TSii ‘S’TS12n)
(s/n ‘(NODE-TERMINALS ‘N?)

< !I’T52I ‘IXTS22nfl)))

—
—~~

-< _J

Appendi x 3 22~4

(DEFIlER ISOLATE-D IFN-2
1—In. C (s/n ‘ (NODE-TERMINALS ‘P41)

< (S’TSii ‘TRMINI ‘ITTSl2n)

(N (ISOLATE ‘TRM)NI ‘TRIlINZ)
• (r n / n ‘(NODE—TE RMINALS ‘Ni)

‘I’TSII ‘TRMINi I’TSi2n))J)

(DEFIlER ISO LAT (- DEFN-3
1—/n C (./n ‘(NODE— TERMI NALS ‘(42)

< ‘I’7S21 ‘TRAIN ? (I’TS22n)
(N (ISOLATE ‘TRMINI ‘IRI1IN2)

‘(s/n. ‘(NODE—TER MINAlS ~N2)

•lI’TS2I ‘TRMIN2 ‘ I’TS22n)fl)

;FOR THE FOLLOWING REFERENCE- POINT DEFIN ITIONS ,

SEE CIRCUIT PACKETS FOR ALTERED COMPONENT PROPERTIES IN EACH REF

(DEFILA REF— DC il S REF (DC)))

(DEFILA FRAM E—DC I (FRAN ((DC) < (HEREIn)))

(DEFIlE R REF -SSS (IS REF (SSS ‘FRED)))

(DEIMLA FRA PlE-SSS I4FRRME (SSS ‘S) < (HERE).)))

(DEEMLA REF—INC I)S REF (INC)l)

(DEFIlER FRAME-INC I (ERA IIE (INC I < (HERE InII)

(DEFIlE R REF—PASSIVE (IS PEE (PASSIVE)))

(DEFIIL A FRAME-PASSIVE ((FRAME (PASSIVE) (HERE)nfl)

1 INTERACTION S - -

1 THIS MEANS (I (DC) (DC)) s (DC)

(DEEMLA DC-IDEM (REF_ IDEM POTENT (01)))
(DEFIlER ISOL A T E— l O lA (PE F- I D EM POTENT (ISOLATE ‘TRIIJII ~TRIlIN2)))

(D(FMLA SSS - IOEM (R E (- IOE M P O TF NT (SIS ‘ 5)))
(OEEIIEA PASS IVE-IOIM IREF-IO((WOTf NT (PASSIVE)))

(DEFIlE R INC-IDEM IPEF— IDEMPOTENT ((NC)))

(DE FIlER DC—ISO is/n ‘ (T (DC) (ISOLATE ‘TRMiNL ‘TRMIN2))

(T (ISOLATE ‘TAMINi ‘TRMIN2) (DC))))

_________-- a

Appendix 3 225

(QEFI1LA PASSIVE -DC 1./n. ‘(1 (PASSIVE) (DC)) (T (DC) (PASSIVE))))

1IN FORMAT ION ABOUT REPHRASING ELECTRONIC DESIGN PROBLEMS

;O-SHRRDS ARE FRAGMENTS OF DESIGN PROPERTIES ; THOSE DEAL ING UITH

CONTROL QUANTITIES ARE IMPORTANT

;TH(SE APPLY TO IO DEVICES

(DEFILA CO-V-GAIN (GENERIC-CA V-GAIN))

(DEFMLA CO-P-GAIN (GENERIC-CR P-GAIN))

(DEEMLA C Q -IZ (GENERIC-CA INPUT—?))

(DEFIlER CD—O2 IGENE RIC-CA OUT PUT-Z I)

(DEFIILA V-GRIN-SHARD
f— /n A (0—SHARD ‘<-P (\ (_ ‘.V) (. (V—GAIN

~l~’)
_~,V))

_‘.C)))
(AND (SIDE—TAS I ~.P

i\ (_‘,V)
(CONSTRAIN ‘(V-GAIN

~i” I _~ ,V))n

(\ (Gil rn ‘Ci _ ‘,G)))))

(—i n G rn (DEN ‘.G) ‘C)

(AND (—in. C (/n ‘C 1855)

(0—FEA TURE ‘,P

(RANGER V-GAIN VERY-HIGH)))
(— In C (AND (/n ‘C SS)

(/< ‘C Sill))
(0-FE ATURE ‘.P

(RAN GER V-GAIN HIGH)))
(— /n G (AND (I n . ‘C 1)

(1< ‘C ill))

(Q-TERTUR E ‘<P
(RANGER V-GRIN MODERATE)))

(—I n C (.1- ‘C ii
(0 ENIURE ‘.P

(RANGER V-CAIN LO U))))))))

1 ’GR IN ALONE MEANS V-CAIN AND P-GAIN
(DEFIlER CAIN-SHARD

I— /n A (0—SHARD ‘SD (\ (‘ .V) rn (GAIN (l”I _ X .V))

_~,C)))

(AND (0-SHARD ‘,P I\ (_ ‘,V) rn (V—GAIN (l”I j.V))
_‘.G) I)

(—In C IRNO (rn (I 21 (LOG (DEN y e))) ~P~)

;C ON VE RT TO DE CIBELS
(. (DE N ‘,PG) ‘PC))

(0-SHARD ‘<P

_ _ _ _ _ _ _
a

Append i x ~3 221

(S (‘•Vt rn (P—GRIN ‘f’’l j< -V)>
_ ‘ePC))))) J)

(DEFMLA INPUI-Z-SHARO
i— /n A (0—S HARD ‘<P (5 (‘,VI rn (INPUT—? (g T ~~ _~<-~))

_T,2)) I

(-In C rn (DEN ‘.2) ‘2)
(AND (—in. C (/n ‘2 3.OES)

(0-FEATURE ‘<-P

(RANGER 1NPUT-Z VERY-HIGH)))

(- I > C (AND (In ‘2 i .5E3)

(in. ‘2 5.9(5))
(0— FEATURE ‘.P

(RANGER INPUT-? HIGH)))

(—In. C (AND (/n ‘2 588)
(1< ‘2 2 .8(3))

(0-FEATURE ‘<-P

(RANGER INPUT— ? MODERATE)))

(—In C (1< ‘2 1001)

(0-FEATURE ‘<-P

(RANGER INPUT—? LOU)I)))1)

(DEFIlER OUIPUI-Z-SHARD

I—/ n . A (0-SHARD ‘<P (5 (‘,V) rn (OUTPUT— ? ~~~ _~.~))

_‘.Z)) I
(— In C rn (DEN ‘<?) ‘2)

(AND (- / , C (1. ‘2 1.8(6?
(D—F EAIuTE ~.P

IRANC E R DU TPUT—2 VERY—HIGH)))

(— in. C (AND (/, ‘2 I l(S)

(1< I.5E6))

(0-FEATURE ‘<P

(RANGER OUTPUT -? HIGH)))

(— In. C (AND f/n ‘2 1.8(4)

(1< ‘2 1 . 5 (5))
(0-FEATURE ‘<-P

IRANG ER OUTPUT -? MODERATE)))

(-In C (AND (/ n ‘2 III)

(/c ‘2 1.5(4))
(D- FFRIURE ‘<-P

(RAN G ER OUTPUT- ? LOW)))
(— /n C (In ‘2 208)

(0 FEATURE ‘<P

(RANGER OUTPUT-? VINY—LOW))))))

;SOUNCE UATSON (i9 79) , P . 65

;SHRRDS REGAR DING SIGNAL CONV E RSIONS MUST BE EXPLODED SPECIALLY

(DEEML A CONVENT-EXPLODE

1—/, A (/~ TP5K—ACT) QN ‘T (0-EXPLODE ‘.P))

a- - - ~~~- ~~~~~~~--- - - - ~~- -~~--~~

A ppendix 3 227

(— in A
(0-SHARD ‘<P

IS (_ ‘ ,V)
(CON VERT (~ ‘‘~ _~.V) _ T,O _T ,R)))

(EXISTS (Ti)

(AND (STAS I ‘Ti ‘I <n.

(5 () (CVT-EKPLOD(‘.0 ~.N)

(/:MAIN ‘Ti ~T)

(— In. A (SIC—FEATURE ‘.0 ‘.R ‘eFE RT IJAE)
(0-SHARD ‘.P

(5 (T ~v)
(SIC—TRANS j.V

_‘,FIATU8())))))))

GENERAL-OP.)

; THIRE ARE TWO WAYS TO DO TH IS- -

(DEFIlER CVT-(XPLDD (-1

i / n ID-DO ‘IASK (CVT-E XPLDDE ‘.0 ‘,R(n

(FREQ-OOMAIN-REP HRAS (‘.0 ‘.RII)

(DEFMLA (VT — E XPLODE- ?
(/~ TO-DO ‘IRS) (CVI EX PLODE ‘.0 ‘eN) n.n

(TI ME-DOMAIN -RFP HRP (SE ‘.0 ‘ , R) l)

BASIS ON UHICH TO CHOOSE ONE OR THE OTHER
(DEF ilER CV I-CHOICE

(/:AN TEC (NOT (/ :CHOI C (‘C (KEC

(‘ TO-DO ‘,TRSI

(CVT - (XPLODE _~e.0 _
7,eRI n

‘. .ME THOOI I)
(-I. A (/~OPTION ‘C ‘RI

I/ TO-DO _ ‘ ,TA$K
(CVT - (I PEOOE ,,Q _‘.eR)

(KRE O -DOMAIN -REPHRASE
_‘..Q _‘..R)))

(-I. A I/ OPTION ‘C ‘A2

I/ TM -DO _‘.TRSK

(CVT — EKPL OO (_‘..O jeeR)

(TIME -DOMAIN-R EPHRASE
_‘.eQ .‘.eN)))

IF OUTPUT RELATION DOESN ’T M ENTION INPUT , TAK E FREO UENC V- D OMAIN
(AND (-1, C (AND (u r n (DE N ‘..R)

P. (‘ .SVI _ ‘.3V2)
j.SOOY))

(NOT (CONTAINS ‘.BOOY

iI”I ?~~~fl)))
(/ ~RUE(— IN ‘A l))

(F INPUT PREDICATE (S TRIVIAL , TAK E TIME -DOMAIN

(-In C (AND (u s (DIN T..Q)

- a-— - ~~~~~~~~~~~ - nan —____________ - - -

Apii~~nJ i

(S (.V) _‘,I (ODYI)

(NO T (CON TAINS ‘<BOOK

~~~~ _~.VJ)))

( / : R UL (—I N ‘ R2))
FOR VERY HIGH FREQUENCI ES , T IME DOMAIN W ON’T WOR I

( - I n  C (AND (/:SUBTRSK (DEN ‘<TASK )

‘SUP)

(/:TASE -ACT ION ‘SUP

(0—EXPLODE ‘.P))
(/ n rn (/:ENAB-STATUS

‘SUP )

ACT IVE )

(0—FEATURE ‘<-P

(RANGER FRED-OP

VERY—H ICHI))
(/nRUIi—OUT ‘A2)))I)J

GENE PAL-OP.)

FR LQUENCY-D DTIAI N REPHRASING INFO

(DEFIlER FREQ-DOM-REPH-DO-i

(/nTO-DO ‘TASK (FREQ-OOIIAI N-R( PHRA5E ‘,~~ ‘<-R i n.
(/: SEQ

(IF INO
(\ (d PI)

(EXISTS ((P1 (P2 FPT (
((OR AL ). (SI 52)

(IMPLIES (AND (IS SIGNAL ‘Si)
((DEN ‘.0) ‘SI)

(IS SIGNAL ‘S2)
( (DEN ‘ <R I ‘Si ‘ S2 ))

(AND (./n. ‘ (FRED—PICTURE

(TF(.IN ‘S i) )

(.1, ‘ (FREQ— PICIIJRE

(TIUN ‘ 5 ? ))
‘FP2)

(FRED-Plc-TRANS ‘FPI ‘FP2
‘EPT)

(rn/n. ‘ (OEM ‘.FP T ) ‘ EPT ) ) )
) ) , )

(S (FPT>
(I: lNF (R ‘ (SIG-FIATU RE ‘.0 ‘CR tIRED— TRANS _ ‘.F PT ) )

<n ) ))))

;GENER AT IN C F R (Q(IF PIC Y- f)O M AI N TPfln. r 5 IO RNAIIONS

( DEFIILA N I R F O - P I C S  - F l I T E R
(/n CO NS EO (NOT ( E RE O -P I CS- F l I T E R  ‘FPi

< (FE ‘(RE Q ‘LII?) (I~Fp~i- ~C ) )

- - — - -_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a



Append i x 1

(NOT (FORPEL (LA))

(NOT ((IT (IF ‘FRED ‘IMP ‘FPiI) ))))

(DEFMLA FRED -TRANS-LOW

I/nC ON SEO (FREG-TRANS ‘FP—I N ‘FP-OIJ T (LOU-PASS ~M ))

(NOT (AND (FRE Q-PICS-FILTER ‘ED—IN ‘EP-OUT ‘FP-GON()
(FORALL (FL F)

(AND (EDU IV (ELI (FE ‘F TEL ) ‘FP—CON()

(EDNA).). (EL I FL)
(IMPLIES (ELT (FE ‘Fi ‘Eli)

‘FP —GONE I
I/n ~E ~F1)) ) )

4/ n .  TM

(MAX ‘VP-GONE
(S (F C)

(in (F E—F RED ‘F)
(FE—FRED ‘C))

I ) ) )  I ) ) ) )

~SlM ILRRLY FOR HIGH-PASS AND BAND-PASS

(DEFIlER F R E Q - P I C S- F I L  TEA —I
IFRE Q— P ICS— F ILT (R ‘FPi n.n. ‘FPi))

(DEFMLA FREQ -PICS— FILT FR-2

(/ :C O NSEQ ( FR EQ -PICS - FI L TE R ‘IPI < (EF ‘FRED ‘1)12) ‘I’FP2n. ‘C)
(NOT (AND (ELI (IF ‘FRED ‘LA!) ‘EDo

4. 4FF-SHAPE ‘Lii) (FT—SHAPE ‘LM2))

(FPEO- PICS— FILTER (DEL (FE ‘FRED ‘Lii) ‘EPI)

‘ED? ‘C)))))

;TVP(S Of FR(Q-TRANS ~ (LOW-PASS ICIJ T O F F I ) , (H IGH-PA SS ICUTOFEI ,
(BAND-PASS IC UTO FF I ) , (MIX ISIGNA L_ PRED I ) (MODULATE ...)

(DEEMLR 10W-PASS

i/ nRNTEC (NOT (0-SHARD ‘<-P
(S (_‘.V) (SIC—TRANS (I’’I _‘,V)

(FRED-TRANS

(LOU—PASS _‘eCUTOFF)I))))

(COPE -DEV -T YPE ‘.P (LOU-PASS- K ILT ER JeCUTOFFI)))

(0EFML R HIGH-PA SS
1i nRNTEC (NOT (0-SHARD ‘<P

IS (j,V) (SIC-TRANS (p’’j _T,V)

(FRED-TRANS

(HIGH-PASS j,CUTOFF))))P

(C O RE-OEV — TYP ( ~.P (H IGH—PASS—F lITER _ T .CUTOVF))))

;CHOOSIN G 0EV-TYPES --

-- - - - - - - 
--________________________ a



Appendix 3 230

(DEF iER LINEAR-GROUPIN G

I—/n A (/~CHOIC ( ‘C ‘19 (CORE-DEV-TYPE j.,P je.0))
(— In. A (QUIESCENCE ‘C?

(-in C (AND ( / : OP TI DN ‘C ‘A l
(CORE-DIV-TYPE

(‘ <-<-P1 (‘ <-cOi l ))
( /~OPTiON ‘C ‘A2

ICORE—OEV— TYPE ( T ,,P) I_’e,D2fl)

(LINEPR-DEV-IYPE (DEN (DEN ‘<-.02)))

(/:RU).E-TOGETH (R < ‘A l ‘A2 n
(CORE-DIV-TYP E _‘..P

(GROUP _ ‘.n-Dl _‘eeO 2 n I ) ) I ) ) )

;GNOUPS MAY BE EXPRESS ED AS SEVERAL & tW OS OF CASCADE

(0(FMLA MAP (-GROUP-i

(/:CDNSE Q

(/!TO-I30 ‘T (Mfl P ( (GROUP < ‘I ‘Y I1~Zn.) n. ’NAPIEn.
(/ :5 10 (ACQUIRE (GROUP ‘01-REST? )

(\ (C) (Mfl&E (CASCADE ‘011 ‘C)) )))

(NOT (AND ( ELT ‘OT i < ‘I ‘Y ~I’Zn.)

( / : r n  ‘DI—REST (DEL ‘011 < ‘X ‘Y ‘S’?n))))J

GENERAL-OP. )

( DEFML R MAKE-GROUP-?
(/:TO-OO ‘T (MAP E (GROUP < ‘011 ‘0T2n.)I .‘NRPIEn

( MAKE (CASCADE ‘OT I ‘0 12)) ) )

(DEFMLA IIAI(-CROUP-3

(/:10-00 ‘T ((TA P E (GROUP ~ ‘ f l T I  ‘OTZn)I ‘NAME e
((TAPE (CASCADE ‘OT? ‘OTI )II?

;AMPL IFIER IS A WIDE rSUP RORO INA TE ’ ? CATEGORY , FOR WHICH THERE ARE

SEVERAL SPECIFIC TYPES

(OEEIIIR RAP-OEV-TYPE (SUPEROPO(NATE 0EV-TYPE AIlPtIElE~ )?

(DEF ITIA SUB-CL (SUB-0EV-TYPE CE A IWIIFI(RI )

(DEEMLA SUB—CC ISUB-OEV-T YPI CC fl’IPL IF I ( R) )
(O EFMLA SUB— tB ( SUB-0EV-TYPE Cl Ar(PLIFER))

; IF MODERATE V-CAIN , COM MON EM IT T ER

(DEFMIR MOD— V-CAIN

(— in A (/ :TA SI-AC TION ‘TSP ffl~~( AMPLIE (ER))

(—I, A (/nSCOPF ‘ PTS( ‘TS P )
(— / . A (/tPOII CY ‘DISK

4&-~~9~1 )RRflT~TR V-&~)~ flT~T~~ T~ )))

(/:10-DO ‘TSP (PIA PI AMPLIFIER) .‘D(V<
((TREE CII))))

GENERA ) . -OP.)

___  - —~~~ - 
4



App .”ndix 3 211

p IF HIGH V-GRIN , SOME KIND OF N-STAGE

(DEFIlER HIGH-V-GAIN

(—in A (/ :TASK—AC TION ‘IS P (MAKE AMPLIFIER))

( — i ,  A (/: SCOPE ‘P15K ‘TS K)
(—In A ( / nPOL ICY )PTSE

(0-NOTE (RANGER V-CAIN HIGH)))

(/:10-DO ‘TSK (((AX E RM PLIEIE N ) ~OEVn
(MATE N—STAG E) ))))

GENERAL -OP.)

IF V ERY—HIGH , OP-AMP
(DEEMLA V ERY-HI G H-V-GRIN

I—/ n. A (/:TRSK-ACT (ON ‘1SF (MAl E AMPLIFIER ))

(—/n A (1nSCOPE ‘PTSK ‘ISE)

(—in. A (/ nPOtJ CY ‘PTSK
(0-NOTE (RANGER V—GAIN VERY—HIGH )))

(1: 10-DO ‘1SF (MAKE AMPLIFIER ) n.’O(Vn.

(MAKE OP-AMP)))) )

GENERAL -OP.)

IF VERY LO U FRED OF OPERATION (E.G. , DC) -- 01FF AMP
(DEEMLA VERY-LOU-FRE D

i— /n. A (/:TASE-ACIION ‘ISL (MALE AMPLIFIER ))

(—In. A (/:SCOPE ‘P 15K ‘1St )

(— /n A (/ :POL ICY ‘P15K

(0-NOTE (RANGER FRED-OP VERY- LOU)))

(1:10-DO ‘1SF (MAKE AM PLIFI E R) ~‘0EVn

(MAKE DIVE-AMP )))))

GENER AL—OP. )

p IE HIGH INPUT 2, UP CC
(DEEMLR HIGH-INPUT-?

C—/ n A (/ TRSK —A CTION ‘TSP (MAKE AMPLIFIER ))
(—in. A (/n SCOPE ‘P15K ‘1ST)

(—I n A (/nPOL ICY ‘PTSK
(0-NOTE (RANGER INPUT—? NiGH) ))

(/nT O—O O ‘TS P (MAKE AMPLIFIER ) n.TDEVn
(MAT E C C ) ) ) ) )

GENERAL-OP. )

IF HIGH POWER CAIN , UP COMP-SYM AND PUSH-PULL

(OEEML A HIGH-POWER-CAIN

~ ( / : T A SK -RCIION ‘TSP (IIPI( ~ WUF UL5))
(—/n A (/ :SCOPI ‘DISK ‘TSP )

(-I, P ( / : POL ICY ‘PTSK
(0-NOTE (RANGER P-CA IN HIGH )? )

(AND (in 10.00 ‘1ST (MAKE RIIPLIF1IR) n.TDEVn

~~~~L . —  - - - - - -


A ppendix 3 232

(MAKE CDMP-SYM))

(1:10—DO ‘TSK (MAK E AM PLIFIER) < ‘DIVn
(MAK E PUSH-PULL))))))

GENERAL -OP.)

;IF LINEARITY RIGUIRED , CE

(DEFMIA L I N E A R I T Y
(— In. A (/:TASI-PCTION ‘TSP (PlAP (AMPLIFIER))

(— In. A (f:SCOPE ‘P19 ‘TSE)
(—In. A (/nPOL ICY ‘PTASI ‘1St

(0-NOTE LINEAR))
(1:10-00 ‘TSK (MAKE AMPLIFIER) <- ‘OEVn

((tAP E C E) ?)))
GENERAL -OP.)

1IF MORE THAN ONE TYPE APPEARS , A CHOICE IS IN ORDEN

(DEFilER CHOOSE-AMP
(—/n A (/:CHOICE ‘C EX EC

I/n TO—DO _‘,TASK (MAKE AMPLIFIER) < _‘,NAME n.

j.METHOD))
(— I n C (/ : r n (DEN ‘.IASI) ‘AMP—TASK)

(AND

(/nPET CHOOSE-AMP -PET
(‘C ‘PAP-TAS K ‘<-TASK ‘<-NAME ‘<METHOD)

(—in. A (/ :OUIE5CENCE ‘C)

(/ :P K T QUT-CHOOSE-AIIP-PKT
(TC TAM P~TASK ‘<-TASK
‘<-NAME ‘.(((TNOO)P)?

(-In. C (/:SCOP(‘P1ST ‘AMP—TASK)

TRUE))))

GENERAL-OP.)

;(F HIGH POWER AND LINEARIT Y ARE REQUIRED , REPLACE POWER-AMP

p OPTION WITH LINEAR IZED POWER-A MP

(DEFIlER I TWERP-PO W ER
I—/ n A (/:SrOPE ‘PTSK I ‘AMP—TASK)

(— / n C (AND (/ nP O L I C Y ‘PISKI (0-NOT E LINEAR))
(/:SCOPF ‘P1St? ‘AMP—TASK)

(/:POLICY ‘PTSKP

(0-NOTE (RANGER P-CAIN HIGH)))

(rn/n. ‘(DEN ‘,PTSF2 ? ‘PTSI2)?

(—In A (/:OPT ION ‘~ ‘R~
(I: TO-DO _‘.TASP (MAKE A)IPLIEIER)

.<j<-WAflhn (MAK E ‘-.DI)I)

(-in. C

(OPT-SUPPORT ‘Al
I/ POLICY _‘.PTASK2

-
~~~~~~~~~



Appendix 3 233

_‘.A BOV E -ACT ) )
(/n RUC. E—TOG(THE I < ‘A m

I/ITO—DO j.TRSK (MAKE AMPLIFIER )
._‘.NAME n

(/i$E0 (MAT E _‘.DT)
(5 (TX)

(/ n 00—AL L
< (LINEAR IZE ‘KIn.

(/ OUTPUT <lAn)) I
I) )  I ) ) )

CHOOSE-AMP-P ET )

~OUIESCEN CC PET
1OIEFEREN TIPL DIAGNOSIS BETWEEN CE AND N-STAGE
(DEEMIR 01FF-CE-N-STAG E

i—/ n.  A (/ : OUI ESCENC ( ‘C)
(-/n C (AND (/:OPIION ~C ‘Al

(/nTO-DO _‘.TASK (MAKE AMPLIFIER ) ?_,NRME n.
(MAl E C E ) ) )

(/nOPTION ‘C ‘A2

i/:T0-OO ‘.TASK (MAKE AMPLIFIER ) J ,NAME n.
(MAKE N-ST AGE )) ) )

(RHO
(-In C (AND (/ :SCO PE ‘P15K ‘RAP—TASK )

(/nPOLICY ‘PTSX
(0-NOTE

(RANGER BANDWIDTH NIGH))))
(/:RULE-OUT ‘Al))

(— / n. C (NOT (EXISTS (PTSK)

(AND (/nSCOPE ‘P15K ‘AMP—TASK)

(/ ‘ POLIC V ‘P1ST
(0-NOTE (RANGER BANDWIDTH

H IGH )) ) )  ))j (/:RULE-OU T

CHOOSE -A MP -P ET )

1 1F ONE OPTION WAS SUGGESTED BECAUSE OF ITS INPUT—? (E.G.,
CO)IMON-COLL (CTOR , AND ANOIHER FOR SOMETHING ELSE ,
V~ U MAY CASCADE THEM

(OEFNLA INPUT-CASCADE
(—/ n A (/nOPTION ‘C ‘Al

( / n TO—DO .‘.TAS K (MAKE AMP LIFIER ) <_T,N,.
• (MAKE _ ‘4Ti)))

(—/ C (OPT-SUPPORT ~A )

( /nP OEI CY ‘.PTASK
(0-NOTE (RANGER INPUT—? _ ‘,RRN))))

(—in A
(/ OPTION ~C ‘AZ

0/, 10— DO _‘,TRSK (MAT E AMPLIFIER) <-_~.Nn.
1PIA KE 7.OTZ )))

— -



Appendix 3 234

(— I ’  G (NOT (~ ‘Al ‘A2~~
(/:RUL (-TOGETHER <- ‘Ri ‘RZn

(/nTO—DO _‘.TASF (MAKE AMPLIFIER)

_~<-Nn.
(MAKE (CASCADE j.DT1

j,0T2
II))))))

CHOOSE -AMP _ P K T )

(OEEMIA OPT-SUPPORT I-In. C (RHO (/:OPTION-SUPPORI ‘OPT ‘EMLAS)
PELT ‘<F ‘FILAS)
(DR (:. ~J 1<-SI

(SUPPORTS ‘<-S ~,F)?I

(OPT-SUPPORT ‘OPT ‘<-SI)

GENERAL—OP. )

(O(VMLR SIJPPDRT-OEFN (-In C (AND (/:00 ‘+5 ‘P ‘1 ‘<-F?)
(OR (:. ~cF~ ‘.5)

(SUPPORTS ‘<-Fl ‘.5)))

(S(JP-’ORTS ‘< -Fl ‘.~2)J
GENERAL-OP. )

(DEFIlER NRXE-CRSCA~1E
( InTO — DO ‘TAS I ((TA P E (CASC A DE ‘Dli ‘012)) n.’NEIIDEV~-

(/:DC -SUBNFI (CASCADE-PLAN ‘OTi ‘01?) <CASCADE—NAME,)))

(OEEMLB CASCADE-PLAN-NET

(—/n A (/:PLAN-INSTAWCE ‘P1 (CASCADE_PLAN ‘Dli ‘OTZ) ‘SUP )

(AND (STASE (flAP~ R_ j ‘P11 ‘SW <

(S (I ((TAP ( ‘DTI) I < ‘(FIRST—D (V ~PI) n)

(STASK ‘(TA P ER- ? ‘P1) ‘SUP n.n.
(\ (I ((TAP E ‘Dl?) I n. ’ (SECONO —O EV ~PI)n )

• (STASK (GRABBER ‘P1) ‘SUP <,

(‘~ (I
(CRABB A (S (A)

((IA IN-DE V-TYPE
‘K (CASCADE ‘DII ‘OTZ)) ))

n. (CASCADE-NAME ~PI) n)

(STASK (COUPLER ‘P1) ‘SUP
< ‘(F 1951-0E V ‘P1) ‘(SECOND—OE V TPI)n
(S (Dl 02) (COUPLE ‘Di ‘02)

• <- n.j

(SIRS) (COMPONENTS AMER ‘P1)
(CASC ADE -NAME ‘P1)

• ‘(EIRST-DE V ‘P1) ‘(SECOND—OE V ?PI)n
(S (C DI D7

( I n  INFER ‘ (COMPONENTS ‘C - ‘Ol ~02n) n)

(/n M RI N (CRABBER ‘PU) ‘SUP)))

_ _ _ _ _ _ _ _ _ _ _  - ‘.- - —.——— ----- -- - -—-  - - — - •



Appendix 3 23S

CENERA L-OPe)

1USE THE MOST GENERAL VERSION OF A CIRCUIT IN A CASCADE

(DEEMLA COUPLE—G ENERA L— i
i—/ n. A (/nC HOI C E ‘C EX EC

(/nTO—DO ((TAP ER -I _‘,PI) (MAKE 1< -OT ) <_T,OEVn

j,WAY))

(—/n  C (AND (rn/n. ‘ (DEN ‘<-DI) ‘OT)
( IIDST -G ENERA L-S PEC ‘DY ‘SPEC— OT )
(./n ‘(DEN ‘<-SPEC—liT) ‘SPEC—OIl)

(—In A (/nOPT ION ‘C ‘A

( /nTO —DO (MAK ER— i _~.PI) (MATE _‘,DT)
cj<-OEVn

(( TAKE j< -S PEC—D T )))
(/nRUE(—IN TA)))))

(DEFIlER COUPLE-GENERAL-?
I—/ n A (/ :CHO ICE ‘C EX E C

(/n TO—DO (MAKER- ? ‘<-PI) (MAKE ‘<-OT) n._~.DEVn

_,<-UAV) I

(—In. C (AND (./, • (DEN ‘<-DI) ‘01)

(MOST —G ENERAL —S PEC ‘01 ‘SPEC— OT )
(rn/n ‘ (DEN ‘<SPEC—lIT) ‘SPEC—DY))

(— i n  A (/n OP TI ON ‘C ‘A
( I n  TO-DO (MAX ER—2 _~.PI) (MAT E _ ? <4)T)

_‘.OEVn
(MAl E ..‘.SPEC—OT)))

(/n RU L E — I N  ‘PH)))

1CIRCU IT ALTERATION ACTIONS

(DEFMEA FIXING-CHANGES-TOPOLOGY ITOPO-CHANGE-ACTION-EUN FIX ))

( DEFIlER V S - V IA - V
f / n  TO—DO ‘V AST ( F IX ‘ (V  ‘NODE)) <‘

(CONEIC (VOt TACt-SOURCE )

(5 (VS )
<(T RMI NS- CONNECT (S i ‘VS) ‘NOOE)n ) ) ) )

(DEFNL A V0—E IA -V

(/n TO—DO ‘TASK ( F IX  ‘ (QUIESCENT (V ‘NODE))) ‘
(CONF IC VI) NODE NODE n.

(LAMBDA (VII NI N?)

<- (CONSTRAIN <- ‘(V ‘Ni) ‘(V TNOOE),

(S (VI V) (in ~V I TV ) I)
(CONSTRAIN < ‘(V ‘N2) ‘(V ‘NOOf )n

(5 (V2 VI (in ‘V TV?) ))

- -



Appendix 3 236

(NODES-MERGE ‘Ni (TOP ‘VU))

(NODES-MERGE ‘N? (BOT ‘VU))

(NOOES-MER CE ‘NODE (MID ~V~ ))n I))

GENERAL—OP. )

(DErME A DI E—FIX I/ iTO— D O ‘TASK ( FIX ‘ ( — TAt  ‘K ? ) )  cn

( / : DO — ALL < - ( F IX  ‘~ X i)  (F IX ‘ ‘X 2 ) n) ) )

IRS INC

(DE FIlER BIAS-CHANCES-TOPOLOGY (TOPO-CHANGE-ACTION—FUN BIAS))

(DEFIlER BiT-B IAS

i/ :ANXEC (NOT (0EV-TYPE ‘0 BiT))

(/ n  TO—DO ‘TASK (RI PS ‘0 ACTIVE )  <

(/:DO-SUBNE T (GENERAL-BIAS-PLAN ‘0) ‘TASK <ni l ) )

(DEFIlER BiT-BIAS-NE T

( / nA N T EC (NOT (I:PIRN-IN5TRNCE ‘P1 (GENERAl —BIAS—PLAN ‘0) TS(Wl)

(AND (SIAS K (VBE— FIXER ‘P1) ‘SUP n.n.
(S () (FIX ‘ I— (V (BASE T Q ) )  (V (EMI ‘ 0) ) ) )

(STASK (CB-BIRSER ‘P1) ‘SUP n.n

(5 (I (REVERSE—BIAS (CB—JUNCTIQN TQ)) ) <n)
(STASK (IC-FIXER ‘P1) ‘SUP n

(5 (1 (VI I  ‘( I  (CDL ~Q ) ) )  I n.l

(/ :MA IN (VBE-FIXEP ‘P1) ‘SUP)
(/:MAIN (IC -- FIXER TPI) TSUP)))

GENERAL-OP. )

(OE FMLA TYP)CAL—B JT—DNE-STAC.E-IXIAS

i—/ ,  A ( / nP L R N- I NSTA NCE ‘P1
(TYPIC A L-BJT- ON E-S 1R CE—BI A S— PI RN ~0) 15(W)

(AN D
(STASK (BVD ‘DI) ‘SUP < - n.

(5 () (ACQUIRE VU) I n. ’ (BVD ~P I )n . )
(STA S K (SUPPl Y - - POW ER ‘P1) ‘SUP <-n.
(S (P (ACQ (J1RE VS) ) <- ‘(POWER—SUPPL Y ‘PUn)

(STA SK ( 9 ( 515 - GE TTER ‘P1) ‘SUP n.
(S (I (AC QUIRE RESISTOR ) ) < ‘ (RE ‘PUn)

(STASK (BASE - E  TIER ‘P 1) ‘SUP n. (BVD ‘PI)n

(S (VU? (TRM1P4S-CONNECT (BASE ~Q) (MID ‘VII))

<n )

(STASK (COLLECTOR-POWER ‘P1) ‘SUP

<- ‘ (POWER-SUPPLY ‘PI)n
(S (PS) (0EV-INSERT ‘PS (CNOOE ‘0)

(I? ‘PS)
(NODE-TERMINALS (CNOOE ‘0))

(Si ‘PS) < -n.t I

< n)

(STASK (EMITTER -MUNGEP ~PI) ‘SUP ~~(RE TPI)n

- —-—
- 

~‘ — - - -
-~~~~

- - __________



Appendi x 1 237

(5 (A ) (0EV-INSERT ‘A (ENODE ‘U)
(Si ‘RI <- (till TO)n

(12 ‘9)

(DEL (till ‘0)

(NODE-TERMINALS (ENOOE ‘0))))
(,)

(REDUCE <- (BVD ‘P1) (BASE—SETTER ‘PI)n

(VBE—V IXER ‘P1))

(REDUC E <- (SUPPLY-POWER ‘P1) (COLLECTOR—POllER TPI)n

(CB -BI PSER ‘P1))
(REDUCE < - ( Rt5 I5 - CE ITE R ‘Al ) (EPIITTE R—IIWICER T PUn

(IC—FIXER ‘P1)) )))

(DEEMLA SPEC-TYPICAL-BiT
(SPEC-SCHEMA (TYPICAL -BJT-ONE- STRC (-BIRS-PIAN ‘0)

(G ENERAL -B IRS-PLAN ‘0)11

;COUPL INC HA S BEEN SPECIALI ZE D TO RJT AMPLS.

(DEEMLA COUPE INC-CHANCES-TOPOLOGY (TOPO-CNANCE-ACTION-FUN COUPLE))

(DEFIlER COUPLE-DO-i

(1,10-00 ‘TASK (COUPLE ‘DI ‘PORTI ‘PORT? ‘02) n

(/:DO-SUBNET (GENERAL-COUPL I NG-PLAN ‘DI ‘PORTI ‘PORT? p02)

‘TAS K <,)))

(DE F IlER COUPLE-NE T

1/nANTEC (NOT (/:PLAN-IN SIRNCE ‘P1

(GENERAL -COUPL ING-PLAN ‘DI ‘PORTi ‘PORT? ‘02)
‘SUP))

(AND (STASK (5IG NAL-AEOIU M-CHQOS E TPI) ?SUP (n
(S (I

(/ nE INO
(5 (Il)
((LI ‘Il <VOL TAGE CURRENTn. ) I)

<- ‘ (MEDIUM ‘PUn)
(STRSE (COUPLE-T YPE-CHOOSE ‘P1) ‘SUP n

(S (I

(/n F I NO
(S (CT) -

((LI ‘CT

DIPECT CA PACITIVE
INDUCTIVEn) ))

n. (COUPLE—TYPE ‘Pl)n)

(STASK (CONVERT-PORT-I ‘P1) ‘SUP <‘(MEDIUM ‘Pl)n
(S (M) (PORT—CONV ERT ‘PUPIl ‘MI

(STAST (CONVEIT—PORT-2 ‘Al) ‘SUP ‘(M(DIUM TPl)
(S (MI (PORT—CONVERT TPORI2 Till



Appendix 3 238

<<I

(STAS E (CONNECTOR ‘P1) ‘SUP <- ‘(COUPLE—TYPE TPI)n

(S (TYPE)

(PORTS -CONNECT TPORTi ‘PORT? ‘TYPE)

< -< - I

(/:SUCCESSOR (SIGNAL-MEDIUM—CHOOSE ‘P1)

(CONVERT-PORT-I ‘P1))
(/:SIJCCESSDR (SIGNAL-MEDIUM—CHOOSE ‘Al)

(CO NVERT-PORT- ? ‘P1))

(/:SUCC (SS(TR ~CONVERT-PORT—1 ‘Al)

(CONNECTOR ‘PIP)
(I:SUCC (S5OR (CONVERT-PORT-? ‘Al)

(CONNECTOR ‘Al))

(InNA IN (CON NECTOR ‘P1) ~SUP
)

I)

6(NERRL-OPe)

(DEEMLA COUPLE-BEFORE -BIAS

(—In A (1:195) -ACTION ‘CT (COUPLE ‘DI ‘ARTL ‘PAl? ‘02))
(—In C (AND (COMPONENTS ‘01 ‘DiCS)

(COM PONENTS ‘02 ‘O? CS)
(DR (ELI ‘0 ‘DiCS) (ELI ‘0 ‘O2CS))

(MAIN- DEV-TYPE ‘0 BiT))

(/ : SUCCES SOR ‘CT (BIASE R ‘0 ‘MODE)))))

1SPECI FI C SITUATIONS - —

(DEFMLA COUPLE-CE- A-HINTS

f—/ n A (/ :TA5K-A CTION ‘CT (COUPLE ‘Di (OUTPORT ‘01) ‘PAT? ‘02)1

(—in C ( 0EV—TYPE ‘DI CE )
(/:P PT CE-COUPLE-HINTS (‘CT ‘Di ‘PAT? ‘02)

(/:TO-DO ‘CI (COUPLE ‘DI (OUIPORT ~Di)

‘PAT? ‘02) n

(/nDO-SUBNET
(C E- li lA—V OL—COUPlE ‘Di ‘PAT? ‘02)
• ,) )

(In ID—DO ‘CT (COUPLE ‘Di (O UTPORT ‘Oil
‘PAT? ‘02) ‘n

(/:DO-SIJBNE T
( CE-D IR-CUR-COUPLE ~Di ‘PAT? ‘02)

.n.) I

(‘:10-00 ‘CT (COUPLE ‘01 (OUTPDR T 101)
‘PRT2 ‘02) ~~

(/nDO-SUBNE T

(CE-CAP—VOL-COUPLE ‘DI ‘PAT? ‘02)
< - , ) )  I ) ) )

(DEFMLR COUP L E-CC- A -HINTS
i— / n. A ( /nTAS E— ACT I ON ‘CT (COUPLE ‘Dl (OUTPOR T ‘Dl) ‘PAT? ‘02))

— — ~~_ _ -_ ~~~~~~~~~~~~~~~ - ~~ - - -~~~~—-~~~,- - -



Appendix 3 23~

(— /n C (0EV-TYPE ‘01 CC )
(/~PKT CC-COUPLE-HINTS (‘CT ‘01 ‘P912 ‘02)

(/,TO-OO ‘CT (COUPLE ‘01 (OPJIPOR T 701)

‘PAT? ‘02) <-n.

(/nOO-SURNE T

(CC-DIR-VOt. --COUPLE ‘Dl TART? ‘02)

• •) 1 ) 1 1 )

(DEFML A CE— OIR-VOL -COUPLE -PLAN

f—/n A (/ : P L A N—1N S T A NCE ‘Dl
(CE-DIR- VOL-COUPL E ‘Di ‘PAT? ‘02) ‘SUP)

(AND (.In. ‘ (MEDIUM ‘PU) VOLTAGE)
(./ n. ‘ (COU PLE-TYPE ‘DII DIRECT)

(/:REDUC (O (SjI,NAI- (TEOI (JM-CHOOSE ‘P1))

(/:REDIJCED (COUPlE-TYPE-CHOOSE ‘Pill

(SIRS) (GE T - RESISTOR ‘P1) ‘SUP n

(5 (P (ACQUIRE RESISTOR ) I <- ‘ (RESISTOR ‘PU ,- )

(SIASK (CET-POWER—SUPP I T ‘PIP ‘SUP n
(5 (1 (ACQUIRE VOLTAGE—SOURCE ) I <- ‘(VS ~P()n)

(STASK (BiT-FINDER ‘P1) ‘SUP n

(5 (1

(/:F INO

(5 (Dl

(EXISTS (CS)

(AND (COMPONENTS ‘Di ‘CS)
(ElI ‘0 ‘CS)
(MAIN-OEV—TYPE ‘0 Bill) I))

<- ‘(TRA NSISTOR ‘ PI)n)
(519SF (W IR ER-I ‘P1) ‘SUP

<- ‘(RESISTOR ‘P1) ‘(TRANSISTOR ‘PI)n.

(5 (R U) (T R M INS—C ONNEC I (52 ‘RI (CDI ‘0))
<n. )

(STASK (WIRE R-2 ‘PIP ‘SUP
< ‘ ( RESISTOR ‘P11 ‘ (VS ‘DII,

(S (A VS) (TRMINS-CONNEC1 (SI ~R) (52 ‘VS),

(REDUC E <- ( GET-RESISTOR ‘A l) (W IRER— i TPI)n

(CONVERT-PORT—i ‘Pill

(— i n.  A (rn/n. ‘(TRANSISTOR ‘P1) ~Q)

(- ‘in .  A (/:PIAN-INSTANC( ‘BIAS—Al

(GENERAL-BIAS-PLAN ‘0) ‘SUP-BIAS)

(REDUCE n.(G(T-POUER—SUPPEY ‘P1)

(WIRER— ? TPfl n

(CB—BIA SEA ‘BlA S—P l)I))I ))

(DE V Il-A SPEC-Ct-OIR-V 0L

(SPEC-SCHEMA (CE-DIR-VOL -COUPLE ‘01 ‘PAT? ~D2)
(GENERAL -COUPLING-PLAN ‘01 (OUTPOAT ‘Dl)

____________________ 
a



Appe ndix 3 24~3

‘PAT? ‘02)))

(DEFIlER PORT-CONVERT
(-in C (ANQ (1-PORT ‘PAT]

( .1< ‘ (PORT-T FRTI INA L 5 ‘PAT) ‘TRIINi ~TRMIN2n. )

( . 1 < -  (NODE - TERMINALS ‘TRNINI) ‘IS))

(/:TO-DO ‘IRS) (PORT-CONVERT ‘PAT CURRENT VOLTAGE) < -n
(CO NK IG •PESIS TflNCE <

(S (RI

<- ( /~FO R K
(DEV-I N ’L RT ‘A ‘TRMINi

(Si ‘A) 7TS (52 ~R) n.,)

(5 1)

<- (REl ABEL-PORT ‘PRT I—PORT V—PORT )

(CO NSTRAIN <- ‘(I (Si ‘RI) (I ‘TRMINi)n

(5 (1 9 IT)

(1,/n. (ABS ~IR)

(PBS ‘IT)) ) ) n  ) ) n  I I) ) )

(OUML A RELABEL

(/nMOD -NANI P ‘ISK (RELABEL-PORT ‘PAT ‘010 ‘NEW)
<‘ (‘OLD ‘PRT ( • ‘ ( ‘ NEW ‘PRTI n.) I

(OEFILA ACO-NODE (NOT (REUSABLE HOOt ??)

(OEFMLA PRIM-NODE IPR IMIII V E- DEV - IYPE NODE) GENERAL-OP.)

(DEFIER 2—I ER MI NRL- DE F N
(—/, A (0EV-TYPE ‘A ~-lERMl NAl)

(/:PK T 2-- TERMI NAL P(T (‘A)

(TERMINAL-NAME S ‘K <-Il 1 2)
(CONSTRAINT <- ‘ ( I  (SI ~X )) ‘(1 (52 ‘fl)n

(5 (Ii (2) I. (+ ‘Ii ‘I?) B) I)

(CONSTRAINT < ‘(V ‘K) ‘(V (Si ‘Xl) ‘(V (I? ‘X))n.

(S (V Vi V?)

(. ‘V (— ‘V i ‘VZ ) l  I) ) )

GENERAL -OP el

(DEFIlER PA IM-R E SIS (PR IIT I TI VE - U FV tY PE RESISTOR ) )

(DIFMIR RESISTOR-DUN

i — / n  A ( 0EV-TYPE ‘A RES ISTOR )

(/nPE T R(SISTOR-P)T(’X )

(0EV-TYPE X 2 TERMINAL )

(CONTROL ‘A A REALS i i )  

---~~ -——- .



Appendix 3 241

(CONS TRA INT n. (P ‘X)n

(L AMBDA (RI (In.. ‘A SI ) I)

(CONSTRAINT <- ‘(R ‘A) ‘(V (SI IX))

‘(V (57 ‘A)) ‘(I (Si TX))n

(LAMBDA (P Vi V2 Ii )
(. (. ‘Ii ‘RI I— ‘V i ‘V2 ))  U))

GENERAL-OP .)

(OCFML R ACO-RESISTOR (NOT REUSARIE R€SISTOA )I)

(OEFMLA PRIM—O PEN IPRIMIT IVE- OEV- TYPE OPEN))

(DEFIER DPEN-DE F N
I- in A (DEV-IYPE ‘A OPEN )

(AND (0E V-TYPE ~X 2-TER MINAL )

(CONSTRAINT .‘ (I (Si ‘K Iln

(LAMBDA (I) rn ~I SI I)

(CONSTRAINT <- ‘(I (52 ~K))n

(LAMBDA (I) (. Tf 5) ))l )

GENERAL -OP.)

(DEFIER PRIM-SHORT IPR IMI TIVE-OEV- TYPE SHORT))

(DEFIER SHORT-DEFN

( — / > A (0EV-TYPE ‘K SHORT)

(AND ( 0EV-TYPE ‘K 2-TER M INAL )
(CONSTRAINT <- ‘(V (Si ‘X I )  ‘ (V  (5? ‘Xl ),-

(LA MBDA (Vi V2) (. ‘VI ‘V2) ))))

GENERAL -OP.)

(DEFIE R PRIM-CAP ( P R I M I T I V E - O E V - T Y P E  CAPACITOR ) )

- 
(DEFIER RCQ-CAP (NOT (REUSABLE CADRE 1109) 1)

(DEFIE R CAP-DUN

(—in A (0EV-TYPE ‘1 CAPACITOR )

(/nPET CAP -PA T (‘U
(0EV- TYPE ‘A 2-TERMINAL )

(CONTROL ‘A C PEA l S 1.2)

(CONST RAINT ,‘ (C ‘A),

(LAMBDA (C) (/n.. ‘C 1.1) II

(N (DC ) ‘ (0EV-TYPE ~ X CAPAC I TOR))

(T (DC ) (0EV—TYPE ‘K OPEN))

(N (SSS ‘S( ‘ (0EV-TYPE ‘K CAPACITOR ))
(T (SSS ‘SI (AND (DEV-TYP( ‘A RESISTOR)

(.1. ‘ (N ‘XI
(// 1.1 (. (C ~X) ‘SI))))

(N (HIG H-FRED ) (0EV-TYPE ‘K CAPACITOR ))
(T (HIGH-FRED ) (0EV—TYPE ~X SNORT))))

GENERAL-DR.)

a



A ppend ix  3 262

(DEFMLA PRIM-IN O UC ( P R I M I T I V E  0 EV-TYP E (HOU CTOQJ )

(DEFIlER INDUC -OEFN
(-I, A (D(V-TYPE ‘A INDUCTOR)

(/:P)T INL3IJC- PA T ( ‘A )
(0EV—TYPE )X 2-TER MINAL)

(CONTROL ‘K I PEALS 1.5)

(CONST RA INT - - (I ‘KIn.

(LAMBDA (LI (In.. ~C 0.5) )?

(N (DC) ‘ (OFV- )~ PE ‘A INDUCTOR))
(I (DC ) (0EV-TY PE ‘A SHORT))
(N (SSS ‘5) (0EV-TYPE ‘A INDUCTOR))

IT (SSS ‘5) (AND (0EV-T YPE ‘A RESISTOR)
(.1> ‘ (A ‘XI

(. (I ‘A) ‘S)))l

(N (HIC k-FRED ) (0EV—TYPE ‘A INDUCTOR))

(T (HIGH-FRED ) (0EV—TYPE ‘A SHORT))))

GENERAL-OP.

(OEVMLR COMP-XFIIR (COMPOSITE - OEV- TY PE TRANSFORNER) I

(OEFMIA XFMR -DEFN

i — / n  A ( 0 E V - T Y P E  ‘A TRANSI URI1ER (

(/:PA T K E M P - P A T ( ‘ A )
(TERM I HAL -NAM[S ‘X .SI_~ 112 *91 *92<)
(CONTROL ‘A TURNS - RAT IO REALS 1)
(CONSTRAINT n. (TURNS-RATIO ‘K)n.

(5 (N) ( I ,  ‘N B) I)

(CONSTRAINT n. ’ ( I  (Il l ‘A)) ‘(1 (112 ‘ X ) ) n
(S (Ii I?) In. (+ ‘Ii ‘I?) 5) ))

(CONSTRAINT < ‘(I lPl ~A )) ‘(I (592 ‘A)),-
(\ (13 14 ) (. I. ‘13 ‘II) 0) ))

(CONSTRAIN T <- ‘(V (Il l ‘A)) ‘(V (112 ‘XII
‘ IV  ( SRi ‘XI) ‘(V (592 ‘A))
‘(I (111 ‘XI) (1 ($1 ‘A)?,

(S (VI I VL2 YR1 VR? II IA )
(. (. (— ‘VL i ‘VL2I ‘IL)

K~ ( — ‘VR I ‘V92( ‘(A))
0) 11 ) 1 )

A TRANSFORMER NAY CON - 1ST 01 IWO INDUC TORS

• (OEFMLA OER IV EO-X 1NP

i/ nTD—OO ‘TAS I ‘lfl( [ TPAN~(OP M(R) ‘‘NAME ,

(/ :OO_SUBNE T (BUM - IW O - INO)JCTORS) <-XEMRn ))

GENEARK.-OP.)

(OEFMLR BUM -PNO UC T fl PS N E T
i— / n A (/:P(AN IN STAN C E ‘P1 (RITA TWO-INDUCTORS ) ‘SUP)

(AND (SIRS) (GET— IND (Jt I ‘DI) ‘SUP <-,

_ _ _ _ _  a



App cm di x  3 243

(S (I (ACQUIRE INDUCTOR)) < (Ii ‘All,)

(S T P ) (GET-INDI )C—2 ‘P1) ‘SUP <-,

(S (I (REQUIRE INDUCTOR )) < ‘(12 ‘PI)n)

(STAS) (((BRA ‘Dl ( ‘SU P < ‘(Li ‘P1) • (12 ‘P1),’
(S (L i I 2) (GRARBA

(S ( A )
(M RIN-OEV-TYPE ‘K TRANSFORMER) I))

< ‘ ( A F A R  ‘P11,)
(STASE (CROABR A ‘P1) ‘SUP

< ‘(Li ‘P1) • (12 ‘P1) ‘ (AFMR ‘PUn.
(S (Li 1? XFNR )

(I: INFER ‘ (COMPONENTS ‘NAME ,ti ~i2nl
< - n. )

(/:MAIN (ABRA ‘P11 ‘SUP)))

CENER~ L- OP.)

(DEFMIR IDEAL-VS (IOERI-O(V-TYPE VOI TACE-SOUPCE)I

(DEFM LA REUSABLE—VS (REUSABLE VOLTAGE-SOURCEI)

(DEFIER VS-OEFR

(—i n A ( 0 E V - T Y P E  ‘K VO lTAGE - SOURCE)

(AND 01 ~~T~ PE ‘I 2— TERMI NAL)

(CONTROL V ‘K REAL S 1)

(CONS TRA INT <- ‘(V ‘A) ‘(V (S i ‘A ) )  ‘ (V  (57 T X ) ) ,
(5 (V Vi V2) (. ‘V C— ~Vi ‘V2)) I))))

(DEEMIR PRIM—BiT (PRIT U TIVE_ OEV_ TY PE Bill ?

(DEFML A Bi T - DEEM
f— /n A (0EV-TYPE ‘0 BiT)

( / n PET B i T — P E T  (‘0)
(TER MINAL-NAMES ‘0 .BASE EMI COL,)

(CONTROL POIAA ITY ‘0 <-41 -1, 1) ;NPN VS PNP

(CONT ROL BETA ‘0 (INTERVAL iS 555) 18.)

;BE ER CONTROLLABLE lIP TO ORDER OF MAGNITU DE
(CONTROl PP( ‘Q Rffl(.5 1.5)

;INC REMENTAL BASE RESISTANC E

(- in. A (NOOK ‘0 ‘El )
(SIRS) (BIASER fl ‘II) (DEEP-FR EEZE ‘I) < - <

‘.5 (1 (BIAS ‘0 ‘Ml I < - <I)

(- in. A (MODE ‘0 ACTIV E )

(AND
(CONSTRAINT <- ‘(I (BASE ‘0))

‘(I (Clii ‘0)) ‘ (BElA ‘O)n

(LAMBDA (II It BETA ~
(. ‘IC 1* ‘BETA ‘iS)) I)

(CONSTRAINT <- ‘(I (COE ‘DPI ‘(I (FIll ‘OlIn

(LAMBDA (IC IL)

_____________________________________________ - - a



Appendix 3 ?~44

rn (+ ‘IC ‘lE) 8,8) 1)

(CO NSTRAINT n. (I (BASE ~Q)ln ZEROP)

(CONSTRAINT <- ‘(V (BASE ~Ql) ‘(V (ElI ~O)I

‘ (POLARITY ‘DIn.
(LAMBDA (VS VE SI

(. (— WB ‘VEI (. 0.6 ‘SI) I)

(INFO (V (BASE ‘DI) (V (ElI ‘0))

(POlARITY ‘0)1

(INtO (V (CDI ‘0)) (V (BASE ‘0?)

(POl ARITY ‘0))

(I NFO (I (COL ‘0)) 8 (POLARITY ‘0))

(INFO (I (BASE ‘0)1 5 (POLARITY ‘0))

(INTO B (I (ElI ‘0)) (POLARITY ~Q)U)

(—I, A (MOOT ‘0 CUTOFF)

(AND

(CO NST AP INT -< ‘(I (COL ‘OIl, ZEROP)

(CONSTRAINT <- ‘(I (BASE ‘0)), ZEROP)

(CONSTRAINT <- ‘(I (EMI ‘OlIn. ZERDPI))

(-I, A (MOOT ‘0 SATURATED )

(CONSTRAINT <- ‘ (V (COL ‘0)1 ‘(V ([MI ~Q))

‘ (POLARITY ‘Q)n.
(L AMBDA (VC VT SI

(. ‘VC (. ‘Vt (/1 (. 8.6 ‘5) 2.8))) III

(N (INT l ‘ (CONSTRAINT <- ‘(V (BASE ‘0)) • (V (LII I ‘0))

‘(POLARITY ‘DIn

- 
(L R(IRUR (VS Vt SI

). (— ‘V S ‘Vt ) (. 8.6 ‘5)) 1))

(1 (INC I (CONSTRAINT < ‘(V (BASE ‘0?? ‘(V ((Mt ‘GIl
‘(I (BASE ‘DPI ‘ (API ‘0) n.

(S (VS Vt IS RI
(. (— ‘V S ‘Vt ) I. ‘IS ‘RI) )))

I I
GENERAL-OP.)

(DEFIER INFO-i
f—/ n A (JNFQ ‘A ~Y ,S)

(AND (—I, C (in. ‘S 0) (1, ‘K ‘VI)

(— In. C I/.- ~S 8) (1-n. ‘A ~~))l))

1COMPOS IT L DEVICES

• (DEFMLR SIG -TRAN SEP -r ,I O P IR (IUNI) !

f-/n. A 10EV~ T< PE ‘A 5)r, TRAN SER I

(PORTS ‘A < (INPOR I ‘ A )  (OUTPOAT ‘K),) I)

(OEEMLA NOO1S-DECL-DEFN

f- /n. A (NODES ‘0EV ‘NOOE-TUP (

I— /n C (ELI ‘N ‘NODE-TUP I (IA )N-DEV—TVPE ‘N NODE)))

___________________ — -
- ______



App~ nri x  3 265

GENERAL -OP.)

(DEFIER POATS—OECL-D (FN

1— /n. A (PORTS ‘0EV ‘PORT-TUPI

(—In. C ((LI ‘PRT ‘PORT-TUP ) (MRIN—DEV- TYPE ~PRT PORT))))

(DEFMLR AMP-SIC-TRA NS (SUB-0EV-TYPE AMPLIFIER SIG-IRANSEA D

(DEFMLA CE— BASIC (BRSI C—O EV -IV PE CE ))

(DEFMLA CL—AMP (SUB-0EV-TYPE CE AMPLIFIER))

(OEFMLA MO ST-GEN-C [ (MOST-GENERAL-SPEC CE GEN ERAL—CE) )

(DEFMLA CE-DUN

(—in A (0EV-TYPE ‘CE GENERAL -CE)
(/ ,P) T CE — P E T ( ‘CE )

(COMPONENTS ‘CE <- (0 ‘CE)>)

(NODES ‘CE <- (RHODE ‘CE) ([NODE ‘CE) (CNOOE ‘CE)n)

(0EV—TYPE (0 ‘CE) BiT)
(MODE 10 ‘CE) ACT IV E (

(/ SUBTRS A (BIRSER (Q ‘CEI ACTI VE ) (OEEP4AEEZE ‘CE))

(1,10-00 (BIASER (0 ~CE) ACTIVE) ‘A n.n.
(/~OO-SUSNET

(TYPICAL-SJT-ON (—STAGE—BIA S (0 ‘CII) < -n Il

(rn/n ‘(NODE-TERMIN AlS (BNODE ‘CE)) (BASE (0 ‘CE))n.l
(.1> ‘(NODE-TERMINALS (ENOOE ‘CE)) .c(EBl (0 ‘CE)lnl

(rn /n. ‘(HOOT—TERMINALS (CNODE ‘CEll (COE (0 ~CE )) n)

(I-PORT (IM PORT ‘CT))

(PORT-TERMINALS (INPORT ‘CE)

<- (RHO DE ‘CE) ([NODE ‘CE)n)
(I-PORT (OUTPORE ‘CE))

(PORT-TERMINAL S (OUTPORT ~CE)

n.(CNOD[ ‘CE) ([NODE ‘CE) )
I)

GENERAL -OP.)

(DEFIER DEFAULT—CE (DEFAULT-SPEC C( TYPICAL - CE ))

(DEFIER OE RIV A T ION - TY P -CE (DERIVED TYPICAL-CE GENERAL -CE ))

(DEFIER TYPICA L -CE-OLEN

i/iRN T (C (NOT (DEV-TYP [ ‘TAP-CE TYPICAL-CE))

(/ PFT TYP ICAL—CE-P E T (‘TAP-CE)

(0EV—TYPE ‘TAP -CE CE)

(COMPONENTS ‘TYP-CE • (0 )TVP—t(I (Ni )TYP—t (l



Ap pendix 3 246

(R2 ‘TYP—CE I (RE TTAP—C ()

(RI. ‘TYP— CE ) n. )

(MAIN—OEV—TY PE (Q ‘TYP-CE) Bill

(MODE ID ‘TYP-CE) ACTIVE )

(MAIN— 0 (V—TYPE (RI ‘TYP—CE ) RESIS TOR)

(NRIN-DEV-TYPE (R2 ‘TYP-C[) RESISTOR)

(MAI N-OEV — T YPE (RE ‘TA P-CE ) RESISTOR)
(MRIN-0EV-IYPE (RI. ‘TYP-CE I RESISTOR )

(NODES ‘TYP—CE <- (RHODE ‘TYP—CE) (CNODE ‘IYP—CE)

([NODE ‘TYP-CE) (GND ‘TAP—CE)

(PNODE ‘TYP—CE)>)

(rn /n. • (NODE— TERMINA( S (SHOOT ‘TYP—CE))

<- (BASE (0 ‘TA P-CE )) (57 (Ri ‘TYP-C~~ l

(SI (R2 ‘TA P-CEll, )
(.1 ,  ‘ ( N O O F - T E R M ) N A L S  (ENODE ‘ T i P — C E ) )

( ( M I  ‘0 ‘ T A P - T E l )  (Si ‘RE ‘TYP-CEI)n.)
(n. ’, ‘(NODI- TE RAINAI S (CNOOE ‘TAP-CE ))

.n.(COL (0 ‘TAP - CE )) (1? (RI ‘T YP — CE )) n )
(rn/ n ‘ (HOO F-TERM INALS (PNOOE ‘TYP-CE’)

< - ( SI Ri ‘T I’ CE)) (Si (RL ‘TYP—CE))n.)

(rn / n. - (NOO(-TERAINRLS (CHO ‘TAP-CE))

<- ( 5 2  (P 2 ‘TA P—C Eo (52 (RE ‘TYP — C EI ) n )

p FROZEN lAStS
(/:PL API - INSTA NCE IROZEN- BIR S-PLAN ‘TYP—CE)

( T Y P I C A l  - BiT ‘ N E - S T A G E - B I A S  (0 ‘ T Y P — C E ) )
(BIASER )Q ‘TAP-CC ) ACTIVE )?

( /~RE0UC(D (MASER (Q ‘TAP—CE ) ACTIVE ))

(FUNCTI ON (Ri ‘T~ r CE ) (BVO (FROZEN— BIAS—PLAN ‘IYP-CE)))

(FUNCTI ON ( P2 ‘ T A P - C T )  (BVD ( FROZEN-BIAS—PLAN ‘TYP— CE ) I )
(Fu N CTION (R~ ‘TA P_ CE )

(RESI S-GETTER (FROZEN—BIAS-PLAN ‘TYP—CE)))

(STASI I P O P T - C V T  ‘TIP-CE ) (OEFP—FREE7F ‘TAP—CE ) <- n
• ( ‘s (I (CONVERT PORT (OI (TPORT ‘TYP-CE)

CURRENT VOLTAGE) I

(FUNCTION (RI ‘T YP-CE ) (PORT-CVT ‘TYP—CE))

(E X PAN S ION -OR L ‘TA P-C E (FIX ‘(V (PHODE ‘TYP—C ()))I

/:SURXAS I (ORL ‘TAP CE ((U ‘(V (PNOOI ‘IYP—CE))))

(BIASE P (0 ‘TYP-CI) ACTIVE ))

(CO NSTRAINT n. (PO( PRI TY (0 ‘TAP-CE))

‘(SIG N IV (PWOOE ‘TYP-C ()ll

(CONTROl V -GRIN ‘TIP-CE (INTERVAL -58 58) 2)

(CONSTRAINT • ‘ ( V  GAIN ‘TYP-CE) ‘(A (RI ‘TAP—CE ))

-~~~~ —--—- - — - — — — 
- -~~ —



- Appendix 3 747

(A (RE ‘TAP—CE)),’

(LAMBDA (AV AL A L) C. TNV (I I  TA), ‘At )) I)
I)

GENERAL -OP.)

(DEFIER BASIC-V O (BAS IC -DEV -TY PE VI)))

(DEFIlE R VD-OE FN

1-/n A (0EV-TYPE ‘VU VU)
(/iPFT VU—PE T (‘VU )

(COMPONENTS ‘VU <- (A l ‘VU ) (A2 ‘VU),)

(NODES ‘VU <- ( TOP ‘VU ) ((lID ‘VU ) (ROT ~VQ)n)

(MRIN-OEV-T YPE (RI ‘VU ) RESISTOR)

(MAIN-DIV-TYPE (P2 ‘VU ) RESISTOR)

(.1, ‘(NODE—TE RMINALS (TOP ‘VU)) <- (Si (Al ‘VD)lnl

(rn /n • (NDOE-TTR)1INALS (110 ‘VI)))

< - ( 12 (Ri ‘VU)) (Si (R2 ‘VUII,l

(.1. ‘ (HOOF— TERMINALS (ROT ‘VI)))

<-( I? (R2 ‘VQ))n)

(0EV-TERMINALS ‘VU

<- (TOP ‘VU) (MID ‘VU) (ROT ‘VO I n)

0 FAOZE N TASIS

(E APANSION -ORL ‘VU (FIX ‘(V (TOP “ilI) ) ) ) )

(EX PRNSION -ORL ‘VI) (FIX ‘(V (801 ‘VU))))

(CONSTRAINT <- ‘ ( V  (TOP ‘VU )) (V (ROT ‘VU ))
< (V (MID ‘VU))

(A (RI ~VU)) ‘(A (AZ ~VUl)n

(S (Vi V2 V Ri AZ)

(. ‘V (/1 (. (i ‘AZ -‘Vi) (. ‘RI ‘V21)

(. ‘Ni ‘AZ))) 1)

(CONSTRAiNT < ‘(I (MID-NODE ‘VU))

< ( I (I? (Al ‘VD)))n

(S (I Ii) (1</n. (ABS ‘II (ABS ‘Ii)) I)

(CONSTRA INT ~~(( (MID-NODE ‘VU ?)

‘(I (Si (AZ ‘VU))),

(S (I (2) (1<-In. (ABS ‘I) (ABS TIZIl 1)

I)

GENERAL-OP.)

(DEFIER ACO—VU (NOT (REUSABLE VU) ))

- - - -  - —



Appendix 3 248

g AS UIT’H CI , THERE IS AN ABS TRACT (~ P UHICH IS A CURRENT AMPL IFIER

(OEFILR SRSIC-ECP (BA SIC-t IEV-TYPE ECPI )

(OEFML A ECP— IS-AM P ISUB-O (V-TAPE FTP AMPLIFIER))

(DEFILA 1051-G [NERRL-ECP IMOST- GENFRAL— SPEC ([P &ENERPI-ECP))

(OEFMLA ECP- OE FN

(—I n A (0EV—TYPE ‘ECP G(NIRRL -ECP)
( /~PtT ECP-PP T (‘ECRI

(CO MPONENTS ‘ECP <- (01 ‘[CR1 (02 ‘ECP)n)

(NODES ‘ECP < - ((NODE ‘(CR)

(SNOUT! ‘FTP) (BNOOEZ ‘[CR)

(CHOOE i ‘FTP) (CNODE2 ‘ECPh.)

(MRIN—0[V-TYPE (Di ‘ZCPI SiT?
(MODE (Di ‘[CR) ACTIVE)

(MA IN-O TV—T YP( (02 ‘FTP) BiT)

(MODE (02 ‘[[P1 ACTIVE )

• (.1, ‘(NODE - TER MINALS ((NODE ‘ECP))

< - (EMI (0 1 ‘FTP)) ((MI (02 ‘FCP))n)

(rn/ n. ‘(NODE-T ERMI NALS (5(400( 1 ‘ECP))

<- (BASE (01 ‘[CR1),)

(rn/, ’ ‘ (HOOT -TERMINALS (RHODE? ‘ECRI)

<- (BASE (02 ‘ECP)ln)

( r n/ n .  ‘ (HOOT-TERMINALS (CNODE i ‘ECP)l

<- (COL 101 ‘(CP))n.)

(rn/n. ‘ (NODE-TIPPIIN AL S (CMOOE2 ‘[CR))

<- (CDL (02 ‘TCP))n)

(PORTS ‘ECP •OUTPORT-j OUTPORT—ZnI

(V-PORT (IM PORT ‘ECP))
• (PORT-T ERMINAL S (IM PORT ‘(CR)

<-(5 (400(1 ‘[CR) (RHODE? ‘ECP)n)

(I-PORT (OUTPORT _ I  ‘FTP))

(p ORT -TER M INAl S IDUTPORT -I ‘ECP)

.(CNOIIE 1 ‘CEP) ((NODE ‘ECP)n.I

(I-PORT (OUTPO RT-2 ‘ECP))

(POPT_TE RM INA I S (OUTPORT-2 ‘ECP)

.(CNOO (2 ‘(CR) •ENOOE ‘ICR),)

(/ SUBTRS E (BIA SER (Dl ‘(CR) ACTIVE)

(DEEP-FREEZE ‘FTP))

(/~SUBTASE (M ASER (02 ‘[CR1 ACTIVE )

(Of (P FREEZE ‘(CR))
((A PANSION- flR1 ‘FCP (FIX ‘(I (ENDUE ‘ECP))IPl))

(DEFIE R O(FAUIE-ECP (OEFAIJLT-SP (C (CP ECP-OC-AMPI I

— 
I 

— - -—-----—— - -_-- - - - — -- _ —
~~~~~—


Appendix 3 249

(DEFIER DERIVED-ICR-DC-AMP (DERIVED (CR-DC-A MP (CR))

(DEFIER (CP-OC-RIP-DEFN

(/iANTEC (NOT (0EV-TYPE ‘TYP-ECP (CR-DC-AMP))
(/:PET ECP-OC-AMP-PS- T (TTYP—ECP)

(COMPONENTS ‘TYP-ECP

<- (Di ‘TA P- FtP) (02 ‘TYP— [CP
(RI ~TYP-ECP) (RE ‘TYP—ECP),)

(0EV-TYPE (AL ‘T YP-ECRI RESISTOR)

1M EV-TYPE (RE ‘TYP-ECP) RESISTOR)

(0EV-TYPE (01 ‘TYP-(CP) BiT)

(0EV-TYPE (02 ‘TAP-FTP) BiT)

(MODE (Di ‘TYP—ECPI ACTIVE)

(MODE (02 ‘TYP-[CP) ACTIV E)

(NODES ‘IYP-FCP

<- ([NODE ‘TYP-ECP) (IOUNODE ‘TYP-ECP)

(HICUNODE ‘TAP-FTP)

(C2NODE ‘TYP-ECP) (BiNOUL ‘TAP—ICR)

(BZNOOE ‘TYP-ECR)n.)
(.1, ‘(NODE-TERMINALS (ENODE ‘TYP-(CP))

< ((III (01 ‘TYP-ECP)) ((MI (02 ‘TAP—ICR))

(SI (RE ‘ T Y P- [C Pi I , I
(rn/n. ‘ (NODE -TERMINALS (LOUNODE ‘TAP—ICR))

<- (57 (RE ‘IYP—ECP))n.)
(.1, ‘ (NODE-TERMINAlS (HICHNODE ‘TAP—ICR))

<- (CDL (DI ‘TAP-ICR)) (Si (AL ~TYP—ECR)ln)
(.1, (NODE-TERMINALS (CZNOOE ‘TAP—FTP))

< - (CDL (02 ‘TAP-(CP)) (52 (AL ‘TYR—ECP))nI
(./, ‘ (HOOT-TERMINALS (BINODE ~TYP_ [CP))

<- (BASE (Di ‘TYP-ECP))n)

(./, ‘(NODE-TERMINALS (B2NOO(‘TAP—FTP))

<- (BASE (02 ‘TYP—ECP))n.)

1 THISE ARE WAYS OF DOING TASI S IN ABSTRACT ([P...
(EXPANSI ON-O RL ‘TYR—ECR

(FIX ‘(V (LOUNOO I ‘TYP—[CP))))

(EXPANSION-OBI ‘TYP— (CP
-

(FIX ‘(V (NIGHNOOE ~TYP—ECP)))J

(REDUCE <(081. ‘TAR-E TA

(FIX ‘(V (LOUNODE TTYP4CP))))n

(051 (SOUL ‘TYP—ICP)

(FIX I (ENODE (SOUL ‘TYP—ECP)I~~ I)

(REDUC E <- (051 ‘TAP-FTP

(FIX ‘(V (HICHNODE ~TYP—ECPI))ln
(MASER (01 (SOUL TTYP—ICP)) ACTIVE))

(REDUCE < (081 ‘TYP- (CP

(FIX ‘(V (HICHNOCE ~TYP—tCP)III n
(RIASE R (02 (SOUl. ‘TYP —ECP) I ACTIVE))

(STASE (CVT-PON T ‘[CA) (DEEP-FREEZE ~TYP-tCP)

______________ -
~~~~~~~ — a



Appendix 3 250

(S I) (PORT-CONVERT (OUTPORT ‘TYP-(CP)

CURRENT VOLTAGE ) ) n.n)

(FUNCTION (AL ‘TAP-FTP) (CVT-POAT ‘(CR))

(FUNCTION (RE ‘TYP - (CR)
(OBL (SOUL ‘TYP- ECP)

((IA ‘(I ((NODE ‘ICR)))))

(CONSTRAINT <- ‘ I I (RE ‘TYP—ECP))n
(\ (I) rn ‘1 0.082) ))

(CONSTRAINT <- ‘(I ([01 (Di ‘TYP— [CP)I)

‘(I (CDL (02 ~TYR—ICP)))n

.InI

(DEFIER RC-D( V-TYPE
I— / n A (0EV—TYPE ‘PC RC— FILT(R)

(/,PtT RC-PE T (‘RC)

(0(V—TYP ( ‘PC SIG— TRAN SER )

(COMPO NENTS ‘RC <- (Ri ‘PC) (Ci ‘AC)n)
(N~OES ‘RC < (MO DEl ‘RC) (NODE ? ‘PC) (((00(3 ‘AC),)

• . /n .  ‘ (NOD E-TER II IN R LS (MODEl ‘RC)) ‘(Ii (Ni ‘RCI)n)

(rn/n. ‘ (NOOE—TERIIINAI S (N00E2 ‘AC))

<- (52 (Ri ‘PC)( (Si (Cl ‘RC))n.)

(rn / ‘ (NDO[-T (RMINPLS (NODE3 ‘AC)) <(12 (CL ~RC))n)

(V-PORT (INPORT ‘PC I)

(PORT-TERMINALS (INPORT ‘RC( <(NOOf i ~AC) (NOOE3 ‘AC)s)

(V-P ORT (O UT PORT ‘PC))
(PORT-TERMINALS (OUTPORT ‘PC) < (NUDE? ‘AC) (NOO(3 ‘RCIn)

(CONTROL CUTOFF-FRED ‘RC P05-REALS 1)

(CONTROL (H ‘SI ‘PC COMPLEX i,2)

(CONSTRAINT <- ‘ (CUTOFF-FRED ‘AC)

(A (Ri ‘AC)) ‘(C (Ci ‘At)),

(S (F R C) I. ~F (1/ 1 (e TA IC))) II

(CONSTRAINT <- ‘((H ‘SI ‘AC) ‘(N (NI ‘PCI) ‘(C (Cl ~AC) ln

(‘ (H P C) (. ~H (I I  I C. 1 (. ‘A ‘C T$)))) ))

1)1

— — - - — —  - r - n. - -— ____



Append x 4 251

Append ix 4 -- Deta ils of STP for Theorem Provers

The main requirement for an inform ation-retrieVal theorem prover io  that
i t  h a l t .  T h is  is  hard because i t  must  re tu rn as many answer s as p~~’~~ i ti l e . I f
the theorem Prover were the top level , as i s  u sually the case, we c o u l d  jlI’it

let i t  run u n t i l  we ran out of money or patience , but the problem ~olv ~~r ~)hnvP

i t needs (ts ,ansupr c in .-i f i n i t e  t i m e ,  SIP has been written w ith t h i s
emphasis in mind : in i t s  desi g n, I have sacrificed “compl et~~nr’cs

” to t h i s
“ f i n it e n e s s ” requirement.

SIP is orqa rnzed as -~ backward-chaining PLANNER-l ike system. (Moor e , 1975)
Given -‘ goal , i t  f i n ds  imp l i c a t io n s  to back through. For example , w i t h  thr,

goal ‘Refute (NOT (P ?X)L” i t  mi ght back through (- I> C (AND (0 ?X) CR ?X))
(P ?XH , wh ich  is i n t e r n a l l y stored ~ s the disjunction r/ :CDNSEO (P ~X )  (tJIJ T
(AND (0 ~X ) (H ?~ )))l ), The reason im p l i c a t i o n s  are in t e r n a l l y r1i ~~~j u i n c t i n n ~~
is that SIP w ants  to retrieve /:ANTECs in the same fetch as /:CON’iEI]s. so i t

must put the index pattern in the same p lace ,  I t  is for t h i s  reason tt i .i t
atomic d i t i  are stored -is (/:CONSEQ Ipa t~ FALSE) .

1) 1(0 h- rkuard cha inin g creates a conjunction of subgoals, each of I( t T i C t ~ is
treated s im i l a r l y to the way the top-leve l one was. The other ~uI~r~o i l c  ir n.’
held n aheI).ince w h i l e  the rhosen one is worked on. Thi s is c all ed
“splitting ” for reasons I w i l l  explain below. The chosen subgoa l can spr out
new subgo a l s , so the con jun ction grows.

Uhen a subgoal i s  r educed to FALSE , the resulting answer sub s titut io n iS

appl led to the rem. iintnq con juncts before they are sp li t .  When there ,irevl<

any more , the su b s t i t u t i o n  is the fina l result. I w i l l  say more about ar’s I (” r
sub stitutions ’ below .

Backtracking is necessary because there may be more than one ~- p I i t , ~ir~ri

because there may be more than one answer to try on remaining conjun cts .
B a c k t r a c k i n g  is imp lemented by sav ing the theorem-prover st a t e  w hen c~ rh ~~

choice ar i ses: arid restor i ng such states when branches run out of chn ce~~, and
after each top-level answer has been found,

Io I i m i t  hic k tr ac-king , f a i l u r e s  are not at  l owed t o  cause back Er • k i nc~ to
an irrelevant choice point. Spl i ts , when generated or augmented , are

par t i t  i oned i n t o  “ s p l i t  group s, ” each member of wh ich i~ a conjunc ) ion iilr,rh

shares no fre e var i ables w i t h  the others.  (Ernst , 1973 , Moore , V u 1 ,) F’s’
example , i f  (-I-. C (AND (P ?x )  (0 ?y)) (H ?x ?y)l , the goal (NOT (P ~u 

7v )i

g i v e s  r i s e  to two  i ndependent subgoals (NOT (P ?u)) and (NOT (0 ?v)]. A l l  t h e

answers are found to  each , and the resu l t  i s  the  “Car tes ian  product” oh thr’

ansi ~‘—p ’~- of  each . Thj t  i s ,  i f  (P a) and (P b I, and (0 ci and 10 dl ,irp
present , ER a c-I . (P a i’ll , ER b ci , and ER b dl are deducible,

A request to SIP with f re e var i ables is interpreted as .i demand f r ’ s  v a l i e s

of those var i ables which refute the request. In the example I just q Ivr , the

request (NOT (H ?u 2v)) is satisfied by four such sets, These are cii  led
answer sub st i tut ions. They are computed from the h i s to ry  of the m,if ,tu ’; from
the ori g inal request to the instances of (FALSE) that are u l t i mat d ’ I ( dc’o uvc’d.

For example , given the request [NO T (P ?x ?y)) and the ax i oms Ef :UI1N f (J (P ?ii
B) (NOT (0 ?u))) and E/:CONSEO (NOT (0 A)) FALSE) , the first bac ktoarr l ch a in to
[NO T (0 ?x ) J  c o n s t r a i n s  ?y to be (B): the chain to (FALSE) then ~p t c 

?x

(A).
This bookkeeping is handled in SIP by use of the Boyer-Moor e

representation of clauses. (Boyer and Moore, 1972) The idea is to i-np ’ “~~“nt
every clause as a pattern plus substitution. The substitution is c all e d in
env ironment. A formula represented th is way is called a closure. Ilatchiroq



Append i x 6 252

two  c losures  c r e a t e s  1 OPLI , more c o n s t r a i n e d  env i ronment  w h i c h  dpcr r i t o - n  the
new s u b s t i t u t i o n  as a fur t hor s p e c i f i c a t i o n  of the two old onec . In th i s i a -’ q ,

each environm en t re a l l y specifi es a binary tree of super-env lroninen t.s i r t i r t i

para l l e l  i t s rt er fi; r - t i v e histor y. Boyer and Moore explain how a nun,c’r i c - a l
“environment id ’ or en v i d  r- .ln specif y any branch of this tree. Givi n g  f u n
envids s p e c i f i e s  the node where the two branches meet.

STP u~ °s t h i s  r t p v i - e to keep track of answers to goals. The var i t i l ”  AIf l —
ENV I O* spec if it ’ s the env id of the current main goal . The var i ab le t1 A It J llAX *
spec i f i e s  the si:’ of the t r c ~~ above the main goal ’s environment : (h i t is ,
AN~ -ENV IO* and AN’~ -ENVl[l * + MA IN-MAX * are two envi ci s which uni r i j e i l ~~~~
the environment of th e m 3in goal. The function ENV--COLLAPSE t ik os (I”
env i roriment o f  i term i n.i I IIALSE I and these two numbers and pr ndur e~ ;in

env i r o n m e n t  w i t h  all the discovered constraints recorded. This ml- .1,1150

makes unnecpsslr y the “an swer-pr edicate ’ const ruc t of (Green . 1 ’i1-~I’ ..
Of course , ths ~ mPIhln i ’lmn ig more special ized than Green ’s. Si r i r P i t  i

not able to return rt sj unc t i ye ” ~uh~ t i tut ions. Thus, it w i I I n~’ t i n r  k f the

request (NOT (P (1) appear s w i t h  [/:CONSEQ (P A ) (P B) I , even th o j j Ii f f ~o
f o r m u l a s  a re  pr evab I y nc 5 0 5 i  s t e n t .  (The (P B) detaohed by the  f i r  q t

resolut ion matches the ori g i nal goa l .) i t won ’ t work because ther e i s  rici
a s si gnment of one value to X wh i ch refutes (NOT (P ?X)). This i s not r e i l i g  a

deficienc y i n  doi n g information r etr i eval , but we must be careful to l r -t e
i t ,  I w i l l  say how t h is  is ;tsne af ter a shor t di gression.

STP i s a re f ; t a t ion-dr i ~‘en theorem prover . Thi s means t h a t  i t  r inc - ’ n •

just back throug h imp i i r .~ t ~ns , it also records the formulas it is tr g r’s~ to
refute so that t h ey  c .;n t .~~ e par t in deduc t ions. When the prover r et ’ ;  ~ i l l
of these e f f e c t s  mu ct d i s i~~pc’ar . This is accomp lished by ‘ push ing ’ the

cu r r e n t  data pc-si , do i ng r or - i r ding formulas in it , and “po pp ing ” a t  tti c ’ r’ricl .

(McDermott and ~~J c , sman . 1~~73) This is done for every subgoal as ne C  I .
Now the machin er y can a ll o w several kinds of interactions t;t ’ t ;i’ ’n g i l ’ s.

The k r ‘—i d I men t i nr r’d t us i i’  igr i;ihs ago i s  cal led “b e f u d d  I em€’n t . “ Tb ( 5

‘wo ma t c h  ‘sq ci ,(r
~~ n.i I ~ ç r’r i f y conflict i ng sub~ t i t ut ions. Th i I s t~~~’ l i p  I i )

proyr am fTP— STATUS - 14( I .1 ’ tJ ~ R [I , which forces agreement between t i i i  cnri f I ii flq

lines of de f i n i t i o n :  t inci t~ t hat just one ANS-ENV I O* be pin < i f  , i l ’ n ’ n .
Another kind of i n t e r  ii Hon is subsumpt ion. If a new goal is c i i I i - r j r ’ p d  hg

a fac t not in the pu shr ’r f Ht i  poo l , i t  is  abandoned. For examp le . ev i ’ i f

there are ax i ” im s fnr l ov i ng [P ?XJ , there is no point in try ing to p V” (P
Al (that i s , refute lN~lT (F A ) ) ) , i f  (NOT (P A ) I is  in the d a t i  Isis.’ . If you
succeeded in rir r i v  i rig s i n ’  ti a p roo f  • it wou dl be of I i t t  I e va lue  • 5 sri o i

would just prove the in rr r i istency of the data base with regar d to t h i s
quest ion.

More i n t e r e s t i n g  i s  the case where the subsumer is another goal. Th i s
case must he notic ed. 5 i n r e the subsumer may be a super-goal of the ci n r r’nt

one , and theref or e an i n f i n i t e  recur sion may he i mpend i ng. I coi l r i m i ’ , ¶ 1 < ’ r-.’

i s usuall y no po int in pro “eding, so SIP abandons this goal. (This put’ ; the
progr am even further from de i hin c tive completeness. ) However , there is in

impor tan t case in w h ich mer e abandonment is not enough. If the st(per r j n i l  is
a main super-goal which is a var i ant of the current one, the answers to the
super-goal must be a pp l i ed  to this one. For examp le , g iv en the axioms

(/:CONSEO (ABOVE ?X ?V) (NO T (ON ?X ?Y))J
(/:CON SEO (ABOVE ?X ?Z)

(NOT (AND (ABO VE ?X ?Y) (ON ?V ?Z))))

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  a
______________ -- -— — -



Appendix 6 ~[,-3

(cf . (Moore . 1~l75) ) , the requ est “Re fute (NOT (ABOVE A ?V))” w i l l  ci cit e -1
s inhc~oa I (NOT (AROVE A )Y) ) uI-n i ch is subsumed by it. The resin f t i rig m I n i  1<

recu rs  ‘on r s uni mpor t i n t  to  i plain theorem prover , but impor t i n t  to i n .  T i e

s olut i on is to connect t he supergoal and subgoal in such a Ja i l t i - i t ; uI
answers , past and futur e , to the supergoal are translated i nto suhiqn .iI

answers. Th nq , i f the r Ii t ;r base contain s (ON A B), ION B C), and 10(1 1 II) ,
t he g iven request iii ! f i r s t  generate V -. [B). The repeated s i j l i r i r i l  i i  I I  Crc ’
not i ce’t . and th i s f i r s t  ,lnunc ’ r w i I I be used , causing the del ic hni eir t n ‘sil t’ s-i l
(NOT (ON B DV)) When this succeeds , the answer V -. (C) w i l l  have ,r” ,r f ri r i r i rl .

Now t h i s  answer is used to reawaken the repeated subgoal again , t h i s  h i m . ’
de ta t ;in g (NO T (1)N r ?V)) and given answer V * [0) . The f i na l gnu (0(1 II ? V J
prod ic es no neni ins;i.rs .

The it ’ i I i t i _ I to nn t i r e  and use repeated suhgou I s depends on t h e  - il  i i i  -~,t  i ‘in
of answers to Su t i( ln - ilS pr well as the main theorem —prover goa l . T h i s  i s

sur r’ sing I~ di f f n c - r i  I t  to .lcsnmp Ii sh in c o nj u n c t i o n  w i t h  t he  if i l I t gr ni np
sor t i ng mechan i sm . Per anj se r~ni Is can he reor rlered , i t  i s not ohv i 0; n~ n h e n  the
la st cint ign i of a you I hi~ been f i n i s h e d .  Every goa l st ruc  t r i r  P m’ is i t  rn 1
stack of i t ~ i r i cesto rs ,  Th~ program ANSWERS-RECORD checks t h i s  ~~ t .ir k In

for cii h an’ cd ii , n hr thp r there are any outstand i ng s i b l i n g  g o a l s .  I f  iii t ,
an ancn er (cr t h at  in, “ ‘tor may be recorded.

Uh i Ic i-ion . ; rig or-n r’s- n r. 
~T’~ t of a goal . SIP does not record romp .— t i~ ’ 1  - n I  I

in the i t - i t i  h,Tlse . Thuq , some of the more devious kinds of re i i n r r i n q  i h i c ,  in .’d

by H. Moor e Ill?’ ? a re not noti ced. This could he changed withou t to, rnrn(h,
trouble.

Other f e a t u r e s :

Equa lity — -  SIP uses i n r ; , i h i t i p s  of the form ( — / - ‘ 
‘ lx i  l i i i)  rout inn’ ? 1, m u c h

as a pr- cgr amm log I ,inqinar fr’ does. ( C f .  B leclsoe and Tyson . 1O7~’) Tb.’ funr 
I

FML A -C t  II -F AND - L iP EVA L c r e a t e s  a Boyer-Moore closure , and at tempt s to ‘ ‘ v i I n a t c ~
suhexp rescrons wh ,c-h have been changed by the new environm ent. Ev aI ’s (t i ii;, i s
a cat I t O  SW w i t h  i req ins t I0 r e f u t e  (.1> m e w  pat ?VAL ) . Be f i r  e E l i  I
c a l l  s marIe , t he vari ab l es in the pattern are “marked u n i v e r s a l . rn ’ rr ii ~

they are not a? t owed to I-n’ set by the matching done by SIP: ‘i~- i i s  C u r  ni ri o t  to
he equivalen t to the mark in g done in packets. (McDermott , )g7~~) I f  i t  ni n e nut

done , more than c,np “valu e ” could be derived for the  new pattern .
This evaluat i on is rh ino whenever a p a t t e r n  is  detached. For exa m I nl. ’ .

given the axioms

(—I ‘ (F (C A )) DI (—/ ‘ (F (C C)) 0)
(/:1PN rFI) (P (C ‘X) 7Y) (NOT (0 ?X ?V)))
(/:CONSEI’) (0 A “Y) (NOT (H ?Y H)
(H B)

and the r e r i r n e c t , “ R e f u t e  (NOT (P ?lJ (F ? IJ ) ) ) , ” the sys tem det aches f i r  ‘i t ( ( J I l T
(0 ?X (F (6 ?X) I ) I , wi t h II ~ (6 “XI. The atte mpt to evaluate IF (1 7X) I f i i  Is
because X would have to i ir’ bound to A and/or C. The next subgoal i s [(JIlT (R
(F (C A)))), which is ‘- ‘valuated to become [NOT (P 8)1 , w h i c h succeerl’;. T h e
final answer i s U • (RI.

The ~ ,imn k i n - n d of sub stitut i on is done in a more limited h a g  when
equal it ims are to be refuted. For example , SIP is told to prove (EI1F1 A C I
(IMPLIES (EU ?X ~A B C>) (P ?X))) by ask i ng it to refute (I IPLIES (II I ~ ‘ t J

~A B C’) (P X’63)), where  X’G9 is a skolem form. It assumes (ELI X 0 h  .A P

—-~~~~~~~~~~ —~~~~ - ‘ ~~
- - -



Append I 6 ~6

C>) and [NUT (P ~ ‘[gb I. Ttie f irst subgoal becomes , v ia  the  def rn t i n n  i f F t  T .
(OR (~~/-. 

‘~~‘R~1 A) (~~f~ ‘X’[’b B) (.1> ‘X ’69 C ) ) .  When t h i s  is  sp l i t , t I r e  f i r s t
s u l i i r r i l  q c r - n < ’ r a t e d  i s  [— I> ‘X u E ~3 A). The onl y e ffect this can have is h g
sub~~t i t ; n t  ion , so the system f u n d s  al l  formulas that mention X u F ’~ inn ‘f i r- ’, the

i n d i c a t e d  repl ac em ents . (There won ’ t he very many, because X~ 6~3 is  i e c u
sk ’slem f o r m ,) In t h i s cu~ e , t he subgoal [NOT (P A)) w i l l  be gener itr ’rl.
Si m i l a r  thin gs i~ i I I  happen in the other two branches of this sp i i t .  Tn fln .ikc’

t h is  work rer- I n i r e s  a h i t  o f  mechan i sm not u s u a l l y imp lemented in theor im
prover s : the da ’.i-has e mach ine ry  of (McDermott , 1975) must to’ augment . ? so
that  f rom any pa t ’e r n  one ran retrieve all the formulas which cont a in i t .

Th i s is done til l keep ing t n i ~ k of a l l  the posi t i ons  an a tom appear s in ,
in t e rs e c t i ng  the index t u u n r k e t s  correspond i ng to atom positions c o m p , u t i t u t r r  u j t h
the p a t  tern.

Moda lity — —  [rmp l i c - a t  i r -inc are ‘ntroduced by the use of data po o l s to
lr rrpbc ’ m c’nt “ re fr’renre p o i n t i . ” (Sect. 1 1 . 8.2) When the system t s a r a r j n ; i i  ci ’

the form F T I r e f i  i f a c t i ) , i t att empts to “coerce ” the ref into a d i t i  pen 1 .
It t hen pu shes t h i s  data poo 1 as it did the ca l l i n g  one , and puts the fir

i n to it for refutation.

Data Dep end enc ,es - SIP kent~, track of the data that suppor t i t s
cons Iii~~ron s .  I Is cii I c r w i l l  use these to b uild data dependenci es -is
descr ibed in Sect . ((.0. The onl j tricky par t to this is to sr,’ikr’ ri - j r  p ‘he
data po~~Is a’- .’ kr ’pt str aig ht . Whenever working on -i [I . . .)  exprc-c ’-.ioo can ’s
a jump to i new pool , t h e  supporter s w i l l  be packaged up in t h e f o r m  l I E ?  1

I poo l name l f u r - t i ) .  These ulti m a t e l y end up in this form in the
dependencies. (See Sec t . 11 .0 . )

Life with Boyer and Moore -- J Moore has informed me (per sonal
communication ) that sever i ’ people have used their rep rese nt ation for r b a i n r , ’ q .

C 1 ’ ~ 7~’) For the b e n e f i t  of those tempted to use it , I should r oper I my
exper i ences wit h  1 ,

M y or i g inal m o t i v a t i o n  for wantin g to represent formulas as c lo ~~;j r  “ in-i c-
to pr eser ye -u p <‘ ‘‘i r u n  is ~

- e~ nr  esent at ion of goal s for inter a r t  i on; iii  t h u- b y i c - c .
The usual prc’h u ’ i t e - c a t c u i l u s  theorem prover renames at I the var i at iles in hun
f o r m u l a s  be fo re  u nif g inr 1 them ; th i s  is cal led ‘ stan d ardizin g th u’ rr i i r an t , - ‘

Boyer and Moore ’s m o t i v a t i o n  was to save storage by represent  ir u~ i l a i n ”;
i nc r e me n t a l l y, as the di f fc rences between i nput clauses and outpu t l ; i u n r’s nf
deduc t i on s .

Ne i then of these rea’-nns turned out to be imp or t i n t , so that t h i s ’  u s  1

c lassic em.irn~i t e  ‘sf the rI n ger s of bottom -up prog ramming, or ant ici pa t i r u r ~
pr r n t u l e m ’, that r i ~ - v ’ r ar i cr’ or are swamped by other effects. A s I d i ; n i n ’ ’ - ~ h iii
Ser f . V I . B , my r l c r ? i ; r t , v e  u i -n - u S never interact with advice anyuai1; .innI Ibir i j r- n

and Mo i r e ’s of f u r  C t o div’ st ,r r a rm ” is was ted  in a system , I ike mine , u h u n r h r

must i ndex each c - b l i s s  atom ?i-j atom. lActua l l y, t he sys t em i s n o t  gu i f.’ t b i . i t

s t u p i d , bu t  I think ing savin gs inc u rred are minute ,)
On ‘he other hand , I t n -  rep resentat ion has proven to have sever il von

natural uisem. The br ,ir ket rrr ir t iin ery of (McDermott . 1975) “actual i :n’s ”

F ‘ <‘r i t i .1 I i t e m ’  t u u j  us I r i’~i l  ac i ng the potent i a I environment ni i t  h thi n ’ r I ‘ni -n c .

The ,in’ ;j er it cii C at i r i s  uh r ’c i -r i lied above i~ comp l t e l  y natura l iri a~~~ii I i- ni l i i  it
nep~~c ’ ’ r’u ts c - l a n c e ’  l ’ j the’r deductive histories. The evaluati ci n ma uh;i r ir ’ n i i
I - i t I’ ic to  eva I n a  I v. on ~ ;hexpr ess ions with nn’nl b y i nst an t i n t  etC v i ,  i iii Ii ’q
oper’tes by tra ’.er .inn g the r’x (uressiOn to tie evaluated , comparing var i ,nhrlc ’

-— - 
-_ -.- 

- - ._ --_---_--:~~~-- 
‘i _i



Append i /4 ;‘r n

values in the n Ic i  pnvuron n ’rent with those in the m e n ; .

On I’d I urn e , my corn Iii ~ i rn is that these advantages do nri t ou t no- n 1 i tb;..

di sanlva n ‘ ages , which arc’ snri ’, u n le r  at i In ’. T i 1,, pr i nci p a l r;np i g  tt i t  I AP i - f  I [PR

ar c u js n ’lesc - for op .’r - it ni l on c loc u i r  cc- , Yoij c - i r r~ u r i I  tak e t he  ‘i n c-~ 
q~ ‘ p  r u  I i  .

~

c l osu re  w u  h u n t  s e t t  rn(~ p u I c -  e r n v i r r i n n m o i l . [,f’r g  ti n nn t u rin; I n n ’ ni l r i p n I i ~~n’ ’
tb- p m r s n i c t  t r e a t  ,lqsi r t nr ~ ’r f v i ’  u dr Ie s as t h n n u u i ~~in f i i ~ ’ u 4  noo n f r  a r - l i a r  e r r ’ ( i . e . • lu

s t r a ig h t  t o  t he i r  v i b u n e c b 1 ann c o r r n . r I I t  i u ir , r I I o e n v i t ’ S I t r -~~ ,t i rr ’ r I i 4 ’ ’ n ’ s n n n

to the pr riper pan i 5 0  f t u ’rp env r nnmpnt f r  pe - P en and ti - - i~ u ; j  i n  ~i

pape r th a t i t  u s  el ‘ n ~‘- u •c ~ un i n u c a t  on-n a i p r ~~i “ f r -u’ c In ~~i n cc . n u t ,
i f  is  c i s~~ to n u r i ’c .10 4 u i f l f’  n i ger n~~ i r” h u t  t~~,’ f i r  I ~ ~~‘ P v r r y  ‘ i r i i l i I  i n i r u n ;

tn a ’r to t i ~ e t h i  , r i ~~ C t r o j  i o n i c -  c - a c e s  i n t O a-  non 1 5 n n nme iir n r r u p  I h i - t n ’ ‘ -;r - - - u ’ ,

I sot vod t h i r -  pm i f  ,-n,, 
~o flose u f . ~ p Pp hi  0 f~ j mru l  a ~~ n~ frgn r ‘ inn (iii ‘hi n n i ’ - n - s

I i k e  FriA r anit I h b A i  ~ I 1jt , i (;Ind
~~n ip n u n q l i  t 0  LI~~~’ s MA n f r nnr t u n u ’ ; )

r u n u , n n it  i oni c- ovc’ ’  F t u~~~ , - P - n-’ u ’ :~ qt r ic- t i  Os , ft 1 ’ i l ui C I i  I u - u r i s - i , - ’- Iii hi r u t

a t va n u a i u c’q a n n u l  n u n  FlAI l. 1 1 1  f ir s I rip,iI , l r u 1 u n ? n i~ r u $ 9. c - u.n 11,5 1 a r e  r, i

cm ’; n 5 n  t u
~ ~ i i  to ~ l uui j ~ lo fCI t i e I fiR i t  a for mul a . j uno  have to i i ’  !~~ it  P ’ .

NI I ION I A PI I Mt A) t h n c -  hi i r u ~~c- two spec r a t  var ab I ec , does ;r r  in n ’ 1 n i ~~ p u  i I it In ’

pr oper ~~i — I ‘n I I onk u ; i  Or i A l? , and st I I I r e t u r n s  .1r1 ntn j e c t I c u r  h i as -- h i : ;  1~’uh ‘P~
(P ?‘ ~~) ‘ ‘)  j i t u i i  h ~~ m .- ini i n i n 1 l o s c -  without fur t h o r  h i t  I i i  k m u  in t h i n ’ I n n  r u n t  u ’ s
e r n vir o n im eri t t i e ,

A ?.u c- , tt i’ sp n r r i t r  In’s”  ,)r e r n m l n l  i c a t e d  an order of magn i f i n i t e  t i 1  in l ’ ’ r  ic ‘ u nnq
u i  t b  ~~p u , n c r - n t f o r  nr c - n u t  enitro IrlecI f o r m u l a s .  (See A ppenrl i x 1. ) Pro, i - s m u t  in
p r rn t u pu hItn , r h f or mu Ia ofte n r i -g u i  i n  es cc I I i ng up a stack of env I ronmn’o I’, • nit i r b ;  i q

( l un ’ nhc n h  a nnul  p u lg ou t  i; in - i yr-n into a pa in of brackets on enr o n in t.’ r  ,in n o r  i 1 u e
frr m .

F i r;,n I I I i t i s v ,’ r 0 b in 1 t~ utp ve lop in tu i f i nns  at nor  it the s Ir ni ‘ iii e In

env i n r;nn ’rn .’nr I In c c ’s .  A I i  u p  h r  orjr am that  man i pu I at n’s env i ri ’, d r r m ’  c-n ’ t i n

anyth in g radical I uj d i f f e r  n-r i I from a correc t program: i t • s jus t  I rink ny it t h i n ’

wrong parts njf the envir onment tree. The envid s it uses urn’ j us t  l i t t l e
.integer s w i t h  l i t t l e  mean i ng . Debugg ing such a program u suall y n r.n ires dIni u rn to

exper i mentin g n~ i t h  d i f f e r e n t numbers u n t i l  something works 1

Bibliography

Abel son , Rober t (1’F7~ ) “ [oncept, ton Representing Mundane Rea l i t y in Plin s , ”

in Bobrow and [n l i i n c -  (1375),

A lexander , I , (1%4) Notes on the Synthesis of Form , Cambrid ge: Ha rv an i l
Un i versi t y Press.

A gimow , I I .  ( I % 2 )  ln tr odu ct ~ on to Des ign , Erig l ewood C l i f f s , N.J. : Pr e n t n r e -
Hall , In c.

Bledsoe , L.J . I.-j . ( 1 b ’hb Non-Resolut ion Theorem Proving, The Un i v e r s i t u p  ni T e w d s
at A u s t i n , Dep a r t m e n t s  of M athematics and Computer Sciences Aut ci nrua ’ in
Theorem Proving Pro tec t Memo AlP 29. Based on a Tutorial talk g iv er -n i t
I J C A I  4 .

B l e d s om , 11.14. and Mabry Tyson (1975) The UT I n t e r a c t iv e  Prover , T h u s  Un iv . ’ n  ‘;i



13 i h I i r r p  .I l .b I

of Tex as at A u s t in , Pu- t ar Irnr ent c -  o f  M a t h e m a t i c s  and Cornoute r 1
~n i n ’ r n u co

Automatic Theorem Provin g Project Memo ATP 17.

Bohr nw , Danie l  6. ,inint A l l a n  M. C o l l i n s  ( 1375) (e r ic - )  Representa tion /und
Understand ung. N ou n r u n  k: Academic  Press .

Bohr ow , Dan- n i e I 6. a n t  Re t r i m  Raphael (1974) New Proyr amm i ri g Lan rp i t  c r ur
A r t  u f i c i a l  I n t e l  I i qC u - n u m’ Hoc- e ar h , Comput ing Surveys 6, No. 3 , p u .

Hiut ir ow D a n i el  1 . and Tp rr g 1.Jinograd ( 1976) An Overv iew of KR! , 4 K,wwlr(IqP
R e p r e s e n t a t i o n  Lang uage , u n p u b l i s h e d  paper , version of (lay ~~~, 1 P ~

Boger , P.S .  a n t  j ,  ~5, tl rinr u’ ( 1972) “The Shar ing of S t r u c t u r e  in Theo r i- r ui Pr l iv i

Programs , ’ in Fl p lt ~~eu and I lichie (1972 ) .

Bra nd . My ln ’ r- ( 1 t ’lt b The N a t u r e  of Human ~ction , Glenvi ew , I l l i n o r s :  ~r io 4

Foresman , an-i l Cnn n p n .;n u p . 
-

Bressan , A Ido (10 ‘1  4 Gen eral Interpret ed lloda l C a l c u l u s ,  New Haven: I.i 1
Un i ve r sit ~ Press.

Brown , A . (l~~~
7 r - b  Qua l  i t a t i ve Knowledge , Causal  Reasoning, and the loca l ni.i t ion

of Failures , I lm hui  i (l(nn’ : unpub li shed tIl T Ph.D. t h e s is .

Brown , A . anrt G.J. r U- r im (1974) ‘Localization of Fai lure in Pa ul o C u i - n i t o - -~
A St ud y in [.i i~~i I ~ nuI T e l e r - n log i c a l Reason i ng.” Camlin i ctyc’: M I T A l Lit P h - r u - u

3 19 .

Buh I , ib ,fl , (1’IE.J Creative E n g i n e e r i n g  D e s i g n , Ame s, Iowa: ihc l on i a  ~~ta ’e

U n iv e r s i t y Press ,

Buchanan , Bnui c c , [ . iur ir  u p u a 3ut h e r  l and , ann E . A. Fe u yenbaum ( )  gçr~) “I lb I I ~ ~t
DEN[1RAL : A Pr u r ~ r am ‘or 6 .-ro rratin g Exp l anato ry Hypotheses in Or i p a r u i n
C h e m i s t r u p , ” in M e l t : ”  h u t  Mict - nie (1969) , p. 2139.

Bundnj , A l a n  ( 1 97~ I fir- u i Im p .  i rig M a t h e m a t i c a l  Proofs (Or Pears i n i p  ~~e t  u i - r n  t I n . ’

L i n e s) , ” in Proc . IJC/ U 4.

Charnu .i~~, Eugene (1J7 b Toward a Mod e l or Chil dren ’ s Story Compretrenc ion ,
Camtn r id yn’, Il i ’i .in buuj ~~~ f Is : till Al Lab JR 266.

C h a r n i i k , Eur)ene ( I97~ ) “A 1 - u n t ia l  Taxonomy of  Knowledge about Ar ’ inns , ’ P r o c .
I J C A I  4 . p .  9 1.

Chohan , V .C. m i t  I.~ . F u ll . ’  ( 1974 ) “Computer A i r l e n t  Desi gn c i t  F l  I t n  c- t i ,  Li i t i

T r a n s m i s s i o n  Uc- i ny Fre g u u e r r i j  Flodu lat ion,” Proc. lot. Conf. on CA!) I’l- ’l .

Oan to , Arthur C. (1ii;~1b “B, isic A ctio n s ,” A m. P h I l .  Quar t .  2. p. 141. A l r u r u  iii
Br and (1978) , p. 255.

Oar lington , J.L (l fli ,ll “Theorem Prov i ng and Information Retrieval .” in f h ’ I t :e i
and M i c h i e  (1’)F,’Ib , p. 173.

- - -



B lb I i oqr ip it r i p

f l ,avi s, Ranri,i I I ( l i P n i ) A p p l i c a t i o n s  of Meta Leve l Knowledge to the
C o n s t r u c t i o n , H,i intenance , and Use of a Large Knowledg e Bases , r I ir n ’u n ul Al
Lab M e i n u m  A IM - -~~~~.

Day i , Ra’nrla I I . B t-: . P u  h rr- in , an’S Edward H . n ihflr t I i  f t p  ( lul7n i)  P r o d m i c  t inn
R u l e s  as a R e p r e s e n t a t i o n  for  a Knowled ge-Based Consul tat ion Prou;r .ini ,
Stan ford t i n i v n r  ‘ii t u ~ A l L u u r ratory Memo A l M - 2U-i~.

Day is , Pin i.i i in- it  i m i i t t u u n m  fr ing (19/5 ) An Overview of Product ion Syc ti ’u c
St in for t (Jo i vr ’n c - i t  ~ A l  I .it ~oc at o ry  Memo A IM— 2 7~

D i r e c t o r . 5.14. (1iU ~u +) “ T o u narc is Aut r ’n at i c Desi gn of Inte grated C i n r i j i t s .’ ri
S p i l l e r - i  ( 197 4 ) , p. 107 .

Doy le . inn (lllPb A n a l y s i s  by P ropaga t i on  c,f C o n s t r ain t s  in Elecw n (,iry
G e o m e t r y  P r o b l e m  S o l v i n g .  C ambr idge: t i lT A l  Lat (Jock ing Paper 10~~.

[Jou p l e , Jon (19771 Tr u th t la in tena n c e Systems for Prob lem S o l v i n g ,  C i r ” t - r  i u I u l r ~.
M.i c-~~. :11 1 T Al  L at ro r  it o n ,  Rep or t TR-4 19.

E a s t m a n , C t n . i r  es Ii. (19G:~ ) Explorat ions of the Cognitive Processes in l t r s i q n .
uni pu htis t u e r t Ph .D. dis s ertati on , Carneg ie -Mellon University.

as ’~~.-nn , Ct n .i r es Il. 11119) “ P r o b le m - S o l v i n g  S t — a t e q i e s  i n  De s i gn , ” Proc.  m v .
Des. Res. .lss. Conf .

E I ec I n ru i n  i c Dec- i cjn ll gp 6 ’ 400 Ideas for Des iqn , cony-n i led by t b.’ c r 1  i ton s of

F lectron ic Design Maya: t une . New York:  Hayden Book Company . In’

E l i  thor n, A l  ic k  ~i r n rI D av id  lonr’5 (1973) A rt i f i c I al and Human Think ing.
A m s t e r d a m :  E t s e v u e n  S c i e n t i f i c  Pub l ish ing  Comp any.

Ernst , Geor ge L4. (1171) “The U t i l i t y  o’ Independent Subgoals in Tb nen nr  crc-

Prov i ng, ” Informa t ion and Control , A p r i l .

Er,~gt , George (4. (1 973) “A D e f i n i t i o n - D r i v e n  iheorem Prover .” Proc. IJr~lf 1,
p. 51.

Ernst , Geor ’j~’ (4. .- iu ir l A l l e n  Newell (1969) GPS : A Case Sttidy in Gen era l i t y  and
Problem-Solv ing, N en i ~rurk : A cademic Press.

Fah lman , Scott (1’113) A Plann ing System for Robot Construction Tasks,
Cambr i r t rp . ’: M IT Al [ ,u  - Technical Repor t 283,

FaP. l ma n , S c o t t  ( 1 9 7~
-nl  l t r n ’ c l s  Progress Report: A System for Representing and

Us i n g  R e a l - W o r l d  I (now led qe , ~~imbr irJ ge: (lIT Al Lab Memo i~ 1.

Farber , D.J. , 0.1 . (‘n i ’ n u u n i l r $ , and f . P .  Po lonsky 11964 ) , “SNOBOI , A St n m y

Ilanipul a t , nun ar n guia rpr ’ , “ ~J/1CM 11 , p. 21.

Feige nhaum , E,A . and J. Fel itn in an (1963) Computers and rhought , New Y u i n k t

McGr aw-Hi  I I  Book Company.



Ilib I m e r ~i . $ p u i  i l 1 1)8

F I kes . R I char ] inn Ni Is 1. N’ I c-son ( 19 71  1 “ST RI  P’-,: A New A 1u 1 ir - i -  h t o  II’.-

A p p I m c a t  ion of  T b c ’ r i n ,’m Pr o v i n g  to  Pro ble m So l v i ng , ” Proc . IJCAI 7. p.

F l e t cher . A .J .  11176 ) ‘[ I IRIKA - -  A S ys tem for the Au t omat i c L.ig’ u u i of  S i rn r 1 lp

Sided Pr i n S e r t  C i r c u i t Mn ,irdc-, ” P r o c .  tn t .  Conf on CAD 1974-

F I oyd , Rot-ner t (111,7b “ A u  i r1rn u nq (lean i orj s to  Prom p r  a ,imq , “ i n  J. T , S n m n u n  in I :  ( ‘- n i

Ma t h e m a t i c a l  A s p e c t s  of Computer Science , p. 19.

Freeman , P. annl A l l e n  N r ’ u i p l t  ( 1 9/ i )  “A Mndc- I for Fonct un nal Re .’oo i nn~ in

Desi gn .” P r o c .  IJCAI 2 . p .  621.

Furman , l .A. (1970) (Nt. ) The Use of Computers in E n g i n e e r i n g  D e s i g n . I r u h u u r n :

Eng l i s h Univ e r s i t i e s  Pnec-c- .

Glegg , Gordon Lindsay (1973) The Science of Des ign , ram hur I doe tin i yen c- u ‘ ci
Press.

Go l dman, A l v i n  I. 119 713 1 A Theory of Human A ction , Eng lewoo rl C l i f f s ,  N .  -

Prentice -H i t  I , I nc.

Grason , John h1’u7131 M ethod .s for the Computer-Implemented Solution of a Cl ,-n ’,c
of “F loor P l a n ” D e s i g n  P r o b l e m s , u n i p u n h I i c - h~~rS Ph .D. d issertation . [i r m n .- cp ir-
Nel(on U n i v e rs i t y.

Gray, P.E. .h r mnl  C .L.  Se ar I.’ (1969) Electron ic P r i n c i p l e s :  P h y s i c s , Moiiels , and
Circuits , New Yor k : Iohn (J r leg & Sons , Inc .

Green , C. Cor rte l I (1%9a( The A p p l i c a t i o n  of Theorem Proving to Quest ion-
A n s w e r i n g  Sys tems , S t a u i n t f o r r t : Stanford U n i ve rs i  ly Computer Sc i c ’ r m n P
flrgjar tme nt  Repor t C~~ 138 .

Green , C. Cor ciell (lllnltn) ‘Theorem-Prov i ng by Resolution as a B-i- c- f o r
Q u e s t i o n — A n s w e r i n g  S ys t e m s ,” in F le lt zen  and Il ichie (1969).

Han ey .  Fr ec te r  i r k  Mar inn (I91~~ l Using a Computer to Design Computer i n s t r u c t i o n
Set s , Pit tsb ui rg h :  ~a’ nc’q e- M e l l o n  Un ver s i  t y Comput er Science (lepar t n m r ’ r n t

Ph.D. thes is .
)

Hayes, Patrirk J, (117 ~al “The Frame Prob l em and Pe la t ec i  Prob lems in

A n t i  f I ci a l  I n te l  I i  geni i n’, ’ in El i thorn and loneg (1973)

Hayes, Patrick J. (1973h) “Comput ation and Deduction , ” Proc . MFC 5 Symp .
Czech Acanl . of Sc i ences.

Hayes . Pa tn i r k  J. ( 1974 )  ‘‘ nm.- Prob l ems and Non-Problems in Re;-nr es r ’ n ta t  i u u n n

Theory, ” Snu’inen ~: Proc AI SB , p. 63.

Hayes. Ph i l i p  (1975) “A R ejr r es en tm t io n for Robot Plans ,” IJCA I 4.

Hay t , UI Il i a c - u  14 , i rnr t 1~, ’n o l d  (4, Neudeck (1976) E l e c t r o n I c  Circuit An aly s Ls and
Design , Boston: Hought ori M i f f  Mn Cnmpan y .

— — . 
— 

——- — - - -



B it, I i  oqr a~r l uu (

H e witt , Car l (197~ ) D es cription and Theoretical Analysis (Using 5 (:heurratm ) of

PLANNER : A L a n g u ag e  for Proving Theorems and Manipu lating Model s in a
Robot , Cam bri ciq e: MI T Al Lab TR-258.

Hin t ikk ,i , Kair to Jaako In ih a nu (1962) Knowledge and Be l i e f :  an Introduction to
the Logic of the rwo Not i ons , Ithaca: Cornell University Press.

Hoa re , C .A .R . (1969) “An A~~iomat ic Basis for Computer Programm i ng. ” C/ICH 12,
p. 576.

Hughes. G.E. in’S tl ,J. Cres cu etl (19721 An Introduction to Moda l Logic . t r -n r r r fnn:
Met inuj en and Co l td .

Kin g, J. (i 11 ~9l A Program Veri fi er , Pittsburg h: Carne gie- Mellon Ur iiv er S i t u 1
Ph.D. thes is ,

K” u u i I  ~-k  u , Rober t ( 11731 Pred Icate Logic as Programing Language , En f i r i t - u m i  q ln:
I n i ve ns i  t i~ of  Er iir nhu u r rjh Depa r tmen t  of Computationa l Log ic Memo 70.

Kowal’ ik i . Rober t (j976) Logic for Problem Solving. Edinburgh: Univn’ r c - i ti ~ o f
Eul m rnujl ur qb D e p a r t m e n t  o f  C o m p u t a t i o n  Log ic Memo 75.

(1 4 ~~ -n) “A Proof Procedure Using Connection Gr,rip t uc ,” J . Act’)
22, p. S/p .

. 1 . t ro t (4,1,, M iq nu n~u o r n (IlkI) teds.) Computer—Oriented Circuit Design .
£ nn n j eou nic l C I n  U s , N. I.: Prentice—Hall . Inc.

L,inuj f u u n i l . I, I nnn (1 ’4 711 Human Action . Garden C i t y ,  New York :  Douh le nla i j &

Comp Pu , I rn

L a ’ n n ’ r n n u i ’ . “. ini  Cl li t”  ( i t ’ l l  Ar tif i cial Intelligence in Computer- A ided Des ign :
lhe TROPI C System , Menl o Par k: Stanfor d Research Inst tut e A r t  i t  m c  r . i 1
In r’ I I i qerace .‘n t e n  Jo n  Pun i r a I Note 125.

Lehoer t , ( J r ’ n i i i u~ (117r ,) Quest ion Answering in a Story Understanding System , Ne n i
Haven: Yal e U n i ’ i e r s i t y 

j
0’nnl)uter Sc ience Research Repor t 57,

Marcu s , M. (1973) Wa it- ,inui~ See Strategies for Parsing Natural Langu age ,
Cambridge:  M .I.T . A ,1 . Lab I4ork ing Paper 75.

Mar rnjq , II . (j971 ~) “Diarj no~~i q as a Not ion of Grammar .” Pre-prints of 14r nr~~r lrnp
on Iheo retical Issues in Natural Language Processing, June 19-13, 11,’ m ,,
M.I.T.

flagon, Tl att t n r ’ w (1976) Qual Itative S imulation of Swine Product ion , l amlu r idqe :
unpub I i glie n t lii I m m  t n t  u~r 

‘ S thesis.

f1,~ t hl - m t n  (11’ ’4) ?1,4CSYSMA R,~ference Manual . Cambr i dge: 11)1 A r t i f i c i a l
I n t e l l i gence Lahor a t r r q .

Mr f a r  t t u u 1 ,  l ruhnn (I’P’(l “Pr u nj r a m g  iii th Common Sense, ” Proc . Sympos ium on
Mechan ization of Thought Processes I, London: Her Majesty ’s Sta tmnm n , ’ r c1

.1” _ _~~ — - - —- - ——-
~~ 

— — -- -  - - - — — ‘ —— - — -. 
- —



Bib l iogra ph y 260

Office. Also in Minsk y (1968 ), p. 403.

McCart h ,~. John and Pat rick J. Hayes (1969) “Some Philoso p hical Problem ’; (r u m

the Sta ndpoint of A r t i f i c i a l  I n t e l l i gence .” in Me ltzer and (lichie (Vl1,’ll ,
p. 463.

McDer mott , 0. (1974a) As similation of New Information by a Natural Lang uage -
Understanding System , Cambridge: MIT Al Lab TB 231.

McDermott , 0. (1974t,) Advice on the Fast-Paced World of Electronics,
Cambr i dge: M IT Al Lab Working Paper No. 71.

McDermott , 0. (1975) Very Large Planner-Type Data Bases , Cambr i dge: FlIT A l
Laboratory Memo 339.

McDermott , 0. and G.J. Suc-sman (1973) The Conn iver Refe rence Manual .
Cambr i dge: Lil T Al Lab Memo 259a.

?leIt,i er , Bernard , and Donald Il i c hi e (1969) (eds.) Machine IntellIgenc e 4, Neti
York: American Et sevier Publ ish ing Company, Inc.

Me ltz er , Bernard , and Donald Mi c hie (1972) (eds.) Machine Intelligence 7, New
York—Toronto: John Ui leg & Sons.

tl ichie , Donald ( 1” 4~~• ) Mac hine Intell igence 3, lIeu York: American E ls evie n
Publishin g Companu4. Inc .

Minsk y. Marvin ( 1118) Sem an t i c  Informa tion Processing. Cami)r i dge.
liasgachussets : lil T Prec ~ .

Minsk y, Mar vi n  (11~~4 I A Framework for Repr esent in g  Knowledge , 1amm-ni i riqe: MI I
Al Lab Memo 306 . R e v u - ~m - u t  v e rs i o n  in Uun,to rm l I ’ l 7~~l .

Moor e, J. ann) Al len N~ m ne l I 1j3 74) ‘
~~‘n~ ~r Mpr - u n  ~~~~~~~~~~~~ i n  Cr r i m

(ed. I Knowledge and Cognit ion . POluiMan ~~~~~ -~ I~~ni n5 : Lawrenc e Er I l n am im

Associate,.

Moore , Rober t C. (1r)mr 1 Reasoning from Incomp lete Knowledge i re  a Proc edmsr,i l
Deductive System , C r c - lu ,  i r irj p , Ma,,.: M IT Al  L at nnun a to r y JR 347.

Nev iri c- . Arthur (1174a) “A l4u im an Or rented Logic for A utnm at ic Thp orem -Prnv rig, ”

JA CM 21 , no. 4, p. 606 .

Nevi ns , Arthu r (117’,m n ) A Relaxation Approach to Sp litt ing in an Automatic
Theorem Prover , 1,ic-t ir  uh;e , Massachusetts: MI T Al Lab Memo 30’. Al so
Artificial Intell igenc e & p. 25.

Nevin’ , , Arthur (1’) 7 6 n I P lane Geometry Theorem Prov i ng  Us ing  Forward C h a i n i n g ,
Camhr i dge: MIT Al La in Ph-m o 303.

Newe l l , A l I e n  ( 191 , ’ ) ”  ~~~~ Prob l ems of Basic Organization in Prob l em-So lving
Proq r mnrn ’,, ” in Y n v u t t s , M. , 6.1. Jacob i , and 6.0. Goldstein (en),.) Self-
Organizing .Systems--1962 , -~~~w York: Spartan.



H i t  I u n n u 1 r b l u r ,

N ewell , A l l e n  (1971-a ) “Production Systems: Model s o f Contrn l ~,~~r n J r t J u ,

Chase , L4.C . ( e n ) . )  V i s u a l  I n fo rmat ion  P r o c e s s i n g  (New Y o r k :  A i - I nn ’ , ,  l~~ •

p. 463.

Ne we ll , A ll e n  (1973tj) “ A r t i f i c i a l  I n t e l l i gence and the Concept of ri - I . ” i n

Schank and Colb y ( 197~~) . p. 1.

Ni Ic-son , Ni Is J. (19711 Prob lem -SolvIng Methods In Art if i cia l Int elli grnne .
New York: McGra w - Hi ll Book Company.

N i lc -~ on , Ni I, J. (1971) /1 Hierarchical Robot P l a n n i n g  and E x e c u t i o n  Sy c t e u i .
Menlo Park , C a li f orni a: ‘n Pl A r t i f i c i a l  I n t e l l i gence Center T e c h n i c a l  Unto
76.

Pople , H.E . , Jr. ( 19 7 1)  “On the Mechan i zation of Abductive Log ic ,” Proc.
IJC A I 3.

Powers , Gary J. (197 ’t “Co mpu ter Aided  Synthes is  of Chemica l  Procc.~~si rn r i

Systems ,” Proc. 6th Princeton Conf. on Information S d .  and Systems . I .  42.

Powers , Gary J. (1973) ‘ Non-Numerical Problem Solving Met hods in C om p i it r ’r
Aide d Desi gn .” in V l i e t s t r a  and l4ie l in ga (1973) .

Powers , Gar y J. and Dale F. Rudd (1974) “A Theory for Chemical Engineer in n 1

Desi gn ,” in S p i ll er s (1974).

Pr i or , Arthur N. (1957) Time and Modality, Oxford: Clarendon Press.

Pr i or , Arthur N. (1967) P a s t , Present , and Future , Oxford: C l a n  c - ’ r nntu , rn Pr ,’ ’; .

Rescher , Nicholas and Atas da ir tJrquhar t (1971) Temporal L o g i c , Neri Y o r k :

Spr i nger -Ver lag.

Rneger , Charles ( 1976) “An Organ iza t i on  of Knowled ge for Problem ~n n n l v i m n ’ i  .irnnl

Languar;e Comp retur ’rns ion ,” Arti fi cial Intell igence 7, No. 2, p ~~)

Robinson , J.A .  1 1 91,C) “A Machine-or iented Log ic Based on the R e c - o l u t i n u ru

Pr i nc i p l e , ” J A CI I  12.

Rogenhrock , H.H. ( 1974) Computer-Aided Control System Design . Lonrlorn :
Acade mic Press.

R u l i f s o n , J.F ., J .A .  Dn’ rkse n , and R.J. Waldinger (1972) 0A4: A Proc e dur . i l
Calculus for Intu i tiv e Reasoning, Menlo Park: SRI Technical Note 71 .

Rychener , Michae l 0. (1975) The Studnt Production System: A Study ol’ fnc r ’nri ing
Knowledg e In Production Systems , Pittsburgh: Carneg ie-Mellon lJnivr’ n ‘ u r i u

~
Oepartment of Computer Sc i ence.

Rycherrer . Llirh a e l 0. (l’176 l Produc t  Ion Systems as a Programing Language for
A r t i f i c i a l  Intell igence App licat ions , Pitt sburgh: Carneg ie -M ellon
Un i versity Department of Computer Sc i ence , in preparation.

— — - 
~~~~~- —-—-- - ~~- - - - - - -.~~---—~ - —

~~~
--

~~
- - :- :

~
‘- - - - -



Bib liog r a lrh y 262

Sacerdoti , Ear l D. (1975 ) A Structure for Plans and Behavior , SRI Art i f  j n i i i

I n t e l l i gence Center Tec hnical Note 109.

Schank , Roger (1975 ) “The Structure of Ep i sodes in Memory, ” in Bohrou and
Collin s (1975 ), p. 237.

Schank , Roger and Rober t Abe I son (1975) “Scr i pts , Plan,, and Know I r’nlqe , ’ Proc .
IJCAI 4.

Schank , Roger and Kenneth Mar k Co lby (1973 ) Computer Models of Thought and
Language , San Franc i sco: U.H, Freentan and Company.

Sereturia , Stephen D. and Bruce 0. Wedlock (1975) Electron ic Circuits and
Appl ications , New York: John W i l e y  and Sons, Inc.

Shor t I i f fe. Edward H . (1171, 1 Computer-Based Medical Consultations: M YCIN . Non

York: Am erir ,in E l - i e v ,er Publi sh i ng Company, Inc.

S i k I os s y ,  L. and J. React , (1973) “Proving the Impossible is I mpo ssih le is
Possible: Oisproofs Based on Heredi tary P a r t i t i o n s ,” in Proc. IJC/l 7 1, p.
383.

Slag le , James B. ( 197 1) Ar tiI ’ icial Intelligence : The Heuristic Progra rnim ing
Approach , New York: ‘icC’r ,~u-)4~~l ) Book Company.

Spi I lers , W i l l i a m  B. (1974) (ed.) Basic Questions of Design Theory. New York :
America n Els evi e r Publi sh i ng Company , Inc.

Srinivasan , Chitoor V . (1976a) Introduction to the Mete Description System ,
New Brunswick , N.J.: Rutgers University Dept. of Computer Science Sfl’ AP - TR-

18.

Srinivasan . Chit oo r V . (197Gb) “The Architecture of Coherent Inform a ti on
System: A General Problem Solvin g System ,” IEEE Trans . on Computers C-25 ,
no. 4, p 390 .

Sta l lm a n, Richa rd M. and Gerald J. Sussman (1976) Forward Reasoning and
Dependency-Dir ected Backtracking In a System for Computer-Aided Circu i t
Analys is , Cambridge: MIT Al Lab Memo 388.

Stickel , Mark E. (1’J 7~ ) “A Complete Unification Al gorithm for As sociative-
Commuta t i ve  Funct ions ,” Proc. IJCAI 4.

Suppes, P a t r i c k  (1957) Introduction to Log ic , New York: Van Nostrand Reinho ld
Company.

Sus ,ma n , G e r a l d  J. (1175 ) /1 Computer Mode l of Skill Acqu isition , Nein York:

American Elsevier Pub lis hin g Company.

• Sussmarr , Geral d J. and D.V . Mc0ermott (1972) “From PLANNER to CONNIVER --. A
Geneti c Appro ach ,” Proc . FJCC 41, p. 1171.

Sussman , Gerald J, and R u rh a rd M. Sta l lman (1975) “Heuristic Techn i que’; in

.,— _,~~_ , — —~~~ .~~~~~~- - - — ~‘ nnu__ ‘ — —  —
~~

‘-



Bib I i oqr 11,1, 1 ; i’ I

Computer-Aided C i r c u i t  Anal y s i s ,” IEEE Trans. on Circuits and System.s 22.
p. 857 .

Tarnlund , Sten-Ake (1975) “An Interpreter for  the Programm ing Language
Predicate Log i c ,” Proc . IJCAI 4, p. 601.

Tate , Au n~t i n (1975 ) “Inter a cting Goals and Their Use,” Proc . IJCAI 4.

Trav i s, Larr y, Charle s K e l l o g g ,  and Phi l i p  Klahr (1972 1 inferential Question-
Answering: Extending CONVERSE , mimeo.

Tulvin g , Ende l and L4agne Donaldson (1972) OrganIzation of Memory, Nein Ynr k :

Academic Press.

V l i et s t r a . J. and R.F. W ietinga (1973) (eds.) Computer-Aided Design ,
Amster dam: North-Holland Publish i ng Company, Inc.

Wa ldinger , R ichard J. and K,N. Le vitt (1974) “Reason i ng abou t Progr ams .”

Artificial Inte llig ence.

Warren , David H .D.  (1176) WAR PLRN : A System for Generating Plans , E r l u n l n ’ u ’  ‘1 h:

Un i versit y o f Edinbur gh Department of Computat ional Log ic Memo . No. ‘1,.

Uatson , J. (1970) - Semiconduc to r  C i r c u i t  Design : for a.f. and d.c.
Amplification and Switching, London: Adam f4 i l ger Ltd.

Uineton , P a t r i c k  H. (1975) The Psychology of Computer Vision , McGr aw-Hi II .

— ._t . — — - - 
— - -  - -- -“-~~~~~~~~~~~~~~~~ -~~ -‘-  —-.. r’- - - 

- 
~~~

— —

