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CHAPTER 1

INTRODUCTION

1,1 Contents and Organization of Report

Chaper I contains the study objectives and a discussion of the

applicability of the newly developed Optimal Spline Method to ship

classification and to the system identification of aircraft nonlinear

aerodynamic flight regimes. Summarized in Chapters II and III are

its successful application to ship classification work and to an on going
aircraft identification study*. A detailed mathematical development of
the Optimal Spline Method is derived in Chapters IV-X. Chapter IV
contains a mathematical description of the problem investigated in the :
study. Six different cases of the problem are discussed in Section 4.4.
The Optimal Spline Method is derived in Chapter V as a solution to the
posed problem of Chapter 1V. The analytical expressions for the guanti-

ties of Case 1 (i.e. the case applicable to aircraft system identification)

are derived in Chapters VI and VII. The analytical expressions for the
ship classification case (i.e. Case 2) are derived in Chapter VI1II. Cases
3-6 are treated in Chapter IX. The procedure that determines the starting
estimates of the knots and their locations is described in Chapter X.

Chapter XI gives the conclusions.

tStudy to Develop and Apply Nonlinear State Estimation and Parameter
Identification Techniques to the High Angle of Attack/Sideslip Flight
Regime of Conventional Aircraft and to the Hover and Low-Speed I'light
Regimes of V/STOL Aircraft, Contract No. N62269-76-C-0342, Naval
Air Development Center, Warminster, Pennsylvania 18974,




1.2 Study Objectives

A nonlinear function can be chopped into subarcs having small
nonlinearities which can be adequately represented by simple spline
functions. The domain of a subarc is called a spline region and a point
Joining one spline region with an adjacent one is called a knot. 'The
plecewise combination of the simple spline functions that fit the subarcs
is a spline representation of the nonlinear function. Spline representa-
tions can closely approximate the nonlinearities of any function. The
goodness of fit depends on the number of spline regions and on the location
of the knots. The first objective of this study is to derive an automated
method that minimizes the number of spline regions and optimizes the
locations of the knots to provide an adequate fit of a given nonlinear
function. This has been accomplished by the development of the Optimal
Spline Method discussed herein. The second objective is to apply the
derived automated method to two important applications. This objective
has been accomplished by the successful application of the Optimal Spline
Method to ship classification and to system identification of aircraft non-

linear aerodynamic flight regimes.

1.3 Applicability of the Optimal Spline Method to Ship Classification

A major technological area challenging our U.S. Fleet is the
over-the-horizon detection, classification and targeting of surface ships.
The introduction of weapons like the HARPOON, the TOMAHAWK, and
the ALLCM have brought about new requirements in ocean surveillance.
Active and passive sensors are required to provide beyond the horizon

knowledge of all vessels under all weather and communication conditions.
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A large gap in surveillance capability currently exists in bad weather
for non-communicating targets. The high range resolution radar system
is a candidate having great potential to fill this gap. Current technology
allows the existence of radar systems capable of obtaining surface ship
signatures (stern-bow profiles) having classification potentialll] -
Accordingly, identifying a ship signature is largely a software problem.
This report provides a very important contribution to this area by

presenting a new technique - an Optimal Spline Method - which generates

the independent features of a shin signature for classification purposes.

The integrated signal returns of a high range resolution radar
system provide data from which the radar cross-section per range cell
of a ship can be estimated. Radar cross-section is a measure of the
amount of a ship's superstructure contained in a range cell. Consequently,
a graph of the radar cross-sections per range cell drawn over a ship's
length (i.e., a stern-bow profile) provides a means for classifying ships.
The stern-bow profiles are the signatures for ship classification. The
separate superstructure masses provide peaks in the profile while the
absence of superstructure appears as valleys. An automated technique

is needed for determining the number of separate superstructure masses,

their separation from each other, their locations and their extended widths.
These are the independent features of a ship's stern-bow radar cross-section
profile. The Optimal Spline Method is an automated technique that fulfills
this need.

Stern-bow profiles of ships lend themselves well to quadratic spline
representations. Quadratic spline functions have the flexibility to fit any
ship's stern-bow profile and, most importantly, they have coefficients
that represent the independent features. These functions are mathemati-
cally described in Section 4, 2. The spline coefficients provide the features

for pattern recognition, and they are equal to the number of spline regions.
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‘The problem of identifying a pattern increases exponentially with the
number of features. Each set of data contains a fixed number of inde-
pendent features. If too many spline regions are used the independent
features are distributed into a higher number of spline coefficients. In
this case the set of spline coefficients form a dependent set of features,
making the classification problem unnecessarily complex. An indepen-
dent set of features can be determined by minimizing the number of
spline regions. This can be accomplished by optimizing on the locations
of the spline regions for each fixed number of knots and by minimizing
the number of knots. This is precisely what the Optimal Spline Method

accomplishes.

1.4 Applicability of the Optimal Spline Method to Aircraft System

Identification

The inability of empirical and theoretical techniques to accurately
predict the nonlinear aerodynamics of the high angle of attack/sideslip
domain for conventional aircraft and the propulsion induced aerodynamics
on V/STOL aircraft has spurred interest in extracting these effects from |
actual flight data. Efforts to develop suitable nonlinear state estimation
and parameter identification techniques for application to the high angle
of attack/sideslip flight regime of conventional aircraft have been under-
way for several years. Dynamics Research Corporation (DRC) has |
developed a unique proprietary approach to nonlinear state estimation
and parameter identification called the Estimation-Before-Modeling (EBM)
identification method which determines state-dependent aerodynamic
models for the forces and the moments acting on CTOL and V/STOL air-
craft in any flight regime. DRC is currently under contract to the Naval

Air Development Center to model a conventional aircraft and a V/STOL

aircraft using the EBM identification method.




|

’ The EBM identification method covers two phases -- state esti-
mation followed by model structure and parameter determination. During
the state estimation phase noisy flight records are processed by a unique
proprietary DRC estimation approach which uses quadratic spline functions in
generating optimal, smoothed time histories of all aircraft states, forces
and moments., Various applications of spline functions are given in
References [2-12]. Quadratic spline functions are used in DRC's approach
to model the unknown time histories of the forces and of the moments. 5
Each quadratic spline function is a function of parameters called knots
as well as a function of time, The location of the knots influence the
performance of the estimation unless a sufficiently large number of
knots are used in the modeling of each force time history and of each moment
time history. There is a limit, however, to the practical number of knots
that can be used in a computer program. That is, the number of simu-
Itaneous equations that must be solved in the estimation process grows
at the rate of one parameter per knot per quadratic spline function. Since
there are 6 quadratic spline functions - one for each of three forces and
one for each of three moments - the number grows at the rate of 6 per
knot. For the case of 10 knots per quadratic spline function there is a
total of 87 simultaneous equations; the additional 27 simultaneous equa-
tions are due to parameters other than those related to knots. The
computations and the storage requirement of the estimation process

grows exponentially with the number of knots. Consequently, it is advan-

tageous to use as few knots as possible while maintaining an excellent
estimation performance. This advantage is realizable by optimally

selecting the knot locations. The Optimal Spline Method is an automated

technique that performs an optimization of the knot locations and as a

result better models of the force and moment time histories are obtained,

leading to improved system identification of aircraft.

R — T ———— e T T




The Optimal Spline Method is being utilized in a study to

develop and apply nonlinear state estimation and parameter identi-
fication techniques to high angle of attack/sideslip flight regimes
of conventional aircraft and to hover and low -speed flight regimes

of V/STOL aircraft. The results [13] of one phase of that study will

be presented at the 4th AIAA AFM Meeting in August 8-10, 1977.




CHAPTER 11

RESULTS OF AN APPLICATION O THE OPTIMAL
SPLINE METHOD TO SHIP CLASSIFICATION

In Figure 2-1 it is shown how the Optimal Spline Method fits into DRC's
approach to ship classification. Note that it is the final block in the feature
selection process. Specifically, it extracts the important features of the
IRFP stern-bow profile. The IRFP stern-bow profiles are generated by the
Image Reconstruction From Projections (IRFP) Method which reconstructs
stern-bow images using high range resolution radar data. Before presenting
the results of an application of the Optimal Spline Method to ship classification

it is necessary to discuss the background of IRFP stern-bow profiles.

A test bed high range resolution radar system having a resolution of
50 feet was used in a Naval Research Laboratory Measuren‘nt Program
sponsored by the Navy Space Project Office (PME-106) of the Naval Electronic
Systems Command to generate profile data of fifteen ship types. Examples
of the radar data collected on passes over each of three ship types are shown
in the top three plots (1st, 2nd and 3rd projections) of Figures 2-2 through
2-5. The IRFP method which was applied to the top three plots generated
the bottom plot called the reconstructed image of the stern-bow prcfile
(i.e., IRFP stern-bow profile). On Run No. 38/Pass No. 8 of the U.S.S.
BARNEY the upper three profiles of Figure 2-2 were taken at the aspects
(measured clockwise from the ship's bow) 202°, 165° and 135°, respectively.
Note the measured radar cross-sections 362, 5540, and 2061 square meters
taken at the first, second and third projections, respectively. The projected
length of the ship at each projection is noted also. The horizontal axis of
each plot denotes the number of range cells (50 feet per range cell) measured
from the stern to the bow along the projection. The vertical axis denotes

the radar cross-section of the ship's portion contained in the range cell.
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The bottom profile is the output of the IRFP method resulting from the
input of the upper three profiles. This is the reconstructed image of
the U.S.S. BARNEY. The left end of the profile represents the stern
and the right end the bow. The IRFP results of another pass over the
U.S.S. BARNEY are given in Figure 2-3. A broadside drawing of the
U.S.S. BARNEY (DDG-6) is given in Figure 2-6, Note the similarity
between the IRFP stern-bow profiles of Figures 2-2 and 2-3 and the
superstructure of the U.S.S. BARNEY in Figure 2-6. The IRFP results
of a pass over the U.S.S., Dahlgren and of a pass over a Danish tanker
(the ESSO DENMARK) are given in Figures 2-4 and 2-5, respectively.
A drawing of the U.S.S. DAHLGREN is presented in Figure 2-7, A
picture of the ESSO DENMARK is shown in Figure 2-8., In all passes
the upper three profiles have been normalized to a total cross-section
of the projection that lies between the cross-section of the other two
projections. The IRFP profile has been normalized to this same cross-

section,

The results of the application of the Optimal Spline Method to the
IRFP stern-bow profiles of Run 38/Pass 8, Run 40/Pass 6, Run 32/Pass 1
and Run 44/Pass 1 are contained in Figures 2-9 through 2-12, respectively.

In this application the radar cross-section is normalized to unity. The

coefficient of the optimal spline function for each spline region is symbolized

by the notation "PBAR''. Optimally placed knots are denoted by the notation
"OPTIMAL'". For example, in [Figure 2-9 the value of 'r.l , (i.e., the first
component of the p vector Equation(4.16)) for the first spline region

[0.0, 0.72] is equal to 0.19; the first knot is optimally located at 0.72. The
second knot is optimally placed at 2.75. Since each range cell represents

50 feet along the ship's length and since the stern starts at zero it follows that
the first knot falls at 0.72 x 50 feet = 36 feet from the stern, the second at 138

feet, etc.

13
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Figure 2-11. Optimal Spline Method Results of Run No. 32/Pass No. 1
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l The number of knots, an output of the Optimal Spline Method, is five
for both U.S.S. BARNEY passes - Iigures 2-9 and 2-10. Note that eight knots

| were calculated for the U.S.S. DAHL.GREN and seven for the ESSO DENMARK
- Figures 2-11 and 2-12, respectively. The knot locations and the optimal

spli ne coefficient values are tabulated in Tables 2-1 and 2-2.

Analyzing the first two columns of Table 2-1 and the first two columns
of Table 2-2 we see that for both U.S5.S. BARNEY passes the knot locations
and the coefficient values are in good agreement. Looking at the third column
of Table 2-2 we observe that the coefficients for the U.S.S., DAHLGREN
differ from those of the U.S.S. BARNEY in sign as well as in magnitude. These
l differences together with the difference of 5 knots for the U.S.S. BARNEY
versus 8 knots for the U.S.S. DAHLGREN make it easy to distinguish these
two ship types.

It is also easy to distinguish between the ESSO DENMARK and the
U.S.S. BARNEY because (1) there are five knots for the U.S.S. BARNEY
and seven for the ESSO DENMARK, (2) their knot locations differ consider-
ably and (3) their optimal spline coefficients differ greatly in magnitude for

some of the spline regions.

Furthermore, it is easy to distinguish between the ESSO DENMARK
and the U.S.S. DAHLGREN because (1) their coefficients differ in sign and

(2) they have differences in knot locations.,

Optimally locating the knots has two advantages. The first is the
extraction of the independent features for classification purposes. The
second is the reduction of the least-squares error. In Table 2-3 is
presented a comparison of the least-squares error between optimally located

knots and equally spaced knots. The least-squares error of Run No, 38/
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Pass No. 8 for optimally located knots is . 01 and the error of the same
run for equally spaced knots is .87. The ratio of the error associated
with equally spaced knots to the error associated with optimally located

knots is 87. In all cases this ratio is greater than 10.
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CHAPTER 111

RESULTS OF AN APPLICATION OF THE OPTIMAL SPLINE
METHOD TO AIRCRAFT SYSTEM IDENTIFICATION

Aerodynamic derivatives are highly dependent on the angle of
attack variable a and the sideslip angle variable 8. Thus, these angles
are important state variables in the state-dependent modeling of the
forces and the moments that act on an aircraft. Presented in I'igures
3-1 and 3-2 are applications of the Optimal Spline Method to angle
of attack and sideslip angle flight test data of a light jet trainer air-
craft. The Optimal Spline Method calculated twelve knots for the angle
of attack data and optimally located them as shown in Figure 3-1. It calcu-

lated eight for the sideslip angle and optimally located them as shown

in Figure 3-2. The first knot denoted by "OPTIMAL." for the sideslip
angle is optimally placed at 4. 62 seconds; the spline coefficient which
is denoted by "PBAR" is 0. 02 for the first spline region, 0.30 for the

second spline region, etc.

Equally spaced knots have been used to fit the same angle of
attack and sideslip angle data. The result of using twelve equally spaced
knots on the angle of attack data is shown in Figure 3-3. The fit is
not adequate at the times 3.5, 5.5, 7.5, 9.3, 10.7, 13.7, and 14,7,
At each of these times the smooth curve falls outside the statistical
limits of the noise. Shown in Figure 3-4 is the result of the use of
eight equally spaced knots for the sideslip data. An unsatisfactory
fit is even more pronounced here than it is in Figure 3-3. Conse-
quently, equally space knots provide unsatisfactory smoothing unless
an abundance of them are used. The Optimal Spline Method
provides an adequate fit with a reduced number of knots by optimally
locating them so that the resulting smooth curve can stay in phase

with the data.
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CHAPTER 1V

MATHEMATICAL DESCI{\IPTION OF PROBLEM

4,1 Time Function Representations

The problem being investigated deals with the representation of a

time function by the superposition of a family of simple functions which
are easy to define, generate and implement. In particular, it is sought
to minimize the number of parameters in such representations, while

maintaining a required degree of accuracy.

Let f(t) denote a square integrable time function defined over a time

interval [TO, Tf]. Let d(t) be a measured time history of f(t):

d(t) = f(t) + n (4.1)
where 7 is a stationary Gaussian process with variance 02.
Let { an(t): n=1, 2, ---} denote the family of simple square integrable

functions to be used in the superposition. Since only a finite number of

terms, N, is possible for a practical realization of f(t), it is necessary

to choose coefficients qy, qg, ---, qN so as to render a minimum to the
: criterion:
Tf = 2
E = [ [dt) - I q_a(t)]°dt (4.2)
n n
i n=1
o
; 30
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: For the case of a complete orthonormal function series (e.g., Fourier,

Walsh, Haar) the minimum is attained by making

gl d(1) a, (1) dt (4.3)
'1‘
O

: ; 2
and the ervor IY monotonically de-reases to the variance o 3as N

becomes very large.

The advantage of using orthogonal series is the ease with which the
optimum qn's of (4. 2) are computable, i.e., using Ilquation (4. 3).
Frequently, a large value of N is needed in order that the error E is
sufficiently close to 02. Large values of N are disadvantageous in

some applications (e. g., ship classification and aircraft system identi-
fication), There are nonorthogonal function series that provide excellent

fits and use only small values of N.

One such nonorthogonal series is composed of quadratic spline functions.
Before introducing these functions the solution of (4. 2) will be derived

: : E
for nonorthogonal series. Definet the row vector q as

a0 :
a = (a3, 99 ==7»q) (4.4)
Ay
the row vector o (t) as

o't = (e, ), ---, a (1) (4.5)

s 1 » 2 » ’ n .
|
' tThe superscript T denotes transpose.




b s el S e e 2 e L i e b i e bt el

; th th , : :
and the matrix B whose i row and j column element biJ 1s given by

T
b.. : ai(t) aJ(t)dt (+. 6G)

1) V'l‘
o)

The solution of (4.2) is given by

g
q = B [ dt) ot)dt (4.7)

T
(o)

For the case that B is the identity matrix this solution reduces to (4. 3).

4,2 QUADRATIC SPLINE FUNCTIONS

Consider the following general 2nd order nonlinear differential equation
T(t) = (i, r(t), r(t) (4.8)

where r and f are scalars and where f is a continuously differentiable

function. Integrating both sides of this equation twice with respect to

time over the interval [TO, t] gives

it T

Y
O AN

r(t) = }(TO) + HEYIG=-T ) + f(s, r(s), r(s)) ds dr (4.9)

The double integral can be rewrittn as

rt ot 1
o Jq O (s, 1) f (s, r(s), r(s)) dsdr
o ©
where
PR S t 8§ s #» (4.10)
e 0 s > r .
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Interchanging the order of integration and carrying out the integration
results in

Py (=91, r(s), 1(s)) ds

(e}

Consequently r(t) can be rewritten as

rt) = r o+ T (t-T) + jfro (t - 8)f (s, r(s), r(s)) ds (4.11)

where r 2 r(’I‘O) and f‘o & f'(TO). This equation is the integral

equivalent of the differential equation. The integral term is evaluated
as follows: The total time domain of interest [Ty 'I'f] is divided into a
number of subregions [Tj_
X

1 Tj]' j=1, 2, ---, m+1 called "'splines'".

- Tm are called knots. Here, T

The points T = Tf. The

g m+1
integral can be written equivalently as a sum of integrals over each

spline region, i.e.,

j*1 T

r(t) = ¥ +;‘o(t-To) b X f = (t - s)f (s, ;'(s))ds +
k=1 T
k-1
f.tr (t - s) f (s, r(s), r(s)) ds (4.12)
i-1

where te [Tj

-1’ Tj]’ j =1, 2, ---, m+1, By choosing sufficiently many
splines we can model f (s, r(s), f‘(s)) as a constant .I:j over each spline

region [Tj_l. Tj]’ i=1, 2, ---, m+1l, With this approximation r(t)

becomes
§<1 ; S
; . M o = k-1 k (o
r(t) Tt B (t To) : T (Tk rk—l) (t 5 )rk+
k=1
-1,
> 3 (4.13)
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where te [TJ-I' Tj]' This is the quadratic spline function. The family
of such functions is generated by letting the knots and the parameters

. e e - » - -y >
r.T., rl, ---, r__vary over their regions of definition. In vector
0 m

form the quadratic spline function can be written as

r(t) = a' (T)p (4.14)

where the knot vector T is given by

T = (Tl’ T2, cees Tm), (4.15)

p = e B e R (4.16)

T : ,, s
a (1) = (a (T ay, (G T), ovuy a4t T)) (4.17)
iy €Y =02 (4.18)
r‘ -
8o (BT} = =T (4.19)
and where, for j =1, 2, ..., m+1,
( 0 T st<sT.
o =1
(t - T._1)2
a. (t; = —l .« STET, ‘
§ (6 T) ] . T, StST, (4. 20)
T * T,
\ s -
(TJ Tj_l)(t 5 )t2 T,
l
l 34
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In an application to ship classification the function r represents the
radar cross-section per unit range resolution (i.e., density) along the
length of the ship from the stern to the bow. Since this density is zero

at the beginning of the stern and at the end of the bow the constraints
p = @ (4.21)

I‘(TmH) = 4 (4.22)

must necessarily be invoked. The coefficients rJ, jiE Ly 2 ey Dl

provide a composite picture of the ship's superstructure.

To put the quadratic spline function in the notation of Section 4.1 let the

vector T be fixed and define
aj(t) = aJ.(t; T) j=1,2, ---, N (4. 23)

where N = m+3. The vector g corresponds to the vector p.

4.3 A GENERAL TIME FUNCTION OPTIMIZATION PROBIL.EM

The quadratic spline functions introduced in the previous subsections

provide a family of simple functions for the representation of a time

function. The quadratic spline functions form a nonorthogonal function

series that quadratically depend on a parameter set T of knots. In
general, then, a family of simple functions for time function representa-
tion will depend on a set of parameters such as T and the dependence

will be possibly nonlinear. Consequently a general time function
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optimization problem has the error criterion

|

Blg 1 = [ (aw)-¢' (1) g at (4. 24)
(9
? l
where
gT = laps 99 77 qy) (4.25)
- |
o (5T) = (o (K1), & (1), ..., a (1)) (4. 26) |

and where the (m+1) dimensional vector T denote the set of parameters

on which the simple functions ai (t; T), i=1, 2, ---, N, depend. In

the case of quadratic splines the vector T represents the set of knots.

Since the argument q occurs linearly inside the square brackets the
error criterion E(g, T) can be minimized with respect to q, holding
T fixed, to give an analytical expression for q as a function of L.

Equation (4, 24) can be rewritten as

|
E (3, T) = j'Tf [dz(t) - d(t) gT (t, T) » 3] dt
(o]
an T T
- Jp [dW) -a” (5 T) « q] o (5 T) * qdt (4.27)
& - 2

Minimizing E (g, T) with respect to q gives
Tf T
jT [d(t) -« (t; T) - a9 (t; T)dt = 0, j=1, 2, ---, N (4.28)

o

Or, equivalently, in matrix form

A
B(T) g(I) = %) (4.29)




‘ A

where q (T) denotes the optimum g, the vector

l (I) = (‘)/v (I)! 72 (I)l i’ )’N (1‘)) (4. 30) J
has components
Tf
2 (T) - j‘T d(t) o (t; Tydt, j=1, 2, === N (4.31)
O
and the matrix B (T) has elements
Tf
= [‘ . . 1 3 = - :
A
Substituting the optimum g (T) into (4.27) gives
A Ty 2 T T A
E(Q(T), T)= [, d@adt - [T dt)e (. T) - a(D)dt (4.33)
N o 4 T
o}
since the second integral of (4. 27) is zero by way of (4.28).
Using the definition of ¥ (T) we can rewrite (4.33) as
: i T £
E(q(T), T) = [ dwa-y T4 (T) (4.34)
= o

Since the first term is independent of T it will have no bearing on the
- =

generation of the optimum T, Consequently, we redefine the error

criterion E as
T -1
E(T) = y (DB My (4.35)

which is the last term of (4.34).
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Our objective is to maximize (4.35) with respect to the knot vector T

in the presence of the constraints

PR i), B, eew; mE] (4.36) 4
1=1 1 i

h T =
RN m+1 f

4.4 VARIOUS CASES OF THE QUADRATIC SPLINE OPTIMIZATION
PROBL EM

The quadratic spline function r(t) is given by (4.14). In some problems
the values of r(TO) and r(Tf) are known a priori and in other problems

the values of r(TO) and f‘(TO) are known a priori. When this is the case
such knowledge reduces the dimension of the coefficient vector q. The

following cases cover a spectrum of applications.
Case 1. No knowledge about r(t) is knowr. a priori. In this case
a:T) = al;T) (4.37)
! - P (4.38)
Case 2. The values of r(To) and r‘(Tf) are known a priori:

r‘(TO) = Ry (4.39)

r‘(Tf) = Gy (4.40)

For this case it is convenient to redefine the data d(t) as




d)y = d@) - B = ey = &) SEEUURI - I 4.41)

and to define

T _ N ] - s L ¢
q = (rl' rz’ » I ) (4.42)

and g (t; T) with the components

t - T)

%(t; r_r) = aj(t; I) = aj(Tf;E) W (4.43)

for j=1, 2, ---, m+1, This case withc_ =

17" 0 applies to the ship

classification application.

Case 3. The values r(To) and ;(TO) are known a priori:

r(TO) = < (4.44)
f«(TO) = e (4.45)

The data is redefined as
dit) = d) - ¢, = ey (t-T) (4.46)

In this case the vector function g (t; _’{‘) and the coefficient vector q

are given by

g ¢ T = (@t 1) ayt T === a6 T)) (4.47)

T

“é

G = T T === £ ) (4.48)




T ——

Case 4. The value of r(TO) is given a priori:
T }) = ¢ (4. 49)
o

1

The data d(t) is redefined as

aw) = d) - c (4.50) I

The vector function g (t, T) and the coefficient vector g are defined as
o (T = (T, ats T), ---, a__ (5T), a__(T) (4.51)
= = L= i m = mE3s -

F.) (4.52)

Case 5. The value of f'(TO) and r(Tf) are given a priori:

r(T) = ¢ (4.53)

3

r(Tf) = c (4.54)

The data d(t) is redefined as
d(t) = d(t) - c, -c, (t-Tp (4. 55)

2 3

The vector function g (t, T) has components

aj(t; X} = aj(t; x) = aj(Tf;I) (4. 56)
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for j =1, 2, ---, m+l, The coefficient vector q is defined as
' i §
°E = ve b Ll e cn
q (I‘l, Ly - rm+1) (4.57)

Case 6. The value of i‘(TO) is given a priori

r(TO) = 03
The data d(t) is redefined as
d(t) = d(t) - 03(t - To)

The vector function a (t, T) and the coefficient vector q are defined as

T = . e .
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CHAPTER V

SOLUTION TO POSED PROBLEM - AN OPTIMAL SPLINE METHOD

The problem is to maximize E(T) of (4.35) with respect to the knot
vector T. Several gradient methods are available for carrying out

the optimization: steepest descent, Newton-Raphson, Newton, Gauss-
Newton, Fletcher-Powell and Davidon. Newton's method is appcaling
because of its quadratic convergence properties. It can be implemented

since the Hessian matrix is analytically computable.

The derivative oa}?r—(—T) has a Taylor series expansion
5 b
SE(TP) J3E (T?) 32E(T?)
e S e Ry
oT 3T oT2 - =
+ higher order terms (5.1}
If E(T) has a maximum at Vi E‘b then
SE(T")
e -
5T (5.2)

In addition, if the higher order terms are sufficiently small compared

to the other terms of (5.1) then _'Ib can be approximated by

2 a, -1
3
i, L S (s IS it el (5.3)
i 3T 3T
' 42




Sufficient conditions for the existence of a local maximum value of

E(T)at T = :I_‘b are given in (14, 15] and are that (5.2) is satisfied

and that

L)l z 0. i- 2: 4: 61 Py

Dj < 0,i=1, 3,5, ===

where
Ell Elz .o ‘e
EZI E22 o
Dl =
Ei1 Ejp ..
o2 b
(o)
Enk = ._-—_—E(I ) , 1IN, k =
anBTk

1, 2, ===, 1

(5.4)

(5.5)

(5.6)

(5.7)

A

Since the higher order terms are seldom zero the optimal value T

is obtained through convergence. That is, if ’l‘a = ’£k represents

the solution of (5,3) for the kth jteration and if Ib B IkJ"l represents

the solution of (5.3) for the (k+1)th iteration then

A
T = limit TK*1
k - @

(5. 8)




we can rewrite E(T) in the following forms

E{T) = gr(’g)z('g) (5.10)

-y § ) (5.11)

In much of the following development the argument T will be left

< A
out of the various functions such as E, q, ¥, B and their derivatives.

" dE 3E JE 3E
The vector ——aT_ has components aTl '—aTz ke "——_‘c’l‘m

These components are given by, k=1, 2, ---, m,

OF AT oy AT  °B A
= 2 - - 9. 1.
STy, 1 57 1 37, 4 $= 48
which is obtained by use of the identity
on”! - -pt 2B pt (5.13)
QTk drk .
3%E
The elements of the matrix 3TZ are
given by, kK, n=1, 2, ---, m,
2 2
JTE;)T 2 (377 g1t 2 4 gf 22
Sk n oT Ty OTgT
n n
AT OB -1 9y AT OB =1 oy
9 QT B S | aTk B q'r
n 3Ty °ln
9
AT 9B -1 OB A AT J0°B A
. - B - -1 === q ! (5.14)
S \)'Ik O"[n .9 5 9 O’I ko ]n _{
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Consequently, in order to solve (5.3) we need the following computed
|

foric, n= 1, 2,

===, m:

R azB
» 9Tko
3Ty T 9TkoT,

Expressions for the above quantities can be derived for each case
discussed in Section 4.4.

These expressions are derived for Case 1
in Chapters VI and VII.
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CHAPTER VI

ANALYTICAL EXPRESSIONS FOR THE QUANTITIES OF CASE 1

6.1 The B Matrix

The elements of the symmetric matrix B are given by

by = [ 2t a (0t

To

for j, 4 = 1; 3, m==== , m+3 where the a's are defined by (4.18) - (4.20).

The argument T has been dropped.

Bori = 1, 2, === , mtl, define
zZ; = Ty =By (6.1)
S; = Tg- Ty (6.2)
Fori =1, 2, ---- , m+l the following equations can be derived:
by if ' Z414 S, + _Z_éi 5% + %_2 5;3 (6.3)
Fori = 1, 2, --- , m the following equation holds:
Z;’Z-f-l Zi+1 Si3

byaty = ZZma b S5 =5 * &)+ *

Si :
T [ ZiSiy - 244 Si]) (6.4)
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The following equation has been derived fori = 1, 2,--- m-1;
J = 1+2, ===, m + 1:
|
1
Zi Z Z; z
=l . =1 X . . syl
bij; = — LGS + F7) IS8 + 29) + 5= ] +
2 = 2
R D Sl i VU R el
3 (SJ 5 ) 12 ZJ 3 (6.5)
Equations (6. 6) and 6. 7) hold for i 1, 2,---, m+1,
i(m+2) 6 2 i 2 1 .
| b = Te=T. = 8. 18 +
E i (m+3) £~ 1o i 1% (m+2)
Zi4 Ziz Zi Si3
- —— —_— L.2 + — =
5 + r S; 3 (6.7)
b(m+2) (m+2) = Tf - TO (6.8)
b = (T - T )2 (6.9)
(m+2) (m+3) I 0
2
b = (T, - T)3 (6. 10)
(m+3) (m+3) f o) :
3
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- 3B .
6.2 The 3Ty Matrix

The elements of BB are denoted by

3T
dbij .y L11

Note that
bij K = Ounlessi, j = kork+1 (6.12)

The following equations, (6.13) - (6.23), hold for

k = 1, 2,7~~, m:

In addition, Equations (6.13) and (6. 14) hold for j = 1, 2,---, k-1;

' S Z;
: Bis . B TR e |
P, k = 3~ Bk°(8 - 5 + 3} (6.13)
Bitk+1), k = " Pjk, K (6.14)
y ,
= 7 2 Sk Zk
bk, k = ZkSk (T3 f ) (6. 15)
Zy s 4
_ Zk+1 Sk ,4Sk . _
Petk+1), € ~ 28 T a2 Y3 Yy - Y (6.16)
‘ 2
_ 2 -
Zk+1 Z‘k )
2% 5 ’ Z (6.17)
b(k+1) (k+1), k e -l—k2+—1 o k K+1 .
2 Zk+1
(3 Sk - )
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Note that

= -2

Bk, k ¥ Pty 1), & By (k+1), &

Equations (6.18) and (6.19) hold for j = k+2,--5 m+1:

z . 82 Z . Z
Za ' i-1 + Zj i
. i . : + 2.y gl = s
B - 7 Loy 188, ¢ == g B
9 3
5 zJ (6.18)
b(kﬂ)j’ A ka’ . (6.19)
2
Sk .
By (m+2), k 2 VG 26}
3 2
b =-S—k+—5—(T Ty) (6.21) |
k (m+3), k 6 ; f o ;
Dek+1) Gmadd, & - Ok Greg), & il 1
. |
Pkt1) m+3), k T 7 Pk (m+3), & i |
1
A2RB 1
6.3 The ——— Matrixfork=n; n = 1, 2, --- , m. ]
3T, 3T
n
3B
The elements of ST 2 are denoted by
n
azbij
9 = o
BTn ij, nn
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Note that
' 2
ll d bi\l
! 3T 9 = O unless i or j = nor ntl (6.24)
L‘ n
Equations (6.25) and (6. 26) hold for i = 1, 2, ---, n-1:
Zj Sn
bin, nn = - —5— (5§ + Sj-1 - Sn) (6.25)
bi(nt1), nn = - Pin, nn (6.26)
3
2S5
ban, nn = - Zn SpSn-1 + ¢ (6.27)
Zoit 3
n+1 25n"
b(n+1) (n+1), nn = Zp4y Sy Sn+l + —3 £ = (6.28)
_ bnn, nn * P(n+1) (n+1), nn
bnh(n+1), nn = 3 (6.29)
Equations (6.30) and (6.31) hold for j = n+2, ---, m+l:
z Zi
e R LR (6.30)
Pn+1)j, nn * Pnj, nn (6.31)
bn(m+2), nn - Sn (6.32)
2
Sn
ba(m+3), nn = —3— = S, (Tt - Ty) (6.33)
B(n+1) (m+2), nn = ~ Pn(m+2), nn (6.34)
b(n+1) (m+3), nn i bn(m+3), nn (6.35)
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6.4 The e —— -
o O,

32B

The elements of —m=——g=— are denoted by b,
Tht1°Th

Note that

bij, (n+1)n - Ounlessiand j = n, ntl or nt2

bnn, (n+1)n = O

2 Sn+1 Zn+1
bn(n+1), (n+1) n - Sn+1 ( 3 & 2 )
bn(n+2), (n+1) n = - Pn(n+1), (n+1) n

b(n+1)n, (ntl) n = bn(n+1), (n+1) n

b(n+1) (n+1), (n+1)n °

b(n+1) (n+2), (n+1)n =

b(n+2) n, (n+1) n =

b(n+2) (n+1), (n+1) n =

b(n+2) (n+2), (n+1) n

= 2bn(n+1), (n+1) n

bh(n+1), (n+1) n

- bp(n+1), (n+1)n

bn(n+1) , (n+1) n

I
o
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ij, (n+1) n’

Matrix for k = n+tl; n-=1, 2, ---, m-1.

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)




02B
: S oeh ix f = e gl = A
6.5 The IToTh Matrix for k = n+2, s m;n=1,2 —‘-m——g
b ; 32R
The elements o d—l_ka_’lT are denoted by bij , kn-

Since B is symmetric we consider only those elements bj; with is j.

bij, b O unless i = nor n+l and j = k or k+l (6.46)
bnk, kn = S (Sz—n - %k—) (6.47)
bn(k+1), kn = - bnk, kn (6.48)
b(n+1)k, kn = ~ Pnk, kn (6.49)
b(n+1) (k+1), kn = bnk, kn (6.50)

6.6 The y Vector

The elements of ¥ are given by
£ e : 1
5= 'JTo d(t) a; (t) dt (6.51)

forj = 1, 2, =--, m+3. Since the data d(t) is given in discrete

form rather than continuously we write the discrete form of (6.51) as

Yj i ' u i aj (t;) (6.52) 1

Tp~Tg 1
i=1

| where I is the number of data points and where
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di = difgh =1 3 ==~ 1 (6.53)
tii = 4 + At (6.54)
. el (6.55)
I
t = To + 2 (6.56)
i = Tf-A?% (6.57)
Forj = 1, 2, ---, m define the integer J(j) so that it satisfies

the inequalities

tyg) = T3 < g (6.58)

Consequently, 7%; is given by

J(1) .- T )%
Tt - To) (tj - To)
i=1 5
1
Z z dit; + 29 s L L
i=3(1)+1 . el
For j=2, 3, ===, M, %j is given by
(T; - Ty . 30 (ti = Tj-1)°
o el prawl T o 2
i=J(j-1)+1
I Do 1
zg L dity + Z( S - T) £ d] (6.60)
i=J(j)+1 isJ(j)+1

Furthermore, ¥Ym+1 is given by
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Ll

e = Tqo) : (ti - T 8
Ym+1 © SeS— E d. _L__Z_IL)
i=J(m)+1

and, ¥y ;9 and ym+3 have the equations

(T¢ - Tq) !
Ym+2 = S .):1 di
1:
(T = T.) I
Ym+3 I L dj (tj - To)
i=]
oy
6.7 The 3T Vector for k=1, 2, ---, m

3
The elements of 32’1: are denoted by

k
ByJ 3 '
3Ty 5 H k

From (6.59) - (6.61) we derive

¥o o =8  § = 1, B ==, k=

i
(Tf = Ty)
T, -l rEee— dj (ti - Ty)
i=J(k)+1
Y(k+1), k = = Yk, k

Yj, k - 0 J = k+2, ===, m+3
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(6.61)

(6.62)

(6.63)

(6.

(6.

(6.

(6.

64)

65)

.66)

67)

68)




i T —
|

2
) 3 o - ——— . p=— -———
l 6.8 The 3TRo T, Vector for n=1, 2, , m; k=n, n+l, » m
32y
! The elements of -ST—k-a—T— are denoted by
n
32y,
J :
S : 6.69
3T T Y3, kn ek

For k # n we note that
yj‘ kn = 0) J = 1) 2’ it m+3 (6.70)

For kK = n we can check that

Vs = Ounless j=norntl (6.71)
j, nn
I
(Ef - To)
m, m = ° i - L dj (6.72)
i=J(n)+1
Yn+1), nn - -~ ”n, nn (6.73)
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CHAPTER VII

3 2p
ANALYTICAL EXPRESSIONS FOR —= AND ——E
0Tk oTkaT,

<

) S o
In Section 6.7 it is shown that the vector = Z has at most two
A5
nonzero components. In Section 6.2 it is shown that the matrix i
gﬁ has at most two nonzero rows and two nonzero columns. The
Tk

sparseness of the nonzero elements in these vectors and matrices
32

o“E

5 T e T

formulas for these derivatives are given in this section.

greatly facilitates the calculations of

It is convenient to make the following definitions for n =1, 2, ---, m;

K =1, 2, ===, m:

m+3
Ap = j:z‘l bjn, nd - (@n - dn+1) bnn, . (7.1) i;
m+3
Ch = L bin, nn9i - (dp - 9n+1) bnn, nn (7.2)
i=1 2
fnk = Pk Pngken) h(n+1)(k+1) (7.3)
m+3 m+3

e Z Poa Uk By (7.4)

CJInk i : bin, n

(h ) (7.5

e T (k+1)

H =B (7.6)
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with elements hij' i1, 3 = 1, 2, ~==, m+3.

Note that
bkk. K . b(k-fl) (k+1), k -2 bk (k+1), k (7.7}
bnn, nn b(m 1) (n+1), nn A bn (n+1), nn (7.3)
The following analytical expressions have been derived, having
made use of (7.7) and (7. 8):
Ar
I 3
8 g JEY (7.9)
3T i
k
/\»r BB A 2 -
g Sp 9 % 2w - ) B * g mq ) by, g 17-10)
= " A
L L U I & Y O TR N o (7.11)
aTk k k+1 k, k k k k+1 kk, k
T 62
g = 0 fork#n (7.12)
BTkBTn
qT 32}/
—2——_ = - 113
- aTn yn, nn (qn qn+1) (7 )
ByT 1 Y
.. P ot Yo n Tk, Tak (7.14)
AT 3B =1 oy & 'y &
q_ aT L —— yk, k [(qn qn+1) Gnk 2 fnk An] W io)
k BTk
AT 3B .-t 3y . i _ R
a 37 B = Yo, n 9% = %41 Gin * Tk Axd \1a 154
k aTn

5T




Forn=1, 2, ---, m-1 and k = ntl, nt2, ---, m it can be shown

L

that (7. 17) holds:

/\'I‘ a B = ")b

A
3- aTkaTn S’. “ nk' kn (qn - qn+1) (qk = qk+1) (l. 1 l)

For n = k it can be verified that (7, 18) holds:

2
AT & B

A
3 = 5 -
3 g 2 Ha, - a4 S (. 18)
AT 3B -1 3B A
e = =+ -
4 3T _ B = : 4 4 A ety T e s B
= + = o L 4 Q)
Gy =Gy} B, Gt mq e g ) E \7. 19

Consequently, it follows from (7.12), (7.14) - (7.17) and (7. 19) that
the following Equation (7. 20) holds for k = n and Equation (7. 21) holds

for k # n:
2
3 E . 2
aTnz = 2 fnn (An 7n, n)
(qn - qml) (¥ Alalg et (qn K qn+1) lnn d
2Gnn (An - yn. n) ]} (7.20)
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3°E
‘ {

5 = = 2 £ (A - A -
B E R T L SR
(qn ¥ qn+ 1) (C],{ = qk*fl) (bnk - bnk, kn)
(qk (¥ qk+1) (Jkn (An B 7n, n) i
) (7.21)

{9, rd 1 G By =
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CHAPTER VIl

ANALYTICAL EXPRESSIONS FOR THE QUANTITIES OF THE
SHIP CLASSIFICATION CASE - CASE 2,

8.1 The B Matrix

The elements of the symmetric matrix B are given by

8. = [T o6 alt) d i, j=1, 2, ==, (8.1)
1) T 1 J
O

where the o's are defined by (4.43). Integrating (8.1) after the
substitution of (4.43) gives

Big = Pyt A b(m+3%(mﬂ) e R
: T T
(Tf TO ) f (0}
- a, b.1 (m+3), i, § = 1, 2, ===, m+l (B. 2)
"'——“wf =T )

where bij is defined in Section 6.1 and where

& = Z. B + Z. ) 1 =1, 2, -, m+l (8. 3)
1 1 1 !
2
8.2 The &2 Matrix
3Tk

i The elements of —aa'_I‘B_ are denoted by

aBiJ = B (8.4)
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Note that

B. = OQunless i, ] = kor kt+l (8.95)
i}, kK

The following equations, (8.6) - (8.10), hold for k = 1, 2, ---, m:

Equations (8.6) and (8.7) hold for j = 1, 2, ---, k-1 and for
j = ki2, ===, m+l,

Bjk, k bjk, g - TR S b(m+3)(m+3) -
S.. b a.
k "j(m+3) _ ] b( o (8.6)
(T, -T) T Rk
£ o £ o
Bj(k+l). e TPk (8.7)
= 2akS 2S b
B, ik ™ Prag i * —5:—_%)2 Dlatalm+s) - = Hmis) +
( f o (Tf - TO)
2b(m+3)k, k 2k
2 (8.8)
=T )
Bktik, k - Plktk, k © P(m+3)m+3) B T A Skt
(Tf - T.)
Bansaik, k. e T % Y
(Tf ST
(o]
S
e =
| (%, =2} (b(m+3)k Bn+9) (k+1)) (8.9)
| Bk, k * Buri)arn), kT 7 2 Baern)k, k (8.10)
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2
8.3 The —B—B— Matrix for k =n;n= 1, 2, ---, m
aT. a7
k n
82B
The elements of —5— are denoted by
T,
3%8..
=g =
3Ty ij, nn
Note that
azsi.
—-ZL = 0 unless i or j = n or n+l (8.11)
3T,

Equations (8.12) and (8,13) hold fori =1, 2, ---, n-1, n-2, ---, m+l:

Bin, nn bin, nn (ai b(m+3)(m+3} B bi(rr1+3)
(T, - T ) e To! |
5 o)
B b§m+3}n, nn (8.12) (}
{T, - T.) 1
f o
Bi(n+1), ad Bin, - (8. 13)
s ? b b
an o = Pan, nn * 20 2 mmis) o (medimed) ¢
(Tf = To) (Tf = TO)
b(m+3)n _ ZSn b§m+3)n, o %n b(m’r‘.ﬂn, nn (8. 14)
(Tf 5 To) (Tf ) To) (Tf . To)
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= - - 28
ﬁ(nﬂ)n, nn b(n+1)n, nn b(gl’ri‘l)(mHjL {an dn+1 n } 4
; A
(Ff FO)
i P {b - b + b (a -a ) #
(’I‘f - To) (m+3)(n+1) (m+3)n (m+3)n, nn " n n+1
4Snb(m+3)n, n £8.13)
Bnn, nn % B(n+1)(n+l), nn i 2B(n+1)n, nn (8. 16)
2
8.4 Th ——B—B—‘—‘V[t'f k=ntl:n® 1, 2, ~=-- -1
- € 3T 3T Matrix for ntl; n s , m—1,
k' ' n
BZB
The elements of ==~ are denoted by
aT oT
n+1 n
626..
e ML
n+tl " n 1 =
Note that
: . 4
Bij, (n+1)n 0 unlessiandj=n, ntl or nt2 (8.18)
Bnn, (n+t1) = 0
B(n+1)n, (n+1)n C b(n+1)n, (n+1)n * Sn Sn+1 b(m+3)(m+3) o
2
(Tf - To) |
e T s b * S B |
(Tf - TO) ntl (m+3)n, n n (m+3)n+1), n+l] (8.19)
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Bam+2), (n+)n -~ Pane1), (ntln (8. 20)
B(n+1)n, (n+1)n i Bn(n+1), (n+1)n (8.21)
o a9
B(nt1)(n+1), (n+1)n 2B (n+1), (n+1)n (8.22)
= 2
B(n+1)(n+2), (n+1)n Bn(n+1), (n+1)n (8.23)
B(n+2)n, (n+l)n Bn(n+1), (n+1)n (8.24)
Bnta)n+1), (rin = Pnnt), (m+1dn ta. 25)
B+2)n+2), (ntin T © (8.26)
azB
8.5 The 3T 3T Matrix for k = nt2, ---, m;n=1, 2, ---, m-2,
k n
82B
The elements of ST T  2Fe denoted by
1 o
2
0 B..
ij, kn o _
BTkaTn Bij, kn (8.27)
Since B is symmetric we consider only those elements Bij
with i < j.
Bij, kn = 0 unless i = nor n+l and j = k or k+1
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Bk, nk * Pok, nk " %k P(m+3)n, n
(Tf o TO)
Sk bgm+3)(m+3) bgm+3)k, T y
S, [ 5 T T -T) ] (8.29)
{T. =T ) f o
f o
8.6 The § Vector
The elements of § are given by
g
6. = [7f d(t) e t)at (8.30)
J T ]
o
for j =1, 2, ---, m+l, Making use of (4, 43) we obtain
= - i = - + ¥
6j ')‘J. a.‘)’m+3 s )= L2, , m+tl (8.31)
(Ty - T))
. 30
8.7 The = Vector for k=1, 2, ---, m.
aT
k
36
The elements of = are denoted by
aTk
36 .
—J_aT = 63.' Kk (8.32)
k
It can be shown that
8,y = 0 i=1, 2 == koL, k2, -~ me (8. 33)
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The Equations (8.34) and (8. 35) hold for j =1, 2, ---, m:

o) = = ) (8, 34)
Jo I ] o T m+3
(Tf ok
: g = 8. 30
6(J+1), ] Il et
2°8
8.8 The m— Vector forn=1, 2, ---, m; k =n, ntl, ---, m,
K n
a*8
The elements of 3T T 2re denoted by
k' 'n
3%
——J_BT AT = Gj, Kkn (8.36)
K "n
For k # n we note that
= = - + x
Gj, kn 5 , m+l (8.37)
For k = n we can verify that
, = 0 unless j = n or n+l (8.38)
Js nn
= Y
T )’n - + m+3 (8.39)
(Tf - To)
6(n+1), nn iy 6n, nn (8. 40)
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dE BZE
‘ The analytical expression of aTk and 5_—er T for Case 2 have
n

the same form as given in Chapter VII. It is only necessary to substitute
‘ 8 for ¥ and 8 for b. It is important to modify the data d(t) according to
Equation (4. 41) before computing the vector § and its derivatives of

Section 6.6 - 6.8 for their use in Sections 8.6 - 8. 8.
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! CHAPTER IX

ANALYTICAL EXPRESSIONS FOR THE QUANTITIES OF CASES 3-6.

The analytical expressions for Cases 3 and 4 are the same as for
Case 1; the only differences are (1) the dimension of the vectors g
and a and (2) the summations of Equations (7.1, 7.2, 7.4 and 7.5)

are carried out over the dimension of q. Case 6 is similar.

9.1 The B Matrix for Case 5

The elements of the symmetric matrix B are given by

= = b = : ~a_ b (S
Bis = By = % Pumizdi % Pimea T %1 %5 Pme2) (magy OV
where the ai's are defined by (8.3) and the b's are given in Section
6.1. Comparing (9.1) with (8.2) we note that the analytical expressions
of B and its derivatives have the same form as in Case 2; it is only

necessary to make the following substitutions together with their partial

derivatives:
i (4
substitute b(m+2) (m+2) for b(m+3) (m+3) (9. 2)
=z )2
(Tf To)
substitute bj(m+2) for b'(m+3) ’ (8. 3)
(Tf - To)

9.2 The & Vector for Case 5

The elements of & are given by
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A gl aJ "IRTR B 1, 2, ---, m+l (9.4)

Consequently, in view of Equation (8.31) the analytical expressions
for s and its derivatives in Case 5 have the same form as Case 2;

it is only necessary to make the following substitution together with

its derivatives:

substitute Piied for p (9. 5)

(T - 'lo)
It is necessary to modify the data d(t) according to Equations (4.46,

4,50 and 4.55) before computing the ¥ and its derivatives of Sections

6.6 - 6.8 for their use in Cases 3-5.
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CHAPTER X

PROCEDURE FOR STARTING ESTIMATES OF KNOTS
In this section we describe a method for generating a starting estimate
for the minimum number of knots and starting estimates for the knot

values.

10.1 A Procedure for Estimating the Minimum Number of Knots

L.et M be an integer and let the knots ,"Fi, i=1, 2, =--, M be equally
spaced across the time interval [To, Tf]. Equation (4.29) or (5.9) can
be solved for the values of qj, i =1, 2, ---, M+3. The error E(q, i"/)
can be computed using Equation (4.24). If the error falls outside a
required degree of accuracy then the value of M is increased until the
computed error lies within a required degree of accuracy. When this
is the case the spline coefficients g;, i = 1, 2, ---, M+1 are sequentially
grouped in order , timewise, according to positive or negative values.
For example, if q; is positive, qg, as and g4 negative and qg and dg
positive with g, negative then q, forms the first group, qg, q3, and gy
the second group and g5 and Qg the third groups, etc. A single spline
region is designated to span each group of positive values. The same
is true for each series of negative values. The number of groups
determine the starting estimate for the minimum number of knots.

IL.et m+1 represent the number of such groups.

10.2 A Starting Estimates Procedure for the Knot Locations

The times separating the above groups provide excellent starting

estimates for the knot locations. For example, the times
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1 1
R b
'3 T,
tn; u-— ?J for some j

can be used as excellent starting estimates for the sequence of knots

o TR Tm that are used in the Optimal Spline Method of

i
Chapters VI-IX.

With reference to Equation (4. 1) let 0'2 denote the variance of
the data to be splined. In the system identification of aircraft the
following procedure works well for estimating the minimum of knots
and for providing starting estimates of the knot locations. The knots
are recursively located so that the RMS value between the data and the
spline fit is approximately equal to ¢ over each spline region. This
is accomplished by placing the first knot so that the first spline region
is the maximum of all spline intervals that have an associated RMIS less

or equal to 0. Each succeeding knot is similarly placed.
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CHAPTER X1

CONCLUSIONS

An automated technique called the Optimal Spline Method has been
developed for application to problems having high nonlinearities. Its
application to ship classification and to aircraft system identification has
solved a major problem in each of those technological areas. These are:
(a) the development of a technique to determine independent features for
classification of ship types and (b) the development of a method that mini-
mizes the number of parameters that are necessary for optimal estimation

of force and moment time histories in aircraft system identification.

The Optimal Spline Method in ship classification applications deter-
mines the number of separate superstructure masses, their separation from
each other, their locations and their extended widths. These independent
features correspond directly to optimal spline coefficients of the method.
The results contained in Chapter II show that ships of like type have similar
optimal snline coefficients and ships of different types exhibit large differ-
ences in their optimal spline coefficients. In particular, it is shown that
the optimal spline coefficients provide a clear destinction between a DL.G

class and a DDG class.

In aircraft system identification applications the use of the Optimal
Spline Method has two advantages. They are: (a) the compuations and the
storage requirement of the estimation process can be significantly reduced
without a decrease in estimation performance and (b) an increase in esti-
mation and, therefore, in identification performances can be achieved under
the constraint of a fixed number of spline parameters. Advantage (b) is
demonstrated by the results contained in Figures 3-1 through 3-4. Figure

3-4 shows the results of using eight equally spaced knots. The increase in
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performance due to the application of the Optimal Spline Method is shown

in Figure 3-2. Advantage (a) is indirectly demonstrated by the results
contained in Figures 3-1 through 3-4. In Figure 3-2 the third and fourth
knots are separated by 0.82 seconds. In order to obtain equivalent per-
formance through the use of equally spaced knots it is necessary to space
them at approximately 0. 82 seconds. This spacing increases the number
of knots from eight to more than sixteen. The computations and the storage

requirement increase exponentially with the number of knots.
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