AD=AQ43 922 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE==ETC F/6 9/2
MAINTENANCE MANUAL FOR AUDIT, A SYSTEM FOR ANALYZING SESCOMP SO==ETC(U)
AUG 77 R J WYBRANIEC: R REGEN

UNCLASSIFIED DTNSRDC=77=0075=VOL~1

Luli—2

I

O

= I

§ (L2227, \
; NT OF 50,
a0 . W 7%
(= ; - <}
g DAVID W. TAYLOR NAVAL SHIP ﬁé,x
(o : ‘O\ e 1{’
i RESEARCH AND DEVELOPMENT CENTER %33
v o Bethesda, Md. 20084
vy
-~ e ———
N
'4‘? \._ —
o T A4
< = MAINTENANCE MANUAL FOR AUDIT, A SYSTEM
£ FOR ANALYZING SESCOMP SOFTWARE
S VOLUME 1
(7]
Q.
S
2 .
| - Robert J. Wybraniec
! o Richard Regen
! 2
: N
>
| -
.~ I
| g
| «
g
= APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
=
(7]
>
(7]
q
R
=}
)
g
§ COMPUTATION, MATHEMATICS, AND LOGISTICS DEPARTMENT
= RESEARCH AND DEVELOFMENT REPORT
3. 2 DD C
s =
Ow F
: U] see
Ll g .- * 4 3
» —Zuw 1L
2 L-£3 August 1977 d I Report 77-0075
- -—
e2:2 | y
o Y) ~
=

|
i
f

B e

-

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER

TECHNICAL DIRECTOR

00

01

OFFICER IN-CHARGE
CARDEROCK
05

OFFICER-IN-CHARGE

SYSTEMS
DEVELOPMENT

DEPARTMENT 1

SHIP PERFORMANCE
DEPARTMENT

15

ANNAPOLIS

AVIATION AND

STRUCTURES

DEPARTMENT o

SURFACE EFFECTS
DEPARTMENT ¢

COMPUTATION,
MATHEMATICS AND

SHIP ACOUSTICS
DEPARTMENT 9

LOGISTICS DEPARTMENT
18

PROPULSION AND
AUXILIARY SYSTEMS

MATERIALS

DEPARTMENT
28

DEPARTMENT 5,

CENTRAL
INSTRUMENTATION

GPO 908.678

DEPARTMENT 29

NDW-DTNSRDC 3960/43b (Rev. 11-75)

GPO 928108

-
-

|
|

DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF
PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMA.
TION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR
SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL
WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES
REPORTS; NOT FOR GENERAL DISTRIBUTION.

W Y, " ——— . T ——. -

—

Lk REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
i y F—nesonT NOUEER s —, 2. GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
/ / DTNSRDC=77-¢/07 5= \To’-i

UNCLASSIFIED

SECU™ITY CLASSIFICATION OF THIS PAGE (When Data Entered)

m mi, _ o F | $—TYPE UF REPOAIT4-AeroBCBVERED
6 Finaljmpz,\

2 AI\M\/lN(- sgﬁéiou}) SOFTWARE, VOLUME 1 \

|

@,

SN
‘_

WAINIhNAh(h MANUAL FOR AUDLT, A ;YSTEM FOR
r 6. 9za?umo oR@ REPORT OMYER

7. AUTHOR(e) A e

Robert /Gybranuc

Richard egen

s PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBER

David W. Taylor Naval Ship Research
and Development Center
Bethesda, Maryland 20084

(See reverse side)

11 CONTROLLING OFFICE NAME AND ADDRESS —u—m?r]
Navy Surface Effect Ships Project (PMS 304) @ August k977
L AR M BER- O F—BiG

P.0. Box 34401 - Bethesda, Maryland 20084) e

T4 MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) | 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSI FIC ATION DOWNGRADING
SCHEDQUY

6 DIST R B Eiidbbeab

s Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

7 DISTRIBUTION STATEMENT (althe-ab din-Block 20, 4. om Report)

/S/@’ 1724 {

QSana

19 KEY WORDS (Continue on reverse aide if necessary and Identity by block number)

SESCOMP, SESCOMPSPEC's, Software Verification, Software Engineering,
Reliability, Graph Theory, FORTRAN Software, Modules, Flow Analysis,
Variable Precision Execution, Parser, Roll Call, Portability

20 A@STRACT (Continue on reverse slde f necessary and identity by block number)

This document provides the maintenance programmer personnel with the
information to effectively maintain and use the AUDIT software. The AUDIT
sof tware examines FORTRAN computer programs or modules developed under the
SESCOMP system for compliance with certain prescribed standards
(SESCOMPSPEC's) and produces reports detailing the deviations from those
standards. The AUDIT software also examines a program unit to detect and -

(Continued on reverse side)

DD ,‘an'ys 1473 E€oimion oF 1 NOV 68 is OBsOLETE UNCLASSIFTED

$/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

3LV 57 7

=

UNCLASSIFIED

SECURITY CLASSIFICATION 2F Twhi5 BAGE ‘Whan Daca Entersd)

(Block 10)

63534N, 19568,
SSH19001 and S0308001,
11837001 ¢

(Block 20 continued)

report improper use of undefined variables along the program unit's
possible paths. In addition, AUDIT has an option which enables the
user to test the effect of changes in word length on the output of
computer programs.

This document describes the entire AUDIT software, explains
its applications, and gives a detailed description on how to use
the software.

UNCLASSIFIED

SECURITY CLASSIFICATION OF“THIS PAGE(When Data Entered)

i e b e v

e

fﬁ“;‘fﬁ:’*‘wa.-

- SRR N RS S L

FOREWORD

The use and maintenance of AUDIT, a software system for
analyzing SESCOMP contractor-supplied software, is cdocumented
as a set of four separately bound David W. Taylor Naval Ship
Research and Development Center volumes sharing the common
report number--DTNSRDC 77-0075:

Maintenance Manual for AUDIT, a System
SESCOMP Software, Volume 1

Maintenance Manual for AUDIT, a System
SESCOMP Software, Volume 2; Appendix B
the AUDIT Software for the CDC 6000

Maintenance Manual for AUDIT, a System
SESCOMP Software, Volume 3; Appendix C
the AUDIT Software for the UNIVAC 1108

Maintenance Manual for AUDIT, a System
SESCOMP Software, Volume 4; Appendix D
the AUDIT Software for the IBM 360

for Analyzing

for Analyzing
- Listings of

for Analyzing
- Listings of

for Analyzing
- Listings of

Volume 1 describes AUDIT and the use and maintenance of the

AUDIT software.

listings for the CDC 6000, UNIVAC 1108, and

1
!i

ACCESSION for Ve
>

LARN "
e b th
% 9
JUs ToN
(.
o

A

'7’f_“—i?

The other three volumes offer software

IBM 360.

‘ %‘}T s $
t

TABLE OF CONTENTS
Volume 1

SECTION 1. GENERAL DESCRIPTION
). 1 Purpose of the Program Maintenance
Manual
System Application
Equipment Environment
Program Environment
Conventions

D W N

SYSTEM DESCRIPTION

General Description
Audit Mode
Roll Call Mode
Variable Precision Mode
Flow Analysis Mode
Parser Software

Detailed Description
Main Program
SUBROUTINE ARIF
SUBROUTINE ASGOTO
SUBROUTINE ASSIGN
SUBROUTINE AUXIO
INTEGER FUNCTION BITGET
INTEGER FUNCTION BITPUT
SUBROUTINE BLKSTR
SUBROUTINE BUILD
SUBROUTINE CAA
SUBROUTINE CAI
SUBROUTINE CALL
SUBROUTINE CALL2
SUBROUTINE CAR
SUBROUTINE CHKLST
SUBROUTINE CLASS
SUBROUTINE CMPARE
SUBROUTINE CNVRT
SUBROUTINE COM
SUBROUTINE COMCHK
SUBROUTINE COMEXT
SUBROUTINE COMSCH
SUBROUTINE CTGOTO
SUBROUTINE DATA
SUBROUTINE DESCRP
SUBROUTINE DIMEN
SUBROUTINE DO
SUBROUTINE EQUIV
SUBROUTINE ERROR
SUBROUTINE EXPR
SUBROUTINE EXPRCK
SUBROUTINE FLOWCK

5

SECTION

. e e
U W~

« e s . .

NN NODNDNDNODNDNDNDNODNDNDNDNDNDNDND

. .
WWWNNNONNNNNNNNNNNND OO S WN -

NFOWVWOdJOOUEWNDHFOWOLVWONOOWUEe WN O

4 FPRECED]
. N PAGE BLang.yop

.

.

-

.

.

.

. . . s e
NDRNNRNNDNNODNDNODNDNDNDNNDNNDNODNDNODNDNDNDNDNODNNNDNODNDNODNDNDNNODNDNDODNDNDN
. &0 w, e e e A e e & B m R R ke . s e A

NNONNNMNDNNODNNODNNNDNODNDNODNDNODNODNDNDNODNNNDNDDNODNDNODNDNDNODNDNDNDNDND DN
a o000 ooV S SESELEEREEB,RWLWWWWWWW
—

o ® . . e
e s e « e e . . .

NN NN NN
. « e s s e e
NN

. .
XN NNNNNNNISNO
w

SUBROUTINE FNCSTR
SUBROUTINE FORM
SUBROUTINE FORMEL
SUBROUTINE FRMAT
SUBROUTINE GENROL
SUBROUTINE GLOTAB
SUBROUTINE GNLE
SUBROUTINE GOTO
SUBROUTINE GROUP
SUBROUTINE GRT
FUNCTION ICOMP
SUBROUTINE IMPTYP
SUBROUTINE INIT
SUBROUTINE INTRIN
SUBROUTINE IO
SUBROUTINE IOSTR
FUNCTION IPREV
FUNCTION ITYPE
SUBROUTINE LOGCHK
SUBROUTINE LOGIF
SUBROUTINE LOOPCK
SUBROUTINE LVDLET
SUBROUTINE LVEXIT
SUBROUTINE LVFECH
SUBRCUITNE LVFIND
SUBROUTINE LVGRN
SUBROUTINE LVNSRT
SUBROUTINE LVSETP
SUBROUTINE MODID
FUNCTION NEXT
FUNCTION NXTBLK
SUBROUTINE PARSE
SUBROUTINE PHONEY
SUBROUTINE PRNTS
SUBROUTINE PROG

SUBROUTINES Q1COMP, QIlDPRE,

QlREAL

SUBROUTINE REALCK
SUBROUTINE RECOG
SUBROUTINE RECOV
PROGRAM ROLCAL
SUBROUTINE ROLCHK
SUBROUTINE SEARCH
SUBROUTINE SEMANT
SUBROUTINE SEPAR
SUBROUTINE SIMP
SUBROUTINE SLEVEL
SUBROUTINE SQUEEZ
SUBROUTINE SSTOP
SUBROUTINE STATNO

vi

S PR DI = N

and

P

——p

age

32
32
32
32
33
34
35
35
35
36

36
37
37
38
38
38
38
38
39
40
41
41

41
42
42
42
42
42
42
42
43
43

43
44
44
44
44
44
44
44
45

45
45

45

SECTION

RN NODNDNDNDNDNDNDDNDNNDNDNNDNDNND NN

NN NN

www

www
.

282 SUBROUTINE STFNC
o 2e 83 SUBROUTINE STORE
.2.84 SUBROUTINE STSRCH
s SUBROUTINE SUB
2486 SUBROUTINE SUBCHK
287 SUBROUTINE SWITCH
«2.88 SUBROUTINE SYMTAB
2«89 SUBROUTINE TYPE
w2ie 90 Blank COMMON Storage
2.9k COMMON Block BASBLK
o lia D2 COMMON Block DOLOOP
w293 COMMON Block FLOW
2.94 COMMON Block FORMAT
2495 COMMON Block FUNC
«2.96 COMMON Block GIRL
I COMMON Block GLOBAL
2298 COMMON Block HL
«2.99 COMMON Block INPOUT
2« 160 COMMON Block JL
o2« L0 COMMON Block LABELS
25102 COMMON Block LIST
22103 COMMON Block LOGIC
.2.104 COMMON Block LVARGS
«2-105 COMMON Block LVFLAG
.2.106 COMMON Block LVRAND
Ll e COMMON Blocks LVTABL and LVVSEQ
.2.108 COMMON Block LVVTRI1
«2.+109 COMMON Block LVVTR2
«2s 110 COMMON Block LVVTR3
3 L COMMON Block LVVTR4
o B 47 COMMON Blocks LVVTRS5, LVVTR6,
LVVTR7, and LVVTRS
2113 COMMON Block NEED
.2.114 COMMON Block NEEDS
Pt) e, COMMON Block NOPAR
v 2ol BG COMMON Block NTIMES
2kl COMMON Block REALNO
2.118 COMMON Block STFUNC
APV COMMON Block STRING
«2.120 COMMON Block TYP
2.121 COMMON Block VAR
25122 COMMON Block WASTE

.
NN

N =

INPUT/OUTPUT DESCRIPTIONS
General Description
Characteristics, Organization, and
Detailed Description of System Data
User Input
Options Card
Software To Be Examined

—
o u
N -

Page

47
47
47
47
47
48
48
48
48
53
60
60
60
61
65
65
66
66
66
66
67
69
69
T
71
71
71
71
72
72

i
72
12
iR
73

73
74
74
74
74

75
15

75
15
15
76

SECTION

wiw wiwwwiwiww
L RIREC R R TR R~ B S
3SR (O I YOI SO I SO (S SO I SO I o0)
. ey . .

K<
w N =

R i~ S i i ol S
y @ 8 & % W wmIw A
N b B whNND N -
.« . . e e
it

REFERENCES

APPENDIX A

(Each of the Appendixes B, C, and D 1s separately bound.)

RS e R el

L

S,

W NN N -
. e e o s W

U W

W N =

Interface Definition File
Syntax Graph
Variable Precision Functions
AUDIT Generated 1/0
Revised Program File
AUDIT Module List
ROLCHK Module List
Roll Call Output Fi1les
Printed Output

PROGRAM ASSEMBLING, LOADING, AND
MAINTENANCE PROCEDURES
Input/Output Requirements
Procodures
CDC 6000
UNIVAC 1108
IBM 360
Verification
Special Maintenance Programs
Program SESLIST
Program GRAPH
Error Conditions

SAMPLE INPUT/OUTPUT

VOLUME 2
LISTINGS OF THE AUDIT SOFTWARE FOR
CDC 6000

VOLUME 3
LISTINGS OF THE AUDIT SOFTWARE FOR
UNIVAC 1108

VOLUME 4

LISTINGS OF THE AUDIT SOFTWARE FOR
IBM 360

viii

76
80
380
80
81
81
81
81
81

83
83
83
84
96
104
LL3
155 1
113
LS
113

ELS

L

Figure

Z2—0l
2-02
2-03
2-04
2-05
2-06
2-07
2-08

LIST OF FIGURES

Arithmetic Expression Graph
Logical Expression Graph

I1/0 List Graph

Statement Type Codes

Encoding Operator Codes

Legal Assignment Rules
Language Element Codes

Valid Operator/Constant Codes

ix

Page

13
14
L5
21
28
29
35
39

=

Pem——

S R i

T —

SECTION 1. GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual. The objective
for writing this Program Maintenance Manual for the AUDIT
system 1s to provide the maintenance programmer personnel with
the information necessary to effectively maintain the system.

1.2 System Application. The AUDIT system examines FORTRAN
computer programs or modules developed under the SESCOMP
system for compliance with certa;n'prescrjbed standards (as
set forth in the SESCOMPSPEC's ! 234 5) and produces reports
detailing the deviations from those standards. The AUDIT
system also examines a program unit (main program or subpro=-
gram) to detect and report the existence of any undefined
variables along the program unit's possible paths. AUDIT
provides the user with an option which allows him to test the
effect of changes in word length on the output of computer
programs.

1.3 Equipment Environment. The AUDIT system is operational
on three processors: CDC 6000 series, UNIVAC 1108, and IBM
360. AUDIT uses the following operating systems: CDC SCOPE
3.4, UNIVAC EXEC-8, and IBM 0S-360.

AUDIT 1s available on tape for each of the three proc-
essors and on disk for the CDC 6600 at DTNSRDC. Card decks
for each of the processors are also available. The mode of
operation of the AUDIT system is controlled by card input.
The programs, modules, or subprograms to be examined by
AUDIT may be entered via cards, tape, or disk. The results
of AUDIT which are of concern to the user are produced as
printout.

1.4 Program Environment. The AUDIT system was designed to
examine software developed under the SESCOMP system. SESCOMP,
an acronym for Surface Effect Ship Computations, is the name
of a system for procuring and managing modular computer pro-
grams developed for the Naval Sea System Command's Surface
Effects Ship Project Office (PMS304). The background, objec-
tives, and content of SESCOMP are described in Cuthbert, et al.
Although 1t is not required that the user of AUDIT have an
understanding of the SESCOMP system, a basic knowledge of that
system would help him to use AUDIT more effectively. AUDIT
may be used to examine any FORTRAN software, not just the
SESCOMP-produced software. The following attributes of the
AUDIT system will aid users in producing more reliable soft-
ware:

References are listed on page 115.

(1) The flow analysis feature examines a program unit's
paths to detect the use of undefined variables.

(2) The variable precision feature enables the user to
test the effect of changes in word length on the
output of a computer program.

(3) All aspects which affect portability among the four
SESCOMP processors are examined.

The analytic capability of the AUDIT system combines
with the SESCOMP programming standards to facilitate the

production of more reliable software, as detailed in Culpepper.

1.5 Conventions. Section 2 contains a detailed description
of the AUDIT software and modes of operation. Section 3 con-
tains a detalled description of the i1nput and output conven-
tions. Section 4 describes the operating procedure for all
modes of operation of the AUDIT system. The listings of the
AUDIT software for each of the three processors are each
separately bound i1n Appendixes B, C, and D.

2

SECTION 2. SYSTEM DESCRIPTION

2.1 General Description. The Naval Sea System Command's
Surface Effect Ship Project Office (PMS304) requested the
Computation and Mathematics Department of the David W.

Taylor Naval Ship Research and Development Center to develop
computer software that would examine vendor-produced computer
programs or modules for compliance with the SESCOMPSPEC's

and would produce reports detailing the deviations. AUDIT,
the computer software developed to carry out these functions,
has four modes of operation. 1In the first, or auditing mode,
AUDIT examines a program unit for conformance with the set of
SESCOMPSPEC programming standards and issues a report detail-
ing the deviations from those standards. 1In the second, or
roll call mode, AUDIT examines a module for deviations from
SESCOMP's roll call specifications (see Section 2.10 of

SESCOMPSPECS-?). In the third, or variable precision mode,
AUDIT tests the effect of changes in word length on the output
of a computer program. In the fourth, or flow analysis mode,

AUDIT examines a program unit to detect and report the
exlstence of any undefined variables along the program unit's
possible paths.

An important feature of AUDIT is the parser software,
which checks expressions to see if they are syntactically and
semantically correct. The parser software uses a syntax
graph to define the legal grammar for expressions.

2.1.1 Audit Mode. The audit mode of AUDIT examines a pr.ogram
unit for adherence to the specifications in SESCOMPSPEC3’,
SESCOMPSPEC4 ", and SESCOMPSPECS ~. However, not all of the
specifications are examined. Sections 2.1.1.1, 2.1.1.2, and
2.1.1.3 indicate which specifications are (or are not) checked
by AUDIT.

2.1.1.1 SESCOMPSPEC3 Elements. The various sections of
SESCOMPSPEC3 are considered in turn. AUDIT checks all of the
SESCOMPSPEC3 specifications (and therefore the Standard)
except as noted following. Comments are also made to amplify
what is checked. The user himself must assume responsibility
for checking the areas not covered by AUDIT.

2.1.1.1.1 Program Form. A diagnostic is issued when a non-
FORTRAN character is encountered. All elements of the
Standard concerning lines are enforced and appropriate diag-
nostics are issued for violations.

2.1.1.1.2 Data Types. All data types permitted by the
Standard are recognized. Only characters of the FORTRAN
character set are permitted as Hollerith types.

™™ T — — omare a

———

F e —

. e

2.1.1.1.3 Data _and Procedure ldentification. The magnitudes
of Lnteger, real, double precision, and complex constants

are not checked by the IBM 360 version of AUDIT. AUDIT does
not check whether a dummy argument of an external procedure
identifies a subroutine or external function not referenced
in the program unit being analyzed. If a dummy argument of

a program unit bears the same symbolic name as a subroutine
or external function referenced within the program unit being
analyzed, a diagnostic on the violation is issued.

2.1.1.1.4 Expressions. AUDIT does not check the requirement
that no factor may be evaluated that requires raising a zero
valued primary to a zero valued exponent.

2.1.1.1.5 Statements. AUDIT does not check the requirement

that the integer variable i in an assigned GO TO of the form
GRS (TR e O o » k,) has been assigned one of the

statement labels in the parenthesized list by an ASSIGN state-
ment prior to the execution of the subject statement.

In a computed GO TO of the form GO TO (k], Kdr ssevser
knp)e. L AUDIT does not ensure that i has been given a value 3
l1<j<n, prior to execution.

In a DO statement of the form DO n i=m,;, m,, (m;), if m
m,, and/or m; are variables, AUDIT does not check any of the
following restrlctxons

(1) At time of execution of the DO statement, my, mj,
mz must be greater than zero.

(2) The terminal parameter (m,) must be no less than the
initial parameter (m;).

(3) The sum of the terminal parameter and the incremen-
tation parameter minus one may not exceed 2**17-2.

The above three restrictions are checked if My, My, and/or
m. are integer constants.

AUDIT does not check whether an array elemen' name
contains a variable subscript that, during execut.on of the
program unit, assumes a value less than one or larger than
the maximum length specified in the array declarator. For
array element names having an integer constant subscript,
AUDIT does not check for a zero subscript but does check for
a subscript that is less than zero. AUDIT does check an
integer constant subscript for exceeding the maximum length
but does this only for non-executable statements (DATA and
EQUIVALENCE) .

AUDIT does not check that a formatted READ or WRITE
statement may not read or create a record of more than 120

g -~ — . . y——

.-

-

B ——— e — oo e

characters. It does not check that the first character of
a formatted record for printing may not be a +.

AUDIT does not check that a FORMAT statement that is
used for both input and output must end with a field descriptor
or group of field descriptors. If there is an input/output
list for a formatted READ or WRITE, AUDIT does not check that
at least one field descriptor other than nH or nX must exist.

2.1.1.1.6 Procedures and Subprograms. For a FUNCTION state-
ment of the form t FUNCTION f (al, ADr e r ap) or a
SUBROUTINE statement of the form SUBROUTINE s (aj, a2, «+«.-.. -
an), AUDIT checks that the a's, the dummy arguments, are each
elther a variable name or an array name but does not check that
a dummy argument is not an external procedure name not :efer-
enced in the program unit being analyzed. If a dummy argument
of a program unit bears the same symbolic name as a subroutine
or external function referenced in the program unit being
analyzed, a diagnostic on the violation is issued.

AUDIT checks the dummy arguments of FUNCTION and SUBROU-
TINE statements and the actual arguments used for referencing
external functions and subroutines to insure that the argu-
ments agree in order, number, type, and dimensionality with
the argument definition in the SESCOMP Interface Definition
file (see Section 3.2.1.3).

For a function subprogram AUDIT does not check whether
the subprogram contains a statement that directly or indirectly
references the function being defined.

The following is not checked: If a function reference
causes a dummy argument in the referenced function to become
associated with another dummy argument in the same function
or with an entity in common, a definition of either within
the function is prohibited.

2.1.1.1.7 Programs. The normal execution sequence is enforced

by the flow analysis mode of AUDIT (see Section 2.1.4).

2.1.1.1.8 1Intra- and Inter-Program Relationships. 1In the

flow analysis mode, AUDIT traces the definition and redefinition
of each variable in a program unit through all the possible
program paths.

2.1.1.2 SESCOMPSPEC4 Elements. The following SESCOMPSPEC4

requirements are checked by AUDIT.

2.1.1.2.1 Usage. The symbolic name of the subprogram being

analyzed is checked to insure that the name is in the Interface
Definition file (see Section 3.2.1.3). The subprogram dummy
arguments (if any) are checked to see if they agree in order,

—~—— v iy g — -

i i e LSS ———

number, type, and dimensionality with the subprogram's
argument list as defined in the Interface Definition file.
If the subprogram is a function subprogram, the type is
checked with the Interface Definition file.

1.1.2.2 Labeled COMMON Storage. The symbolic name of

ﬁagh labeled COMMON block is checked to insure that the
name 1s in the Interface Definition file.

2.1.1.2.3 Category 1 COMMON Storage. The size and type of
each variable of a Category 1 labeled COMMON block is checked
w1th the Interface Definition file.

24.1.1.2.4 Category 2 COMMON Storage. AUDIT checks that, for
each Category 2 labeled COMMON block, the elements are grouped
by type. AUDIT also checks that a module has at least one

Category 2 block.

2.1.1.2.5 Blank COMMON Storage. If a module has blank COMMON
storage, ‘AUDIT checks that the size of the blank COMMON storage
agrees with the size specified in the Interface Definition file.

2.1.1.3 SESCOMPSPECS Elements. The following SESCOMPSPECS
requirements are checked by AUDIT.

2.1.1.3.1 BLOCK DATA. For a BLOCK DATA subprogram, the pre-
scribed order of data types in a labeled COMMON block are
checked.

2.1.1.3.2 COMMON Storage. The Category 1 labeled COMMON block

SESCOM 1s checked to insure that the symbolic names assigned

to each element of the block are the prescribed names. Each
program unit is checked to see if it contains the mandatory
Category 1 block SESCOM. 1In this case AUDIT does not distin-
guish whether the program unit being checked is a main program,
module root program unit, ancillary subprogram, or extraordinary
subroutine. The user should disregard the mandatory SESCOM
diagnostic message if an ancillary subprogram or extraordinary
subroutine START does not contain the SESCOM block.

For Category 2 and 3 labeled COMMON blocks, AUDIT checks
that each and every element of each block is used by the sub-
program. For modules with ancillary program units a misleading
message may be issued. Since the audit mode analyzes only a
single program unit, there is no way of knowing if an element
in a Category 2 or 3 block is used in another program unit of
the module. AUDIT also checks that a module has at least one
Category 2 labeled COMMON block.

If a module has blank COMMON storage, AUDIT checks that
the size of blank COMMON storage agrees with the size speci-
fied in the Interface Definition file.

R o 5 TR e - 3 >~

s GG TN T ——— A — T —— .

e TR e

2.1.1.3.3 Ancillary Subprograms. The symbolic name of each
ancillary subprogram is checked to insure that the name is in
the Interface Definition file (see Section 3.2.1.3).

2.1.1.3.4 Roll Call. AUDIT's roll call mode performs an
analysis of a module's roll call actions (see Section 2.1.2).

2.1.1.3.5 Order of Statements. The prescribed order of
statements is checked.

2.1.2 Roll Call Mode. AUDIT contains two options for checking
the roll call action of the root program unit of a module. See
Section 2.10 of SESCOMPSPECS5” for an explanation of a module's
roll call actions.

(1) Option l: AUDIT simulates the modules root program
unit execution by executing the program unit for mode
index values of 0, =1, ««eo. , =11, -12 (a use count index
of 1 is assumed). The output for each mode index is
printed. The mode index value and the output device

(X, Y, or Zz) is designated for each output of a specific
mode index value. For each mode index value, AUDIT also
checks that each module referenced by the root program
unit is referenced in the same roll-call mode.

(2) Option 2: For each mode index value (0, -1, ’
-11, -12), AUDIT checks that each module referenced by
the root program unit is referenced in the same roll-call
mode.

If an ancillary subprogram of a module references a
module (A) not referenced by the root program unit of the
module (for computational mode) and this module (A) is not
referenced in the roll-call mode of the root program unit,
AUDIT does not detect this deviation from the roll call speci-
fications. The roll call mode uses subroutines CMPARE, MODID,
and ROLCHK, and generates main program ROLCAL.

The roll call mode should only be used to examine the
root program unit of a SESCOMP module.

2.1.3 Variable Precision Mode. If a contractor develops a
program on a computer with a word length of 60 bits, it is
important to determine whether it will produce correct results
on a computer with a smaller word length. The AUDIT system
provides a mechanism to assist in this determination. The
variable precision mode allows the user to specify one of a
group of truncation operators to be applied after each arith-
metic operation. These truncation operators are in the form
of variable precision function subprograms: Ql1COMP, QlDPRE,
and QlREAL (see Section 2.2.68). There are sets of truncation
operators for the results of operations on real, complex, and

~———

double precision numbers. The user selects the appropriate
operator from each set to provide the desired degree of
precision. The truncation operators simulate word lengths
of 30 to 40 bits, 24 to 31 bits, and 30 to 35 bits for the
CbC 6000, IBM 360, and UNIVAC 1108, respectively. The ref-
erence to the truncation operator following each arithmetic
operation is inserted by AUDIT in the modified statements.
Only two types of statements are modified, assignment state-
ments and CALL statements.

An assignment statement is of the form V=E where V is
a varliable name or array element name and E is an arithmetic
expression. AUDIT examines the arithmetic expression from
right to left for triples of the form SAE|; OP SAE, where OP
may be +, -, *, or / and SAE is any valid FORTRAN expression.
Each triple is rewritten in the form F; (SAE; OP SAE ,), where

F; is QIREAL, QlCOMP, or QIDPRE, depending on whether the

result of SAE, OP SAE, is real, complex, or double precision,
respectively. The following example illustrates the method:

Given: Y=A*B + C*D
Result: Y=QlREAL(QL1REAL(A*B) + QlREAL(C*D))

A CALL statement is of the form CALL PROG (A], Ry g “Siati via ¥
A,) where A, are actual arguments. AUDIT examines each
actual argument and generates a new CALL statement as follows:

(1) Constants, variable names, array element names, and
array names are copied unchanged.

(2) FORTRAN expressions are processed as for assignment
statements.

The following example illustrates the method:

Given: CALL PROG (A, A(1,2), B, C+D)
Result: CALL PROG (A, A(l,2), B, QlREAL (C+D))

where A is an array and B, C, and D are real variables.

The variable precision technique is not intended to
simulate the arithmetic peculiarities of any particular
computer. Its only purpose is to permit the precision of
arithmetic operations on a given computer to be varied.
With this restriction in mind, the technique as implemented
in AUDIT has one limitation:

The calculations of FORTRAN library functions and of
any subprogram not processed by AUDIT are not subjected
to truncation.

2.1.4 Flow Analysis Mode. The flgf analysis mode of AUDIT
detects violations of ANSI FORTRAN “ which are concerned with

inter- and intra-program relationships. 1In the design of

the AUDIT system particular attention was paid to that

section of the ANSI Standard which deals with the definition
and "undefinition" of variables. This section states, for
example, that if two variables of different types become
associated by appearing in an EQUIVALENCE statement and one

of the variables becomes defined, the other becomes undefined
and may not be used in computation until redefined. The flow
analysis is performed using some results obtained from the
theory ?5 compiler optimization provided in Allen” and
Kennedy'“. During the interstatement analysis of a program
unit, AUDIT constructs the usual tables containing information
about the variable names and their associations through COMMON
and EQUIVALENCE statements. In addition a set of basic blocks
is constructed. A basic block starts with:

(1) the first executable statement of the program unit,
or

(2) a labeled executable statement, or

(3) the first executable statement after a RETURN, STOP,
GO TO, or logical IF containing one of these forms,
or

(4) the first statement after a DO or DO terminal state-
ment.

A basic block ends with:

(1) any GO TO, STOP, RETURN, or logical IF containing
one of these forms, or
(2) a DO or DO terminal statement.

A control flow graph is constructed using basic blocks as
nodes and the control flow paths as edges. In the implemen-
tation of AUDIT, the information retained in the block con-
sists of the names of the variables defined or undefincsd by
the basic block and the names of the variables which must

be defined prior to execution of the block. The symbol table
is used to record the status of each variable, e.g., whether
it is defined, undefined, an induction variable, or an ASSIGNed
variable. Each path in the graph is traced through to detect
and report improper use of undefined variables. A depth-first
graph tracing algorithm is employed. 1In order to detect
infinite loops and to facilitate diagnostic messages, a list
of the basic block names in the path currently being tra-
versed is maintained. As each new name is added to the list,
the number of prior occurrences of that name is determined.
When the count exceeds two, tracing of that path terminates
and tracing of the next path begins. This heuristic seems
satisfactory for the sort of programs normally produced by
engineers. In a fairly complex program, however, it is
possible that some legitimate paths may be missed. DO loops
are traced only once. The flow graph is also analyzed to

Y
»
v
=

mv—-~ T O BT il s i R S e - ¥ v — | — i o J

insure proper nesting of DO loops and to detect illegal
branches within DO loops. Subprogram references are
checked to insure that the actual parameters are defined
before the reference (for input parameters) and after the
reference (for output parameters).

The flow analysis mode has two options: a full flow
analysis and a moderate flow analysis. The full flow ana-
lysis allows a path to have a statement label that appears
at most twice. The moderate flow analysis does not check
any path in which a statement label appears more than once.
Given the following coding:

I1=0
J=0
5 I=I+1
CALL SUB(I)
IF(LJEE.L0) GO TO 5
10 J=J+1

CALL SUBB(J)
IF(J.LT.10) GO TO 10
RETURN

END

the moderate flow analysis would check only one path:
(5,10). The full flow analysis would check four paths:
(5,200, (5,9.100), (5,5,20,10), and (5,L0,10).

The moderate flow analysis will usually check less
paths than the full flow analysis. The full flow analysis
should be satisfactory for most program units. However,
the moderate flow analysis is less time-consuming and
should be used if the full flow analysis is taking too much
time.

2.1.5 Parser Software. Arithmetic expressions, logical
expressions, and 1/0 lists are parsed by AUDIT. Parsing
involves determining whether an expression is syntactically
and semantically correct. The software used to parse
expressions is called the parser.

Part of the AUDIT parser is written in GIRL (Graph
Information Retrieval Language), which is a high-level
language developed at DTNSRDC and described in Berkowitzll,
The GIRL-coded statements are translated into FORTRAN code
by running the GIRL statements through the GIRL preprocessor.
This FORTRAN code thus generated (and six other FORTRAN sub-
routines) is the parser software for AUDIT.

The parser requires a syntax graph as input. This graph

is a plex data structure which completely defines all valid
arithmetic and logical expressions, as well as I/0 lists.

10

The parser can conveniently manipulate graph structures,
1l.e., insert, identify, retrieve, delete, and compare node-
link-node triples such as the one shown following:

o Q (single-value list)

where A is the source node
B 1is the link
and C 1is the sink node.

Source nodes and links are random numbers generated by
SUBROUTINE LVGRN. Sink nodes may be random numbers, integers,
or Hollerith data. The triple can also be the component of

a multi-value list represented in either of two ways.

g T e ®

®

The syntax graph is composed of single-value lists and multi-
value lists linked together. The triples themselves are
stored in a structure called GIRS (Graph Information Retrieval
System) memory according to the following algorithm:

LOC = (A+B) modula MEMSZE.
B
For example, the triple , where A=52, B=73, and
MEMSZE (GIRS memory size)=100, will be stored in GIRS location
Pt I LOC=(52+73) mod 100 = 125 mod 100 = 25.

The GIRS memory is constructed in the following way.
Each single-value list requires four locations; each multi-
value list requires 4(n+l) locations (where n>2 is the number
of sink nodes). The GIRS memory is stored in COMMON blocks
LVVTR1, LVVTR2, LVVTR3, and LVVTRA4.

The syntax graph is composed of nodes and links. Each
node is a state in the graph. The parsing of an expression
proceeds from state to state by way of the links. Each link
is either a terminal symbol or STOP, ASSOC, or LEVEL. A
terminal symbol is one of the following: PLUS, MINUS, SLASH,
LPAR, RPAR, COMMA, STAR, EXP, LT, LE, GT, GE, EQ, NE, OR,
AND, NOT, EQUALS, OPRAND. A constant or a variable is desig-
nated OPRAND. Each node and link is identified by a unique
pseudo-random number.

Since FORTRAN is a finite state language, each state
can lead to more than one state. Therefore it is necessary

11

to remember all the nodes that were visited in case it
becomes necessary to back up to another point in the graph.
This 1s accomplished through associates and levels. If the
graph is in a certain state, the parser looks at the next

terminal symbol in the input string. If that terminal symbol
is a link from that node to another node, that link 1s se-
lected. 1f not, an associate from that node is selected. 1If

there is no associate, the level is selected from the last
previous associate.

ne syntax graph has three parts: (1) a FORTRAN ex-
pression graph for arithmetic expressions, (2) a Boolean ex-
pression graph for logical expressions, and (3) an I/O list
graph for 1/0 lists. These three parts are shown in Figures
2-01, 2-02, and 2-03. An example to illustrate the parsing
of an arithmetic expression follows. Consult the FORTRAN
expression graph for help in following the logic.

The expression A+B*C is converted to the string

OPRAND PLUS OPRAND STAR OPRAND.
This string is traced as follows:
29 93 133 208 452

At this point it becomes necessary to back up to the last
previous associate and take the level

£33 235
back up to
93 157
back up to
29 519 plus sign found
62 93 133 208 452
back up to
135 235
back up to
93 £57 star found

133 208 452 string empty
stop state found.

The parser software consists of the following subrou-
tines: FORM,LVDLET,LVEXIT,LVFECH,LVFIND,LVGRN,LVNSRT,
LVSETP,PARSE, PHONEY ,PRNTS ,RECOG,RECOV,SEMANT ,SLEVEL, and
SSTOP. LVDLET,LVFECH,LVFIND,LVGRN,LVNSRT, and LVSETP are
part of the GIRS memory scheme. The remaining parser sub-
routines are originally written in GIRL and processed into
FORTRAN. The explanation of the parser in this section should
not be considered a comprehensive description. It is meant
as a general description so as to aid in the description of the
subroutines and COMMON blocks which follows. A more comprehen-
sive description of the parser software is now under preparation
at the Center in the Computer Sciences Division.

12

ydeuay uotssaudx3 dL3awyl Lay

"10-¢ 34N9I4

p

13

I S — A R e T

Csmme LEV ,
a3
§ \

FIGURE 2-02.

Logical Expression Graph

14

13

__Assoc

-

SV Py T

FIGURE 2-03. I/0 List Graph

15

B
\
-

2.2 Detailed Description. All program units of the AUDIT
software are described in Sections 2.2.1 through 2.2.89.
After the main program the program units are listed in
alphabetical order. The overall function(s) of each sub-
program and clarifying remarks are described in the opening
paragraph for each subprogram section. Following this
opening paragraph, most subprogram sections also contain

the logical flow through the program unit listed by numbered
steps. All data elements in COMMON are described in Sections
2.2.90 through 2.2.122. Tables, arrays, and data elements
used by the various program units are included.

2.2.1 Mailn Program.

15 Read the options card which contains the mode(s) of
operation, input device, and the intrinsic function
parameter.

Initialize global variables and tables.

Read the Interface Definition file.

Initialize non-global variables and tables.

CALL BUILD to assemble the next source statement.

Print the statement. If the statement is a comment or

a blank, go to Step 5. If not, increment the state-

ment counter and CALL CLASS to classify the statement.

CALL STATNO to process the statement number, if any.

8. ©Set character pointer to seven and save classes of
current and preceding statements.

9. 1f it is the first statement of the program unit, test
that it is a SUBROUTINE, FUNCTION, PROGRAM (for CDC
only) or BLOCK DATA statement.

10. If it is not the first statement and the program unit
Ls a BLOCK DATA subprogram, check that the statement
is an EQUIVALENCE, DATA, DIMENSION, COMMON, or type
statement.

11. Go to the appropriate statement processor.

12. Check all specification statements for proper order.
If the statement i1s a FUNCTION statement, reposition
the character pointer (if FUNCTION is preceded by a
type) .

If the statement is an assignment statement, change

its class (if it is a FUNCTION defining statement).

13. Write out the statement.

14. 1f it is the first statement of the program unit and
the variable precision mode has been selected, generate
type statements for QlICOMP and QlDPRE (auxiliary
var iable precision subprograms to be loaded later) on
logical unit 8.

15. If END statement not encountered go back to Step 5.

16. CALL SUBCHK to check the arguments (if any) of the
program unit against the Interface Definition file.

17. CALL SYMTAB to display the symbol table.

CALL GRT to update the global reference table.

U W
AT

~J

16

_——

R

18.

19,
20

21

2:2:4

CALL COMCHK to check COMMON blocks against the
Interface Definition file.

CALL LOOPCK to check for proper nesting of DO
loops and proper nesting of control throughout
program unit.

CALL FLOWCK to perform flow analysis, if desired.
If there are more program units to be processed,
go to Step 4.

CALL GLOTAB to display the global reference table.
If roll call mode has been selected, CALL GENROL
to generate the main roll call program.

Rewind output devices.

SUBROUTINE ARIF. This subroutine processes arithmetic

IF statements.

U W

2+243

Verify the presence of the keyword IF and the
presence of a left parenthesis.

CALL EXPR to code and analyze the expression.
CALL PARSE to parse the expression.

CALL FNCSTR to verify function references.

CALL BLKSTR to store basic blocks.

Set NBRNCH, the counter for branches out of the
basic block, to zero.

Fetch the three statement numbers following the
expression, store them in the statement number
table, label them as having been referenced, and
count the number of distinct branches out of the
block.

SUBROUTINE ASGOTO. This subroutine processes assigned

GO TO statements.

—
.

2.2.4

Check keyword spelling.

Fetch the GO TO variable, test that it is a simple
integer variable, and store it in the basic block
table.

Initialize the branch counter.

Fetch the next statement number in the list, store
it in the statement number table, and flag it as
having been referenced.

Check for duplicates. If the current statement
number is not a duplicate, store it in the basic
block table and increment the branch counter.
Process the rest of the list and set the new block
flag to 1.

SUBROUTINE ASSIGN. This subroutine processes ASSIGN

statements.

1.

Check keyword spelling.

17

— p

-

2. Locate the statement number and flag it as

having been referenced.

Check for the presence of the keyword TO.

4. Fetch the assigned variable and check that it is
a simple integer variable.

5. Enter the index to the variable in the basic block
table.

W
.

2.2.5 SUBROUTINE AUXIO. This subroutine processes REWIND,

END FILE, and BACKSPACE commands for syntax errors.

2.2.6 INTEGER FUNCTION BITGET. This function retrieves a

field of bits from a given position within the word ILOC.
IPOS is the rightmost bit position (in ILOC) from which the
field will be retrieved. IWIDTH is the number of bits in
the field.

2.2.7 INTEGER FUNCTION BITPUT. This function stores a field

of bits into a given position within the word ILOC. Bits are
numbered left to right starting with 1. IVAL, right-
justified and zero-filled, is the word which contains the
field to be stored. 1IPOS is the rightmost bit position (in
ILOC) into which the field will be stored.

2.2.8 SUBROUTINE BLKSTR. This subroutine is called after

an expression has been parsed. 1t stores information in the
basic block table.

1. Fetch next variable in the expression.

2. 1If variable is not associated with a function
reference, store it as referenced and go to Step 1.

3. If variable is associated with a function reference,
fetch the symbol table location of the function,
fetch the Interface Definition file location of the
function, and determine which of the function argu-
ments 1s associatd with this variable.

4. If the variable associated with a function reference
is a statement function, store the variable as
referenced and go to Step 1.

5. Fetch the I/0 status (IOSTAT) of this variable from
the Interface Definition file. If IOSTAT=0, the
variable is output and is stored as defined. If
IOSTAT=1, the variable is both input and output, and
is stored as both referenced and defined. 1If
IOSTAT=2, the variable is input and is stored as
referenced. If this variable appeared in an argument
which was an expression, verify that the argument is
not output (IOSTAT=0 or 1).

2.2.9 SUBROUTINE BUILD. This subroutine returns a character
string of length N in array A. The character string consists
of the next statement in the FORTRAN program unit being

18

processed. The flag IERR is set to 2 if an end-of-file
condition has occurred. If there are more continuation
cards than permitted, an error message is printed.

2.2.10 SUBROUTINE CAA. This subroutine packs a string of
alphanumeric characters into a single word. The ISTR array
contains the characters and MSTR is the number of characters.
If MSTR is greater than 6, the string is too long. Each
character is packed into ID in the leftmost available
positions. After all the characters have been packed, ID is

filled with blanks.

2.2.11 SUBROUTINE CAI. This subroutine converts a string
of alphanumeric characters to an integer. The ISTR array
contains the characters and MSTR is the number of characters.
If MSTR is greater than 10, the integer is too large. Each
character in the array is converted to its integer equivalent
and multiplied by the proper power of ten. All these numbers
are added up and stored in INTVAL. The size of INTVAL is

checked against the maximum value (2**31-1).

2.2.12 SUBROUTINE CALL. This subroutine processes CALL
statements.

1. Check keyword spelling.

2. Fetch the subroutine name and check it for validity.

3. Store the name of the called subroutine in the
symbol table if it has not already been entered.

4. Perform the following actions if the subroutine
doesn't have an argument list:

a. If the subroutine is not in the Interface
Definition file, store it there temporarily.
Store this temporary location in the svmbol
table.

b. If the subroutine is in the Interface Defi-
nition file, retrieve its location.

c. Verify that the subroutine has no arguments.

5. Perform the following actions if the subroutine
has an argument list:

a. Parse the statement

b. CALL FNCSTR to store function references.

¢. CALL BLKSTR to store basic blocks for flow
analysis.

6. If the variable precision mode has been selected,
CALL CNVRT to insert variable precision function
references.

7. 1f the roll call mode has been selected and this
subroutine is a subroutine module, CALL CALLZ to
generate a call to ROLCHK.

2.2.13 SUBROUTINE CALL2. This subroutine is called by
subroutines CALL (CALL statement processor) and INIT

19

M
)

S

A R RN

(assignment statement processor) when the roll call mode has
been selected and when the subprogram referenced in the CALL
or assignment statement appears in the Interface Definition
file as a function or subroutine module. Given a CALL state-
ment of the form

CALL SESPL1 (N,L,M)
CALL2 transforms the statement into

CALL ROLCHK (1HS, 1lBE, 1HBS, 1HP, 1HL, 1Hl).
The arguments of the call to ROLCHK are generated by taking
the letters or numbers of the called subprogram one at a
Cine.

2.2.14 SUBROUTINE CAR. This subroutine converts a string of
alphanumer ic characters to a real or double precision number.
The RN array contains the characters and NCHAR is the number
of characters. 1If a real number has more than 20 digits, or
1f a double precision number has more than 40 digits, proc-
essing is aborted. The characters are packed into array IHOL,
right-justified and blank-filled. The DECODE statement con-
verts the characters of the IHOL array to a real or a double
precision number. The real or double precision number is
then checked against the maximum and minimum values (1.0E+38
and 1.0E-38, respectively).

Note that this subroutine is not used in the IBM 360
or UNIVAC 1108 versions of AUDIT, since in those versions
the magnitude of real, double precision, or complex constants
1s not checked.

2.2.15 SUBROUTINE CHKLST. This subroutine flags, as being
initially defined, all those variables which have been
declared in COMMON statements, DATA statements, or formal
parameters (which are designated input), or which have been
equivalenced to any of these. This subroutine is referenced
by subroutine FLOWCK for the flow analysis mode.

2.2.16 SUBROUTINE CLASS. Given the character string A
(which contains the statement currently being processed),
this subroutine determines the type of statement. There are
36 possible types of statements and CLASS sets the variable
ITYP to the appropriate value which indicates the type of
statement. The codes for the 36 possible types of statements
are given in Figure 2-04.

20

Statement Type

FIGURE 2-04.

Assignment
Assign

GO TO
Assigned GO TO
Computed GO TO
Arithmetic IF
CONTINUE

CALL

RETURN

STOP

READ

WRITE

REWIND
BACKSPACE
ENDFILE
Logical IF

DO

END

INTEGER

REAL

DOUBLE PRECISION
COMPLEX
LOGICAL
DIMENSION
COMMON
EQUIVALENCE
DATA

FORMAT

BLOCK DATA
SUBROUTINE
FUNCTION
PROGRAM

PAUSE
EXTERNAL

Statement function

Unclassified

Statement Type Codes

CLASS recognizes all statement functions initially as

assignment statements.
statement functions by subroutine INIT.
classification by first testing to see whether the string is

AR ——

a valid assignment statement.
few characters of the string are examined to determine which
of the FORTRAN keywords are present.

of ITYP

is then set.

g = - S B

If

21

it

is not,

They are subsequently reclassified as
CLASS makes its

then the first

The appropriate value

2.2.17 SUBROUTINE CMPARE. This subroutine is used in the

by the module being processed were referenced in the SESCOMP
roll-call mode. CMPARE requires as iLnput the AUDIT module
list, which resides on logical unit 9, and the roll check
module list, which resides on logical unit 3. CMPARE checks
that all modules in the AUDIT module list appear on the roll
check module list for all valid values (0 to -11) of the
mode index.

2.2.18 SUBROUTINE CNVRT. This subroutine converts coded

output from subroutine PARSE into BCD (Binary Coded Decimal) |
and returns it to array A. The PARSE output is the result |
of the variable precision transformation described in

Section Z2.1.3.

1. Copy the left side of an assignment statement to
the output array.

2. If an arithmetic operator in the input string is
found, copy out the appropriate operator.

3. If a logical operator in the input string is found,
copy the appropriate operator to the output array.

4. If the codes for the variable precision functions

Q1REAL, QlCOMP, and QlDPRE are found, copy out the

appropriate function name.

Process the code for a constant or variable name.

Fetch the length of the name.

Fetch the location of the name in the symbol table.

Deal with constants.

x~Jdowm

2.2.19 SUBROUTINE COM. This subroutine processes COMMON

statements by checking the syntax of the statements and by
entering the declarative information in the statement into
the symbol table.

1. Check keyword spelling.

2. Add each COMMON block to the symbol table.

3. Chain together the variable names in each COMMON
block as they are encountered. The COMMON block
name points to the first variable in the block
and the last variable in the block. The last
variable in a chain contains a pointer to the
beginning of the chain. Each variable in the
chain points back to the COMMON block name.

4. Maintain counts of the number of COMMON blocks and
their lengths.

5. Test each block name and each variable name to
insure that it is in the proper class, i.e., that
it is not also the name of a function.

2.2.20 SUBROUTINE COMCHK. This subroutine is referenced
after all statements of the program unit being analyzed have

22

been processed. It checks the validity of all COMMON blocks
that appeared in the program unit.

1. Get next COMMON block from the symbol table.

2. Fetch the category and size of COMMON block from
the Interface Definition file and check the size
(for Category 1). The sizes of Category 2 and 3
blocks are checked for consistency if they appear
in other program units being analyzed.

3. Fetch next variable in COMMON block, along with
its type and size (if it is an array).

4. 1If variable is complex or double precision, verify
that it begins on an even word within the COMMON
block.

5. If this is a BLOCK DATA subprogram, verify that the
variables are in their prescribed order (real,
integer, double precision, complex, and logical).

6. If this is a Category 2 COMMON block, verify that
it is grouped by type.

7. 1If this is a Category 2 or 3 COMMON block, verify
that all the variables are used.

8. If this is a Category 1 COMMON block, check the
variable types against the Interface Definition
file.

9. Check for the existence of COMMON block SESCOM and
check for its prescribed variables.

2.2.21 SUBROUTINE COMEXT. This subroutine is referenced by
subroutine EQUIV (EQUIVALENCE statement processor) to determine
whether an EQUIVALENCE statement extends COMMON and whether

a double precision or complex variable begins on an even
location within COMMON.

1. Fetch the location in the symbol table of the COMMON
block which contains the equivalenced variable.

2. Fetch the location of the last variable in the block.

3. Fetch the size of the block.

4. Calculate the total number of storage units which
precede the equivalenced variable in its COMMON block.

5. Fetch the next variable and, if it is equivalenced,
transfer out of the loop to statement number 25.

6. If the variable is dimensioned, go to statement
number 10. Otherwise increment the storage unit
counter and continue the loop.

7. If the variable is dimensioned, compute the number of
storage units required from the dimensions of the
array.

8. From the above result, calculate the number of
storage units in the COMMON block which follow the
equivalenced variable.

9. 1If the variable is double precision or complex, test
that it begins on an even location.

23

10. Test whether COMMON is extended.

11. Fetch the offset (see SUBROUTINE EQUIV) of the equiv-
alenced variable in the COMMON block.

12. Fetch the offset of each variable in the equivalence
chain, calculate the first and last storage unit
locations occupied by the variable, and check whether
these locations lie within the storage area occupied
by the COMMON block.

2.2.22 SUBROUTINE COMSCH. Given the COMMON block name stored
in NXTID, this subroutine sets ISRCH(3) equal to 1 if the name
is found in the symbol table and 0 if it is not.

2.2.23 SUBROUTINE CTGOTO. This subroutine processes computed
GO TO statements.

1. Check keyword spelling and for the presence of a left
parenthesis.

2. Reserve a space in the basic block table for the GO
TO variable. JBLOCK is used to store the index to
that space.

3. Initialize the branch counter.

4. Procure and check the statement numbers in the state-
ment number table.

5. Set the flag in the statement number table which
indicates that the statement number has been refer-
enced.

6. If the statement number has occurred previously in
this statement, go to statement number 17. Otherwise
store the statement number in the basic block table
and increment the branch counter.

7. After all the statement numbers have been processed,
fetch the GO TO variable and test that it is a simple
integer variable.

8. Store the index of the variable in the basic block
table, set the new basic block flag to 1, and return
to the referencing program.

2.2.24 SUBROUTINE DATA. This subroutine processes DATA
statements.

1. Check keyword spelling and perform some initiali-
zation.

2. Fetch the next variable name and enter it in the
symbol table if it is not already there.

3. Test the variable for a previous appearance in a
DATA statement.

4. Test the variable to determine if it is a formal
parameter.

5. Determine whether the variable is in COMMON. Issue
an error message if the variable is in blank COMMON

24

or if the variable is in labeled COMMON and this
is not a BLOCK DATA subprogram.

6. Test for a left parenthesis occurring next in the
statement, in which case the variable name preceding
the left parenthesis must be the name of an array.

7. 1f the variable is the name of an array, check the
subscripts against the dimensions given in the
DIMENSION statement for the variable in question.

8. If a dimensioned variable is used without a subscript,
calculate the size of the array.

9. Begin processing the constant list. To detect any
discrepancies between the number of variables in the
variables l!ist and the number of constants in the
constant list, two counters (LST1SZ and LST2SZ) are
used to keep the respective counts. Initialize the
repeat counter.

10. Fetch the next element and, if it is a Hollerith
string, go to statement number 47. If it is not a
Hollerith string and if the element is not an integer,
go to statement number 45.

11. The element is either an integer or a repeat count
for a following element. If it is a repeat count,
convert it to binary and store it in NRPEAT.

12. Check whether a sign precedes the constant.

13. Test the constant to see if it is real, integer,
complex, Hollerith, or logical.

14. Increment the constant list size counter. The next
element in the string being processed should be either
a comma or a slash. If it is a comma, go to statement
number 40 to get the next element. If it is a slash,
compare the two list size counters and, if they are
not equal, print an error message. If the element
following the slash is a comma, go to statement
number 8 to process another list. If it is not a
comma, a blank signifies the end of the statement.

2.2.25 SUBROUTINE DESCRP. Given the starting point IDESST

in the string A, this subroutine sets the variables IDES to 1
if the substring which follows is a valid format field
descriptor and 0 if it is not. A valid format field descriptor
is one of the following:

SrFw.
SrEw.
srGw.
srDw.
rlw
rLw
rAw
thlh,....h
nX X

aQQQ

n

25

where w and n are non-zero integer constants, d is an integer
constant, r is an optional non-zero integer constant, and s
Is optional and represents a scale factor designator of the
form mP, where m is an integer constant or minus followed by
an integer constant.

2.2.26 SUBROUTINE DIMEN. This subroutine processes DIMENSION
statements by checking keyword spelling and then adding to the
symbol table the dimension information for each variable in the
list. Errors diagnosed by this subroutine include exceeding
allowable array bounds, illegal use of variable dimensions,
illegal use of subprogram names, dimensioning previously dimen-
sioned variables, and other illegal uses of dimensioned varia-
bles.

2.2.27 SUBROUTINE DO. This subroutine processes DO state-
ments.

1. Check keyword spelling.

2. Fetch the statement number of the terminal statement,
enter it in the statement number table, and flag it
as having been referenced.

3. Store the terminal statement number index and the DO
loop number in the DO stack.

4. Fetch the induction variable name, store it in the
symbol table, and check that it is a simple integer
variable.

5. Check for the presence of the equals sign.

6. Enter the induction variable name in the basic block
table.

7. Store the induction variable name in the DO stack.

8. Make a detailed check of the three DO parameters
defining the initial value, the final value, and the
increment of the induction variable. A "998" flag
is inserted in the basic block to show that control
passes to the next basic block (see FUNCTION NXTBLK) .

2.2.28 SUBROUTINE EQUIV. This subroutine processes EQUIVA-
LENCE statements by checking them for proper syntax and by
analyzing the declarative information in the statements for
consistency and conformance with the Standard. Although the 1
function performed by EQUIV is conceptually simple, the imple-
mentation is sufficiently complex to warrant the following
detailed explanation.

In an EQUIVALENCE statement of the form EQUIVALENCE
(A,B), (C,D), the variables within parentheses are said to be
in equivalence groups. Simple (undimensioned) variables in)
an equivalence group occupy the same storage location. With-
in the symbol table, space is set aside to permit the linking
together in a chain of all the variables in an equivalence
group. An additional field in the symbol table entry, called

26 {

the offset field, is provided to be used when one or more of
the variables in the equivalence chain is dimensioned. For
example, if we had the statements DIMENSION B(10,10), C(10,10)
and EQUIVALENCE (A,B(l1), C(2)), then A and B would have an
offset of zero and C would have an offset of -1 to indicate
that the array C starts one location before the variable A
and the array B. I1f the statement EQUIVALENCE (B(2),D) is
included with the other two statements, then since B(l) has
an offset of zero, B(2) will have an address of 1 relative
to the rest of the equivalence group. Thus, D would have an
offset of 1.

Errors diagnosed by EQUIV include:

a) Directly or indirectly causing two different
elements of the same array to be equivalenced
to each other.

b) Directly or indirectly introducing gaps in the
storage map of the array.

c) Extending COMMON in either direction.

1. Check keyword spelling.

2. Test for the left parenthesis which starts an equiv-
alence group.

3. Perform some initialization, including setting the

base offset value to zero, and begin processing an

equivalence group. CALL GNLE to get the next lan-
guage element in the statement. Test the name to
determine whether the language element was an
identifier, and store the name in the symbol table,
if it is not already present.

Process subscripted variables.

Compute the offset for the variable.

Process variables which have not previously appeared

in an EQUIVALENCE statement. Set the "has been

equivalenced" flag in the symbol table entry. Test
to see if this is the first element in a chain. 1If
not, store the location of this element in the
symbol table entry of the previous element in the
chain. 1In any case store the offset for this
element in the symbol table entry for that element.

7. 1If the variable has previously appeared in an
EQUIVALENCE statement, merge the two equivalence
chains and recalculate the offsets of the merged
chain.

8. Merge the chain and adjust the offsets in the
merged chain.

9. Check whether two variables in COMMON have been
equivalenced, whether COMMON has been extended, and
whether syntax errors have been made in the EQUIV-
ALENCE statement.

N Ul

27

esdatd

_SUBROUTINE ERROR.

This subroutine prints an appro-

priate error message when a program unit of the AUDIT soft-

ware finds an error

2 v dew 2V

SUBROUTINE EXPR.

ln the program unit being analyzed.

Given the starting location of a

character string representing a FORTRAN expression or an I1/0
list,
processing.

this subroutine encodes the expression for later

The character string

generated.

ls examined and output array STR is

Figure 2-05 shows the encoding for operators.

Character Code

o,
|
—

- -2
i -3
(-4
) -5
; -6
* -7
* * _8
LT -9
B -10
e -11
K- -12
EQ. -13
.NE. -14
.OR. -15
.AND. -16
.NOT. -17
= -18

FIGURE 2-05. Encoding Operator Codes

Var iable names are encoded as

where 1
character string,

A =

Wonn

wonon

N=C & Wwhr—C

if
L
Lf
if
-
if
Lf
if

is the starting location of the variable name

the
the
the
the
the
the
the
the

I+104A+105B+1U6M

variable is real

variable is complex

variable is double precision
variable is integer

variable is logical

variable is simple

variable has one subscript
variable has two subscripts

28

in the

—

P

3 if the variable has three subscripts

= 4 if the substring is a constant

5 if the name is a function reference

M is the length of the substring.

The number of entries in the encoded array is stored in

I

NSTR.
1. Test for an end of the expression, which is one of
the following:
a. no more characters in string

b. equals sign in an assignment statement
c. right parenthesis in a logical IF statement.

2. 1If a terminal symbol is not encountered encode
character as indicated in Figure 2-05.

3. If character is a name followed by a left parenthesis,
determine whether it is a function reference or an
array element and encode it accordingly. If a func-
tion is a basic external or intrinsic function, get
its type from the Interface Definition file.

4. If function name is not followed by a left paren-
thesis, verify that the variable is the function name
within the function-defining subprogram (see case B
of SUBROUTINE INIT).

2.2.31 SUBROUTINE EXPRCK. After an assignment statement has

been processed, this subroutine is called to see if the
assignment is legal. An assignment statement is of the form
V=E, where V is a variable name and E is an expression. Legal
assignments are listed in Figure 2-06.

v E
Integer Integer

Integer Real

Integer Double Precision
Real Integer

Real Real

Real Double Precision
Double Precision Double Precision
Double Precision Integer

Complex Complex

Logical Logical

FIGURE 2-06. Legal Assignment Rules

2.2.32 SUBROUTINE FLOWCK. This subroutine examines all
possible paths through a given program unit to determine
whether or not all the variables required for the computation
at a given point in the subprogram are properly defined in the
sense that SESCOMPSPEC3 requires. FLOWCK is used during the
flow analysis mode.

29

The approach adopted is based on the work of
Ramdmoorthylf. The method used is to generate one by one all
the complete paths in the program unit. After each path is
generated, the flow of variable definition and undefinition
is traced out along that path. A complete path is defined to
be a path which commences at the beginning of the program unit,
terminates in a STOP or RETURN statement, and in which no
statement number appears more than twice. Strictly speaking,
this definition excludes some possible paths from consid-
erations but most practical programs are fully analyzed. Two
data structures provide the information required for this
analysis: IBLOCK and ISTACK, which are fully described in
Sections 2.2.91 and 2.2.92, respectively.

Briefly, however, IBLOCK is an array of basic blocks, a
bLaslic block being a group of statements in the source program
which physically appear together in the program, which are
located in the same DO loop, and which are executed together
(See Section 2.1.4). ISTACK is an array which, for each DO
statement, contains the statement number of the terminal state-
ment, the index in the symbol table of the induction variable,
and the index in the ISTACK array of the DO in which this DO
is nested. Some of the intermediate data structures used by
FLOWCK are:

a. FLWLST - This list contains the indices of the
basic blocks which are on the path currently being
considered. If the index in FLWLST is negative,
there remain some branches in the block which have
not yet been examined.

b. ISTCK - This list contains the branch list for the
basic block being processed. The last branch is
flagged as being negative.

In addition, a flag in the symbol table is used to maintain
the status of each variable, i.e., whether it is undefined,
defined, an induction variable, or assigned.

1. If there are structural syntax errors in the program
unit, do not perform the flow analysis and issue a
message.

2. CALL CHKLST to flag, as being initially defined, all
variables in COMMON and DATA statements, as well as
all formal parameters which are designated as logical
input. Also flag, as being initially defined, any
variable which is equivalenced to any of the above.

3. Initialize symbol table for next path and initialize

current block at 1.

Generate the next path (Steps 5-10).

. If path is non-empty, count the number of occurrences
of the current basic block in the path. If greater
than the limit (2 for full flow analysis and 1 fcr
moderate flow analysis), go to Step 23 and attempt to
generate a new path.

R e

30

| {0 12
153 190
e
1452

14.

L5

"
[
4
]

16.

17

18.

195

20

2l

22

23

24.

29,

26.

27 ¢

If path is okay so far, add the current basic block
to the path (FLWLST).

Get the next basic block which this block branches

to and make it the current block.

If there i1s more than one branch from the block,

set the block index to negative in FLWLST to indicate
that there are more branches to consider.

Store the last branch in the block in ISTCK and flag
it as negative to indicate that it is the last branch.
Store all other branches as positive.

If it is not the end of the path, go to Step 5.

Path has been generated.

Increment path counter.

Get the next block in path and its statement label
and DO loop.

Analyze all variables in the block. Get variable
class from IBLOCK array (see COMMON block BASBLK).

If variable is defined, check that the variable is
not a DO parameter, a DO index, or a variable dimen-
sion. If variable is equivalenced, set all equiva-
lenced variables of the same type to defined and set
all equivalenced variables of different type to
undefined. Set status flag to 1 if variable is
defined.

If variable is referenced, check that the variable is
defined and not assigned.

If variable is a DO index, check that the variable is
not a variable dimension and is not currently a DO
index. Set status flag to 2 for DO index variable.
If variable is assigned, check that the variable is
not a variable dimension nor a DO index. Set status
flag to 3 for assigned variable.

If variable is referenced by an assigned GO TO, check
that the variable is assigned.

I1f variable is made undefined, set status flag to 0.
If variable is a DO parameter, check that the variable
is defined and not assigned. Set status flag to 4
for DO parameter variable.

If there are more variables, go to Step 14.

At this point path processing is complete. Path has
either been analyzed or rejected.

Begin to generate the next path.

Starting at the bottom of the flow path, find the
first negative index indicating a branch point. If
none remain, go to Step 28.

Fetch the branch from the top of the stack. If this
branch is negative, indicating that it is the last
branch from this point, reset the flow path index

to positive.

Reset the stack counter and current path index and go
to Step 4 to complete generation of this path.

3l

T TR . e o —

28.

Lo

3.

Ul b

——
~J

2:2434

All paths have been processed. Check that each
statement label appears in a path.

2.2.33 SUBROUTINE FNCSTR. This subroutine is called after

parsing a CALL or assignment statement to check all function
references against the Interface Definition file.

If there are no function references, RETURN. &
Fetch next function reference from FNCLOC.
If it is a statement function, call STFNC to process
the statement.
Fetch number of arguments and function type.
If function has previously appeared, go to Step 7.
Search the Interface Definition file for function
name.
a. If found, store file location in symbol table
and go to Step 8.
b. If not found, issue diagnostic and store name
in the temporary Interface Definition file.
Store file location in the symbol table. Store
function type, number of arguments, argument
type, dimensionality, and I/0 status in temporary
Interface Definition file.
Fetch Interface Definition file location of function.
Fetch number of arguments from Interface Definition
file and check for correctness.
Compare type, dimensionality, and I/0 status of each
argument against the Interface Definition file.

SUBROUTINE FORM. This subroutine creates the format

235

used to print the error diagnostic issued by SUBROUTINE PRNTS.

SUBROUTINE FORMEL. Given the character string D

generated by SUBROUTINE GNLE, this subroutine processes
T language elements. Note that SUBROUTINE CAR is not referenced
I for the IBM 360 or UNIVAC 1108 versions of AUDIT.

1.
L 2.

2.2.36

CALL CAA to process identifiers.

Compute size of Hollerith string. Adjust the ;
character pointer JPTR. Check validity of each |
character in the string.

CALL CAR to process real numbers (for CDC only).

CALL CAI to process integer numbers.

For complex numbers, CALL CAR to process both real

numbers which comprise the complex number (for CDC

only) .

Do not process operators and logical constants.

SUBROUTINE FRMAT. Given a character string A, this

subroutine determines whether or not it is a valid SESCOMP
FORMAT statement, i.e., whether it has the form (g Zit 250000,

t

nl%n1 tn

q ,),» where each q is a series of slashes or is

32

-

AT e — e

"

empty, each t is a field descriptor or group of field

descr iptors, each z is a field separator, and n may be zero.
FRMAT sets IFRMT to 1 if the FORMAT statement is valid and

O 1f 1t 1s not. FRMAT calls subroutines GROUP, SEPAR, and
DESCRP to help process the FORMAT statement.

2.2.37 SUBROUTINE GENROL. When the roll call mode has been
selected, this subroutine generates a main program which is
then compiled by the FORTRAN compiler along with the program
unit (should be a root program unit of a module) being ana-
lyzed. This main program then calls the module root program
unit 1n the SESCOMP roll-call mode for all permissable (and
one error value) values of the mode index. The basic form of

the program generated by GENROL is as follows:

PROGRAM ROLCAL (OUTPUT,TAPE6=OUTPUT,TAPE3,TAPESY,
*TAPE10,TAPEl1l,TAPE12,TAPE13,TAPE14,TAPEL>S)
COMMON/NAMEO/IX0(NO)

COMMON/NAME1/IX1(N1)

COMMON/NAME2/IX2(N2)

COMMON/SESCOM/IX](N3J)

COMMON/NAMENn/IXn(Nn)
J=1
MODE=m
DO 10 E=1,13
J=J-1
DO 1000 K=1,N0
IX0(K)=1

1000 CONTINUE
DO 1001 K=1,N1
IX1(K)=1

1001 CONTINUE

DO 1003 K=1,Nj
IXJ(K)=1

100j CONTINUE
IXj(17)=10
IXj(20)=11
IXj(23)=12

DO 100n K=1,Nn
IXn(K)=1
100n CONTINUE
CALL SUBR(Al,A2,A3,....,An,J)
IF(MODE.EQ.3) GO TO 5
CALL MODID(J)

33

T R RS SRRR—.

IR SI——=

5 ENDFILE 3

10 CONTINUE
CALL CMPARE
REWIND 13
REWIND 14
REWIND 15
STOP
END

The following items pertain to ROLCAL:
NAMEi is the name of the i
module root program unit.
IXL is a dummy COMMON blo%r element name
Ni is the length of the i''COMMON block.

SESCOM 1s the mandatory labeled COMMON block

(NJ should be equal to 25)

m is one of two options for the roll call mode.

If m=2 most roll call actions are performed by

the program unit. If m=3 most roll call actions
are performed by the SESCOMP roll call utility
module ROLCOL.

SUBR is the name of the program unit being ana-
lyzed.

MODID is an auxiliary subroutine called to print
out what was written on each output device by SUBR.
CMPARE is an auxiliary subroutine called to verify
that all of the modules referenced by SUBR were
referenced in the SESCOMP roll call mode.

The PROGRAM statement is only used for the CDC
version of AUDIT. This statement is omitted for
the IBM 360 and UNIVAC 1108 versions.

th coMMON block of the

The logic for SUBROUTINE GENROL follows:
1. Perform initialization, including creation of COMMON
block numbers.
2. Generate the PROGRAM statement (for CDC version only).
3. Generate the COMMON statements for each COMMON block.
4. Generate the top of the loop for stepping through the
values of the mode index.
5. Generate the code to set each COMMON block element to
|
Generate the code to define the SESCOM output devices.
Generate the call to the program unit being analyzed,
making sure that the proper number of arguments are
included.
8. Generate the remainder of the program.

~N o

2.2.38 SUBROUTINE GLOTAB. This subroutine displays the global
reference table.

1. Display heading

34

2. Fetch external references from the external
reference list. Fetch class of ecach external
reference from the Interface Definition file and
display all externals.

3. Fetch COMMON block names from the COMMON block list.
Fetch size and class of each COMMON block from the
Interface Definition file and display all COMMON
blocks.

4. Fetch the name of each program unit being analyzed
from the subprogram list. Fetch the class of each
program unit from the Interface Definition file and
display all program units.

2.2.39 SUBROUTINE GNLE. Given the character string A and the
pointer JPTR into the string, this subroutine finds the next
language element, stores it, and classifies it. The element
is stored in array D, and M is set to its length. The pointer
JPTR is set to the first location in A following the element.
The variable JTYP is set according to Figure 2-07.

JTYP Language Element

Blank

Arithmetic operator
Identifier

Hollerith string

Real number

Integer number

Complex number

Logical constant or operato:
or relational operator

8 Inval id

SNouidewh-C

FIGURE 2-07. Language Element Codes

2.2.40 SUBROUTINE GOTO. This subroutine processes GO TO
statements.

1. Check keyword spelling.

2. Check the statement number.

3. Flag the statement number in the statement number
table as having been referenced.

4. Process the basic block by storing the statement
number in the basic block, setting NBRNCH, the
counter for the number of branches out of the block,
to 1, and setting NB, the "new block" parameter, to 1.

2.2.41 SUBROUTINE GROUP. Given IGRST and IGRND, the beginning

and end of a character string, this subroutine sets IGRP to 1
if that string is a valid group of format field descriptors and
0 if it is not.

35

2.2.42 SUBROUTINE GRT. This subroutine is called after each
program unit has been processed. It maintains a composite
list of names (global reference table) of subprograms and
COMMON blocks referenced by each of the program units being
analyzed.

1. Fetch the name of the first subprogram in the input
table. If there are no more entries, go to Step 5
to process COMMON block names.

2. I1f the name is a statement function, bypass that name

and get the next name.

3. Search the external reference table to see if the
name is already stored. If not, store the Interface
Definition file location of the name in the externai
reference table.

4. 1f operating under the roll call mode, and if the
subprogram is a function or subroutine module, write
the name on logical unit 9 to be used later during
roll call check.

5. Process COMMON block information.

6. Fetch the first COMMON block name used by the program
unit just processed; if there are no more COMMON
blocks, return to the referencing program unit. If
there is blank COMMON, bypass and fetch the next name.

7. Search the Interface Definition file for COMMON block
name.

8. If the name is found, get the COMMON block category.

9. 1If category 1, go to step 12.

lu. If not category 1, store the size and go to step 12.

11. If the name is not found, store the name and size 1in
the temporary Interface Definition file.

12. Store the Interface Definition file location in the
symbol table.

13. Search the COMMON block list for the name; if not
founa, enter the Interface Definition file location
of the COMMON block in the COMMON block list.

2.2.43 FUNCTION ICOMP. Given an array IVAR of length 2 and

a symbol table location, this subprogram compares IVAR against
the first two columns in that symbol table location. ICOMP
returns a value of 1 if there is a match and 0 if not.

Note that this subprogram is used only for the IBM 360
version of AUDIT since the IBM 360 has a four-character word.
A variable may be as many as six characters long, so two words
may be needed to store it. The CDC and UNIVAC 1108 version of
AUDIT can store the va iable in a single word.

2.2.44 SUBROUTINE IMPTYP. This subroutine first examines the

"type set" flag. If the type has already been set, no typing
occurs. If not, IMPTYP performs implicit typing by examining
the initial character of a variable name to see if it is

36

F, Jp Be Ly M or N. If it is one of these, the variable
is typed INTEGER; otherwise it is REAL. If the variable
appears in an executable statement, the "used" flag is set.

2.2.45 SUBROUTINE INIT. This subroutine processes assign-
ment statements and statement functions for errors in syntax
and transforms these statements in accordance with the rules
outlined in Section 2.1.3. INIT recognizes the following
four variations of the model statement "variable=expression".

Case A - the variable is unsubscripted

Case B - the variable is the function name within the

function defining subprogram
Case C - the variable is subscripted
Case D - the statement is a function defining statement

1. Get assigned variable. 1If a left parenthesis follows,
go to step 4.
2. If an equal sign follows, do one of the following:
a. If variable is designated a function name, cneck
that it 1s case B.
b. If variable is not a function name, store variable

in symbol table. (This is case A).
3. Set left-side type and go to Step 6.
4., If this is a function defining statement (case D),
a. store the function name in the symbol table
b set type and change statement class
(e store in statement function table
d. set statement function flag
e. store number of arguments.
5. If this is a dimensioned variable (case C),
a. set type
b. CALL PARSE to process the left-hand side
c. CALL BLKSTR to store basic blocks for flow

analysis and go to Step 7.
6. Store variable in basic block table.
7 CALL PARSE to process the right-hand side and store
basic blocks.
8. CALL FNCSTR to process function references.
9. CALL EXPRCK to check validity of assignment.

10. CALL BLKSTR to store basic blocks and adjust order of
variables.

11. If operating under the variable precision mode, CALL
CNVRT, if necessary, to insert function references
(Q1REAL, Q1COMP, QI1DPRE).

12. 1f operating under the roll call mode, and if the
referenced function is a function module, generate
call to ROLCHK.

2.2.46 SUBROUTINE INTRIN. After processing a program unit,
this subroutine is called to check if any basic external o
intrinsic function names have been misused.

37

l. Fetch the basic external or intrinsic function name
from the Interface Definition file.
2 Search symbol table for name.
3 [f found and the name 1is in variable or COMMON block
list, issue diagnostic.
;.;:izuuﬁquqg?
t

2.2 NE I0. This subroutine processes READ and
WRITE statemen

INE
S.

1. Check keyword spelling.

2. Check that the I1/0 device is a simple integer variable.

3. Process formatted I1/0 statements.

4 . [f a FORMAT statement reference is made, fetch the
statement number and flag it in the statement number
table as having been referenced.

o Process FORMAT arrays.

6. CALL EXPR and CALL PARSE to process the list.

7. CALL IOSTR to store basic blocks.

8. If operating under the roll call mode, transform READ
statements into comment statements. If a READ state-
ment 1s labeled, generate a CONTINUE statement with
the same label.

2.2.48 SUBROUTINE IOSTR. This subroutine stores the basic
blocks after an I1/0 list 1s encountered in a READ or WRITE
statement. Variables which occur in I/0 lists fall into
three classes:

0 - 1I/0 variable

1 - Subscript or implied DO parameter

2 - Implied DO index

l. Get class of variable.

7 I1f class 1, store variable as referenced.

L i I1f class U, store variable as defined for a READ
statement and as referenced for a WRITE statement.

4. If class 2, store as such and adjust its position
in the basic block table.

2.2.49 FUNCTION IPREV. Given the character string A and a
starting point IA in the string, this function returns the
value 1, 2, or 3, depending upon whether the first preceding
non-blank character is a digit, a letter, or some other
character, respectively.

2.2.50 FUNCTION ITYPE. Given the character string A and a
starting point ID, this function returns the value 1, 2, or
3, depending on whether the next non-blank character in A

is a letter, a digit, or some other character, respectively.

2.2.51 SUBROUTINE LOGCHK. Given a character string in array
A and a starting point LOGST in that array, this subroutine
determines whether that which follows is a valid logical

38

constant or operator or relational operator. The variable
LOG is set to 1 if the element is valid, otherwise it is
set to zero. The variable LOGID is set to an integer
between 1 and 11, depending on the operator or constant
encountered, as shown in Figure 2-08.

OPERATOR/CONSTANT LOGID

+LE .
+LE
S
+GE.
<EQ.
.NE.
+OR .
.AND.
<NOTE,
«<TRUE .
.FALSE.

OO WU & W -

=

FIGURE 2-08. Valid Operator/Constant Codes

2.2.52 SUBROUTINE LOGIF. This subroutine processes logical
IF statements.

1. Check keyword spelling.
2. CALL PARSE to process the logical expression and
store function references and basic blocks.
3. Check the legality of the statement associated
with the logical IF.
4. Transfer control to the appropriate segment of code
for each statement type.
5. Process assignment statements.
Process ASSIGN statements.
In the case of GO TO, assigned or computed GO TO,
arithmetic IF, STOP, and RETURN statements, termi-
nate the basic block and adjust the branch counter.
In each case, control could pass to the next block,
so a "998" flag is inserted (see FUNCTION NXTBLK).
8. Process GO TO statements. The number of branches
out of the block is 2.
9. Process assigned GO TO statements.
10. Process computed GO TO statements.
11. Process arithmetic IF statements.
12. For Steps 9, 1U, and 11, the number of branches
out of the block is incremented by one.
J 5 Process CONTINUE, STOP, and RETURN statements.
For STOP and RETURN, set the branch counter to 2.

~N o

33

e e R T R —— Rad. e mr . o e rmer:

-"

2.2.53 SUBROUTINE LOOPCK. After each program unit has been
processed, this subroutine is called to examine the basic
block table to ensure that no transfer of control within the
program unit violates the rule regarding branching into the
range of a DO from outside its range. To accomplish this,

the table ISTACK (COMMON block DOLOOP) is used to store infor-
mation regarding each DO statement. ISTACK is a 4 X N array,
where N is the number of DO statements in the program unit.
The first word in each column contains the index in the state-
ment number table of the terminal statement of the DG. The
second contains the value 1 if a DO terminal is encountered
and 0 if not. When processing is completed the second word
must contain a 1. The third word contains the index in the
ISTACK array of the loop in which the DO is nested, and the
fourth word points to the induction variable in the symbol
table. In the following example,

DOS
DO 6
B (I
6 CONTI

—

T~ ~
— W

GO TO 10

—
o

c

o

~J
ARzZODOH

nhcon

=

)

DO 9 L=1,4
IF(K.EQ.L) GO TO 1

9 CONTINUE

7 CONTINUE

5 CONTINUE

ISTACK contains the following information:

word 1 - Indices in the statement number table of the
terminal statements for DO 5, 6, 7, and 9.

Word 2 - All zeros before processing and all 1's after
processing.

Word 3 - The numbers 0, 1, 1, and 3.

Word 4 - Indices in the symbol table for variables I,
Jd; K; and L.

l. Test for entries in ISTACK.

2. Initialize IBLKST and IBLKND to the indices of the
beginning and the end, respectively, of the first
basic block.

3. Fetch the index in ISTACK of the DO which contains
this basic block.

4. Fetch the number of branches from this basic block.

5. Test whether or not this is the last basic block.

6. Set the variable IST to the index in the basic
block table of the first branch.

7. Search for the "998" flag (see FUNCTION NXTBLK)
indicating a special type of branch which passes
control to the next block.

8. Fetch the index of the basic block to which the
branch under consideration branches.

40

Y. Fetch from ISTACK the index of the DO loop which
contains the previously identified basic block.

10. Test whether the index 1s zero, meaning that the
basic block is not contained in a DO loop. 1In this
case the transfer is all right.

11. Test whether the branch originated outside a DO loop
and terminated inside a loop.

12. Test whether the branch began and ended in the same
DO loop. 1If so, go to statement number 100 for
testing the next branch from this basic block.

13. Move JLOOP up the DO stack until either the branch
origin and the termination point are found to be the
same DO loop (JLOOP=KLOOP) or the branch origin is
found to be outside the range of a DO (JLOOP=0). The
latter case signals improper DO nesting.

2.2.54 SUBROUTINE LVDLET. This subroutine deletes an entire
function or the IPOSthyalue of the ITYPH‘type from the top or
bottom (depending on the sign of IPOS) of a list of the
requested function. 1IPOS and ITYP are explained in COMMON
block LVARGS.

2.2.55 SUBROUTINE LVEXIT. This subroutine restores the syntax
graph 1f GIRS memory becomes full.

2.2.56 SUBROUTINE LVFECH. This subroutine reads pertinent
GIRS system variables plus the GIRS buffer containing the
syntax graph structure.

2.2.57 SUBROUTINE LVFIND. This subroutine retrieves the
1POS™Mvalue of the ITYPNtype from the top or bottom (depending
on the sign of IPOS) of a list of values of a specified
function. IPOS and ITYP are explained in COMMON block LVARGS.

LVFIND traverses multivalue lists sequentially so that N
calls to LVFIND, to access the firet through the nth items on
a multivalue list, result in N(N+l)/2 accesses to core. A
saved index facility reduces this number of accesses to N at
the cost of four words of core for every call to LVFIND.
These words take the form of four separate variables in the
calling sequence for each call to LVFIND with a different
node-1link pair (IFUNC, IARG) as input. The LVFIND arguments
must be initialized to zero before the first call to LVFIND
for the associated IFUNC and IARG and must not be changed
thereafter by the user program. If the saved index option
is not being used, the function, argument, type of data
desired, and other input required in the COMMON block LVARGS
is initialized and LVFIND is executed with a dummy variable
as its four arguments. If the saved index option is being
used, the arguments are a set of four completely different
variables for each separate function-argument pair (IFUNC,
IARG) that are input.

41

l“

.58 SUBROUTINE LVGRN. This subroutine assigns a unique
andom number to a given GIRS identifier. Each time LVGRN
is referenced, it generates a different integcr between one
and MEMSZE (the length of the GIRS buffer). An attempt to
define more than MEMSZE identifiers will terminate the pro-
gram.

2.2.59 SUBROUTINE LVNSRT. This subroutine places a triple
into a GIRL structure.

2.2.60 SUBROUTINE LVSETP. This subroutine initializes the

four fields in the GIRS buffer, the variables needed for
SUBROUTINE LVGRN, and the register of available space.

2.2.61 SUBROUTINE MODID. This subroutine is used when
operating in the roll call mode to check the program unit's
roll call actions. MODID is referenced by the main roll call
mode subroutine GENROL. It prints out what is written on
each output device (X, Y, and Z). MODID i~ only referenced

for a roll call mode equal to 2.

2.2.62 FUNCTION NEXT Given the character string A of length
N and a starting poi int IA, this subroutine sets the value of
the function to the next non-blank character found. JPTR is
advanced to the next position in the array. If no more non-
blank characters are found, NEXT returns with the value 'blank'
and sets the string pointer JPTR to N+l.

2.2.63 FUNCTION NXTBLK. Given a location in the basic block
table, which is a branch to a block, this function returns
the location of the block which the branch points to.
Case 1 - Branch is a "999", indicating RETURN or STOP.
Set NXTBLK=0 and return.
Case 2 - Branch is a "998", indicating a branch to the
next basic block. Compute starting location of
next block.

Case 3 - Branch is to a statement label. Fetch starting
location of block from the statement number
table.

2.2.64 SUBROUTINE PARSE. This subroutine processes assign-
ment, CALL, and I/0 statements as a scries of terminal symbols.
If it is possible to trace through the syntax graph from a
start to a stop state, then the statement is declared to be

syntactically correct.

1. CALL subroutines PHONEY and LVFECH to read the
syntax graph and initialize GIRL variables.

2. 1Initialize appropriate variables for parsing the
next statement.

3. Zero out the parser tables.

42

-

L ——

TG F— &

4. Store the expression to be parsed (created by
SUBROUTINE EXPR) in a list structure so that it
will be in a form suitable for parsing.

5. CALL RECOG to perform the parse.

6. CALL PRNTS to generate error messages.

7. Delete all GIRL structures which were created by
the parse

2.2.65 SUBROUTINE PHONEY. This subroutine initializes GIRL
xarxabloq.

2.2.66 SUBROUTINE PRNTS. To guard against the tokens (nodes
and links) alzoady recognized being lost when a syntax error
occurs, this subroutine places each token recognized so far
into a buffer for printing.

2.2.67 SUBROUTINE PROG. This subroutine is only used when a
main program 1is being analyzed. For the CDC version of AUDIT,

PROG processes the PROGRAM statement, which must precede a main

program on the CDC. The syntax of the PROGRAM statement 1is
checked and the main program name is stored in the symbol
table. For the IBM 360 and UNIVAC 1108 versions of AUDIT,
PROG assigns the name MAIN to a main program and enters that
name in the symbol table.

2.2.68 SUBROUTINES QI1COMP, QI1DPRE, and QlREAL. These
packages of subroutines, available as card input, are used
when operating under the variable precision mode. QlCOMP,
Q1DPRE, and QlREAL perform truncation during operations
between complex, double precision, and real numbers, respec-
tively. Each package contains one version of each of the
three subprograms which will truncate the n rightmost bits
during each operation. For each value of n for which the
user wishes to perform the variable precision calculation,

a different version of a package must be used. Each

package consists of the three subprograms for a single bit
configuration. There is a separate and different set of
packages for each AUDIT processor. For the CDC 6000, there
are 11 packages that simulate word lengths ranging from 30
to 40 bits. For the UNIVAC 1108, there are six packages
that simulate word lengths ranging from 30 to 35 bits. The
IBM 360 has eight packages that simulate word lengths ranging
from 24 to 31 bits.

The CDC has a 60-bit word consisting of a 12-bit
exponent and a 48-bit fraction. Each package of variable
precision functions simulates a certain word length by
masking the appropriate number of low order (rightmost) bits
from the fraction part of the word. For the CDC, a 30-bit
word length is simulated by masking 30 bits. A 40-bit word
length is simulated by masking 20 bits. For the UNIVAC 1108
and the IBM 360, the fraction part of the word is masked in
the same manner.

43

2.2.69 SUBROUTINE REALCK. Given the character string A

and a starting point IP, this subroutine determines whether

or not the next substring is a real number. REALCK sets
IREAL to 1 if the substring is a real number and 0 if it is
not.

2.2.70 SUBROUTINE RECOG. This subroutine checks the syntax

of the input string against the syntax graph.

2.2.71 SUBROUTINE RECOV. This subroutine provides for

backup recovery. FORTRAN is a non-finite state language,
meaning that there may be more than one link eminating from
a source node. If the wrong path has been selected while

tracing through the syntax graph, RECOV is referenced to back
up the trace to the correct node, so that a different path
can be selected.

2.2.72 PROGRAM ROLCAL. For the CDC version of AUDIT, ROLCAL
1s the name assigned to the main program generated by sub-
routine GENROL (see Section 2.2.37). For the IBM 360 and
UNIVAC 1108 versions of AUDIT, this main program is generated
without a name and without a PROGRAM statement. See subroutine
GENROL for an explanation of this main program.

2.2.73 SUBROUTINE ROLCHK. This subroutine packs the charac-
ters from Hollerith variables of the argument list into one
word, and writes it onto logical unit 3. Each of the six
argument list variables contain one character. The six
characters (some may be blank) make up a subprogram name.

The characters in the argument list are generated by SUBROU-
TINE CALL2.

2.2.74 SUBROUTINE SEARCH. Given the identifier NXTID, this
subroutine searches the symbol table for an occurrence of the
identifier and sets ISRCH(l) to 1 if the identifier occurs as
a variable name and 0 otherwise. ISRCH(2) is set to 1 if the
identifier occurs as a subprogram and 0 otherwise.

2.2.75 SUBROUTINE SEMANT. This subroutine checks a state-
ment for correct semantics. For example, if the variable A
is dimensioned A(10), the statement A(B)=1. is syntactically
correct but semantically incorrect, since B is real instead
of integer. The parser will accept any constant or variable
as a subscript, therefore an error in the type of dimension-
ality of a subscript must be checked by a semantics routine.

Check for mixed mode expressions.

Check for correctness of subscripts.

Insert call to variable precision functions.
Keep track of function call levels.

Build the parser table.

U W N
o W ey W

44

2.2.76 SUBROUTINE SEPAR. Given the starting point SEPST
in the string A, this subroutine sets the variable ISEP to

1, 0, or -1, depending on whether the next substring is a
valid separator, is not a separator, or is an invalid sep-
arator, respectively. A valid separator is a comma, a

slash, or a series of slashes.

2.2.171 SUBROUTINE SIMP. This subroutine checks the RETURN,
STOP, CONTINUE, and BLOCK DATA statements for correct
spelling. For the RETURN and STOP statements, the basic
block (associated with flow analysis) in which they occul

is terminated.

2.2.78 SUBROUTINE SLEVEL. While tracing through the syntax
graph, this subroutine stacks the nodes that were seen, so
that a back up action can be performed if necessary.

2.2.79 SUBROUTINE SQUEEZ. Given a character string of
length M 1n array D, this subroutine removes all blanks and
adjusts M accordingly. Hollerith fields are not affected.

2.2.80 SUBROUTINE SSTOP. After a string has been completely
traced, this subroutine verifies that the current state is a
valid final state.

2.2.81 SUBROUTINE STATNO. This subroutine performs the
following functions:

a. Checks to see that the statement being processed
1s labeled and that the label is valid.
b. Determines whether the statement should begin a

new basic block. I1f so, STATNO closes the old
block and initiates a new one.
c. Checks for proper DO loop nesting.

1. Check for the presence of a statement label.
s Process unlabeled statements.
3. Process END statements; the END statement must be

preceded by some type of branch statement (except

a logical IF) or a RETURN or STOP statement

(BLOCK DATA subprograms are excepted).

Store the number of branches contained in this
program unit in the last basic block. This concludes
the processing for END statements.

Detect FORMAT statements.

If the statement being processed is the first
executable statement, go to step 9. If the preceding
statement ended a basic block, go to step 17.

If the preceding statement was the terminal statement
of a DO loop, go to step 16.

If the preceding statement contained transfers to
other blocks but not this one, issue a diagnostic.

45

e oo

J 0.
1L

12,

13.
14
15,

L6

L7,
18.
ik

20 .

2L -
2d .

23
24.

26.
27.
28.
29,
30.
31,
32.

33.

Begin processing the first executable statement.
Initialize the basic block table and go to Step 13.
Process the labeled statement. If the labeled state-
ment is an END statement, issue a diagnostic.

Check the statement number to see that it occupies
the proper position in the statement.

Check for duplicate statement numbers. Set the
"defined" flag in the statement number table and
store the statement type in the statement number
table.

If the statement being processed is a FORMAT state-
ment, RETURN.

If this labeled statement is the first executable
statement in the program unit, go to Step 9.

If the previous statement ended a basic block, go to
Step 17.

Increment the statement count for this block. Store
a "998" flag in the basic block table to signify
that control may pass to this new block from the
previous block. Set the branch counter into the
block to 1. See FUNCTION NXTBLK.

Close out old basic blocks and initialize the new one.
Set the start of the new block.

Store the pointer to the new block and the branch
count in the old block.

If the preceding statement is the terminal statement
of a DO loop, make some adjustments so that the
induction variable becomes undefined at the end of
that statement rather than at the beginning.
Reinitialize the branch counter NBRNCH.

Store the number of the current DO loop Ln the new
basic block.

If the statement is not labeled, RETURN.

Store the index of the basic block headed by a
statement label in the statement number table entry
corresponding to that label.

Process statements which terminate DO loops.

If this statement does not end the current loop,
issue a diagnostic.

Check that the proper type of statement terminates
the DO loop.

Set an entry in the DO stack to indicate that the
current DO loop is complete.

Flag the induction variable in the DO loop as
undefined.

Search the DO stack for the first unsatisfied DO,
which then becomes the current loop.

I1f there are no further unsatisfied DO loops, set
ILOOP to zero and RETURN.

Check whether more than one DO is terminated by this
statement.

Make appropriate changes in the DO stack and set the
induction variable as undefined.

46

T

e —

e A,

-~

2.82 SUBROUTINE STFNC. When a statement function
rofo ence 1s encountered, this subroutine checks the calling
sequence against the argument list in the function defining

statement.

1. Fetch the number of arguments from the symbol table.

2. Fetch the number of arguments encountered by the
parser and verify the correctness.

3. Check arguments for proper dimensionality (must be
zero) and proper type.

2.2.83 SUBROUTINE STORE. Given the identifier NXTID and a
class (IDTYP=1 for variable, IDTYP=2 for subprogram, IDTYP=3
for COMMON block, this subroutine stores the identifier in
the next available location in the symbol table and links it

to the last identifier of that class.

2.2.84 SUBROUTINE STSRCH. Given a statement number N2, this
subroutine searches the statement number table STATRA for that
statement number, and stores it in the table if it is not
already there. 1In any case, the index of the label is stored
in LOC.

2.2.85 SUBROUTINE SUB. This subroutine processes SUBROUTINE

and FUNCTION statements.

1. Check keyword spelling.
2. Process the list of formal parameters by storing
the names in the symbol table.
3. Determine that there are no more than 63 arguments.
4. If function is typed, store type in the symbol table.

2.2.86 SUBROUTINE SUBCHK. After the program unit has been

processed, this subroutine checks its name and argument list
against the Interface Definition file.

1. Increment subroutine counter and check for overflow.

2. Fetch the number of argquments and their types from
the symbol table.

3. If the subprogram name has already been encountered,
go to step 7.

4. Search the Interface Definition file for the sub-
program name.

5. If found, store file location in symbol table and
go to step 8.

6. If not found, issue a diagnostic and store the name
in the temporary Interface Definition file. Create
and store an Interface Definition for the subprogram
based on this occurrence (stored in temporary file).

7. Fetch the Interface Definition file location of
subprogram.

47

Y

i

T g

8. Fetch the number of arguments and program unit type
and class, and check validity.

Y. Check the variables in the argument list for correct
type, dimensionality, and I/0 status.

2.2.87 SUBROUTINE SWITCH. This subroutine takes an identi-
fier out of the variable name list and puts it into the
function name list in the symbol table. The need for this
action arises when a statement of the type A=F(13) follows a
statement of the type INTEGER F. F is initially put on the
variable list and the second statement requires that it be

put on the function list.

1. Find the variable entry which points to F.
2. Link this variable to the variable followinag F.
3. Link F into the function list.

2.2.88 SUBROUTINE SYMTAB. This subroutine displays the

symbol table.

1. Print headings.

j Fetch the next variable and its type, dimensionality,
and relocation from the symbol table and display it.

3. After all variables have been displayed, fetch the
next external from the symbol table along with its
type and number of arguments and displav it.

4. After all externals have been displayed, fetch the
next statement function from the statement function
list and fetch its type and the number of arguments
from the symbol table and display it.

5. After all statement functions have been displayed,
display all statement labels.

6. After displaying all statement labels, fetch COMMON
blocks and their lengths from the symbol table and
display them.

2.2.89 SUBROUTINE TYPE. This subroutine processes the
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL state-
ments by first checking keyword spelling and then adding to
the symbol table the type and dimension information contained
in the list. Considerable error checking is performed in-
cluding the detection of array bounds that are outside of
allowable range, the illegal use of variable dimension in TYPE
statements, dimensioning previously dimensioned variables,
typing previously typed variables, and other illegal uses of
dimensioned variables.

2.2.90 Blank COMMON Storage.

1. A(1326) - This array holds, in Al format, the FORTRAN
statement currently being processed. For most of the
program unit descriptions, this array is referred to
as the character string A.

48

——

D(500) - This array is used to store the result of

a call to subroutine GNLE. After such a call, array
D contains, in Al format, the next operator, identi-
fier, constant, or separator in the FORTRAN statement
being processed.

IDTBL(8,500) or IDTBL(11,500) - This symbol table
array contains information regarding the symbols used
in the program unit being processed. These symbols
fall into the following three classes: COMMON block
names, variable names, and subprogram names. IDTBL
(8,500) is used for the CDC and UNIVAC 1108 versions
of AUDIT. IDTBL (11,500) is used for the IBM 360 ver-
sion of AUDIT. Up to 500 symbols may be entered into
the IDTBL array. For each symbol, the eight or eleven
columns of the array are used. IDTBL(8,500) for the
CDC 1is constructed as follows:
Word 1 - Contains the symbolic name in A6 format.
Word 2 - Contains a pointer to the next symbol in
the class of which this is a member.
Word 3 - Contains flags and information about the
symbol:

Bit 1 is 1 if the symbol is dimensioned and 0
i neiEn

Bits 2-7 contain the number of dimensions or
the number of arguments depending on
whether the symbol is a variable or a
subprogram.

Bits 8-10 contain the variable or function
type (1 for real, 2 for complex, 3 for
double precision, 4 for integer, 5 for
logical).

Bit 11 is 1 if the symbol has been typed and 0
it nots

Bit 12 is 1 if the symbol is a formal para-
meter and 0 if not.

Bit 13 is 1 if the symbol is a variable
dimension and 0 if not.

Bit 14 is 1 if the symbol has been declared
in a DATA statement and 0 if not.

Bit 15 is used by subroutine FLOWCK to suppress
printing of multiple error messages.

Bit 16 is 1 if the symbol is in COMMON and 0
1E not.

Bit 17 is 1 if the symbol is equivalenced and
0 1f not.

Bit 18 is 1 if the symbol's Interface Defini-
tion file location is known and 0 if not.
(in this case the symbol must be a sub-
program name) .

Bit 19 is 1 if the symbol is a statement
function name and 0 if not.

49

Bits 19-36 contain the first subscript (if the
symbol is an array name) or contain the
symbol's Interface Definition file lo-
cation (if the symbol is a subprogram
name) .

Bit 37 is 1 if the symbol (must be a formal
parameter) is input and 0 if not.

Bit 38 is 1 if the symbol has appeared in an
executable statement and 0 if not.

Wword 4 - If the symbol is a variable which is an
array, this word contains the second
and third dimensions of the array (if
any) 1n two consecutive 18-bit fields,
respectively. If the symbol is a COMMON
block name, this word contains the size
of the block.

Words 5 and 6 - Contain COMMON block information.
1f the symbol is a COMMON block name,
Words 5 and 6 point to the first and
last names in the block, respectively.
If the symbol is the name of a variable
in COMMON, Word 5 points to the next
variable in the block and Word 6 points
to the name of the block.

Words 7 and 8 - Contain EQUIVALENCE information.
If the symbol has been declared in an
EQUIVALENCE statement, Word 7 points to
the next variable in the chain and Word
8 contains the offset.

IDTBL(8,500) for the UNIVAC 1108 is constructed in the
same manner as for the CDC except for the following exceptions.
word 3:

& Bit 15 is the same as bit 37 of the CDC.

2. Bit 19 is the same as bit 28 of the CDC.

3. Bit 20 is the same as bit 19 of the CDC.

4. Bits 20-36 are the same as bits 19-36 of the
CDC. Note that bit 20 is used twice but will
never conflict with the other use.

Word 6 is also used in the same manner as bit 15 of the
CDC for word 3.

IDTBL(11,500) for the IBM 360 is constructed as follows:
Words 1 and 2 - Contain the symbolic name in A4, A2

format.
Word 3 - Contains flags and information about the
symbol .
Bits 1-14 . See bits 1-14 of IDTBL(8,500) for
the CDC.

Bit 15 is 1 if the symbol (must be a formal
parameter) is input and 0 if not.

50

10.

11.

Bits 16-19. See bits 16-19 of IDTBL(8,500)
tor the CDC.
Bit 20 1s used by subroutine FLOWCK to suppress
printing of multiple error messages.
Bit 21 is 1 if the symbol has appeared in an
executable statement and 0 if not.
Bits 22-23 are not used.
Bits 24-32 contain the symbol's Interface
Definition file location (if the symbol is
a subprogram name) .
word 4 - See Word 2 of IDTBL(8,500) for the CDC.
Wwords 5-7 contain the first, second, and third sub-
scripts (if the symbol is a variable which is an

array) .

Words 8-9 - See Words 5 and 6 of IDTBL(8,500) for the
(34 1 il

Wwords 10-11 - See Words 7 and 8 of IDTBL(8,500) for
the CDC.

INITID(3) - This array contains pointers to the

IDTBL array (symbol table) for the first entries in
each of the symbol classes: variable, subprogram,
and COMMON block name, respectively.

LASTID(3) - This array contains pointers to the
IDTBL array (symbol table) for the last entries in
each of the symbol classes: variable, subprogram,
and COMMON block name, respectively.

ISRCH(3) - Each member of this array contains 1 or
0, depending on whether or not a symbol is the name
of a variable, subprogram, or a COMMON block.

JPTR - This integer variable points to the current
character position in array A.

N - The number of characters in the statement being
processed.

M - The length in characters of the language element
(identifier, operator, separator, constant) just
identified by subroutine GNLE.

JTYP - Set by subroutine GNLE according to the kind
of language element encountered in the input string.
See Figure 2-07.

LSTART - Points to the beginning of the language

element in array A just recognized by subroutine
GNLE.

ol

12

L3

14.

16

7

12

§ 1

20.

2l

22.

i g

N2 - The binary equivalent of the character string
just identified by subroutine GNLE as an integer.

IFNCNM - Contains the function name in A6 format
(for the CDC and UNIVAC 1108 versions) or the sym-
bol table location of the function name (for the
IBM 360), if the program unit being analyzed is a
function subprogram.

LOGID - Set by subroutine LOGCHK; denotes the integer
code for the logical operator of the character string
currently being considered. See Figure 2-08.

NXTID or NXTID(2) - The identifier currently being
considered; A6 format 1n NXTID (used for CDC and
UNIVAC 1108), and A4 and A2 format in NXTID(2) (used
for IBM 360).

IDTYP - An indicator of the class (1 for variable,

2 for subprogram, 3 for COMMON block) to which the
identifier in NXTID will be attached. IDTYP is used
as input to subroutine STORE.

NID - A count of the number of entries in the symbol
table.

LOC - Normally contains a pointer into the symbol
table to the identifier which has just been stored
by subroutine STORE.

LTYP - Set to 9 if the statement being processed is
a logical IF statement. The statement following the
logical IF is classified by variable ITYP.

ITYP - Set by subroutine CLASS to indicate what kind
of FORTRAN statement is in array A. See Figure 2-04.

IBLKDT - Set to 1 by the main program if the program
unit being analyzed is a BLOCK DATA subprogram and 0
If not.

MODE - This value is submitted as input; it indicates
which mode is to be used:

1 -~ Variable precision mode and/or audit mode

2,3 - Roll call mode.

IERR - An error flag set by subroutine BUILD:

1 - Too many continuation statements
2 - An end-of-file has been encountered.

32

24. 1IDES - Subroutine REALCK sets IDES to 1 if a real
number is double precision and 0 if it is not.
Subroutine DESCRP sets IDES to 1 if a format field
descriptor is valid and 0 if it is not.

2.2.91 COMMON Block BASBLK.

1. IBLOCK(2500) - This array (the basic block table)
contains information regarding the definition of
variables and the flow of control through the pro-
gram unit.

2. NBLOCK - Counter which keeps track of the number of

entries in the basic block table.

NB - Set to 1 when a new basic block is started.

4. NBRNCH - On a block terminal statement, set to the
number of branches from the block.

w
.

Dur ing the processing of each program unit, the basic
blocks which represent the program unit structure are con-
structed. A basic block contains the information represented
by a group of statements which physically appear together in
the program, are located within the same DO loop, and are
executed together. See Section 2.1.4 for an explanation of
what begins and what terminates a basic block. The basic
block table (IBLOCK(2500)) usually contains information on
more than one block (except for a very simple program unit).
The basic blocks are of variable length and each block points
to the starting location of the next block.

The first word (location) for each block is the "head of
the block". It contains the following information:

Bits Contents
IBM 360 CDC, UNIVAC 1108
I=6 1-6 A count of the number of
possible branches from the
Block
=172 7-12 A pointer into ISTACK (see

COMMON block DOLOOP) to the DO
loop containing the block.
This field is zero if the block
is not within @ DO loop.
13-24 13-28 A pointer to the next block.
25-32 29-36 A pointer into STATRA (see
COMMON block LABELS) to the
statement number of the block.
This field is zero if the
block has no statement number.

53

The locations following the "head of the block" contain
information about the variables in the block, stored one
var table per word according to the following scheme:

1001<n<1500: n-1000 points to the symbol table location (see
IDTBL array in blank COMMON) of the variable.
The variable is defined by this block.

2001°n"2500: n-2000 points to the symbol table location of the
variable. The variable is referenced by this
block.

3001“n<3500: n-3000 points to the symbol table location of the
var iable. The variable is an induction variable

. in this block.

4001-n<4500: n-4000 points to the symbol table location of the
var iable. The variable is assigned a value (by
an ASSIGN statement) in this block.

5001-n<5500: n-5000 points to the symbol table location of the
var iable. The variable appears in an assigned GO
TO in this bleck,

6001<n-6500: n-6000 points to the symbol table location of the
variable. The variable is undefined in this
block.

7001<n<7500: n-7000 points to the symbol table location of the
variable. The variable is a DO parameter.

The remaining locations of the block contain information
about branches from the block, stored one variable per word
according to the following scheme:

1<n<200: branch to the basic block pointed to by n, which
is a location in the statement number table (see
COMMON block LABELS). Once in the statement
number table find the block pointed to.

n=998: branch to next block
n=999: STOP or RETURN
The IBLOCK array is structured as follows:

word 1: Head of block 1

Words 2-M: Variable info. for block 1
Words (M+1)-N: Branch info. for block 1
wWord N+1: Head of block 2

Words (N+1)-L:
words (L+1)-J:
Word J+1:

ete.

Words 1, N+1, and J+1 are each separated into four fields

Variable info. for block 2
Branch info. for block 2
Head of block 3

(see Word 1 description) which
tion. All other words contain
the preceding paragraphs.

give the head of block informa-

the variable n as described

54

in

O"

To illustrate the construction of the IBLOCK array, the
following program unit is analyzed. Items needed for the
subroutine - symbol table (IDTBL array in blank COMMON),
statement number table (STATRA array in COMMON block LABELS),
DO loop stack (ISTACK array in COMMON block DOLOOP), basic
blocks, and the basic block table (IBLOCK array in COMMON
block BASBLK) - are included.

SAMPLE PROGRAM UNIT

BASIC BLOCK

__NUMBER __ STATEMENT
SUBROUTINE SORTS(NUM,N)
DIMENSION NUM(1l),IPS(10) 2
DATA (IBPS({I) 1=1.100/00,9,8,.7.6,5,4.3. 3
2 17
1 PR 1 IE=L, 10 4
2 IF(N.CGT.IPS(TL)) S0 TO 2 S
3 1 CONTINUE 6
4 2 Jdd=LE+] i
DO 10 NN=JJ,10 8
5 IP=IPS(NN))
PO 20 I=L,IP 10
6 K=N/1P 11
IP(I+K*IP-N) 21,21,22 12
7 22 K=RK-1 13
8 21 PO 28 J=1 ,K 14
9 M=I+IP*(J-1) 15
MM=M+1P 16
10 30 IF(NUM(M)-NUM(MM)) 20,20,23 17
11 23 ITEMP=NUM(M) 18
NUM(M)=NUM(MM) 19
NUM(MM)=ITEMP 20
IF(M-1I) 20,20,24 21
12 24 MM=M 22
M=M-1P 23
GO TO 30 24
13 20 CONTINUE 25
14 10 CONTINUE 26
RETURN 27
END 28

39

SYMBOL TABLE

SECOND
SUBSCRIPT

—
CLO X ~JO U b W

=
oW N

SECOND
SUBSCRIPT

oW

NAME

SORTS
NUM

N

IPS

I

IT

JJ

NN

LR

K

J

M

MM
ITEMP

POINTER TO
STATEMENT NUMBER

STATEMENT NUMBER TABLE

SECOND

SUBSCRIPT

O DO~ U Wi

DC LOOP STACK

TABLE

oW

56

POINTER

TO NEST

wNCC

STATEMENT
NUMBER

1
2
10
20
21
22

2
9

23
24

POINTER TO
SYMBOL TABLE

= U o

There

which state

BASIC

~—

are 14 basic
ments belong to which basic block.

BLOCK STATEMENT

4

7
9,10
| 8
13
14
15 .16
1k
181920, 21
272 ,.23,94
25
26, 27 2

517

blocks. The following table indicates

e i T

)JCATION

46

45

BASIC

CONTENTS

2006
1007
3008
7007
998
2004
2008
1009
3005
7009
998
2003
2009
1010
2005
2010
2009
2003
<

6
[1]3]39]6]
2010
1010
99

303 1
7010
Y98
(17415110

2005
2009

7' 1 38
1012
P8

BLOCK

58

TABLE

LOCATION

49
U

> 1

)
) L

) 3
54
DD
56
57
> 8
59
o0
61
62
63
64
65
66
67
68
69
70
71
T2
T3
74
ik
76
7
78
79
80
81
82
83
34

(2]4]74]18]
2002
2012
1014
2002
2013
2012
1002
2014
2013
1002
2012
2009

Sample program unit SUBROUTINE SORTS has 28 statements
and 14 basic blocks. There are 14 symbolic names used 1in
SORTS. These 14 names are stored in the symbol table.
Assuming IDTBL(8,500) is used, all information on the sym-
bolic name IPS, for example, is stored in IDTBL(1,4),
EDEBLE2 . 4) 5 on'ats s +JIDTBLER ,4) . IPS is the fourth name stored
in the IDTBL array. There are nine statement numbers stored
in the statement number table. All information on statement
number 30, for example, is stored in STATRA(1,7) and STATRA
(2,7), since statement number 30 1s the seventh statement
number found. There are four DO loops stored in the DO loop
stack. All information on DO 10, for example, is stored in
ISTACK(L,2), ISTACK(2,2), ESTACK(3;2), and ISTACK(4,2), slince
DO 10 is the second DO loop encountered. ISTACK(L,2) contains
the integer 3, which points to the third statement number in
the statement number table. The third statement number is 10,
which i1s the terminal statement number of the DO. ISTACK(3,2)
contalns the integer U, which means this DO is not contained
(nested) in any other DO. ISTACK(4,2) contains the integer 8,
which points to the eighth name in the symbol table. The
eighth name is NN which is the induction variable for this DO.

The 14 basic blocks comprise statements 4 through 28.
Basic block 11, for example, consists of statements 18,19,20,
and 21. The basic block table, IBLOCK(2500), contains all
information on the basic blocks. IBLOCK of 1-3 desct! ibes
basic block 1, IBLOCK of 4-9Y describes basic block 2, etc.
Basic block 14, for example, is described by IBLOCK of 52-58.
IBLOCK(52) contains four fields. The value in the first field,
2, indicates there are two branches from this block. The
value in the second field, 4, points to the fourth DO loop in
the DO loop stack indicating that this block is contained in
the nested DO 20. The value in the third field, 59, indicates
the location in IBLOCK of the next block. The value in the
fourth field, 7, points to the seventh statement number in the
statement number field indicating that this block has a state-
ment number of 30. IBLOCK(53) and IBLOCK(55), each containing
the number 2002, indicate that the variable is referenced
(2001<2002<2500). 2002-2000 gives the number 2 which points
to the second name in the symbol table, NUM. IBLOCK(53) and
IBLOCK(55) both having the integer 2002 indicate that the
variable NUM is twice referenced in this block. IBLOCK(54)
indicates that the variable M (2002-2000=2, which points to
M in the symbol table) is referenced (2000<2002<2500) in this
block. IBLOCK(55) indicates that the variable MM is referenced
in this block. IBLOCK(57) and IBLOCK(58), being equal to 4 and
8, respectively, point to the fourth and eight locations in
the statement number table indicating that this block branches
to statement numbers 20 and 23.

39

2.2.92 COMMON Block DOLOOP. This block contains information

about the program DO loop structure.

¥ ISTACK(4,50) - This integer array is constructed by
subroutines DO and STATNO, which process DO state-
ments and statement labels, respectively. The array
stores the DO structure of the program unit for late:
checking. As many as 50 DO statements may be stored.
There are four words that describe the DO structure
for each DO loop:

Word 1 - Contains a pointer to the statement
label table entry (see COMMON block LABELS)
for the terminal statement label.

Word 2 - Used for later processing.

word 3 - Contains a pointer into ISTACK to the
DO which contains the DO represented by this
DO loop.

word 4 - Contains a pointer to the symbol table
(see blank COMMON storage ~ IDTBL) for the
induction variable.

2. NSTACK - The number of DO loops in the ISTACK array.

3. 1ILOOP - Identifies, for the statement being pro-
cessed, which DO loop the statement i{s contained in.

4. TITOVFLW - Set to 1 if the DO stack overflows; 1if it
has, DO loop processing is terminated.

2.2.93 COMMON Block FLOW.

1. IFL - Flow analysis mode as input by the user:
0 - no flow analysis

1 - moderate flow analysis

2 - full flow analysis

IFL is set to -1 if the flow analysis cannot be per-

formed due to error(s) in the program unit.

2. IRP - Repeat parameter (set to IFL-1) that indicates
the number of times a statement number may be re-
peated in a given flow path.

2.2.94 COMMON Block FORMAT.

1. IDESST - Location within the input string where the
scan for a format field descriptor is to start; set
by subroutine GROUP.

2. 1IDESND - If subroutine DESCRP finds a valid field
descriptor, this is the last location which it
occupies in the string.

60
A

10,

et 4 D

IGPST - Location within the input string where scan
for a group of format field descriptors is to begin;
set by subroutine FRMAT.

IGPND - If subroutine GROUP finds a valid group of
field descriptors, this is the last location which
it occupies in the string.

IGRP - Set to 1 if a group of field descriptors is
valid and 0 otherwise.

SEPST - Location within the input string where scan
for a format field descriptor is to begin; set by
subroutine GROUP.

SEPND - If subroutine SEPAR finds a valid field
separator, this is the last location which it occu-
pies within the string.

DIR - Indicates, for subroutine SEPAR, which direc-
tion to search for a field separator (=1 for search
forward, =-1 for search backward); set by sub-
routine GROUP.

ICOM - Set to 1 if a field separator is a comma
and 0 1f it 1s not.

ISEP - Set to 1, 0, or -1 for a valid field separa-
tor, not a field separator, or an invalid field
sepcarator, respectively.

COMMON Block FUNC.

IFNCRA(5,12) - This array contains information about
function and subroutine references that occur in the
statement. Each row of the array represents a
different reference. The rows are arranged according
to the order in which the references physically occur
in the statement. IFNCRA is constructed by the

PARSE subroutine.

Word 1 - Contains the number of arguments encoun-
tered.

Words 2-12 - Contain the type and dimensionality
of the various arguments. Each word is

stored in the same manner as it is stored in
array INTFAC of COMMON block LIST. However,
for the CDC vergion, Bits 55-60 of each word
contain a value 1 if the arguments in fields
1-6, respectively, of this word are in an
expression, and 0 otherwise. For the UNIVAC
1108 and IBM 360, this information is stored
in the INTFAC array. The I/0 status is not

61

determined in the IFNCRA array
therefore set to zero for each

and is
argument.

2. MARGS ~ A running count of the number of entries in
IARGS (50) .
35 IARGS(50) - This array keeps track of all variables

which occur in an expression and notes the relation-
ship of the variables to any function references o

to any implied DO loops within the statement. TARGS

is constructed by the parser subroutines. Infor-
mation is stored in 20-bit fields for the CDC version,
in 18-bit fields for the UNIVAC 1108, and in fields

of 18 bits (for arithmetic and logical expressions)

and 16 bits (for I/0O lists) for the IBM 360. A field
is constructed for an arithmetic or logical expression,
ar for an I/0 list.

For an arithmetic or logical exptession, information is
stored in 20-bit fields for the CDC version and in 18~bit
fields for the UNIVAC 1108 and the IBM 360. The CDC has three
fields per word, the UNIVAC 1108 two fields per word, and the
IBM 360 one field per word. For arifhmetic and logical expres-
sions, a field is constructed as follows:

UNIVAC 1108

IBM 360 CDC

_ Bitw Bits
i=5) =10 Symbol table location of variable.
Lo=12 e The index of the function or sub-

routine of which this variable is an
argument. This index points to the
function or subroutine in IFNCRA(S,
12). The index is set to zero if the
var iable is not an argument of a
function or a subroutine.

E3=05 14=19 The number of the argument of the
function o+ subroutine which this
var iable is associated with. Set to
zero if variable is not an argument.

20 Left blank.

For an I/0 list information is stored in 20-bit fields
for the CDC version, 18-bit fields for the UNIVAC 1108, and
16-bit fields for the IBM 360. The CDC version has three
fields per word and the UNIVAC 1108 and IBM 360 have two
fields per word. For I/0 lists a field is constructed as
follows:

62

—

- |

UNIVAC 1108 IBM 360 CDC

. 'Bikg . . Bags Bits

-9 1-9 1-10 Symbol table location of
variable.

10-12 10-11 11-15 Set to 0, 1, or 2 depending
on whether the variable is an
I/0 variable, subscript or
implied DO parameter, or
implied DO index, respectively.

13-18 12-16 15-20 If this variable is an implied

DO index, this field contains
the symbol table location of
the first variable within the
expression which is within
the implied DO. Otherwise
this field is set to zero.

4. FNCLOC(5) - This array keeps track of the symbol table
location of subroutines or functicons referenced within
a statement.

e NFUNC - Number of references to functions or subrou-
tines within a statement.

To illustrate the construction of COMMON block FUNC, two
examples are offered. A symbol table and arrays IFNCRA,
FNCLOC, and IARGS for each example are constructed. Assume
that the CDC version of AUDIT is being used.

EXAMPLE 1

DIMENSION I(10,10)
CALL SUB(I,SIN(B),COS(ABS(C+D)-E),J+K)

Given the CALL SUB statement as above, the following
arrays are constructed:

SYMBOL TABLE IFNCRA FNCLOC
T SUB WORD 1 WORD 2 1
> 3
3 SIN Row 1 4 4:2:0]L:COJLO00J4:0.0] 5
4 B Row 2 1 1:00 6
5 COS Row 3 1 L.0:0
6 ABS Row 4 1 1:0:0
e
G
9 E
1) G
11 K

63

IARGS (for CDC)

]

- 2

word 1 2:1:114:201] 77411
Word 2 g4 1 ey ERLO 1 =4
word 3 11:1:4

Information on the CALL SUB statement is stored in the
symbol table, and the IFNCRA, FNCLOC, and IARGS arrays.
Symbol ic names are stored in the symbol table in the ordet
of their occurrence in the CALL statement. (Even though I
should be first in the symbol table, since it appears in the
DIMENSION statement, for simplicity just be concerned with the
order of names in the CALL statement.) Seven variables are
used as arguments within the statement. I, d, and K are
arguments of SUB, B is an argument of SIN, C and D are argu-
ments of ABS, and E is an argument of COS. There is one
subroutine reference, one intrinsic function reference, and
two basic eternal function references. Four rows of IFNCRA
are therefore used to describe seven variables. Rows 2, 3,
and 4 each describe the single arguments of SIN, COS, and
ABS, respectively. Row 1 describes the four arguments which
are variables for the SUB reference. For Row 1, Word 1 con-
tains the number of arguments (4). Word 2 consists of four
fields (for the four arguments), each field containing three
numbers. The first field of word 2, for example, indicates
that the first variable is of integer type (4) and is double
subscripted(2). The FNCLOC array contains pointers, to the
symbol table, of each subroutine and function name referenced
in the statement. FNCLOC(4)=6 indicates that the fourth
reference in the statement has the symbolic name ABS. The
IARGS array contains information on each of the seven variables
in the statement. The third variable, for example, is C and
ls described in the third field of Word 1. The number 7
points to C in the symbol table, the number 4 points to the
fourth row in IFNCRA, and the number 1 indicates that C is
the first argument of the reference.

EXAMPLE 2
WRITE (1I0,10) A,B,((C(I,J),I=1,N),Jd=1,N)
Given the above WRITE statement, the following arrays are
constructed:

SYMBOL TABLE
1

AL N vl

AU wWwN

64

IARGS (for CDC)
word 1 1:0:0f2:0:0]3;0:0
word 2 4. 170157110 4:2.3
word 3 6br1:0]5:213]6:1;:0

Information on the WRITE statement is stored in the
IARGS array. Assume that the variables encountered are
stored in the symbol table as in the previous table. There
are nine occurrences of variables in the I/0 list that are
stored in the IARGS array. Each word contains three fields,
each field describing a different variable. The second field
of Word 3, for example, describes the second occurrence of the
var iable J The number 5 points to the variable J in the
symbol table, the number 2 indicates that J is an implied DO
index, and the number 3 points to the symbol table location of
the first variable (C) of the implied DO.

2.2.96 COMMON Block GIRL.

1. NTERMS - Number of terminal symbols in the grammar.
Presently set equal to 19.

2-20. PLUS - OPRAND - The 19 terminal symbols used by the
parser. OPRAND signifies a constant or a variable.

2.2.97 COMMON Block GLOBAL.

1. NBLK - The number of entries in the COMMON block
table BLKTBL(200).

2. NREF - The number of entries in EXTTBL(100).
3. NSUBS - The number of entries in ISUBS(100).

4. BLKTBL(200) - This array contains a list of all
COMMON blocks encountered in the program unit(s)
being analyzed. The Interface Definition file
location of each COMMON block is stored rather than
the name of the block.

5. EXTTBL(1l0U) - This array contains a list of all
functions and subroutines which were referenced by
the program unit(s) being analyzed. The Interface
Definition file location of each function or sub-
routine is stored.

6. ISUBS(100) - This array contains a list of the pro-

gram unit(s) being analyzed. The Interface Definition
file location of each program unit is stored.

65

_COMMON Block HL.

Ine
}
I

I
oo

1. BOL - GIRL value for BOL link in GIRL structure.

[8

ACTION - GIRL value for ACTION link in the syntax
graph.

P FUNC1l - GIRL value that indicates truncation of
COMPLEX function.

4. FUNC2 - GIRL value that indicates truncation of
DOUBLE PRECISION function,

5. FUNC3 - GIRL value that indicates truncation of
REAL function.

6. LEFT - GIRL value that holds inserted left paren-
thesis of truncation function.

7. RIGHT - GIRL value that holds inserted right paren-
thesis of truncation function.

8. STRING - GIRL value that produces GIRL str ing
structure.

9. MAXJ - Largest index of successfully parsed sub-
string.

2.2.99 COMMON Block INPOUT.

1. NCALL - The number of statements in the program unit
being analyzed; set by subroutine BUILD.

2. IN - The logical unit number of the input device to
be used for the program unit(s) being analyzed. This
number is input by the user and is 5 for cards and 7
for tape or disk.

3. 10P - The logical unit number of the output device
for the revised program unit (set to 8).

2.2.100 COMMON Block JL.

1. JSTOP - If a level exists, JSTOP>0. If a level does
not exist, JSTOP=0.

2.2.101 COMMON Block LABELS. This block contains information
about statement labels.

1. STATRA(2,200) - This array is the statement numbe!
table, created anew for each program unit. As many
as 200 statement numbers are stored, each statement
number being described by two words.

66

word 1 - Contains the statement number.

Word 2 - Contains six fields of information
field 1 - statement type, according to
Figure 2-04.
field 2 - 1 if there has been a statement

with this label and 0 otherwise.
field 3 - 1 if the statement label has been
referenced and 0 otherwise.
field 4 - 1 if the label is a DO terminal
and 0 if it is not.
field 5 - 1 if the label is on a complete
path and 0 if it is not.
field 6 - points to the basic block containing
the label.

Fields 1 through 5 have the following bit configurations,
respectively: 1-6, 7-9, 10-12, 13-15; and 16-18. For the IBM
360, field 6 is bits 19-32; and for the UNIVAC 1108 and CDC,
field 6 is bits 19-36.

2. NLABEL - The integer value of the number of statement
numbers in the statement number table.

2.2.102 COMMON Block LIST. This block stores the information
that resides in the Interface Definition file. The ISUBLT
array lists the symbolic names of program units and labeled
COMMON blocks and stores information on those names. The
INTFAC array stores information about arguments and Category 1
COMMON elements.

l1. NLIST - The number of entries in the ISUBLT array.
2. NINTFC - The number of entries in the INTFAC array.

3a. ISUBLT(2,200) - This array is the CDC version of the
ISUBLT array. It stores as many as 200 symbolic
names, each name being described by two words.
Word 1 - Contains the symbolic name.
word 2 - Information about that name.
Bits 1-6 - (For subprograms) The number of
arguments.
(For Category 1 COMMON blocks)
The number of groups (a group is
a block of variables of the same
type) .
(For Category 2 and 3 COMMON
blocks) A value of zero.
Bits 7-10 - (For a program unit). One of the
following values:
0 - User supplied (not in the
Inter face Definition file)
1 - Subroutine module

67

- Function module

- Ancillary subprogram

ANSI function

- Main program

- Extraordinary subroutine
(For labeled COMMON blocks) One
of the following values:

7 - Category 1 COMMON block
8 - Category 2 COMMON block
9 - Category 3 COMMON block

Bits 11-13 - Function type (1 for real, 2 for
complex, 3 for double precision,

4 for integer, 5 for logical). Zf
the symbolic name is a COMMON block,
a zero is stored.

Bit 14 - Set to 1 1f a subprogram has a vari-
able number of arguments and 0
otherwise.

Bits 15-30 - Maximum size of blank COMMON (if
any) .

Bits 31-60 - Points to the beginning location
in the INTFAC array, where infor-
mation on the arguments or Category
1 COMMON is described.

AW S wWwN
|

3b. ISUBLT(3,200) - This array is the UNIVAC 1108 version
of the ISUBLT array. Three words are used to describe
a symbolic name. The first two words are the same as
in 3a, except that Bits 15-36 store the size of blank
COMMON. Word 3 contains the pointer into the INTFAC
array.

3c. ISUBLT(4,200) - This array is the 1BM 360 version of
the ISUBLT array. Four words are used to describe
a symbolic name. Words 1 and 2 contain the symbolic
name. Word 3 is the same as Word 2 of the CDC ver-
sion, except that Bits 15-32 store the size of blank
COMMON. Word 4 contains the pointer into the INTFAC
array.

4a. INTFAC(300) - This array is the CDC version of the
INTFAC array. It contains information about sub-
routine argument lists and Category 1 COMMON blocks.

For subprograms, arguments are stored six fields per
word, each field of the following form.

Bits 1-3 - Argument type (1 for real, 2 for com-
plex, 3 for double precision, 4 for integer,
5 for logical)

Bits 4-6 - Argument dimensionality - (0,1,2, or 3
for 0,1,2, or 3 subscripts)

68

Bits 7-9 - Argument I[/0 status (0 for output, 1 for
input and output, 2 for input)

For Category 1 COMMON blocks, groups are stored three
fields per word, each field of the following form:
Bits 1-17 = Size of group
Bits 18-20 - Type of group (1 for real, 2 for complex,
3 for double precision, 4 for integer, 5 for
logical).

4b. INTFAC(500) - This array is the UNIVAC 1108 version
of the INTFAC array.

For subprograms, arguments are stored four fields pe:
word, each field of the following form:

Bits 1-3 - Argument type

Bits 4-6 - Argument dimensionality

Bits 7-8 - Argument I/0 status

Bit 9 - Set to 1 if the argument is in an expression
and 0 if not (For CDC version, this value is
stored in the IFNCRA array).

For Category 1 COMMON blocks, groups are stored in two
fields per word, each field of the following form:
Bits 1-15 - Size of group
Bits 16-18 - Type of group

4c. INTFAC(600) - This array is the IBM 360 version of
the INTFAC array.

For subprograms, arguments are stored three fields pe:
word, each field of the same form as in 4b.

For Category 1 COMMON blocks, groups are stored one field
per word, each field of the same form as in 4b.

2.2.103 COMMON Block LOGIC.

1. LOG = Set to 1 if a logical operator or constant is
found and 0 otherwise. A

2. LOGST - Location in input string where search for
logical operator or constant is to start.

2.2.104 COMMON Block LVARGS.

1. IFUNC - The link of the triple, also known as the
function. It must be a random number as defined
by LVGRN.

69

s T—

ST e - -

-

n
.

10.

IARG - The source node of the triple, also known as
the argument of the function. It must be a random
number as defined by LVGRN.

IADD - The location (address) of the triple in the
buffer.

[IPOS - The position from the top (if positive) or
bottom (if negative) of the multi-value list into
which the new value will be placed. If ITYP is speci-
fied, only that type of value is counted when deter-
mining the position in the list.

ITYP - The type of value to be searched for in a
multi-vaiue list. It is used for destructive and non-
destructive insertions and may have the following
values:
-1 -~ Delete the entire function
0 -~ Random number
1 - Integer data
2 - Hollerith data
3 ~ No specified type

IVAL - The retrieved value. However, if the value
cannot be found, IVAL 1s set to =1.

LSTHED ~ The location of the head of the multi-value
list, otherwise,

0 ~ if no list is found

-1 ~ if a single valued list is found

NVAL - The number of values (up to ten) to be inserted
in the graph.

IDSTRY ~ Indicates the type of insertion to be made
according to the following values:

0 ~ Normal insertion - the triple is always
placed at the end of the (null) %ist.

1 ~ Destructive insertion - the IPOS'" member of
the ITYP'h type from the top or bottom of a
list (depending on the sign of IPOS) is
replaced by the contents of IVALS(1l).

2 - Nondestructive insertion - the contents of
IVALS(1l) are wedged into the list, making
the new value the IPOStNmember of the rTYPth
type from the top or bottom of the list
(depending on the sign of IPOS).

IVALS(10) - The values or sink nodes to be inserted;
they may be any of the following types:

70

~E.o - Fr— e e
a

Random number as defined by LVGRN
Integer data (up to 2**16)
. Holler ith data
11. ITYP1(10) - A type description for each value in
IVALS(1) to be inserted according to the following
values:
U - Random numbet
1 - Integer data
2 - Continuing Hollerith data
3 - The only or final cell of a Hollerith data
str ing
12 NSKIP - Saved index defeat switch. If NSKIP=1, the
saved index operation is skipped. Otherwise the
index 1s Ln effect.
2.2.105 COMMON Block LVFLAG. This COMMON block contains
integers which are used as masks to extract and insert infor-
nation from COMMON block LVVTR4.
2.2.106 COMMON Block LVRAND. This COMMON block 1is sed)
the computation of random numbers for the nodes on th jra
]
y
2.2.107 COMMON Blocks LVTABL and LVVSEQ. These COMMON bl<
are generated by the GIRL software and are not used by AUDII
2.2.108 COMMON Block LVVTRI.

K MEMSZE - GIRS memory size (set to 1000). This value
is set at the time the graph is created and can only
be changed by recreating the graph.

2. REGASP - If a location for a triple is computed and

! that location is already in use, this value point
i to the next available location where the triple may
} be stored.

3. NODSPC(1000) - For each triple (there may be as
many as 1000), one of three possible items 1s stored
in each location:

| a. Source node of a single-value list

? b. Source node of a multi-value list

{ c. Sink node of a value on a multi-value list.
' 2.2.109 _COMMON Block LVVTRZ.

1. LSTSPC(1000) - For each triple (there may be as many
as 1000), the sink node of a single-value list 1s
stored. If the list is a multi-value list, the
pointer to the next item in the list is stored. The
head of the list points to the first sink node, and

71
|
| s s cem——— -

the last sink node points back to the head of the
list; thus a circular structure is created.

2.2.110 COMMON Block LVVTR3.

1. LNKSPC(l000) - For each triple (of as many as 1000),
the conflict list pointer is stored. All heads of
lists which hash to the same location are linked to-
gether on a circular list. If an entry has no con-
flicts it points to itself.

2.2.111 COMMON Block LVVTR4.

1. FLGSPC(1l00U) - For each triple (of as many as 1000),
five flags are stored:

Bit 1 = 1l if head of a multi-value list
6 1f not
Bit 2 - 1 if cell is in working space
0 if cell is available
Bit 3 — 1 if value 1s on a multi-value list
0 Lf not
Bit 4-5 - left blank
Bit 6 - 1 1f head of conflict list
0 if not
Bit 7-8 -~ 0 1f random number
1l if integer data
2 = if continuing Hollerith string
3 -~ if only or final Hollerith string

2.2.112 COMMON Blocks LVVTR5, LVVTR6, LVVTR7, and LVVTRS.
These COMMON blocks are generated by the GIRL software and are
not used by AUDIT.

2.2.113 COMMON Block NEED.

1. START - Beginning state.

2. ASSOC - GIRL pseudo-random variable for associate.

3. LEVEL - GIRL pseudo-random variable for level.

4. STOP - GIRL pseudo-random variable for a permissable
final state. Also a stop link to a stop state is

permissable.

Lol

|

1

=

COMMON Block NEEDS.

l. STJ - The value of the token (in input string)
presently being examined.

JSTACK - Index which points to a location in the
stack.

v

R - Present state in the graph.
JAS - Index of last associate taken.
J - Index of present token in the input string.

JLAST - Index to the beginning of a primary, which
is a parenthesized expression.

RTEMP - Value of last state of the graph, in case of
immediate need to back up.

STACK(400) - Array which holds all the nodes visited
as well as other information which is necessary in
order to back up (i.e., recognize a context free
language).

2.2.115 COMMON Block NOPAR.

b7

NOPAR - Stack variable used to keep track of recur-
sive functions.

NDEP - Same as NOPAR.
NDEPTH - Function counter.

NFLAG - Stack variable for use in I/O list processing.

2.2.116 _COMMON Block NTIMES.

& o

2

2.2.118

NTIMES - Flag to indicate that the syntax graph has
been read from disk to core.

I - If the syntax graph runs out of storage space
while parsing a statement, I indicates how far the
statement has been parsed.

_ COMMON Block REALNO.

IREAL - Set to 1 if a real number is found and 0
otherwise.

IRELND - The last location of a character string
representing a real number.

IP - If a character string is to be tested to see if
it is a real number, this value points to the
beginning location of the string.
COMMON Block STFUNC.

NSTFNC - The number of entries in the ISTFNC array.

73

ISTFNC(10) - This array contains symbol table
locations of all statement functions in the program

NTYPE - Indicates the type of an expression according

NSTR - The number of language elements in STR.

2
anit.
2.2.119 COMMON Block STRING.
) o
to the following values:
1 - Arithmetic
2 - Logical
3= F 0 A1st
2
3

STR(500) - Encoded expression for a character string
(see SUBROUTINE EXPR).

2.2.120 COMMON Block TYP.

1.

2

NARRAY - The number of subscripts in an array.

TYPEl - The cype of the present oprand of the present
operator.

TYPE2 - The type of the first oprand of a binary
operator. TYPEl will hold the type of the second
oprand.

ERRFLG - The value of .TRUE. if a syntactic error has
occurred. The value of .FALSE., otherwise.

2.2.121 COMMON Block VAR.

1.

VFOR(15) - This array contains the display code for
output of an incorrect input string.

NUMCHR - The number of characters presently placed
in the last used word of VFOR.

NCHRP - The final number of tokens (including inserted
functions and parens) in the transformed input string.

CHAR - The display code of input characters.

NDICT - The equivalent value for input characters.
(-1>NDICT>-18)

2.2.122 COMMON Block WASTE. This is a dummy COMMON block

used to store local arrays.

74

SECTION 3. INPUT/OUTPUT DESCRIPTIONS

3.1 General Description. The inputs and outputs of the

AUDIT system are of three types:

s
2

3

Card, tape, and/or disk input furnished by the user.
Disk input and output which is of no direct concern
to the user.

Printed output that is of direct concern to the user.
The inputs and outputs of the AUDIT system that fall
into these three categories are described in the
following section.

3.2 Characteristics, Organization, and Detailed Description

of System Data.

3.2

User Input. Certain items must be furnished by the user

each time the AUDIT system is executed:

1. An options cara
2. The software to be examined
3. The Interface Definition file
4. The syntax graph file
5. A package of variable precision functions for each
truncation operator (bit configuration) desired.
(Needed only if the variable precision mode is
selected.)
3.2.1.1 Options Card. The first card in the user's input
deck 1s the options card, always supplied as card input. 1If

the software to be examined is on tape or disk and the variable
precision mode has not been selected, the options card will be
the only card input. The options card is punched in the format
(I1,3X,I11,3%X,11,3X,I1l) and is constructed as follows:

]l

o
.

Column 1 indicates the mode of operation:

1 - Audit mode only, or both the audit mode and the
variable precision mode.

2 - Audit mode and roll call mode (subprogram to be
examined does not contain a reference to utility
module ROLCOL) .

3 - Audit mode and roll call mode (subprogram to be
examined contains a reference to utility
module ROLCOL).

Column 5 indicates the input logical unit number for
the software to be examined:

5 - Software is on cards
7 - Software is on tape or disk (For CDC and UNIVAC
1108)

2 - Software is on tape or disk (For IBM 360)

75

3. Column 9 indicates whether or not the flow analysis
mode is to be used:

0 - No flow analysis
1 - Moderate flow analysis
2 - Comprehensive flow analysis

4. Column 13 indicates whether or not intrinsic and
basic external function names are to be checked for
misuse (See SESCOMPSPEC3, Section 8):

0 - Do not check names
1 - Check names

The AUDIT system always performs the audit mode. The
var iable precision or roll call mode may also be selected
(Column 1). A value of 1 in Column 1 indicates one of two
possible actions: (1) audit mode only, or (2) audit mode and
var iable precision mode. The AUDIT system distinguishes
between these two options by the additional control cards and
input cards for the variable precision mode. An entire execu-
table program (main program, all subprograms, and data) must
be submitted when the variable precision mode is selected.
No additional software (other than the one executable program)
may be examined by the variable precision mode. The roll call
mode 1is only used to examine the root program unit of a module.
Main programs, ancillary subprograms, or extraordinary sub-
routines should not be examined by the roll call mode.

3.2.1.2 Software To Be Examined. The software tc be examined
is input to the AUDIT system; Lt must be on cards, tape, or!
disk, and it may be on only one of the three mediums. If the
software is on cards, it must immediately follow the options
card, and a value of 5 must be punched in Column 5 of the
options card. 1If the software is on tape or disk (must be in
source format), the tape or disk involved must be identified
as logical unit number 7 or 2, and a value of 7 or 2 must be
punched in Column 5 of the options card.

If the variable precision mode is selected, only one
executable program (main program, subprograms, and data) may
be input. If the roll call mode is selected, only the root
program unit of a module may be input. Only one main program
may be input per execution. There is a limit to the numbe:
of subprograms that may be input per execution. This limit
depends on the complexity of the subprograms. A reasonable
upper limit on the number of subprograms input per execution
is 10.

3.2.1.3 Interface Definition File. Before any software can

be examined, the Interface Definition file must be constructed
by auxiliary program SESLIST (see Section 4.4.1). The Inter-
face Definition file is an unformatted file which is read from
logical unit 4 by AUDIT's main program and is stored in arrays

76

ISUBLT and INTFAC of COMMON block LIST. The file contains
information about all program units and COMMON blocks that
may be referenced by the software being examined.

For root program units of modules, main programs,
ancillary subprograms, extraordinary subroutines, intrinsic
and basic external functions, and other external subprograms,
the Interface Definition file contains information on the
argument list (if any) of the program unit and other appro-
priate information. The file also contains information about
all blank COMMON and labeled COMMON blocks.

The Interface Definition file consists of two parts:
(1) the basic Interface Definition file, and (2) the user
supplied Interface Definition file. The basic Interface
Definition file consists of information on the intrinsic and
basic external functions, and the labeled COMMON block SESCOM.
This basic file (listed in Appendices B, C, and D) is con-
sidered to contain information that may be referenced by all
software produced for the SESCOMP system. Each time new soft-
ware is to be examined, the user supplied file is constructed
for the specific software. The user supplied file should not
contain any information that is present in the basic file.
This user supplied file is then added to the basic file to
make up the Interface Definition file for the software to be
examined. A maximum of 200 symbolic names may be entered in
the file.

As stated before, the Interface Definition file is
created by the independent program SESLIST. The information
that constructs the file is punched on cards. SESLIST reads
the cards, packs the card images, and writes them out unfor-
matted onto logical unit 4. This file is saved and used as
an input file for the AUDIT system. The user must rerun
SESLIST each time a change in the file is necessary. The old
file is discarded and the new one is saved. While operating
under the audit mode, each reference to a program unit or
labeled COMMON block is checked for consistency against the
Interface Definition file. 1If a program unit or labeled
COMMON block is not in the file, the name and its associated
information is added to the ISUBLT and INTFAC arrays (COMMON
block LIST). Any subsequent reference to that program unit
or labeled COMMON block is then checked for consistency with
the first reference.

The user supplied file consists of each reserved sym-
bolic name used by the software to be examined (excluding
those names already in the basic file). There will be at
least one card of information associated with each name. For
subroutine and function subprograms with arguments and
Category 1 labeled COMMON blocks, additional cards will be
needed. Subroutine and function subprograms without arguments,

17

Category 2 and 3 labeled COMMON blocks, or blank COMMON will
each have only one card associated with it.

SESLIST requires at least one input card for each sub-
program and main program. This card is constructed as follows:

Columns 1-6 The symbolic name (left justified)
Columns 8-9 The number of arguments (right justi-
fied): (1f none, punch a zero in
Column 9)
Column 11 Function type (if the program unit is a
function subprogram)
1 - Real
2 - Complex
3 - Double Precision
4 - Integer
5 = Logical
(If the program unit is not a function
subprogram, punch a zero)
Column 13 The class of the symbolic name:
] - Subroutine module
- Function module
- Ancillary subprogram
Intrinsic or basic external function
- Main program
- Extraordinary subroutine
Columns 15-20 The size of blank COMMON, if any (right
justified)

UL B W N
|

1f the program unit doesn't have any arguments, only the
above card is needed to describe the symbolic name. Otherwise,
more cards are needed to describe the arguments. Each argu-
ment requires a 4-column field, with as many as 20 fields per
card. If there are more than 20 arguments, a second card is
required; if there are more than 40 arguments, a third card is
required, and so on. A maximum of 63 arguments is permitted.
The fields are ordered left to right in the same order as the
arguments. A field is constructed as follows:

Column 1 The argument type:
1 - Real
2 - Complex
3 - Double Precision
4 - Integer
5 ~ Logical
Column 2 The dimensionality of the argument:
0 - Non-subscripted simple variable
1 - Single-subscripted array
2 = Double-subscripted array
3 - Triple-subscripted array
Column 3 Argument I/0 status:
D = Output
78

1 - Input and output
2 — Enput

Column 4 Blank (serves as a separlator between
fields)

For example, utility module SESPL1 is described by the
following two cards:
(Card 1) SESPL1 301
(Card 2) 402 402 402

SESLIST requires at least one input card for each
labeled COMMON block. This card is constructed as follows:

Columns 1-6 The symbolic name (left justified)
Column 9 (For Category 1) The number of groups
contained in the block, a group being
a set of consecutive words of the
same type.
(For Category 2 and 3) Left blank
Column 11 Always zero
Column 13 The category of labeled COMMON:
7 - Category 1 labeled COMMON block
8 - Category 2 labeled COMMON block
9 - Category 3 labeled COMMON block
Columns 15-20 (For Category 1) The size of the block
(right justified)
(For Category 2 and 3) Left blank

Category 2 and 3 labeled COMMON blocks do not requite
additional cards; Category 1 labeled COMMON blocks require
additional cards describing the structure of the blocks. The
additional Category 1 cards are constructed as follows:

Each group, a set of consecutive words of the same type,
requires a field of eight columns. As many as ten 8-column
fields may be punched per card, with additional cards used
as needed. The fields are ordered left to right in the same

order as the groups. Each 8-column field is constructed as
follows:

Columns 1-6 Number of words in the group (right
justified). A double precision ot
complex variable is counted as two

words.
Column 8 Type of the group:
0 - Hollerith
1 - Real
2 - Complex
3 - Double precision
4 - Integer
5 = Logical

79

For example, the description of the Category 1 labeled
COMMON block SESCOM is punched on two cards, as follows:
(Card 1) SESCOM 2 i 25
(Card 2) 13 0 12 4

When organizing the input cards for SESLIST, the card(s)
that describes the arguments or the groups must immediately
follow the symbolic name the card(s) is associated with.
Although there is no prescribed order for the symbolic names,
an alphanumeric arrangement is usually convenient. Such an
arrangement simplifies the retrieval of a reserved name by
the user. The file that is constructed by program SESLIST must
be saved (catalogued) as a tape or disk file. Each time the
AUDIT system is executed, this Interface Definition file must
be input to the system.

3.2.1.4 sSyntax Graph. The syntax graph is a plex data
structure which contains the syntax for all arithmetic and
logical expressions and I/0 lists. It is constructed by program
GRAPH, which reads the graph from punched cards, and then packs
and writes out the information as an unformatted file onto
logical unit 4. Whenever one of the expressions or lists is
encountered by the AUDIT system, the structure of the expression
or list is checked against the graph for validity. The graph is
an unformatted file which is read by the parser subprograms

from logical unit 19 and is stored in COMMON blocks GIRL,
LVTABL, LVVSEQ, LVVTR1l, LVVTR2, LVVTR3, and LVVTR4. The syntax
graph file remains constant. It is constructed just once and

is then reused whenever the AUDIT system is executed. The user
need not concern himself with the data to construct the file.
The data has already been constructed and will not change. The
user need only create the file by running program GRAPH. He
then saves the file as a tape or disk file.

3.2.1.5 Variable Precision Functions. When AUDIT is operating
under the variable precision mode, a package of variable pre-
cision functions must be input for each bit configuration
desired. The following three function subprograms (a package)
are needed for each bit configuration:

L. REAL FUNCTION QIlREAL

2. DOUBLE PRECISION FUNCTION QlDPRE

3. COMPLEX FUNCTION Ql1COMP
The user may simulate word lengths of 30 to 40 bits for the
CDC 6000, 24 to 31 bits for the IBM 360, and 30 to 35 bits
for the UNIVAC 1108. Each processor uses a unique set of
packages.

3.2.2 AUDIT-Generated I/0. The AUDIT system generates
several temporary disk files which are used at various stages
of the AUDIT execution. These files are of no direct concern
to the user.

80

3.2.2.1 Revised Program Files. Each time the audit mode is
executed, the software being examined is revised and the
revised program resides on logical unit 8. There are two
different kinds of revised program files generated.

) I If the roll call mode is not selected, all arithmetic
operations (+,-,/,*,**) that involve real, complex,
and double precision variables or constants are
changed into references to the variable precision
function subprograms QlREAL, Q1COMP, and QlDPRE. For
example, A=B+C 1is transformed into A=QlREAL(B+C),
assuming A, B, and C are real. If the variable pre-
cision mode is selected, the revised program file is
used to perform the variable precision calculations.
Otherwise, the file is not used.

2. If the roll call mode is selected, all references to
function and subroutine modules are changed to ref-
erences to subroutine ROLCHK, and all READ statements
are omitted. These revisions are performed for a
single subprogram. The main program ROLCAL 1is added
to the file. This file is then used to execute the
roll call mode.

3.2.2.2 AUDIT Module List. The AUDIT module list is generated
only if the roll call mode is selected. The list concists of
function and subroutine module references encountered dur ing
the audit mode. The list is contained on an unformatted file
which resides on logical unit 9. It is used by subroutine
CMPARE to verify that all of the referenced modules were also
referenced in the SESCOMP roll call mode.

3.2.2.3 ROLCHK Module List. The ROLCHK module list is
generated during execution of the roll call mode. The list
consists of all modules referenced in the SESCOMP roll call
mode. It is an unformatted file which resides on logical unit
3. This file is constructed by subroutine ROLCHK. It 1is used
by subroutine CMPARE to compare with the AUDIT module list to
insure that the same names are on both lists.

3.2.3 Roll Call Output Files. The roll call output files
contain the contents of the SESCOMP output devices X, Y, and

Z, which are created by the simulated execution of the program
unit being examined. The contents of output devices X, Y,

and Z are written on logical units 13, 14, and 15, respectively.
These devices contain the Module Identification Fields, use
counts, and buffer tracing information pertinent to the simu-
lated SESCOMP ro0ll call modes. The user may display the con-
tents of these files at the completion of execution, assuming
the roll call mode has been selected.

3.2.4 Printed Output. Each program unit of the software being
examined has its own printed output. After the printout

81

e ——————

associated with all program units has been generated, a global
reference table is printed which contains information on all
the program units processed. A description of the printout
assocliated with each program unit follows.

AUDIT prints each statement of the software being pro-
cessed together with a diagnostic message if any intrastate-
ment errors have been found. Each assignment or CALL state-
ment that contains a real, double precision, or complex
operation is transformed to include the references to QlREAL,
QIDPRE, and Ql1COMP, regardless of whether or not the variable
precision option was selected. If the roll call mode has
been selected, each module reference is transformed into a
reference to subroutine ROLCHK, and all READ statements are
made into comment statements. All non-intrastatement errors
are printed ahead of and following the symbol table for the
program unit. The symbol table lists all symbolic names
and the type, dimensionality, and relocation of each name.

In addition, all externals, statement labels, and COMMON
blocks are listed, along with associated information. If the
flow analysis mode is selected, the results of the flow
analysis are printed. For each variable that is referenced
but not gefined along some path, the variable and the state-
ment labels of the path are indicated. A variable may be
flagged only once. The number of paths checked are also
indicated.

Each time AUDIT is executed, a global reference table is
printed. This table lists all external references, labeled
COMMON blocks, and program units encountered (and their
assocliated information) for all the program units examined.

If the roll call mode is selected, the following items will be

printed after the global reference table for each program unit.
1. Compilation of the revised program unit (see

Sectlion 3.2.2.1):

Compilation of main program ROLCAL.

Load map.

Results of the roll call check.

Whatever the program unit has written on output

devices X, Y, and 2.

If the variable precision mode is selected, the revised pro-

gram file will be compiled. For each bit configuration

selected, the (printed) output of the executable program is

printed. Appendix A contains a representative sample of the

various kinds of printouts.

.

U W
. .

82

e m -

g~

e oo i -

SECTION 4. PROGRAM ASSEMBLING, LOADING, AND MAINTENANCE
PROCEDURES

4.1 Input/Output Requirements. The following components make
up the AUDIT system:
Audit mode source code software
Roll call mode source code software
Program SESLIST and data
. Program GRAPH and data

5. Variable precision function subpxogxams
For the purposes of this document it is assumed that the audit
and roll call mode source ccde software is stored on tape as
two source files, and that the other components exist in the
form of card decks. The roll call source software consists of
subroutines CMPARE, MODID, and ROLCHK. The audit mode source
software consists of all the programs described in Section
2.2 (excluding Q1COMP, Ql1DPRE, QlREAL, ROLCAL, CMPARE, MODID,
and ROLCHK). Before the AUDIT system can be executed, pro-
grams SESLIST and GRAPH must create the Interface Definition
file and the syntax graph file, respectively. The user then
specifies these two files as input to the audit mode software
ana inputs the options card (must be card input) and the soft-
ware to be examined (must be card, tape, or disk input). If
the variable precision mode is selected, the variable pre-
cision function subprograms (for the bit configurations
desired) are then input. The control cards are all that remain
to execute the AUDIT system.

o N

4.2 Procedures. The AUDIT system is executed in the batch
mode. As stated in Section 4.1, it is assumed that the audit
and roll call mode source software is stored on tape as two
consecutive files and that all other components are in the

form of card decks. This need not be the case, but for the
pur poses of explaining all possible operating procedures,
this construct is assumed. It is also assumed that all

permanent files generatea by the AUDIT components are stored
as disk files. It will be easy for the user to adapt to
other physical mediums if he shall so choose.

The control cards needed to execute all possible options
of the AUDIT system will be listed and described for the
following three processors:

1) CDC 60UV series, SCOPE 3.4 operating system

2) UNIVAC 1108, EXEC-8 operating system

3) 1BM 36U, 0OS-36U operating system.
For each possible option, only Column 1 and Column 5 of the
options data card are discussed. The flow analysis mode may
be selected for any audit mode, roll call mode, or variable
precision mode, and is controlled by Column 9 of the options
card. The ANSI name check may also be selected for any mode,
and is controlled by Column 13. If the variable precision
mode is selected and the executable program requires tape ol

83

S

-

11sk data, such data must be made availuble to the program
by assigning the appropriate input files. The files must
be rewound for each bit configuration executed.

It is difficult to state precise timing estimates of
the var ious AUDIT options. It is best to first analyze a
few subprograms using the various options and then use those
times as a base for future runs. The only option that may
be time consuming is the flow analysis mode, where the time
1s dependent on the number of paths. For subprograms that
have paths that number in the thousands, it may be better
to use the moderate flow analysis. Only by trial and error
will a user be able to get a feeling for the amount of time
needed to execute. When running the variable precision mode,
the user should have an estimate of the execution time of the
program to be analyzed. Then for all the bit configurations
to be analyzed, the use!r should allow enough time to execute
the program the desired number of times (in addition to the
audit time). Timing estimates were computed for some of the
programs listed in Appendix A. To perform the audit mode
for the main program SAMP, the extraordinary subroutine
INOUT, and the BLOCK DATA subprogram, it took about 5.0 CPU
seconds on the CDC 6400 and the UNIVAC 1108 and 2.5 seconds
on the IBM 360. To perform the roll call mode for subroutine
APNDGA, it took about 20.0 CPU seconds for the CDC 64v0 and
the UNIVAC 1108 and 14.5 seconds for the IBM 360.

4.2.1 CDC 6000. The control cards listed in this section
are applicable to the SCOPE 3.4 operating system. Appropriate
modifications are easily made for different operating systems.

4.2.1.1 Initial File Creation. The following four files
must be created initially:
1. Interface Definition file
2. Syntax graph file
3. Absolute binary version of the audit mode source
software
4. Relocatable binary version of the roll call mode
source software.
To create the Interface Definition file, execute program
SESLIST and catalogue the output (ile with a permanent file
name of IDFILE. To create the syntax graph file, execute
program GRAPH and catalogue the output file with a permanent
fLle name of SYNTAXGRAPH. The audit binary version (PFN=
AUDITBIN) and the roll call binary version (PFN=ROLLCALLBIN)
are created from the source labeled tape (L=AUDITSOURCE)
using the following control cards:

1. Standard SCOPE Job card (requesting CM130000, MTI1,
and T300)

2. Standard SCOPE charge card

3. VSN(TAPE=SESUVU1=SLOTXX)

84

-

o

D5 I NESOUSIDY - S

~———

4.
ke
6.
7
8.
9.
1D-
3y
12.
5203
14
15
16.
1075
18.
19
3.=-4.
5.-6.
7.-9.
2 =13
g
16.
18.
4.2k 2

LABEL(TAPE,L=AUDITSOURCE,R) (NORING/SESU1/SLOTXX)

REQUEST (AUD, *PF)
REQUEST(RLCL , *PF)

COPYBF (TAPE,AUDIT)
COPYBF { TAPE, ROLL)

RETURN (TAPE)

REWIND(AUDIT, ROLL)

RFL(70000)
FIN(I1=AUDIT,B=AUDBIN,L=0,0PT=2)
FTN(I=ROLL,B=RLCL,L=0,0PT=2)

CATALOG (RLCL, ROLLCALLBIN, ID=XXXX,AC=XXXXXXXXXX)

RFL(130000)

LOAD(AUDBIN)

NOGO (AUD)

CATALOG(AUD,AUDITBIN, ID=XXX,AC=XXXXXXXXXX)
6/7/8/9 End-of-file

EXPLANATION OF CARDS

Mount AUDIT source tape. Note that these cards

be installation dependent.

Request permanent file devices for files.
Copy source files from tape to temporary disk
and release tape.

Compile audit and roll call source. Note that

listing of the source 1s desired, omit L=0.

F

ma .:.

1les

1f a

Catalog the roll call mode programs in relocatable

binary form.,
Load the relocatable binary file.

Catalog the audit programs in absolute binary form.

Execute Audit Mode from Cards. If the software

examined
to execu

.

10.

1s on cards, the following sequence of cards
te the audit mode.

Standard SCOPE Job card (CM130000)
Standard SCOPE charge card
ATTACH(TAPE4 ,IDFILE, ID=XXXX)
ATTACH(TAPE19,SYNTAXGRAPH, ID=XXXX)
ATTACH(AUD,AUDITBIN,ID=XXXX)

AUD.

7/8/9 End-of-record

Options card

Software to be examined

6/7/8/9 End-of-file

is

o

to be
used

v 4

AD=AQ43 922 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE==ETC F/6 9/2
MAINTENANCE MANUAL FOR AUDIT. A SYSTEM FOR ANALYZING SESCOMP SO==ETC(U)
AUG 77 R J WYBRANIEC» R REGEN

UNCLASSIFIED DTNSRDC=77=0075=VOL =1

202

a0
AD439;

O

Iz = [l

= [J2L s

o . Tt . et W —— .~

e —

BVEONPNE " T S —— SRR ok st s e

EXPLANATION OF CARDS

3.-4. Attach input files.

>.—6. Attach and execute audit. absolute binary file.

8. Options card is punched with a 1 in Column 1 and a 5
in Column 5.

9. At least one program unit is needed. Only one main

program is permitted.

4.2.1.3 Execute Audit Mode from Seguential Disk or Tape File.
A sequential file must contain at least one program unit. If
there is more than one program unit, all program units must

be consecutively stored without any embedded end-of-recoids
between program units. Only one main program is permitted.

1f the software to be examined is on a sequential disk file,
the following sequence of cards is used to execute the audit
mode.

1.-5. BSame as 1-5 of Section ¢.2.1.2
(54 ATTACH(TAPE7, PFN, ID=XXXX)
J AUD.
8. 7/8/9 End-of-record
9 Options card
)4 2 6/7/8/9 End-of-file
EXPLANATION OF CARDS
6. PFN is the name of the permanent file on which the soft-
ware to be examined resides.
9. Options card is punched with a 1 in Column 1 and a 7 in
Column 5.

If the software to be examined is on a sequential standard

SCOPE labeled tape file, the following two cards replace Card 6.

6a. VSN(TAPE7=VRNO)

6b. LABEL(TAPE7,L= NAME ,R) (VRNO/NORING)
where VRNO is the visual reel number of the tape, and NAME is
the tape label name. If the software to be examined is on a
sequential stranger tape, the following two cards replace Card 6.

6a. VSN(TAPE7=VRNO)

6b. REQUEST(TAPE7,DEN,TYPE) (VRNO/NORING)
where DEN is HI, HY, or HD (556 seven track, 800 seven track,
and 800 nine track, respectively) and TYPE is S or L (S for
record size<512 words and L for record size 512 words).

4.2.1.4 Execute Audit Mode from Update Disk or Tape File.

The update file must contain at least one program unit. Only
one main program is permitted per execution. If the software
to be examined is stored on an update disk file, the following
sequence of cards i1s used to execute the audit mode.

86

o e ST RPN S . < e g — . T ———

1.-5. Same as 1-5 of Section 4.2.1.2.

6. ATTACH(OLDPL, PFN ,ID=XXXX)

i P UPDATE (Q,C=TAPE7)

8. AUD.

9. 7/8/9 End-of-record

50 . *C DECKL, DECK2, ... ¢ » DECKn
.18 7/8/9

12 Options card

15 6/7/8/9 End-of-file

EXPLANATION OF CARDS

6. PFN is the name of the permanent file on which the software
to be examined resides.
7. Call the update utility to select the decks from the update

file that the user wishes to examine. If the user wishes
to examine all decks on the update file, replace the Q with
an F.

10, DECKLl, DECKZ2,; i-va , DECKn are the specific decks to be

examined. If an F is on the update card (Card 7), omit
this card.

12. Options card is punched with a 1 in Column 1 and a 7 in
Column 5.

If the software to be examined is on an update labeled

tape file, the following two cards replace Card 6.

6a. VSN(TAPE7=VRNO)

6b. LABEL(OLDPL, L= NAME , R) (VRNO/NORING)
where VRNO is the visual reel number of the tape and NAME is
the tape label name. 1If the software to be examined is on an
update stranger tape file, the following two cards replace
Card 6.

6a. VSN(TAPE7=VRNO)

6b. REQUEST(OLDPL,DEN,TYPE) (VRNO/NORING)
where DEN is HI, HY, or HD (556 seven track, 800 seven track,
and 800 nine track, respectively) and TYPE is S or L (S for
record size “512 words and L for record size>512 words).

4.2.1.5 Execute Audit Mode and Roll Call Mode from Cards.
wWwhen the roll call mode is selected, the audit mode generates
a revised roll call program file for the program unit being
examined. Therefore, the roll call mode must be executed,
along with the audit mode, once per program unit. If the
software to be examined is on cards, the following sequence
of cards is used to execute the audit mode and the roll call
mode for a single program unit.

Standard SCOPE Job card (CM130000)
Standard SCOPE charge card.
ATTACH(TAPE4,IDFILE, ID=XXXX)
ATTACH(TAPE19,SYNTAXGRAPH, ID=XXXX)
ATTACH(AUD,AUDITBIN, ID=XXXX)

s wWwN =
N

87

e i e e

6. ATTACH(RLCL,ROLLCALLBIN,ID=XXXX)
T+ AUD,

8. FTN(I=TAPES8)

9. LOAD(RLCL)

10. LGO,

11. COPYSBF(TAPE 13)

12. COPYSBF(TAPE 14) Used only for a value of 2 in
13. COPYSBF(TAPE 15) Column 1 of options card.

14. 7/8/9 End-of-record
15. Options card
16. Software to be examined

17. 6/7/8/9 End-of-file

EXPLANATION OF CARDS

.-4. Attach input files.

=6 Attach audit and roll call binary.

Execute audit binary.

Compile the revised roll call program file.

.=10. Load the roll call binary and the revised roll call
program file and execute.

11.-13. Display information written on output devices X, Y,

and Z by the program unit being examined. These

cards are only used when Column 1 of the options card

contains a 2.

Nelile cREN NG, V)

155 Options card is punched with a 2 or 3 in Column 1
and a 5 in Column 5.
16. Software must be a root program unit of a module.

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the roll call mode from cards for more than
one program unit.

Cards 1-6
Cards 7-13 (for program unit 1)
REWIND, LGO. (for program unit 2)
Cards 7-13
REWIND,LGO. (for program unit 3)
Cards 7-13
. (for additional program units)

7/8/9 End-of-record
Options card
Program unit 1
7/8/9

Options card
Program unit 2

88

1/8/9
Options card
Program unit 3
7/8/9
(for additional program units)
6/7/8/9 End-of-file

4.2.1.6 Execute Audit Mode and Roll Call Mode from Sequential

File. If there is more than one program unit on a sequential
tape or disk file, the audit mode can be executed only if there
are end-of-record marks between program units. Since this way
of storing source code is not typical, a description of the
control cards needed to execute the audit and roll call mode

is not provided. The user who wants to do it this way may
construct the control cards by following the control card logic
given for executing from cards or an update file.

4.2.1.7 Execute Audit Mode and Roll Call Mode from Update

Disk or Tape File. When the roll call mode is selected, the
audit mode generates a revised roll call program file for the
program unit being examined. Therefore, the roll call mode
must be executed, along with the audit mode, once per program
unit. If the software to be examined is on an update disk
file, the following sequence of cards is used to execute the
audit mode and the roll call mode for a single program unit.

1. Standard SCOPE Job card (CM130000 and MT1)

2. Standard SCOPE charge card

3. ATTACH(TAPE4,IDFILE,ID=XXXX)

4. ATTACH(TAPE19,SYNTAXGRAPH,ID=XXXX)

5. ATTACH(AUD,AUDITBIN,ID=XXXX)

6. ATTACH(RLCL,ROLLCALLBIN,ID=XXXX)

7. ATTACH(OLDPL, PFN ,ID=XXXX)

8. UPDATE(Q,C=TAPE7)

9. AUD,
10. FTN(I=TAPES8)

11. LOAD(RLCL)

12. LGO.

13. COPYSBF(TAPEL3)

14. COPYSBF(TAPEl4) Used only for a value of 2 in
15. COPYSBF(TAPElS) Column 1 of options card.
l16. 7/8/9 End-of-record
) G 1 *C DECK

8. 7/8/9

19. Options card
20. 6/7/8/9 End-of-file

89

—— ——

NG .

EXPLANATION OF CARDS

3.-4. Attach input files.

5.~6. Attach audit and roll call binary.

7 PFN 1s the name of the permanent file on which the
software to be examined resides.

8. Call the update utility to select the deck from the
update file which the user wishes to examine.

9. Execute audit binary.

1G. Compile the revised roll call program file.

11.-12. Load the roll call binary and the revised roll call
program file and execute.

13.-15. Display information that has been written on output
devices X, Y, and Z by the program unit being analyzed.
These control cards are only used when Column 1 of the
options card contains a 2.

XE. DECK is the specific program unit to be examined. It
must be the root program unit of a module.
19 Options card is punched with a 2 or 3 in Column 1 and

a 7 in Column 5.

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the roll call mode from an update disk file for
more than one program unit.

Cards 1-7
Cards 8-15 (for program unit 1)
REWIND, LGO. (for program unit 2)
Cards 8-15
REWIND, LGO. (for program unit 3)
Cards 8-15

; (for additional program units)

7/8/9 End-of-record
*C DECKI1
1/8/9
Options card
7/8/9

*C DECK2
7/8/9
Options card
7/8/9

*C DECK3
7/8/9
Options card

(for additional program units)

6/7/8/9 End-of-file

90

e e e e A 5 5 T R BN s

If the software to be examined is on an update labeled

tape file, the following two cards replace card 7.

7a. VSN(TAPE7=VRNO)

TH. LABEL(OLDPL, L= NAME ,R) (VRNO/NORING)
where VRNO is the visual reel number of the tape and NAME is
the tape label name. If the software to be examined is on an
update stranger tape file, the following two cards replace
card 7.

7a. VSN(TAPE7=VRNO)

Tb. REQUEST (OLDPL,DEN,TYPE) (VRNO/NORING)
where DEN is HI, HY, or HD (556 seven track, 800 seven track,
and 800 nine track, respectively) and TYPE is S or L (S for
record size <512 words and L for record size >512 words).

4.2.1.8 Execute Audit Mode and Variable Precision Mode from
Cards. The variable precision mode processes an entire
executable program. If the executable program to be examined
is on cards, the following sequence of cards is used to execute
the audit mode and the variable precision mode for a single bit
configuration.

l1.-6. Same as 1-6 from Section 4.2.1.2

7 FTN(I=TAPES8)

8. FTN(B=VPLIB)

9. LOAD(VPLIB)

3y [LGO.

e 7/8/9 End-of-record

ik Options card
13: Executable program (without data cards)

14. 7/8/9
15, Variable precision function subprograms
16. 7/8/9

17. Data cards for executable program

18. 6/7/8/9 End-of-file

91

A RN RERET 5t -

C et e

1.7 ¢
TES

15 .

17.

The following sequence of cards (which includes cards
identified in the previous seguence) is used to execute the
audit mode and the variable precision mode from cards for more
than one bit configuration.

DsssssGas—

EXPLANATION OF CARDS

Compile the revised variable precision program file
which is generated by the audit mode. This file
contains references to the variable precision
function subprograms.

Compile the variable precision function subprograms.
Load the variable precision function subprograms and
the revised variable precision program file and then
execute.

Options card is punched with a 1 in Column 1 and a

5 in Column 5.

Executable program (without data cards) must contain

a main program.

Three variable precision function subprograms (QlREAL,
QI1DPRE, and Ql1COMP) for the particular bit configu-
ration desired.

Data cards for executable program. If additional data
is on tape or disk, the user must make such data
available to the executable program.

Cards 1-7

Cards 8-10 (for variable precision function sub-
programs 1)

REWIND,VPLIB.} (for variable precision function sub-

Cards 8-10 programs 2)

REWIND,VPLIB.Q) (for variable precision function sub-

Cards 8-10 programs 3)

(additional variable precision function
- subprograms)

7/8/9 End-of-record

Options card

Executable program (without data cards)

. 5 1

1/8/9

Variable precision function subprograms 1
7/8/9

Data cards for executable program

7/8/9

Variable precision function subprograms 2
7/8/9

Data cards for executable program

7/8/9

Var iable precision function subprograms 3

92

‘i'?; f*-‘"’ﬁw o

7/8/9
Data cards for executable program

2 (additional var iable precision function
. subprograms)
6/7/8/9 End-of-file

4.2.1.9Y Execute Audit Mode and Variable Precision Mode from

Sequential Disk o1 Tape File. The variable precision mode

processes an entire executable program. If the executable
program to be examined is on a sequential disk file and data

is on cards, the following sequence of cards is used to execute
the audit mode and the variable precision mode for a single

bit configuration.

1.-5. Same as 1-5 from Section 4.2.1.8
6. ATTACH(TAPE7, PFN ,ID=XXXX)

7 AUD.

&' FTN(I=TAPE3)

qis FTN(B=VPLIB)

10. LOAD(VPLIB)

1L, LGO.

12 7/8/9 End-of-record

135 Options card

14. 7/8/9

15. Variable precision function subprograms
16 7/8/9

s Data cards for executable program
18. 6/7/8/9 End-of-file

EXPLANATION OF CARDS

6. PFN is the name of the permanent file on which the
executable program resides.

7 Execute the audit binary.

8. Compile the revised variable precision program file

which is generated by the audit mode. This file
contains references to the variable precision function
subprograms.
. Compile the variable precision function subprograms.
10.-11. Load the variable precision function subprograms and
the revised variable precision program file and then
execute.
13. Options card is punched with a 1 in Column 1 and a
7 in Column 5.

93

ST PSP S— s A AR D -1 OISO Sy, SR i T

s Three var iable precision function subprogtrams (QlREAL,
Q1DPRE, and QlCOMP) for the particular bit configu-
ration desiied.

The following sequence of cards (which includes cards
tdentifiea in the previous sequence) is used to execute the
audit mode and the variable precision mode from a sequential
disk file (executable program on file and data on cards) fot
more than one bit configuration.

Cards 1-8

Cards 9-11 (for variable precision function sub-
programs 1)

REWIND,VPLIB.) (for vatriable precision function sub-

Cards 9-11 programs 2)

REWIND, VPLIB) (for variable precision function sub-

Cards 9-11 programs 3)

} (for additional variable precision
: function subprograms)

7/8/9 End-of-record

Options card

1/8/9

Var iable precision function subprograms 1
7/8/9

Data cards for executable program

7/8/9

Var iable precision function subprograms 2
/872

Data cards for executable program

7/8/9

Var iable precision function subprograms 3
T/8/9

Data cards for executable program

} (for additional variable precision
. function subprograms)
6/7/8/9 End-of-file

I1f the executable program is on a labeled or a strange:
sequential tape file, substituce two cards for Card 6, as
described in Section 4.2.1.3.

4.2.1.10 Execute Audit Mode and Variable Precision Mode from
Update Disk or Tape File. The variable precision mode processes
an entire executable program. If the executable program is on
an upcdate disk file and data is on cards, the following sequence
of cards is used to execute the audit mode and the variable
precision mode for a single bit configuration.

l1.-5. Same as 1-5 from Section 4.2.1.8.
6. ATTACH(OLDPL, PFN ,ID=XXXX)

94

7 UPDATE(Q,C=TAPE7)

a. AUD.
Ll FTN(I=TAPESB)
lu. FITN(B=VPLIB)
kL. LOAD(VPLIB)
L2, LGO.
13. 7/8/9 End-of-record
14. ¢ DECKLDECKY - o v , DECKn
15 7/8/9 i
16, Options Card
17 4% 1/8/9
K8 vVar iable precision function subprograms
19. 7/8/9
20. Data cards for executable program
2L . 6/7/8/9 End-of-file
EXPLANATION OF CARDS
6. PFN is the name of the permanent file on which the
executable program resides.
7 Call the update utility to select the decks from the

update file which make up the executable program.
If the executable program consists of all decks on
the update file, replace the Q with an F.

8. Execute the audit binary.

P Compile the revised variable precision program file
which is generated by the audit mode. This file
contains references to the variable precision
function subprograms.

L@ Compile the variable precision function subprograms.

11.-12. Load the variable precision function subprograms
and the revised variable precision program file and
execute.

14. DECK1 ,DECK2 ;v -« -« ,DECKn are the specific decks that
make up the executable program. One and only one
deck must be a main program. If an F is on the update
card (card 7), omit this card.

l6. Options card is punched with a 1 in Column 1 and a 7
in Column 5.
18. Three variable precision function subprograms (QlREAL,

Q1DPRE, and Q1COMP) for the particular bit configu-
ration desired.

20. Data cards for the executable program. If additional
data 1s on disk or tape, the user must make such data
available to the executable program.

99

R ————— -

B O TR = ——=———,

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the variable precision mode from an update
disk file (executable program on file and data on cards) for
more than one bit configuration.

Cards 1-9

Cards 10-12 (for variable precision function s!b-
programs 1)

REWIND,VPLIB (for variable precision function sub-

€ards L0=12 programs 2)

REWIND,VPLIB (for variable precision function sub-

Cards 10-12 E programs 3)

} (for additional variable precision
o function subprograms)

7/8/9 End-of-record

Cards 14-~-16

7/8/9

Variable precision function subprograms 1
7/8/9

Data cards for executable program

7/8/9

vVariable precision function subprograms 2
1/8/9

Data cards for executable program

7/8/9

Var iable precision function subprograms 3
7/8/9

Data cards for executable program

g (for additional variable precision
s function subprograms)
6/7/8/9 End-of-file

I1f the executable program is on a labeled or a stranger
update tape file, substitute two cards for Card 6, as described
in Section 4.2.1.4.

4.2.2 UNIVAC 1108. The control cards listed in this section
are applicable to the UNIVAC 1100 series with EXEC-8 operating
system.

4.2.2.1 1Initial File Creation. The following four files must
be created initially:
1. Interface Definition file
2. Syntax graph file
3. Absolute binary version of the audit mode source soft-
ware.
4. Relocatable binary version of the roll call mode
source software.

96

o

To create the Interface Definition file, execute program
SESLIST and catalogue the output file with a file name of
IDFILE. To create the syntax graph file, execute program
GRAPH and catalogue the output file with a file name of
SYNTAXGRAPH. The audit binary version (with a file name of
AUDITBIN) and the roll call binary version (with a file name
of ROLLCALLBIN) are created from the source unlabeled tape
(with a file name of TAPE) using the following control cards:
Standard EXEC-8 Job card

@ASG,TJ TAPE.,8C,AUDIT

@ASG,UP AUDITBIN.

@ASG,T COMPILE.

4ASG,T AUDITPL.

@ASG,T RLCL.

@dASG,UP ROLLCALLBIN.

@ASG,T AUDIT.

@COPY,G TAPE.,COMPILE.

. . .

WO Ooo~JoO U b W+
. . s o &

10S @COPY,G TAPE.,AUDITPL.

i) @COPY,G TAPE.,RLCL.

L2 @ADD COMPILE.

13. @MAP,SIX ,AUDITBIN.AUD

14. IN AUDIT.

15:. @FOR RLCL.ROLCHK,ROLLCALLBIN.ROLCHK

16. @FOR RLCL.CMPARE,ROLLCALLBIN.CMPARE

LT @FOR RLCL.MODID,ROLLCALLBIN.MODID

L8 @FIN

EXPLANATION OF CARDS
2 Mount AUDIT source tape.
Bis Assign a catalogued file for the audit mode absolute
binary.
4. Assign a temporary file containing @FOR cards to
compile the AUDIT source.

s Assign a temporary file for the audit mode source.
6. Assign a temporary file for the roll call mode source.
T Assign a catalogued file for the roll call binary.
8. Assign a temporary file for the audit binary.
9. Copy the @FOR cards from tape.
10. Copy the audit mode source from tape.
11, Copy the roll call source from tape.
17 Compile the audit source.

13.-14. Call the MAP processor to create an absolute binary
audit node file with a name of AUDITBIN.

15.-17. Compile the roll call mode source and create a
binary roll call mode file with a name of ROLLCALLBIN.

4.2.2.2 Execute Audit Mode from Cards. If the software to be
examined is on cards, the following sequence of cards is used
to execute the audit mode.

97

— e rr— e g - - -

o o

P — — .

Standard EXEC-8 Job card.
@ASG,A IDFILE.

dASG,A SYNTAXGRAPH.
@ASG,A AUDITBIN.

@QUSE 4.,IDFILE.

@QUSE 19.,SYNTAXGRAPH.
@XQT AUDITBIN.AUD
Options card

Software to be examined

. .

(Nojiio o Mo NG I = SN OVR SOl o
. e e e .

10. @FIN

EXPLANATION OF CARDS

=Sl Assign input files.

Assign audit binary.

Assign logical units to input files.

Execute the audit binary.

Options card is punched with a 1 in Column 1 and a

5 in Column S

9. At least one program unit is needed. Only one main
program is permitted.

o o BRSO 2 N N)
PR

|

[oa]

4.2.2.3 Execute Audit Mode from Disk or Tape File. The file
to be examined must contain at least one program unit. Only
one main program is permitted. If the software to be examined
i1s on a disk or a tape SDF formatted file (source), the
following sequence of cards is used to execute the audit mode.

Standard EXEC-8 Job card.
@ASG,A IDFILE.

@ASG,A SYNTAXGRAPH.
@ASG,A AUDITBIN.

Assign disk or tape with a file name of AUDFILE.
QUSE 4.,IDFILE.

@USE 19.,SYNTAXGRAPH.
@USE 7.,AUDFILE.

@XQT AUDITBIN.AUD
Options card

@FIN

—
HFOWRNO U W -

EXPLANATION OF CARDS

Sy O AUDFILE is the file name on which the software to
be examined resides.

10, Options card is punched with a 1 in Column 1 and a
7 Column 5y

(See Section 4.2.2.2 for an explanation of the other cards.)

98

If the software to be examined is on a disk or tape
program file (elements), the following sequence of cards
(which includes cards identified in the previous seguence)
is used to execute the audit mode.

Cards 1-5
@ASG,T 7.
Cards 6-7
@DATA,I 7.
@4ADD,D AUDFILE.ELT1
dADD,D AUDFILE.ELT2

@END
Cards 9-11

EXPLANATION OF CARDS

An @ADD,D card is needed for each element to be examined.
ELT1, ELT2, etc., are the element names.

4.2.2.4 Execute Audit Mode and Roll Call Mode from Cards.

When the roll call mode is selected, the audit mode generates

a revised roll call program file for the program unit being
examined. Therefore, the roll call mode must be executed,
along with the audit mode, once per program unit. If the soft-
ware to be examined is on cards, the following sequence of
cards is used to execute the audit mode and the roll call mode
for a single program unit.

Standard EXEC-8 Job card.
dASG,A IDFILE.

@ASG,A SYNTAXGRAPH.
d@ASG,A AUDITBIN.

@ASG,A ROLLCALLBIN.

@QUSE 4. ,IDFILE.

@USE 19.,SYNTAXGRAPH.
@XQT AUDITBIN.AUD
Options Card

Software to be examined

CLOONAU s WN -

—

11. @END

12. @ADD 8.

13. @MAP,IX ROLL
14. 1IN TPFS.

15. IN ROLLCALLBIN.
16. @XQT ROLL

99

s

e ST —

17, GDATPR,L 13.

18 QEND
19. @DATA,L 14.\ Used only for a value of 2 in Column 1
20. @END of options card.
2% . @DATA,L 15.
25 @END
23 @FIN
EXPLANATION OF CARDS
o= Assign 1input files. 3
4.-5. Assign audit and roll call binary.
G.—7 - Assign logical units to input files.
8 Execute the audit binary. ‘
9 Options card is punched with a 2 or 3 in Column 1
and a 5 in Column 5.
14 . Software must be a root program unit of a module.
Py Compile the revised roll call program file.

13.-15. Call the MAP processor to create an absolute binary
roll call mode file composed of the file in 13. and
the binary roll call software.

16 Execute the absolute binary roll call mode file.

17.-22. Display information written on output devices X, Y,
and Z by the program unit being examined. These
cards are only used when Column 1 of the options card
contains a 2.

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the roll call mode from cards for more than
one program unit.

Cards 1-7

Cards 8-9

Program unit 1%(for program unit 1)
Cards 11-22

Cards 8-9
Program unit 2§(for program unit 2)
Cards 11-22

.

o ‘}(for additional program units)
GFIN

4.2.2.5 Execute Audit Mode and Roll Call Mode from Disk or
Tape File. When the roll call mode is selected, the audit
mode generates a revised roll call program file for the
program unit being examined. Therefore, the roll call mode
must be executed, along with the audit mode, once per program
unit. If the software to be examined is on a disk or tape
program file (elements), the following sequence of cards is
used to execute the audit mode and the roll call mode for a
single program unit.

100

-_——

e

-

| e S ——————— T LS e DPVNDORRG. . o - e

1.=5, Same as 1-5 of Section 4.2.2.4

6. Assign disk or tape with a file name of ROLLFILE.
T @ASG,T 7.

8.-9. Same as 6-7 of Section 4.2.2.4

19. @DATA,I 7.

) & @ADD,D ROLLFILE.ELTNAME

) 5.0 @END

13.-14. Same as 8-9 of Section 4.2.2.4 (Options card has
a 7 in Column 5)
15.=-27. Same as 11-23 of Section 4.2.2.4.

EXPLANATION OF CARDS

6.,11. ROLLFILE is the file name on which the software to be
examined resides. ELTNAME is the element name of the
element.

The previous sequence of cards is used if only one program
unit 1s to be examined. The following sequence of cards (which
includes cards identified in the previous sequence) is used to
execute the audit mode and the roll call mode from a disk or
tape program file (elements) for more than one program unit.

Cards 1-9

Cards 10—122 (Card 11 with the first element name)
Cards 13-26

Cards 10-12 (Card 11 with the second element name)
Cards 13-26§

.

. g (for additional program units)
@FIN

4.2.2.6 Execute Audit Mode and Variable Precision Mode from
Cards. The variable precision mode processes an entire
executable program. If the executable program to be examined
is on cards, the following sequence of cards is used to exe-
cute the audit mode and the variable precision mode for a
single bit configuration.

Standard EXEC-8 Job card.

@ASG,A IDFILE.

@ASG,A SYNTAXGRAPH.

@ASG,A AUDITBIN.

@QUSE 4.,IDFILE.

QUSE 19.,SYNTAXGRAPH.

@XQT AUDITBIN.AUD

Options card

Executable program (without data cards)

.

OO ULs WK -
.

101

O,
LY.

LGS
L7
18.
EG
20.

Pl e

el

16.

L7, —18,

B e e e

19,
, 20.

The

@FOR,IS QlREAL
Function subprogram QlREAL

dFOR,IS QlCOMP
Function subprogram QlCOMP

@FOR,IS QI1DPRE
Function subprogram QlDPRE

dADD 8.

4MAP,IX VARPRC

IN TPFS.

@XQT VARPRC

Data cards for executable program

@FIN

EXPLANATION OF CARDS

Assign input files.

Assign audit binary.

Assign I/0 devices to input files.

Execute the audit binary.

Options card is punched with a 1 in Column 1 and a
5 in Column 5.

Executable program (without data cards) must
contain a main program.

Compile variable precision function subprograms
QlREAL, QlCOMP, and QIDPRE. These subprograms must
all be for the same bit configuration.

Compile the revised variable precision program file
which contains references to the variable precision
function subprograms.

Call the MAP processor to create the absolute
binary variable precision file.

Execute the variable precision mode.

Data cards for executable program. If additional
data is on tape or disk, the user must make this
data available to the executable program.

following sequence of cards (which includes cards

identified in the previous sequence) is used to execute the
audit mode and the variable precision mode from cards for
more than one bit configuration.

102

Cards 1-8

Executable program (without data cards)
10-15 (for bit configuration 1)

Cards 16-20

10-15 (for bit configuration 22]

Cards 16-20

. (for additional bit configurations)
QFIN

EXPLANATION OF CARDS

Each group of variable precision function subprograms
must be for a different bit configuration.

4.2.2.7 Execute Audit Mode and Variable Precision Mode from
Disk or Tape File. The variable precision mode processes an
entire executable program. If the executable program is on a
disk or tape SDF formatted file (source) and the data is on
cards, the following sequence of cards is used to execute the
audit mode and the variable precision mode for a single bit
configuration.

1.-10. Same as 1-10 of Section 4.2.2.3. (Cards 5 and
8 have a file name of VPFILE.)
11.-22. Same as 10-21 of Section 4.2.2.6

EXPLANATION OF CARDS

5.,8. VPFILE is the name of the file on which the executable
program resides.

‘ The following sequence of cards (which includes cards

i identified in the previous sequence) is used to execute the
[audit mode and the variable precision mode from tape or disk
| for more than one bit configuration.

|

Cards 1-10
| 11-16 (for bit configuration IT]
Cards 17-21
‘ 11-16 (for bit configuration 2)
} Cards 17-21
|
!
i

. (for additional bit configurations)
@FIN

EXPLANATION OF CARDS

Each group of variable precision function subprograms
must be for a different bit configuration.

103

I1f the executable program to be examined is on a disk or
tape program file (elements), the following sequence of cards
ls used to execute the audit mode and the variable precision
mode for a single bit configuration.

1.-4. Same as 1-4 of Section 4.2.2.3

5« Assign disk or tape with a file name of
VPFILE.

6. @ASG,T 7.

Ea=8, Same as 6-7 of Section 4.2.2.3

9. @DATA,I 7.

j I3 2% @ADD,D VPFILE.ELT1

@ADD,D VPFILE.ELT2

) 0 et @END
12.-13. Same as 9-10 of Section 4.2.2.3
14.-25. Same as 10-21 of Section 4.2.2.6

EXPLANATION OF CARDS

An @ADD,D card is needed for each element that makes up
the executable program. ELT1,ELT2, etc., are the element
names. VPFILE is the name of the file on which the elements
reside.

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the variable precision mode from tape or disk
for more than one bit configuration.

b=
14-19 (for bit configuration lﬂ
Cards 20-24
14-19 (for bit configuration 23
Cards 20-24
(for additional bit configurations)
@QFIN

EXPLANATION OF CARDS

Each group of variable precision function subprograms
must be for a different bit configuration.

4.2.3 IBM 360. The control cards listed in this section are
applicable to the 0S/360 operating system for the IBM 360.
Changes should be made as appropriate for other operating sys-
tems.

104

4.2.3.1 1Initial Data Set Creation. The following four

permanent data sets must be created initially:

1. Interface Definition file

2. Syntax graph file

3. Binary version of the audit mode source software

4. Binary version of the roll call mode source software

To create the Interface Definition file, execute program
SESLIST and catalogue the output file with a permanent data
set name of IDFILE. To create the syntax graph file, execute
program GRAPH and catalogue the output file with a permanent
data set name of SYNTXGRF. The audit binary version (with a
permanent data set name of AUDITBIN) and the roll call binary

version (with a permanent data set name of RLCLBIN) are created

from a labeled tape using the following control cards.

Standard IBM Job card

// EXEC PGM=CSDS,PARM='LRECL=3120"

. //SYSPRINT DD SYSOUT=A

c //INPUT DD DSN=NSR.SOURCE.AMK.TAPE,VOL=SER=XXXX,

UNIT=TAPE9,

B // LABEL=(1,SL),DCB=(RECFM=0,BLKSIZE=3120) ,DISP=
(OLD,KEEP)

6. //0UTPUT DD DSN=&AUDITBIN,DISP=(NEW,PASS),UNIT=
TEMP,

7. ,/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),SPACE=
(3120,(200,5))

8. // EXEC PGM=CSDS,PARM='LRECL=4000"

9. //SYSPRINT DD SYSOUT=A

10, //INPUT DD DSN=NSR.SOURCE.AMK.TAPE,VOL=SER=XXXX,
UNIT=TAPE9,

) 1 15 // LABEL=(2,SL),DCB=(RECFM=0,BLKSIZE=4000),DISP=
(OLD,KEEP

Lids //0UTPUT DD DSN=&RLCLBIN,DISP=(NEW,PASS),UNIT=
TEMP,

) ;B // DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000) ,SPACE=
(4000,(5,5))

14. // EXEC FHL,LMOD='Ql.Q2.AUDITBIN(AUD)',DSP=NEW,
DEV=SAVE,

5. // TIME=(5,0),REGION.F=250K,PARM.L=MAP,REGION.L=
200K

16, //F.SYSPRINT DD OUTLIM=20000

17. //F.SYSIN DD DSN=&AUDITBIN,DISP=(OLD,DELETE)

18. //L.SYSLMOD DD SPACE=(3156,(600,50,15))

19. // EXEC FHL,PARM.L=MAP,LMOD='Ql.Q2.RLCLBIN(ROLL)"
DSP=NEW,DEV=SAVE

20. //F.SYSIN DD DSN=&RLCLBIN,DISP=(OLD,DELETE)

21. //L.SYSLMOD DD SPACE=(100,(10,10,10))

28 S*

oo -

105

’

. - o e oo e T " PSR —

Bl .~LE3
14.-15.

i
18.
k9.

20.
21

4.2.3.2

EXPLANATION OF CARDS

Call the utility CSDS (copy sequential data set) to
copy the audit mode source from tape.

Describe the input data set, which is the source
tape. XXXX is the volume serial number of the tape.
Describe the output data set, which will be a temp-
orary data set.

Call the utility CSDS to copy the roll call mode
source from tape.

Same as 4-7.

Call the FHL catalogued procedure (H compile and link
edit) to create the audit load module which is to be
catalogued.

The audit source is input to the compiler.

Allocate space for the audit load module.

Call the FHL catalogued procedure to create and cata-
log the roll call load module.

The roll call source is input to the compiler.
Allocate space for the roll call load module.

Execute Audit Mode from Cards. If the software to be

examined is on cards, the following sequence of cards is used
to execute the audit mode.

)
2y
3
4.
Dia
6.
7
8.
9.
10.
1l.
12.

AT e I

4.

>

6.

70_80

Standard IBM Job card.

// EXEC PGM=AUD,REGION=250K

//STEPLIB DD DSN=Q1.Q2.AUDITBIN,DISP=SHR

//FTO06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,
BLKSIZE=3458)

//FT04F001 DD DSN=Q1.Q2.IDFILE,DISP=SHR

//FT19F001 DD DSN=Ql1.Q2.SYNTXGRF,DISP=SHR

//FTO08F001 DD DSN=&OUTPT,DISP=(NEW,DELETE) ,UNIT=TEMP,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),SPACE=(3120,
(10,10))

//FTOS5F001 DD *

Options Card

Software to be examined

/*

EXPLANATION OF CARDS

Get audit binary.

Assign the print file.

Assign the Interface Definition file to logical unit 4.
Assign the syntax graph file to logical unit 19.

Assign temporary file for audit revised program file.

106

— e T . wr o———" - -

10, Options card is punched with a 1 in Column 1 and a 5
in Column 5.

EE, At least one program unit is needed. Only one main
program is permitted.

4.2.3.3 Execute Audit Mode from a Sequential Tape or Disk

Data Set. A “sequential data set must contain at least one
program unit. If there is more than one program unit, all
program units must be consecutively stored. Only one main
program is permitted. If the software to be examined is on
a sequential tape or disk data set, the following sequence

of cards 1s used to execute the audit mode.

1.-8. Same as 1-8 of Section 4.2.3.2

9. Assign tape or disk sequential data set to logical
unit 2.

140 //FTO5F001 DD *

Bl Options card

k25 s

EXPLANATION OF CARDS

11. Options card is punched with a 1 in Column 1 and a 2 in
Column 5. |

4.2.3.4 Execute Audit Mode from a Partitioned Disk Data Set.

The partitioned data set must contain at least one program

unit. Only one main program is permitted per execution. If

the software to be examined is on a partitioned disk data set,

the following sequence of cards is used to execute the audit (

mode.
Ly Standard IBM Job card.
2 // EXEC LISTPCH,LIB='Ql.Q2.NAME'
3. //SYSPRINT DD DUMMY,DCB=(RECFM=VBA,LRECL=137,
BLKSIZE=3429)
4. //SYSPUNCH DD DSN=&DATA,DISP=(NEW,PASS),UNIT=TEMP,
%« // DCB=(RECFM=FB,LRECL=80,BLKSIZ%=3200),SPACE=
(3200,(50,10))
6. //SYSIN DD *)
7 MEMBER1 |
MEMBER2
MEMBERN
8.-14. Same as 2-8 of Section 4.2.3.2
4. 7 //FTO2F001 DD DSN=&DATA,DISP=(OLD,DELETE)
16. //FTOSF001 DD *
17 Options card
18. /*
;j 107
?‘j ; P

2 i e e e o2 AT SN - S, St s i

4.2.3.5

EXPLANATION OF CARDS

Call the catalogued procedure LISTPCH to select the
desired members from the partitioned data set. 'Ql.
Q2.NAME' is the data set name. This procedure uses the
standard IBM utility IEBCOPY.

Assigns the print file data set.

Data set on which the members will reside.

Data set members to be examined, punched one name to a
card anywhere on the card.

Logical unit 2 data set on which the members reside.

Execute Audit Mode and Roll Call Mode from Cards.

When the roll call mode is selected, the audit mode generates
a revised roll call program file for the program unit being

examined.

Therefore, the roll call mode must be executed,

along with the audit mode, once per program unit. If the
software to be examined is on cards, the following sequence of
cards is used to execute the audit mode and the roll call mocde
for a single program unit.

14.
15,
16.
L
18.
19.

21.
22

Standard IBM Job card

// EXEC PGM=AUD,REGION=250K

//STEPLIB DD DSN=Q1.Q2.AUDITBIN,DISP=SHR
//FT06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,
BLKSIZE=3458)

//FT04F001 DD DSN=Q1.Q2.IDFILE,DISP=SHR

//FT19F001 DD DSN=Q1.Q2.SYNTXGRF,DISP=SHR
//FTO08F001 DD DSN=&OUTPT,DISP=(NEW,PASS),UNIT=TEMP,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120) ,SPACE=
(3120,(¢10,10))

//FTO09F001 DD DSN=&LIST1,DISP=(NEW,PASS),UNIT=TEMP,
// DCB=(RECFM=VBS,BLKSIZE=100),SPACE=(100, (10,10))
//FTOS5F001 DD *

Options Card

Program Unit

// EXEC FHLG,PARM.L=MAP
//F.SYSIN DD DSN=&OUTPT,DISP=(MOD,DELETE)
//L.DD1 DD DSN=Q1.Q2.RLCLBIN,DISP=SHR
//L.SYSIN DD *
INCLUDE DD1(ROLL)
ENTRY MAIN
//G.FT09F001 DD DSN=&LIST1,DISP=(OLD,DELETE)
//G.FTO3F001 DD DSN=&LIST2,DISP=(NEW,PASS), UNIT=TEMP,
// DCB=(RECFM=VBS,BLKSIZE=100),SPACE=(100,(10,10))

108

23. //G.FTO03F002 DD DSN=&LIST3,DISP=(NEW,PASS),UNIT=TEMP,
24. Same as 22
25. //G.FTO3F003 DD DSN=&LIST4,DISP=(NEW,PASS),UNIT=TEMP,
26. Same as 22
(for temporary data sets 4 through 12)
45. //G.FTO3F013 DD DSN=&LIST14,DISP=(NEW,PASS),UNIT=TEMP,
46. Same as 22
47. //G.FT10F001 DD DSN=&X1,DISP=(NEW,PASS),UNIT=TEMP,
48. // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),SPACE=(3120,
(10,10Y))
49. //G.FT11F001] DD DSN=&Y1l,DISP=(NEW,PASS),UNIT=TFMP,
50. Same as 48
51. //G.FT12F001 DD DSN=&Z1,DISP=(NEW,PASS),UNIT=TEMP,
52. Same as 48
53. //G.FT13F001 DD DSN=&X2,DISP=(NEW,PASS, ,UNIT=TEMP,
54. Same as 48
55. //G.FT14F001 DD DSN=&Y2,DISP=(NEW,PASS),UNIT=TEMP,
5€. Same as 48
57. //G.FT15F001 DD DSN=&Z2,DISP=(NEW,PASS),UNIT=TEMP,
58. Same as 48
59. // EXEC PGM=IEBPTPCH
60. //SYSPRINT DD SYSOUT=A
61. //SYSUT1 DD DSN=&X2,DISP=(OLD,DELETE)
62| LA DD DSN=&Y2,DISP=(OLD,DELETE)
63« AL DD DSN=&Z2,DISP=(OLD,DELETE)
64. //SYSUT2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,
BLKSIZE=3509)
65, //SYSIN Db *
66 . PRINT MAXFLDS=1
67. RECORD FIELD=(80,,,5)
68. /*
Note: Cards 47-67 are used only for a value of 2 in
column 1 of the options card.
EXPLANATION OF CARDS
X «=85 Same as 1-8 of Section 4.2.3.2.
9.-10. Assign a data set for the audit module list (Section
Se2eliZ e
] S 48 Options card is punched with a 2 or 3 in Column 1 and
a 5 in Column 5.
13 Program unit must be a root program unit of a module.
14. Call the FHLG catalogued procedure to compile, link
edit, and execute the revised roll call program f.le.
15. Declare the data set &OUTPT as input to the FORTRAN

compiler. This data set is generated by the roll call

109

source and contains the main program ROLCAL and the
revised program unit (containing calls to ROLCHK).

b6 Declare the roll call source as input to the link
editor .

17.-19. Link editor input cards.

20 Declare the audit module list data set.

21.~-52. Declare temporary data sets. (Cards 47-52 used only
for a value of 2 in column 1 of the options card).

53.~58. Declare roll call output data sets which are the con-
tents of SESCOMP I/0 units X, ¥, and 2. (Used only
for value of 2 in column 1 of options card).

59.~-67. Display the contents of I/0 units X, Y, and Z (Used
only for value of 2 in column 1 of options card).

In order to execute the audit mode and the roll call mode from
cards for more than one program unit, it is best to run each
program unit as a separate job since it is more complicated to
execute several program units in a single job.

4.2.3.6 Execute Audit Mode and Roll Call Mode from a Parti-

tioned Disk Data sSet. When the roll call mode is selected,
the audit mode generates a reviced roll call program file for
the program unit being examined. Therefore, the roll call

mode must be executed, along with the audit mode, once per

program unit. If the software to be examined is on a parti-
tioned disk data set, the following sequence of cards 1is used
to execute the audit mode and the roll call mode for a single

program unit.

L.=6. Same as 1-6 of Section 4.2.3.4

T MEMBER1

8.-16. Same as 2-10 of Section 4.2.3.5

0 //FT02F001 DD DSN=&DATA,DISP=(OLD,DELETE)
1520 //FTO05F001 DD *

9% Options Card

20.-74. Same as 14-68 of Section 4.2.3.5.

In order to execute the audit mode and the roll call mode from
a partitionec data set for more than one program unit, it is
best to run each program unit as a separate job since it 1is
more complicated to execute several program units in a single
job.

4.2.3.7 Execute Audit Mode and Variable Precision Mode from
Cards. The variable precision “mode processes an entire execu-
table program. If the executable program to be examined is

on cards, the following sequence of cards is used to execute
the audit mode and the variable precision mode for a single
bit configuration.

1.-10. Same as 1-10 of Section 4.2.3.2 (but change DELETE
to PASS on card 7)

110

l"

10 -
B2
13
14
15
16.
171
18.
11.
12
1527
14.-15.
270
| The
.

Executable prcgram (without data cards)

// EXEC FHG

//F.SYSIN DD DSN=&OUTPT,DISP=(MOD,DELETE)
£/ DD *

Variable precision function subprograms

.

£ /£G.SYSEIN DD *
Data cards for executable program

/*

EXPLANATION OF CARDS

Executable program (without data cards) must contain a
main program.

Call the FHG catalogued procedure to compile and
execute the executable program.

Compile the revised variable precision program file
which is gencrated by the audit mode. This file
contains references to the variable precision function
subprograms.

Compile the variable precision function subprograms
(Q1REAL, QlDPRE, and QlCOMP) for the particular bit
con! lguration desired.

Data cards for executable program. If additional data
is on tape or disk, the user must make such data avail-
able to the executable program.

following sequence of cards (which includes cards

identified in the previous sequence) is used to execute the

than one

| audit mode and the variable precision mode from cards for more

bit configuration.

Cards 1-10

Executable program (without data cards)
Cards 12<=14

Variable precision function subprograms 1
16~17

Cards 12-14

Variable precision function subprograms 2:]
16=17

. (for additional bit configurations)

/*

45

4.2.3.8 Execute Audit Mode and Variable Precision Mode from

a Sequential Tape or Disk Data Set. The variable precision
mode processes an entire executable program. If the executable
program to be examined is on a sequential tape or disk data
set and data is on cards, the following sequence of cards is
used to execute the audit mode and the variable precision mode

for a single bit configuration.

Li=11-< Same as 1-11 of Section 4.2.3.3 (but change DELETE
to PASS on card 7).
12.-18. Same as 12-18 of Section 4.2.3.7.

The following sequence of cards (which includes cards
identified 1n the previous sequence) is used to execute the
audit mode and the variable precision mode from a sequential
tape or disk data set (executable program on file and data on
cards) for more than one bit configuration.

Cards 1-11

Cards 12-14 :]
Variable precision function subprograms 1
16-17

Cards 12-14

Variable precision function subprograms 2:]
16=17

. (for additional bit configurations)

I
4.2.3.9 Execute Audit Mode and Variable Precision Mode from a
Partitioned Disk Data Set. The variable precision mode pro-
cesses an entire executable program. If the executable program
is on a partitioned disk data set and data is on cards, the

following sequence of cards is used to execute the audit mode
and the variable precision mode for a single bit configuration.

1.-17. Same as 1-17 of Section 4.2.3.4 (but change DELETE
to PASS on card 13)
18.-24. Same as 12-18 of Section 4.2.3.7.

EXPLANATION OF CARDS

7. The data set members must together make up an executable
program. One member must be a main program.

The following sequence of cards (which includes cards
identified in the previous sequence) is used to execute the
audit mode and the variable precision mode from a partitioned
disk data set (executable program on file and data on cards)
for more than one bit configuration.

112

Cards 1-17

Cards 18-20
Variable precision function subprograms 1
22-23

Cards 18-20
Variable precision function subprograms 2
22-23

(for additional bit configurations)
J*

4.3 Verification. For each program unit examined, AUDIT prints
out any deviations from the SESCOMP standards. Most of these
deviations must be corrected if the program unit is to conform
with the SESCOMP standards. However, the flow analysis issues
diagnostics that must be verified. A variable is indicated as
being referenced but not defined along some path. The flow
analysis merely indicates a possible undefined variable. To
determine whether or not the particular path can be taken and
whether or not the variable along the path is actually refer-
enced and undefined, this path should be analyzed by the user.

4.4 Special Maintenance Programs.

4.4.1 Program SESLIST. The Interface Definition file (Section
3.2.1.3) is created by program SESLIST, which reads card input
and creates a tape or disk file. SESLIST reads the input cards,
packs the card images, and writes them out unformatted onto
logical unit 4. The file should be saved for later use by

AUDIT. Each time the Interface Definition file is to be changed,
SESLIST must be executed. Section 3.2.1.3 contains a description
of the Interface Definition file and the card input for SESLIST.

4.4.2 Program GRAPH. The syntax graph file (Section 3.2.1.4)
1s created by program GRAPH, which reads card input and creates
a tape or disk file. GRAPH reads the input cards and writes the
syntax graph as an unformatted file onto logical unit 4. The
user need not concern himself with the card data used to con-
struct the file. Since the data remains constant, the user

need only create the file once, by executing GRAPH. Sections
2.1.5 and 3.2.1.4 contain a description of the syntax graph.

4.5 Error Conditions. The designers of the AUDIT software

have assigned sizes to many of the arrays so that core storage
will not be overburdened. Reasonable limits were chosen so

that most software could be examined without any array overflow.
It is possible, however, that some software may cause an array
overflow. 1In this case the array size would have to be changed
so that the software could be processed properly. When an
array overflows, a message is printed indicating the type of

the array. 1In most cases AUDIT processing then terminates.

113

If

the

.-

SRS SRR —————

a——

nates
overflows
nates

the DO stack array overflows, the DO loop processing termi-

but

but

the rest of the processing continues. If an array
during the flow analysis, the flow analysis termi-
the rest of the processing continues. Following are

arrays to be watched for possible overflow during pro-

cessing.

|7

G1s

AU W
o 0 =

10.

§) 2

| 8

185

14.

15

16.

17,

Basic block table - IBLOCK(2500) in COMMON block

BASBLK.

Symbol table - IDTBL(8,500) or IDTBL(11,500) in blank

COMMON.

DO stack - ISTACK(4,50) in COMMON block DOLOOP.

Branch list - ISTCK(100) in SUBROUTINE FLOWCK.

Block list - FLWLST(100) in SUBROUTINE FLOWCK.

GIRS memory - NODSPC(1000) in COMMON block LVVTRI1
LSTSPC(1000) in COMMON block LVVTR2
LNKSPC(1000) in COMMON block LVVTR3
FLGSPC(1000) in COMMON block LVVTR4

Subroutine table - ISUBS(100) in COMMON block GLOBAL

External reference table - EXTTBL(100) in COMMON

block GLOBAL.

COMMON block table - BLKTBL(200) in COMMON block

GLOBAL.

Statement number table - STATRA(2,200) in COMMON

block LABELS.

Statement reference table ~ IFNCRA(5,12) in COMMON

block FUNC.

Statement reference location table - FNCLOC(5) in

COMMON block FUNC.

Expression variables table - IARGS(50) in COMMON

block PUNC.

Statement function table - ISTFNC(10) in COMMON

block STFUNC.

Interface Definition file tables - ISUBLT(2,200),

ISUBLT(3,200), or ISUBLT(4,200) and INTFAC(300),

INTFAC(500), or INTFAC(600) in COMMON block LIST.

Encoded expression table - STR(500) in COMMON

block STRING.

Equivalence table - IQUIV(100) in SUBROUTINE CHKLST.

The subroutine, external reference, and COMMON block

tables are global tables which store information on all the
program units being examined. All other arrays store infor-
mation for a single program unit and are reused for each new
program unit being examined.

114

_——

P—

. .

L0,

11

12.

13.

REFERENCES

"SESCOMPSPEC1 SESCOMP: Introduction and Glossary;

Executable Program and Main Program; February 1975;" Navy
Surface Effect Ships Project (PMS304).

"SESCOMPSPEC2 SESCOMP: Specification on Use and Control;

February 1975;" Navy Surface Effect Ships Project (PMS304).

"SESCOMPSPEC3 SESCOMP: Specification on Coding Language;

February 1975;" Navy Surface Effect Ships Project (PMS304).

"SESCOMPSPEC4 SESCOMP: Specification on Organization and
Design; February 1975;" Navy Surface Effect Ships Project
(PMS304).

"SESCOMPSPECS5 SESCOMP: Specification on Programming;

February 1975;" Navy Surface Effect Ships Project (PMS304).

Cuthbert, J.W. et al., "SESCOMP: A System for Procuring
and Controlling Modular Computer Programs," Proceedings of
the 18th Annual Meeting of the Engineering Data Management
and Computer Aided Design Technology Sections of the

Amer ican Defense Preparedness Association (May 1976).

Culpepper, L.M., "A System for Reliable Engineering Soft-
ware," David W. Taylor Naval Ship Research and Development
Report 4588 (Nov 1974).

Amer 1can National Standards Institute, "USA Standard
FORTRAN, X3.9-1966."

Allen, F.E., "Control Flow Analysis," Proceedings of a
Symposium on Compiler Optimization, ACM SIGPLAM Notices,
S¢7 (Jul L9760} .

Kennedy, K., "A Global Flow Analysis Algorithm," Inter-
Journal of Computer Math., Sec. A, 3 (1971).

Berkowitz, S., "Graph Information Retrieval Language;
Programming Manual for FORTRAN Complement; Revision One,"
David W. Taylor Naval Ship Research and Development
Center Report 76-0085 February 1976, Bethesda,

Maryland 20084.

Ramamoorthy, C. et al., "Design and Construction of an
Automated Software Evaluation System," Record, 1973 IEEE
Symposium on Software Reliability.

Zaritsky, I., "GIRS (Graph Information Retrieval System)
Users Guide and Implementation," David W. Taylor Naval
Ship Research and Development Center Report (not yet
publ ished).

115

——

- ——————

14.

Culpepper, L.M. and R. Regen, "AUDIT, A System for Soft-

ware Engineering for

the CDC 6000," David W. Taylor Naval

Ship Research and Development Report 4587 (Nov 1974).

aream b o R ot .

116

APPENDIX A

SAMPLE

INPUT/OUTPUT

ABS 11
102
AERODA 8 0
100 100 100
AERODI 3 0
i !
AEROSA 9 O
102 100 1CO
AEROST 2 @
71
AIVAG p A ¢
202
AINY I
102
ALCG o 8 !
102
ALOG10 1 1
102
AMAXD -1 1
02
AMAX1 -1 1
102

AMINO -1 1
402

AMING -1 1
102

AMCD 1
102 102

APNDGA 8 0
110 110 110
APNDGC 1 0
60 1

APPNDG 3 O

1 4
ASEOV
102 102
ASEOV1
ASELG
102 402
ASELGY
ASELYL
ASEL10
102 402
ASERT
102 402
ASERTY
ATAN
102
ATAN2
102 102
BARVAL

i
BINBLK 1 0
402
aMCo 20

11

=]

~N

~
O OO O N

mOosrdfrroosrfosrW,m
~N

~
-

=
o

~N

F@FENENIPESIENIFSFNVNO N

&

1
100 100 100 %02 &2
T 21
1 & 18 1
1
100 100 100 100 &C? 402
{4 L]
1 &

b

1
110 110 110 402 &02
7 60

262
61 &

=1
[

21 02

o
~N

o o
NN

£

1 4

BOMSLA 9 0 1

100 100 1CO

BOMSLYI 3 0O
1 4

8oWSLC 1 0
40 1

100 100 100 100 &C2 402

119

CABS 114

202

ccos 124

202

CEXP 1 24

202

cGLOC 1 07 2
2%

CLOG 1 24

202

CrPLX 226

102 102

CCLFLA Q0 0 3

CCLUMN 1 0 7 2
2 &

CONINP S 0 7 38
¢ | 2 &

CONJG 124

202

cos 114

102

CSIN 1246

202

CSQRTY 1 24

202

0ABS 1 36

302

DATAN 1 3 &

302

OATANZ 2 3 &

302 302

OBLE 1 3 4

102

ocos 1 3 &

o2

DEXP 1 34

302

orm 216

102 102

0L 06 1 34

302

OLOG10 1 3 &

302

OMAXL =1 3 &

3oz

OMINGL -1 3 &

302

0OMCO 236

302 302

0SEOV S 32

302 302 402 421 &02

DSEDVY 0 0 8

OSELG o 32

302 402 421 402

OSELGL 0 0 8

OSEL1 008

OSELLI0 & 3 2

302 402 421 402

DSERY “ 32

302 402 421 &02

OSERTL 0 0 8

0SIGN 234

Jo2 302

OSIN 1 34

302

0SORY 1 34

302

22

——

ouMB 107 1

1 4
ENGINA 3 0 3
102 402 402
ENGINI 8 0 7 1507
8 & 280 1 7 4 71 21 & 1176 2 1
EQNCO 207 L3
1 6 60 1
EXP 1146
102
FANA 701

102 112 110 100 100 402 402
FANOYA 3 0 3
110 402 &02
FANI 507 354
21 & 80 1 45 & 205 1 3 &
FG1A 612
102 402 112 112 01 402
FG2A 10 § 2
102 102 02 402 112 112 122 601 401 &02

FLAGS 1 07 .
“

FLOAT 1 1 &

402 (

FROUDE 1 0 7 2
i1

FINBIN 3 QO

402 402 L12

GBOW £16: 7 3
31

MELMS 3 0 7 409
8 & 400 1 1 6

1AES 144

w02

IDIM 2 & &

602 402

IDINT 1 & &

02

IFIX 1 6 &

102

INCONA 3 0 3

100 400 400

INCUT 0 0 6

INT 14

102

INTGRA 7 0 3

402 112 102 112 402 401 402

ISEOV 5 & 2

402 402 402 621 402

ISEOVE 0 0 8

ISEGO 5 & 2

402 402 402 421 402

ISIGN 2 & &

402 402

LEAKER 1 0 7 1
11

LOADS 1 0 7 1
11

MASSES 2 0 7 1006
14 1005 1

MATRIX 1 0 7 36
36 1

MAXD “1 & &

402

MAX1 “1 4 &

102

— R —— . e —
e i WS —— _ «

MINVA 60
121 402 100

1
410 410 402

NINO -1 & 6

a2

NING -1 &
102

NOD 2 6
402 602
MSIOM 10

v
»
o
m
-
e
oo

PRINT 10

7 2%

~N>

PROPA 8 01

100 200 100

PROPI 20
71

REAL 11

202

RHSA 30

112 110 402

100 100 100 402 &02
14 8

14

L)

ROLCOL S N 1

401 422 402

W12 W02

SANM 701

402 402 102
SEGO1 00
SESA o0
SESBT 60
802 422 &02
SESCOM 2 0
13 0
SESPLYL 3 0
402 402 402
SIOTAR 0 O
SIOWLA 12 0
102 402 100
srom1 3 0
14
SIGN 21
102 102
SIN 11
102
SLOPE 10
21
SNGL 11
302
SPRAY 60

102 102 402 &02
8

1

402

7 2%

12 &

1

L

1

100 100 100 100 100 100 &02 102 402
4 27

2% 1 14

L]

&

100 100 100 100 402 402
7 30

280 1 14

7 L1

USEDO?2
USEDO3
USEDO&
USEDO6
USEDOS
USED10
USED11
USED1&
USED1?
USED18
USED19
USED20
VARBLE
15
WAVE
[]
WAVEA

WAVESI
1
WAVTAB
1
XYZTAB
851

|
1
1

~ 000000000000

oo o

coco0o0c0cocO0OOCOoOO o

11 0
402 112 112
07 79

1
8

4
1

1

~nN oo ~
w

~
o

NPPDIPRPIPIIIIIID®

15

~
o

1
110 110 110 110 110 110 402 402

1 4 76 1 1 &
7 14050

A4 1 & 21 1 &
7 851

2

i

1

1 & 14640640 1

e eem———

[}

C

OPTION 1 SAMPLE MAIN PROGRAM,,,,SESCOMP,US=02=0601T76

CATEGORY 1 LABELED COMMON

C IMMON/SESCOM/CASE (13) s INAJINByINCy JOXoNPAGXoLINXs10Y NPAGY L INY,

CATEGORY 2 LABELED COMMON

CATEGORY 3 LABELED COMMON

1 FORMAT (13A4,1s)

2 FORMAT (SX¢S2HOPTION | SAMPLE MAIN PROGRAM,,,,SESCOMP,US=02-060176)

3 FORMAT (I4)

CASE LOGIC

CALL INOUT
CALL INOUT

READ (INA,3) NCASE

107 NPAGZ,LIN?

GRAPH HAS BEEN PLACED INTO MEMORY

DO 4 I=],NCASE

READ (INA,1) CASE,MODE

CALL START
CALL START

CALL XAMPL (IERR,1)

LA A A A A A A R L L A Al A R R A L Y Y PR R L

WARNING - THIS MODULE IS NOT IN THE SESCOMP LIST

(X TR A L A A R Rl A L T L e Y T Y Y YT L)

CALLXAMPL (IERR,1)

CALL SESPL1(I0Xs142)
CALLSESPL1(10Xs142)

WRITE (I0X+2)

CALL XAMPL (IERR,MODE)
CALLXAMPL (IERR,MODE)

IF (IERR,EQ,0) GO TO S

CALL INOUT
CALL INOUT

4 CONTINUE

S STOP

END

—_—

-

— -

NAME
CASE
INA
10x
NCASE

MODE
1ERR

SYMBOL TABLE FOR MODULE MAIN

VARIABLES
TYPE
REAL ARRAY |
INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

EXTERNALS
NAME TYPE ARGS
INOUT
START
XAMPL
SESPL1

wNo o

STATEMENT LABELS
1 2 3 4

COMMON BLOCKS
NAME LENGTH
SESCOM 25

ssnsse RESULTS OF FLOW ANALYSIS eccccs

NO ERRORS FOUND

NUMBER OF PATHS CHECKED=- 2

RELOCATION
SESCOM
SESCOM
SESCOM

SUBROUTINE APNUGA (FXFY F7ZFK,FM,FN,ION,MODF)

c L Y CATFGORY 1 COMMON BLOCKS L Y P Y Y]

COMMON /APNNGO/ XAPPF (20),YAPPF (20) 4ZAPPF(20)

COMMON /APPNCG/ NAPP, XAPP(20) 4 YAPP(20) 4ZAPP(20) CHOT(20) 4CHOR(20),SPAN(20),TOVC(20)+ANGINC(20)
W ANGCNT (20) o ANGSWP (20) ,TLIFT(20),TATT(20) 4ITYPE(20) 4 IAPNDG

COMMON /CGLOC/ XS.2S

COMMON /FLAGS/ TJOB,ICASE,ISTEP, IERR

COMMON /PHYCON/ GyRHO,HRHO4ENUJRHOINF,PINF,GAM

COMMON /SESCOM/ CASE(13) ¢INAGINBINCoIOXNPAGX ¢ LINX4LQY {NPAGY,LINY,I0Z,NPAGZ,LINZ

COMMON /VARBLE/ VAL (15)

[L R] CATEGORY 2 COMMON BLOCKS L R YY)

COMMON /USEDO03/ MUSE

1 FORMAT (GX452HSUBROUTINE APNDGA:cesceceesaees sORAFT, O0I-01-051474)

C ecoccovess ceccsscscsescenncsee cececcneaa P cssccsccacns cnccccces

2 FORMAT (12H ®®**ERROR®®*®)

3 FORMAT (5X,12HUSE INDEX IS,13421H CHECK INITIALIZATION)

“ FORMAT (5X424H IMPROPER MODE INUEX OF 4I4y13H ENCOUNTERED./5X,394 ZERO SUBSTITUTED, ROLL CALL
CONTINUES.)

5 FORMAT (5X,5HUSED 4I5,40H TIMES WITH MODE INDEX GREATER THAN ZERO)

6 FORMAT (/BH APNDGA /120H APNDG ANG INC CANT ANG X-FORCE Y~-FORCE Z-FORCE

———

ROLL MO, PITCH MOM. YAM MOM. /1204 NO. DEG. DEG. LBS.
LBS. LBS. FT-LBS. - FT-LBS. FT-LBS. /)

? FORMAT (IL,2F10.2,6E16.4)

DIMENSION FX(1), FY(1), FZC1), FK(L), FM(L1), FN(1)

DIMENSION RCOS(20), RSIN(20)

DIMENSION ETA(20), VWAVE(20), WWAVE (200, ODUM(20)

EQUIVALENCE (VAL(2),U), (VAL(3)4V)y (VAL(&)oM), (VALI(S) 4P)y (VAL(E),Q)s (VALIT7)4R)y (VAL(8),PH
IVy (VAL(9),THETA), (VAL(10),2)

c CHECK MODE

IF (MODE.LY.1) GO VO 17

GRAPH HAS BEEN PLACEOD INTO MEMORY

MUSE*MUSE+1

MUSE=MUSE+1L

c BEGINNING OF JOB LOGIC

IF (IJ08.EQ.1) GO TO 8

PI=4 ,®ATANC(L.)
PI=6,®ATAN(1.)

i PIB=PI /8.
PIB=PI/S.

RAD=180.0/P1

TR

RAD=180.0/P1
8 CONTINUE
c BEGINNING OF CASE LOGIC

IF (ICASE.EQ.1) GO TO 10

00 9 I=1,NAPP

KSINC(I) =SINCANGCNT(I))
RSINCII=SINCANGCNTLIN)

5 e ——— -
i —— T — ~—~ >

e 3 d

10

11

RCOS(IN=COSCANGCNT(I))
RCOS(I)=COS(ANGCNT(I})

CONT INUE

Q2=UCU*HRHO
Q2=USU*HRHO

BEGINNING OF TIME STEP LOGIC

IF (ISTEP.EQ.1) GO TO 11

CALL WAVEA (NAPP,XAPP,YAPP,ETA,0UM; OUM,0UM,VHAVE ,WHAVE, ION, MODE)
CALL ROLCHK (1HM 1HAZ1HV1HE 1HALLH)

CONT INVE

00 16 I=1,NAPP

CALCULATE WETTED SPAN

OSR=Z¢ZS-XAPP(I)®THETA+YAPP(I)®*PHI*ETA(I)
OSR=Z47ZS-XAPP(I)CTHETA+YAPP () *PHICETA(I)

RSPANSSPAN(I)
RSPAN=SPAN(I)

RAREA=,5°% (CHOT (I)+CHDR(I))*RSPAN
RAREA=,5%(CHOT (I)¢CHOR(I))*RSPAN

ENOFAC=1.0
ENDFAC=1.0

DELT=0SR=~(ZS-ZAPP(I))
DELT=0SR=(ZS-ZAPP(I))

IS APPENDAGE OUT OF WATER

IF (DELTV.GE.0.0) GO 7O 13

IS APPENDAGE HMORIZONTAL OR CANTED UPMWARD

IF (RCOS(IV.LE.0.0) GO TO 12

RSPAN=RSPANCDELT/RCOS(I)
RSPAN=RSPANCDELT/RCOS(I)

129

-~

P

12
12

13
13

IF (RSPAN.LE.0.0) GO TO 12

RAREA=,S5% (CHOT (I)+CHOR(I)®RSPAN/SPAN(I)) *RSPAN
RAREA=.5®(CHOT (I)4CHOR(I) *RSPAN/SPAN(I)) *RSFAN

ENOFAC=1.0
ENDFAC=1.0

GO T0 13

FX(I)=0.0
FX(I)=0.0

FY(I)=0.0
FY(I)=0.0

FZ(I)=0.0
FZ(I1=0.0

FK(I)=0.0
FX(I)=0.0

FM(I)=0.0
FM(IN=0.0

FN(I)=0.0
FN(I)=0.0

GO0 TO 14

CALCULATE LIFY

VH=VeXAPP(])®R-ZAPP (1) *P-VHAVE(])
VHzVeXAPP(I)*R-ZAPP (I)*P-VyWAVE(I)

VV=W-XAPP(I)®Q¢YAPP (I) *P+U*THETA-WWAVE(I)
VV=W=XAPP(I)®Q¢YAPP (1) *P+U*THETA-WNAVE(I)

PHIV=ANGCNT(T)¢PHI
PHIV=ANGCNT (1) ¢PHI

VN=SQRT (VVOVV4VHOVH)
VN=SQRT(VVEVVEVHOVH)

PHIN=PHIV
PHIN=PHIV

130

VN=VN®COS (PHIN)

\
’ IF (VNJNE.0.O) PHIN=PHIVFATANZ (VV,VH)
! VN=VHN®*COS(PHIN)

ALPHAT=ATANZ (VN,)
ALPHAT=ATAN2 (VN,U)

FFFANG=ANGINC(I) -ALPHATL
FFFANG=ANGINC(I)-ALPHAT

NN=Q2*RAREA
QN=Q2*RAREA

REY=U® (RAREA/RSPAN) /ENU
REY=U® (RAREA/RSPAN) /ENU

-

CFR=,427/(ALOGI0(REY)-.407)%%2,64
CFR=,4L27/(ALOGLO(REYI-.407)*%2,.64

RASPR=RSPAN®*RSPAN/RARE A
RASPR=RSPAN®*RSPAN/RAREA

RCLB=2.°PI*RASPR/(RASPR*+3.)
RCLB=2.°PI®RASPR/(RASPR+3.)

FLIFT=QQ®ENDFAC®RCLB®EFFANG
s FLIFT=QQ®ENDOFAC®*RCLB*EFFANG

CD=2.°CFR4PIB*TOVC(IN®TOVC(II®(1.¢G*RSPAN/ (U%U)) +RCLB®EFFANG®EFFANG

CD=2.*CFRePIB*TOVC(II®*TOVC(ID® (1.¢G*RSPAN/ (U®U)) +RCLB®EFFANG®EFFAN

(4 CALCULATE MOMENT ARMS

XAPPF (I)=XAPP(I)
XAPPF (I)=XAPP(I)

YAPPF(I)=YAPP(I) =(SPAN(I)~,5°RSPAN) *RSIN(I)
YAPPF(I)=YAPP(I)~(SPAN(I)~,5%RSPAN) *RSIN(I)

R ——————

ZAPPF(I)=ZAPP(I)#(SPAN(I)=,5%RSPAN) *RCOS(I) ¢ YAPPF(I)®PHI-XAPPF(]I)*
THETA

Fxtry=-co*aa
Fx(I)=-CD®*QQ

ZAPPF IV =ZAPP(I) #(SPAN(I)=,5°RSPAN) *RCOS(I)¢YAPPF(I)*PHI-XAPPF(I)*®THETA

16

15

16
16

FY(II=FLIFT*RCOS(I)
FY(I)=FLIFT®RCOS(I)

CITTI=FLIFTORSINCI)
FZ(I)=FLIFT*RSINII)

FX(I)=~7APPF (1) ®FY(I)+YAPPF(I)®*FZ(I)
FRUI)==ZAPPF (I)CFY(I)eYAPPF(II®FZ(I)

FMII)=ZAPPF(I)®FX(])-XAPOE(T)®FZ(])
FMII)=ZAPPF(I)*FX(])-XAPPFI(I)®FZ(I)

FN(I)==YAPPF (I)*FX (L) XAPPF(1)®FY(I)
FN(I)==YAPPF (I)®FX(I)+XAPPF(I)®FY(I)

CONTINUE

IF (TION.NE.IAPNDG) RE TURN

ITEMP=S+NAPP
ITEMP=SeNAPP

CA'L SESPL1L (IOX,ITEMP,MODE)
CALL ROLCHK (1HSIHE 1HS 1HP 1 HL 4 1H1)

MRITE (IOX46)

00 15 I=1,NAPP

ANGL=ANGINC (1) ®RAD
ANG1=ANGINC (1) *RAD

ANG2 “ANGCNT (I) *RAD
ANG2=ANGCNT (1) ®*RAD

MRITE (IOXs7) IoANGLoANG2oFX(I)oFY(I)4FZ(ID)oFKII)FMCI) FNCI)

CONTINUE

RE TURN

START SESCOM ROLL CALL CODING WITHOUT BUFFER TRACING

PATH FOR ERRORS

CALL SESPL1 (I0X,43,41)
CALL ROLCHK (1HS IHEIHS,1HP 1ML 41HL)

17
17

18

19
19

20
20

k

WRITE (IOX,2)

MRITE (IOX,1)

WRITE (IOX,3) MUSE

GO TO 24

ROLL CALL CODING

NMOD=MODE
NMOD=MODE

IF (MUSE) 16424,18

IF (MODE.GE.-3) GO TO 19

IF (MODE.GE.-7) GO TO 20

10=102
10=102

IF (MODE.GE.-11) GO TO 21

10=10X
I0=10X

IF (MODE.GE.-11) GG TO 21

CALL SESPLL (I044s1)
CALL ROLCHK (1HS IMEZIHS,INP IHL,1H1)

WRITE (10,2)

MRITE (I0,1)

WRITE (I0.&) MODE

NMOD=0
NMOOD=0

GO To 2.

I0=10Y
10=10VY

21 CALL SESPL1 (I041,1)
21 CALL ROLCHK (1HS,IHE 1HS,1HP 1ML, 1H1)

WRITE (10,1)

NMODE=ISIGN(NMOD 1) ¢1
NMODE=ISIGN(NMOD,1) ¢1

INDX=MOD (NMODE, &) o1
INOX=MOD (NMOCE 4 &) #1

c 60 TO SELECTED MODE
GO TO (23,22,23,22), INOX

22 CALL SESPLL (IO0.141)
22 CALL ROLCHK (1HSsIHE 1HSs1HP 41HL ,1H1)

WRITE (I0+5) MUSE

23 MUSE=0
23 MUSE=0

c CALL REFERENCED MOOULES IN ROLL CALL MOOE

CALL SESPLL1 (IO0+1,MO0E)
CALL ROLCHK (1HS,IHE1HS,1HP1INL 1K)

CALL WAVEA (OMyOMyDM,DOMs0OMeOMsDM40M,0M,DOM, MNODE)
L T T R Ty Ty Y Y Y Y Y YR YR Yy Y

ARGUMENT NO. 1 HAS INCORRECT TYPE
T Ty Ty Yy Yy Y Yy Y T Y YA Y R Y YY)
L T Y Y Yy Y Yy Y Y Y Yy Y]
MARNING = ARGUMENT NO 2 MAY HAVE INCORRECY OIMENSIONALITY
.
L T T Y Y Y Y Y YT Yy Y
WARNING - ARGUMENT NO. 3 MAY HAVE INCORRECT DIMENSIONALITY
L T T T Y T R N TN AT
SIS PNIIINIIIINIIIIIIIOITIII ISR T Ty Y Y Y Y Y YL YTy Y
MARNING =~ ARGUMENT NO. & MAY HAVE INCORRECT DIMENSIONALITY
T Ty N Ty T Yy Y Y Y YT R Y YY)
Ly R T Y P Y P Ty Y Y Y YT Y Y Y YY)
MARNING = ARGUMEMNT NO. 5 MAY MAVE INCORRECT OIMENSIONALITY
L Y R N L Y Y N R YN LYY Yy
L L T Y R YRy Y Y

WARNING = ARGUMENTY NO. 6 MAY HAVE INCORRECT DIMENSIONALITY

WARNING - ARGUMENT NO. 7 MAY HAVE INCORRECT OIMENSIONALITY

LR LR A A L A A L L A A L AL L A L L L A A L R L R R R S R R R A R L
LA R R L L L L L L R T N L Y R L N YY)

WARNING - ARGUMENT NO. 8 MAY HMAVE INCORRECY DIMENSIONALITY

LRI AL AL AR R AL) Sssssnnen (AL IR L R LA R 22 S9N BIIIBNNINBIBIRIRBI NS
LR LA AL L L L L R L A L R L L A L A L L L R R R R R R R N R R I N AL YY)

B

WARNING - ARGUMENT NO.

ARGUMENT NO.

CALL ROLCHK

26 RETURN

END

NAME
FX

FY

Fz

FK
FH
FN
10N
MODE
XAPPF
YAPPF
IAPPF
NAPP
XAPP
YAPP
ZAPP
CHDTY
CHOK
SPAN
Tove
ANGINC
ANGCNT
IAPNDG
1s
1J08
ICASE
ISTEP
G
HRHO
ENU
10X
10Y
102
VAL
MUSE
RCOS
RSIN
ETA
VMAVE
WWAVE
oum

END SESCOM ROLL CALL CODING

SYMBOL TABLE FOR MODULE APNDGA

TYPE
REAL
REAL
REAL
REAL
REAL
REAL
INTEGR
INTEGR
REAL
REAL
REAL
INTEGR
REAL
REAL
REAL
REAL
PEAL
REAL
REAL
REAL
REAL
INTEGR
REAL
INTEGR
INTEGR
INTEGR
REAL
REAL
REAL
INTEGR
INTEGR
INTEGR
REAL
INTEGR
REAL
REAL
REAL
REAL
REAL
REAL

9 MAY HAVE INCORRECT OIMENSIONALITY
LR L T Y PP Ty Ty

LR R R R T R Y T T T
10 HAS INCORRECT TYPE
LR LI T L R Y T T T P T e
(1HW o 1HA, 1 HV o IHE y1HA, 1H)

VARTABLES

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY
ARRAY
ARRAY

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

. e g b g

-

e e e e e e e e

el

RELOCATION
F. P.
Fe P.
F. P.
Fe P.
F. P,
F. P.
Fe P.
Fe P.
APNDGO
APNDGO
APNOGO
APPNDG
APPNOG
APPNDG
APPNOG
APPNDG
APPNOG
APPNDG
APPNDG
APPNOG
APPNDG
APPNOG
ceLoC
FLAGS
FLAGS
FLAGS
PHYCON
PHYCON
PHYCON
SESCOM
SESCOM
SESCOM
VARBLE
USEDO3

DO VE<C

THETA
4

Pl
PI8
RAD

Q2

DSR
RSPAN
RAREA
ENOF AC
DELY
VH

vy
PHIV

PHIN
ALPHAIL
EFFANG
QQ

REY
CFR
RASPR
RCLE
FLIFY

ITENP
ANG1H
ANG2
NMOOD

NMODE
INDX
on

REAL

REA
REA
REA
REA
REA
REA
REA
REA
REA
REA
REA
INT
REA

L
L
L
L
L
L
L
L
L
L
L
EGR
L

REAL

REA
REA
REA
REA
REA
REA
REA
REA
REA
REA

L
L
L
L
L
L
L
L
L
L

REAL

REA
REA
REA
REA
REA
REA
REA
INT
REA
REA
INTY
INT
INT
INT
REA

NAME
ATAN
SIN
cos
WAVEA
SQRY
ATAN2
ALOG10O
SESPLL
ISIGN
L)

~ -
OVOO

L
L
L
L
L
L
L
EGR
L
L
EGR
EGR
EGR
EGR
8

STATEMENT LABELS
2 3

L4
1
16
21

COMMON BLOCKS
ME LENGTH

APNDGO
APPNDG
c6LOC

FLAGS

PHYCON
SESCONn
VARBLE
USEDO3

136

EXTERNALS

TYPE
REAL
REAL
REAL

REAL
REAL
REAL

INTE

GR

INTEGR

17
16
26
23

ARGS

LR N

13
18
22

60
262
2

L]

L4
28
15
1

10
19

M

®esses RESULTS OF FLOM ANALYSIS ®*esee

L Y Y Y T T Y Y Y Y Y YR Y Y Ty

THE VARIABLE OM IS REFERENCED BUT NOT DEFINED
ALONG THE PATH 17 18 19 21 23
L T Y L T Ry Y Y Yy R T R Y
THE VARIABLE ETA IS REFERENCED BUT NOT OEFINED
ALONG THE PATH 8 10 11

LR AR A R R R Y R R A R R R R R R R R R P S R R R R R]

THE VARIABLE VWAVE IS REFERENCED BUT NOT DEFINED
ALONG THE PATH 8 10 11 13

BTSSP IIIIIBIITIIIITIIIIIIIIIIITIIIITIIITIIIIIIIIIIBIIIIIIITIIIIIIIITIFINNIVIIBINIIBIIBIINIENS

THE VARIABLE WWAVE IS REFERENCED BUT NOT DEFINED

ALONG THE PATH 8 10 11 13

SO NINIIII NI I T IIIITIIIITIIIIN IS IIIIBPIIBIIIIITINI NP ITIIIIIIIIVIIIINIIIIIIIBIIBIIIRIBI VYIS
THE VARIABLE PI IS REFERENCED BUT NOT DEFINED
ALONG THE PATH 8 10 11 13

LA A L R R F R R R R N R R R N Y R R R L R Y Y Y L R R R R R L)
THE VARTABLE PIS IS REFERENCED BUT NOT DEFINED
ALONG THE PATH 8 10 11 13

GIININITIIIITITITIITPOIVIIPIIIIITIIITTIIIIIIIIITIIITINIPIITIINIIIINIIIIIIIIIIIBIINIRIIIRIBINIRNY

THE VARIABLE RSIN IS REFERENCED BUT NOT DEFINMED
ALONG THE PATH 8 10 11 13

LR AL R L Y R Y R Y R R R L L R A R R R R R R R Y

THE VARIABLE RCOS IS REFERENCED BUT NOT DEFINED

ALONG THE PATH 8 10 11 13
L T T T T TR Y Y Y
THE VARIABLE RAD IS REFERENCED BUT NOT DEFINED
ALONG THE PATH 8 10 11 13 16
NUMBER OF PATHS CHECKED~- 78
FLOW ANALYSIS TOOK 1.396¢ CP SECONDS
137
e T — . o
z

B

GLOBAL REFERENCE TABLE

EXTERNAL REFERENCES

ATAN
SIN
cos
MAVEA
SQRT
AT AN2
ALOG10
SESPLL
ISIGN
HOD

ANSI FUNCTION
ANSI FUNCTION
ANSI FUNCTION
SUBROUTINE MOOULE
ANSI FUNCTION
ANSI FUNCTION
ANSI FUNCTION
SUBROUTINE MODULE
ANSI FUNCTION
ANSI FUNCTION

LABELLED COMMON BLOCKS

BLOCK NAME

APNDGO
APPNDG
ceLoC

FLAGS

PHYCON
SESCOM
VARBLE
USEDO3

SUBROUTINES ENCOUNTERED

APNOGA

SIZE CLASS
60 CATEGORY
262 CATEGORY
2 CATEGORY
L3 CATEGORY

7 CATEGORY
25 CATEGORY
15 CATEGORY
1 CATEGORY

SUBROUTINE MODULE

138

N e e e e e e b

~n

owm

11

SURROUTINE APNDGA (FX4FYFZyFK4FM,FN,ION, MODE)

COMMON /APNDGO/ XAPPF (20),YAPPF (20)4ZAPPF (20)

COMMON /APPNDG/ NAPP, XAPP(20),YAPP(20),ZAPP(20),CHOT (20),CHOR(20),
SSPAN(20) 4TOVC (20) ANGINC(20) ANGCNT (20) s ANGSHP (20) 4 ILIFT(20),IATT(
*20),ITYPE(20),IAPNDG

COMMON /CGLOC/ XS,27S

COMMON /FLAGS/ TJOB,ICASE, ISTEP, IERR

COMMON /PHYCON/ GyRHO 4HRHO ENU,RHOINF PINF,GAM

COMMON /SESCOM/ CASE(13)+INAJINByINC,IOXsNPAGXsLINXy IOY NPAGY,LINY
* 102 yNPAGZ,LINZ

COMMON /VARBLE/ VAL(15)

COMMON /USEDO3/ MUSE

FORMAT (4X452HSUBROUTINE APNDGAceececcsosoces«DRAFT, OI-01-051474
«)

FORMAT (12H ®SSERROR®®®)

FORMAT (5X,12HUSE INDEX IS,I3421H CHECK INITIALIZATION)

FORMAT (SX,24H IMPROPER MODE INDEX OF 4I4s134 ENCOUNTERED./5X,39H4
®2€R0 SUBSTITUTED, ROLL CALL CONTINUES.)

FORMAT (5X4S5HUSED +IS.60H TIMES WITH MODE INDEX GREATER THAN ZERO)

FORMAT (/8M APNDGA /120M APNDG ANG INC CANT ANG X-FORCE
» Y=-FO#CE Z-FORCE ROLL MOM. PITCH MOM.
. YAW MOM., /120H NO. DEG. DEG. LBS. L
*BS. LBS. FT-LBS. FT-LBS. FT=-
*L8S. /)

FORMAT (I14,2F10.2,6616.4)

DIMENSION FX(1)y FY(1), FZ(1), FK(1), FM(1), FNI(1)
OIMENSION RCOS(20), RSIN(20)

DIMENSION ETA(20), VWAVE(20), WWAVE (20), DUM(20)
EQUIVALENCE (VAL(2)4U), (VAL(3)4V),y (VAL(L) 4W),y (VAL(S)4P), (VAL(S
®) Q) y (VALI(7),R), (VAL(B)PHI), (VAL(9),THETA), (VAL(10),2)
IF (MODE.LT.1) GO TO 17

MUSE=MUSE+1

IF (IJOT EQ.1) GO YO 8

PI=4.*ATAN(1.)

PIA=PI/8.

RAD=180.0/PI

CONTINUE

IF (ICASE.EQ.1) GO YO 10

00 9 I=1,NAPP

RSINCI)=SIN(ANGCNT(I))

RCOS(I)=COS(ANGCNT (1))

CONTINUE

Q2=UCU*HRHO

IF (ISTEP.EQ.1) GO TO 11

CALL ROLCHK (1HW.1HA, 1HVs1HE J1HA,LH

CONTINUE

00 14 I=1,NAPP

DSC=Z47S=-XAPP(I)STHETA+YAPP(I) *PHI+ETA(L)
RSPAN=SPAN(I)

RAREA=,5%(CHOT (1) 4CHOR(I)) *RSPAN

ENOF AC=1.0

DELT=DSR-(ZS~ZAPP(I))

IF (DELT.GE.0.0) GO TO 13

IF (RCOS(I).LE.0.0) GO TO 12
RSPAN=RSPANSDELT/RCOS ()

IF (RSPAN.LE.O.0) GO YO 12

RAPEA =, 5% (CHOT(T)+CHOR(I)*RSPAN/SPAN(I)) *RSPAN

| 39

——

S

12

13

16

15

16

i4

ENDFAC=1.10

GO 10 13

FX(I)=0.0

FY(ry=0.0

FZ(I)=0.0

FX(TY=0.

FH(T,=0.0

FN(I)=0.0

GO TC 14

VH=Ve XAPP(I)*R-ZAPP(])*P-VyWAVE (1)
VV=W=-XAPP(I)*Qe¢YAPP(I) *P+USTHE TA-WWAVE(TI)
PHIV=ANLCNT(I) ¢PHI
VN=SQRT(VV*VV+VH*VH)

PHIN PH1V

IF (VN.NE.0.0) PHIN=PHIV-ATAN2(VV,VH)
VN=VN®*COS (PHIN)

ALPHAI=ATANZ (VN,U)
EFFANG=ANGINC (I) -ALPHATI

QQ=Q2 *RAREA

REY=U®* (RAREA/RSPAN) /ENU

CFR=. 427 /(ALOG10(REY) -.407)%*2,64
RASPRK=RSPAN®RSPAN/RAREA
RCLB=2.%PI®RASPR/ (RASPR+3,)
FLIFT=QQPENDFACPRCLB*EFFANG

CO=2.%CFR+PIB*TOVC(I) ®*TOVC (I ® (1.*G*RSPAN/(U®U)) +RCLB*EFFANG®EFFAN

*G
XAPPF (1) =XAPP (1)

YAPPF(T)=YAPP (I)~(SPAN(I)=,5%RSPAN) *RSIN(I)
ZAPPF (I)=ZAPP(I)+(SPAN(I)=-,5°RSPAN) *RCOS(I)+YAPPF (I) *PHI-XAPPF{I)*

*THETA
FX(ry=-co*aQQ
FY(I) =FLIFT®*RCOS(I)
FZ(I)=FLIFT*RSIN(I)
FX(I)==-ZAPPF(I)®FY(I) ¢YAPPF(I)®FZ(I)
FMII)=ZAPPF(I)®*FX(I)-XAPPF(I)®FZ(I)
FN(I)==-YAPPF(I)*FX (1) ¢XAPPF(I)*FY(I)
CONTINYE
IF (ION.NE.IAPNOG) RETURN
ITEMP -5 ¢NAPP
CALL ROLCHK (1HS,1HE,1HS,1HP1HL,1H1)
WRITE (ICX,6)
DO 15 [=1,NAPP
ANG1 = ANG INC (1) *RAD
ANGZ=ANGCNT(I) *RAD

MRITE (TOXs7) IoANGLoANG2,FX(I) 4FY(I) FZCI) JFKCD) JFMCT) (FNCI)

CONTINUE

RE TURN

CALL ROLCHK (1HS INE,IHS,1HP J1HL 41H1)
WRITE (IOX,2)

MRITE (I0X,1)

WRITE (I0X,3) MUSE

GO TO 24

NMOD=MODE

IF (MUSE) 16,24,18

If (MODE.GE.-3) GO TO 19
IF (MODE.GE.-7) GO TO 20
10=102

140

19

20
21

22

23

24

IF (MODE.GE.-11) GO TO 21

10=10X

IF (MODE.GE.-11) GO TO 21

CALL ROLCHK (1HS,1HE,1HS,1HP1HL,1H1)
WRITE (10,2)

MRITE (I0s1)

WRITE (IO,&) MODE

NMOO=0

GO TOo 21

10=10Y

CALL ROLCHK (1HS,1HE, 1HS,1HP41HL,1H1)
WRITE (IO,1)

NMOOE =ISIGN(NMOD,1) +1

INOX=MO0 (NMODE 44) ¢ 1

GO YO (23,22,23,22), INDX

CALL ROLCHK (1HS,1HEs1HS,1HP 1 HL,1H1)
MRITE (IO0,5) MUSE

MUSE=0

CALL ROLCHK (1HS 1HE,1HS,1HP41HL,1H1)
CALL ROLCHK (1HW,1HA, 1HV,1HE,1HAL1H)
RETURN

END

1000

1001

1002

1003

1004

1005

1006

1007

PROGRAM ROLCAL (OUTPUT ,TAPE6=OUTPUT, TAPE3, TAPES,

TAPEL10,TAPEL11 TAPEL12 . TAPEL13,TAPELL,TAPELS)

COMMON/APNDGO/ZIX Ot 60)
COMMON/ZAPPNDG/ZIX 1 (262)
COMMON/CGLOC 71X 2¢(2)
COMMON/FLAGS 7IX 3¢ “)
COMMON/PHYCON/IX & (7)
COMMON/SESCOM/IX 5 (25)
COMMON/VARBLE /IX 6 (15)
COMMON/USEDDO3/IX 7 1)
J=1

MODE= 2 (

REWIND 13

REWIND 14

REWIND 15

00 10 T=1,13

J=Jd-1

D0 1000 K=1, 60

IX 0(K)=1

CONTINUE

00 1001 K=1, 262

IX 1(K)=1

CONTINUE

00 1002 K=1, 2

IX 2(K)=1

CONTINUE

00 1003 x=1, .

IX 3(K)=1

CONTINUE

DO 1004 K=1, 7

IX 6(K)=1

CONTINUE

D0 1005 K=1, 25

I 5(K)=t

CONT I NUE

IX St17¥=10

IX 50200 =11

IX 5(23)=12

00 1006 K=1, 15

I 6(K)=1

CONTINUE

00 1007 K=1, 1

Ix 7(x)=1

COMTINUE

CALL APNOGA(D4DsD4D4040404I)
IF (MODE .EQ. 3160 TO §
CALL MODID(J)

ENDFILE 3

CONTINUE

CALL CMPARE

REWING 3

REWIND 13

REWIND 14

REWIND 15

sToP

END

g t—

-

!

S.ane . %
S —— Y PN

RESULTS OF ROLL CALL CHECK

ALL SUBROUTINES WERE CALLED IN THE ROLL CALL MODE

QuTPUY OEVICE X

MOOE INDEX= 0
SUBROUTINE APNDGAcesesseeceeeeesORAFT, OI-01-051474%
USED 1 TIMES WITH MOOE INDEX GREATER THAN ZERO

MODE INDEX= -1
SUBROUTINE APNDGA.seececeseceeesORAFT, OI-01-051474

MODE INDEX= -2
SUBROUTINE APNDGA.seecsceeeceeesORAFT, OI-01-051474
USED 1 TIMES WITH MODE INDEX GREATER THAN Z2ERD

MODE INDEX= -3
SUBROUTINE APNDGA..eveeeccnaeessORAFT. OI-01-051474

MODE INDEXx=-12
SSSERROR® S
SUBROUTINE APNDGA.ceeeaseseesessORAFT. OI-01-051474
IMPROPER MODE INOEX OF =-12 ENCOUNTEREDQ.
ZERO SUBSTITUTED, ROLL CALL CONTINUES.
SUBROUTINE APNDGAcesosaesaceseesORAFT, O0OI-01-051474
USED 1 TIMES WITH MODE INDEX GREATER THAN ZERO

pR—— —

~PEETN

QUTPUT DEVICE ¥

MODE INODEX= -4
SUBROUTINE APNDGA:ceesncssvseeeesDRAFT, OI-01-051474
USED 1 TIMES WITH MODE INDEX GREATER THAN ZERO

MODE INDEX= -5
SUBROUTINE APNOGA.ceecveceseseesORAFT, O0I-01-051676

MODE INOEX= -6
SUBROUTINE APNDGAcseesvccceceeescORAFT, OI-01-051476
USED 1 TIMES WITH MODE INDEX GREATVER THAN ZERO

MOOE INDEX=z -7
SUBROUTINE APNDGA.cveseceoeceeaesORAFT. OI-01-051474

OUTPUT DEVICE Z

MODE INOEX= -8
SUBROUTINE APNDGA.evsvesccesess s ORAFT, OI-01-051474
USED 1 TIMES WITH MODE INDEX GREATER THAN ZERO

MODE INDEX= -9
SUBROUTINE APNDGA::cecvoccaesescORAFY, OI-01-051474

MOOE INDEX=-10
SUBROUTINE APNDGAccscocesccseaesORAFT, OI-01-051474
USED 1 TIMES MITH MODE INDEX GREATER THAN ZERO

MODE INDE X=-11%
SUBROUTINE APNOGA.:cesvcessaceesORAFT, OI-01-051474

B i e

“

Audit, Flow Analysis, and Roll Call (Mode=3) of a SESCOMP Utility Module

FUNCTION ISEODV(INsLOC,NBCT,MODE)

c FUNCTION ISEDViceceacncancccesesSESCOMP,US-02-070175
c PSS IIININIIIIIITI NI IINTIIIIIIIIIIIIIIIIIIIIIIBIBIIIINISIEES

c L THIS PROGRAM UNIT IS PROVIDED BY .

c . »

c . DEPARTMENT OF THE NAVY .

c - SURFACE EFFECT SHIPS PROJECT .

c . P.0. BOX 34401 .

c . BETHESDA, MARYLAND 20084 .

c o .

c * REFERENCE-- .

c . MODULE VERSION MANUAL - BUFFERED INTEGER DIVISION .

c SEIIIBIIINIINIITIINPITIIIITIIIIBIIIIIVIIIVIIIBOIIIIITIIIIIIIIBIIGS
ceeres ISEOV~A SESCOMP BUFFERED FUNCTION WHICH FINDS THE QUOTIENT
c OF TMO INTEGERS

Ce®sssssss-THE INTEGER DIVIDENO

CO®OsoveseN~-THE INTEGER DIVISOR

adedd LOC-LOCATION CODE OF FUNCTION REFERENCE IN REFERENCING

c MODULE. .GT. 0 AND .LE. 10

Coosss NBCT-BUFFER-TRACING ARRAY

Vo

C®®e0eesoMODE=POSITIVE INTEGER INDICATES COMPUTATIONAL MODE

c «LE. 0 AND .GE. =11 INDICATES ROLL-CALL MOOE
c SEE UTILITY MOOULE ROLCOL FOR AN EXPLANATION OF
c ROLL-CALL MODE VALUES

C NO BUFFERED FUNCTIONS ARE REFERENCED BY THIS VERSION.

c CATEGORY 1 COMMON

COMMON /SESCOM/CASE (13) ¢ INASINB, INC ¢ TOXoNPAGX LINX,IOY NPAGY LINY,I0Z NPAGZ,L INZ

Ce®ess CATEGORY 2 COMMON

COMMON/TSEDV1/NUSE

COe838883ONUSE-USE-COUNT INDEX

c +=POSITIVE INTEGER INDICATES NUMBER OF TIMES MOOULE HAS

c BEEN CALLED WITH A POSIVIVE MODE INDEX
c =0 INDICATES MODULE HAS NOT BEEN CALLED OR
c HAS PREVIOUSLY BEEN CALLED IN THE

c ROLL-CALL MODE

1 FORMAT(5X,13A4)

¢ FORMAT (12H ©®®SERROR®®*)

3 FORMAT(SX,20M USE-COUNT INDEX IS 4I7421H CHECK INIVIALIZATION)

DIMENSION NBCT(20,10),MIF(13)

OATA MIF/GHFUNC «HTION 4H ISEo4HOV. « s b®GHe o0 e g WHSESC, 4HOMP. 4HUS=0 4 4H2-07,4H0175/

Ce®essCHECK MODE

IF(MODE.LT.1) GO TO 9988

146

GRAPH HAS BEEN PLACED INTO MEMORY

C®S®s*CHECK FOR NEGATIVE USE COUNT

IF(NUSE.GE.0) GO TO 10

C**®*spRINT ERROR PESSAGE FOR NEGATIVE USE COUNT

CALL SESPL1(IOX,34+3)
CALL ROLCHK (fHSsIHE 1HS1HP 1HL 41H1)

WRITE (IOX42)

MRITE(IOXy1) MIF

WRITE(IOX, 3) NUSE

NUSE=0
NUSE=0

10 NUSE=NUSE+1
10 NUSE=NUSE+1

IF(N.NE.O) GO TO 50

ISEOV=1
I1SEOV=1

IFILOC.GT.0.AND,LOC.LE.10) GO TO 20

IF(LOC.LE.O0) GO TO 21

NBCT(11,10)=NBCT(11,10)¢1
NBCT(11,10)=NBCT(11,10)¢1

GO TO 9999

21 NBCT(11,1)=NBCT(1141)¢1
21 NBCT(11,1)=NBCT(11,1)¢1

GO TO 9999

20 NBCT(11,LOC)=NBCY(11,L0C) 4
20 NBCT(11,LO0C)=NBCT(11,L0C) ¢t

60 TO 9999

50 ISEOV=I/N
50 ISEOV=I/N

GO0 YO 9999

Ce®®ess REFERENCE TO ROLL~CALL UTILITY MOOULE

9988 CALL ROLCOL (NUSE NBCT,0,MIF,MODE)
9988 CALL ROLCHK (1HR,1HO,1HL,1HC,1HO,1HL)

Co®e2oCALL REFERENCED MOOULES IN THE ROLL-CALL MODE

CALL SESPL1(IOX,1,MODE)
CALL ROLCHK (1HSs1HE1HS1HP 1ML 41N 1)

9999 RETURN

END

4

SYMBOL TABLE FOR MODULE ISEOV

VARIABLES
NAME TYPE RELOCATION
I INTEGR F. P.
N INTEGR F. P.
LocC INTEGR F. P.
NBCT INTEGR ARRAY 2 Fe P,
MODE INTEGR F. P.
10X INTEGR SESCOM
NUSE INTEGR ISEOVL
MIF INTEGR ARRAY 1
ISEDV INTEGR
EXTERNALS
NAME TYPE ARGS
SESPLY 3
ROLCOL 5

STATEMENT LABELS
1 2 3 9988 10
50 20 21 9999

COMMON BLOCKS

NANME LENGTH
SESCOM 25
ISEOVL 1

Ssesss RESULTS OF FLOW ANALYSIS ®cssse

NO ERRORS FOUND

NUMBER OF PATHS CHECKED- 9

FLOW ANALYSIS TOOX «038 CP SECONDS

149

GLOBAL REFERENCE TABLE

EXTERNAL REFERENCES
SESPLL SUBROUTINE MOOULE
ROLCOL SUBROUTINE MOOULE

LABELLED COMMON BLOCKS

BLOCK NAME SIZE CLASS
SESCOM 25 CATEGORY 1
ISEDVL 1 CATEGORY 2

SUBROUTINES ENCOUNTERED
ISEOV FUNCTION MOOULE

FUNCTION ISEOV(I,N,LOC,MBCT,MODE)
COMMON /SESCOM/CASE (13),INASINB,INC,IOX NPAGX jLINX;IOY NPAGY,LINY,
®I0ZNPAGZ,LINZ
COMMON/ ISEDVL/NUSE
1 FORMATI(SX,13A4)
2 FORMAT (12K S®SERROR®®®)
3 FORMAT(5X,20H USE-COUNT INDEX IS ,I7,21H CHECK INITIALIZATION)
OIMENSION NBCT(20,10) yMIF(13)
OATA MIF/GHFUNCo4HTION &M ISEo4HOV. . b®UH oo s WMSESC o 4HOMP, , 4HUS=0
®ebM2-0744H0175/
IF(MODE.LT.1) 6O TO 9988
IF(NUSE .GE.O) GO TO 10
CALL ROLCHK (1HS,1HEs1HS,1HP1HL ¢ 1H1)
MRITE (I0X,2)
MRITE(IOX,1) MIF
MRITE (I0X,3) NUSE
NUSE=Q
10 NUSE=NUSE+1L
IF(N.NE.O) GO TO S50
ISEOV=1
IF(LOC.GV.0.AND.LOC.LE.10) GO YO 20
IF(LOC.LE.O0) GO TO 21
NBCT(11,10)=NBCT(11,10)¢1
GO 70 9999
21 NBCT(11,1)=NBCT(11,1) ¢1
G0 T0 9999
20 NBCT(11,LOC)=NBCT(11,L0C) 1
GO TO 9999
50 ISEOV=I/N
GO T0 9999
9988 CALL ROLCHK (1HR41HOs 1ML 1HC 41 HO,1HL)
CALL ROLCHK (1HS1HE, IHS,1HP LMLy LHL)
9999 RETURN
END

150

PROGRAM ROLCAL (OUTPUT,TAPEE=OUTPUT, TAPE3,TAPES.,
* TAPE10.TAPE11,TAPE12,TAPEL13,TAPELL,TAPELS)

1000

1001

COMMON/SESCOM/ZIX 0(
COMMON/ISEDVLIZIX 1 (
J=1

MODE=3

REWIND 13

REWIND 14

REWIND 15

00 10 I=1,13

J=J-1

00 1000 X=1, 2s
IX 0(x)=1

CONTINUE

IXx 0C17)=10

IX 0(20)=11

IX 6(23)=12

00 1001 K=1, 1
Ix 1(K)=1

CONTINUE

CALL ISEODV (DsDyDyD4J)
IF(MODE .EQ. 3)GO TO S
CALL MODID(J)
ENDFILE 3

CONTINUE

CALL CMPARE

REWIND 3

REWIND 13

REWIND 14

REWIND 15

STop

END

ALL SUBROUTINES WERE CALLED IN THE ROLL CALL MOODE

25)
1)

Audit and Flow Analysis of Ancillary Subprogram

SUBROUTINE COLFLA
c Sssssssssssssasnsens CATEGORY 1 COMMON BLOCKS Ssssssssssssssssss
COMMON /COLUMN/ IVERT, ILATRL

COMMON /SESCOM/ CASE(13) INA,INB,INC,IOX NPAGX ,LINX,IOY,NPAGY,LINY,I0Z,NPAGZ,LINZ

COMMON /UNITS/ IS141S2,IS3,1IS6

1 FORMAT (1H /51X, 22HVERTICAL FLANE SUMMARY// 10X+ &HTIME 37Xy BHWAVE AMP o7 XoSHORAFTIXSHTHETA,SX 41
OMGAGE PRESS,3X,IHBOW ACCELSXsIHC G ACCEL y&Xy 7THF AN PHR/10X o 3HSEC o10X ¢2HFT 11X 3H FT 11X, 3HDEG,10X,3
HPSF s 10X, 1HG 313X 1HG 4 11Xy 2ZHHP/)

2 FORMAT (TXoF 727X oFBa3s37XoFTa332(7XsF6.2)32(TX3F6.3)o7XFT741)
3 FORMAT (1M /33X 21HLATERAL PLANE SUMMARY//IX qHTIME 410X s SHPHI 4 IX ¢SHBE TAS 46X o HLAT ACCEL 48X, 1HU
s6X 31 1HTURN RADIUS+6X,BHYAN RATELLTH RUDDER ANGLE/10X ¢ 3HSEC 10X, 3HDEG 10Xy SHOEG o 11X 1HG o 11Xy INFP

Se10Xy2HFT,10X,7HDEG/SEC, 10X ,3HDEG/)

. FORMAT (7XoF74232(7X4F6a2) 97X oFba39TXoFb 247X FB.0s7XFT.3,F16.2)

OATA EOF /3HEOF/

IF (IVERT.NE.1) GO YO 7

MRITE (IS1) (EOF 4I=1,8)

END FILE ISH

REWIND IS1
s CALL SESPL1 (I0X,6,2)
L] CALLSESPLL(IOX,642)
MRITE (I0X,1)
6 READ (IS1) TVIMELETA,Z,THETA,PB,BOMACC,ACC,FANPUR

IF (TIME.EQ.EOF) GO TO 7

R —

10

WRITE (I0Xo2) TIMELETA,Z,THETA ,PB,BONACC,ACC ,FANPWR

LINX=LINXeL
LINX=LINXe1

IF (LINX.EQ.S50) GO TO 5

GO T0 &

IF (ILATRL.NE.1) GO TO 10

WRITE (IS2) (EOF,I=1,8)

END FILE IS2

REWIND IS2

CALL SESPLL1 (IO0X,6,2)
CALLSESPLLULIAX,6,2)

WRITE (IOX,3)

READ (IS2) TIME.PHI,BETAS,ACCLAT, U, TRADUS.2, 2 'DANG

IF (TIME.EQ.EOF) GO TO 10

MRITE (IOXye&) TIME,PHI BETAS,ACCLAT ,U,TRADUS,R,RUDANG

LINX=L INXe1
LINX=L INX#1

IF (LINX.EQ.50) 60 TO 8

GO T0 9

REMIND IS1

REWIND IS2

RE TURN

END

——

e Sl i EoN T AT TR

NAME
IVERY
ILATRL
I0X

L INX
Is1
152
EOF

I

TIN®
ETA

z
THETA
PB
30MACC
ACC
FANPMR
PHI
BETAS
ACCLAT
u
TRADUS
R

RUDANG

SYMBOL TABLE FOR MOOULE COLFLA

VARIABLES

TYPE
INTEGR
INTEGR
INTEGR
INTEGR
ENTEGR
INTE R
REAL
INTEGR
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

EXTERNALS

NAME
SESPL1

TYPE

STATEMENT LABELS

1 2
5 6

3
10

COMMON BLOCKS

NANME
COLUMN
SESCOM
UNITS

LENGTH

25
“

ARGS

o~

RELOCATION

COLUMN
COLUMN
SESCOM
SESCOM
AUNITS
UNITS

LR LA L L A A A L A L R L L R L R L R L L L R R R R R L R)

COMMON BLOCK UNITS

HAS INCORRECY SIZE

LA R R L A A R L L A A L R L R R L R R R L R,

T e

$e888® RESULTS OF FLOW ANALYSIS

NO ERRORS FOUND

NUMBER OF PATHS CHECKED=-

seseve

FLOW ANALYSIS TOOK

«050 CP SECONDS

SUBRQUTINE 1INOUT

COMMCN /SESCOM/ CASE (13) , INASINBGINC JTOX NPACK L INXZINY NPAGYLINY,IOZ,NPAGY,LINZ

COMMCN ZUNITS/ IS1,1S2,1S3,1IS4

INA=S
INA=S

INB=10
INB=10

10x=6
10X=6

10Y=6
10Y=6

107=6
102=6

I1S1=1
I1S1=1

152=2
1S2=2

I1S3=4kb
1S3=4b

I1S4=3
ISe=3

RETURN

END

156

SYMBOL TAALE FOR MONULF INOUTY

VARIABLES
NAME TYPE
INA INTEGR
INE INT‘QQ
10X INTEGR
10Y INTFGR
107 INTEGR
1S1 INTEGR
152 INTEGR
1S3 INTEGR
IS¢ INTEGR
COMMON BLOCKS
NAME LENGTH
SESCOM 25
UNITS b

RELOCATION
SESCOM
SESCOM
SESCHM
SESCOM
SESCOM
UNITS
UNITS
UNITS
UNITS

LR R T Y Y]

CCMMON 3LCCX UNITS HAS INCORRECT SIZF

LR AR L R R R Y]

sssess QECYLTS OF FLOW ANALYSIS %sssss

NO FRRORS FOUND

NUMRER OF PATHS CHECKFD- 1

FLOW ANALYSIS TOOK 3.000 CP SECONDS

PRpr—

SUBROUTINE START

COMMON /USEDO1/ MUSO1

COMMON /USEDO02/ MUSO02

COMMON /USEDO03/ MUSO3

COMMON /USEDOL/ MUSOG&

COMMON /USEDOD6/ MUSO06

COMMON /USED08/ mMUSOS8

COMMON /USED10/ mMUS10

COMMON /USED11/ MUS11

COMMON /USED1&/ MUS1G&

COMMON /USED17/ mMuS17

COMMON /USED18/ MUS18

COMMON /USED19/ MUS19

COMMON /USED20/ mMuS20

COMMON /PAGEL1/ NUSE 4NROLLC

NUSE=0
NUSE=0

NROLLC=0
NROLLC=0

MUSO1=0
MUSO01=0

MUS02=0
MUS02=0

P — s - 3 g = . _ o

———

MUSO3=0
MUS03=0

MUSO6&=0
MUSO6=0

MUS06=0
MUS06=0

MUS08=0
MUSO8=0

MUS10=0
MUS10=0

MUS11=0
MUS11=0

MUS14=0
MUS1&=0

MUS17=0
MUS17=0

MUS18=0
MUS18=0

MUS19=0
MUS19=0

nyUs20=0
MUS20=0

RE TURN

END

159

SYMBOL TABLE FOR MODULE START

VARIABLES

NAME TYPE RELOCATION
MUSO1 INTEGR USEDO
MUSO02 INTEGR USEDO02
MUS03 INTEGR USEDO3
MUSO& INTEGR USEDOA&
MUS 06 INTEGR USEDO6
MUS 08 INTEGR USEDOS
MUS11 INTEGR USED11
MUS1& INTEGR USED1s
MUS17 INTEGR USED17
L3¢) INTEGR USEDL 6
HUS19 INTEGR USED19
MUS20 INTEGR USED20
NUSE INTEGR PAGE1L
NROLLC INTEGR PAGE1L

COMMON BLOCKS

NAME LENGTH
USEDO1L
USEDD2
USEDOD3
USEDO&
USEDOG
USEOOS
USED10
USED11
USED1 &
USED17
USED18
USED19
useoze
PAGEL

e N N

SO BOIPIIIIIINNPNIIINITITIIITIIOINIIINIIIIIIIIIITININITNIIBIINIINNIBINNIIIIIIBIIIIIINNS

THE COMMON BLOCK SESCOM DOES NOT APPEAR IN THIS PROGRANM
L L T T Ty T T Y Y L L Y Y Y Py Y Y Y Y T Y R Y Y LT L N L T Y Y LYY LY

®essss RESULTS OF FLOW ANALYSIS ®eecss

NO ERRORS FOUND

NUMBER OF PATMS CHECKED- 1

FLOW ANALYSIS TOOK «023 CP SECONDS

160

L i, oo B _ N L b b T — - |

Audit of a BLOCK DATA Subprogram

ALOCK NATA

COMMON

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

CCMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

COMMCN

/AERODI/ 71(21)

/AEROSI/ 75C(8)

/APPNDG/ 7€11262)

/APNNGO/ Z75€ (EC)

/BMCO/ 22 (2)

/BOWSLI/ 759(F9)

/80WSLO/ 754(4&0)

/CGLNCYZ 257(2)

/COLUMN/Z 731(2)

/EQNCO/ Z7(61)

JENGINI/ 26501507)

/FANI/ 766(354&)

/FLAGS/ 1JOB, ICASE,ISTEP, IERR

/FROUNEZ 714 2)

/GROM/ 730(3)

JHELMS/ Z€2(6LC9)

/LEAKFR/ 722

/L0ADS/ X MI

/MASSES/ 723(812)

161

B

———

LOMMCN /MATRIX/ 72L(3E)

COMMCN /ZMSIDM/ 225(2%)

COMMCN /MMAVE/ 726(6)

COMMCN /0PTION/ 7271(3)

COMMCON /PHYCON/ Gy RHO, HRHOENURHOINF o PINF , 1 M

COMMCN /PRINT/ TSES.1INTGR,IRMS

COMMCN /PROPI/ 729(8)

CCMMCN /SESCOM/ CASE (13) 3 PNA,INB,INC TOX NPAGK LINX, TOY,NPAGY, LINY,10Z,NPAGZ,LIN?

COMMCN /STIDMLI/Z 731(27)

COMMCN /SLOPF/ Z36(2)

COMMCN /SPRAY/ 752(5°%)

COMMCN /STNSLIZ 23m(30)

CCHMMCN /STNSLOZ 755(40)

COMMCN /TIMES/ 733(5)

COMMCN /TORQUE/ 734(27)

COMMCN /VAPALE/ 7L1(15)

COMMCN /WAVE/ 742(6)

COMMCN /WAVEST/ 26C(79)

DATA 71/21%C.0/

DATA 72/72%0.0/

NATA 73/72%0.9/

DATA 77/41%9,0/

162

DATA 714/2%0.0/

DATA 7222/79.C/

DATA 723/81?2°0.0/

DATA 724/36%0.C

DATA 725/2%5%:.C/

NATA 726/6%0.07/

DATA 727/3%*0.0/

NATA 729/1.E647%CeC/

NATA 723C/0.C7

LR R R R R R R R R AR R P P T T Ty Y

LIST SIZES DO NOT MATCH

A AL R R A R A R R AR R R R A A R R A N

DATA 7231/27%3.0/

OATA 733/5%0.0/

DATA 734/27%0.0/

DATA 736/2%0.07

DATA 738/30%0,.0/

DATA 741/15%*7.C/

NATA 7L2/6%0.0/

DATA Z4S571507%C.C/

OATA 746/3564°%0.0/

DATA 750/8%0.07/

OATA 754/40%0.0/

DATA 755/40°0.07

163

A

AT A

NATA

NAT A

NAT A

NATA

OATA

0ATA

DAT A

NATA

OATA

DATA

END

256/60%0.0/

2€7/2°0.07/

759/59% 3.0/

26 0/7T9%). 0/

7¢1/262%0.07

762/4N9%0.0/

FNUGPINE g RHOTNF (GAM/1.28E-54211644.002378,1.4/

CASE/Z13%4 M

INAGINR G INC s TOX NPAGX,LINX,TOY,NPAGY,LINY,TOZ,NPAG? ,LINZ/12%0/

T1JOR,ICASCE, ISTEP, IERR/&®0Q/

XM1/0.07

ISES,IINTGR4IFHS/0,0,0/

SYMBOL TAALE FOR BLOCK NATA

VARIABLES
NAME TYPE
71 REAL ARRAY 1
750 REAL ARRAY 1
761 REAL ARRAY 1
75¢ REAL ARRAY 1
72 REAL ARRAY 1
7549 REAL ARQAY {1
754 REAL ARRAY 1
757 REAL ARRAY 1
73 REAL ARRAY
77 RFEAL ARRAY 1
765 REAL ARRAY 1
746 REAL ARRAY 1
1J08 INTEGR
ICASE INTEGR
ISTEP INTEGR
1ERR INTEGR
714 REAL ARRAY 1t
73¢C REAL ARRAY 1
762 REAL ARRAY 1
722 REAL
M1 REAL

164

RELOCATION
AEROOT
AFROSI
APPNODG
APNDGO
BMCO
BOWSLI
BOWSLO
cGLocC
COLUMN
EONCO
ENGINT
FANI
FLAGS
FLAGS
FLAGS
FLAGS
FROUDE
GBOw
HELMS
LEAKER
LOADS

_71‘
724
72
72¢
227
PN
PHOTNF
PINF
GAM
ISES
IINTGR
IRKS
729
CATE
INA
INP
INC
10X
NPEGYX
LINX
10Y
NPLGY
L INY
102
NPAG?
LINZ
231
73¢€
738
75‘
733
734
761
TL?
760

RPEAL ARRAY 1

RFAL ARQAY 1§

REAL ARRAY |

OFAL ARQAY 1|

RFAL aPQAY

RFAL

REAL

RFAL

EFAL

INTEGR

IMNTEGR

INTEGR

PFAL ARIAY 1

REAL ARRAY 1

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTEGR

INTECR

INTFGR

PFAL AQRAY 1

RFAL AQRAY 1

RFAL ARQAY 1

RFAL ARRAY 1

QFAL AR2AY 1

REAL ARRAY 1

PEAL ARQAY 1

REAL ARIAY

OF AL ARRAY 1

COMMON RLOCKS
NAMF LENGTH
AFRODT 21
AFROST L}
APPNNG 262
APNNGO 60
BMCO 2
A0WSLT 59
AOWSLO “0
cGLOC 2
COLUMN 2
FONCO L1
ENGINT 1507
FANI 3156
FLAGS “
FRCUDF 2
GROW 3
HELMS 409
LEAKER 1
LOADS 1
MASSES 812
MATR T X 36
MSINW 25
MWAVE 6
OPTION 3
PHYCON ?
PRINT 3
PROPT "
SFSCOoM 25
SINWLY 27
SLoPF 2
SFRAY 5%
STNSLI 319
STNSLD Lo
TIMES)
ToRQUE 27
VARALF 15
WAVE 6
WAVEST 79
165

MASSES
MATRIX
MEIOW
MWAVF
OPTTON
PHYCON
PHYCON
PHYCON
PHYCON
PRINT
PRINT
PRINTY
PoOPT
SESCOM
SFSCOM
SESCOM
SESCOM
SESCOM
SESCOM
SESCOM
SFSCOM
SESCOM
SFSCOM
SESCOM
SESCOM
SESCOM
SIOWLT
SLOPE
STNSLI
STNSLO
TIMES
TORQUE
VARALE
WAVF
WAVEST

B

A

4

L]

AITH TNTCOFACE NEFINITICN
LR AR R R R R R R RN

sesews
WARNING = VARTAOL TYF IN COMMCN RBLOCK AFPODT NNES

ssasanens L R

L]

LR R A R LR R R RN R R R
WARNIANG - VARTATL TYFE IN COMMON SLOCK AFROST POFS NOT AGPET WITH INTFPFACE NFFINIT

L R N]

sevnrsans
ON
ssssenaay

R R

.
T
.
.
PE TN COMMCN ALOCK APPNNG NOSS NOT AGRPET WITH TNTFRFACE DEFINTITI
.
.
I

Wi

INC

LR e

D) e R

LA R LR R R RN LR RN L R A R AR AR R R R R R R R LR RN
WAD N TN \ E5 1N COMMON 8L 0OCK aMeO
IR R R R R AR R R R LR
AR R RN
FE TN COMMCN 8LCCK ROWSLI
AR R R R ERERLEREEERES

S WITH INTERFACE DEFINIT

D)

LR
AR R A R R N
ATTH INTERFACFE NFFINIT
IR A R R R R R R R R R R RN

sEsssnEn.
0N

R
R R

TYPE I+ COMMCN BLOCK COLUMN

WITH TNTFRFACE NFFINIT
LA R R R R N R RN
AR EEREEE R EREEE R R AR R RN)
TYFF IN COMMON QLOCK FONCO DNOFS
AR R L R R R R R RN

.
.
D
.
D]

1

WITH INTFRFACE NFFINIT
LA R R R R EEEEEEEEE R E R LN
AR R R R R R RN LA AR L E R E R RN AR R EEEREEEENRNE N
TYPE TH COMMCN BLOCK ENGINI NOCS NOT AGPCE WITH INTFOFAGT NFEEINLY
AR R R R R R N LA R R R R R R R
P L]
TYPF IN COMMON BLOCY FANT NOFS NOT AG
AR R E L E R R AR R RS R R EEEE LR

R
WITH TNTFRFACE NECINIY
VIS FJIIIIIFIVTFIssOPEPIEsrRsprrrrr Yy
LR
TYFE TN COMMCN ALOCK HELMS NEoFS
AR R R R R R R N

P TN

L R

WITH INTERFAC JEFINIT
AR R R R NN

LA R R R R AR L E R E R R LR RN
COMMON 3LCCK MASSTS MAS INCOPRECY STZE
LR R R R R R L R L R R

L) "

N

D N R ..

v L R

.
WARNING = VARTAALS TYPE IN COMMON 3LOCK OPTION 0DNFS NOT AGP™T WITH INTERFACE NFEINITINN
(A AR R AR R R A R R R R R R R A R R R L

R N Y

R L R N

WARNIAG = VARIADLE TYFE IN COMMON ALOCY PROPT NOCS NOT AGPES WITH TINTCRFACE DFEINIT
LA R R L A A R R R R R R L RN

D Y
R Y
WARNING - VARTANL TYPE IN COMMON BLOCK
L Y Y

R

TH INTFRFAC DEFINIT
LA AR AR R R L EE LR

L N Y

WARNING = VARTAPLY TYPF [N COMMON A OCK SPRAY NOFS NOY aGoer WITH INTERFACE NEFINTY
AR RN LA AL R LR R R R R EL NN

1
i
.
L Y
10N

L RN

R

WARPNING - VARTAAL TYPE IN FCCMMCN 8L OCK
D T T

R
MYTH TNTEOFACE NEFINITINN

R s

STNSLT Nof

LR

LR R R L]

MARNING = VARTADL TYPF IN COMMON BLOCK WAVEST NOTS NOT AGOEE WITH INTEOFACE NEFINITINON
AR R R R R AN R A R R R L NN

| 66

Audit, Flow Analysis, and Variable Precision of an Executable Program

R e

[——

PROGRAM MICRO(INPUT,OQUTPUTTAPES=INPUT,TAPEL=0UTPUT)

10 FORMAT (1H1,10H TRAPEZOID+6X44HAREA,12X,5HERROR)

INTEGER OUT

oYT=k
GRAPH HAS BEEN PLACED INTO MEMORY

ouT=6

WRITE(OUT,10)

00 30 I=1,15

N=2S (=1
NsZeS(Y=1)

Wx1,/FLOATIN)
W=Q1IREAL (L./FLDAT(N))

00 20 J=1.N

XL=FLOAT(J~1)°"W
XL=QIREAL(FLOAT(U-1)*W)

27 AZAS (M/2 .,V (FUNICXL) $FUNI(HeXLY)

LR L L L)

WARNING = THIS MONULE IS NOTV IN THE SESCOMP LIST

LR L L L Y Y

20 A=QLIREAL (A+OQIREALC(QIREALIM/2 IS (OIREAL(FUNIXL) +FUNIOLIREAL (MeXL))
IRRR}

E=5,.-A
E=QIREAL(5.~A)

37 MRITE(OUT ,L0IN,AE

L0 FORMAT (I8,F16.8,€19.8)

LA R R R R L R L L R R R L A L A R A A L R L R R R R R N R R L

THIS STATEMENT IS OUT OF ORDER

LR R R R R R L L R L L L L L R R R R Y]

stToep

END

LA R A R A R L L A A R L R Al R L R L L L L L L R R R R L R R R L)

WARNING = THIS MODULE IS NOY IN THE SESCOMP LIST

AR R R R L R L L A A L L A L L L L L L R)

| 6/

~z

SYMB0L TARLZ FOR MODULE MICRO

VARIABLFS
NAME TYPE RELNCATION
ouY INTEGR
1 INTEGR
N INTEGR
[REAL
W REAL
J INTEGR
YL REAL
£ REAL
EXTERNALS
NA ME TYPE ARGS
FLOAT REAL 1
FUN REAL 1

STATEMENYT LABFLS
10 30 20 0

e L L L

THE COMMON BLOCK “ESCOM OOES NOT APPEAR IN THIS PRIGRAM

e L A Y

ssssss QESULTS OF FLOW ANALYSIS ®essss

NO FRRORS FOUND

NUMAER OF PATHS CHECKED- 1

FLOW ANALYSIS TOOK 0.000 CP SECONDS

| 68

FUNCTION FUN(X)

FUN2B,-6.%X""5,
FUN=QIREAL (6. ~01REAL(6,%01REAL (X**S.)))

RE TURN

END

SYMBOL TABLI FOR MONULE FUN

VARTIABLES
NAME TYPE 'ELOCATION
X RFAL fFe P
FUN REAL

L N T ey

THE COMMON BLOCK SESCOM DOES NOT APPEAR IN THIS PROGRAM

L N T

Sessss RESULTS OF FLOW ANALYSIS ®essese

NO FRRORS FOUND

NUMARER OF PATHS CHECKED- 1

FLOW ANALYSIS TOOK 0.000 CP SECONDS

GLOBAL REFERENCE TAALF

EXTERNAL REFERENCES
FLOAY ANST FUNCTION
FUN USER SUPPLTED

SURROUTINES ENCOUNTERED
M ICRO USIR SUPPLTIFD
FUN USER SUPPL TEN

10

20 A=O1REAL (A+QIREAL ((QIREAL (M/2.)) * (QIREAL(FUN(XL) ¢FUN(QIREAL (WXL}

PROGRAM MICROCINPUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT)
COMPLEX Q1COMP

DOUBLE PRECISION Q10PRE

FORMAT (1H1,104 TRAPEZOTD 6Xs4HAEA,12X, SHERROR)
INTEGER OUT

ouT=¢

WRITE (OUT,10)

00 30 I=1,15

N=Z%S ¢1=13)

Az0.0

W=Q1REAL (1./FLOATIN))

D0 20 J=i,N

XL=QIREAL(FLOAT (J=1) *W)

“Nn
E=QIREAL (5.-A)

30 WRITEGOUT,&0IN,A,E
40 FORMAT(I8,F16.8,E19.8)

SToP
END

FUNCTION FUN(X)

COMPLEX Q1COMP

DOUBLE PRECISION Q1DPRE
FUN=Q1REAL(6.~Q1REAL (6. *Q1REAL (X*%5,)})
PETURN

END

]

40-Bit Output

TRAPEZOIN
1
2
)
L}
16
32
64
128
256
S32
1024
2048
4096
8192
16384

39-Bit Output

TRAPEZOID
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384

38-Bit Output

TRAPEZOID
|
2
o
8
16
32
} 64
128
256
512
1024
2048
4096
8192
16384

AREA
3.00000000
4.40625000
4. BL570313
4.96105957
4.99024200
4.99755874
4.99938920
4.99984625
4.99995980
4.39998641
4.99998930
4+99998245
4.99996680
4.99993381
4.99986607

AREA
3.00000000
4.40625000
484570313
4.96105957
4.99024200
4.99755847
4.99938852
4§.99984539
4+99995804
4.99998262
4.99998081
4.99996537
4499993449
4.99986660
4.99973202

AREA
3.00000000
4.40625000
4.86570313
4.96105957
4.99024165
4.99755800
4.999387138
4.99984336
4.99995422
4.99997425
4.99996316
4.99993193
4.99966589
%.99973035
4.99946296

ERROR
«20000000E¢01
+59375000E+00
«156429688E¢00
«3896L0630E~01
«97579956E-02
«2L412572€E-02
«61079860E-03
«15375018E£-03
«602063333E-06
«13589859E-04
«10699034E-04
«17553568E-06&
«33199787E-04
+66190958E-06
«13393164E-03

£ RROR
+20000000E¢01
«59375000E+00
«156429688E¢00
+«3894L0L30E-01
«97579956£-02
«2L41%5255€6-02
«61148405E-03
«1546146L45E-03
«41961670E-04
«17583370E-04
«19192696E-04
+34630299E-06
«65505505E~04
«13339520€-03
«267968248E-03

ERROR
«20000000E+01
+53375000E400
«150429688E4¢00
«38940430E-01
«97583532€-02
«24420023E-02
+612616564E-03
«15664101E-03
«LWETT6I6TE-0G
«25749207E-04
«36835670E-04
«68068S06E-06
«13611045€6-03
«26965141E-03
«537037856-03

37-Bit Output

TRAPEZOIN

1

(-

L

8

16
32
64
128
256
512
1024
2068
4096
8152
16386

36-Bit OQutput

TRAPEZOIN

1

2

&

8

16
32
64
128
256
512
1024
2068
«096
8192
16384

35-Bit Output

TRAPEZ0ID

1

2

4

L]

16
32
64
128
256
512
1024
2048
«096
8192
16386

AREA
3.00000000
4.40625000
L.BL570313
4.96105957
©.99024105
4.99755692
4.99938440
4.99983956
4.99994540
4.99995756
4.9999*138
&.99986792
4.9997 3464
4.99945807
4.99891925

AREA
3.00000000
4. 40625000
486570313
4.96105957
4.99024010
4.99755526
©.99938154
4.99983263
4.99992990
4.99992371
4.99986126
4.99973631
4. 99947166
4.99891567
4.99783564

AREA
3.00000000
4.,40625000
4.84570313
4.96105957
©.99023724
4499755096
4.99937153
4.99981785
4.99989986
4.99985313
§.99971485
4. 99947166
4,99892998
4,997831 36
4,99%563503

ERROR
.20000000E+01
«59375000€¢00
«15429688E4+00
«3894L04L30E~D)
+97589493E-02
2468307528 -02
«61559677E-03
«1604L5S70E-03
«54597855€6-04
«L2L38507E-04
«69618225€6-04
+13208389E-03
«¢6535988E-03
«5L192543E~03
«10807514E-02

ERROR
.20000000E+01
«59375000E¢00
«156429688E¢00
«3894043DE-D1
«97599030€E-02
L2844 T7841E-02
«61845779E~03
«16T736984E-03
«70095062E-04
«7T6293945E-04
+13875961E-03
263690952 -03
«52833557E-03
«10863277E-02
«21643639€-02

ERROR
«20000000E+01
+59375000E¢00
+15629688E400
«38940430E-01
«97627640E-02
«26490356E-02
«6286T137€-03
+18215179€-03
+10013580E-03
+L468658LE-03
+20514862E-03
«52833557E-03
.10700226E-02
«21686554E-02
«A3689673E-02

34-Bit Output

33-Bit Qutput

32-Bit Output

TRAPEZOIN
1
2
£
8
16
32
6k
128
256
512
1024
2048
«096
8192
16384

TRAPEZOID
1
[+
L)
8
16
32
64
128
256
512
1024
2048
4096
8192
16384

TRAPEZOID
1
2
“
L]
16
32
64
128
256
512
1024
2048
4096
8192
16384

AREA
3.00000000
4.40625000
4.86570313
©.96105957
8.99023247
€. 99753952
§.99935532
§.99978828
©.99983406
&.9997272%
©.99944305
&.99892213%
4.99784660
6.99562836
©.99120%22

AREA
3.00000000
4. 40625000
484570313
4.96105957
4.9902267%
©.99752426
4.99932480
©.9997253s
4.99969482
©.9994 3542
4.99889755
4.99784470
4.99562073
4.99120712
4.98219299

AREA
3.00000000
4.40625000
L.86570313
4.96105194
©.99021149
€. 9974676067
8.99925232
4499957275
4499941254
4.99894714
4.99781799
4.99563599
4499114990
4.98219299
4. 96421051

ERROR
«20000000E+01
«59375000E+00
«15629688E400
+38960630E~01
«97675323E~02
«26604797E~02
«6LL683BLE~0T
«211T71S70E~03
«16593933E~03
«27275085E-03
«55694580E-03
«10776520€E~02
«21533966E-02
«e3716431E~02
«B87947845E~02

ERROR
«20000000E¢01
«59375000E400
«156429688E+00
«38960630E-01
977 32566E-02
«267S57385E-02
«67520162E-03
«276465620€-03
«30517S78E-03
«56457520E-03
«11026675E-02
«21553060E-02
«&3792725¢6-02
«87928772E-02
«17807007E-01

ERROR
«20000000E%01
«59375000E¢00
«15429688E¢00
«38948059E-01
«978851326-02
«25253296E-02
«TAT68066E-03
«42724609E-03
«58746338E-03
«10528564E-02
«21820068E-02
«43660137E-02
«88500977E-02
«17807007€~-01
+35789690E-01

B

o

31-Bit Output

TRAPEZOID

1

2

L)

L}

16
32
64
178
256
512
1024
2048
4096
8192
1638¢

TRAPEZOID

1
2

o
L}
16
32
64
128
256
512
1024
2048
4096
8192
16384

AREA
3.00000000
4.40625000
L.B84570313
4.96101379
4.93017336
©.9974C601
4.99908647
4.99931335
4.99896716
4.99781799
4.99565425
4.99116516
©.98208618
L. 96430969
4.92608643

AREA
3.00000000
4.40625000
L.A4570313
4.96099854
L.990142582
4.99725342
4.99884033
4.99880981
4.99789429
4.99542236
4.99136353
4.98220825
4.96411133
492617798
L.BLS5T9%468

ERROR
«20000000E+01
«59375000E+00
«15429688E¢00
+38986206E-01
«98266602E-02
«25939941£-02
«9155273LE-03
+5866L551E-03
«10528564E-02
.21820068E-02
«L34875649E-02
«8834L8389E-02
«17913818E-01
«3569C308E-01
«73913574E-01

ERROR
«20000000E+01
«59375000E¢00
«15629688E+00
«39001465€-01
«98S5717T7E-02
+27465820E-02
«11596680£-02
«1190185SE-02
«21L57129€-02
«L5776367E-02
+B8636LTULBE-D2
«17791768E-01
«35888672E-01
«73822021E-01
+156420532E+00

INITIAL DISTRIBUTION

Coples

10 NAVSEA PMS304-32 White

2 NAVSEA PMS405-40 Cuthbert

12 DDC

CENTER DISTRIBUTION

1 18/1809

1 1802.2 Frenkiel

1 1802.4 Theilheimer

1 1809.3 D. Harris (Central Depository, CMLD)
1 182 Camara

1 1826 Culpepper
30 1826 Wybraniec

1 184 Lugt

1 185 Cor.in

1 186 Sulit

1 189 Gray

1 1890 Taylor

30 5214.1 Reports Distribution

1 522

Microfiche copies
30 1826 Wybraniec

s ———— T T — R - i

