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ABSTRACT

This f irst quarter the refl ect ion and scatter ing models were
further developed, and a review of the literature preliminary
to the development of a convergence zone propagation model
was completed.

In Sectio~i II, the expansion of the heuristic scattering model
to include composite (both large and small scale roughness)
surface statistics is given which should improve backscattering
predictive capabilities. This model does not include slope
correction terms but has the advantage of simplicity. The
more rigorous theoretical model which includes slope correc-
tions terms is also expanded to allow for composite surface
roughness.

A survey of the literature covering convergence zone propagation
is summarized in Section III. An approach is outlined for the
development of a conver gence zone model using a Green ’s.
function expansion. This technique results in an ordered
integral expansion where each integral can be associated with
a part icular mult ipath.
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I. INTRODUCTION

Work done under Contract NO002~4-7l-C-l266 for the period of

1 April 1972 to 30 June 1972 is summarized in this report. This work

represents a continuing investigation of the reflection and scattering

of sound fr om the rough ocean boundaries , and the interact ion of
scattering with sound propagation in the ocean. In Section II the two

scattering models derived at ARL are extended to apply to composite
surfaces. This work will provide a basis for the prediction of back-

scattering from the ocean surface. It will be shown that both large

and small scale surface roughness effects are important in the back-

scatter case. In addition , work on convergence zone propagation was

begun this quarter. A brief survey of the literature was completed

and is given In Section III. Theoretical treatments of convergence

zone phenomena are discussed for both ray and wave theories. The

limitations of both classical ray and wave methods are sununarized.

It was found that limitations of normal mode theory can be overc ome
by tran sforming the basic contour integral int o an inf inite sun of
multipath integrals. The evaluation of these ray inte grals is briefly
discussed with an outline of future work dealing with this approach.
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II. BACKSCATTERING FROM COMPOSITE SURFACES

A. Introduction

During this quarter the two scattering models developed at AEL
were revised and extended to give theoretical predictions of the

baekscattering from composite rough surfaces. The simultaneous

development of both scattering models was carried out in order to

better understand the importance of phase, bean, and slope approxi-

mations in the backscatter case. It was found that the exact forms

of the phase and beam appr oximat ions are relat ively unimportant as long
as the coherence of the s cattere d field near normal incidence is
pr operly accounted for . Howeve r, it was also found that , for the
backscattering case , the exact slope treatment must be used, and that
the effects of shadowing should also be included.

The scattering coefficients, a, used in this section are related

to the usual definition of scattering strength through S=~4o A, where

A is the act ive scattering area. Here it is assumed that the scattering

strength, S, is referenced to 1 yd. In the following section the

heuristic (stationary phase) scattering model is developed from

separate calculations of the coherent and incoherent parts of the

scattered field. The modified Fresnel model with the exact slope

treatme nt is given in Sect ion C and is compared w ith the heurist ic
model.

3
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B. Heuristic Model

The heuristic scattering mode l (given in detai l in the final

report under Contract N000214-~~ -C-l275 and in “Forward and Specular

Scattering from a Rough Surface : Theory and Experiment ” , by Boyd and

Deavenport1) is here revised and extended to apply to composite rough
surfaces. Particular emphasis is placed on improving the backscatter-

ing predictions without degrading the forward and specular scattering

predictions. This subdivision will be divided into three parts

following the chronological development of the model. In the first

part a detailed derivation of the coherent pressure for composite

surfaces will be given. The second part will give a brief discussion

of the composite characteristic functions used in the scattering

model. The third part will contain the development of the incoherent

scattering coefficients for various surface statistics and some

numerical results for the backscatter case.

1. Coherent Pressure

The scattered pressure is given by

ik(R +R

P ( r )  = 
~~ fJ~ 

e 
R0
R1 

1 
e~~~

’
~ (~ ~~ 

+ ~ 
- 

~) • ~1dxciy .(i)
z

The various constants and ranges appearing in Eq. (i) are defined

in Ref. 1. Assume that the surface height is given by

~(x ,y) = ~1(x,y) + ~2(x,y) , (2)

J~~ UttUW
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where t~1
(x,y) and ~2(x ,y) 

are random variables representing the large

and small scale components of the surface roughness, respectively.

Eq. (i) then becomes

ik(R +R )
ik ft e ~ 1

P(r) = .

~~

-. j j  ~ R~R1 
e

2: (
~

)

~ [(~ 1~~2~~~x 
+ 
~~ i~~~~~y 

- 

~ ~1dicdy

The usual development of the coherent pressure can now be made using

this equation . The mean pressue is given by

f ff f f f  P5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
d
~2xd

~ i yd
~2y

(1.4)

where

lx ~~~ 
, etc . ,  and

is the six-dimensional probability density of surface heights and

slopes. Substituting Eq. (3 ) into Eq. (14), interchanging the order

of integrations, and using the definition of the characteristic

function gives

ik(R +R1)

<p
5
> = 

~~ JJ~ e R R
1 (~ )

x (e

7 1
~~
2)
[(~ lx+~2x)~x + 1y~~2y~~y 

- e]. ~i)
d.xdY .
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If the slopes 
~~~~~~~~~~~~~~ 

and. the heights 
~~~~ 

are ass umed
independent , then

= ik
f J  

e~~~~;~~
i
~ ~~~~~~~~~~~~~~~~~ 

(6 )

~~~1x~~~x~~x 
+ 

1y~~2y~~y 
- dxdY

Further , if the slopes 
~lx ’~ 2x”~1y’~ 2y 

ar all zero-me an processes ,

then the expectation value become s

< lx~~ 2x~~x + 
ly~~2y~~y 

- 

~z> = 
~~z

Thus , if 1
1(x ,y) and ~2(x ,y) are isotropic, the remaining expectation

value can be removed fr om the integral and.

= (
ik7(

~~l~~ 2)) {.x j f e~~~~ °~~~~ (~z~1)~ J (8)

where the term in braces is the pressure reflected from a plane

surface . The coherent intensity is then given by

~~ s>COH = (~)~~)* ~~~
1 (

~ l~~2)) 1 (
~

)

where I is the plane surface intensity and. the other factor is the
square of the composite characteristic function associated with the

distribution of surface heights. The coherent scattering coefficient

is obtained from this by dividing out the intensity scattered from
a plane surface in the specular direction .

6
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2. Composite Characteristic Functions

The one-dimensional composite characteristic function used

in the scattering model is given by

-iky(~ +~ 
)

1 
2) . (10)

If and 
~2 

are independent , this becomes

(_ik7(~ l
+~2)) (_

ik7~~~ 

(

_ik7~
2) , (ii)

where, for a Gaussian process

• 
. 

(
_ik7~
) = ~_g/2 , (12)

and for an exponential process

= [1 + . (~•~)

Here g=k
2y2h

2
, where h is either the large or small scale Fins height .

The two-dimensional composite characteristic functions can
be treated. similarly if the large and small scale processes are
independent :

- (~4+~ )J ) (ik2~(~1
_
~I)) 
(

ikY(~ 2
_
~~)

) 
(i~+)

For the Gaussian bivariate distribution

= ~
_g(l_c) (

~~
)
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nd for the exponential

Ke~~~ ’)) L1 + ~~i~c)j 3
~ ( 16)

3. Incoherent Scattering Coefficient

The incoherent scattering coefficient is given by

2 2

-- 
~~~~~ (r00

+r~0
)

°INCOH 2 2 2y r~0r~0

xh_~
_ f  J (v r) 1(e~~~~~~~~

’
~) - (e~~~~~)°]rdr~ 

(Fr)

0 O X Y  L )

x - p2(e~
ikY

~)
2] . 

- I
An initial attempt at adapting this expression to composite surfaces

consists of simply replacing the characteristic functions with their

equivalent composite characteristic functions, i.e.,

~~~ik7~
) (

~ik7(~ l
+~2))

(~8)

(e~~~~~~~~)) 
Kik7 [(

~~
1 2

)

~~~
i+

~~ )1) .

It should. be noted. at the outset, however, that this apprcach is an

approximation in that no modification is made to the slope terms

which appear in the original integral for the total pressure . These

slope terms have already been evaluated at the stationary phase

8
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points and removed from the int e~ raI  ~t~; Beckm~~n ’s F . The e f f ec t  of

this approximation will be examined in the following section .

Equation (17) will here be developed for (a) Gaussian l arge

and small scale distribution functions . (b) exponential large and

small scale distributions , and. (c) mixed Gaussian and exponential

distributions . Forms for both Gaussian and exponential correlation

functions will be given in all three cases.

• ( a )  For Gaussian large and small scale processes, Eqs . (11). (12).

(114), (15), and. (18) are used. so that Eq. (17) becomes

2 2
AF (r00

+r10)
°INCOH 2 2 2

7 r00r~0

(‘9)

x i.Z_. f  ~ (v [ g i( i ) ~
_
~ 2(1_ 0 2 ) 

- ~~~~ ~ 2l~ü~2,t 0 o x y  L J

r 2
X [1-p e j

where
2 2 2g1 1 c 7 h 1 , and.

2 2 2

and. h
1
, h2 

are the large and. small scale rms heights . To evaluate

~~~ ~~i ~
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Eq. ( o) the characteristic function must be expanded in terms of the
]arge and small scale correlation functi ns c

1 
and c2:

/ (20)

= ~_ (~ l
+C2) g

1
c
1
+g
2
c
2

g
1
c
1
+g2

c
2 - -Thus. e must be expanded in a series in terms of c1 and c

2
where the fir~t term is required to be unity:

/ nn\ / jj
g
1
c1
+g2c2 g1c1 

g2c2 ( ~° g1c1 ‘~/ 
°‘ g2c2

e = e e = I ~~ —i— II ~\n=O 
f l .  
/\j O ~‘

(21)

n i

E l~’2 n j= ~~ ~~~‘°l ~2j=0 n=O

where the j=0, n=0 term is 1. Thus the integral becomes

aINCOH = 
v2r 

2
r 
2

00 10
(22)

>~ 
;
(g1

+g2) E ~ ~~~~~~~~~ 

J . Jo(Vxy
r)c

~
c
~ 

ra [l_p
2e~~~1~~

2
)]

where the ,j=0, n=0 term of the sun is omitted. The integral to be

evaluated is

f  j  (V r)c° c~ rdr ( 2 ~ )
0 o xy 1

10
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where c1 and c2 are the large an d. small scale correlation functions ,

respectively. For Gaussian correlation functions

2 2
-r /L~c1(r) = e

and

2 2
- r / 2 2

c2
(r)=e

where and. are the large and small scale correlation lengths .

Equation (23) becomes

f  J(V r) 
~~~~~~~~~~~~~~ 

rdr . (25)

Performing this integral and substituting the result into Eq. (22)

gives (for Gaussian distributions and correlation)

2
AF (r00+r10) ~ -(g

1
+g
2)

°INC0H~~ 
2 2 e

2i~ r00r~0 (26)
2 / 141 /j 2 ./, 2

n J  xy/ 1 1 2 r -
~ g~g~ e 

• 

2 -(g1
+g2)x 

~~ E 1k-, ,~ ~ 
I1-~ 

e
j=0 n=0 n~j 2(—~+—~ L

\1l ~2

For exponential correlation functions

c
1
(r)=e

and (:~)
-r / I

c2(r)=e

11
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so that Eq. (2 ~ ) becomes

/nr 1
f r i  _ [ n 1 +J ..! Jr ~ 1 1,.~J ‘

~
(
~~~X~f~~ 

e 

([~_÷ L12 
V ~~~~~~~~~~~ 

‘

\L’i ~2J

Thus for Gaussian large axoi small scale iistribution furi ct ion ~ and

exponential large and small scale corre l ation functions , the inco-

herent scattering coefficient is

0 2~~~ n j
• ~~“(r00

+r10)~~c -(g1~~~•
) ~~ ~~ g~g2 V 1

°INCOH 2 2 
e 

~~ ~T3T i3/2
2g r00r10 n=~ j =0 

( . \ 2  2(
\t i 1

2/ X Yj

( 29)

(b) For exponential large and. small scale distribution functions

E~ s. ( I l ) ,  ( 13 ) ,  (~~
), (i6), and (18) are used in Eq. (17) so that

2 2AF (r0~
+r10)

°TNCOH 2 2 2 -

~ r r00 10

~k
22 

~ J0( J
~/ )[~[~~

-
~~

( l~ c~ )] [i+~~~ ( .
. -c 2)]} 

2

{[ 2 [ 
~~~~~~~~~~~~ 

2]rãr~

x - p1[1÷~
1
~~.JY 1

1.?

J 1E1LIJ111~ L I X

p~~~~~~~~~~~~
t • . ’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The characteristic function expansion is given by

0 I~~
I1÷~~(l-c)I = ~~ (~ n+1). .g C ( ;~~)
1 ~ n=0 

~~n ’ (1+~~) 
~~

Again , the first term of the expansion is equal to the one-dimensional

characteristic function so that Eq. (30) becomes

AF2(r00+r10)
2
k
2

°INCOH — 2 2
2n r00r10

(32)

( 2n+l)! (2j+l)! g’1g3

x £ 
+ • / 2g

1
\0+~~

2
/ 2g \~~

31 2 
f ~ J0(V~~r)c~c~ r~~3 3nj !~ l+~-~—)

x l -  
p
2

[(1+ ~!) (i+~) 3
where the n=0, j=0 term is omitted.
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For Gaussian correlation functions Eq. (25) is used so that

2 2 2
- 

AF (r
00
+r
10) k

°INCOH — 2 2
2x r00r10

2/ 141/12 ./ 12
( 2n+1)~~ (2j+ l ) :g ZlgJ e XY/ L 1 2

E 1 2  
+ 2 ~+ 2

I’° ~~~° 
2.3n÷in:i:[~~+ ~](l

+~~~
)

’

~ 

~~ 

(
~
+
~ )~ 

~~
‘

2
x 1 - ___________

For exponential correlation functions Eq. (28 ) is used. in Eq. (32) and.

2 2 2
— 

AF (r 00+r 10) k
aINCOH — 2 2

2,t

(~~+l)::(2j÷l)!:g~g~ (r+1)
~~~ n+j (2

~
l)
~~3/2

(2
~2)J+3/2 

[(L+L)2+V 2]”

2 (314)

- 

[(
i + +~~~

)J

3/
2 ] ’

where the n=0, j=0 term is again omitted.
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(c) As~’uniing independent large and small scale processes, the
integral in Eq. (17) becomes

j  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~ .

(35)

Assuming that the large scale process is Gaussian and the small scale
is exponential gives

~~° 

J(V r)~e~~~~~~~~ [l+~~~ (l-c2)] 
- e

~~

1
[1+

~~~}1

rdr

The characteristic function expansion is

~
_
~l
(1_d

l
) 
l+
~~~~

(1
~
c2) 

-3/2 

= e~~~ E E ~~~~ 
(2n+l)! g~c~ 

23 j=O n=0 n / 2g2\3 n I~l+—~—)

so that 

2 22

- 
AF (r00+r10) k

CYINCOH
_ 

2 2 e
2it r r00 10 (38 )

x 
~~~ ~~~ 

( 2n + l ) : :g~g~ j  Jo
(Vxyr )c

~ c~ rdr~

j!n 3 (l+_3_)

- 2 _3/2

x [l_P
2e ~

1[l+
~~

2J 3 .
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where the n=0, j=0 term is again omitted . For Gaussian large and

small scale correlation functions, Eq. (25) is used, and Eq. (38 )

becomes 

2 2 2• 
. -v /14 j / L  +n ’l

A.F
2
(r00+r10)

2
k
2 

-g
1 

00 CO (2n-i-l) g~g~e 
x~ii  1 ‘ 2

°INCOH = 
2it r0gr1~ 

e 

~~~

r ,- -3/21 (
~~

)
I 2 

-g
11 

2g2]
X [I_P e

For exponential large and. small scale correlation functions Eq. (28)

is used., and

2 22
AF (r00

+r10) k -g1
°INCOH 2 2 e

2i~ r00r~0
( 1+o) I .

Co 0° (2n+l) g~g~ (L l~~~~)
x 

~~~ 
i:n:3n (l÷_~~

) ([f+
~~]2÷v~~

)31
’2

[ -g 2g
x 1-p e 1

~-y-

The incoherent scattering coefficients for an exponential large scale

process and a Gaussian small scale process can be obtained from 4
Eqs . (39 ) and ( L40 ) by interchanging (g 1. L 1 ) and (g2,12).

Preliminary numerical results were obtained from the formulas

given above and were compared to data taken at one frequency from the

16
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smoothest of ARL ’s rough model surfaces. The data were taken at

‘.‘..)O kHz from Surface I, which has an i-ms height of 0.091 in. and
correlation lengths of 1.4 in. for Gaussian correlation functions and

.55 in. for exponential correlation functions. Figure 1 shows

results for Gaussian large and small scale distribution functions with

Gaussian large and small scale correlation functions . From the graph,

it is obvious that the basic shape of the theoretical curves is correct

and that the addition of the small scale roughness gives the necessary

flattening effect at low grazing angles . However, it is also obvious

that the fit to the experimental data is not good in the region of

50 to 800 grazing angle . It is believed that this is in part due to

the approximate treatment of the slopes. Similar results are seen

in Fig. 2, using an exponential distribution for the large scale

roughness, and in Fig. 3, using an exponential correlation function .

In addition , use of the exponential correlation causes the large

values near normal incidence and. somewhat obscures the effects of the

small scale roughness.

The slight rise in all of the curves at low grazing angles

would be eliminated by including the effects of shadowing . Although

for some of the cases shown, the fit of theory to experiment is not

bad , it should be noted that there are two major factors which indicate

that further refinement of the theory is necessary. The first of

these factors is that fairly large values of the small scale nns

height , 
~2’ 

were necessary to produce the curves shown. The second

is that the overall k frequency dependence will not allow fits to be

made to the data at other frequencies without significantly changing

the values of the input statistical parameters . It will be shown that

both of these problems can be attributed, in part, to the slope

approximations . In the next section the Fresnel model will be developed

for compos ite surfaces using the ex act slo pe treatm ent .

17 t
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The t tal sca t t er ir i~r c~~ ff ic i e nt f r  Gaussian l arge and small
scale dist ributions and Gaussian cc rrelat ion functions wi l l  now be :~ e
into a form that is easil~ c- mpare i with the results of the Fresnel

model given in the next se~ction . The total scattering coefficient is

obtained by adding Eq. (26) to the coherent scattering coefficient

given by

<I>
°COH 

S COH = p ~~e 
1 ~ ( L,~~~)

p

so that

2 22
2 -(g1

÷g2) AF ( r 00+r 10) k (-g 1
+g2)

OTOTAL = P e  + 2 2 e
2~ r00r10

(142)

Co Co gigi -V
~~ /4[i/1~+i/4] 1 2

~ ~: E rm~ i~ j  ~ i 1—p e
i=0 j=0 2(—~ f—~ L

• ~\~l 
1
2

If g
1
>>1 and g2<<l, the sutmnation over j  can be replaced by the two

lowest order terms, so that

2 -(g1+g2) AF
2
(r00+r,0

Yck
2 

(-g1+g2)
+ 

2 2 2 e
s r00r10

g~ L~ ~~~~~~~~~ 
+ ~~ g

2~~~~~~ i ii=0 i=0

\ i  2

1 2 -(g1+g2)]

J
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However , the first summation is the incoherent part for the large

scale roughness alone with an extra factor of e 
g2 so that

2 2
-g, AF (r00+r10) k -g1

= e  o + e  -. e
TOTAL 1 -

—‘i ocr10
( - . 4)

Co ~ e / ~[~~~
1’] 1 2

g TT ~ 1 ~ ~l~•P e
1=0 2(—~-f— ~ L

\L l 
I~

Assuming that 1 >>I , restriction of the formula to the backscatter1 2 / 2
case whe re the coherence , ~p e ), is negli gible gives the simp le

f~ i-rn

2 2 /
2 •~ -v i ,4

-~~~~~ AF (r +r )~ k
2 

-g~ 1~ e 
xy 2

°TOTAL = e 
~l 

+ 2 2  — e 2 
g
2 (45)

2,i r
00
r10

Since g~~k
2
~
2
h~ and, 

for backscatter /=2sinør and F=l/sinGr , E~ . (~~5)

bec omes

°TOTAL = ~~2 

~~ 
+ 
A(r00+r10

)
2 

~~~~~~~~~~~~~~~~~~~~ . (4 6 )
2~ r00r10

This equati:n will be compared with the results of the Fresnel mode l

in the next section in order to determine the effects of the slcpe

approximations .
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C. Modified Fresnel Model with Exact Slope Treatment

It has been shown previously
1 that the expression for the

scattered intensity developed from Eq. (1) may be expressed as

( 4 7 )
s s O  s l  s 2

where the “0” subscript indicates the zero slope term, and the ‘ 1 ” and

“ 2” subscripted terms arise as a result of the exact slope treatment .

When a realistic beam approximation and Fresnel phase apprcximaticn is

made, the individual terms in Eq. (47) are giverr by

~~s
>
0 = k~sin

2e nfl e~~~~2+~~2) e~~~~ (e
_i

~~~~~~~’) t h dy , (~~~B)

<I
s
>
1 = 

cos
:
e
r nffe

_(
~’~ +NY 4 ) 

e
ax 

~~~ (e
_i
~~~~

_
~’)~~~~ (~ 5)

and

= ~ 
ksinO cos6 

F~~~

0°

e
_ (Mx2+Ny

2
) 
~~~~ ~ 

~~~~~- ik~( ~
_
~~)) ~~

(~o)

where

is the receiver grazing angle,
e . is the source grazing angle,

= sin~ .+sin~1 r
a = cos6 . —cos6

1 r
A

2’
2K( 2~tr00r10

)

/-. = a 
~; 

the elliptical insonified area ,
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k is tho wavo number ,

r is the surf ~ - to ,o~ur oe  di :tui co ,

is tho surface  to receiver distance ,

K = 3, (~~0 log
10e). 

a beam paraneter,

S = 2r ~r
1 

r, )  +r10),

. 2 2= . r~~ r10/rQ0
s1r. e

r
+r lQsln G1).

= k 2 / 2 ~~~+K/~~
S,

N =

and (e
1
~~~~~~ ) represents the average intensity modulation due to

the surface roughness.

For a Gaussian distributed surface with two independent roughness

scales , the characteristic function is giver. by Eq. (20)

e
c
~~ 

-g2(i-c2) (~~)

where
2 a 2

2 2 2

h1 is the m s  value of the large scale roughness ,
is the m s  value of the small scaie roughness, and

c2, c1 are the normalized surface autocorrelation functions for

the two scales of roughness.

In order to insure that the results will be simple we shall make t wo

assumptions :

and (52)

g2
<<1 

-
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With these assumptions we may make the “ large g ” app roximation in c L e

large scale characteristic function ,

-g
1
(1-c

1
) _g

1~
c~ (O)~~x

2
+y
2
) (~~)

and the “small g” approximation in the small scale characteristic

function ,

-g (1—c ) —g
e e (l+g

5c5
) . ( 5

To a reasonable approximation , c1 is given by a Gaussian correlation

function . Since no physical knowledge of the small scale roughness

is available, it will be arbitrarily assumed that it is also

Gaussian ; thus

= 
_g
1(x

2
+y
2
)/1~

_g
2 + g

2
(55)

2 2 / 2  2 2 / 2-g
1(x +y )i 11-g2 —(x +y )

~ 12-g0+ g 2 e

In Eq. (55 ) it has been assumed l/L~~~g1/1~~, which means that for

moderately large frequencies the slopes of the small scale roughness

must be much larger than those of the large scale roughness.

Additional quantities which are required for Eqs. (48) thr -ugh

are

1 2 
_g
1
(x
2
+y
4
)/~~_g2 2< > = -2g1/12x e - 2g2/22x e (56)
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an-I

= [- g + 
~~~

(57)

+ [_2~~/I~ + 402II~~ 
o]

_ (x2+y
2
)/1~ _gc

Substitutions of Eqs . (55), (56), and (57) into Eqs . (48), (49),

and (50), respectively, and the subsequent integrations yield

2 2 
_k 2

a2/4(M+g1/1
~~

) 
2<T~5

>
0 = e  k s i n O x P  - + g2

1
2 er

(58)

~~ > = e~~~ 
cos~ 9 gi/I~~[~~

(M+g i/L)~~ + g1
k
2
a2/1]~~ _k2a2/4(M+g 1/L~ )

~~

f(M+gl/1

~

)5(N+g

~

/1

~

)
( 59)

+ 

)
~2(2 

+ 1/2 l~~2 2)e
_ k a L

2/4l]

and

-g k sin 26 ka _k 2a5/~~M+g1/L~~)
~~s

>
2 = e ~ r 

~~~~~~~~~~~~~~~~~~~ 

e -

(60)
2 2 2

- k a 1
2
4

+ g L  kae

26

— —— .  —

~r “ _•-
~~~~ ~~~ 

- 

~~
- L

~~ 
‘

~~. ~~~~~~ ~



Now defining the scattering coefficient in the usual mariner,

examinatic~i of the first terms in the brackets in

Eqs . (58 ) , (~9), and. (60) reveals that these are the terms which arise
solely from the large scale roughness , except for the factor e

The terms in the second set of brackets arise solely from the small

scale roughness. Regrouping terms, simplifying, and denoting the large

scale scattering coefficient by a ,1 , the scattering coefficient
obtained from Eqs . (~8), (59), and (60) becomes

-g2 -g2 A(r00+r10)2 1 / 14 2 2\ 
_v

~ 1~/14 - (61 )
a = e °l 

+ e 2 2 ~~ k
2k h

2
12)e

2,t r00r 10

The scattering coefficient given by Eq. (61) contains several

interesting features. First, the coefficient may be represented as

the sum of the effects due to the large and small roughness. For most
-g2frequencies of interest , e ~l; thus the two effects are practically

independent of one another. Secondly, the angular dependence of the

two effects is markedly different . The scattering coefficient for the

large scale roughness, O1~ 
starts out at relatively high levels and

decreases rapidly with decreasing grazing angles , while the small

scale scattering effect is essentially ccnstant at the low graz ing

angles where it becomes dominant. Finally, it should be noted that

the heuristic model and the modified Fresnel mode l of the scattering

process give identical results for the small scale scattering . This

is because these models differ only in their treatment of the inco-

herent component near the specular direction . When the incoherent

component dominates , as in the case of small angle backscatteririg,

the resu ts of the two models are equivalent , thereby confirming the
suitability of the Fraunhofer phase approximation for strongly inco-

herent fields .
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During the next quarter , the l i terature will be searched for

data on large and small scal e roughness , sea surface spectra , and the

relation of the resulting statistics to measurable environment parame-

ters such as wave height and/or wind speed . This will allow model

input statistics to be defined in terms of the environmental parameters .

In addition, the backscattering model will be modified to include time

dependence.
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III. CONVERGENCE ZONES

A. Introduction

Convergence zones are regions of focused sound from a shallow

source in deep water. The acoustic waves are focused at or near the

surface by refraction at great depths . Convergence zones occur

typically at range intervals of 80 kyd or less when the near bottom

soun d velocity is greater than the sound velocity near the surface.

In general, the convergence zone interval depends on the velocity-

depth profile and the location of source and receiver.
2 

For example,

in the Atlantic and Pacific Oceans, the critical depth is between

4000 and 5000 yd. The resulting convergence zones appear every 60 to

80 kyd. When the critical depth is around 2000 yd (as in the

Mediterranian Sea3) the zones appear every 30 to 40 kyd.

Theoretical treatments of convergence zone phenomena are based

on both ray and wave methods, but most examinations have used. ray

theory techniques. Useful summaries of ray theory methods for studying
14 5convergence zones have been given by Hale and Arase .

Ray tracing yields a qualitative picture of the distribution

of energy , and it also provide s a way of observing easily the changing

characteristics of convergence zones when the profile parameters and.

source depths are varied. A typical ray trace is shown in Fig. 4.

The source was at a depth of 100 yd. and the velocity-depth profile was

specified by the Epstein function. Note that the critical depth was

approximately 2000 yd and that the convergence zones occur about every

32 kyd .
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Ra y methods can also give range predictions, but problems arise

for intensity predictions due to the caustics (a caustic is defined
as the locus of focal points at which adjacent rays touch each other).

At caustics . ray theory intensity calculations go to infinity because
(~~Rj’~ 6) goes to zero . In order to make ray theory intensity calcula-
tions in caustic regions , Pedersen and Gordon6 included various

diffraction corrections in their calculations . They found that the

correction derived by Brekhovskikh7 was superior to the correction

derived by Marsh.° These diffraction corrections allow ray theory

intensity calculations to be made in both caustic regions and in

shadow zone regions .

When normal mode methods are applied to convergence zone

propagation, there are, in general , computational problems due to the

large number of trapped modes. There is also the problem of finding

a velocity-depth profile which permits the depth-dependent differential

equation to be solved in terms of functions which can be calculated.

Figure 5 shows a wave theory plot of transmission loss versus range
for the Epstein profile of Fig. 4 . The frequency was 10 Hz with
15 trapped modes. For higher frequencies, many more modes are trapped

and the usual computational problems arise. There is however qualita-

tive agreement between Figs . 14 and 5.

Since ray theory and conventional wave theory are both limited,

several authors have attempted using WKB (Wentzel-Kr amers-Brillouin)

techniques . Bartberger and Ackler9 have been able to use WXB xnethod .s

for convergence zone calculations at frequencies up to 300 H~ . Also

Leibiger and Lee1° have applied W~~ methods for convergence zone

calculations up to 5 kHz .

In this section a brief outline will be given of Leibiger’s

method utilizing a more general Green ’s function . The basic idea is

to transform the usual slowly converging normal mode expansion into

an alternate , more rapidly converging series. Such a representation

FIR Tin --
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w~ts derived b~i Brenimer” by considering the total f ie ld  to be made up

1 a sum of multipaths or hops. The ray or hop series was obtained by

expanding the integrand ( the inverse of the Wronskian) of the basic

contour integral. Individual integrals were then evaluated to yield

the hop series. Leibiger rederived. Bretmner ’s work in his doctoral

dissertation and has applied his techniques to many of the propagation

modes encountered in the ocean. In the next section the Bre~ ner-Leibiger

method will be discussed using Green ’s function .

B. Green ’s Function Expansion

The basic contour integral is given by12

P(r , z , z0) = JG( z , z 0 ) H r ) ~ d~ , (62)

where P represents the acoustic pressure, r is the range coordinate,

and z is the depth coordinate. The Green ’s function G(z ,z )  is given

by

n (z )n (z ) n (z )n,~(z~~)

- 
n1(z <)+R 1(z 1)[ n2(z~~) }[n2(z >)+R 2(z 2 ) 1 

n1(z 2 )
G(z,z0 — n (z )n,~(z 21

w(n2,nl) [l~
R
i(zi

)R2(z2) n
~

(z
~

)n (z
l)]

(6~)

where the reflection coefficients R
1
(z

1
) and R2(z2

) are defined at the

boundaries z
1 
and z

2
. Other functions and parameters are defined in

Ref. l~ and are omitted for brevit y.
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When the W1~ approximation is applied to the denominator of

Eq. (6-). the ratio n
1(z1

)n (z,)/n1(z .)n(z 1) is replaced by

e
~~~

(_2ikoj Z
2 

[fl
2(Z ) C05 2

6]
l/2 

~
) . ( ( - 4 )

The relevant function to be expanded in Eq. (63 ) thus becomes

-2ik [ ]1/2~ 
-l

oJ z
e 1 

. ( ( t )

When the expansion of Eq. (65 ) is used in the fundamental contour

integral of Eq. (62),  the acoustic field is represented by an inf in i te
sum of integrals. In and. near any particular convergence zone only

a small subset of these integrals contributes in a significant way to

the total sum . A great saving of effort is achieved by evaluating the
integrals rather than the mode sum, especially at intermediate and high

frequencies . The integrals are so ordered that each contributing

integral can be associated with a particular multipath of the con-

vergence zone .

Next quarter the multipath integrals defined by the series of

Eq. (65) will be given explicitly and discussed.
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