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ABSTRACT

This first quarter the reflection and scattering models were
further developed, and a review of the literature preliminary
to the development of a convergence zone propagation model
was completed.

In Section II, the expansion of the heuristic scattering model
to include composite (both large and small scale roughness)
surface statistics is given which should improve backscattering
predictive capabilities. This model does not include slope
correction terms but has the advantage of simplicity. The

more rigorous theoretical model which includes slope correc-
tions terms is also expanded to allow for composite surface
roughness.

A survey of the literature covering convergence zone propagation
is summarized in Section III. An approach is outlined for the
development of a convergence zone model using a Green's.

function expansion. This technique results in an ordered
integral expansion where each integral can be associated with

| a particular multipath.
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I. INTRODUCTION

Work done under Contract NOOO24-71-C-1266 for the period of
1 April 1972 to 30 June 1972 is summarized in this report. This work
represents a continuing investigation of the reflection and scattering
of sound from the rough ocean boundaries, and the interaction of
scattering with sound propagation in the ocean. In Section II the two
scattering models derived at ARL are extended to apply to composite
surfaces. This work will provide a basis for the prediction of back- é
scattering from the ocean surface. It will be shown that both large
and small scale surface roughness effects are important in the back-
scatter case. In addition, work on convergence zone propagation was
begun this quarter. A brief survey of the literature was completed
and is given in Section III. Theoretical treatments of convergence
zone phenomena are discussed for both ray and wave theories. The

limitations of both classical ray and wave methods are summarized.

It was found that limitations of normal mode theory can be overcome
by transforming the basic contour integral into an infinite sum of
multipath integrals. The evaluation of these ray integrals is briefly

discussed with an outline of future work dealing with this approach.
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JI. BACKSCATTERING FROM COMPOSITE SURFACES
A. Introduction

During this quarter the two scattering models developed at ARL
were revised and extended to give theoretical predictions of the
backscattering from composite rough surfaces. The simultaneous
development of both scattering models was carried out in order to
better understand the importance of phase, beam, and slope approxi-
mations in the backscatter case. It was found that the exact forms
of the phase and beam approximations are relatively unimportant as long
as the coherence of the scattered field near normal incidence is
properly accounted for. However, it was also found that, for the
backscattering case, the exact slope treatment must be used, and that

the effects of shadowing should also be included.

The scattering coefficients, o, used in this section are related

to the usual definition of scattering strength through S:ho/A, where

A is the active scattering area. Here it is assumed that the scattering
strength, S, is referenced to 1 yd. In the following section the
heuristic (stationary phase) scattering model is developed from

separate calculations of the coherent and incoherent parts of the
scattered field. The modified Fresnel model with the exact slope

treatment is given in Section C and is compared with the heuristic

model.




B. Heuristic Model

The heuristic scattering model (given in detail in the final
report under Contract NOOO24-69-C-1275 and in "Forward and Specular
Scattering from a Rough Surface: Theory and Experiment", by Boyd and
Deavenportl) is here revised and extended to apply to composite rough
surfaces. Particular emphasis is placed on improving the backscatter-
ing predictions without degrading the forward and specular scattering
predictions. This subdivision will be divided into three parts
following the chronological development of the model. In the first
part a detailed derivation of the coherent pressure for composite
surfaces will be given. The second part will give a brief discussion
of the composite characteristic functions used in the scattering
model. The third part will contain the development of the incoherent
scattering coefficients for various surface statistics and some

numerical results for the backscatter case.

3 Coherent Pressure

The scattered pressure is given by

ik(Ro+Rl) "
ik -1k7§ A A A ~
PS(I‘) = -2-;-[[0 £ RoRl e <& e + % ey - ez)-eld.xdy W)

The various constants and ranges appearing in Eq. (1) are defined

in Ref. 1. Assume that the surface height is given by

)

n

C(X,y) = Cl(x;}’) + :g(X,Y) ] (
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where Ql(x,y) and Ce(x,y) are random variables representing the large
and small scale components of the surface roughness, respectively.
Eq. (1) then becomes

1k(R +R, )

-iky(€.+¢ )
Ps(r =-2—k / el 172

: (3)

y [(3; (€,4,)8, + & (6,48, - ] . & axay

The usual development of the coherent pressure can now be made using

this equation. The mean pressue is given by

<Ps> & fffff/ Ps w6(cl’c‘2’glx’€2x’cly’CEy)dgldCnglx d§2xdclydc2y

(k)

where

acl
Clx = &— 9 etc., and

w6 is the six-dimensional probability density of surface heights and
slopes. Substituting Eq. (3) into Eq. (4), interchanging the order
of integrations, and using the definition of the characteristic

function gives

> Jfom—

(8% )
(T 008+ (€808, - e, &) aay

1k(R +R )
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If the slopes clx,§2x,c1y,§2y and the heights Cl,C2 are assumed
| independent, then

1k(R +R

l) 'ik7(§l+§2)’\
L e,

808, + (8

“’lw

(6)

2y) s z> dxdy

Further, if the slopes Clx’§2x’cly’§2y are all zero-mean processes,

then the expectation value becomes

(K e+ (6 1,08 -8 >= 8 . (7)

Thus, if Cl(x,y) and 22(x,y) are isotropic, the remaining expectation é

value can be removed from the integral and 'i

1k(R +R, )

-iky(§,+ ) e
5 <-:‘ f[ ~—s5— (e,-8 )ady] , (8)

<P > =

where the term in braces is the pressure reflected from a plane

surface. The coherent intensity is then given by

. 2 1
<Ls”con = <Ps><Ps>*= <‘1k7(§1+52)> To ) V

where Ip is the plane surface intensity and the other factor is the
square of the composite characteristic function associated with the
distribution of surface heights. The coherent scattering coefficient

is obtained from this by dividing out the intensity scattered from

a plane surface in the specular direction.




2. Composite Characteristic Functions

The one-dimensional composite characteristic function used

in the scattering model is given by

-iky (6. +6 )
<31712> . (10)

EE Cl and §2 are independent, this becomes

<3-ik7(c1+c2)>: <;ik7c1> <e-ik7§2> , o

where, for a Gaussian process

G-ikﬂ;) _ o"8/2 ’ (12)

and for an exponential process

: -5/u
<e-1k7§> i [1 + g&} 4 (12)
3
2.2 2 ; ; :
Here g=k 7 h, where h is either the large or small scale rms height.

The two-dimensional composite characteristic functions can

be treated similarly if the large and small scale processes are

independent:

1iky [(€,+8,) - (41+¢5)] ikr(€) =81\ ikr(€s-t))
Bk . i . Sines ST

For the Gaussian bivariate distribution

<eik7(§-§' )> R (15)




and for the exponential

O - "5/2
<e1k7(C ¢ )>= ll + %5(1-c)] (16)
B Incoherent Scattering Coefficient

The incoherent scattering coefficient is given by
2 2
AF (roqtry0)

9INCOH 2 2. 2
00710

(17)

X {52%2- /: Jo(vxyr)[<eik7(§-t')> - <e'ik7C>2err}
<[]

An initial attempt at adapting this expression to composite surfaces
consists of simply replacing the characteristic functions with their

equivalent composite characteristic functions, i.e.,

<e-ik7§> L <a'ik7( C1+§2)>
(18)
<eik7(§-§' )> S éim [(C1+§2)'(§i+t'2)]> .

It should be noted at the outset, however, that this approach is an
approximation in that no modification is made to the slope terms
which appear in the original integral for the total pressure. These

slope terms have already been evaluated at the stationary phase




points and removed from the integral as Beckmean's F. The effect of

i this approximation will be examined in the following section.

Equation (17) will here be developed for (a) Gaussian large
and small scale distribution functions, (b) exponential large and
small scale distributions, and (c) mixed Gaussian and exponential
distributions. Forms for both Gaussian and exponential correlation

functions will be given in all three cases.

(a) For Gaussian large and small scale processes, Egs. (11). (12),
(14), (15), and (18) are used so that Eq. (17) becomes

2 2
; . AF (roo+rlo)

INCOH ~ 2 2r 2

7 TooT10
(19)
2.2 f= -g,(l-c;) -g,(l-c,) -g, -85
xkny(V r)[:el LS SR "'j]rdr

2n 0 o' Xy

X |1=-p e

F 5 -(gl+g2)]

where
2.2.2
gl =k hl 5 d
22 2
By = B Y By

and hl’ h2 are the large and small scale rms heights. To evaluate

9




Eq. (19) the characteristic function must be expanded in terms of the

large and small scale correlation functions ¢y and eyt

<iik7[((1+g2)-(gi+céﬂ:> ~[ﬁ](l-cl)+82(l-czﬂ
e = e

-(g,*e,) 8 ¢ %60,
= e e

g ol B

where the first term is required to be unity:

must be expanded in a series in terms of c, and c2

nn Jd
8117802 &% &% = B M B
e = e e = Z = Z 3T
n=0 % j=0 g
(21)
o0 0 gngJ
_ 2: 2: 1°2 .n oJ
= —— 5
320 00 Jenls =L 2
where the j=0, n=0 term is 1. Thus the integral becomes
2 )2
AF (x5t
foj o
INCOH 2. 2
7 Foo®10
(22
n_j
22 g+ & & 5& [ : ~ -(g,+8,)
K 7 1= Z Z i e (V )nJ & 1 =2
% e — J rclc2 rdr}) |1-p e
2n 320 n=0 Jans o © XY

where the j=0, n=0 term of the sum is omitted. The integral to be

evaluated is

nd
»
~—

o) .
/ J (Vv xr)e™ ¢Y rar 25
0 o Xy 15

10

P .
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where ) and c, are the large and small scale correlation functions,

respectively. For Gaussian correlation functions

(]
By
c.(r) = e X
1
and (24)
o]
-I‘{—/lg
c2(r) = e ’

where Zl and 12 are the large and small scale correlation lengths.

Equation (23) becomes

i e
f J(V r) e [n/ i 2]1» rdr . (25)
o © xy

Performing this integral and substituting the result into Eq. (22)

gives (for Gaussian distributions and correlation)

2
AF (r

2
oo*rlo)gk e'(g1+g2)

9INCOH e
00¥10 (26)

-( )
Erpe . g1+g2]

For exponential correlation functions

-r/ll
€ ’

1}

¢, (r)

n
~3
N

and (

-r/l2
€ b

2

e (r)




so that Eq. (23) becomes

- L
% -[n[ll+3/l¢]r ll L,
J (V I‘) e T rdy = ~ o
o 20 EY T o e
ndl 4y
tl z, Xy

Thus for Gaussian large and small scale distribution functions and

exponential large and small scale correlation functions, the inco-

herent scattering coefficient is

2 2 2 X n_j <E-+J->
z AP (gt o) K <(eyey) 2 2 g8 Fy Ea
INCOH i “~ n'y! 3/2
2n r . .r n=0 J:O 3 2
00710 511_+-IL W 2
1 "sf

(b) For exponential large and small scale distribution functions

Egs. (11), (13), (14), (16), and (18) are used in Eq. (17) so that

(28)

2 2
s (roo*ry0)
9INCOH ~ 5 2 2
7 Too™10
k272 & 281 2 b "//’2 281 Eg N
- fo Jo(vxyr) [1+—5-(1-cl{|[1+—?-(1-c2)] - [14-—3-][1 +T]




{ The characteristic function expansicn is given by

=3/2

y 5": (2n+1)t1g"c? (

n=0 3nn:<l+§g>n+5/2

L ')
=
~

[1+§—g( 1-c)]

Again, the first term of the expansion is equal to the one-dimensional

characteristic function so that Eq. (30) becomes

2 292
_ 2 AF (roo+rlo) k
INCOH ~ B 2r 2
T Too%10
(32)
: s g
o (2n+1)!!(2j+1) g g @ .
I n.J
& 2 Z n+3/2 Jj+3/2 f Jo(vxyr)clc’r} .
n=0 j=0 13 2gl 2g2 0]
tJilt— I+ —
i 3 “n.j 3 =
= ;

where the n=0, j=0 term is omitted.




For Gaussian correlation functions Eq. (25) is used so that

AF ( )2k2

Too™10

9INCOH PO
* Foo*10

2 2 2
u .
(2n+1)!1(23+1) ! g2 evxy/ [n/tlm/lg]

o0 o] 2 e
X 25% 3§% 1/ 26 \*2 [ 2g \IT/2 (33)
5, 5n+J ' c[% +l. éjmgl> 6&-—2)
1 5
1 2—

-

2

B
Egl 2g2 e
l+—5— l+—3— Y

For exponential correlation functions Eq. (28) is used in Eq. (32) and

AF(r +r )k2

p 4 00 10
INCOH ~ |~ -
T TooT10
o d
&' 8 Pi(oaa1 )t Rgd F
. 3 z (2n+1)!!(25+1)! ‘g, 85 (‘l l£>
= o0 \B*3/2, oo \G*3/2 5 372
i j 3n+j s l+.§l l+_E§ E—+i— +V 2
Negds 5 3 ll 12 Xy
2 (34)

3/2 ¢
2 2
1LY (142

3 3

where the n=0, j=0 term is again omitted.

14
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(¢) Assuming independent large and small scale processes, the

integral in Eq. (17) becomes

/‘w i <B;uw(cl-ci)> éik7(§2-§'2)> ) <e-ik7§l>(<e-ik7ce>>d "
o © *¥
(

35)
Assuming that the large scale process is Gaussian and the small scale

is exponential gives

o 'gl(l—cl) 2g2 -3/2 -8, 2g2 -3/2
j; Jo(nyr) e l+—3- (l-c2) =i 14— rdr

3 y
(36)
The characteristic function expansion is
-gl(l-cl) 2g2( ) -3/2 -g; i Z g']J_ci (2n+1)!!ggcg
e 14— (l-c =e -~ :
5 e s0n=0 9 2, n+3/2
Nl+—
3n 3
(37)
so that
2 22
. AR (rpptry o) K Mo
INCOH ~ B ¥ 2r
00~ 10 (38)

rdr

n s

J.n
© o (2n+l)!lglg @ -
1=2 J
50> fo 3 (7, Fede

2
J:O n=0 s n( 2g2>n+3/
Jelivs l+—5—

-3/2
2 ‘81[ ggeJ i
X |l-p e 1+-3—
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where the n=0, j=0 term is again omitted. For Gaussian large and

small scale correlation functions, Eq. (25) is used, and Eq. (38)

becomes
2 2 3
.=V [u]3/154n/2
e a2 1100 B xy/[l’E’
: AP (rgptry ) K ! }g—-: i (en+1)!'gye e
INCOH ~ 2 2 4 n+3/2
2n Tso¥10 J=0 n=0 = 2g2 U
2:.3'n!3 \1+—== r
-1 -
o

(39)

=3/2
2 'gl[ Ege] .
X |l-p e l+—5—

For exponential large and small scale correlation functions Eq. (28)

is used, and

AFe(r )2 2

o B ea'ag’ © B
INCOH ~ Ady s ?r 2
00710
£ (Lo)
P i L"'—
® ﬁi (2n+l)..glg2 1L,
X g
‘ n+3/2 2
o nf. 8o . Ol i
Jint3t 1= svi-| +v
4 - B

The incoherent scattering coefficients for an exponential large scale
process and a Gaussian small scale process can be obtained from

Eqs. (39) and (40) by interchanging (gl'll) and (gz,tz).

Preliminary numerical results were obtained from the formulas

given above and were compared to data taken at one frequency from the

16




smoothest of ARL's rough model surfaces. The data were taken at ;
| 00 kHz from Surface I, which has an rms height of 0.091 in. and i
{ correlation lengths of 1.4 in. for Gaussian correlation functions and !

2.55 in. for exponential correlation functions. Figure 1 shows

results for Gaussian large and small scale distribution functions with

Gaussian large and small scale correlation functions. From the graph,

it is obvious that the basic shape of the theoretical curves is correct

and that the addition of the small scale roughness gives the necessary

flattening effect at low grazing angles. However, it is also obvious

that the fit to the experimental data is not good in the region of

50 to 80° grazing angle. It is believed that this is in part due to

the approximate treatment of the slopes. Similar results are seen

in Fig. 2, using an exponential distribution for the large scale

roughness, and in Fig. 3, using an exponential correlation function.

In addition, use of the exponential correlation causes the large

values near normal incidence and somewhat obscures the effects of the

small scale roughness.

The slight rise in all of the curves at low grazing angles
would be eliminated by including the effects of shadowing. Although
for some of the cases shown, the fit of theory to experiment is not

bad, it should be noted that there are two major factors which indicate

that further refinement of the theory is necessary. The first of

these factors is that fairly large values of the small scale rms

height, 955 were neceisary to produce the curves shown. The second

is that the overall k frequency dependence will not allow fits to be
made to the data at other frequencies without significantly changing

the values of the input statistical parameters. It will be shown that
both of these problems can be attributed, in part, to the slope
approximations. In the next section the Fresnel model will be developed

for composite surfaces using the exact slope treatment.

17




1 33n91d

Bap — 3JONV ONIZVHO

00! 06 08 0L 09 0s ov 3 0z
T T |§ = T T T T i 3
\x\x‘x’x
X
" \X\ - - - s¢-
W e i o ""”
.-:.....-...-:o:..........o.- .-.:...-k!..u..‘..-...q-.oo-:-.-..-.- o
-.- ‘\‘\‘\X\ c‘.-.-a.--.c-
o - ~ s
(1°0 'Z0°0) +mmm v o FRE L Sy .
L (T°0 '20°0) X=X=X e e -
(§1°0 '§10°0) == === 7 A 106
(OL°0 ‘SLOTD) creevevenses R4 \X '~
..\ \X
Aau ‘To) i X
NOILY 133300 NVISSNV9 A x\
L NOILNSI¥1SIA NVISSNVO 1/ dcz-
'SSINHONOY 3TVIS 1IVWS 7

18

9P = LN312144300 ONI¥3LLVISHOVE

ViVQ TVINIWINIdX3
et 4 G | Ul 1600 = 1o

NOILONNd NOILVI3¥A0D NVISSNVO
SLHOI3H 40 NOILNGIYLSIA NVISSNVD

‘SSINHONOA 3TVOS 30UV

I 3dvauns




oot 06 08
———————

(§1°0 'S200) ===~
(£1°0 TZO°0) ==evveeves
(61°0 ‘20°0) « ==+ =

A«q ‘To)
NOILV13¥¥0D NVISSNVO
NOILNBIYLSIA NVISSNVO
‘SSINHONOY 3ITVOS T1IVWS

7 3¥NoI3

Bep - JIONV ONIZVHO

(074 09 oS ov (013 (074
| T T T T T
-
.\.\.\.\ i
-
ot
e - EN = e -
\.\. ........ \‘\\‘\‘ ,,,
\.\. ...... —
LT
R
5%
£
V4

viva IVIN3IWI¥3dX3

L=ty 1600 = o

NOILINNS NOILY13J¥0D NVISSNVO
SLHOI3H 40 NOILNGI¥LSIA TVILNINOGX3I
‘SSINHONOY 37TVIS 30UV

1 3Jvdans

“ ~
T«
5 ¥ - ia
e
xnd
<<z2
SE-
oE-
- @
>
0
x
n
0O
>
-
-y
4
0z- z
(2]
0
o
m
-
=
8]
= ™
Sl i
-
1
o
©
ol-
Co

19




€ 334N91d

Bep — JIONV ONIZVAO
00l 06 08 04 09 0s

ov 3

T T T T T T

(1°0 'S00°0) +==s ==«

& ©0°200) == ==
(S1°0 “10°0) v vvvres
2y 20 P
NO!LV 133300 VILNINOdX3 Ry
i NOILNGIN1SIQ TVILNINOdX3 P

‘SSINHONOY ITVIS TIVAS

V1iva TVLIN3IWI¥3dX3

ugeT =y Ut 16070 = o

NOILVI3330D TVILNINOdX3
NOILNBI¥LSIA NVISSNVO
‘SSINHONOY 3VOS 30UV

I 3Dvans

SZ-

Sl-

ot-

9P = LN31D14430D ONI¥3ILLVISHOVE

20




The total scattering coefficient for Gaussian large and small

scale distributions and Gaussian correlation functions will now be put
| into a form that is easily compared with the results of the Fresnel
model given in the next section. The total scattering coefficient is

obtained by adding Eq. (26) to the coherent scattering coefficient

given by
> -
B T%con 2 . (g,*8,) (40)
CoOH -~ T 1 il ’ s
P
so that
2 22
o (gyvgy)  JAF (rg*r )7k (g +e,)
ororaL = P € - g B
T TooT10
(42)
2 o 2
13 ¥ u[i/t +j/t]
22 818 . xy/ 1 2 5 -(81*’82)
X 2: T l1-p e
oy o

b 1
i=0 2(12+[2
Bl

£ gl>>] and g2<<l, the summation over j can be replaced by the two

lowest order terms, so that

g . 23-(gl+82) B AF
TOTAL ~ P

Tootty ) X (-8 *e,)
e




However, the first summation is the incoherent part for the large

scale roughness alone with an extra factor of e-ge, so that

2 22
"E> -8 AF (rpotryp) % -8
‘porar, = ¢ 1T € -

2% Too%10

2 AR
x i -v /u[i 15+1/1 ]
B o X /1 /2 [l_pg -(gl+g2)]

(44)

e

Assuming that ll>>12, restricti?n of the formula to the backscatter

2 -(g1+82)) . X ) J
case where the coherence, \p e , is negligible gives the simple
form

2.2
2 22 2 Vet i
€2 AF (rgotr o) k™ -85 4y e b
. Sl S AR ) g, - ()
T Yoo"10

Since g2=k272hg and, for backscatter vy=2sinfr and F=l/sin6r, Eq. (45)

becomes 1
2 22 '
-g Alr. +r_ )" ~g =V otk i
_ 2 00 "10 2 % 2.2 Xy 2
OTOTAL = e 0'1 o —-2——1‘—5'1‘—2— [~ 2k hglg a (ll»6)
T T50"10

This equation will be compared with the results of the Fresnel model

in the next section in order to determine the effects of the slcpe

approximations.




c. Modified Fresnel Model with Exact Slope Treatment

It has been shown previouslyl that the expression for the

scattered intensity developed from Eq. (1) may be expressed as
> 4 > 47
<Is <Is 0 5 <Is>l B <Is>2 (47)

"nan

where the "0" subscript indicates the zero slope term, and the and
"2" subscripted terms arise as a result of the exact slope treatment.
When a realistic beam approximation and Fresnel phase approximation is

made, the individual terms in Eq. (47) are givem by

o0
&0 kgsinger I‘ff e_(MX Wy eikué-iky(g-;')> dxdy y o 4A8)

A
v

A
—
\%
1

B s iy >

cos & : : :

e rf/e-(Mx Hy") tkax 3 <e-m(c-; >>m>, . (1)
Y 2 ox

and
ksing cosé - > 2
sinfé cos 2 s
- i - ik =t
qs>2=i—;_{p”e (Mx+Ny)e1ka.xg_£<e 7(C')>d.xdy
i (50)
where
” is the receiver grazing angle,
Gi is the source grazing angle,
Y = 8inB,+sinb_,
n r
a = cosf,-cosf_,
i r
A
I' = ok
2K(2nroorlo)
A = n & p; the elliptical insonified area,




k is the wave number,

oo is the surface to source distance,
i P is the surface to receiver distance,

K = 3/(20 logwoe). a beam parameter,
s 2roorm/( T00*T10)
> . 2 .2
Rl = proorlo/(10051n 9r+r1031n Gi).

k“Q"/ 2KR +K/ 20,

=
]

k;E;/QKR2+K/ 252,

-
=
i}

-iky(t-¢") : ; .
and (e represents the average intensity modulation due to

the surface roughness.

For a Gaussian distributed surface with two independent roughness

scales, the characteristic function is given by Eq. (20)

sk (£ +0,)-(81 )] __alimey) -g(ic)

e ) (51)
where

2 2

gl =k 7%11)
2202

& = ke hg,

hl is the rms value of the large scale roughness,

h2 is the rms value of the small scale roughness, and

C5r€y are the normalized surface autocorrelation functions for

the two scales of roughness.

In order to insure that the results will be simple we shall make two

assumptions:

>>
g, 1

and 52




With these assumptions we may make the "large g" approximation in the

large scale characteristic function,

g(ie)  g[ef(0)] () (55)
e = e

and the "small g" approximation in the small scale characteristic

function,

-gy(1-c,)  -g
At ® (1vge) (54)

11

To a reasonable approximation, ¢y is given by a Gaussian correlation
function. Since no physical knowledge of the small scale roughness
is available, it will be arbitrarily assumed that it is also

Gaussian; thus

2 2./.2 2 |2y, 2 2
-8, (x"+y )/’1'82 '(g1/‘1+l/’2>(x ¥ )-g,
= e + g, e

2
(55)

e e 2/ 2 2 2/ 2
8, (x"+y ) 1] -e, 5 -(x"+y7) 1 5-8,

e g, € g

u

In Eq. (55) it has been assumed 1/l§>>gl/l§, which means that for
moderately large frequencies the slopes of the small scale roughness

must be much larger than those of the large scale roughness.

Additional quantities which are required for Egs. (48) through

(5Q) are

3

2 2 2 PE R e
s =g (xT+y )/l -g s =(x"+y )/l -6
> l l 2 & 2 [ =
® o e = SBgphox e

(56)
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and

: , 2, 2 2
5 : e 1 (x"+y") -,
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an e b 9P

Substitutions of Egs. (55), (56), and (57) into Egs. (48), (49),
and (50), respectively, and the subsequent integrations yield

- -k a“ )+ M+gl/l -k s ld/h
e k51n6nF + gl

s O ’ 2 2
{M+gl/l N+gl/! )

n

V
i

(38)
[ e, 2 fig] sl
_g cos 9 ,gl M+gl/ll + glk a. -k alb M+gl/ )
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g &
’ 2 5
<M+gl J/ > <N+gl >
(59)
28 d
-k a l
+ g2<2 i 1%52 2 f
and
2 2
-g_ k sin EGr gl/l‘ ke -1(2a.c/h(M+g1 /11)
LD s " e g T x

(60)




Now defining the scattering coefficient in the usual manner,
c=<12> roo+rlo 2, examinaticn of the first terms in the brackets in
Egs. (58), (59), and (60) reveals that these are the terms which arise
solely from the large scale roughness, except for the factor e-gg.

The terms in the second set of brackets arise solely from the small
scale roughness. Regrouping terms, simplifying, and denoting the large
scale scattering coefficient by 01, the scattering coefficient

obtained from Egqs. (58), (59), and (60) becomes

2 2 2
Lol Aroorrio) 1 (gkuhgle)e-vxyz2 oo (6) |
§ 1 P 2K 2'2 |
™ Too%10 |

The scattering coefficient given by Eq. (61) contains several |
interesting features. First, the coefficient may be represented as
the sum of the effects due to the large and small roughness. For most
frequencies of interest, e- 251; thus the two effects are practically
independent of one another. Secondly, the angular dependence of the
two effects is markedly different. The scattering coefficient for the
ol,starts out at relatively high levels and
decreases rapidly with decreasing grazing angles, while the small

large scale roughness,

scale scattering effect is essentially ccnstant at the low grazing
angles where it becomes dominant. Finally, it should be noted that
the heuristic model and the modified Fresnel model of the scattering
process give identical results for the small scale scattering. This
is because these models differ only in their treatment of the inco-
herent component near the specular direction. When the incoherent
component dominates, as in the case of small angle backscattering,
the results of the two models are equivalent, thereby confirming the
suitability of the Fraunhofer phase approximation for strongly inco-

herent fields.




During the next quarter, the literature will be searched for
‘ data on large and small scale roughness, sea surface spectra, and the
relation of the resulting statistics to measurable environment parame-

ters such as wave height and/or wind speed. This will allow model

input statistics to be defined in terms of the environmental parameters.

In addition, the backscattering model will be modified to include time

dependence.




ITI. CONVERGENCE ZONES

A. Introduction

Convergence zones are regions of focused sound from a shallow
source in deep water. The acoustic waves are focused at or near the
surface by refraction at great depths. Convergence zones occur
typically at range intervals of 80 kyd or less when the near bottom
sound velocity is greater than the sound velocity near the surface.
In general, the convergence zone interval depends on the velocity-
depth profile and the location of source and receiver.2 For example,
in the Atlantic and Pacific Oceans, the critical depth is between
4000 and 5000 yd. The resulting convergence zones appear every 60 to
80 kyd. When the critical depth is around 2000 yd (as in the
Mediterranian Seaj) the zones appear every 30 to 4O kyd.

Theoretical treatments of convergence zone phenomena are based
on both ray and wave methods, but most examinations have used ray
theory techniques. Useful summaries of ray theory methods for studying

L
convergence zones have been given by Hale and Arases.

Ray tracing yields a qualitative picture of the distributiocn
of energy, and it also provides a way of observing easily the changing
characteristics of convergence zones when the profile parameters and
source depths are varied. A typical ray trace is shown in Fig. 4.
The source was at a depth of 100 yd and the velocity-depth profile was
specified by the Epstein function. Note that the critical depth was
approximately 2000 yd and that the convergence zones occur about every
32 kyd.
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Ray methods can also give range predictions, but problems arise

for intensity predictions due to the caustics (a caustic is defined

{ as the locus of focal points at which adjacent rays touch each other).
At caustics, ray theory intensity calculations go to infinity because |
(OR/36) goes to zero. In order to make ray theory intensity calcula-
tions in caustic regions, Pedersen and Gordon included various
diffraction corrections in their calculations. They found that the
correction derived by Brekhovskikh7 was superior to the correction
derived by Marsh.8 These diffraction corrections allow ray theory
intensity calculations to be made in both caustic regions and in

shadow zone regions.

When normal mode methods are applied to convergence zone
propagation, there are, in general, computational problems due to the
large number of trapped modes. There is also the problem of finding
a velocity-depth profile which permits the depth-dependent differential
equation to be solved in terms of functions which can be calculated.
Figure 5 shows a wave theory plot of transmission loss versus range

for the Epstein profile of Fig. 4. The frequency was 10 Hz with

15 trapped modes. For higher frequencies, many more modes are trapped
and the usual computational problems arise. There is however qualita-

tive agreement between Figs. 4 and 5.

Since ray theory and conventional wave theory are both limited,
several authors have attempted using WKB (Wentzel-Kramers-Brillouin)
techniques. Bartberger and Ackler9 have been able to use WKB methods
for convergence zone calculations at frequencies up to 300 Hz. Also
Leibiger and Lee10 have applied WKB methods for convergence zone

calculations up to 5 kHz.

In this section a brief outline will be given of Leibiger's
method utilizing a more general Green's function. The basic idea is
to transform the usual slowly converging normal mode expansion into

an alternate, more rapidly converging series. Such a representation

2]
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was derived by Bremmer11 by considering the total field to be made up
of a sum of multipaths or hops. The ray or hop series was obtained by
expanding the integrand (the inverse of the Wronskian) of the basic
contour integral. Individual integrals were then evaluated to yield
the hop series. Leibiger rederived Bremmer's work in his doctoral

dissertation and has applied his techniques to many of the propagation

modes encountered in the ocean. In the next section the Bremmer-Leibiger

method will be discussed using Green's function.

B. Green's Function Expansion

The basic contour integral is given by12

A il
P(r,z,2) = /G(z,zo) H (Er)edat (62)
where P represents the acoustic pressure, r is the range coordinate,

and z is the depth coordinate. The Green's function G(z,zo) is given

by

n,(z,)ny(z.) n (z)n,(z,)
nl(z<)+R1(z —-;(T 2 >)+R (Z —-nl-—(;-ET——

G(Z’Zo) A n (z )nhTz 7'
w(ng,n, ) [l'Rl(Zl)Rg(zz) n(z ]
l 2
(63)
where the reflection coefficients Rl(zl) and R2(22) are defined at the
boundaries 2y and Z,e Other functions and parameters are defined in

Ref. 12 and are omitted for brevity.




When the WKB approximation is applied to the denominator of

Eq. (6%), the ratio nl(zl)ng(zg)/nl(zg)ng(zl) is replaced by

Z, L 1/2
exp -Eikof 2 [ng(z)-coséem] dz ) (64)
z

1

The relevant function to be expanded in Eq. (63) thus becomes

z ~1
-Eikof & ]l/2dz
VA

1-Rl(zl)R2(zg) e : " (65)

When the expansion of Eq. (65) is used in the fundamental contour
integral of Eqg. (62), the acoustic field is represented by an infinite
sum of integrals. In and near any particular convergence zone only

a small subset of these integrals contributes in a significant way to
the total sum. A great saving of effort is achieved by evaluating the
integrals rather than the mode sum, especially at intermediate and high
frequencies. The integrals are so ordered that each contributing
integral can be associated with a particular multipath of the con-

vergence zone.

Next quarter the multipath integrals defined by the series of

Eq. (65) will be given explicitly and discussed.
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