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Final Report for ONR Grant NO00Ol4-76-C-0695
Office of Naval Research
Janet Myhre
Principal Investigator
During the period of this grant significant progress has
been made in determining probabilistic and statistical proper-
ties for the mixed exponential distribution (Pareto Type II
distribution). This probability law is proving to E% an accurate
model for fitting the distribution of 1life lenéths for most types
of electronic equipment. The research related to the mixed expo-
nential has resulted in:
1. "Comparison of Parameter Estimation for the Fareto
Distribution," submitted to the Journal of the Amepican Statistical

| J
Association. This paper shows that the maximum likelihood estimate

for the scale parameter of the mixed exponential distribution,
using complete or censored data, is at least as accurate as BLUE
(best linear unbiased estimate) or modified BLUE. In addition,
it 1s shown that the maximum likelihood estimates are more versatile
than the BLUE and modified BLUE. [Attachment CJ.

2. "Asymptotic Distribution of Maximum Likelihood Estimates
for Parameters of the Mixed Exponential Distribution based on

*
Censored Data." Draft in preparation for submission to Technometrics

for publication together with:
3. "Problems of Estimation for a Decreasing Failure Rate
Distribution Applied to Reliability," which has been submitted to

Technometrics and 1s now under revision. In this paper the pro-

perties of mixed exponential distribution are studied. Simple
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techniques are derived which yield sufficient conditions for ob-
taining the solution of the maximum likelihood equations when
one or both of the parameters are unknown, even when the data

is highly truncated or censored. [Attachment B]J.

4, "Approximate Confidence Bounds for Reliability; Mixed
Exponential Distribution." A draft of this paper, minus compu-
tations of the computer results, has been prepared. Additional
simulations @ill be run in order to complete the study. The
simulations run to date show that in general the bounds are quite
accurate and éhat the variance of the distribution of bounds is

relatively small. This paper will be submitted to Technometrics

\
or Naval Logistics Quarterly. [Attachment FJ.

5. "Robustness of the Mixed Exponential Distribution in
Fitting Mixtures of Exponentials." Computer programs have been
written which, for known mixtures of exponential distributions,
check the comparative accuracy of fit among the Mixed Exponential
distribution, the Weibull distribution and the Exponential distri-
bution. - Work to date shows that under mixtures quite different
than the assumed Gamma mixture, the Mixed Exponential is still
fairly robust. Thils paper will be submitted to the Journal of

Statistics and Simulation.

6. "HP-97 Programs for the Computation of the Maximum Like-
lihood Estimates for the Parameters of the Mixed Exponential

Distribution." This program makes the Mixed Exponential model

more avallable to users. It willl allow the estimation of parameters

for small to moderate sample sizes. [Attachment D].
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Additional research completed under the grant includes:
"Determining Confidence Bounds for Highly Reliable Coherent
Systems based on a Paucity of Faillures." This paper has been

accepted for publication by the Naval Logistics Quarterly. It

deals with a computationally simple method for obtaining confi-
dence bounds for highly reliable coherent systems, based on
component tests which experience few or no failures. Binomial
and Type I censored exponential fallure data are considered The
component unreliabilities are ordered by weighting factors which
are presumed known. Sensitivity of the confidence bounds to
these assumed weights is examined and shown to be low.
[Attachment A].

An invited tutorial paper was delivered at the 1977 American
Sociéty for Quality Control Technical Conference in Philadelphia.
It deals with decreasing fallure rates and the Mixed Exponential

Distribution. [Attachment E].
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DETERMINING CONFIDENCE BOUNDS FOR
HIGHLY RELIABLE COHERENT SYSTEMS
BASED ON A PAUCITY OF COMPCONENT FAILURES*
Janet M. Myhre
Andrew M. Rosenfeld
Claremont Men's College
Sam C. Saunders
Washington State University
0. Abstract
A computationally simple method for obtaining
confidence bounds for highly reliable coherent systems,
based on component tests which experience few or no failures,
is given. Binomial and Type I censored exponential failure
data are considered. The component unreliabilities are ordered

by welghting factors which are presumed known. Sensitivity of the confi-

dence bounds to these assumed weights is examined and shown to be low.

1. Introduction

Previously, confidence bounds for general coherent
structures have been obtained by using asymptotic methods,
such as Likelihood Ratio [6], Maximum Likelihood [8], or
Modified Maximum Likelihood [1], by using Bayesian methods
[7], or by assuming equal reliabilities for all
components. Asymptotlic methods may be inaccurate

at higher percentiles unless the number of faillures

®Research, in part, supported by the Office of Naval
Research Contract N0001l4-76-C-0695.
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is very large. With Bayesian methods the possibility of
inadvertently influencing a decision through the selection
of a prior distribution, when the number of failures is
small, is well known. Finally, because the assumption of

equal reliabilities of the components may not always be

. I I — wan SNBSS — i)

fulfilled, the accuracy of a bound obtained using this
assumption could be in doubt. What we propose here is to
use engineering knowledge which can be gained from acceler-
ated life tests, mafterial qualification tests, or laboratory
tests of components. This knowledge can be utilized in a
manner that provides information about the parameter space.
It 1s felt that this intermediate ground avoids some of the
objections raised by Bayesians concerning "classical”
statisticians who operate under an assumption of total ignor-
ance about the parameter space. Moreover, it attempts to
avold the subjectivity which seems to hinder the acceptance
of Bayesian methods.

For special structures, such as series structures (and
in some cases parallel and series parallel structures) exact
methods [9] and additional approximate and asymptotic methods
([4], [5], [9]) for obtaining system confidence bounds have
been developed. The accuracy of these approximate bounds has
been studied in specific sample cases for structures of order
two or three ([5], [9]). In this paper some comparisons are
made between the bounds obtained by the weighting method
developed here an.i 2pproximate (asymptotic) bounds for
special structure: .nere approximate (asymptotic) bounds can

be calculated.
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2. Bilnomial Component Failure Distributions
aince the unrcli;bility of any practical system must
be low, that of any component must be even lower. The

S . G ol e I e e
Laence Lounas 1or

b

commonly used technique of obtaining con
the probability of success from sequences of Bernoulli trials
will not be applicable here, because virtually all of the
components will have experienced no failures during their
acceptance testing. Extending an idea utilized by Lomnicki
[3], we will examine the probability of system failures
expressed in terms of the least reliable component. The
estimate of this quantity 1s then used to construct a lower
confidence bound on the system reliability.

A gqualification test for each component consists of
a number of Bernoulli trials of nominally identical components.

; : 3 - Sl 2 : . th
Given there are ny trials with xi failures for the i°" component,

then it 1s assumed that the number of failures has a

o
1]

binomial distribution where a; is the unreliability and n

[N

the number of observations. We denote this by
Xy - ﬁ(ni,qi) Por dnl ... M.

Assume thatqi.may be expressed for each 1 by

m
(2. 2) q; = a49 where q = Ti; ay and O<a151.
For the present assume that the ay are known apriori. In

practice we have obtained the a, from reliability goals and

i
prediction reliabilities. In order to obtain a confidence
bound for q, we make the following assumptions. Since the a4

are small the distribution of Xi may be accurately approximated
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by a Polisson distribution with mean Ai=niq, Thus, assume
.

(2.2) Xy ~ P(Ay) =p(ngq,).

(For qy as Terge as <01, this approximation 1is valid for ny

as small as 10.)

An upper confidence bound for q is obtained in the usual way
since
m m
)3 Xi ~ PL 7 Ai)
i=1 i=1
where
m m m
Av=E AL, = Bonng. =g a .
T et S lql q PRI s |
i=1 i=1 i=1
The 1008% upper confidence bound for A, call it Au’ is the
value of b for which
K B m
I e bd/j! = 1-B , where k = I X, -
J =0 i=1
It follows that the 1008% upper bound for the unreliability
Gy call it q,s 1S
m
(203} MR Au/ z a.n,.
i=1 ~
Ve point out that the Poisson approximation to the Binomial as used above is
not necessary for the calculation of this type of bound: however, 10¢

greatly facilitate the computation.

In order to obtain a lower confidence bound for the
reliability of a coherent system with component reliabilities
p= (pl,...,pm), let

pi = l-qi l—aiq TO8 Il 0

where a and q are defined as in equation (2.1). System

NG P ——
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5
reliability, h(p), may now be expressed as a function of g
alone. Let the induced function be denoted by the equation
h(p) = h(l—alq,...,l—amq) = h(g;a)

where a = (al,...,am). The function h(qj;a) is strictly
decreasing as a function of gq. Hence a lower confidence
bound on reliability, h(g,a), is h(qu;g) where a, SisSan
upper confidence bound on q.

To 1llustrate these concepts, consider the following
examples.

Example 2.1: For the following bridge structure of five

independent components:

©
Tl

if the component reliabilities are Py for i=1,...,5 then

the system reliability is given by

+ -
h(p) = pypy + P,Pg * PyPsPs + P

plp2p3pu &) plp2p3p5 e plp2pup5 i plp3pup

= PoPaPyPy * 2PPoPPyPe-
Rewriting in terms of the unreliabilities l-p, = q; = 249
por d=l; v.y5 yields
h(q,a) = l-qz(ala2+a“a5)-q3(ala335+3233
+qu(ala2a33u+ala2a3a5+alu2auab+alaBaLa +a2a33u

b
-2q (ala2a3aua5).

au)

From engineering analyses it is known that compunents

1, 2, 4 and 5 have the same unreliability. However, it is

TP T
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assumed that component 3 i1s only 3/10 as unreliable as the
other components. Assume the following weights and test

results.

component a, . X
oo e LG L —i— —i— __i_
3 1 10 0
2 L 10 0
3 o3 20 0
4 it 10 0
5 1 10 0
5
Suppose a 90% confidence bound is desired. Since k = Z £y07 0.,
i=1
A, 1is the value of b for which e = .10, so A, = 2.303.

Hence an upper bound on the unreliability q, at the 90% level,
5
is given by g = A / L a.n, = 2.303/46 = 0.050, Finally,
u u' 4o 14
the desired 90% lower confidence bound on reliability is given

by h(qu,g) = 0.995.

For bridge structures it is not possible to compute
Approximately Optimum [4] or Poisson Approximation [9] bounds. The
asymptotic methods are generally not applicable unless failures

are observed.

Example 2.2: Assume a series structure of order five has known

welghting factors a, and sample sizes n, where i=1,2,...,5.

i 5
For industrial problems we have often found that sample sizes

are not equal but are roughly proportional to the unreliabili-
ties with the most unreliable component having the smallest

sample size. One reason for this may be that specialized, complex eauipment

often tends to be both unreliable and expensive.

——e
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component ﬁi— . Ei—
iz iz 4o
2 1 20
3 1/4 80
4 1/2 4o
5 3142 40
Assuming one failure on component 2, Au = 3.89 at the 90%

confidence level. Using (2.3) we find that g

L

u
e

2]

5
h(q;§)=ﬂ(l-aiq), our confidence bound on systen
i=1

h(gysa) = .897

The bounds obtained by approximate or asymptotic

are much lower than this bound, for example

methodads L*

Approximately COptimum (AQ) Bound = .820
Modified Maximum Likelihood Bound (MMLI) = .819
Poisson Approximation (PA) Bound = .806
3. Sensitivity of Confidence Bounds to Assumed Weights
J -

The question that arises is, what is the

between the bounds obtalned presuming that a is

real difference

known when

in fact it may not be. A measure of the error caused by this

supposition upon the bound obtained should be found. Let the

estimates made by the experimenter for the values of a=(a

10

be denoted by g=(al,...,am). The estimate of the upper bound

constructed using a in equation (2.3) will be denoted by

m
(3.1) a. = X /5 asfiy «

u Ui a S
- - S ———
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Example 3.1:

Differences between the exact bounds obtained in
example 2.3 and bounds obtained using various a are given
below. The corresponding AO, MMLI and PA bounds are also
given. (The asterisk by the a; or a; indicates the

component on which the failure is assumed to have occurred.)

Component n, 2, eiiil gi(Z) giifi Eiiil aiﬁii
1 40 L2 it 1/2 1 145 1/100
2 20 Le 1/2 1/4 3k Lt 1%
3 80 1/4 1/4 1% 1% 1/ 10 1/100
4 4o T2 1% 1/2 i 1545 17100
5 40 1/42 1 172 1 1/5 1/100
Bounds
Weighting Method .897 .906 .928 PoRLG .878 .817
AO <920 871 .882 . 882 « 820 . 820
MMLI L9319 L0916 . 950 . 950 . 819 .819
PA .806 .806 .806 .806 . €06 .806

Note the welighting in case 5 which must be assumed in order
to obtain confidence bounds which are close to the AO or
MMLI methods. In general, we would not expect the engineering

estimates of the ai to be this different from the correct

welghts.

We now Introduce the following notation for subsequent use:
m

I 5.8
i=1

< m

a; = ui/ L a

i=]

a =
ai a

i

n
{ = E asny = Lagn,/ILag

=

|

1]
"~ s

Q|

S

]

= Zaini/Za

1 &

n(l) = min(nl,...,nm)

i
Li‘

- s

e r—— — . T
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Theorem 3.1 : Let h(q,;a) denote the true lower confidence
bound for a series system of order m,and le¢t h(iu;g) be the
estimated lower bound. Then the absolute difference, D,
between the true and estimated confidence bounds for a

series system of binomial components of order m satisfies:

- e_sm+1 ku
(3.2) D = [h(qy;a) - h(§,50)| < 50— where s = o
and 1if
£3.3) B, =D, =R
then
r 2 .3 m-2
(3.4) ih(qu;_%) - h(qu;g)l < ”;"(’ %)+ .%-—T(l—t ) where t=

Proof : By definition we obtain for the reliability of a

series system

(3.5) h(p)

-
n=s
()
n
"=

*1

m m
where sla = 1£lai 52a = 1§JaiaJ ooty sma = 12 B
From (3.5),

(3.6) 0 < sy~ 8158,] * I5550,- 5p48,] *+oo ot Ispa0,-5,0,

Recalling (2.3) and (3.1), (3.6) becomes

£ SR
TR T R 3 R L
e = "ulZa,n Za,n ul (g )2 T 2 LR,
1M1 1 ajnyg (Zagny)
Ila o
n.o+ xﬁ i m i i m .
(Zaini) (Zaini)

To establish (3.2), we note that if a,>0 for all i, then

i




a a ...ai
D Fond £ T M . k -
(3.8) K \n
(Zaini) (1)

By (3.8) and the fact that for positive x and y,

|x-y|] < max(x,y), expression (3.7) may be bounded above by

k

N/ A L .m#l ' A
2: i = == where s = Y

k=1 n(l) 1l-s n(l)

Assuming (3.3) we note that (3.7) becomes

AL o % Au . = o
(3.9) 0 <=2 £ 3.8, - §& 4,004 % =] (04, ~ NG
Let t = Au/ﬁ ,» then (3.9) becomes
- - - - m -— =
€3.10) P = t*l Laa, -~ % aal+..+tla, - 0a,l
= 1<J 1 1<J 153 51 5l

Using the method of La Grange multipliers on the first term

of (3.10), the maximum value of I a,a, , subject to the

i<y L
m—
restriction that £ ai =1 , is obtained at a, = 1/m
i=1
FOr Jnl  2i..s48 « Thus
- - - - - = - - -1
{3.21) |2 8.8, -~ £ 8.8, ] ¢« max( £ R.8,, % 80, ¢ ==

The other differences between the corresponding
symmetric polynomlals are certainly less than unity.

Therefore, assuming them to be unity and performing the
m

geometric sum, £ ¢l = (t’—tm+l)/(l-t) » we obtain a bound
i=3

on the remalning terms. Assuming (3.3), we obtain

0 < tz(Zn ) Ja— thus establishing (3.4). ||
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For small n )y, the bound obtained from (3.2) 1is
large, particularly 1f one or more failures have been
observed. For example the absolute error bound obtained for
the data in Examples 2.2 and 3.1 is .24. 1In practice,.
however, when a sampling scheme such as that given in
Example 2.2 1is used, there 1s adequate engineering knowledge
behind the choice of the ay; so that errors of such large
magnitude are not encountered. If little is known about the

welghting equal component sample sizes are recommended.
Example 3.2: Consider a series system with equal sample

slzes for each component:

component a,_ n,_ oy

1 1 20 172
2 1/10Q0 20 1
3 1/100 20 1/4

Assume no failures, then for a 90% confidence level
Au = 2,3026.

The actual error in computing the series system
confidence bound is

|h(au;g)-h(qu;§)l= |.889-.885| = .004
For this example, the AO bound 1s .892, a difference of .007
from the correct bound. However, by Theorem 3.1 an absolute

bound on the error would be

2 (m-1y . t3-t"*1 = o059
t (2m ) il

where t = ig = 2.3026 and m = 3 .
n 20

Obviously if the true bound were higher, say .887, then the AO would differ from
the true by only .005 and the actual error would be only .002. However, the
point to be made 1s that we often have more information than simply the structure
and the sample size and when we do, it should be used.

It should be noted that if the order of the structure is increased to 26
the absolute error bound is still only .0080.

— S
B ‘-—"—-!m:‘wl”* s — 7
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We now wish to extend this error determination tc a
parallel structure of m components. In general, we denote
the reliability of a parallel structure of binomial com-

ponents by:

=8

h(g) i l b (l—Pi) U

i=1

Writing h(p) in terms of q we obtain

h(p) = h(q;a) = 1- 1 a,q.

Theorem 3.2: Let h(qu;g) denote the true lower confidence

bound for h(p), and let h(iu;g) denote the estimated lower

confidence bound for h(p). We obtain

: (A, /m)"
(3.12) D = Ih(qusé) - h(ﬁu;g)l S

1
1=1"4

Proof : (3.12) is proved by noting that

1 i
m m e it |
(3.13) 0 = | W ayq, - N a,q | =" 22— 1
i=1 i=1 " (Xaini) (Eaini)
m m
Il ag . _ay
i=1 i=1
For a1>0, the quantity P e ™ X Rn—*—————a s
(Eaini) (Xaini)

maximized when ZI&n ai - m 2n(£aini) 1s maximized. This

m .
maximum occurs at a, = ( I a,n,)/mn T J®l,2 .
- BB Aok

Thus the maximum value of P is 1/(mmﬂni) . Since each




e ———

NMa, Hai
term in the difference = - — is positive,

] m X m
(Laini) (Laini)

the absolute value of the difference cannot .exceed 1/(mmﬂni)
From this (3.13) is established:

m
g (x,/m)
Ty
1=1"1

Example 3.3: Consider a parallel structure of order two

where no failures occcur in testing

component ay_ n,_ &y
1 1/2 40 L
2 il 20 1/10

For a 90% confidence bound Xu = 2.3026. The 90% lower confi-

dence bounds for system reliability are:

; X 2 £
h(q;a) = 1-q 121ai =, 99834
o e
h(qu;g) = l-qu 1 By . .99970
i=1

The actual difference between these bounds is 1.36Xl0-3. From
Theorem 3.2 the maximum possible error due to incorrectly
choosing the weights is 1.66x1073,

The AO bound is .99629 with a difference from the

' =4
correct bound of C.5x10
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k
m= I m which consists of k parallel structures in series;
i
i=1
the gth parallel structure has my components. Partition

p = (pl,p2,...,pm) into p = (Rl,gz,...,gk) where

By = b +l,...,pml+.“+mj) The reliability of

j-1
k

the system is given by h(p) = 1
; i

1

lhi(Bi) with hj(gj) being

a parallel structure consisting of mj components. Now let
q & max(ql,...,qm) where again qy=a;q for i=1l,...,m . The
corresponding partition of a is a = (a;,a5,...,2,)

Therefore expressing the reliability in terms of q we obtain

-

h(qza) = N h,(q3a,)
gug AT

Therefore we establish the error on the lower confidence

bound estimate for a series parallel system by

3

Theorem 3.3 : Let hi(qu3§1) be the true lower confidence
bound for the ith (i=1,2,...,k) parallel structure of order

my , and let hi(au;gi) be the associated estimate of the

. lower confidence bound. Then an absolute bound on error

in estimating the confidence bound for a series parallel

system is given by:

k k 3 k
(3.28) ] R h,{q 8,) - B he(F 30,)] < £ ¢
where
s A ———————— A TSRy SR —




X Yy
u 3
(3.15) €y = (ﬁ;> Ty 5
. I n
y=1 J

that 1s €4 1s the bound on error of the 1i%h parallel structure
The nJ are the sample sizes of the components made during

the qualification tests.

Proof : By induction. For the case when k=1, see Theorem 3.2.
Let k=2. For convenlence set
f.=h (g ;a,) and §,5h (G ja)

} . - . = . - . . / - f‘ + .
Then |fof, = 16,1 = le 08, - §,06, - 4,08, + 4,1,

m BONCE ) fe- 3 St it g 00— £
..<_ lfz— 62' + lfl" 61' T Cl & 62'

Assum~ expression (3.14) is true for k=n . It holds for

k=n+. since,

n+l n+l 19510 n+l n n
A el e e e T el yoa Ut
' n
e " 16 O T L s —1216 )'
n
2 1“16 (a1 bnea? r“+1(121r1—1£161)
n n A

< |rn+1- ‘n+1| + 1§1r1_12161 < (by induction)

' n+l n+l
1fp42- n+1l +1zl|ri- ‘1|.= AL P Sl L

> . S oo S — P p————y R P g ——— 4 e
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serlies structure of order m = I myo, then this system
1=1

consists of k series structures in parallel, where the

1th geries structure has order my . Then p = (Ll,... Qk) 3
k k
h(p) = 1 - 1 (1-h (p,)) and k(g;a) =1 - I (1-k (qg;a.))
j=1 d d 3=1 J J

The maximum error made by estimating the lower confidence
bound 1s obtained from

k
Theorem 3.4 : Let h(qu;g) =1 -0 (1- h (q ,d )) be the
Jj=1

true confidence bound on the reliability of a parallel
k

& m
3=1 1

series structure of order m= And let

k
h(ﬁu;g) =11 (1~ hj(q ,aj)) be the associated estimate of
j=1

this lower confidence bound. Then

(3.16) B = |h(q32a) - h(g ;a)]| <
m+l J

where = s T, (a5 and s is defined in Theorem 3.1
1-s
J

T3
19

TR - =

Proof : Expanding B we obtain

k Kk
= I - - - q 3
B - l(1 1, (q ,aj)) J21(1 hy(q5040)

By Theorem 3.3,

k
B < I |[(1-h

jo1 J(qu;_q

RAENCEINCI-Ib

5 : .
= Jﬁllhd(qu;éi) - hJ(qu;gJ)l

where for the 1% branch of this parallel structure we

define (by Theorem 3.1)

I ——— e it p—g——
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o M
TJ_ - lllj(qu;gj) - flj(iu;g.)l B »J:Ei-———
Kk J
Thus B < I T M
e = 3
Example 3.4 : Consider the following structure.
@
) s BN v > uong
® @
@— ® ©
©)
component —31— _gi_ _gi_
1 1/4 100 1
- 1/4 100 ;|
3 1/4 100 1
y 1/4 100 1
5 1/4 100 1
6 1 150 3/4
f 4 1 150 3/4
8 1 150 3/4
9 3/A4 250 1/4

o)
o

3/4 250 1/4

We assume £X1= 1 and we desire an 80% confidence level.

This will yielad Au= 2.99 . Simple calculations show us

La;ng = 950 q, = -00315

. La,n, = 962.5 d, = -00311
h(q ;a) = (1-(.25q)°)(1-q))(1-(.75q ) %) = .999994
h(g5a) = (1-37)(2-(.754 ) *)(1-(.25 ) %) = .999999

- - . g Pt AP
—— Y e TN, -z " P— — -
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We realize an actual error of 5.36x10 , and based on Tneorem
o -5
3.3, & maximum possible error of 3.b6x10 -.
4, Exponential Component Failure Distributions

We now examine cocmponents whose life lengths are
known to be exponential. If the qualification test time
‘<

for the ith component is T, , where i=1,2,...,m , then the

i

number of failures during the interval [O,Ti] follows a

Polsson distribution with mean AiTi . Define
m
A,

fob)
8,

I
==

CH. 1Y A, = aik where A = m

anc SIS
3 1 nd O qi_l

1L

Let Xi denote the number of observed failures during [(0,T.] ,

=8

then Xi~ P(aiATi) . If all m components are independent,

X, ~ P(AZaiTi) -

B
The upper confidence bound obtained here is completely
analogous to the bound obtained in (2.3), i.e. the upper
1008% confidence bound on X, say A, is
X=X /%a T, .
u/ i g

Reliability at time t, R(t;A Am), may be written

IERERE
as h(At;a) where X and a are defined in (4.1). It follows
that a lower 1008% confidence bound on system reliability

is given by h(At;a) where a is the vector of true weights.

5. Sensitivity of Confidence Bounds to Assumed Welghts

When the true weights a are estimated by a then the
estimated 100 8% lower confidence bound for system reliability
becomes
£5.1) h(At;a) where X = Au/Z‘.aiTi ‘

For the exponential serles case we measure error by means of

the ratio:




-

. T

1%
~
= h (,)“t’_ ‘.'_'.)A
h(Xt;a)
We will show that in the case of equal component
test times for series systems, the above ratio is identically
one. That 1s, the estimate 1s equal to the true confidcnce

bound for any weighting a
Theorem 5.1 : For a series system of order m,

(5.3 exp =A% Tl - Tl < R < exp At ug.w - GJJ,
L) (m) (1) (m)/

2 maker e
(Kl) md“(Tl, e ey ‘m>

where ;(l)= mln(xl,...,xm) and T

EfSfioEt =T S s nle Ti: T then

) 3 St
(5.4) h(At;a) 2 hl)t;a) = exp ’Tu

Proof : By expanding the ratio in (5.2) we observe

-t
Ahesgy P T P ] Lo
&= e = =HeXD =k 00 —
h(Xt;q) -Ayt Wilse o Fa. T,
exp - 7 L Gl | UL
p La Ty ey

It is simple to see that
La

1 1 1
1 f_ v 1 __<_ m
thus
(5. 5) _< R > K Lay ey < S AR
Pery Ty T 1Py PT T \%ay Tow

Therefore based on (5.5)

; 1 1 1 1
exp =X t( - > <R < exp 2 t<‘ - = >
"Ny Tm S o

&5 fopr all 1, Tis T, then the inequality expressed in (5.5)

g e ———




becomes
»fii__ — ,_y_ajﬁ. < - 1, — ,_]___ =0
X (l| z fil preses rln rmn =1
444 gty (. Yt

therefore the ratio of (5.2) is identically one. That is

N N At i
h(At;a) = exp Tiﬂ;bai = exp ngzbui = h(it;a)

1"

exp =A t/T . | |

Lieberman and Ross [3] have derived a method for

obtaining confidence bounds for series systems whose components

D

have an exponential life distribution. The test statistic

used in their method is based on the sum of sim

£
[ -
o
e
Q
o
0

e
I
o
o
=

fallure times. For Type I censoring the Lieberman-Ross
technique will, in general, not utilize all of the test
data in the calculation of their confidence bound. In

the case of no observed failures the Lieberman-Ross method
is not applicable. As shown by the following example,

the procedure we propose ié not hampered by an absence of

qualification test failures.

Example 5.1: Assume that we have twenty components 516 ol

series and that no failures have been experienced during
testing. As is often encountered 1in practice, the test

times are not all equal.

component a,_ li_
2§ 1 10
2 through 20 1/10 100
———— " - - —




2%
20 20
“ a ’I‘i = ')\_)O and 2: :Xi = )_”) \ t .
5 .
i=1 i=1
level Au = 1.631 Let t=1; then
A 1.7 gt
h(At;a) = exp- |555-(2.9)] = .977.
o ey
The AO bound is .852. The PA bound is .839.
Assume that the a, were not chosen correctly but were

chosen according to one of the cases given below.

WO & Y . (2) (3) (4) ¢
component oy oy &y By i
1 3 1 1 1/10 10
2 through 20 1/100 1/2 1 1 100
h(it;a) .936 .983 .983 .84

The maximum difference from the true bound is .041. Based
on Theorem 5.1 the ratio is bounded by
«805 5 R = 1.156.

Thus we know that regardless of the weights the 80% bound
must be greater than .851 (the AO bound is .852). Again, the
to be made here 1s that we often have more information than
simply the structure and the sample size and when we do, it
should be used. For this example, using the ratio of Theorem
5.1, it 1s possible to show that regardless of the weighting
the true bound is at least as large as the AO bound (to
two significant figures).

In the case of equal test times, say 100, the weighting

method bounds are exact and equal to .984. The AO bound is

also .984.
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Theorem 5.2 : For a parallel system of m exponential

componcents with O<AiL<.l for i=1,2,...,m , the difference

(5.6) D = |h(Xt;a) - h(Xt;a)]
is approximately tounded above by
(Aut/m)m
15.7) ST ——
1l Ti

i=1

Proof : For a parallel system of exponential components

m —Ait
R{t) = 1 « 1 {(1-e ‘

i=1
_ : =Xt
I jxef < .1 then At = l-e . Therefore
m . m _ NMa. Ma
D= | M xtay - M Xteyl = (A 0)" L _ .
i=1 =1 z i
i ( aiTi) (ZaiTi)

Then by Theorem 3.2, D is approximately less than or equal to

m
(Aut/m) |

no
=171

6. Conclusion

The weighting method developed in this paper allows
engineering knowledge to be used in a very simple and feasible
manner. If little is known about the welghting factors, then

we know that for component sample sizes of as small as 20,

I L 30 S T - -y .y
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&
+ if there are no fallures, the absolute error bound for a series
[ 4
system of order "«" is still less than .008. 1In practice the

actual errors induced due to incorrect choice of the
weighting factors is much less than the absolute bounds.

Sensitivity studies show that gualification test
sample sizes (test times) increase, the effects of the
weights on the estimated confidence bound decreases. If
little is known about the weighting factors, the bound on
the maximum possible error induced by different weights may
be reduced significantly by imposing equal sample sizes

’ (test times) for the components during testing. Moreover,

<t

in

4]

ilme

ct

“
est

under the assumption of equivalent component

i the commonly encountered case of exponential serie

4 =
tenms,

w

w
w

¥

| the confidence bound obtained is exact. The advantages of
the weighting method proposed here lie in the simplicity
of the calculations, the appllicability to any coherént
structure when few or no fallures occur, the ability fto use
in an uncomplicated fashion engineering knowledge to compen-
sate for small sample sizes (test times), and, for larger

r sample sizes, the insensitivity to the choice of weighting

| factors.

{ The authors wish to thank Daniel Giesberg for his extensive

work on sensitivity analysis.
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0. Abstract

In this paper a mixed exponential distribution is studied.
This 1s a two-parameter family, with a decreasing failure rate,
which 1s sometimes called the Lomax distribution or the Pareto
distribution of the second kind. The properties of this model
are examined along with their implications in determining
reliability assessment. Simple techniques are derived which
yleld sufficlent conditions for obtaining the
solution of the maximum likelihood equations when one or both
of the parameters are unknown, even when the data is highly
truncated or censored. More importantly, computational techniques
are obtained and tested which affect their efficient calculation.
Censored data is the usual occurrence when life testing many
types of equipment because the cocst makes complete samples
virtually unobtainable.

The results of this paper are applied to censored data,
(obtained from actual testing of flight control electronic

packages), in which failure observations are sparse.

Key Words

Reliability

Decreasing Fallure Rate

Mixed Exponential

Censored Sample

Maximum Likellhood Estimation
Burn-in
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1. Intreduction

c models extensively

(s

There have been only a few parametr
examined for application to relliability; these include the
exponential distribution of Epstein-Sobel [6], the Weibull
distribution [14), and the fatigue model of Birnbaum-Saunders
E*]. The one most widely utilized for electronic components
has been the exponential model, not only because of its simple
and intuiltive properties but also because of the extent of the
estimation and sampling procedures which have been developed
from the theory.

One concomitant development has been the investigations of
Barlow and Proschan [2] concerning models for life distributions
which are known only to have monotone increasing (or decreasing)
hazard rates. Of course, the exponential family serves as the
boundary between these classes of distributions with monotone
hazard rate and consequently serves as an extremum for the
results of either case.

One of the early discoveries was that mixtures of exponential-
ly distributed random variables have a decreasing failure rate,
see DJ]. Thus any two groups of components with constant, but
different, failure rates would, if mixed and sampled at random,
exhilblt a decreasing failure rate. As a consequence, the family

of 1life lengths with decreasing fallure rate certainly arises

A R ————
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in practice and particular subsets of this family could be of
great utility for specific applications, see e.g. Cozzolino

[5]. We examine one such model with shape and scale parameters,
call them « and B respectively, which is based upon a particu-
lar mixture of exponential distributions. This family was
introduced by Afanas'ev [1] and later by Lomax [10] as a
generalization of a Pareto distribution.

Kulldorff and Vinnman [9] and Vdnnman [13] have studied a
variant of this mixed exponential model containing a location
parameter. They obtained a best linear unblased estimate of
the scale parameter assuming that the shape parameter, call it
a, was known and in a region restricted so that both the mean
and the variance exist, namely a > 2. When this
restriction of @ > 2 cannot be met an
estimate based on a few order statistics, which are optimally
spaced, 1is clalimed to be aii asymptotically best linear
unblased estimate and tables of the weights as functions of the
number of spacings are provided. 1In all cases, the shape
parameter was assumed known and the sample was either complete
or type 1II censored. It 1s contended that BLUE estimates of
the shape parameter are not attainable.

Harrls and Singpurwalla [7] examined the method of moments
as an estimation procedure for this same model but again with
the shape parameter restricted to a > 2 and with a complete

sample.
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In both papers [9] and [7] , it is stated that maximum
likelihood estimates are difficult to obtain. 1In a later paper
Harris and Singpurwalla [6] exhibit the maximum likelihood
equations for complete samples.

In this paper the maximum likelihood estimates for both
the shape and scale parameters are obtained, jointly and
separately, with simple sufficient conditions given for
thelir existence. These estimates are derived for censored
data (and a fortori for complete samples) even

o e
with a paucity of failure observations, namely one.

The existence conditions obtained here for the maximum
likellhood estimates apply even to the case where the variance
and possibly the mean do not exist: O<a<2. Moreover, the
estimates of the shape parameter a which have been obtained from
actual data indicate that this region 0<a<2 is important becaus

all the estimates obtained of a have been less than unity.

2. The Model

We postulate that the underlying process which determines
the length of life of the component under consideration is the
following: The quallity of construction determines a level of
resistance to stress which the component can tolerate. The
service environment provides shocks of varying magnitude to the
component and failure takes place when for the first time the
stress from an environmentally induced shock exceeds the strength

of the component.
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If the time between shocks of any magnitude is exponentially

distributed with a mean depending upon that magrnitude then the
b t >

t

life length of each component will be exponentially distributed

with a failure rate which is determined by the quality of assembly.

It follows that each component has a constant falilure rate but
that the variability in manufacture and inspection techniques
ferces some components to be extremely good while a few others
are bad and most are in between.

Let XA be the life length of a component in such a service
environment, with a constant failure rate X which is unknocwn.
The variability of manufacture determines various percentages
of the A-values and this variability can be described by some
distribution, say G .

Let T be the life length of one of the components which
is selected at random from the population of manufactured compo-
nents. We denote the rellability of this component by R and
we have

R(t)

P[T > t] for G > 0

Let A be the random variable which has distribution G
We can write

@©

R(t) = EAP[XA> t|A = A] =[ e Paacay . (1)
0

Because of having a form which can fit a wide variety of prac-
tical situations when both scale and shape parameters are dis-

posable, 1t is assumed that G 1s a gamma distribution, i.e.

e ™ —— e e e ' e . AN AR NG Y -~
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for some a>0, B>0

€

a=1_=-\/B

(X)) = A for A = 0.
& PN a
Fia) B

That this assumption is robust, even when mixing as few as
five equally wieghted 'z, has been shown by recent work

of Sunjata in an unpubliched thesis [12]. It follows from
4

equation (1) that the reliability function is

R(t) = B 5 I e—d En(l+tﬁ) . (2)

The failure rate can be shown to be

[x o ol o0
qiil = (3)

which 1n accord with the result of Barlow and Proschan [2],
is a decreasing function of t > 0.

A similar derivation and discussion has been given earlier
by Cozzolino [5] and is included here for completeness, as well
as for what insight it may provide into the physical meaning
of the parameters.

For this family, since &n(1+tB) < tp for all B > 0 and
t >0

R(t) > e”?PF (4)
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This simple relationship provides a basis for comparison
subsequently with the exponential model.
It can be shown that

E[T] = [p(a-1)]"" fop & 5 1

Var[T] cx[§32(c1--1)2(a—2)]—l for ¢ > 2
These formulae have been given previously in numerous places.
When it exists, the standard deviation exceeds the mean as

it will for all DFR distributions. For example, 1if

a = 4, then we see the standard deviation exceeds the mean
be a factor of V2.

Of course, alternative parameterizations can be made for

this same model of mixtures of exponentially lived components.

We now mention such an alternatlive parameterization for later
comparison and discussion. Let a = y/B in equation (2)

and we obtain the distribution

R(t) = e~ (v/B)&n(1+tp) for £ = @ (6)

with hazard and hazard rate, respectively, given by

Bt
d
Q(t) = v/B J‘ I%; y G I%Eg fer & >0
0

B e T EIRIESIIN., . e o
B i
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The reason for this parameterization is that as B8 - 0 we are
provided with a meaningful limiting distribution, namely the

exponential, since

bt -yt
Fim CROTE = exp:—y 1= iﬁiiikél} = e ¥

B-»O 3-»0 8
However, in the lcrmulation given in equation (7), B8 1is no

longer a scale parameter.

3. Properties of the Model

We now turn to a brief examination of some of the properties
of this family of distributions as expressed in the two alternate
parameterizations. Let us introduce the notation for a random
1life length T

-afln(l+t =
e Bl 8) for £t > 0 , (1)

T~Jl(a,8) when PIT > ¢t]

g WBIIRLIIEE) Lo o )

T“J2(y,8) when PLT » &

The first property, which it has in common with the Weibull

distribution (and a fortiori the exponential), is contained in

Theorem 1: If 'I‘i is a 1life length with survival distribution

Jl(ai,ﬁ) , as defined in equation (7), for i = 1,...,n,

e o T w—— m— S




then a serles system of n such independent components will
have & survival distribution Jl(al+...+an,3) in the same
family.

Proof: Simply consider

1

P, > & = s e 1 4
1 [i ] (l+t8)al ...+J.n

e

P[min(Tl,...,Tn) > t] N
i

Note that the remark is the same even if we use the second

parameterization of the model, namely,

Coroliary I; If Ti~ J2(Yi’8) for: 1 = 1,..:,n dre independent

observations as defined in equation (8) then

n

m}n T, ~ J2(Y1+...+Yn,5)

i=1

The importance of this property ié in the case of determining
the time to first fallure within a fleet of similar systems which
have possibly different shape parameters. From this result the
appropriate fleet reliability calculations can be made.

The next property, which we consider to be even more signi-
ficant, is that a "burn-in" test of a component will yield a
residual 1life which is also in the same family. The fﬁiiiﬂi;;klgi
T

h of a component is defined to be the life remaining after time

h given that the component is alive at time h , namely
T, = [T-h|T > n| .

This property seems to be shared only with the exponential among

| ——————— e - : S p—— R
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common parametric families of l1life distributions. The result is
Theorem 2: If gy 1s the hazard rate for a random variable T
with parameter 6eR then the conditions for residual life Th
to be in the same family 1is that for any h > 0,6eR , there
exists weff such that

qg(t+h) = q (t) for all t > 0.
Thus we have

Corollary 2: A burn-in for h units of time on a component with

initial life T -~ Jl(a,ﬁ) will yield a residual 1life

. Y B :
T, - Jyla,p/(1+ng)]. If T . J,(v,p) then T . J, <‘+hB ’ ffﬁ)

It follows that this 1life length model is "used better than

new"

or "new worse than used" ln the sense that we have stochastic
inequality between a new component and one that has been burned
in, namely

t

1]

.

IA

Th for all ® 0.

An important consequence of this property is that one can
calculate the value of the increased reliability attalned by
burn-in procedures as compared with the cost of conducting them.
It has long been the practice to burn in electronic components
based on intuitive ideas of "infant mortality" in order to provide
reasonable assurance of having detected all defectively assembled

units. This model, whenever it is applicable, makes possible an

economic analysis. A variation of this result has been discussed

in [3].
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4, A Comparison with Exponential Using Real Data

Data has been accumulating for years in the assessment of the
relliability of electronic equipment for which there was no adequate
statistical model. The following difficulties were recognized
by practitioners: 1. The assumption of constant or increasing
fallure rate seemed to be incorrect. 2. However, the design of
this electronic equipment indicated that individual items should
exhibit a constant failure rate. A mixed exponential life
distribution accounts for both the design knowledge and the ob-
served life lengths. Maximum likelihood procedures allow for
Joint estimation of the parameters of this distribution in the most
commonly encountered situation where complete data is not available.

We now give some actual data sets from two different lots
of flight control electronic packages which illustrate these
points. Each package has recorded, in minutes, either a failure
time or an alive time. An alive time is sometimes called a
"run-out" and is the time the life test was terminated with the

package still functioning.

First Data Set

Failure times: 2: 85 10
Alive times: B9, T2, 76, 113, 217, 128; 145, 149, 153,
102, 320.

Second Data Set

Failure times: Sty 3
Alive times: 60, 64, 66, 70, 72, 96, 123.

If we assume that the data are observations from an exponential

distribution (constant failure rate X ) then using the total
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life statistic, we have the estimates of reliability given in
the left hand side of the table. If we assume that the data
are observations from the mixed exponential distribution of
equation (2) then using estimation techniques derived subse-
quently 1in this paper we have the estimates for reliability

given 1n the right hand side of the table.

Exponential est. Mixed exponential est.
of reliability of reliability
time t Set 1 Set 2 Set 1 Set 2
in min. Rl(t) H2(t) Rl(t) Re(t)
6 .988 .981 915 .976
10 .980 .969 .896 .961
30 .943 .911 - 005 . 396
50 .906 <856 .836 . 843
100 .821 - Staii; =
130 LT74 - .801 -
X .00017 .00312 &y L 0Us3 420
B: 1.03 .01

Looking at the data from the two sets we would expect that at

least for the filrst fifty minutes the reliability estimate for

the second set of data would be higher then the reliability est-
imate for the first set of data, because in the first set 3
fallures out of 14 trials have occurred in the first ten minutes
while 1n the second set only 1 faillure out of 9 trials has occurred
in the first fifty minutes. However, under the exponential
assumptlon the reliability estimates for the first data set are

consistently higher.
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Note that the mixed exponentlal estimates are more consistent
with what the data show; that is, for at least the first 50
minutes we expect the reliabllity estimate for the second set
of data to be higher than the reliability estimate for the
first set of data. Beyond this time, however, say at 100
minutes, the data indicate that the relliabillty estimate

from the first set of data should be higher than the relia-
bility estimate from the second set of data. Using mixed

exponential estimates this 1s the case.

A statistical test to determine whether the data require a constant

or decreasing failure rate was run on the data from Sets 1 and 2.
For data Set 1 we reject constant failure rate in favor of de-
creasing fallure rate at the .10 level. For data Set 2 we cannot
reject the constant failure rate assumption. In this case,
however, the constant fallure rate estimates for reliabilifty and
the mixed exponential estimates fior reliability are close. For
data Set 2 one should not estimate reliability much beyond about

70 minutes since we do not have data to support those estimates.

5. Estimation of Parameters with Censored Data

Let us assume throughout this section that we are given

as observed times of failure while tk+l”"’t are

tyseeesty §

observed alive-times both obtained from a Jl(a,s) life distri-

A result on the maximum likelihood estimation (m.l.e.) of the

unknown parameters is now given which utlllizes data of this type.
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Theorem 3: Under the assumptions and conditions given

(1) When B > 0 is known, there exists a unique

-~

m.l.e. of a , say a , given explicitly by

~

a = k/Sl(B)

(ii) When a > 0 is known, there exists a unique

m.l.e. of B8, say B8 , given explicitly by

g = Al

where A 1is the monotone decreasing function

defined by

A(x) = kSZ(x) - axSi(x) for x > 0

with primes denoting derivatives.
(iii) When «,B are both unknown, the m.l.e. of 8 ,

say B8 , 1is given implicitly, when it exists

positively and finitely, by
8 = B71(0)

where B 1is the function defined by
S,(x) S (x)
B(x) = X 2 'S—IT;Y for x > 0

~

and the m.1.¢e. 6f o , say a« , is given expli-

citly by

a = k/S;(8)

Proof: As a result of the testing assumed, we have observed the
events [’I‘i = ti] for i=1,...,k and [Ti > ti] for i = k+¢1,...,n. Then by

definition, the log-likelihood L 1is given by

ey




Substituting and taking logarithms we find

L k n
orlh SIS TR 0% TN e TS
i=1 Y jeker )
n k
L = k tn(a8) -a » tn(l+t 8) - Zln(htjs)
i=1 j=1

In order to find the m.l.e.'s we consider the partial derivatives,

which after substitution from

(9)

, are
L _ k B
H - a’ SI(B) » (10)
BE e k !
38 - "o5;(8) + g S,(8) (11)
Thus if B > 0 were known, we obtain ; from (10). This proves
(1).
Correspondingly, if o were known, the m.l.e. of B8 , say
B , 1is obtained from A(B) = B8 %% = 0 So that B8 = A'l(O)
Note that A 1is a decreasing function of B8 which has A(0) = k ,
A(») = -na Thus there always exists exactly one solution B8
2 for any a > 0 whenever 1 = k = n This proves (ii).
If a and B are both unknown then in order to obtain the

maximum likelihood
equations (10) and

equation (10) into

estimates jointly we must solve simultaneously

(11). Substituting the solution for ; from
(11) and dividing through by k > 1 vyields B8
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as the solution, when it exists positively and finitely, of the
equation B(x) = 0 where B has been defined previously. This
proves (iii). |

When both parameters are unknown in the Jl(a,B) distribution
conditions are needed on the sample to insure that the maximum like-

lihood estimators a, 8 both exist.

Lemma 1: A necessary and sufficient condition that no m.l.e.'s
exist for a (censored) sample from the Jl(a » B) distri-

bution is that the inequality

k n n k n
S R o : e 2
E 2 Ui E Tyt }: Mlksrgd o g Z Tglleited = 2 oy L
i=1 j=1 j=1 i=1 i=1
be satisfied for all x > 0 , where
tix )
RS st e . (13)
Proof: From (iii) we see é exists positively iff é is a zero
of B(x) on (0,») iff it is a zero of the function C(x) =
-xSl(x)B(x) on the same interval since xSl(x) has no zeros there.
1 = ¥ -
Since C xS1 Sls2 , Wwe see
' - " &= - \ u
c xS1 + Sl(l SZ) 5251 (14)

where from (9) we have

. R S ——




n " n - 2 k ¢
i X i 1 g |
AL R e SR —— , S}(x) = [ N —_—
1 — l+t.lx 1 — (1+t-X) 2 k e (1*t.x>h
1 1 i 1 !
But notice that C(0) = 0 and since
o A en(1+t.)
1im xSiTx) = n, limss, = T 115, e S
X + @ o )=1 =1 X > ™ 1+tix
It follews that G(=) = n <~ It is cliear that if €' (x) > 0 for all
x > 0 then the extremes occur at f =0, & = o ., Thus the m.l.e.'s

do not exist, but since the sign of C'(x) is the same as that of
xC'(x)}) for x > 0 , by making the definitions in (13), we see a

NASC that C'(x) > 0 1is the inequality of equation (12). I

Theorem 4: The inequality for 1< k< n
k n n
g\t \,t.< \t2 (15)
ke X ] L 3
i=1 J=1 Jj=1
ls a sufficier .ondition which a (censored) sample from a

J,(a,B) distribution must satisfy in order that maximum likell-

hood estimators of both parameters exist both positively and

finitely.

Proof: To see that (15) implies that B > 0 must exist, we note

that it is sufficient to

by continuity of C since C'(0) = 0 ,

show that there exists an x > 0 for which C'"(x) < 0 . From

equation (13) we find

n 2 k n n k
«L: X t.X Tz n(l+t.x) s
1 1 1 1
o —L ety D et ) — .
juy ATEL) ' R T S R Tl Ly o
e - To— - = i B A
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We examine 1lim
x - 0
n(l+tx - : )
1im —L~;——l = t and we use (15) to insure C"(x) < 0 for x
x -+ 0

- , making, use of the fact that

sufficiently small.
We now examine the joint estimation problem for the alterna-

tively parameterized model J,(a,p) of equation (8) in the situa-

2
tlon assumed heretofore, namely in the case we have both failure
times and censored life times. ' Since the transformation
(a,p) - (a/B,B) 1s one-to-one for a,p > 0, the maximum likelihood
estimators of yv,B are immediately obtained. One must check
that at the boundary, B = 0, the maximum likelihood estimator
v reduces to the usual estimate obtained in the case of constant
failure rate. But this can be done straightfo:wardly.

We state formally
Theorem 5: Under the assumptions and conditions given for a
sample from a J2(Y,§) distribution when both parameters are
unknown the m.l.e. of B 1is implicitly given, when it exists

-1

by é = B “(0) where was defined in Theorem 3, and the m.1l.e.

B
of v 1s given by v =-% « But iIn the case of é = 0 we have
5 n
Y = k/ 2: ti which is the usual estimate of a constant failure
3

rate using the total life statistiec.

6. Computational Considerations

The questlon which now arises 1s: what kinds of samples will
satisfy condition (15)? If k = n we see (15) is equivalent with
n

RN D TR DN

1

from which we have the

w}.. —_— . S 5 e s SN SRS S
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Remark: A complete .sample of failure times will satisfy (15)

the sample standard deviliation exceeds the sample mean.

Of course from equation (5 ) and the comment following we see

that for the Jl(a,B) parameterization, the standard deviation
does exceed the mean for those values of the parameters where the
mean and standard deviation exist. Thus for all complete samples

which are sufficiently large, this requirement should be satisfied.

Remark: A sample with k < n failure times and the remaining n-k

observations truncated at ty will satisfy (T

2K ~ g.r__l_ K ‘ £
tO > ﬂl[l + o i ] * Wy ore for n large WIS,
where n, = (tl+...+tk)/k is the average failure time.

2] e,
Proof: To see this note always ¢ 2+...+tn‘ > (n-k)to“ and thus

il
we are assured that (A5) must hold if

2
to > 2tonl Bt

By the quadratic formula this is equivalent with equation a6 ),
with the second expression following from the first two terms of
the binomial expansion. |]

In the calculation of B the equation, C(B) = 0 , must be

solved where C(8) BSi(B)Sz(B) or
c(B) = s Ln(l+t B)
- A
5 Teey8 = i TN

R i
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where tl,...,tk are failure times and Lywpr-eot, are censored

life times. We introduce notation for the sample moments as follows:
k n
A T D] it N % ke
r]r Kk 2 ti - Cr = ﬁ t,j for = l,Z,J,..., LL{)
i=1 j=1
then using the two expansions, valid for |[x| < 1 ,
2 3
X X 1 2
n(l+x) = OCHE= = + T e T+x = I = ¢ o *

and substituting into C and simplifying we find, upon neglecting

terms of third order in 8 , that

~
s

8 B . 27
(1+n B+n,B) (L1+8, 5483 %) - [8-5,B+L4B" ] 0

Multiplying the first two together and collecting terms yields

(&
(7% = nl(’l)g - ((;3 5 nz';l = k)E’ = 0

Now we notice that the condition equation (15), can be writ-

ten in the notation of (17) as g, > ancl

Thus our computational procedure to decide upon the parametric
representation of the distribution governing the observations which

have been obtained is contained in the following.

Algorithm: Given tl""'tk as failure times and tk+1""’tn as

censored times from a Jl(a,B) distribution

(i) Compute the sample moments Nys Ng» G10 T3 &3
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(11) If £, < 2n1§l , assume observations are from J,(y,0)
& &
f.e. constant fallure rate, distribution and estimate

y by

s 5 5 ) R 1 55 > Enlgl , assume observations are from Jl(a.ﬂ)

distribution and compute

Bo =
2 - - X

then use the Newton-Raphson interation procedure, namely
for 0 = @, 1, 2,

c(g )

fJ
= - —————-——n a = 71'('1 B a"ld
Fn+l Bn : ] F =S ns ’ 4
(6 (Bn) n

AR K
a =

n ~

b £n(1+tjs)

J=1

Practical experience indicates that the iteration converges
very rapidly. Since the functions are very simple a small pro-
grammable electronic calculator, such as the HP-65, can be used

to obtain these estimates. Programs for the HP-65 and HP-97

SN ——

are avallable from the authors.

} 7. Conclusion

If a component has a 1ife distribution with an 1lncreasing

PR

fallure rate, the information necessary to estimate its parameters
must contain failure times. In practice this means that virtually
no observed failures, within a fleet of operational components,

provide little information with which to assess reliability.

—_— e g - i - S— i
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If a component has a constant failure rate then both failure
times and alive times contfribute egually to 1ts estimation.
The preceeding study suggests that 1f a component has a life
distribution with decreasing fallure rate it is the alive times
within the data which contribute principally to the estimation
of the parameters.

The problem of obtaining the usual sampling distributions

-

(4]

of the maximum likelihood estimators of the parameters for th

ult

Q

decreasing failure rate model studied seems to be diffi
because the estimates are only implicitly defined. Moreover,
the usual proofs for the asymptotic normality of the ML!
which define the asymptotic mean and variance, do not apply

even when censoring is type I or type II. A useful asymptotic

theory must be developed for the general censoring model.
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kept while the rest are set egual to the tenth tin
The ABLUE estimates of 1/B are then made and compared
with the MLE. The truncation is on the tenth ordered
observation as ten is the largest number for which
computational tables are available in Kulldorff and
Vannman (1973). These simulations are run for n = 50,
LA 200 o= UG S ol .5 2000 2.5 and seleeted
values of B. The ABLUE was a more difficult procedure
to use than the BLUE, but the MLE was again the
superlior estimator.

The BLUE developed in Vannman (1976), to be re-
ferred to as the BLUE 1s a more versatile estimate
than the BLUE and ABLUE developed in Kulldorff and
Vannman (1973) and was therefore the subject of a more
thorough investigation. In order to reflect practical
applications in which tests are not only truncated on
time (Type I censoring) or number of failures (Type Il
censoring) but are also randomly truncated, simulations

- were conducted for all these types of censoring. The

BLU&R is based on k order statistics, where k is known.

yossible, however, to compute an estimate of 1/B
5 b
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ct
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w
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based on the BLUEV procedure using Type I or using
random censored data by letting k be the number of
failures (observations). While this procedure is not
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clLOSer to the true distribution is calculated and
entered in Table 2.
insert Table 2 about here
EFram Tahle 1 f e appy Yy 4 P } Vo RS
rrom Table 2 1t is seen that for the cases exam-
ined the accuracy of the maximum likelihood estimate

of the Pareto distribution funetion wusi

mation for a and g compares surprisingly well with the
b } o bt 4

accuracy of the estimate obtained by assuming that a

2 = lry Wy - A e d w s o0 1 ) o) Ao & e ~ £ ~ 1 /0
iS5 KNown anda using tne pLUs, estlmate 10% L/Ba
K
a CONOT IS TON
e CONCLUGLON

ine comparisons discussed in this paper are

based on over 44,500 simulations, where each simula-

tion used a sample of size 100. The number of fail-
ures per sample varied from 1 to 100 depending on the

type of censoring being used.

7]

For complete samples, with known a > 2, the BLUE
Kulldorff and Vannman, 1973) of the scale parameter
l/Bs Wwas no better than the MLE. For censored samples,
whether Type 11, Type I or random, simulations show
that for known a = 2, the MLE is generally a more
accurate estimate of the scale parameter than is the
uLUHV (Vannman, 1976). As the shape parameter, a,

S

increases the relative accuracy of the MLE increases.
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MIXED EXPONENTIAL DISTRIBUTION

by
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Claremont, California
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HP-97 PROGRAMS FOR THE CUMPUTATION OF MAXIMUM LIKELIHOOD
ESTIMATES FOR THE PARAMETERS OF THE

MIXED EXPONENTIAL DISTRIBUTION’

Reliabi ity models for electronic components must be flexible

enough to handle both complete and truncated data and the compu-

tations involved should be straight-forward. For these
reasons, as well as 1its appealing intuitive properties, the
exponential model has been used extensively. However, in many
applications it cannot be assumed that the components have a
constant falilure rate and for these cases the mixed exponential
model has been developed. This model can be thought of result-
ing from a mixture of constant fallure rates and results in the
distribution F(x) = 1 = (1 + Bx)~% with reliability R(t) =
(1 + Bt)'a and a decreasing failure rate. This model has been
studied in reports 1, 2, 3, 4; and in 2 it is seen that the
maximum likelihood estimates of a and B are preferable.

The M.L.E. of B and a for a sample of k fallures
tl’ Los vees t, and n=k alive times, tK+1’ o5 wl tn requires

K

the numeric solution of

K n n tIB
H(B) = 1/k 2 (1 + £,8)7" = 1n(1 + Sgin = 2o Y
1=1 J=1 J=1 3
g 3 K
for B and a = n
2 1n(1l+t,p)
1=1

A sufficient condition for H(B) = O for some B > 0 is that

k n n 5 &
2/k ( Ity ( z tj) S - tJ . If B cannot be found
i=1 J=1" J=1
. n ‘
then the exponential model should be used with \ = k/(Zti) |
i !
————— e S o e e e — i N —— e —
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As the solution of H(B) = 0 can only be attained by
iterative methods, programs for the HP-97 have been developed
which allow the user to compute é and ; for a test of not
over twenty items. The first program, A, will test the
sufficient conditions for the solution. The second program,
B, will use interval halving to approximate é: the solution
of H(B) = 0, accurate to within an error of .0001. The third
program, C, will use this é to approximate ;

These programs will allow the mixed exponential model to

be used as extensively as the exponential model in applications

of reliability theory.
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INSTRUCTIONS

Store n, the number of items on test in E, and k
the number of failures in D. Store the time ti’ failures first,
in the registers one through n, where n < 20. After the
data has been input the programs may be run in order without
re-entry of the times.

Program A will return + 1 if the sufficient conditions
are met and the user should run program B. If the conditions
are not met, -1 will be returned and the reliability is

A
-At k
= n
z 5
i=1 A
Program B will return an approximation of Z with

A\
where A =

estimated as R(t) =

error £ .0001. If no estimate occurs between 0 and 50 the
program returns a negativeﬁend,as above, the reliability should

-At
e

be computed as R(t) =

A
Program C will return e¢ based on the data and the

/j? found by program B.
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RELIABILITY TUTORLAL

Janet Myhre, Director
Institute of Decision Science, Claremo
Claremont, California 9171

fs
= ct

I. DISTRIBUTICNS IMPORTANT IN RELIABILITY THEORY

l. Basic Definitions
Let the random variables T denote the time to failure for a "new"
component or structure,

The distribution function at time t is defined by

F(t) = P[T = t]

The reliability at time t is defined by

R(t) = P[T > t]

AALA A
\ALAAAN A A ) o8

S8 4

0

The conditional prcbability of failure during the interval (t,t+at)
is given by

e Bl = T = £+pt]
BT s &

. T
0 t t+at

F(at|t)

Failure rate* at time t is defined by

rit) = 1im E.S.A_E_Lt_:_z.

At-+0 At

Spiiiint o ——>
t t+at

(@l

As At-+0, (t + At) - t.

*r(t) is known by a variety of names such as hazard rate, force
of mortality, intensity rate.

Research, in part, supported by the Office of Naval Research
Contract NOOQlU4-76-C-0695.

i i . : e— o — A g —




If the probability density function, f(t),** exists, then

r(e) = LE)
R(t)

An increasing fa I
is eaquivalent to a decreasing conditional probability of failure.

ilure rate implies wear out. A decreasing failure rate

NS . Ny
2. Distribut ions
Al N PR A 3~ Py ey s i 3 0 N 7
2l onential Distribution BIRE

bability density

function 1s given by A ‘\

Lgic
o
ct
e
I
>
(4]
|
>
ctr
o
Iy

[
(@]

elsewhere

S
R
> 6
Tl ()]
It is easily shown that the /e
fallure rate r(t) = A. The mean
time to failure is 1/A\.
> t

It follows that the conditional probability of failure during the
interval (to,to+t) is given by

F(tlno, = A\t

which is independent of the time to. For example, the conditional
probability of failure during the interval (1
ldentical to the conditional probability of f
(1000 hours, 1100 hours).

00. hours, 200 hours) 1s
ajilure during the interval

Eve Poisson Process
If the intervals between successive events are independent iden-
tically distributed according to an exponential distribution with fail-
| ure rate X then the number of events which occur during the interval
[0,t] has a Poisson distribution with mean value \t. Also, if the num-

L e ADORDREIIR T v i —

$%Recall that r(t) = IELt)  A150 P(a < T < b) = J f(t)at.

po




ber of events which occur during the interval [0,t] has a Poisson dis-
tribution with mean value At then the Ti are independent identically

F’T lg,v/\/'rz ‘—'\(-'T 3%
N w

D & i

0 £
distributed as exponential variables with failure rate X.

For example, if the interwvals between successive events are inde-
pendent identically distributed according to an exponential distribut
with X = U/hour then the number of events in [0,2] has a Poisson d
bution with expected number of arrivals equal to (4/hour)(2 hours) =

5 +
SRR O

If N has a Poisson distribu- P[N=n]
tion then
n_ -\t iy
o =
aml = KAL) e At = 2
P(N=n] = LELC 0.2
for m = Ol 2 oo @ik
BN oo
2 , e
0 1 2 3 Yy 5 6]
If X\ = 4 and t = 2 then
-8
: (e
P[N=5] = et S 92.
2.2k b Maintained Units
Consider a battery which is put into operation at time 0. Each
time a failure occurs the failed battecry is replaced and a new battery
8 installed. If the life lengths of the batteries are independent,
exponentially distributed wilth failure rate A then the number of fail-

ures in [0,t] has a Poisson distribution with expected value At.

If XA = l/year then the expdcted number of failures in one vear
is 4. The probability that the number of failures, N, in one year will
be less than or equal to 4 is

P[N=4] = P[N=0] + P[N=1] +# ... + P[N=4] = .639.

2:3 Gamma Distribution e(t)
The gamma distribution has
probability density function 0.4 4

a,a-1 =\t
X 3 ‘or >
g(t) = & 22 ror t.2 0 a k.5
I'(a)

=0 elsewhere a = Q,

where A > 0, a > 0. a is the shape
parameter. As a increases, the

density function, g, becomes less 1
peaked. 3

Vv
ot

nod
w

When a is an integer the gamma distribution may be thought of as
the sum of a independent exponential random variables each with failure
¢ rate .

s e - e p——a—
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a is the shape parameter. As a increases r(t) rises more steeply
and the density function becomes more peaked. X 1s the scale paran
This 1s an extreme value distribution in that it approximates the
ing distribution of the minimum of independent random variables.

The Weibull distribution has been used to describe fatigue fail-
ure, vacuum tube failure, ball bearing failure, electronic equipment
fallure, ere.

When 0 < a < 1, the failure
rate ls decreasing. When a > 1,
the failure rate is increasing.
When @ = 1, the failire rate is
constant and 'the distribution 1s
exponential. It can be shown that
when a > 1 the fallvre rate rit) is
unbounded as t becomes infinite.

2e Mixed Exponential Disfribution

Let X, be the 1life length of a component in a service environment

with a constant failure rate X which is unknown. The variability of
manufacture determinés various percentages of the X values and this
variability can be described by some distribution, say G.

Assume G is a gamina distribution. When N is known the relia-
bility 1is given by

R(t) = et

when X is unknown

/ R ,
Rt) = [ e g(Xﬁi\:'~“Jw~“-=exp{—“[“\litp)}
0

(lftp)(l




The failure rate, vr(t), is given by r(

r(t) = af
1+pt

which decreases as t increases.

A burn in of h units of time on a component with an iInitial 1i

b

which follows mixed exponential distribution with parameters g 2and a

has a residual life which follows a mixed exponential distribution with
v

Tiﬁ . Note that for fixed t reliability increases as

B (or a) decreases.

parameters a and

AR

2.6 Bernoulli Distribution

Assume that the time to failure, T, for a new component follows
some probability distribution F. If we fix tfime at t_ and are concerned
only with the reliability at this time then roliubillyy is no longer
written explicitly as a function of time. If the distribution F is
exponential then

_xto

R(to) = e D

If the distribution F is Weibull then

a
e~*to

R(to) = = By,

b - T . o SR AT s 1 - G TR The Bernoulli distri-

Let X 5

= 1
bution has a density function given by

e SRR It G R B

p(x) p if x = 1

Oy e p = g 0 1 - - 0

The relliability is given by the value p.




IE. POSS e AT LY I Al G
4 O BE COIGTANT
If we assume a constant failure rate when in fact whe failure
rate is decreasing we tend Lo over-ostimat the pe] o) T Qe S e T
time less than the average test time. Consider the following example
System Test for a Specific Tvve of Electronies lacl ‘
Average test time is 20t minutes.
mixed-exponential constant failure rat
time ¢t estimate of reliability estimate ~ reliablility
minutes at time ¢ at time ¢
10 .99 1500
100 .95 <97
200 LG4 « 95
300 & 2 .92
1000 i SIS
Note that for times much greater than the average st time the mixed
exponential estimate of reliability greater . However, timates of
reliability should not be made at times which are much greater than
those for which data is avatlable:
) Environmental Test for a fNpecifiec Type of Eleclbronics
Average test time 1is 23% minutes.
mixed-exponent il constant failure rate
time ¢t estimate of reliability estimate of reliability
minutes at time t af time L
’ v ) oy
10 .94 ¥ 5.0
100 BT .80

300 .49 .50
Given data from two different lots we might incorrectly distin-
¥ gulsh the more reliable lot if we assume constant failure rate. Con-

sider the followin, example:

First Data Set

Failure times: 1, 8, 10
Alive times: 50, 72, 76, 113, 117, 124, 145, 149, 153, 1Bz, 320,

B s e I

Second Data Set

Pallure times: 37, 53
Alive times: B0, b4, 66, 70, T2, 96, 123.

-

If we assume that the data are observations from an exponential
distribution (constant failure rate \) then we have the following
estimates:




Data Set L

A= ,00197 ko= . Q031
{ -
time t astimate of reliabllity estimate of re bildty
in min. at time €, BoAt) at time t, £)
6 .988 .981
10 . 980 .969
30 .9u3 .911
50 .G06 .85b
100 .821 .73?
130 ST . 667
Reliability Graph 1. Mxiponential (constant failure rate) Assumpt
1. 007 ;
XO. @ Bat i mai b e i alnd f
*\O‘ £ 4 ) . }
+* \ L 1) v 30 Ol data
\\\<::® X Fot it X e S e e A S L
- bLotimpates of reliability from
Qf =+ \\\\\\ secand set of data
| - 90+ @
: \ ‘\\
+\ et
? ) ] \\\\\\\\
o e O]
.&OT \\~._ \
3
5 A\\\ @
\-&
. 704 i Ny
'-JWLT——-#———-*‘ e 3 Y }Ll e

LY 20 30 50 70 100

Looking

9 trials has occurred

exponential assumption
are consistently higher.

fifty minutes.
reliability estimates

“',’O Graph _i.

in the first

the for

[f we assume that the data are observations
tial distributicn then we have the following estimates:

Set 1

of l\l\lhlllt
t ime L, R

Data

time ¢t
in min.

estimate
at

s VIR TC, I e s
—

estimate.o
at time

However,
the 1”

Data

at the data from the two sets we would expect iLnat at
the first fifty minutes the reliability estimate for the second
‘ data would be higher than the reliability estimate for the first
i data, because in the first set 3 failures out of 14 trials have
J in the first ten minutes while in the second set only 1 failure

St

+

f rel
R

least

under

o
we L

for

set of
set of.

occurred

out o© f
; 5 H‘\

aca $eb

from a mixed exponen-

)

<

iability

5(t)

« 9715
. 896
. 955
. 836
10
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30
50
100
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.976
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. 896
. 843
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Graph 2. Mixed Exponential Assumption
ol G S }

i
5
-

ot ot of data
* i Ot a i
\ M Saicitient o et sl B R i | R
\ \ X LS 1At S N 1 10X L 3 / 'Ol
(O "\ second set of data

o\ *\\;\

.90

ata dndic

should be
; the second set of data. Usi:
! t B i letermine whether ti jat } : {
17 rat L ' Ehe data frot ok ) i
t constant rate In ravor I' decy ng |1
1§60 &£ we e lok he: eonscant falilure rate
3 ! Ve NN O Or T ‘ 12y prey b yre b 3
- ) i ‘ A J i > S i i L -
b
d the mixed 1wbidal estimates Toer reliability
4 ) 2w vy : ~ Smat oo N ~ « N ‘ T N \ N i
The mixed exponential estimates are conservative to about
i 2 % \ a
N ‘ -~ ¢ 9 Y v ' v -~ 'l ¥ VS s} 1 H 4 - L 5 $ & ey
! minutes. voee Graph 3. Aotually one snould not esstimate rel o1l

much beyond 70 minutes since we do not have data to support those
‘ estimates.

l mixed exponential
time ¢ exponential estimate of estimate of reliabiligty
in min. reliability at time t, R(EL) : R{t)

! 6 .98] .976

10 .969

30 s 9L ] .896

| 50 . 856
70 804

100 G
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2) In he data must be uncensored.
{ 2 ) Mac ¢ $ ¢ ARy f Ak 4 . .
i 32 sesSu 1S _:A.,_.‘.Ak_.z./l‘,) CO Small Sce S .
i
i l.2 Chi-square Goodness of Fit Tests standard Statistical Tex
l) Estimate the parameters from data.
z‘ Ao yur + ~+ 1~
ASYHpLotlc
3) Data must be uncensored.
]
P 4) Reaid s A 1+ 3.2y i s 3 v
! +) negquires a large sampile size.
2« Tests - for Constant 1ilur t
railure Rate
2.1 Finkelstelr . M
. A " - Lily & o .« 9
171 ) me i
(1971) Improved
i) U« r ea
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2.2 Gnedenko Test Gnedenko, B., =2t al., (1969)
Mathematical Theory of Reliability, Academic Press.
%’ 1) Censored data.
2) Most powerful test.
2.3 Test of Fit for a Weibull Distribution
Mann, et al., (19704)
Mann "LEAP" Test
1) Censcred data.
2) Parameter values not specified.
3) Powerful test against checked alternatives.
IV. POINT ESTIMATES FOR COMPONENT RELIABILITY
1. Point Estimates for the Exponential Distribution
Example 1.1 Complete sample
Lex Xl,...,Xn be a random sample from a distribution with proba-
bility aensity function
i f(x;0) = Ko R
The maximum likelihood estimate for X\ is given by
A= 2
n
Z X
1=1 1
| "ne maximum likelihood estimate for R(t) is given by e
Assume 4 items of a particular type are tested.
X, = 30 min.
k x, = 60 min. SO AGER . A 565
; . samiie saalinat T RalEl
X, = 75 min. :
- Loxy
Xy, = 93 min. i=1
1 » _“ = 155¢
R(t) = e Kt - <0155¢
i
po o I ok
If t = 10 minutes then R(10) = e = .86
}
g
{
e —— —— Y




L ———

o
Example 1.2 Type II censoring (fixed number of failures)

Let X(l) < X(g) O <= X(n) be an ordered sample from an
F' exponential distribution with fallure rate A. Assume Type II
censoring at the rvd failure.

tested life, T, be given by

P =
e §

Let the tcta
Z

1
} i
: X1y * (n=r)X .,

1

The maximum likelihood estimate for A\ is

r

fl\

The maximum likelihood estimate for R(t) is
e—kt

A=

Assume ten items are put on test and tested until the 4th item fails.
X(q) = 30 min, X(2) = 60 min, LN w s ke Touy 93 min

Under the assumptions listed above the observed value of T is

30 + 60 + 75 + 93 + 6(93) = 816.

~

S e - S (RS, T, L
A= T = ETE = .005 R(t) = e e
If t = 10 minutes then R(10) = ¢ 22% - 952,

Compare the results from Examples 1.1 and 1.2.

- Example 1.1 Example 1.2

| X = 30 min. X, = 30 min.

Xy = 60 min. X, = 60 min.

i X3 = 75 min. Xy = 15 Mins

i X, = 93 min. Xy = 93 min.
Sample size 4 Testing is stopped.

The remaining 6 items
have 93 min. of tested
time but have not failec

' A = 5%8 = .0155 A = g%g = .005
. R(t) = e™*0155¢ R(t) = ¢*00%¢
R(10) = .86 R(10) = .95

Example 1.3 Type 1 censoring (fixed test time)

Under thils test plan we put n items on test simultaneoucly and
| test until time To' All failed items are instantly replaced. All

| testing stops at time To'

’;‘— me— - T R —
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Note 1: The total accumulated test time on all hardware tested,
including replacement, is nT

Note 2: The number of failures, R, is random.

Note 3: At all times in (n » ) there are n items on test,
The time between fallures, “has an exponential distribution
with parameter n\, that iJ, fv(y) = nhexp(-n\y) ¥ > 0.

Note 4: In view of Note 3, R, the number of failures, is
Poisson with mean nX® , that is, R is P{nAT ).
6 o)

Note 5: The total number of items put on test is n + R.
The maximum likelihood estimate for A\ is
& P
A = e—e
n'k
o)

~

and for R(t) is e-x“

Example 1.4 Random number of failures and random test time

In this case it is still possible to obtain a point estimate

= -\
for X and hence for e G but to obtain confidence bounds for e t

5
is very difficult.
The maximum likelihood estimate for \ 1is

i _ number of failures
total test time
2. Point Estimates for the Gamm2 Distribution

See lMéthods for Statistical Analysis of Reliability and Life Data

o

by Mann, Schaier, and Singpurwallia.

3. Point Estimates for the Weibull Distribution for Censored and

Uncenscred Llata

See iMethods for Statistical Analysis of Reliability and Life Data
by Mann, Schari'er, and Singpurwalla.

4. Point Estimates for the Mixed Exponential Distributions

See "Problems of Estimation for a Decreasing Failure Rate Distri-
bution Applied to Reliability," by Myhre and Saunders (to appear in
Technometrics).

5. Point Estimates for the Bernoulli distribution

If XyseeosXy is an observed sample from a Bernoulli distc¢ibution

(go/no-go), then the maximum likelihood estimate for reliability p,
is given by
- X, *+ ..+xn number of successes

B n ® humber of items tested

For example if n = 10 and x, = 0, Xy = 1, x3 = 1, X, = dig. R ™ L

1 5
7 n W o 0 x9 R - = 1 then

Xg = 1 % 10
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v, CONFIDEHCE BOUNDS KFOR COMPONENT RELIABILITY
l. Review of Confldernce Bounds
Let X, ,..... ,X, be a random sample from a distributicn with

density function f(x;6), where ¢ is an unknown parameter.

For ecxample Xl,...,X“ could be a random sample from a normal

distribution with known standard deviation S, and unknown mean 6.

2
i R (x-0)"
f(x;6) = g;v§; exp - 2020 -—o < X <

or X ,...,Xn could be a random sample from an exponential dis-
tribution with failure rate 6.

£ix30) = Oe-ex %= 0

or 9§ are glven by the random
) and BU(XI""’Xn)

Two sided confidence bounds
interval determined by BL(X.,...,

£
X

n
where

P[BL(X},...,Xn) < g = BU(xl,...,Xn)] =B

g is called the confidence coefficient.

Example 1.1

Let Xl,..

with mean 6 and known standard deviation o.
It can be proved that Z = aee has a normal distribution
cO/VE

.,Xn be a random sample from a normal distribution

Ko
with mean 0 and standard deviation 1, where X = —%
i

nw~s

1

The confidence interval is obtained from

P(-2z = s z) = B

co/Vﬁ

This 1s equivalent to

MR S -
PIX - —2=0sX+—2)=p
Vi vn

Example 1.2 Larson, "Introduction to Probability Theory and
Statistical Inference."




Suppose that the number of ounces which a machine puts into a
bottle can be represented by a normal random variable with unknown
mean 6 and known standard deviation of 1/2 ounce. Select at random
25 bottles which have been filled by this machine. Let Xl,XJ,...,X2,,

k3 > ot vl .J
respectively, denote the number of ounces they contain. Then X is a
normal random variable with mean 6 and standard deviation

1/2/N25 = 1/10. If we want 95% confidence bounds on 6 then from
the normal table

-

P(-1.96

1A

0
IO“S 1-96) = .9

b—*{><]
~
wv

which 1is equivalent to

X 6 1 < X g 1 =
P(X -1.96 g = 8= X + 1.96 iﬁJ = .95
If the observed values of the random sample are:
= " ; = 1z = }19. 4 ¥ = ) iy =Sl Sl
xl 12.0 16 1d% 3 xl1 12.4 X16 L @ 5 I
- P = o = 11.6 i 5 . 9 o I R
X, 12.8 Xq 1E.5 X5 1.6 Xy 1159 Xs 1
= oy = 4 ) = . e e 123
Xg 319 Xg 11. %13 1é 3 X8 5 23 12 j
xy = 11.8 Xg = $2.2 Xyy = 1274 X1g9 = 12,0 Xy = 11.8
= = 2 = 1 > = D X = 7
Xg 12.1 x4 15,6 X1 138 X0 2.2 o5 13T
Then
X =12.0
BL s 12.0 - 1.96(1/10) = 12.0 = .2 = 11.8
BU = 12,0 + 1.96(1/00) = 1200 + .2 =122

2. Confidence Bounds for the Exponential Distribution

Example 2.1

Let Xl,...,Xn be a random sample from a distribution with

probability density function

i
|
i -
{ £f(x3;6) = Ae be x>0
n 2
E It can be shown that Y = 2\ 2 Xi has a X2n distribution (a chi-
i=1
| square distribution with 2n degrees of freedom).
i
- Af @
‘i.
?
| n % y
P(a < 2\ Z X, < b) =8 . »
0 i=1
$
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s

This is equivalent to

- a b
P = € N g & B
[2zxi ZZkij

If the Xl,...,
of equipment then the reliability at time t 1is given by

B

Xn denote 1life times for some particular piece

A confidence interval for R(t) is obtained by
- : o % - ’X:
o-DE/2EXy  _ -ME _ -at/2iXy

P e = 8
Using the data from Example 1.1 of Section IV with B = .90 and
n =14, we have a = 2.73 and b = 15.5, a 90% confidence interval for
R(t) = e ™ 1g
LS55 A i
(exp-§z§§87 t, exp 5(258) t)
P " 5t
- (e .OBOt, e .OOJt) i
If t = 10 minutes then the 90% confidence interval for R(t) is

(.74, .95),

Example 2.2 Type II censoring(fixed number cf failures)

g
s
v
i
e

Let X < A € v Sk be an ordered sample O an
(1) (?) (I}) c ) ) 1 P4 fro
exponential distribution with failure rate A\.
A % v - i : i P
Assume Type II censoring at the r fallure.
Let the total tested 1life, T, be given by

i

T ow X + (n-r)X
1=1 (D)

(r)

Epstein and Sobel (1953) proved that Y = 2AT has a X
distribution with 2r degrees of freedon.

.{Y(,)

100B% confidence bounds for A are obtained from using the fact that
P(a < 2\T < b) = B
P(a/2T < \ < b/2T) =




O
Two sided confidence bounds for the reliability at time t are
obtained from

-bt /27T -\t ~at/2T
< e < e

P(e ) = B

A lower p + (l%ﬁ) bound is obtained from

-(b/2T)t 5 e—kt

P(e ) =+ (5B

Using the data fgom Example 1.2 of Section IV, the degrees

of freedom for the X distribution are 2r = B, If p = .90
then a = 2.73 and b = 15.5.
Two sided 90% confidence bounds for e M are
~15.5 2.73
0095k . TEGEE - Ak o U134 = 0017

If t = 10 minutes then the bounds become (.91, .98)

The one sided 95% = (90 + ng%:ﬂgl lower bound is

e-.0095t e e-Xt

Example 2.3 Type I censoring (fixed test tine)

Under this test plan we put n items on test simultaneously
and test until time T . All failed items are instantly replaced.
All testlng stops at 2ime To. See Example 1.3 of Section IV.

It can be shown that if b 1s the 100f percentile point from

a x? distribution with 2(R+1) degrees of freedom then an upper
100B8% confidence bound for A\ is obtained by

P(2nAT_ < b) = B

b 2
P(X < 2n'ro ) % B
A lower 100B% confidence bound for e-Xt is obtained by
e,
£o that the lower bound on R(t) is e enly

It n = §, T, = 102 and R is observed at r = 3 then

for p = .95, b = 15.5 (recall that the degrees of freedom on the

x? 1s 2(r+l1) where r 1is observed number of failures in the fixed
time nTo). Thus ,
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wi

3.

- 18 -
bt _ 15.5
2nT. 1632 ” %8¢
o
- 5 -
0095t SN R(t)

th probability .95.

Confidence Bounds for Gamma Distribution

See Methods for Statistical Analysis of Reliability and Life
Data by Mann, Schafter, and Singpurwalla.

Confidence Bounds for the Weibull Distribution for Censored and
Uncensored Data

See "An Exact Asymptotically Efficient Confidence Bound for
Reliability in the Case of the Weibull Distribution," by Johns
and Lieberman, Technometrics, Vol. 8, No. 1, Feb. 1966; also,
Methods for Statlstical Analysis . . . , by Mann, Schafer, and
Singpurwalla.

Confidence Bounds for Bernoulli Distribution

Let Xl"'

Example 5.1

Thus if p = .54 the probability of observing 8 or more successes in

)l 1

of n trials. A 957 lower confidence bound, pr» for

n
Assume that Zl X. = k, that is, k successes out

p is the value of p for which
n
nyy n-y
z ( )p (1-p) = .05
y=k Y 3
If k = 0 then Py, = 0.
To illustrate: if n = 10, k = 8 and confidence

coefficient = .95 then

10 11, ok
; y : =y :
yia( y)('s“) (.46) = .05

10 trials i S 05,

(0 P

"
-

-
~-T

05

W s

.,Xn be a random sample from a Bernoulli distribution.

P




:
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Ifn=5, k = U, confidence coefficient = .95
s
J ( X N T8
2 [5) ¥ s58)5Y < Los
y:“\y

Example 5.2 Normal approximation

Let Xl"

distribution with probability density function

..,Xn be a random sample from a Bernoulli

filx) = px(l—p)l—x x = 0.1

n
& X, has a Binomial distribution with parameters n and p.

i
i=1

By ral Limit Theorem

XXj-np
————=——= 18 approximately N(0,1),

vnp(l-p)

{ EXi—np ] VA 2,2
- <z| ~ (1 YZH)eV /2 gy = g
Jnp(1-p) -z

ZXi-np

e i W (ZXs-np)? < z?np(l-p)
Vnp(1l-p) 4

o (Exi)2 - 2np(ZXi) * n*p? = zznp - 2%'np?

g (nz?

¥ 5¢)p - (2nZXy + nz?)p + (IX;)? < 0

This quadratic in p has 2 real roots
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Solve for PsPy- The confidence interval becomes (Pl’”z)' For

example, if n = 100, in = 65 and B = .95 then

LXi-np
Bi=1.96 ¢ —2rrr < ] 06 w06
an(l—p) N

_65-100p _

10/p(1-p)

o

< 2 +» 10,400p® - 13,400p + 4225 < @.

“3
T4

Roots are Py

@
no
I

(.55, .74) 1s an approximate 95% confidence interval for p.
.55 is a lower 97.5% confidence interval for p.
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PRELIMINARY DRAFT

APPROXIMATE CONFIDENCE BOUNDS FOR RELIABILITY:

MIXED EXPONENTIAL DISTRIBUTION

I. Introduction

The mixed exponential model for the probability that a com-
ponent (or system) is successfully operating at time t, R(t) =
(l+Bt)-a, was developed for use where the exponential model had
been assumed but the data showed a decreasing failure rate [2].

The maximum likelihood estimates of the parameters, either
singularly or jointly, have been shown in [1] to be fairly accurate
and in general preferable to using the best linear unbiased estimate
of B. The estimates obtained by the method of moments are quite
inaccurate.

Since the joint maximum likelihood estimate of a and B8, (;,é),
is not availlable in closed form, it is difficult to obtain the
Joint distribution of (;,é) and hence difficult to derive an exact
lower confidence bound on reliability. It has been shown, however,
that for fixed a and type II censoring of the data the distribution
of é/B is independent of p. In addition, it has been shown [3]
that for fixed a and general censoring (type II, type I or general
time censoring) the distribution of é/a 1s asymptotically normal
and independent of B as the sample size and number of failures
become large. In these cases confidence bounds for ? and hence
for rellability can be obtained using either the simulated distri-

bution of B/B or when appropriate the asymptotic normal distribution

of E/ﬁ.
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If a is unknown, section IV gives a method for obtaining
approximate confidence bounds for reliability. Simulations
demonstrate the accuracy of these bounds as a function of sample

size, number of fallures and confidence level.

II. The Distribution of B when a is Known

For known scale parameter a it is shown in [2] that the
distribution of é/s is independent of B, where é is the maximum
likelihood estimate of B from a sample of size n with k failures.
While this distribution 1s independent of B, it does depend on
n, k, and a, thus it is necessary to know the distribution for
each triple (n,k,a). If the distribution is known then upper
(lower) bounds can be found for B since if P[é/ﬁ->b] = a then
P[é/ >B: = a. From this expression lower confidence bounds on
the reliability R(t) = (1+gt)” % can be derived.

For each triple (n,k,a) with g = 1, 2500 é's were simulatec
and the resulting percentiles of the distribution obtained. These
simulations were done for a = .05, .1, .2, « « + 5 9, 1.0, 1.2,

3.0, n = 25, 50, 1005 200 and a range of k's appropriate
for each n (i.e., for n = 100,.k w0 20 e e 200D

The graphs of these simulations appear to be approximately
normal for all but small k and thus illustrate the result proven
in [3] that the distribution of é/a, for fixed a, is asymptotically

N(l,a2), where

-1
o2 = | 5 I(n+1)r(n-141+2/a)
4=1 T(n=-1+1)T(n+1+2/q) ;
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To determine the values of (n,k,a) for which the above approxi-
mation holds, one hundred simulation sets are run for each (n,k,a),
where in each simulation set one hundred é's are estimated. Each
simulation set sample of é's 1s tested by the Kolmogorov-Smirnov

goodness of fit test for a N(l,o2) distribution.

Compilation of computer results

to be inserted here.

In checking the distribution B/B the mean has been computed
for each sample and is afways slightly longer than one, say 1.023.
Thus, even though the distribution appears to be normal it may

be necessary to use a more accurate mean to get the proper fit.

III. Percentiles of the /g Distribution

Since the percentiles of the 5/5 distribution depend on
(n,k,a), the variation in the percentiles were studied as func-
“ions of a and k. For a fixed n and k it appeared that
the 90th percentile point, b, was log log related to a. Linear
regressions were run to fit eb=m(1na) + ¢ and these were found
to be significant. Further study indicated that these 90th
-ercentile points were linearly related to 1/a. When regressions
were run for fixed n and k to fit b=m(1l/a) + ¢, where a varies
through .05, «l; +25 s « » 5 95 1:0; 125 « & « 3:0; the results
ere excellent with RZ > 99. The bounds were also found to be
linear functions of 1l/k when n and a‘were fixed, and when regressions
were run to fit b=m(1/a) + n(l/k) + ¢ the results were good with
multiple R2 > 90. Similar results were found to hold for the

80th percentile points.
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IV. Confidence Bounds on Reliability

With our knowledge of the distribution of é/ﬁ it is easy
to construct a lower bound on relilability if the shape parameter,
a, is known. If P[é/s > b] =ythen for all t > 0 and a > O
P[(l+é/bt)-a < (l+st)°a] = y. Thus, if a is known a priori and
if b can be determined for the particular n, k, and a, then
R(t) = (1+é/bt)1xis a lower confidence bound on the true relia-
bility at a y level of confidence.

Unfortunately in most applications a is unknown and a and B
must be jointly estimated. In this case it 1s proposed that

a

R(t) = (1+At) " be used as the y-confidence level lower bound

on reliability where A=§kb(;) and b(a) 1s the y-level bound on
E/B assuming the true a = a. If in fact é/b > B and ¢ > a then
R(t) will be a lower bound on R(t) for all t, but in other cases
R(t) may be lower than R(t) for some t but not others. Thus
the validity of R(t) must be shown on an appropriate time interval
through computer simulation.

As ; 1s seldom one of the a for which the distribution of
E/B is known, a major problem has been to calculate b(;). This
has been solved by either using the linear model b=m(1l/a) + c,

where the model is known for particular n and k, or by assuming

that the distribution g/p 1is normal with p = 1 (or 1l+€¢) and

Z Fn+1-1)(n+1+2/q)

o2 _[ : P(n+1)r(n+1-1+2/a)] =
i=1

In either caie to test the validity of R(t) for a fixed a«, B, n, k

two hundred pairs of estimates (a,é) are generated and for each
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pair R(t) = (1+é/b(a)t)-a is computed at each time tp,
, 99 where R(tp) = p. The g(tp) are compared with the

true reliability at each of the 20 times and the results averaged
over all 200 pairs to determine the percentage of time that R
is actually lower than the true reliability. As the percentage
that results may be high because the bounds are too conservative,
or be low because they are too optimistic, each R(t) is raised
by .01 for all the tp and lowered by .01 for all tp and the
corresponding percentages computed. For example, we simulated
for n = 100, k = 30, ¢ = .1, g = .3 two hundred (&,B) and
generated 90% bounds B(tp) for p = 80, .81, . . ;.99 using
the linear model b=m(l/2) + c. For this case,

B(tp) is less than the true reliability 92% of time

B(tp)-.OI is less than the true reliability 96% of time

g(tp)+.01 is less than the true reliability 76% of time.
This shows a fairly tight lower bound. When using b=u+0100 on
the assumption that the distribution is normal, the percentages
are 95%, 98%, 88%, indicating that R(t) 1is quite conservative
and the normal approximation does not fit well.

The following table indicates the accuracy of the approximate

bounds and the value of n, k, and @ for which the normal approxi-

mation bounds are accurate.

Compilation of computer Results

to be inserted here.

p = 80, 81,
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