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The temperature dependence of the magnetic susceptibility and the electron para-
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clinic system with two 1Rdep3nd nt formyla units in a cell,of dimensions a =
7.332(6), 3.853(4), c = 17.493(17) A, and 8 = 93.70(1)°. The structure has ..

bD ';:,""‘f” 1473  £0IHION OF ' NOV €515 OUSOLETE

E :;& 3¢§‘URITY CLASSIF lCAT ON OF T“l.‘ F’\(;L ( Nen De'm E: Vf(lfu)




20. (continued)

_/\ been refined by full-matrix least-squares methods using 1172 independent data
to a final value of the conventional R-factor (on F) of 0.028. The structure,
which consists of infinite chains of doubly chloride bridged copper(II) jions,
is reminigcent of those of the pyridine analogs, with a Cu-Cu separation of
3.853(4) R and bridging angle of 91.89(2)®. The magnetic data and inter-
chain exchange interactions are discussed in the light of the structural
Properties of the systems.
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ABSTRACT

The temperature dependence of the magnetic susceptibility and the
electron paramagnetic resonance spectra of the thiazole complexes dichloro-
and dibromobis(thiazole)copper(II) are reported, along with a complete
three-dimensional X-ray structure analysis of the dichloro complex based on
counter data. The dichloro complex, Cu(C3H3NS)2C12, crystallizes in space
group P21/c of the monoclinic system with two independent formula units in
a cell of dimensions - 7.332(6), b = 3.853(4), o= 17.493(17) Z, and
B = 93.70(1)°. The structure has been refined by full-matrix least-squares
methods using 1172 independent data to a final value of the conventional
R-factor (on F) of 0.028. The structure, which consists of infinite chains of
doubly chloride bridged copper(II) ions, is reminiscent of those of the
pyridine analogs, with a Cu-Cu separation of 3.853(4) Z and bridging angle

of 91.89(2)°. The magnetic data and interchain exchange interactions are
g

discussed in the light of the structural properties of the systems.




INTRODUCTION

Current interest in one-dimensional exchange-coupled magnetic
systems has recently stimulated a considerable number of theoretical
and experimental studies as well as several comprehensive reviews.l-5
Most of the theoretical work has centered on completely isolated one-
dimensional models, while the experimental work has reflected the longer
range interactions which always occur in real crystals.

From the theoretical standpoint, most of the investigations have
centered on the use of the various forms of the spin-spin Hamiltonian (1)

H=-23 gfasi.sd +pesiesd +stsdy )
1<§ z 2z % X Vi %
where J is the exchange integral, Sx’ Sy' and Sz are the components of
the total spin (S), the ratio a/b is an anisotropy parameter, and i and j
label adjacent ions. For the case a = 1 and b = 0, the Ising model is
obtained; and, in the special case for S = 1/2, an "exact" closed-form
solution has been obtained for the magnetic and thermodynamic properties

4,5,6

of a one-dimensional chain. If the spins are restricted to lie in

x-y plane, i.e. a =0 and b = 1, then the X-Y or planar Heisenberg model




e

7
is obtained; and, Katsura has obtained exact solutions for the S = 1/2

linear chain. Furthermore, when a = b = 1, the exchange interaction is

8,9,10

isotropic and the Heisenberg model is obtained.
Unfortunately, in the Heisenberg or isotropic limit, no closed form j

solutions for magnetic or thermodynamic properties have yet been found;

this being the case, almost all of the theoretical analyses have used some

approximations to estimate the properties of linear chains.9 Bonner and

Fishet8 studied the S = 1/2 antiferromagnetic Heisenberg chain and performed
computer calculations on finite rings and chains of isotropically interacting
spins; they were able to estimate rather accurately the limiting behavior

of the infinite linear system. Katsura and coworkersll have applied 'linked-

cluster" expansions via perturbation theory to estimate the various thermo-
9,10

dynamic functions of interest. Finally, Baker, Rushebrooke and coworkers
have employed a high temperature series expansion method to study the magnetic
and thermal properties of linear Heisenberg systems. Generally, the results of

Bonner and Fisher have been most widely accepted.l
Numerous experimental studies of linear chain crystals have appeared

ol The results of these experiments have been ana-

in the literature.
lyzed in terms of the available one-dimensional (1-D) models. Transitions
to the long-range, three-dimensional ordered state have also been observed
for several of these systems. Since it is known from the theorems of
Mermin and Wagnerlz that pure one~ and two-dimensional isotropic systems
cannot sustain long range order at finite temperatures, considerable
interest has been focused on linear Heisenberg complexes with small but
finite inter -chain exchange.13'14

Perhaps the most famous example of a nearly one-~dimensional chain

1s provided by tetramethylammonium trichloromanganate (II) (TMMC), whose




intra-chain exchange is about 9 cm—1 with longer range inter-chain inter-
actions being about four orders of magnitude smaller.16 For S = 1/2
complexes, copper tetraamine sulfate monohydrate (CTS) has been the most
thoroughly studied,17_21 but some recently reported electron paramagnetic
resonance results have been interpreted in terms of a quadratic rather
than linear model.22 Finally, one of the best known examples of a S = 1/2
Heisenberg chain is dichlorobis(pyridine) copper(II), in which the intra-
chain exchange 1is about 9 cm_l is much larger than the observed inter-
chain coupling.l3—15’23’24

A relatively large number of transition metal complexes of the gen-
eral stoichiometry M(II)L2X2 (where M is a divalent first row metal ion,
L is a heterocyclic nitrogen containing organic base, and X = Cl or Br)

24,27

has been shown to contain, or behave as if they contained, linear

- Ly
magnetic chains of doubly halogen-bridged metal ions.l3 Lagadndta, 23y 30y 34

Typically, structural studies have shown that the M L2X2 systems contain

doubly halogen bridged metal ions with intrachain metal-metal distances

of about 4 Z and M-X~M angles of about 90° (See Table 1); these chains

are usually packed in such a way that the interchain metal-metal distances

are much longer (i.e. greater than 8:) than intrachain distances, and

pseudo-one-dimensional chains are formed. Although interchain distances

seem to imply quite weak interchain magnetic exchange, these effects

have been observed; furthermore, it is believed that these weak interchain

superexchange pathways involve M - X...N - M interactions. A thorough

discussion of the properties of Cu(py)2C12 is available.”'14
With these facts in mind, the bis(thiazole) dihalogen metal (II) com-

plexes reported by Underhill, et al.30 became of considerable interest.




The structure of thiazole (C3H3NS) is depicted below. Since the elec-

tronic and infared spectra of the thiazole complexes were similar to
those of the known pyridine analogues, it was proposed that the com-
pounds Cu(thiazole)2X2 were polymeric with double halide bridges.
Also, it might be expected that the sulfur atom of the heterocycle
could provide an efficient interchain exchange pathway. In order to
confirm the original postulates of Underhill et al., and to examine
ossibility of enhanced interchain exchange, we undertook low
iture susceptibility and electron paramagnetic resonance studies
of the complexes, and a complete three-dimensional crystallographic
analysis of the chloro complex. The results of these studies are

reported here.

EXPERIMENTAL PROCEDURE

Thiazole (C3H3NS, Tz), obtained from Columbia Organic Chemicals,

Columbia, S.C., was of puriss grade and was used without further purifi-

cation. Reagent grade copper(II) chloride dihydrate and copper(II)

bromide were obtained from J.T. Baker Chemical Co. and used directly.
Both complexes were prepared by a slight modification of the method

described by Underhill et al.30

Dichlorobis(thiazole) copper(II), Cu(tz)2Cl

2

To a warm solution of thiazole (0.51 g, 6mmol) in ~1 ml absolute

ethanol was added 0.5g, (3mmol) of CuC12'2H20 in ~8 ml absolute ethanol.

An immediate turquoise blue precipitate resulted; the mixture was stirred

for




ten minutes, collected, washed with ether and benzene, and allowed to
dry under suction. The product was recrystallized from dimethylforma-
mide (DMF) by addition of an equal volume of methylene chloride followed 1
by cooling in the freezer compartment of a refrigerator. Anal: Calculated
for Cu(C_H_N_S )C12: ¢ = 22,65, H = 1,98, CI = 23,27. Found: € = 23.56,

6 6252
H= 2,08, C1 = 23,51.

Dibromobis(thiazole) copper(1l), Cu(tz)zBr2

Cu(tz)zBr2 (hitherto not reported) was prepared as above. The dark

green powder (Dmax = 14285 cm—l) was recrystallized as above to vield
darker green hair-like needles. Anal. Calculated for Cu(C6H6N282)Br2:
Cc=18.31, H= 1.55, and Br = 40.6. Found: C = 18.31, H = 1.62 and
Br = 40.42,

Magnetic susceptibilities were obtained on a Princeton Applied
Research model 155 vibrating sample magnetometer (VSM) operating at a
field strength of 10kG. Temperatures at the sample were measured with
a calibrated GaAs diode by observing the voltage on a Dana model 4700
4.5 place digital voltmeter; further details of the apparatus and
temperature measurement have been given elsewhere. 2 Finely-ground
polycrystalline samples which were enclosed in Lucite sample holders
typically weighed approximately 150 mg. The data were corrected for the
diamagnetism of the Lucite holder and for the underlving diamagnetism
of the constituent atoms using Pascal's constants. i A value of 60 x 10_6
c.g.s. units was assumed for the temperature independent paramagnetism (TIP).

Electron paramagnetic resonance (epr) spectra were obtained at room

temperature on a Varian E-3 spectrometer operating at approximately 9.5

GHz (X-Band). All spectra were recorded from very finely ground powders

"N




(5]

enclosed in commercially available quartz sample tubes. Several spectra
were recorded at 77°K through the use of an insertion Dewar made by
Varian. The magnetic field of the E-3 was calibrated by nmr techniques
using a Magnion G-502 gaussmeter and a Hewlett~Packard 5340A frequency
counter. The klystron frequency was observed directly with the

frequency counter.

Determination of the Crystal Structure

Weissenberg and precession photographs indicated that the crvstals
belonged to the monoclinic system, the observed systematic absences of
OkO for k odd and hOl for 1 odd being consistent only with the space
group P21/c. The cell constants, determined by least-squares methods,
are a = 7.332 (6), b = 3.853 (4), e = 17493 @7) Z and g =987 (@)

these observations were made at 21°C with MoKa radiation with % (MoKx)

-

assumed as 0.7093 Z. A density of 2.03 gcm-J obtained by flotation in
carbon tetrachloride/bromoform mixtures is in acceptable agreement with
the value of 2.05 gc:m--3 calculated for two formula units per cell.
Hence, in the centrosymmetric space group P21/c, the copper atom is
constrained to lie on the inversion center.

Diffraction data were collected on a platelike crystal having faces
(102), (102), (001), (001), (010), and (010). The separations between
opposite pairs of faces were as follows: (102) to (IOE), 0.0056 cm;
(001) to (001), 0.014 cm; and (010) to (010), 0.061 cm. The crystal was
mounted on a glass fiber parallel to the b~axis, and data were collected
on a Picker four-circle automatic diffractometer using Mok radiation.
The take off angle was 1.5°; at this angle the peak intensity of a tvpical

strong reflection was approximately 95% of its maximum value. A total of




1761 reflections was examined by the 6-26 scan technique at a scan

rate of 1°/min., Allowance was made for the presence of both Kal and
Kaz radiations, the peaks being scanned from -1.0° in 2¢ below the

calculated Ka, peak position to +1.0° in 26 above the calculated Kz

1 2

peak position. Stationary-counter, stationary-crystal background
counts of 20 sec were taken at each end of the scan.

A unique data set having 26<60° was gathered. There were few
reflections above background at values of 26>60°. Throughout the data
collection, the intensities of three standard reflecticas, measured
every 100 reflections, remained essentially constant.

Data processing was carried out as described by Corfield, et §£;36

After correction for background the intensities were assigned standard

deviations according to the formula36

o(T)= [C+0.25(ts/tb)2(BH+BL)+(pI)2]l/2

with the value of p chosen to be 0.04. The values of I and o(I) were
corrected for Lorentz-polarization effects and for absorption factors.
The absorption coefficient for the sample with Mo radiation is 31.25
cm-l, and the transmission coefficients for the data crystal range

from 0.56 to 0.87.37 A total of 1761 reflections was collected, of
which 1172 were independent data with I>30{I); only these data were used

in the final refinement of the structure.

Solution and Refinement of the Structure

All least-squares refinement were carried out on F minimizing the

¥
function EW(IFOI-|FC|)2, with the weights w defined as AFO/SZ(FO").
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In all calculations of Fc the atomic scattering factors tor al!l

non-hydrogen atoms were taken irom International Tables383 and

those for hydrogen taken from Stewart, Davidson, and Simpson.39

The effects of the anomalous dispersion of Cu, S and Cl were

included in FC, the values of Af' and Af'" being taken from

International Tables.38b The unweighted and weighted residuals are

defined as R, = Z](|F0|-|FC])|/|F0| and R, = [Zw(l'FOI-]FC!)z/Zw(FO)Z]l'/:.
The location of the chlorine atom was determined from a three-

dimensional Patterson function, the copper atom being assigned to the

origin. Isotropic refinement of these positions gave R, = 0.476,

1

R2 = 0.540. The positions of the remaining non-hydrogen atoms were
determined from subsequent difference Fourier maps, and a least-squares
refinement in which copper, chlorine and sulfur were refined
anisotropically while the nitrogen and carbon atoms were refined
isotropically yielded values of R1 and R2 of 0.045 and 0.063,
respectively. Anisotropic refinement of all of these atoms gave

Rl = 0.034 and R2 = 0.051.

The three hydrogen atoms were located in a difference Fourier
map; a least-squares refinement in which the non-hydrogen atoms were
refined anisotropically and the hydrogen atoms were refined isotropi-
cally converged to values of R1 and R2 of 0.028 and 0.036, respectively,
with the error in an observation of unit weight being 1.41.

Llxamination of the values of IFCI and IFO] suggested to us that
no correction for secondary extinction is necessary, and none was

applied. In the final cycle of least-squares refinement, there were

1172 observations and 73 variables, a reflection to variable ratio of




16:1. In this final cycle, no parameter underwent a shift of more
than 0.136, which is taken as evidence of convergence. The value

of R2 shows no unusual dependence on |F°| or on sin6, which suggests
that our weighting scheme is adequate. A final difference Fourier
showed two peak of height 0.67 eA_3 near the copper and chlorine
atoms. Which are presumably du2 to some small error in either our
absorption correction or the anisotropic thermal model. No other
peak higher than 0.58 eA_3 was observed. The positional and thermal
parameters derived from this final cycle, along with their standard
deviations as estimated from the inverse matrix, are presented in
Tables II and III. A compilation of deserved and calculated

structure amplitudes is available.40

Description of the Structure

The complex consists of square planar Cu(tz)2C12 units which
are linked by chloride bridges to form linear chains. The structure
of each chain is, therefore, quite similar to that of Cu(py)ZClz.24
A view of the square planar array around a single copper ion is
shown in figure 1, and a view of the chain is given in figure 2. The
overall coordination around copper is, as can be seen in this figure,
the commonly-occurring (4+2) tetragonally elongated octahedral. The
base plane is formed by the nitrogen atoms of two trans-thiazole
groups and by two chloride ions, the axial ligands being chloride ions
which are in the base planes of the copper centers above and below.

The base plane is strictly planar, there being a crystallographic

inversion center at copper. The Cu-N and Cu-Cl (in-plane) distances of

o
1.990 (2) and 2.322 (1) A, respectively, are normal and comparable to
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values24 of 2.004 (2) and 2.299 (2) A in Cu(py)2C12. The out-of-
plane Cu-Cl' distance of 2.998 (1) A is slightly shorter than the
value of 3.026 (2) A in Cu(py)2C12, but is comfortably within the

o

range of 2.698 to 3.37 A reported for such distances in tetragonal

pyramidal dichloro-bridged copper(II) dimers.41

The Cu=Cl-Cu'
bridging angle of 91.89 (2)° is again comparable to the value of
91.52 (5)° in Cu(py)2C12.
The bond lengths and angles in the molecule are listed in
Table IV. The bond lengths in the thiazole moeity appear to be
typical of those found in other conjugated ring systems. The
thiazole ring is approximately planar, with no atom deviating from the
best least-squares plane by more than 0.006 X. The ring plane is
inclined at an angle of 60° from the base plane of the copper octahedron.
It is noteworthy that the sulfur atom does not participate in
coordination to the metal. The only possible interaction involving
sulfur is an inter-chain S::*S separation of 3.619 (1) Z; this value,
which is slightly less than twice the reported42 value (1.85 ;) of
the van der Waals radius of sulfur, may indicate a weak inter-chain
interaction in the crystals (vide infra).
While the geometry at any given copper atom in Cu(tz)2C12 is
very similar to that in Cu(py)2C12, the arrangement of the chains in
the crystal is quite different. 1In Cu(py)2C12 the '"square planes' in
each chain are parallel,za but this is not the case in the thiazole
complex; in Cu(tz)2C12, the angle between the normals to the planes in
adjacent chains is 77.89°. Consequently, to the extent that inter-

chain interactions are significant (vide infra) there is an important

structural distinction between the two complexes.

~ﬂ---------iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilllllll‘
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RESULTS AND DISCUSSION

The compounds Cu(tz)ZCl and Cu(tz)zBr exhibited very broad, weak

2 2

symmetrical bands centered at 14,400 and 14,300 cm-l, respectively;
furthermore, the shape and width of these d-d bands were noted to

be very similar to those observed for Cu(py)ZCl2 (14,600 cm_l) and
Cu(py)ZBr2 (14,600 cm-l)43 except for a slight shift to lower energv;
this shift seems reasonable since it is known that thiazole is a
weaker base than pyridine.30 In addition, there were no transitions
in the region 16 - 17,000 cm-l as have been observed43 for the
Cu(2—methylpyridine)2X2 compounds,aa which are known to coatain copper
ions in a distorted square-based pyramidal array. Several intense
higher energy bands were also observed for both complexes, these being
centered at about 32,250 (strong) and 41,700 cm—l for Cu(tz)2C12 and
23,250 (strong) 31,250 (strong), 32,000 (shoulder) and 41,700 cm—l for

Cu(tz)ZB These bands are either charge-transfer or intra-ligand

r,.
transitions.45 The observed electronic spectra are consistent with a
distorted octahedral CuNZX4 chromophore as reported in extensive studies
of the substituted pyridine copper halide complexes.43

Electron paramagnetic resonance (epr) spectra were obtained on
finely-ground polycrystalline samples of both complexes. A single
broad (~300 G) featureless line centered at g=2.1l1 was observed for
Cu(tz)zBrz; no appreciable temperature dependence was noted for this
absorption down to ~77°K (the low temperature limit of this investiga-
tion). Although virtually no quantitative information could be obtained
from these spectra, it should be noted that qualitativelv similar

spectra have been observed in the bis(subst. pyridine) complexes with

copper bromide.28 However, the epr spectrum obtained for Cu(tz),,Cl2
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(see Figure 3) 1s quite different from that normally seen for
tetragonally distorted octahedral copper complexes. Indeed, an
1

axial "reversed" spectrum was observed with g, (2.16) greater than

g|| (2.04) and <g> = 2,11, Upon cooling the sample, the intensity
of the highest field resonance increased slightly. The resonance
fields remained constant within experimental error.

Since powder EPR spectra can only yield information about the
values of the crystal g-tensors,47 additional analyses based on the
molecular structure must be invoked to understand the observed
"reversed" spectrum. One possibility is that the single ion
electronic ground state about the copper(II) ions is largely d22.46’67
If only discrete molecular units are considered, several stereo-
chemistries have been shown to give rise to a species with a dzz
ground state:47 (1) trigonal bypyramidal, (ii) tetragonally compressed
octahedral, (iii) cis-distorted octahedral, and (iv) rhombically
distorted octahedral. However, the X-ray structural results show
that these stereochemistries do not obtain for CU(tz)Clz. In
this case, it is far more likely that the single ion ground state
is largely dXZ—yz in character, and the observed resonance is
determined by inequivalent sites within the unit cell.(‘s'SS.57
Since the two sites within the unit cell are magnetically inequivalent
in the ac-plane, the relative orientations of the tetragonally
elongated octahedra will determine 'he observed crystal g-tenscrs.
Even though these molecular sites do not possess tetragonal site-
symmetry, this approximation allows for a much simpler relationship

of the site g-tensors to the observed powder g-tensors. These
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expressions are given by (2)

(2)

g i = glz coscS2 o +-g|l2 sinzrl

where g"’ and g'l are the observed crystal g-tensors, g | and gl
| !

are the site g-tensors for the tetragonally elongated octahedra

about the copper(II) ions, and 2o is the angle between the

tetragonal axes of the sites. If one assumes that molecular gl|
I

L then the

is roughly normal to the plane of the four short bonds,
angle between the normals to these two sites is 77.89° for Cu(tz)7C1,.
Using this value of 2 a and Equation (2), the values of the molecular

g-tensors are g|| = 2,23 and g' = 2.04. These values are in excellent

agreement with those of the structurally similar Cu(pyridine),Cl,

complex.l3’14

In another rather similar system, B-Cu(NH3)2Cl2 doped
into the NH Cl host lattice, Tomlinson,gg_al..so observed a "reversed"

powder spectrum with g'l| = 2,006 and g'l = 2,175 and proposed that

the geometry about copper was tetragonally compressed octahedral thus
ylelding a dZZ ground state, However, it is also of interest to note
that this cubic cell requires the molecular tetragonal axes to be
oriented randomly, but any pair of axes are exactly 90° apart. Thus,
such a system will always show a '"'reversed'" powder spectrum irrespective

of whether the sites are tetragonally elongated or compressed. This

unusual circumgtance arises because the 90° misalignment of the molecular
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parallel g-tensors yields a unique perpendicular resonance (occurring
at higher field) and a lower~field, more intense resonance which is
the average of the molecular parallel and perpendicular g-tensors.

The experimental magnetic susceptibilities versus absolute tempera-
ture for both complexes are plotted in Figures 4, 5, and 6. The data for
the chloride complex are seen to exhibit a broad maximum at about 7°K,
while the bromide analogue displays similar behavior at ca. 19°K. As
can be seen from closer examination of the experimental data, the
susceptibilities of both compounds appear to tend toward a non-zero
value as the temperatures approach zero; this is just the behavior
expected for an infinite linear chain since it is well known that, in
small clusters containing even multiples of S = 1/2, the susceptibility
tends to zero as the temperature tends to zero (see ref. 8). Also,
inspection of the observed data [especially those of Cu(tz)ZBrZJ reveals
a small Curie-like tail at the very lowest temperatures; phenomena
similar to these have often been observed in similar systemszg’Sl and
have been attributed to the presence of small amounts of monomeric
impurities (usually less than 1%) that become trapped in the material
during synthetic procedures. Since these compounds are quite insoluble
in all but strongly coordinating solvents (DMF), it was not possible
to completely remove these impurities.

In the light of the observed crystal structure of Cu(tz)2C12 and
the similarity of the observed electronic spectra of Cu(tz)z.\:7 with

<

those of Cu(py) it is apparent that the magnetic data of the two

2%
systems should be comparable., As was noted in the Introduction, in
the Ising limit (i.e., b = Q0 in Equation 1), Fisher6 has obtained

closed~form expressions for the susceptibility of a S = 1/2 linear
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chain polymer. Although these equations are readily manipulated
during fitting procedures, it has been generally acceptedsz that
the totally anisotropic model is not appropriate for copper(II) ions.
Furthermore, attempts to fit the data for the Cu(tz)ZX2 complexes t
with this model resulted in unacceptable parameters and rather poor
agreement between the observed and calculated susceptibilities.
DeJong and Miedema1 have suggested that the isotropic Heisenberg i
model (Equation 1, a=b=1) is probably more appropriate for systems
with small g-tensor anisotropy. Although there are no closed-form
solutions known for the linear Heisenberg model, there are two
approximations which can be used to estimate the exchange interaction
from susceptibility data. Bonner and Fisher8 have shown that the
position of the maximum in the antiferromagnetic susceptibility can
be estimated by the relationships kTmax/IJl » 1,282 and lJlxmax/gZBZN =
0.0735. Furthermore, Hall, 55_31453 have recently been able to fit

the Bonner~Fisher curve to the following rational function of |J]/kT:

. Ng?8%  (0.25 + 0.14995X% + 0.30094 X°) .
X * “T (1.0 ¥ 1.9862 X ¥ 0.68854 X2 + 6.0626%7)

where

- = IJI/kT

.'
The general form of Equation 2 has been verified by comparing the {

susceptibilities thus calculated with those obtained from the high-
Oa,

temperature series expansion (HTS) of Baker et al,’
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_xkT = [(1.0 + 5.97979916K + 16.902653K> + 29.376885K>
aNgla? 4 5
& + 29.832959K " + 14.036918K)° : (1.0 +

2.7989916K + 7.008678K" + 8.0538644K

+ 4.5743114k% 1273

where

The above series has been normalized to the Curie Law for J = 0 (i.e.

= _EEE%;%£§11L since Baker,gg_glé}oa did not include the factor of
four (1.e. S(S+1)/3) in the denominator. In the temperature range of
kT/{J[>1.25, agreement between susceptibilities calculated by Equations
2 and 3 was excellent, with all disparities being less than 1%.

In view of the probable presence of impurities at temperatures low
compared to Tmax‘ it was reasoned that the fitting the data to the
result of Baker,gg_gl;lo would be the most acceptable initial attempt.
This is reasonable because at S and above the presence of the
impurity can be neglected. In order to fit the data to Equation 3,
IJI was estimated from the corresponding temperature using Bonner and
Fisher's relations and the experimental data below kT/J = 1.25 were
omitted (i.e., those below 7° and 18°K for the chloride and bromide,
respectively). The best fits of the data to Equation 3 were <g> = 2.06,
J = 3,7 cm_1 and <g> = 2.11, J = -10.3 cm_l for the chloride and bromide
complexes, respectively (See Table 1).

To gain more information about the low-temperature behavior of

the data (kT/J<1.25), we have compared it to the results of Bonner and

Fisher (Equation 3). In making this comparison, the presence of




17

monomeric impurities was allowed for by assuming that id ™

SR + Ximpurity' Furthermore, by assuming that the impurity

obeys the Curie Law, the following expression for the total

susceptibility result:s:54

2.2
~OP[Ng 8 S(S+1)] ’
S T + (100 P)Xchaing/IOO (5

where S = 1/2, P = % {impurity and g = observed average g-value

from the epr spectra. For the fit using the approximation of the
Bonner-Fisher curve, J and P were allowed to vary in the

fitting routine. The best fits obtained in this manner were

L P = g.65%, and 3 = —3.97cm'1, P = 1.46% for the

J = -10.3cm_
bromide and chloride complexes, respectively (see Figures 4 and 5).
In order to check the validity of the impurity correction, the

next fits were performed by allowing g, J, and P to vary simul-
taneously; this resulted in J = -10.4cm 1, g = 2.12 and P = 0.66%
for Cu(tz),Br,, and J = -3.8lcm , and g = 2.06 and P = 1.35% for
Cu(tz)2C12. These fits are shown in Figures 4 and 5. Although

both of the linear models appear to provide an excellent description
of the susceptibility data of Cu(tz)zBrZ, the validity of this

approach for Cu(tz)2C12 may be in question since there are large

differences in the exchange constants between Cu(tz)z.‘(7 and Cu(py).,X,

while the structural details for the two compounds are very similar-

Since the magnitude of the maximum in the antiferromagnetic susceptibility
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is determined by the g~value for a given J, a discrepancy in
this portion of the fit may imply that the model chosen is
inappropriate. Thus, as the dimensionality of the magnetic
interaction increases the position of the maximum in reduced
coordinates becomes lower and broader.

The similarity of the structures of Cu(tz)2C12 and Cu(py)2C12
and the relatively large differences in the exchange constants for the
one-dimensional analyses suggest that the magnetic interactions in
the thiazole complexes are of higher dimensionality. Hence, the
magnetic susceptibility data were compared to the Bonner-Fisher theory
assuming a first order molecular field correction to accout for

interchain interactions59 (Equation 6)

XB-F
'
1_22J XB-F
g

. (6)

where Xp-F is the susceptibility of an isolated Heisenberg chain, J'
is the interchain exchange, and z is the number of nearest neighbors.

In the calculations the g-value was fixed to that observed by EPR and J

and zJ' were allowed to vary freely. This approach led to best fit values

of J = -3.31 cm—l, J'(2=4) = 1.55 cm“l and <g> = 2.11 for Cu(tz)2C12

while the data for the bromo compound yielded J = -10.48 cm_l, zJ' = +1.14

cn—l, and <g> = 2.11. Although this modified one-dimensional model
makes a crude approximation to the interchain interactions present, it

fails to describe the susceptibility of Cu(tz)2C12 near the maximum since

deviations of about 5% between the observed and calculated susceptibilities

occur. Furthermore, the sum of the squares of the deviations of a point
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X=X 2 -2
from the claculated curve, SD = I{"o cal%] » 18 1.81x10 =. The fit of
X
o

the data for the bromo compound is hardly affected by the interchain term.
The failure of the molecular field approach for Cu(tz)2612 was not totally
unexpected since molecular field theory is a very poor model for
low-dimensional systems.l

To investigate the possibility that the magnetic interactions in

Cu(tz)2C1 were of higher dimensicnality, the data were fitted to the

2
high-temperature series expansion for the two dimensional Heisenberg

antiferromagnetic layer,lOb’58

2,2
= M—- — —-i 2 LR
Xagp = s PL-CIMT) % 2G0T F wor ] (7

Although an argument based soley on the metal-metal distances and strongly
bonded ligands would imply that a 2-D planar model with four nearest
neighbors should not be appropriate for this compound, inspection of the
unit cell reveals that a superexchange pathway via the short sulfur-sulfur
contacts does exist in the ac-plane. Furthermore, an excellent fit over
the range T§% > 1.6 can be obtained using equation (7). This leads to a
best fit value of J = -2.43 cm-1 (see Figure 6) when only J is varied and
the experimentally determined g-value from EPR, g = 2.11, is used.
ﬁ)lg_a_l_c]Z = 2.28x10—4, is three orders of

o)
magnitude better than that found for the molecular-field model fit. Attempts

The criterion of the fit, [

to fit the data for Cu(tz)zBr2 to the 2-D series were unsuccessful and led
to deviations as high as 87 from the calculated curve near the maximum.
The magnetic and structural properties of the Cu(tz)zx2

systems are compared in Table 1 with those previously observed for their

substituted pyridine analogues. The magnitude of the exchange, [J}, for

both of the thiazole compounds is considerably smaller than those reported

ol | Pa—
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for the Cu(py)zx2 compounds if one takes the values determined from the
linear chain models. This is surprising in view of the similarity between

the structure of Cu(tz)2Cl and Cu(py)zclz; in the former, the Cu-Cl-Cu'

2
bridge angle and Cu-Cl out-of-plane distance are 91.89 (2)° and 2.998 (1) A,

respectively, while the analogous values in Cu(py)2C1 are 91.52 (5)° and

2
o
3.026 (2) A. The observation may be the result of a much larger

interchain exchange for the thiazole complexes since the 2-D model can be

used to approximate the data of Cu(tz)ZCI Presumably, the additional

2
superexchange pathway via sulfur-sulfur contacts between chains plays a

very important role in this dimensionality increase.
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TABLE I

, COMMENTS AND
COMPLEX J(em ™))  Cu-X-Cu(®) _ Cu=Cu(A) REFERENCE
Cu(thiazole)2C12 -3.69 92° 3.85 1-D Series
Cu(thiazole)2C12 -3.8 92° 3.85 Bonner~Fisher
Cu(thiazole)2012 -2,43 92 3.85 2-D Series
Cu(A—Ethylpyridine)2C12 -6.7 92° 4.00 28,27a
Cu(4-V1nylpyridine)2012 -9.1 90° 4,04 28,27
Cu(Pyridine)ZCI2 -9,2 92° 3.87 15,2313 524
Cu(3—Methylpyridine)2C12 -8.9 = - 28
Cu(3—~ethylpyridine)2C12 -11.9 - - 28
Cu(thiazole)zBr2 -10.03 = = 1-D Series
Cu(thiazole)zBr2 -10.4 - Bonner-Fisher
Cu(l;--Methylpyridine)zBr2 -14.8 - - 28
Cu(A—Ethylpyridine)zBr2 =-15.4 - - 28
Cu(3—-Methylpy)ZBr2 =15.5 = = 28
Cu(Py)zBr2 -18.9 93 15,24
Cu(3-—Etpy)2Br2 -22.3 - - 28
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Table IV
Distances and Angles in Cu(thiazole)2C12
Atoms Distances (;\)
Cu-Cu 3.853(4)
Cu-Cl1 2.322(1)
Cu-Cl' 2.998(1)
Cu-N 1.990(2)
N-C1 1.301(3)
N-C3 1.365(3)
S-C1 1.694(2)
S-C2 1.700(2)
C2-C3 1.358(3)
Cl-HCl 0.877(27)
C2-HC2 0.794(30)
C3-HC3 0.906(330
Angles (deg)
Cl'-Cu-N 90.45(6)
C1-Cu-N 89.90(6)
Cu-C1-Cu' 91.89(2)
Cu-N-Cl1 124.8(2)
Cu-N-C3 123.8(2)
Cl-N-C3 111.3(2)
N-C1-S 113.1(2)
N-C3-C2 114.7(2)
C1-8-C2 90.3(1)
S-Cc2-C3 109.5(2)

f N-Cl1-HC1 120.7(18)
S-C1-HC1 125.1(17)
S-C2-HC2 119.3(22)
C3-C2-HC2 131.0(22)
N-C3-HC3 115.7(19)
C2-C3-HC3 129.6(19)

'
a translation of the molecule along the b-axis




Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.
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Legends for Figures

View of a single formula unit of Cu(tz)2C1 Hydrogen

9
atoms are shown as open circles of arbitrary size. The

view direction is parallel to the crystallographic b-axis.

View of the chain structure in Cu(tz)zClq. The view direction

is parallel to the crystallographic a*-axis.

The room temperature epr spectrum (X-band) of polvecrvstalline

Cu(tz)ZCl The resonance fields show no temperature dependence

2"
down to 77°K,

The temperature dependence of the magnetic susceptibility of

Cu(tz)ZCl The observed data are shown as boxes, while the

2
solid line represents the best fit to the Bonner and Fisher

expression (see text) with J = -3.81 cm-l and g = 2.06.

The temperature dependence of the magnetic susceptibility of

Cu(tz)zBr The solid line represents the best fit to the

2"
=1
Bonner and Fisher expression (see text) with J = 10.4 cm = and

g = 2.12;

The high temperature susceptibility, T%%’i 1.6, compared to the

theoretical model of a two dimensional Heisenberg layer (see

text) with J = -2.,43, g = 2.11.
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Supplementary material available: Listings of structure factor amplitudes

(7 pages). Ordering information is given on the current masthead page.
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2 3 -8 220 224 3 0 -6 481 879
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