
- _ _ _ - _
_

*0 *043 809 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE——ETC FIG 6/4
USE OF ANALOGY TO ACHIEVE NEW EXPERTISE.(U)
APR 77 R BROWN NO0OII4~ 7 5 C ~ 06lI3

UNCLASSIFIED *I—T R—N03 NI.

D _
_ _ _ _

________ N

r TI. ~~~~~ :~~~~~~~~: _ _

©

Al-TR-403

UIE OF AflALOGY

TO ACHIEVE flEW EHPERTIIE

Richard Brown

April 1977

_ _
~~~~~~j~~~~~

-- ~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

RRTIFICIRL IflTELLIG(flCE LR ORATORY
mRs/acHu/ETTI Ifl/TITUTE OF TECIIAOLOGY

—I

~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~ _____ 4



‘,. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

— °‘

UNCLASS I F l ED
SECUR I rY C LA S ~ IF~ C AT I O N Or TI415 PAGE I~~?l.n Dat. Eni.r.d)

REPORT DOCu MENTATION PAGE BEFORE_COMPL+~~ ~~~;~~~~ RM

hUUBE~~ — 2. GOVT ACCESSION p~o. 3, EC IPIFNT’ S C A A ~),c, NUM B E ’~

:‘ / ~/ I At~TR -1+Ø3
_

_____—

~~~~~

4. i T L E ( ad ~~~bLLiL&~ .
.
~~~~-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ .~~~~ , - - €-CP~~ 1 ORT & PERtOV COVE’~ED

Use of Analogy to Achieve New Exper t ise ~ I , Technical R’ep~ r t.’~
__________________ I

- —.--- -
- .

S. PERFORMING ORG. i N R

7 ~ ~ a.. CaMT.ftA~L~ .R GAA~Lt ~ uM £ R(i)

R i ch a r d,%rown
j

1

~ . L
N~~ Qi1+-75-C-06 1e3 /

9. PERFORMING ORGANIZATION NAME AND ADD RESS 10. PROGRAM ELEMENT . PROJ ECT . TASK

Artificial Inte lligence Laboratory
A R E A & W O R K UNIT NUMB ERS

545 Technology Square
Cambr i dge, Massachusetts 021 39 ___________________________

II . CONTROL LING OFFICE NAM E AND AOO RESS I / i~~. ~ cruRJ

Advanced Research Projects Agency ~~ Apr~~ ~ 77
1400 Wilson Blvd / IS. ~ u... ur~~~’c~AS

Arl ington , V i rg inia 22209 11+8
14. MONITORING AGENCY NAME & AODRESS(IS dlff. ,.nt front Controllind Offic.) IS. SECURITY CLASS. (of thia r.porf)

Off ice of Nava l Research UNCLASS IFIED
Information Systems I.” _/ ~-//An ington , Virg inia 22217

~~~~~~~~~~~~ 

ISa. ~~ ICI~TION/O OWNGRA DING

IS. DISTRI BUTION STATEMENT (of Ihia R•pori)

Distribution of this document is unlimited .

>~ ~
17. DISTRIBUTION STAT EMENT (olth. ab.tract .nt. ,.d in Block 20, If dIfl.r~~ t ~~ m R.po~ )

IS. SUPPLEMENTARY NOTES

None

II. K EY WORDS (ConUnu. on r.v.r.. aid. If n.c..a~ ’y ed id•ntily by block n1 b.t)

A r t i f i c ial Intelligence Plann ing
Ana logy Reasoning
Automatic Programming Expert Prob lem Solving
Debugg I ng

20. BSTRAC1’ (Continu, on par.,.. aid. II nocaaa v td Id.ntit ~’ b. block nt ibat)

A new theory w i l l  be presented in which analogy is viewed as a process that
writes expert prob lem-solv ing programs . Algorithms will be presented which
are used in this theory and wi l l  i llustrate the operation of these algo rithms
i n  six examples. In this theory, the analoqy process reasons between dif-
ferent problem worlds. Four different pa i rs of problem worlds wil l be used
in these examples with special attention g i ven to geometry world (plane
and solid geometry). Theoret ical l im itat i ons and psycholog ical validity
are discussed . 

—

DD ~~~~~~~~~~ 1473 EJ~~~~~
,

OF I NOV Sb ‘ OBSOLETE UNCLASSIFI ED
S N ~ :O (

~ I4 &60 I
SIc,S,Rfl Y CLA ISIPICATION OP IsIS P&O E  (U~,on Data Int•r.d)

~A 
(~~~ /

,/ / ~ ~~
‘

~~~~~~ z_ -_~ _~. ~~~~~


-— — -. -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~

This report describes research done at the Artificial Intelligence

Laboratory of the Massachusetts Institute of Technology . Support

for the labo ra tory ’s artificial intelligence research is provided

in part by the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research Contract N000-75-C-061+3.

Is’ — —

ci
I r~~r 01
I . ~~~~~~~~~

-

.~~,~~~t ; ::” .~
-

~\
\\

\\

1~1
~~~~~~~~~~ .r~~- ’ - 

‘



—~~~~~~~~~~~~~~~~~~~ ---- ‘ —- -~~~~~~-‘ ~~~—- 
— 

vu
~~~

USE OF ANALOGY

TO ACHIEVE NEW EXPERTISE

by

Richard Brown

April 1977

Revised version of a dissertation submitted to the Department of Electrical Engineering in

February, 19 77 in part ial fu l f i l lment of the requirements for the degree of Master of

Science.

-
‘

~

-

~

-

~

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _



_____ 
____________ 1 ~~~~~~~~~~~~~~~~~~

ABSTRACT

We will take the view that the end result of problem solv ing in some world
should be increased ex pertness. In the co ntext of computers . increasin g ex p e i t uess means
wri t ing p r os -ra ms. This thesis is about a process, reasoning by ana lo.gy~jhat writes proi~rams.

Analogy relates one problem world to another. We will call the world in which
we have an ex pert problem solver the IMAGE world , and the other world the DOMAIN
world. Ana logy will construct an expert problem solver in the domain world, using the
image world expert for inspiration.

Analogy uses a map (the analogy crap) from the expertise of the domain world to
the expertise of the image world. Expert isf in a world may be divided into components
corresponding to (I) declara tive descripti un (in the predicate calculus ), (2) code for
computing the values of predicates and functions , and (3) ~~~~ w hich give the overall goal
of the code and a method for achiev crig that goal; it documents (or, if you prefer , explains
or describes) w1~at the code does without descibing / ~ow to do it.

A crude view of ana logy is

Map domain problem to mage problem. Solve image
problem. Lift image sol~tion to get domain solution.
Lift image theor ems to get corres ponding domain
theorems . Lift image plans to get corresponding
domain plans . Lift image code to get corresponding
domain code. Now solve domain problem using new
domain ex pertise.

The focus of this research was to develop algorithms to form analogy maps . and to lift solutions,
justifications of so lutions (how else can we believe they are correct? ), plans , and their justificat ions.
This process thus writes new expert problem sol’~ers , hence achievin g new expertise.

Our theor y of analogy is built around the notions of an ob ject , its ty pe , and its
representation. Obj ects (in our sense) are the subject of the theory of a world (that is, they are
subjects in the sentences which descr ibe the world). An int rinsic quality of an object is its
We consider type to be meaningful in the descr iMion of a world , to the extent that we will present
a technique to derive type (and type hierarchies) from world description. Thus , in geometry, one
type would be “line”; the type “algebraic variety ” (i.e., point , line, plane, hyperp lane) would not be
used because it ty pically does not appear in desc~iprions of geometry world. Finally, an ob ject ma y
have several representations. In geometry, we n- ight represent a line as a list of points which are
on it.

A reason for the relative success of ex pert problem solvers over uniform proof
procedures is their ability to use special representations to conven iently encode knowled ge about the
world. In mathematics, the notion of representation is of extreme impottance. These and other
uses of the notion of a representation led to a realization that perhaps the single most important
thing to be learned from reasoning by analog~’ was the “proper ” way to represent objects in a
world.

Since the expertise of a world has three components (code, plan. and descr i ption) we need
to specify which component has the notion of represen tation. The descri pt ive component
(predica te calculus) does not have represen tation s , hut does have the notion of ob j ect and t :pP (in
that type can be derived syntactical ly). The plan component has all three notions. Ir ‘his
component representations are manipulated o~jy by pattern match ing. Finally, in the ~oc~’component, we have the notion of representaticn , but not (necessarily) the notions of object and

4 ‘S., .‘ .,,4 ‘ .... •.‘— a~
__

~ ~~~~~~~~~~~~~ ~~~~~ .. - _____



r

type. Representations may be implemente~ as property list lists, but this need not necessarily be the
implementation.

A fairly complex picture of analogy emerges. The analogy map goes between world
ex pertises. preserving components. Other proces;es (proving code and plans correct , and automatic
programming processes) go between the components of world ex rert ise. Analogy and these other

r processes are not independent. We will be able to detect “bugs ’ in processes which go between
components. These “bugs” will correspond to “bugs” in the analogy map. Similarly, patches to the
analogy map will induce patches in the various components of expertise.

Thesis Supervisor: Marvin Minsky

Title: Professor of Electrical Engineering



5

ACKNOWLEDGEMENTS

I would like to thank Kent Stevens for reading several early drafts
of this thesis. Many of his fine suggestions contribute to its read-
ability.

Charles R i ch’ s many questions about the content of this research led
to clarification (and , occasionally rethinking) of the issues invo l ved.

Maril yn Matz ’ careful reading of an earlier draft led to many typo-
graphical and gramatical improvements.

Karen Prendergast prepared the diagrams and illustrations , for wh ic h
I thank her,

Suzin Jabari p roduced the cover.

Fi nall y, I would like to thank Patrick H. Winston and Gerald J. Sussman
for their wil lingness to listen to my p rob l ems and frustrations.



—- ._~~
?__ 

~~

CONTENTS 6 AND OUTLINE

OUTLINE

Introduct ion to Analogy 8
This chapter introduces our approach to reasoning by analogy.

Types of Analogy. We explore three dimensions in the various approaches towards an
analogy process.

12 Analogy and Maps. This introduces our wa y of thinking about analogy as a map
between the theory of two worlds.

19 Structure of Theory. The The ory of a world consis ts  of t hree components :
descriptions , plans, and code.

22 Comparison to Evans. We compare and contrast our sense of analogy to Evans ’s.

2 5 Focus of Reasearch. While this research touches many topics . our pri ~1ar y focus is on
algorithms for understanding the use of represe ntat ions~ and on the theoretical
limitations of these algorithms.

Overview of the Analogy Process. 28
This chapter outlines our analogy process. The algorithms will be ex p licitly given in a later
chapter. Here we give detailed examples of the operation of three main analogy processes.

30 First vignette. We see how the analogy map is constructed between T IC-TAC-TOE
and the game JAM.

~ Second Vignette. We see how the parts of a theory of a world are connected and used.
The illustration is in rhetoric world and the blocks world.

52 Third Vignette. Using the descri ptions in the second vignett e , we see how new
ex pertise is obtained in rhetoric world.

Geometr y World
Before analogy can be used, we must descri~’e a ~orid , anc~ give plans co r solving problems in that
world.

55 Justification of this World choice. We deve lop this world in order to present the
ana logy algorithms and in-depth examples.

56 Hu bert ’s Axioms. We give an ax iomatic description of geometry world as a first step
in deve loping the theory of this wor~d.

60 A Language for Plans. We ta l e the second ste p towards a theory of geometry world
by presenting its plans.

73 Representation Ciaim Proofs . W~ deve lop a tech n que for proving facts about
representations.

Constr i.1c:~ons Three types  c~ ~c n s t ruc t ~or tj ro hlems ire pre sen t e c  ‘ r iv i a l
constructions , locus constructions , and missin g- po i rt  corus’ ruct ions . —  

~~~~~~~~~~~~~~~~~~~~ 
.
~c—*-~~ .~~

— -.-“-- .. --

CONTENTS 7 AND OUTLIN E

Analogy Algorithms
82

We give detailed algorithms used for reasoning by analogy.

82 Map formation and Extension. St~mmarizat ion and map formation algorithms are
used to map problems in one world to analogous problems in another.

85 Deriving Result justifications from Plan justifications . Problem solving- is
theorem proving. We present an algorithm that justifies problem solving results from
plans.

90 Debugging Algorithms. Bugs in esult j ust i f icat ions are detected and classif ued.
According to the type of bug, patches are inserted into plans.

Analogy Theory and Examp les
Using the plans and algorithms presented in the two preceding chapters . we will work four
examp les. -

95 Copying (Geometry). A trivial appli:ation of analogy can copy isomorp hic aspects of a
world, including special representations.

99 Ada ptation (Geometry). A non-trivial application of analogy can adapt expertise to
slightly different ends.

107 Innovation (Geometry). A non-obvious app lication of analogy creates new expertise in
sur prising ways .

113 Failures (Tower of Hanoi). We present one way the analogy process can fail.

Logics of Experts
115

This chapter is very theoretical. The conclus ion we reach is that we have solved the analogy
problem, subject , of course, to certain restrictions on the nature of the problem worlds.

117 Problem solving formalisms correspond to logics. We develop a connection between
ex pert problem solving forma lisms and non-classica l systems of logic.

120 Logic of Worlds. Proof-theoretical limitations of any analogy process are presented.
We develop a hierarchy of worlds , showing that geometry world was a good initial
choice for studying analogy.

Conclusion and Future Work 130
This chapter may he read out of sequence.

130 Psychological val idat ion. We e amine some psycholog ical data on t ransfer
phenomenon as a first ste p towards validation of our theory of analogy.

135 Improving Analogy. Directions for future research are indicated in the areas of modal
logic and more general representations .

Notes 138

Bibliography 142

~~~~~ 
-~~~ ~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
~~~~~~~~~~~~~~~~~~~

—
~~~

.

INTRODUCTION TO ANALO GY 8 TYPES ()
~ At ’ -’ALO GY

Analogy -- a fo r r : ~~~~~~“ ~~~~~ .~~~~ .~r t winch one t l eng ~s inf er zc - 1 ~ be s i r n i l z r to anoti - ‘r t u in a
cer tain respect , on i/u basis of known si !f l i l . 2 r i ly be tween the thi ngs in other respe cts.

Random House Dictionary of the English Language

INTRODUCTION TO ANALOGY

The end result of problem solving in 5ome world should be increased expertness. In the

context of computers , increasin g exp ert ness mears writing p Tog r a ?ns. This thesis is about a process ,

reasoning by analogy, that writes programs.

Suppose we have an expert problem so lver in some problem world like the blocks world

[Fli or electronic circuit world [S7). Suppose further that we desire an ex pert problem solver in

some other world like rhetoric world , or boiler and radiator wor ld. The task for our analogy

process would be to construct a new expert problem solver.

We will use the word world to refer to a problem domain , or problem area ,
or narrow field of knowled gt’. Thn. usa ge is suggested by the phrase “world of high
finance” and by the Al problem domain called “the blocks world ” We wi ll learn how
a wor ld can be characterized in chaster CLOGIC OF EXPERTS ,LOC~C OF WO RLDS].

~~~~ BLEM~~ (~OLUT ~~~~ ~~~~~~~~~~ ~~ LUTIO~~

WANT HAVE
DOMAIN WORLD IMAGE WORLD

We will call the world in which we have an expert problem solver the IMAGE world,

and the other world the DOMAIN world (for motivation of this terminology, see [NOTE 13).

Analogy will construct an expert problem solver ri the domain world , using the image world expert

-~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ —- ..-.--- — ---- - .



—..--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

INTRODUCTION TO ANALOGY 9 TYPES OF ANALOGY

for inspiration.

TAXONOMY OF ANALOGY This iect ion may be skipped.

Normally when one thinks of analogy, one remembers problems of the form

Angels are to men as x are to animals

w here one skillful in verbal analogy would f iE in the x with the word men . Evans ’s c-lasic Al

program [El] solved geometric analogy problems which have the form

Figure A is :0 f igure 8 as
figure D is to figure I, 2. or 3.

The word “analogy ” also brings to mind that endangered species , the slide rule. The

basis of the slide rule is , of course , the notion that numbers are analogous to lengths , and adding

numb ers is analogous to conca tenating lengths.

Since the common exam ples of reasonin g by analogy given above d i f fer , and are

different from our use of the term , we will nosi ex plore a :~xonorny of analogy. Once we have

this taxonomy we will be able to specif y what kind of analogy process we wish to investigate , and

to relate our investigations to other invest igations of ana logy. In developing a framework in

whic h to express these differences , we must distin guish three dimensions: se t t ing, usa ge . and

mechanism.

~~~~~~ Evans ’s geome ir~c analog y rogr ~ i~ [El] w orked in ~nl y one world , havin g

eht:o r is ABO ’~ ~T Tr T_ OF , and S. ~ E. \-V~ can :h~ s .. h~~ t hat the sctt in g o~ E’.- a n s ’s k i n d of

is 1. V T R A- I Y O J -~ ~~~, ~ts - .~~ o u r / . -\ TE R - ~- i~L f l ~r-a 1 og~es betw een d~f~ er ent

-~-o r l~~ (~ t~: ~N’~ Y. ~ for f - : : h ~ : d s :~ i of h is n~ nSinfl~

j -.. 1 .~~. We ~-~: u~e ~ina1o~y r. -~t ed s t three r t i ~~er~’uit ~
-
~ ‘~s - as a kind of m nemonic

:~~~~‘ e , ~~ a r’ -d .t ~~cI: dev c- , ur as a s Vcul~:L l device . To n,~~e this d st in~tion clear , ~~~~~~

the following examp les:

~‘.
-

-
~~~~ ~+-~~~~ki ~~~~ 

-
~~ 

.- ,t..~~ . - ‘ . . ~~~~~~~~~~~~ . .—,. . 

—-.-—---- ~~
.— 

- -~~~~~~—-- —--  .— —



INTRODUCTION TO A N A L O G Y  10 TYPES OF ANALOGY

I. In che l - I ts  y s. i:~ i~~ t .  J: im that nr~ :inic acids are like inorganic acids , alcohols like
bases , and e s : , i  like sa :s. F~L l a t h .s and a knowled ge uf ino:da mc chemistry we can
conclude ti a: an or ani : acid and an alcohol react to form an ester and some waler.

This is an exam ple of mnemonic usage. While we might hazar d some
guesses about ot~ an ic reactions on t i e  basis of the analo gy ahove , the only conclusion
we fee: confident in making is tha~ both “sides ” of the analogy are special cases of
something more abstract.

2. In algebra , wh~,i we wish to stud y some com plex struct u re (like a noncomrnutauve
group) it is often useful to look at 1-ornomorphic images. By “throwin g away ” part of
the problem structure , we reduce hard quest - i s  to similar , ho1..efull y easier ~]uest ions.

This is an exam ple of reduction . Analo gy can he used to reduce a problem
to a simpler . easie r peobleni in the same or a d if ferent pmob l€m world. Our .ibility to
dea l with an ob ject (in some world i is closel y related to our abi lity to represent that
ob ject in terms of other ob j ects in its wotl d. This observation links two amazing ly
s’.iccessfu l problem solving techni ques: “Divide and Conquer ” (super position) and
“Change Re presentations (linear transforms). One kind of result we would expect
from a reductional use of reasonini~ by analogy is a way to represent ob j ects in the
problem world (which we terr :~ the d~mnain world).

~~. We might notice that re la t ive l j  few chemica l ,eact ioi i s (outside of breaking
substances down by heating) occur during cooking. Pursu~ng this we mig ht examine
various or ganic react ions , such as ester formation (esters sme ll nice) w i th an eye
towards being able to use them for cooking.

This use of ana logy , ~p~~ihrion , seems at f irst to be not reall y analo gy at all.
However , as one begins to consider the processes involved &:h:,t is , mapping a problem
and so lution in one problem world to a l)roblem and so luition in another), one us forced
to conclude that the term “analogy ” could he used to describ e this kind of reasonin g.
We can characterize the speculative use of analog y by not ing that embarrassing ly
often we find ourselves with a ver y good solution , but with no problem that calls for
it. 

PROBLEM? I ~~~~~
- PROBLEM

L__ .. .___ . . J  _ _ _ _ _ _ _

I SOLUTION] ~~~~~~~ 
SOLUTION

At other times we have a problem and solution, but unfortunately either the problem
isn’t interesting or the solution isn’t profitable .

-.--~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~ — - - - - -~~~~~~~ -—--.



r - -.

~~~~~~~~~~~~~~~~~~~~~~~~~

—.-

~~~

-

~~~

- - - . .-

~~~~~~~~

--

INTRODUCTION TO ANA LOGY 11 TYPES OF ANA LOGY 

~1
PROBLEM — ~- I PROBLEM? I

I 
_ _ _ _ _ _ _ _ _[ SOLUTION I SOLUTION? I

I ~~~~~~~~~~~~

In both cases , analogy might be usefu l, and when used, it is used for speculation.

The third dimension in our taxonomy concerns the mechanism the analogy process uses

to move between the image world and the domain world (or between image and domain problems

in an intra-world setting). The mechanism used for moving between worlds is strong ly dependent

on the wa y worlds are described. That is, analoc~y mechanism is (for the most part) determined by

descriptive mechanism. Thus we can make distinctions in this dimension by refering to descriptive

mechanisms. There are at least three popular descriptive mechanisms:

Anal y tic. Objects in some world might he described (or , if your prefer , characterized )
by a set of coordinates in an appro?riate featui -e space. The analogy mechanism for
this descri ptive mechanism is then a map on the coordinates.
Example: Evans [El], MERLIN [M9].

N e t w o r k .  Objects are described (character ized )  as nodes in a network wi th
distinguished links. If two nodes (cur , more generally, sub-networks ) are analo gous, a
network mechanism identif ies links ~‘rom analogous nodes as analogous , and terminals
of analogous links as ana logous, etc.

This mechanism can be distin guished from the ana lytic mechanism by
noting that with network analogies, the links names do not need to be isomor phic.
Examples: Winston [W6].

A~ :~- ’co ,’ic The emphasis in this mechanism is not on what ob jects are so much as on
the wa y they behave , i.e., what va rA ~us predicates and functions return when app lied
to them. We do not need to confine ourselves to the predicate calculus to use this
descri ptive mechanism.
Examples:  Sussman , Sta l lmari [S7], t)oyle (Dl]

We will be concerned exclusivel y with an inter -w setting, a reductional usa ge, and an axiomatic

mechanism.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~. ~~~~~~~~~~~~ - ~ L :~~ 
.—..-— _.

INTRODUCTION TO ANALOGY 12 ANALOGY AND MAPS

MAPP ING WO RLD KNOWLEDGE

Our goal is to use reasoning by analogy to write programs. As a first approximation , the

analogy first const ructs a map from the domain (or problem) world to the image (or solution)

world. It then must lift portions of the image e peruse to create new domain expertness. For the

remainder of this chapter we wi ll assume that we alread y have a map f rom the domain world to the

image world. After obtaining some unders:anding of how such a map us to be used , we will show in

chapter [OVERVIEw OF ANA LOGY , FIRST V IGNETTE- -TI C-TAC - 0E] how these analogy maps are obtained.

Our goal in using analogy is to writ .? programs. Before I write a program, I need a

description of the world the program is to work in. If I am to wr ite a program for dealing with,

say, plane geometry, I first need a description of the interaction of points and lines. Similarly, if I

am writing a program to play tic-tac-toe , I need t~ know the rules of the game.

~~~~~~~~~~~ GOLUT ION) OB~~~~~ (~
OLUTIO

.!~)

H 

_ _ _

y EXPERT

IMAGE WORLD

I DESCRIPTION
OF WORLD

DOMAIN WORLD

• L T -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~ , -  —~~~~~ - ._~~-


~
~~~~~~~~~~~~~~~~~~~~~~ --

INTRODUCTION TO ANALOGY 13 ANALOGY AND MAPS

The observant reader may notice that we already have a description of the image world:

the programs that deal with it. Wh y do we need another description? Unfortunately, this

imperative description is not suitable for our purposes; its utility is both theoretical l y and

practically limited. We are limited in practice by our inability to decide what a program is doing

without being given further information. That is , we cannot determine the plan (i.e., what is being

accomplished by the computation ) of an algorithm given only the code (i.e., a sequence of

operations which specif y how the computation is accomp lished). Moreover , we cannot , even in

theory, deduce that a program is correct only on :he basis of the program. For example

(DEFUN SOLV E—SECOND-DEGREE (A B C)
(QUOTIENT (DIFFERENCE (SORT (DIFFERENCE (TIMES B B)

(TIMES 4 A C ) ) )
B)

(TIt lES 2 A ) ) ) ,

Is this program correct? We might say to ourselves “It is limited; it finds only one real root of a

second degree polynomial. Within that restriclion it works. ” But that raises the real concern:

“Who said anything about polynomials? ” A:;suming arithmetic works (usuall y not a valid

assumption due to truncation errors and iound-cff errors), the strongest claim we can make of this

program is (1) it halts, and (2) it returns a number (equal to the number it computes). Nor is code

easier to understand than the description of the world it works in, (see [NOTE 3)).

As a working definition , a plan is composed of two parts: an intention and a collection

of subgoals and constraints. A plan is cons is tent if it can be justified (using the description of the

problem world) by showing that accomplishing the subgoals subject to the constraints implies that

the intention of the plan has also been accomp lished (we will give an exact definition of plans in

(GEOMETRY WORLD LANGUAGE FOR PLANS]). In order to prove that code is correct , we first prove that its

plan is consistent , and then prove that the code does what its plan specifies.

One might wonder why we wish to prove programs are correct. We don’t. However , we

cannot hope to correctl y app ly a program from one world to problems in another if we are unable

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _.. _ :  .~~~~ — _


- - —.-- - . ---—-- —. -..-.- --- - — - - ——.-
~~

.--—

‘ INTRODUCTION TO ~~ ALOGY 14 ANALOGY AND MAPS

~o dete’ mine if that Fro ’ a r l us ori~-ct even in its own woid. We wish to be abli~ k prove that a

lifted program (t~ at ~~~, a do; iai p rog ram created by the inverse analogy map) is as correct as the

original image program in analogous situ ations. To emphasize our point by exaggera ting it , if t he

image code is incorrect , we wish to tnsur~ that the new domain code is incorrect in an analogous

way, reasoning “we must have had good reasonr to make the program incorrect in that particular

way.”

To overcome the difficu lties in proving raw code correct , we insist t hat plans be given

for the programs in an expert problem solver , and that those plans be justified by references to the

description of the world . We will therefore have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~ 

.

~~~~~~~~~
-

~~
-
~~~~~~~~~ -- ~~~~~~~~~~~ 

-
~~~

.- 
~~~~~~~

—- - - -

INTRODUCTION TO ANALOGY 15 ANALOGY AND MAPS

~~~~~BLi~~~ (SauT~) ~~~~OBLE~~~ ~~~~~UTI~~)

PROGRAMS 
H 

P1 ___ P2

no programs yet 

~~~~~~~~~AN FOR~~~~~~~~~ 

-

PLANS ~~~~~ FOR P2

no plans yet
_________ __________

DESCRIPTION DESCRIPTION

OF OF

NEW WORLD DESCRIPTION
OLD WORLD

DOMAIN IMAGE

~~~~~ 

- 

_ _ _

li ____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ __________


- .-

IN T R O D U C T I ON TO , -~NALOCY A~~ALOCY AND MAPS

n ~ -ri .i e - - U ~ .
- have a r j b/ ~- - , ~~~~~~ t~ ter~~s of . -~~~~ ~sorV de~u - t ~ : i (eg., in

:he p~edic.~t~ ~ ilus i ~ri -~~~~~ ~~~~~~~~~~ ‘.- ‘ ie : t p~ui km ~~~~ se: ~f ‘ - o : t! .~, t ..e~ ti n~ P1 aj i C

then P~ ill produce ~ . / . . -~~; . either a t rw v~ i . e or ~Ufl€ ob ject of the m:-~ e wo i ~d. The code

for P1 is at tached by c~ mrnenta r~ :o its plan ~huci us n w ru a t t a ched o the image wo ; r

descriptio n (e.g., axioms) . In the domain world -xc have a problem and an : . tc i F~ :ed soluhon , bw

lacking ex pertise (ic. , having no code and thus no plans) we .~~~~~ urable ~o forge a link between

problem and SUS peC~~d solution.

The analogy process uses a map from the domain world to the image world. A simp le

model of ana logy would be

~~~~ BL~~~ 

I MAP

11
\ \ \ CORRESPONDENCE

I
\ \ IN VERSE

MAP

INVERSE
~ MAP FOR CODE

DOMAIN ANALOGY IMAGE

-~~. ----.--- .- -
- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - — . .



.—.-- --—- - -~ --- .--- - -“—- ..---—-- -..-——----- ——.-— --— - -

INTRODUCTION TO ANALOGY 17 ANALOGY AND MAPS

The mean ing of this diagra m is: take the domain problem , app ly the map to get an image

problem. Solve the image problem, and apply the inverse map to the image solution to get the

solution in the domain world. We can go one step further (so that something will be learned from

solving the problem). Appl y the inverse map to the image program to get a program in the

domain world.

This view of analogy has two defects:
I. We have no assurance that the solution is correct .
2. Even if the solution is cor rect in this particular case , we have no reason to expect

t hat the new domain program is generally correct. Of course, if the two worlds
are isomor phic (as is usually the case in the literature on “reasonin g by analogy”).
solution correctness wil l generally imply program correctness. For this reason,
one s hould not stud y an~lo,gy b, tween isomor p lu c worlds.

Although we are ignoring the problem of getting an analogy map for the moment , we

must point out that it is meaningless to discuss map correctness independently of the results

obtained by using it. An analogy map is correct if and only if the lifted solution, lifted plans, etc.,

are correct. The two defects noted above might e summarized as “we don’t know that the analogy

map is correct ” by the definition of an analogy map being correct.

W e can remedy the two defects outlined above by making use of plans and world

descriptions. The map from domain problems to image problems can sometimes be extended to

partial maps of domain descriptions to image deicriptions. In these cases (and we will not consider

any others) we can derive a description of why a particular solution is correct in terms of the image

world description. This can be (inverse ) mapped back into the domain world . See (1) in the

diagram below.

If the facts which justify the image solution remain valid after being (inverse) mapped

into the domain world, then w e know that the ?-olution is correct. More importantly, we can now

apply the inverse map to image plans (see (2) in the diagram). If this plan is compatible with

doma in plans , we can apply the inverse map to programs (see (3) in the diagram). We will often

abbreviate the expression “apply the inverse ana ogy map to ” wit h the verb “lift.”

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~
- ‘

~~~~~~~ 
.. 

.
. 4



INTRODUCTION TO ANALOGY 18 ANALOGY AND MAPS

H 
_ _

17U) ‘
~~~ zLu 4 4

U
~~ ~~

— ,

~ffi [~!~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~.



- . 
“~~- - .:.~a. ,. .7W ~~~~~~~~~ ~~~~~~~~ ~~~~~ ,, - . ~~~~~~~~~~~~~~~~ ._ .-~ - .

INTRODUCTION TO ANALOGY 19 ANALOGY AND MAPS

At this point, the reader may have formulated a list of questions:

I. What if the map is many to one, or even many to many? Generally this will not
happen with objects. On t he other hand, it probably will occur with predicates and
functions.

2. What if a fact (after being l i f tel)  is not correct? Then the validity checker will
object. We must try to salvage the plan.

S. Is it possible for a !ifte’d plan to be invalid , even if all of its facts are valid? Yes,
since part of the theory justif ying the plan may not be valid.

4. Is it possible for a plan to be lLfted if some of its facts are not valid? Yes.

5. Wh y can ’t we just translate progra ms and ignore plans? We cannot figure out what
programs do. See the above discussion.

6. Why couldn’t we just produce code directl y from plans (in the domain world)?
Perhaps, eventua lly, we wi ll have the technology to do this. But we certainly don’t
have it now.

7. The idea of mapping is good. Where does the map come from? There are two
sources: either analogy can be told , or it can figure one out for itself.

We will try to answer these questions in what follows.

STRUCTURE OF A THEORY

We have introduced three components of expertise because the analogy process requires

them. We would now like to argue that this division of knowledge is appropriate on other

grounds. first by connecting the two notions of exp ertise and theo ry , and second by showing the

dangers involved in not making this division.

Marr and Poggio [M4] suggest that the theory of a world can be divided into four levels.

Using their example of the Fourier transform , these levels are:

I. DESCRIPTION. Mathemat ica lly, t he Fourier transform obeys various axioms. These

axioms , and relations between the Fourier transfo rm and other mathematical objects,

~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
.---. ______



_  
~~~-. -.-~~~~~~~~~~~~~~~~~ - - .~~~~~~— 

INTRODUCTION TO ANALOGY 20 STRUCTURE OF A THEORY

can be given independently from any discussion of how Fourier transforms can be

“computed.”

II. PLAN. Given that one wishes to ta ke a Fourier tra nsform of something, one can

proceed in various ways: numer ically by way of the old “slow ” Fourier transform , or

by the FFT. or the FFFT. One can take them “by analog means” as is done in the ear

(one-dimensional Fourier transfor ii) cr by using lasers (two-dimensional Fourier

transf orm). One can also take symbolic Fourier transforms by doing integration.

Plans specify goals, intentions , and constraints.

III. CODE. Depending on the plan chosen , and the mechanism available , one can encode

in, say, your favorite com puter language , a program for actuall y computing the

transform. Code specifies control f low and data flow (see tRfl’).

IV. MECHANISM . Suppose that one has an FFT al gorithm in FORTRAN . The

efficiency of running this algorithm will depend on the part icular computer having,

for example, hardware multiplication , and bit-reversal instructions .

Normal usage of the term theor y refers to a list of definit ions and axioms , i.e., the

description level above . Suppose I had a com puter program that , given a periodic function ,

returned the Fourier transform of that function. Then it would be proper to claim that the

computer program embodied , or had , or was a theory of Fourier transforms. This program would

be a predictive theory of Fourier transforms at the code level , Now suppose I had two different

programs which took symbolic Fourier transforms equally well (i.e., same answers on all problems),

but one ran twice as fast as the other . It is conceivable that in some sense both programs have the

same theory of Fourier transforms , but in another sense the faster one has a better theory.

l.A ~~~..

‘

~~~~~~~~~~~~~~~~~~~~~~~~~ 

. ,,
~~~~ 

.

~~~~~~~~~~

, . . . .  

~~~~~~~~~

— -

~~~~~~~~~ -~--- . , ., 



INTRODUCTION TO ANALOGY 21 STRUCTURE OF A THEORY

Assuming that the observed difference is due to coding inefficiency, the two theories are different

at the code level, but t he same at the pj~~ level.

With this extended notion of t heor y, .1 is easy to see that the components of expertise

correspond to levels of a theory. This suggest; that we should claim that analogy operates on

t heories of worlds. We will use “ex pertise ” and “theor y” interc han gably from now on when

refering to knowledge about a world.

Goldstein [63) used a similar division: at level I he had models; at level II he had plans

for constructin g pictures which would satisf y t ie models; at level III he had LOGO programs

wh ich were supposed to actuall y draw the pictures.

Thinking in these terms gives us insig it into an important difference between Sussman ’s

[S8] and Goldstein’s ap proach to debugging. The real world does not present us with level I

theories on a silver platter. Sussman the;~efore d.d not give his program debugging system direct

access to the descri ption of the blocks world. Ra:her , he arranged for his primiuves (i.e., PUTON)

to simply enforce the hidden blocks world desc ripti on. Similarly, the level 11 theory was not

exp licitly given to his program debugger; it was merely hinted at in a number of places, leaving

the task of synthesizing the level U theory to HACKER .

In attempting to reflect his view of the real world , Sussman paid a heavy price: most of

the com plex ity of his thesis was devoted to untan gling the theory of the blocks world , not to

debugging programs (i.e., making level III actually do what level II said it should). We are not

willing to pay this price; we insist that the three top levels be ex plicitly provided. We also insist

that the code of our experts do what the plans chim.

L.~.. _ _~~~~~~~Li~~ ~~~ 

_

~~~~ _~~~~~~ _,~*_~~ . -:~~~~.‘~~ er - “
~~~~~‘ - - L.~~~a~~~~k~- 

- - _ _ _ _



: ~~~~~~~~~ . .~~~~~~~~~ --~ -~- -
, . 

iNTRODUCTION TO ANALOGY .)
~~ EVANS ANALOGY PROGRAM

EVANS’S GEOMETRIC ANALOGY PROGRAM

We can contrast our theory of analog y with that presented in Evans ’s landmark pa per

(El].

A B

~~~~~

I .

H _

C Dl D2

Evans’s program solved problems of the form “A is to B as C is to ...“ w here some list of

pictures Dl, D2 are provided to fill in the blanl’ s. If we cast his problem form into ours , we will

have

~

-
~~~~~~~~~~~~~~~~~~

-
-~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~- -~ -- .-~~~ _ _ _



INTRODUCTION TO ANALOGY 23 EVANS ANALOGY PROGRAM

Evans first constructs a description of the operation of the image expert in order to

obtain a correspondence between ob jects in A and in B. He then constructs a number of maps

from C to A (ma ps Ml and M2, for examp le).

ANALOGY MAPS

I
Evans then extends each map so that Dl, D2, etc., can be ma pped to B. Finally, Evans selects the

“best ” of these extended maps . B’s inverse under this map is the answer. The result of Evans ’s

ana logy program is a “best f i t . ” Winston [W!~] sugges~s an improvement on Evans ’s scheme:

instead of constructing all those maps and using; the inverse a~ the last possible moment , why not

use the inverse earl y in the effort. The modified procedure mal s C to A , app lies the transform T,

then takes the inverse of the result B. This type of procedure is general ly termed “anal ysis by

- ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~ 
‘
~~~~~~ ~~~~~~~ ~~~~~~~~ -- ~~~~-—-~~~~~~~~~~~~~ - .~~~~~~~~



~ 
~~~

INTRODUCTION TO ANALOGY 24 EVANS ANALOGY PROGRAM

synthesis.”

M’
[T]

If M1
~ TM(C)~Dl, then Dl is the solut on. Similarl y for D2. Otherwise a new M’, T, or

M is tried. We can be clever , using failu re anal ys is to guide the next selection.

If we could app ly our theory of analo gy to this kind of problem , we would take

Winston ’s suggestion one ste p further. We would insist that the result of reasoning by analogy

shou!d be a program. After con structin g an~ debu gging the map between the two sets of

diagrams, we would use the “winning” analogy map to write a program in the domain world so

that the domain ex pertise may be extended. This last step, the core of our research , is the

fundamental distinction between our approach to analogy and Evans ’s. (It might be argued that

Evans also produces a program. For a refutatio n , see [NOTE 4).)

— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—

-

—-~~—- - --.— —~~~-.—.. — - .--..

.~
--- -. - ---- . -

~~~~ ~~~~~~~~~~~~~~~~~~~~~~

INTRODUCTION TO ANALOGY 25 EVANS ANALOGY PRO GRAM

JP

~~~~~~~~~~~~~~~~~

M k
ANALOGY PROCESS

FOCUS OF THIS RESEARCH

The focus of this research was to dev~lop algorithms to form analogy maps , and to lift

solutions, justific ations of solutions (how else ~:tn we believe they are correct?), plans , and their

justifications. We are not setting out to make a theory of human rea soning by analogy; our

interest is computational rather than psychological.

Our theory of analogy is built around the notions of an ob ject , its type , and its

representation. Ob jects (in our sense) are the sub ject of the theory of a world. That is, if the first

order predicate calculus is the descri ptive language . then the variales are quantified over the

collection of all obj ects (and therefor c the sub j ects of predicate calculus sentences). An intrinsic

qualit y of an ob ject is its ~~~~~~~~ The type of an cb jec t is unique (that is , an ob ject cannot have two

t ypes), pre-spec if ied , and immutable. We cons ider t ype to be meaning ful in the descri ption of a

wor ld, to the extent t hat we will present a techni~ iie to derive t ype (and type hierarchies) from

wor ld descri ption. Thus , in geometry, one type would be “line”; the t ype “algebraic variety ” (i.e.,

point , line , p!.i rie , l~~perp lane) would not be used because it typ ica l ly does not appea r in

descri ptions of geometr y wor ld. Fina ’ly, ar object may have severa l representations.

~~~~~~~~~
“. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

,

-
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-.- -—
~~~~~~~~~~~~~

—-

iNTRODUCTiON TO ANALOGY 26 FOCUS OF RESEARCH

REPRESENTAT IONS

A reason for the relative success of expert problem solvers over uniform proof

procedures is their abilit y to use special representations to conveniently encode knowled ge about the

world. In mathematics , the notion of representat on is of extreme importance.

We will now give several examples or representations. The fundamental result of the

theory of finite abelian groups is that they can be canonically represented as products of prime

power groups. A nother major result of algebra .s that a polynomial can be represented either by a

sequence of coefficients or by a sequence of val ues. The importance of the fact that a signal can

be represented as the sum of sine and cosine signals is well known. A major insig ht results from

the observation that if a signal is represented b~ the coefficients of a polynomial , then the Fourier

transform of that signal can be represented by a sequence of values of that polynomial. Note that

all of these representations are relativel y unstructured; the y are simply lists (sometimes ordered) of

other objects in the same world. That is, groups are represented in terms of other groups, signal

functions are represented in terms of other fun.:tions, and polynomials as a list of elements from

the underlying field (which is part of polynomiai world).

These and other uses of the notion of a representation led to a realization t hat perhaps

the single most important thing to be learned from reasoning by analogy was the “proper ” wa y to

represent objects in a world .

Since our theory of a world is on three levels (code, plan, and description) we need to

spec i fy wh ich levels have the notion of represeitation. The descriptive level (predicate calculus)

does not have representations , but does have the notion of ob ject and type (in that type can be

derived syntactically) . The plan level has the notions of object , type , and representation. At this

level representations are lists of plan level ob iects and are manipulated
~Jx by pattern match ing .

Finally, at the code level, we have the notion of representation , but not (necessarily) the notions of

object and ty pe. Representations at the plan level may be implemented at the code level by

‘L~. ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -
~~~~~~~~~~~~

- :
~~~~~~~~~~~~~

‘
~~~~~

± ‘  
.‘ - - --.-—.. -,--



-.--.- - - -  , .—. - . --

INTRODUCTION TO ANALOG Y FOCUS O’ RESEARCH

property list lists , but this need not nec es 3ar -i l y be the im p lementation . Arrays , ta b les , and lambda

ex pressions may also implement (plan level) re pres entations. T ypical ly ,  at the cod e level

representations ma y be mani pulated b y the LISP functions CAR , CDR , and CONS.

ESTABLISHING CLOSURE

In Artif icial Intelligence it is highly desira ble to be able to solve all problems of a

specified nature. Generally it has been fairly simple to state the constraints under which a problem

space is closed (in the sense that all problems in the closed space can be solved). However , since

analogy operates on theories of worlds , our problem space is the space of all worlds , and even

stating a closure condition becomes a majo r proj. ’ct .

We claim (leaving the exp lanation and demonstration for chapter [ioflic or EXPERTS )) to be

able to solve analogy problems at least betweer worlds whose underlying logics are negationiless

intuicionistic.

4.

— -.--- 1-.~.- 
.. 

.~~~- ~~
-
~___;_~~~~~~~~~ -- —-~~~-— —



- - - -~ .~ ~~~~~ .- --~~~~~ .-~ - ---~~. -- - -~~~~~-~~— —— _ _ _

1’

OVERVIEW OF ANALOGY 28 FIRST VIGNETTE -- TIC-TAC-TOE

OVERVIEW OF ANALOGY

VIGNET TES -- TOWARD S THE ANALOG Y PROCESS

Analogy is a process which operates on “expert problem solvers. ” Simply stated , the

ana logy process consists of three phases: ~nap, so lve , and l~ft.

Normally the analogy process will use the map from the previous problem. By using this

“old” map we preserve the context of discussion of the previous problem. This means that some

importance is attached to the order in which problems are presented to the domain expert , and

t hus to the analogy process , much as in the Winsto n learning program [W6].

To try a different ana logy, we can either tr y formin g a completely new analogy by

starting with the empty map, or we can use sone other previousl y constructed map as a starting

place. We do not suggest any sort of backtrackin g . When we say (in what follows) “tr y another

analogy” we have in mind abandonin g the current map and startin g afresh. A refinement of this

idea would be to guarantee that when we try to form a “new ” ma p, we wi ll have at least one

difference in the wa y object t ypes are mapped (between the new map and current maps).

Finally, we assume that the image world is given.

We will now give an outline of the analogy process. We will g ive exp licit algorithms in

the chapter (ANALOGY ALG0RIT HMSI, and exam ples cf analogy operation later in this chapter and in

chapter [ANALOGY EXAMPLES].

1, MAP. When some expert encounters a problem which cannot be solved (due to incomp leteness

on the part of the expert), analogy can map this problem into an analogous problem in some other

world.

EL~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— . . -- - - -~



_
Jfl~J-~~ - 

— 
._•.__ _

OVERVIEW OF ANALOGY 29 FIRST VIGNETTE -- TIC-TAC-TOE

1.1. Summarize the domain problem. It is necessary to summarize the domain problem,
since it may be impossible to find an analo gy map capable of mapping the entire
domain problem to an image problem .

1.2. Extend the current analogy map to include any new operations. Note chat either
the current map or the extension may be empty.

1.3. A pply the analogy map to the summarized problem. The result of this step is an
analogous image problem.

2. SOLVE. The appropriate expert problem solver for the new world solves the analogous image

problem. If the solution attem pt fails , ihen We either change the analogy map, or change the

ana logous problem by including further details.

2.1. Obtain a solution to the analogous problem.

2.2. If no solution can be obtained , enlarge the summary from part 1.1 and continue the
solution attem pt.

2.3. Apply the inverse map (extending if necessary) to the solution.

2.4. In cases where the domain so lution • c ant ic i pated (see [NOTE 5] for an
exp lanation of “antici pation ”), if it and the (inverse of) newl y obtained solution
disa gree, form a different analogy trap.

3. LIFT. If the solution attempt succeeds , then we need to “lift ” the solution back into the domain

world,

3.1. Obtain (from the expert problem solver) the reason why the solution is thought to
be correct.

3.2. Apply the inverse map to the reasoning (extending the map if necessary).

3.3. If the reasoning is based on fats.’ assu1nptions (detected by the justification checker
in [ANALOGY ALGORITHMS DE8UGGING ALGORITHM]), form a different analogy.

3.4. If the reasoning is incom plete , note the presence of a bug and obtain a patch.

3.5. If we are unab le to lift all of the reasoning behind the solution, and cannot find a
replacement in the domain , try anofter analogy.

3.6. If we are able to lift all of the reasoning, then lift the plans and the code which

~~~~~~L
’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—V .. 

~~~~~ 
-. .— -.. —,

OVERVIEW OF ANALOGY 30 FIRST VIGNETTE -- TIC-TAC-TOE

generated the solution, making use of previously detected bugs and their patches.

We will present three vignettes to illustrate: how analogy maps are developed , how

process description can be used to obtain t he reasoning behind a solution , and finally how

programs can be lifted. Two world pairs are used in the vignettes. The first pair consists of two

simple games: “Tic-tac-toe” and “Jam.” The other pair of worlds consists of a version of the

blocks world (as investigated by Fahlman [Fl]), ~.nd the “rhetoric ” world . These vignettes are very

much “toy” problems; there is no guarantee that the analogy process (as presented in later chapters)

can correctly deal with more complex problems in these worlds.

TIC-TAC-TOE W ORLD

Surprisingly, the game of Tic-Tac -Toe (abbreviated ITT from now on) is interesting in

its own right. The grade school 3X3 version of TTT is, of course , a draw if both players move

optimally. The interest in TTT arises from higher dimensions and/or larger boards. The 3X3X3

game is a win for the first player (take the center). The popular 4X4X4 version is still unsolved

(see Sheppard [S3) for strategic considerations). In this ITT , after three moves (6 ply) there are

1,499,409,707 positions , not accounting for symmetry.

ITT is isomorphic to so-called magic squares. In particular , one has an isomor ph of 3X3

TIT called “number scrabble”:

8 3 4 Players alternatel y select integers between 1 and 9.

1 5 9 The first player to total 15 wins.

6 7 2

In number scrabble, of course, the player does nct see the board.

One might naturally ask “Are there magic cubes corresponding to either the 3X3X3 or

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



OVERVIEW OF ANALOGY 31 FIRST VIGNETTE -- TIC-TAC-TOE

4X4X4 ITT games?” The answer is no (see M. Gardner [Cl]). Well , then, are there any magic

cubes at all? The answer here is, surprisingly, “yes.” Gardner gives an 8XSX8 magic cube, while

Wynne [W9] gives a 7X7X7 cube. “Are there magic cubes of ot her orders , specificall y 5X5X5 and

6X6X6?” The answers are , respectively, “yes, unknown , and unknown.”

Ranerj i and Ernst [RI] investigated the use of analogy to transfer strate gies from one

form of ITT to another. Although, as we menticned before , one cannot hope to gain much insig-ht

into the analo gy process through considerations of isomorphic worlds , we wi ll use ITT and another

of its isomor phs (JAM, described below) to illustrate how initial analogy maps are formed.

Assume that we have an expert TTT playing program. We will describe JAM (i.e., give the

rules and starting configuration of the game) and then use “reasonin g by analogy ” to obtain a JAM

expert . Since the two worlds are isomorphic , Wi? will be essentiall y finished after we develop the

analogy map (although we will have no way cf knowing this until we actuall y lift the various

components of expertise). In non-isomorphic worlds (like the rest of the examp les in this paper)

the “develop map” step is only the beginnkng of ihe analogy process.

RULES FOR TI C-TAC- TOE AND JAM

ITT is played on a grid with squares labeled as above (except numbers are preceeded

with the letter “S”). There is a type hierarchy imposed on the squares:

the CENTER square is S5
the CORNER squares include S8, S2, S4 , S6
the SIDE squares include SI, S3, S9, S7

There are eight rows; each row is a tri plet of squares. The game is won when all

squares in a row are X ED; it is lost when they ire all ZEROED. A draw is likely. We list all the

squares in the various rows:

~ 

~~~~~~: 
-
~~:~:~~

“- - - - -
~~~~~ ~~~~~~~~~~~ ~~~~~ - .



- . - ~~~~~~~~~~~~~

OVERVIEW OF ANALOGY :32 FIRST VIGNETTE -- TIC-TAC-TOE

ROW —A contains squares S8 S3 S4
ROW—B contains squares SI S5 S9
POW —C contains squares S6 S7 S2
ROW —O contains squares SS SI S6
ROW-E contains squares S3 55 S7
ROW —F contains squares S4 S9 S2
ROW —C contains squares SS S5 S2
ROW—H contains squares S4 S5 S6

Rows are also broken into types:

the DIAGONALS are ROW-C , ROW-H
the NOR~1ALS are ROW -A , ROW-B , ROLl-C , ROW-D , ROW-E , ROW- F.

The game of JAM is played on the following network:

G

8 5 2

B
1 9

D 5 F
6 4

H 
2

8

4 6

A c
3 7

E

JAM DIAGRAM

The circles are “towns” and the lines are “roads- ” All sections of a road are blocked when either

the “red” player or the “blue” player blocks the road. A town is isolated when all roads leading to

that town are blocked by one color. The first player to isolate a town wins. Thus if the red player

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
~~~ ::~~ ——

~
-— ~_ ...—~~V. — 

~~~~~~~~~~~~ 
- — --.-- .-- ~~ -.~ ~~:-.--‘---~

—-

OVER VIEW OF ANALOGY 33 FIRST VIGNETTE -- TIC-TAC-TOE

— blocked roads 2, 6, and 7, then town C would be isolated, and red would win. The names of the

roads and towns make the isomorphism to ITT clear.

WORLD DESCRIPTIONS

Now we will try to give the ITT and JAM world descri ptions more formall y in the

predicate calculus. I would like to think that the world description below is natural , and merely a

rewrite of the rules given above. In ITT we neec. to say:

(DECLARATION (CENTER S5)
(CORNER S8 S2 S4 S6)
(SIDE Si S3 S9 S7))

This type of statement simply says that the “declared” assertions are always to be true. In order to

say that the center , corners , and sides are ill squares , we give the following facts:

(FORALL (X) (IMPLIES (SIDE X) (SQUARE X)))
(FORALL (X) (IMPLIES (CORNER X) (SQUARE X)))
(FORALL 00 (IMPL I ES (CENTER Xl (SQUARE X)))

One might wonder why we don’t give the t ype/5 ub-type relation (e.g., SIDE is-a SQUARE) exp licitly .

We need to be able to discover relations like thu anyway, so we will take this opportunity to show

that the system can deduce them. The reader should observe that we have not said what the

predicate SQUARE tests. None of this description is actuall y used exp licit ly by the ITT expert code;

it is present because it is needed to justify the ITT expert and for use by the analogy process.

Continuing, we name the rows:

(DECLARATION (ROW ROW-A ROW-B ROW-C ROW-O ROL4-E ROW-F)
(DIAGONAL ROW-C ROW-H))

(FORALL (X) (IMPLIES (DIAGONAL X) (ROW))))

We have rows , a special kind of row we ca ll a diagonal , and three kinds of squares. The final bit

of description says how the squares and rows relate:

- - . ~~~~~ - - — —
~‘-‘-~~ r

~~~~~~~~~~~~~~~~~~~~~ -k~~ J L - ~~~~~~ 
..

~ 
.
~~ — . —~.—_



— -.- - :. TT~~~T ~~~~~~~~~~~~~~ V —~~~~ -~~~~~~~~~

OVERVIEW OF ANALOGY ~4 FIRST VIGNETTE -- TIC-TAC-TOE

(DECLARATION
(IN-ROW ROW-A S8)
(IN-ROW ROW-A S3)
(IN-ROW ROW-A 54)
(IN-ROW ROLl-B Si)
e tc . )

As soon as we give the rules of the game, we will be done.

1. A square may be XED or ZEROED , but not both.
(FORALL (X ) (1FF (XEO Xl (NOT (ZEROED Xl )))

This rule excludes the possibility of a squire being blank for technical reasons (see [NOTE
6]).

2. The machine always plays X , so a win ccnd ition occurs as follows:
( IMPLIES (EXISTS (X ) (FORALL (V )  ( IMPLIES (AND (ROW Xl (SQUARE Y ) ( IN—ROW X Y ) )

(X ED V I ) ) )
(W IN) )

We do not know that ( IN-RO W X Y ) imp lies (ROW V ) yet , so the rule must be stated as
above.

3. Similarly, we describe a lose condition
(IMPL IES (EXISTS (X) (FORALL (VI (IMPLIES (AND (ROW X) (SQUARE VI ( IN-ROW X Y ) )

(ZEROED V))))
(LOSE))

The list continues . There are some rules which cannot be stated because we are missing a

notion of “change” (for examp le, the rule that play alternates ) .

I will admit that this isn’t very prett y, but then again there probabl y isn’t a very elegant

way to say the above (other than putting it in English and pictures). In any case , we need to do

the same analysis for JAM, 

:~~~~~~~:‘~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



r 
V _ _  _ ~~~~~——

—,—~~~~

OVERVIEW OF ANALOGY 35 FIRST VIGNETTE -- TIC-TAC-TOE

(DECLARATION (ROAD R i R2 R3 R4 RS RB R7 R8 R9)
(TOWN A B C C E F C H)
(PLAY ERS RED BLUE) -

(ON-ROA D R8 A )
(ON-ROAD R8 Dl
(ON-ROA D R8 C)
(ON- ROAD RS 6) -

(ON-ROA D RS B)
(ON-ROAD AS H)
(ON-ROAD R5 El
etc ,  I

(FORALL (Xl (1FF (BLOCKED-B Y X RED) (NOT (BLOCKED-BY X BLUE))))

(FORALL (Z) (IMPL IES (EXISTS (X)
(FORALL (VI

(IMPL IES (AND (TOWN X) (ROAD VI
(PLAYER Z) WN-ROAO V Xl )

(BLOCKED—B Y V Z))))
(WIN Z)))

We should make several comments about the differences in t he two world

descriptions:

1. JAM has players , while ITT does not (or so it seems)

2. TTT’ s expert plays “X”, JAM is ambivalent

3. III has a type hierarch y, w hile JAM does not (or so it seems).

These differences were introduced in an attem?t to follow the English descri ption , but the rea l

reason for them is to let us show that none of these differences confuse our analogy process.

WORLD DESCRIPTIONS GENE ]~ATE SEMANTIC TEMPLATES

The first step in the analogy map g ’neration process is to produce a set of semantic

templates. A semantic template is a specification of which objec t t ypes can be valid arguments of a

form. Thus, for each predicate and function , semantic templates g ive the possible argument types.

For examp le, in JAM the predicate ON-ROAD rakes two arguments: the first is a ROAD; the second is

a T OWN. The semantic temp late for this predicate looks like

~~~~~~~~~ ~~~~~~~~ :.~::- .i.~
-
~

-~~~~ ~~ V~~~~~~~~~ VV ~~~~~V-V V V ~~- V - - - - -~~~

OVERVIEW OF ANALOGY 36 FIRST VIGNETTE -- TIC-TAC-TOE

(ON -ROAD ROAD TOWN)

We will generate semantic templates in a purely syntactic wa y from the world descriptions given

above.

The first step in forming semantic temp lates is to decide what types of ob jects are

present in a world. We make the observation that unary predicates typically are type-checkers.

Thus, by simply listing all the unary predicates we can get a list of potential object types:

ITT JAM
SIDE TOW N
CENTER ROAD
SQUARE PLAYER
ROW WIN *
CORNER
DI AGONAL
XED *
ZEROED *

We can reject some of these by noting that a ty3e-checking predicate must be used as such , i.e., it

must be applied to a quan~ified variable on the left hand side of an implication (for this purpose

onl y, 1FF is not decomposed into two implications). This eliminates XED and ZEROED in ITT , and

WIN in JAM.

We can make use of a further observa:ion: if P and Q are type checking predicates , then

facts of the form

(FORALL (X I (IMPLIES (P X I (0 X)))

establish a type hierarchy. In the above , P is a kind of 0. Searching the description of ITT for

this pattern yields the two hierarchies:

ROW SQUARE

DIAGONAL SIDE CENTER CORNER

Since ITT is the image world, it would not be unreasonable to insist that these hierarchies be given

~~~~~~~~~~. 
. 

~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~ 
-— -. ~~~~~~~~~~~~~~~~~

V .- ~~~~~ -. V.—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ._ .- .  , .,, ,_.- , ..._ .... _ -_ _  - . ._ .._ V ..- 

~
- _ .——_,

~~~~~~

OVERVIEW OF ANALOGY 37 FIRST VIGNETTE -- TIC-TAC-TOE

explicity. A lternativel y, we could perform an ex haustive search of all objects in the world , since

TIT world is finite. However , these other techniques are not generally available to us for use on

the domain world (JAM) where we lack the requisite expertise.

Finally, we examine the facts about the games to determine the type of their arguments.

generalizing upward in a type hierarchy if necessary. This gives us the semantic temp lates

(IN—ROW row square)
(X EO square)
(ZEROED square)

in image world ITT , and for domain world JAM we get

(WIN pla yer)
(ON—ROAD road town)
(BLOCKED-BY road p l ayer)

The interested reader should see [NOTE 71 for an earl y form of semantic tem plate. Armed with

the list of ob ject t ypes , the t ype hierarchy, an i the semantic temp lates we have automatically

derived, we are ready to form the analogy map.

SYNTACTIC GENERATION ANt) SEMANTIC REJECTION

We are about to use ana logy to create enough expertise in a JAM expert to allow it to

make a move . To do this we must f irst give the JAM expert a problem to solve, then form an

analogy map f rom JAM to ITT.

We will generate in a very syntactic way possible maps from JAM to ITT , and use our IT T

expertise to reject most of these proposals on semantic grounds. To start , we present the JAM

ex pert with a problem to solve: our first move

(BLOCKED-EY R8 BLUE),

Since there is no JAM expert yet , we immediatel y resort to ana logy. We want to map this assertion

to the III ex pert in the hopes of gainin g enoug h JAM ex pertise (by analogy, of course) to proceed.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-.

_ _ _ _ - -~~~~-—

OVERVIEW OF ANALOGY -38 FIRST VIGNETTE -- T IC-TAC-TOE

F We must first summarize the current situation in JAM and then t ry to map this summary

to ITT We discuss the summai ization proces~ in cha pter ~ANA LOGV ALGO RIT HMS ,MAP FORMAT ION AND

EXTENSION]. For now , we acce pt the necessit y of first mapping all the declarations in JAM , and then

mapping the first JAM move. Thus the first ordi’r of business is to map the assertion (found in the

first DECLARATION)

(O N— RO/~O R8 A) .

In developing maps , we start as hig h as possible in the image type- hierai ch y. The

domain types are ROAD , TOWN , and PLAYER , while possible image object types are ROW and SQUARE.

Our choices for analogy maps from JAM to TTT are

map A LPHA
~~

p BETA map GAMMA
TOWN -> SQUA RE ROAD -> SQUARE ROAD , TOWN -> SQUAR E
ROA D — > ROW -> ~~ PLAY ER -> RC~PLAYER — > ? PLAY ER -> or v i c e versa

W hile we only have six possibilities now (two maps each for ALPHA and BETA , and the

map GAMMA and its reverse), we will need to contain the possible combinatorial exp losion somehow.

One tec hnique is to immediatel y prune :he po~siblities tree. Using GAMMA to map the predicate

ON—ROAD , we get a partial image semantic templa .e

(? SQUARE SQUARE)

with “?“ indicating that the image predicate is unknown. This doesn’t match any template in IT T,

so we tentative ly reject this map (the rejection isn’t com plete since we have more tricks up our

sleeve in chapter [ANALOGY A LG ORITHMS ,MAP FORMATION AN C EXTENSION]) to use if we must). Similar

reasoning rejects GAMMA ’s reverse.

In maps ALPHA and BETA , we need to decide what to do with PLAY ER. We always prefer

NOT to map an object t ype at all over making DOUBLE maps. So for our first choice we leave

PLAY ER unmapped. This gives BLOCKED-BY a p~.rtial image semantic template

~~~~ ~~~~~~~~~~~~ - 
:



_ _ _ _ _  - -

OVERVIEW OF ANALOGY 39 FIRST VIGNETTE -- TIC-TAC-TOE

t? ROW ) for ALPHA
(? SQUARE) for BETA

The image of BLOCKED-BY’s semantic template under map ALPHA doesn ’t match anything except

the type checking predicate ROW . Since this would give us a double map (e.g., both BLOCKED—BY

and ROAD would go to ROW ), we will tentatively reject it. BETA will map BLOCKED- BY tO either XEO

or ZEROED by ignoring BLOCKED-B Y ’s second argument , which is of type PLAYER (see chapter

(ANALOGY ALGORITHMS ,MAP FORMATION AND EXTENSIO N], map extensi on rule 4). Similarly, app lying map BETA

to the domain semantic temp late for ON—RO AD results in a partial image semantic tem plate with an

unknown image predicate:

(? SQUPRE ROAD)

There is no direct match here, but there is a pridicate w ith the same type inventory (i.e.. the same

number of each argument type in the semantic temp late): IN—RO W. We will tentativel y use this

map (by map extension rule 3). Our analogy map is now

ROAD -> SQUARE
TOWN -> ROW
ON—ROAD —

~~ IN—ROW (sw i tch arguments around)
BLOCKED—BY —> XED or ZEROED (igro re second arg )

Note that roads and towns are being mapped into type hierarchies. The inverse map will

then impose a type hierarchy on the domain (JAM), which is exactly what ought to happen.

USING CONSTRAINT P ROPA G AT ION

Now that we know the function al form of the map, we must determine the details of the

corres pondence between ob ject s in the r~ o worlds. For exam ple, we have 9 roads and 9 squares.

One wa y to proceed is simply to try all possib e maps , and rely on the TTT expert to complain

about the maps that are not cricket. Assu ming that the ma p is to be one-to-one , there are

9! or 362880 possible maps. This is too many maps to cons ider , so we will make use of the ty pe

_ _  
_ _  - JTT



puir .. ._.V ........ —.-- . .----,— V

OVERVIEW OF A ;’ALOGY ~Q FIRST VJGNETTE -- TIC-TAG-TOE

hierarchy in ITT (the an~iogy map nust be cons.ster i t with this hierarchy) The idea is to generate

partial maps, and then use the T TI expeit to force unique extensions. That is, suppose we pick a

road to map to the center square (S5), arid then pick 4 other roads to map to the corner squares.

Then either the configuration is illegal as it st ands , or all subsequent choices are forced. There are

9 :’C(8,1) or 630 of these ma ps. We can do even better , since if we pick a road as center and two

towns as diagonals , then ever ything else is determined. There are only

1*C (4,2)+4*C (3,2)+4*C(2,2) or 22

such maps. Our st rategy is going to be to map ioads to the center (and failing that to corners and

~idi~s), and ma p z ’ns to diagonals (and :ai l~ng ha , t o other rows) Expertise in ITT will prov ide

constraints on pc;sih]e L T a ~ es for roads and towns , and once a particular image is selected , TTT

ex pe~t I~€ w ill t) ro])3
~

ate further c ons t ra in t s .  The reader should notice that our constraint

propagation scheme does not make use of any e::pertise in JAM . For a discussion of an alternative

“counting” scheme which violates the ex pertise restriction , see [NOTE S]~

IMAGE SEMANTICS AND DEPTH -FIRST SEARCH

To imp lement our scheme , we n eed the notion of “most restric t ive ty pe.” I don’t know a

general way to determine when one sub -type is more restrictive than another. However , in finite

worlds the most restrictive type is the one with :he fewest members. We can use our expertise in

TTT to determine that CENTER is more restrictive than the other two types of SQUARE , and simi larly

that DIAGONAL is more restr ict ive than ROW (we don ’t need semantics for the latter since an y

sub-type is more (or at least as) restrictive than its super-type).

Following this observation , we will gue;s that

R8 (which should be a corner) -> SB (the center)

A (which should be a non-dia gonal row) -> ROW-C (a diagonal)

This lets us map the first of the JAM declarations .

-
~~~~~~~~~ .~~~~~~~.. ~~~~~~~~~~~~ A


~~
V

_~~~~A ~~~~~~~~ — —~~---- —

—~~~~~~ -
-.--------.

OVERVIEW OF ANALOGY 41 FIRST VIGNETTE -- TIC-TAG-TOE

(ON-ROAD R8 A)-> (IN-ROW ROW-C SB)

where the latter is true in ITT . Continuing, we map

(ON-ROAD R8 D)—> (IN-RO L.J ROW -H SE)
(O N-ROAD R8 G)->(IN-RO L.J ROW-B SE)

(ON-ROAD RB E) cannot be mapped

The semantics of the image rejects this particular map. We eventuall y go back to R8—>S5 and

decide t hat this must not be true, since it has not been possible to assume this and find an analogy

map not rejected by the semantics of III. We will therefore change our mind, and ma p R8 to S8

(or, equiva lently, some other corner). Proceeding we map A->ROW .-C (again assuming dia gonal) and

(ON—ROAO R8 A) —> (IN-ROW ROW-C S~
)

D->ROW-A
G->ROW-O

(ON—ROAD RB G)- > L IN-ROW ROW-D SE) false!

We go back to the last assum ption , and tr y a~ ain. This time ~ e ma p A—> ROW — A , and 0 to a

diagonal. This fails , so we finally try mapping C to a diagonal (say ROW—C in ITT world), which

succeeds. In this way the map is comp leted.

The next problem is to map (BLOCK ED -BY R8 BLUE)

(BLOCKEO-BY R8 BLUE)-> (XEO R8).

This is rejected by the TTT program as an illegal move because it wants to make XED assertions . So

we add

BLOCKED-BY -> ZEROED (when second arg BLUE)

to the analogy map. We will get the other one when ITT gives back proper response, comp leting

the map formation process.

It is worth pointing out once a~ ain th a t all the semantic knowledge resided in the image

L

world. This is entirely fittin g, since that is w here the supposed expertise is. The result of playing

JAM “by analogy ” will he the construction of a .AM expert (which will be almost a carbon-copy of

1; . - . , .. ,- , ‘ — - - ‘ . — .-,. — . . s - . - ~~~~~~~~~
—

— —~~~~~—
~-- ‘.—.------

~~~~~~~~~~~ _________________ 4



- -  V -- . -~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OVERVIEW OF ANALOGY -~2 FIR ST VIGNETTE - -  TIC-TAC-TOE

t he III expert). Since the two worlds are in fac;: isomorp hic , t he lifting process is straightforward.

We will give an ex planation of this lifting process in chapter [ANALOGY AL GO~ITHMS ,DEBUGGING ALGORITHM],

and an exam ple in the third vignette (below) operating between the blocks world and rhetoric

world.

SUMMARY -- COMBINATORIAL EXPLOSIONS

This ITT exam ple raises the question of combinatorial exp losion in the search for an

analogy map. In the exam ples we will examine , :his feared combinatorial ex plosion does not occur.

Indeed, we have introduced several technt ques to prevent it. However , our success on this exa m ple

should not be taken as a guarantee that this syn :actic search for an analof , y map will ai .’~ays work.

For the purpose of making an analogy map, we have assumed Hat we have no exper tise

in the domain wo -t d , thus restrict in g ourselves tn using only s~r . ta c t t c  clues in the st at en ie nt of t he

ax io .~ns of the domain world \-~~ have :~cc av a iled using so-called hi~,h-~eve l ch a ra c t er iz atk . ns of

t he domain w o: ld  predicates and func t ions.  It is not hard to imag ine that , for € -x an ple . t~ e

hypothesis that  some i~-a.main reJ: cat e s an eqi ~va lence re~a t i o n  (if rci : e ) could be qui:e useful in

the map forma:~on . ca ce s~
To fully st a te  He cu 1~c of TTT , we ~.a~ 1d need to in:: oc:u:e the notion of change , either

by using situation ta~ s ([ ME]) or by using some form of modal logic. While I have not fully

investi gated the impact of the presens e of rnudal operators on the analogy process , the y are

particula rly interesting since the use of modals (syntactical l y predicat es of several variables and one

predicate , like NOT , FORALL , and EXISTS ) introduces another kind of semantic temp late , and also

allows us to divide predicates into classes depending on which are influenced by which modals.

For example , in ITT we might use the AFTE F- [ IOVE-X modal operator to indicate that some

exper ssion becomes ie after some square hac been XEO. Surprising ly, introducing change by

introducing modals actually reduces the combinatorial exp losion On the other hand, if situation

tags are used in a way that is equivalent to using modals , then there is a slight increase in the

~~~~~~~~

,
~~. .—~ t.- ~~~~t - ’ ~~. J’

,
- . - - ,

~
.
c~~-

’
~~

- — ,‘-. - -- ----,. ‘
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--- .—~—‘—- 

—-— —----V — ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .— ~—~~~~~~~~-



r ~~~~~~~~~~~~~~~~~~~~~~~~~~

- - -

~~~~~~~~~~~~~~ 

-

~~~~

--

~~~~~~~~~~ 

--

~

OVERVIEW OF ANALOGY 13 FIRST VIGNETTE -- TIC-TAC-TOE

combinatorics of mapping object types due to he introduction of a new type: the situation-tag.

Fortunately, by the time the images of the domain predicates are determined , all incorrect maps of

object types have been rejected, so the analysis of t his case proceeds as above.

INTROD UCTION TO BLOCKS AND RHETORIC WORLD

Our second example is more interesting and less finite. We wi ll make use of an analogy

between the notion of physical support in the blocks world and logical support in rhetoric world.

The examp le is particularl y interesting due to a demonstration that analogy is able to operate in

the presence of logicall y inconsistent world descriptions .

In the blocks world , if block A ’ s center of gravity is over block B, t hen (modulo friction

and stabi lity considerations) it is safe to remove block C. In this situation , C is said to be

scaffolding.

A

B I c i
In a d iscussion or debate , consider some conclusion A in a situat ion whose essential

fea ture i s B. Suppose some iriessen t ial fea t urv of the situation C makes the conclusion more

palatable Then on~ could (successfull y) argue that A would still be the approp riate conclusion on

the stien gth of B alone. In this situatio n , C mi,~ht be called “window dressin g” for conc l’’cion A,

prov ided that C is a relativel y minor ar gumeni. We take this as the definition of the window

dressing predicate.

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .:t~~~

.’.;.. _ - +. ,

- -~---- V ——---——--~~~~~~~~~~~ -- -- ~—V--~~ -- - -
-

-V 1~~~~~

~~~~~~~~~~~~~ ---V - -~~~ ~~~~~~~~~~~~~ ~~
—--- ________ —



- 
. -.-. ---- -. -.—. -V 

~~~~~~~ ~~
-V.V

~
_---.

~~
-V.-V - . - -

~~
- .-

~
--.---- — - -

OVERVIEW OF ANALOGY .
~4 SECOND VIGNETTE -- BLOCKS

Suppose we wish to develo p a “rhetoric world ” ex pert along the lines of a highly

successful blocks world expert. We will do this by means of “reasoning by analogy.” In the above,

we might discover that the situations are analogous , and thereby become interested in rewriting a

program SCAFFOLDP of one argument in the blocks wor ld to become a program

W INDOW—DRESS INGP of one argument (in rhetoric world).

SCAFFOLDP -- THE EXAMP LE PROGRAM

Before we can begin to app ly the analogy process, we must fully describe the blocks

world expert, which is written in LISP. Our attention will be focused on the following program:

BLOCK is the block we suspect is scaffolding.
SP is used for several purposes, b u t it is the block BLOCK supports inside the loop.
SPSPL is a list of blocks which support the block supported by the block BLOCK.
I t is not necessary to understand th is program in detail at this time.

(DEFUN SCAFFOLOP (BLOCK)
(PROC (SP SPSPL)

(SETQ SP (GET BLOCK ‘SUPPORTS))
(CONO ((COR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
(SEIG SPSPL WET SP ‘SUPPORTED-BY))

LOOP
(COND ((NOT SPSPL) (RETURN NIL))

((ECUAL (CAR SPSPL) BLOCK))
((ST ABLE (CAR SPSPL) SP) (RETURN ‘TRUE)))

(SETO SPSPL (CUR SPSPL))
(G~ LOOP)))

This program determines whether or riot some block is scaffolding, that is, it determines

the truth value of the predicate SCAFFOLD. The program does not return FALSE, so it cannot say

definitel y chat a block is not scaffolding ; it is a fairl y quick test that can be used when we don’t

wish to pay the prioe of a full analysis of the situation.

This program should be viewed as an imperative description of an aspect of behavior in

the blocks world. It is a description of iaow tc- determine if a block is scaffolding; it does not

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---— - -



_____ ________ - - - --— .-
~~~~~~~~~~~ ... ~~~~~~~~~~~~~~~ 

v— -
.

-

OVERVIEW OF ANALOGY 15 SECOND VIGNETTE -- BLOCKS

describe what the program does, only how to do it in terms of LISP functions. Indeed, comp laints

that this program is not transparent are quite justified. As we will need this “what ” information,

we will attach commentary to our program which will describe the plan of the program , after

Goldstein [G3].

We need to say that the program first finds a block X such that BLOCK supports it . We

will write this using the SUPPORTS predicate:

(SUPPORTS BLOCK Xl

The program furthermore determines that X is unique. Then the program tries to find a V such

that V supports block X:

t SUPPORTS Y X)

subject to the restriction that the two blocks X an~ y be stable in isolation , for which we write:

(STABLE V X) .

INCONSISTENT DESCRIPTION S ARE ALLOWED

It is worth pointing out here that the program has a “bug” in it. In the following

situation, block C is clearly not scaffolding, yet the program will return “true.”

A

[B]

I D I
—

~~~~ ~~~~~~~~~~~~~~~ - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


OVERVIEW OF ANALOGY ‘16 SECOND VIGNETTE -- BLOCKS

While A is “stable ” on B considered in isolation , B is not stable on 0 without the support C. We

might insist (say, in AX IOM 12), in the descri ption of the blocks world , t hat if some block X is

SCAFFOLDing, then the scene is “globally ” stable if X is “disappeared.”

t AX 1 01112
(FORALL (X) (IIIPLIES (SCAFFOLD X i

(GSTABLE (SCENE-WITHOUT X))))

Then the blocks world in inconsisten: , since removin g C (claimed by our program to be

scaffold ing) from the above scene results in an unstable block configuration. We will see that this

program can nonetheless be proven correct by using a theorem of the blocks world. Indeed, we w ill

see the theorem responsible for this (named FA:129) shortl y. Thus it must be the case that the

t heory of the blocks world that we are using is inconsistent. See [NOTE 9] for a demonstration of

the inconsistency.

Minsky closed his paper “A Framework for Representing Knowledge ” [M7] with the

following paragraph:

I cannot state stron gly enough my conviction that the preoccupation with
Consistency, so va luable for Mathematical Logic, has been incredibl y destr uctive to
those working on models of mind. At the popular level ... At the “logical” level it has
blocked efforts to represent cirdinarv knowled ge, by presenting an unreachable image
of a corpus of context-free “truths ” that can stand a lmost by themselves. And at the
inte llect-modelling level it has blo:ked the fundamental realization that thinking
begins first with suggestive but defective plans and images , t hat are slowl y (if ever)
refined and replaced by better ones.

The relevancy of this comment is that , des pite what appears to be a predicate-calculus proof

approach, we neither insist nor su~~est that wor ld theories be either consistent or complete.

~

‘-~~ ~~ *.‘:
~~~~~~~~:~~~

“‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ._~~ ~~~~~~~~~~~~~~~~~~~~~~~ ._. 14


OVERVIEW OF ANALOGY +7 SECOND VIGNETTE -- BLOCKS

FROM CODE TO PLANS

We will find it convenient to describe programs by stating their plans in terms of pattern

matching. Thus, we will say that the way SCAFF OLDP determines that (SUPPORTS BLOCK X) is by

doing a pattern match on part of BLOCK ’s repres€ntat ion:

(PA TTERN BLOCK SUPPORTS (?X)) .

That is, if the list found under the property SUPPORTS has one element , the list matches the

pattern , and the pattern variable X is bound to that element. Similarly, the program finds V by

matching

(PATTERN X SUPPCRTED-BY (* ?Y *))

w here :‘ will match any list of elements. V supports X , which is also supported by BLOCK , the

sca ffold candidate. As soon as we make sure that the configuration of X and V is (locally) stable in

STEP3 below, and that BLOCK and V are not equal (in SIEP4), we wi ll be willing to conclude that

(SCAFFOLD BLOCK) is true. We can combine these into a description of a plan, specifically a plan

TO—DETERMiNE the truth value of a predicate SCItFFOLD in four easy steps.

(10—DETERMINE SCAFFOLDP (SCAFFOLD BLOCK)
(BIND)(‘1)

:STEP1 (PATTERN BLOCK SUPPORTS (? X))
:STEP2 (PATTERN X SUPPORTED-BY (* ?Y *))
:SIEP3 (RESTRICT (Y) (STABLE Y X))
:STEP4 (RESTRICT (V) (NOT (EQUAL BLOCK Y)))

(RETURN TRUE))

This is the plan of the program. We have labe ed the four steps using the colon convention (that

is, :LABEL labels the LISP s-expression which follows). We now need to exp licitly match up the

steps in the plan with the program:

~
_
~__ 1~~_~~ ~~: - -~~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
-- ~~~~~~~~ . , . .


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OVERVIEW OF ANALOGY ‘18 SECOND VIGNETTE -- BLOCKS

(DEFUN SCAFFDLDP (BLOCK )
(PROG (SP SPSPL)

(SETQ SP (GET BLOCK ‘SUPPORTS))
(COND ( (CUR SP) (RETURN N IL ) ) )
(SETQ SP (CAR SP) )
; -< — STEP1 (X SP)
(SETQ SPSPL (GET SP ‘SUPPORTEO-EY))

LOOP
(COND ((NOT SPSPL) (RETURN NIL))

;-<-STEP2 (V (CAR SPSPL))
((EQUAL (CAR SPSPL) BLOCK))

<-STEP4
((STABLE (CAR SPSPL) SP)
;<-STEP3

(REIURN ‘TRUE)))
(SETQ SPSPL (CUR SPSPL))
(GO LOOP)))

The semi-colen introduces commentary which (in this case) indicates that various plan steps have

been tentatively completed . and gives a correspondence between plan variables and code variables.

Having said this, we have two concerns:

(1).Why is it that  f inding su:h a block Y a l l ows  us to conc lude tha t

(SCAFFOLDP BLOCK ) should return TRUE?

(2) Why do we believe that the plan actuall y finds such a ‘1?

JUSTIFICATION OF PLANS

Suppose that in the description of th€ blocks world we declare “If some block supports

another block, and the scene is stable without the first block, then the first block can be considered

scaffolding (for the second).”

:FACI29
(FORALL (Bi B2)

(IMPLIES (EXISTS (B3) (AND (DISI INCT B3 B2)
(SUPFOATS B3 Bi)
(STABLE B3 Bill )

(SCAFFOLD B2)))

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~ i:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - - ..~~~~~~~~~~~~.

..—.-
~~~~~~~~~~~~~~~~~ 

. .
~~~~~

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

OVERVIEW OF ANALOGY +9 SECOND VIGNETTE -- BLOCKS

Having labeled this declaration FACT2~, we can use it as the answer to question (1). This is the fact

responsible for the inconsistency noted above .

Turning to question (2), we need to provide j ustificat ion for the program’s commentar y

(contained in the “plan”). We need to acknow led ge the fact that if a block A appears in another

block B’s representation (under the indicator SUPPORTS), t hen we know (SUPPORTS B A ) .  The

same conclusion can also be drawn if B appears in A ’s representation under the SUPPORTED—BY

ind icator.

:RT1B
(REPRESENI AI I ON-CLA Ill

(X SUPPORT S (* V *) (SUPPORTS X V ) )  < j us t i f i c a t io n > )

:RT11
(REPRESENTATION-CLAIM

(V SUPPORTED—BY (* X *) (SUPPORTS X ‘i) )  < just i fication> )

We are using notation exp lained in chap:er [GEOMETRY W ORLO LANG UAGE FOP PLANS]. Labeling these two

facts as RT1B and RT1I respectively, we can ex plain why we believe that the plan wi ll accomp lish

its aims.

The plan justif ication has the form at a sequence of named st~ ements relating steps in

the plan to facts about the world. Each statement in a plan justification must give a rule by which

the predicate is “deduced”. The rule %RESTRICT refers to the semantics of that kind of plan step.

EQTHM1 and OISTINCT—OEF INITION refer to equality and dictinctness definitions in the blocks

world description.

(PLAN—JUSTIFICATION SCAFFOLOP
(Li (SUPPORTS BLOCK X) RT1B STEP1)
(L2 (SUPPORTS V X ) RT11 STEP2 )
(L3 (STABLE V Xi %RESTRICT STEP3)
(L4 (NOT (EQUAL BLOCK Vi ) ~:RESTRICT STEP4)
(L5 (NOT (EQUAL V BLOCK)) EQTHF11 L4)
(L6 (DISTINCT Y BLOCK) DISTINCT-DEFINITION L5)
(L7 (SCAFFOLD BLOCK) FACT2S LB L2 L3))

The plan justification is interesting in that use is not made of the fact that X is the only block

~~ ~~~~~ ~~~~~-~~~~ - 
- . 

.. 
• -  -. 

~~~~~~~~~~ 
~~~.: -



_ _

OV ERVIEW OF ANALOGY 30 SECOND VIGNETTE -- BLOCKS

supported by BLOCK. Just as we will allow wor~d descri ptions to he inconsistent , so will we allow

plan justifications to be incomplete (one might call this kind of incomp leteness a sup ers t i t ion ) .

We now have three layers of knowledge about SCAFFOLOP: we have the actual code (i.e.,

how to do the computation), we have the plan (i.e., what the computation does), and fina lly we

have the descri ption (i.e., wh y the computation Morks). We have commentary linking the code to

its plan, and we have the plan justification linking the plan to the description of the blocks world.

FROM PLAN JUSTIFICATION TO RESULT JUSTIFIC ATION

Having completed the description of t ie blocks world and its plans, we can finally start

to apply the analogy process. In order to make use of code, plan, and just ification we need to pose

the ex pert problem solving system a problem. Suppose that in rhetoric wor ld we want to show

(W INDOW-CRESSING C)

and we know that

(SUPPORTS B A)
(SUPPORTS C A)
(DEFENSIBLE A B)
(RELATIVELY-MINOR C A )

Assume that by using the analogy map gerierat~on process discussed earlier (and perhaps having

solved previous problems), we have obtained the following analogy map:

WINDOW-DRESSING -> SCAFFOLD
SUPPORTS —> SUPPORTS
DEFENSIBLE -> STABLE
A —>  A RT512 -> P118
B —~~ B RTSI3 —> AT 11
C -> C

Applying this map to the summartied rhetoric world problem (see chapter [ANA LoGY ALGORITFIMS,MAP

FORMATION AND EXTENSION]), we get the assertions



OVERVIEW OF ANALOGY 51 SECOND VIGNETTE -- BLOCKS

:GIVEN1 (SUPPORTS B A )
:GIVEN2 (SUPPORTS C A )
:GIVEN3 (STABLE A B)

in the blocks world. By mechanisms exp lain ed elsewhere (chapter [GEOMETRY WORLD,LANGUAGE FOR

PLANS]) , these assertions generate ob jects arid repr~sentat ions (i.e., property lists):

A SUPPORTS U , SUPPORTED-EY (C B)
B SUPPORTS (A) . SUPPORTED-BY (1
C SUPPORTS (A) , SUPPORTED-BY (I

If in the blocks world we now evaluate the predicate (SCAFFOLOP ‘C) it will return

TRUE. Interpreting the plan whil e running the code gives

call BLOCK = C
stepi pattern (A) , X A
step2 patter n (C B), V = B
step4 — — - t r u e — --

step3 —-—tr ue-—- by GIVEN3

Note that V is bound to B. That is becaus? the first time around the loop, (CAR SPSPL) was C, and

of course C equals C.

We use this information in con j unction wit h the plan justification to generate the

following proof that C is SCAFFOLD .

i. (SUPPORTS C A) RT1Ø
2. (SUPPORTS B A ) RT11
3, (STABL E B A) (GIVEN3 )

6, (DISTINCT B C)
7. (SCAFFOLD C) FACT29 app l ied to 7, 2, 3

.

~~~~~~ —-
“-

-~
_ L 4~~~~~”

••.•
.~~ ,; — -- -:‘ ~~~~~~~

- - -- --

~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~—

-
_

~~~~~~~~
. - -~~~-~~~~~~~~~ --

OVERVIEW OF ANALOGY 32 THIRD VIGNETTE -- NEW EXPERTISE

LIFTING JUSTIFICATIONS OF RESULTS

We can now obtain (via the inverse analogy map) the reason why C’ s ana log (in rhetoric

world) is window dressing. While the of icial justifica tion for the conclusion (SUPPORTS C A ) in

step 1 of the proof is RT10, we can “unwind ” this proof based on representations so that we know

step 1 is “given ” by 61 VEN2 (see [ANALOGY A LGORJT HM3 RESU LI JUSTIFICAT ICt~]).

The only interesting part of this “liftin g” process occurs when we try to h f :  the last step.

We have (from the introduction to blocks world m d  rhetoric world) the followin g fact:

FAC 1550
(FORALL (Al A2)

(IMPL IES (EXISTS (A 3)
(AND (DISTINCT A3 A2) (SUPPORTS A3 Al )

(DEFENSIBLE A3 Al ) (RELATIVELY-MINOR A2 A3)))
(WINDOW-DRESSING A2)))

When we apply the inverse ma p to F,~CT 29 in the blocks world , we discover (using the

one-ste p deduction algor ithm in [ANALOGY A LGO~ITHMS DEBUGGIN G ALGORITHM] ) that in rhetoric world

LIFTEO—FACT29 is not provable.

: LIFTED-FACT23
(FORALL (Bi B2)

(IMPL IES (EXISTS (B3) (AND (DISTINCT B3 82)
(SUPFORTS 83 81)
(DEFENS I BLE B3 Bill )

(WINDOW—DRESSING 82)))

We do, however , discover that the consequent of the domain world version of FACT2S matches the

consequent of FACTSSO and that

~~~~~~~~~
- .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— -~ —-~~~
. .-—-

- ___________

-

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ - _____

OVERVIEW OF ANALOGY 5~ THIRD VIGNETTE --

~ EW EXPERTISE

I. All antecedents in LIFT EO— FACT2 ~3 are tr ie

2. LIFTED—FACT2B’ s antecedents are a subset of FACT5S~ ’s anteced tnts

3. The rest of L IFTE O—FACT SSØ ’ s anteced ents are true in rhetoric world.

This configuration indicates that there is a MISSING-PREREQUISITE bug in the

analogy

FACTS58 -> FACT29

in that the restriction (R ELATIVEL Y— M i NO~ A2 p.3) in rhetoric world ’s FACT SS~ was omited. With

th is noted , the conclus ion that C is wind o-~ dressing is justified. For a full discussing of bugs, see

chapter [ANALOGY AL GO RITH MS ,DEBUGC~N6 AL GO~ - T KMS ~.

PAT CHES IN RESULT JUSTIFIC ATIO NS GIVE PAT C HES T O

PLANS

We now need to a pply the inverse mip to the plan. The (RETURN TRUE) step of the

plan is justified by step L7 in the plan j ust ificat ;on. This ;:ep in turn relies on FACT29. When the

plan is lifted , we naturall y also lift its justif icat ion. The bug noted above generates a patch to the

plan and plan justification ; a further restrict ion is applied to V. This gives the domain plan for

WINDOW-DRESS I NGP:

(TO—DETERMINE l41ND014-DRESSINGP (WINOOI.J-ERESSING ARGUMENT)
(BIND X Y)

:STEP1 (PATTERN ARGUMENT SUPPORTS (?X))
:ST EP2 (PATTERN X SUPPORTED-BY (* ?Y *))
:ST EP3 (RESTRICT (Y) (DEFENSIBLE V X i)

STEP4 (RESTRICT (V I (N01 (E~~JAL A R ~ ENT Y)) I
:PATCH1 (RESTRICT (Y) (RELATIVELY- M INOR ARGUMENT Y))

(RETURN TRUE))

and the app ropriatel y patched plan justifA catlon ~not shown).

We now lift the code. Most of the wo rk is simp ly re] lacin g function names. The only

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ _- . --. -~~~~~~~~~~~~~~~ — ._ ~~- — ~~~~ . .-



OVERVIEW OF ANALOGY -34 THIRD VIGNETTE -- NEW EXPERTISE

problem is where to insert the patch , anc. w hat the modification looks like. In this case we order

the difficulties associated with routines which ccm pute the restriction and the difficulty associated

with the routine to compute the patch. Then we insert code for the patch immediatel y before the

code computing the next most difficult plan step (or , rather , before the code that comp letes the

next most difficult plan step). In this case , the only step more difficult to compute than the patch

is STEP4. Thus in the code, we will place code for PATCH1 immediately in front of code for STEP4 .

This gives

(DEFUN WINDOW-DRESS I NCP (ARGUMENT )
(PROC (SP SPSPL)

(SETQ SP (GET ARGUMENT ‘SUPPORTS))
(COND ((CDR SP) (RETURN NIL) ))
(SETQ SP (CAR SP))

<— STEP1 (X SP)
(SETO SPSPL (GET SP ‘SUPPORTED-EY))

LOOP
(COND ((NOT SPSPL) (RETURN NIL ))

<- STEP2 (V (CAR SPSPL))
((EQUAL (CAR SPSPU APG~MENT))

;-<- ST EP4
((AND (RELATI VELY-MINOR ARGUMENT (CAR SPSPL))

; <— PATCH1
(DEFENSIBLE (CAR EPSPL SP))

; <— STEF3
(RETURN ‘TRUE))))

(SETQ SPSPL (COR SPSPL))
(GO LOOP)))

Actually writing the patch requires some sophisti:at ion in programming.

Note that this program has :he same “bug” (confusion between local and global

defendability) that SCAFFOLDP has. Furthermore, like SCAFFOLDP, it su perstitiousl y insists that the

WINDOW —DRESS ING support only one argument -- even though there is no apparent good reason for

doing so.

E~ . ~~~~~~~~ 
.

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~


GEOMETRY WORLD AXIOMS

I n place of “p oint ”, “line ”, ar .d “pl a ; ie” we must at all times be able to s ay “beer mug”,
“table ”, and “c/l air. ”

David Hilbert

GEOMETRY WORLD

We saw in chapter [OVERVIEW OF ~NALOGY FIRST VIGNETTE -- T IC-TAC -TOE] the dangers of trying to

stud y rea~~ning by analogy between isomor phic worlds. This observation gives us the first of the

following criteria for the sub ject of our next , more advanced and interestin g examp le.

Non-isomorphism. The pair must not be isomorphic .

Richness . The worlds should be rich in analogies.

Non-trivial. The worlds mus: be non-trivia l, since a lmost ~iy scheme will work on toy
problems. Ideally we would choose a world in which there are still unsolved problems.

Well-defined. The wor lds should be well -defined and understood. Preferably the
descri ption of the worlds should be obtained independent ly of our investigation.

Existing Expertise. There should alread y be an ex pert problem so lver for these
worlds. A gain , we prefer tha r the expert be developed independently. Ideally, we want
severa l expert problem solvers for the worlds

F . On the basis of these criteria we chose plane geometry and solid geometry as the pair of

wor lds in which to study analogy. We then restricted ourselves to a small portion of geometry,

called incidence geometry, which concerns problems of points , lines , and planes intersecting and

being determined (as in “two points determine a line”). Even these portion s of geometry satisfy the

criteria given above.

Recall from [INTRODUCTION TO ANALOGY ANALOGY AND MAPS) that we plan to reason about the

domain world , solid geometry, by solving an alogous problems in the image world , plane geometry.

However , before we can use analogy on these tw o worlds we must first:

I. Write the code for a plane geometry world expert problem solver.

~

-- - — -

.

GEOMETRy WORLD 36 AXIOMS

2. Give the p lans for the co (l~.

3. Give the ju s tification for believin~: t he plans are correct.

4. In order to give the justification of the plans , we will need a description of plane

geometry world.

There are a variety of ways to describe geometiy world; set theoret ic [F3J and analytic [Wa] come

to mind. We will use Hu bert ’s axioms [1-12] to c escribe these two worlds , both because his axioms

are closest in spirit to Euclid, and because in the literature they are the most w idely used.

PLANE Gec ~try A xioms

We will have two groups of axioms , concerned wi t h i n c i d e n c e arid with order . The

axioms are numbered so as to correspond with Hilber~’~ axioms in [H2).

Plane geometry axioms a~e preceded with a P, while solid geometry axioms are
preceded with S. We will give the predicate calculus versions of the axioms used in the
problems. The remainder of the ax ioms are given for completeness.

P -Il . Given two points , there is a line that contai n them.
(FORALL (A B) (IMPLIES (AND (PT A) (FT B))

(AND (LN (LINE A B))
(IN-LN (LINE A B) A)
(IN—LN (LINE A B) B))))

Note that we don’t insist t hat the two points be dist inct. This claims that two points determine at
least one line.

P-12. For every two distinct p oints , no mor ’ than cne line contai ns th em.(FORALL (A B)
(IMPL I ES (AND (DISTINCT A B) (PT A) (PT B))

(NOT (EXISTS (X Y) (ANC (DISTINCT X Y) (LN)~)(LN Y) (IN—LN X A)
(IN-LN V A) (IN-LN X B)
(IN-LN V B))))))

P-13a. Each line contains at least two p o inn.
The predicate calculus statement of this axiom has an occurance of the LN predicate on the left of

an implication. This tells us that LN, a unaiy predicate , is a type checker (see [OVERV IEW OF

—_ .-. - --_--- - . - - -. - . -.— — —

Fr.- .- — --- ---- -. - - -.--

~~~~~~~~~~~~~~~~~~ 

.,

~~~~~ 

-

~~~~~~~ 

— --—.-- -.----..

~~

-. — .-—-.-- - - ~~ 

GEOMETRY WORLD 57 AXIOMS

ANALOGY ,FIRST V IGNETTE --TI C-TAC -T 0E] ).

P-13b. There are at least three non-co llinear p oints .

We also have a set of axioms dea ling with the concept of “order.” These are included,

even though our examp les are in incidence geometry, because of t he important role they play in

the representat ion of a line.

P - l i l a .  The B TWN relation imp lies that the points are co-linear .
(FORALL (A B C)

( IMPLIES (AND (PT A ) (PT B) (PT C) (BTW N A B C ) )
(EXISTS (L) (AND (LN L) (IN-LN L A )

(IN-Ll~ L B) (IN-LN L C ) ) ) ) )

P-IIIb. The order of the B T W N  ar gu ments may be reversed.
(FORALL (A B C)

(IMPLIES (AND (PT A ) (PT B) (PT C) (BTWN A B C))
(BTWN C B A)))

P-[12. For two points A and C there always exists at least one point B on the line containing A and C
such that C lies between A and B.

P-1I3. Of any three points on a line there exists no more than one that lies between the other two.

Using the axioms above , we can prove important theorems , like

P-RTWN-THEOREMI:
(FORALL (A B C 0)

(IMPL IES (AND (PT A ) (PT B) (PT C) (BTW N A B C) (BTW N B C 0) )
(BTWN A C 0)))

P-ST WN-TH EOREM2:
(FORALL (A B C D)

(IMPLIES (AND (PT A) (PT B) (PT C) (BTWN A B C) (BTWN A C 0))
(BTWN B C 0 ) ) )

In addition to axioms , we also inc lude definitions. For various reasons , we disallow

definitions which introduce any new knowled €,e; definitions are strictl y and purely notational.

Enforcing this edict is harder than one might think. For examp le, we have the definition of

INTERSECT:

-~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —— .— ---- --.-



. . -  ~~~—-~——~
.

GEOMETRY WORL !) 58 AXIOMS

P - D E F I .  Def ine a j s~~c:~~ri I \ T E F S E C T  I n s i s t  that it take two distinct lines as arguments. If this
condition is m e t , t h e n  the ~a it  is in both ~f the ~ ven l i nes .

(DETERM INES (INIERSECT A B)
(( LN A ) (LN B) ( D I ST I NCT A B ) )
(( !N-LN A ( INTER SE J A B, )
(IN—LN B (INTER ~ECT A B))))

The form for the function call is followed by a list of restrictions on the arguments (i.e., the

function is only defined if the arguments meet these restrictions), and then a list of claims about

the value returned by the function.

Thus definition requires some explana ion. We have not declared the type of the result

of app lying the INTERSECT function to two distinct lines. We have only given the minimal

properties we wish this returned object to have. The meaning of a DETERMINES definition is “If it

can be proven for some type 0 (0 may be, for ex-im ple, PT , LN, or PL) that two objects of t ype 0 are

equal if they fulfill the claims of the definition , then the ty pe of the value returned by the

function being defined is 0.” We can then prove that if two distinct lines have two points )< and V

in common, then X = V. Hence the intersection cf  these two lines is the point X (or the same point

under the name Y), and thus we have proven that INTERSECT returns objects of type PT.

We are forced to define INT ERSECT this way by purely logical considerations. (For a full

discussion, see [NOTE 10]). However , t his defiiit ion also makes reasoning about intersection by

analogy easier. If we uniforml y replace IN—LN b/ IN—PL , we wi ll be able to prove in solid geometry

that the intersection of two planes is not a point , and that tt ~s a line. A very syntactic and natural

transformation is all that is required to “lift ” the definition.

- 
- . ~~L1..... - L ~~~~~~~~~~ ~~~~~~~~~~~~~~~ L~~~~t~~~



-~ --~- , -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~

GEOMETRY WORLD 39 AXIOMS

SOLID Geometr y Axioms

S-II,S-12,S-13a ,S-I3b ,S-IIla S.IJIbS-I I2S..1I3 are all identical to P-etc.

S-DEF I . We d efine a p r e’elicat e of thr ee argu rnen s to be true if and onl y ~f the thre e arguments are
points and there is no line contain ing all of them.(DEF—PRED (NON-LN A B C)

(AN D (PT A )
• (PT B)

(PT C)
(NOT (IN-LN (LINE A B) C))))

S-I4a. For three non-collinear poi nts there is a iw oys a pl ane containin g them.
(FORALL (A B C)

(IMPLIES (NON-LN A B C)
(AND (PL (PLANE A B C))

( IN-PL (PLANE A B C) A )
( IN-PL (PLANE A B C) B)
(IN-PL (PLANE A B C) C))))

S-14b. Every plane contains at least one po int.
(FORALL (P) (IMPLIES (PL P)

(EXISTS (A) (AND (PT A ) (IN-PL P A)))))

S-15. For three non-coll inear points , no more than me plane contains them.

S-16. If two points of a line are in a plane , then a ’I p oints in that line are in the p lane.

S-17. If there is one point in two distinct planes , then there is a second distinct p oint also in both
planes.

Note that INTERSECT is not defined in solid geometry. Although the above five axioms

comp letely describe what a plane is , they don ’t give even a hunt about how planes should be

represented or manipulated by a program -- analogy must figure that out for itself.
Books on solid geometry are relatively rare. Lines [L2] is a good source of easy problems

(and hard ones).



r1r — • 
.- -— —_ . .

~

_ 

~~~~~~~~~~~~~~~~ 

- -
. . _~~~ .. ~~~~~~~~~~~~~~~~~~~~~~ • - -- ~~~~~~~~ W

GEOMETRY WORLD 130 AXIOMS

SEMANTIC TEMPLATES

The semantic templates for the two geometry worlds are derived according to the scheme

outlined in chapter [ovERviEw or ANALO GVF IRST VIGNETTE -- TIC-TAC-TOE).

SOL ID PLAN E
(IN-LN LN PT) predic ate (IN-LN LN PT) predicate
(LINE PT PT) function , val-LN (LINE PT PT) function , val— LN
(BTI4N PT PT PT) predicate (BTIJN PT PT PT) predicate

(INTERSECT LN LN) function , val— PT
(PLANE PT PT PT) function , va l —PL
(IN—PL PL PT) predicate

LANGUAGE FOR PLANS

Having described geometry world , we must now develop plans for dealing with it. A

plan is something more abstract than a program, but sti ll has an algorithmic feel to it. Goldstein

[CS] suggests that a plan consists of PURPOSE ;tatements attached to lines of code:

(PURPOSE code—ref e rence explanat ion) .

Goldstein gives examples of exp lanations:

(INSERT TRUNK TOP) -- Accomp lish the TRUNK model part by a “state trans parent
sub-procedure” inside the code for TOP.

(A CCOMPLISH (PIECE I (SIDE 1 TRIANGLE))) -- model parts can be divided into pieces,
each of wh ich can be accomplished independentl y.

(SETUP HEADING FOR TRUNK) -- before a model part can be accomp lished, a setup step may
be necessary.

To Goldstein a plan is a sequence of purpose statements corresponding to an execution sequence

(Manna and Wadlinger [M2]). Thus, if the pro~ram has a loop, we will have ROUND PLANS. If it

uses subroutines, it might require an INSERT PL AN. This notion of plan seems quite popular. We

find it again in Waters [W2] and Rich and Schrobe ER!]. Clearly, something describing control

structure must be included in commentary somewhere, but if we can , we would like to use a more

E~.L
~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . • A


GEOMETRY WOR LD 51 LANGUAGE FOR PLAN&

abstract kind of plan.

Pratt [PS] suggests that programs be composed of two distinct components: the

comp etence component which is evidently close to an axiomat uzation of the world , and a

p erformance component , which cons ists of various heuristics offering advice about computations

discussed in the competence component. From this I gather that the performance component

contains plans, although Pratt ’s exam ples do not always support this conclusion.

PLANS ARE PROGRAMS SANS CONTROL STRUCTURE

Good methodolo gy demands that we give a definition of what a plans are which is

independent of the way we represent them. Doing this requires two steps. The first , a procedure

for generating programs from plans , gives a lower bound to the amount of knowled ge in a plan.

The second step derives a plan from a progran by factoring out cont rol structure. This sets an

upper bound on the amount of knowled ge in .t plan. Anything - between t hese two bounds will

serve as a plan. In particular , it appears that R ich and Schrobe [Ri] have a structure they call a

deep plan which possibl y can be abstracted into our notation for plans.

Suppose one is presented with a plan written in some suitable language (we will give

such a language shortly). Since we claim plans are closely related to programs , we wou ld like to

believe we can more or less mechanically t ranslate a plan into a program. A plan is a collection of

steps which , when all simultaneousl y sat isfied , insure that the goal (or intention) of the plan is

satisfied. We demand that steps which give va lues to variables (the s e t -p oint for the variable) in

t he plan occur before the steps which use those variables (of course). Within this restriction , the

al gorithm randoml y orders t he plan ste ps. This insures that no contro l structu re can be “hidden”

in the original sequence of plan steps. The a lgotit hm then takes the plan steps and macro-ex pands

each one into a conditional (the plan ste p provided the predicate for the conditional) whose success

branch goes to the next step, and whose failure branch (if present) goes to the most recent set-point

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ “. —— --.- -



..— ---. --- - . - •—~ _ _ _ _ _

GEOMETRY WORLD 52 LANGUAGE FOR PLANS

for a variable used in the express ion. The control structure imposed by this algorithm is

reminiscent of CONNIVER possibilities lists.

We describe this algorithm to set a lower bound on the amount of knowledge present in

plans. Since we plan to use plans as a link between CODE and world DES ’RIPTION , it is natural for

us to ask tha t plans be written in terms of the world description instead of (say) procedure calls.

The algorithm just sketched generates a program , but generally not the program that is

actually used by the expert. In going from code to plans , whic h are more abstract , we factor out

control structure. In g oing f r o m  p lan to program, plan steps can be reordered , over la pped , and  
- •

split up. This observation sets an upper limit on the amount of knowled ge in a plan.

PLAN CODE

::;

Our view , then , is that p la n s are a list of goal descri ptions wi th suf f ic ient  detai l
provided so that the plan may be algorithmicall y transformed into a program (and thus
al gorithm should emp loy no additional information other than p~.r haps extr insic
descri ptions of other plans). Plans ire linked to programs by comn ientary describing
the wa y plan variab les are related to program variables , and the control structure
imposed on the plan steps. It may be the case that code is linked by this commentary
to several plans, as wou ld be the Cast ’ with some C3ND constructs.



~~
-
~1~__ _ _ _ _ _ _ _  

• -
~~~~

-. - -- ---—. .

~ ~~

—

~~~

-—- 

~~

.--. • - - - . . • 
_ _ _

GEOMETRY WORLD 33 LANGUAGE FOR PLANS

PLANS , OBJECTS , AND REPRESENTATIONS

In order to write plans , one must adopt a way of looking at computations. Our view of

com putat ions , the g e o m e t r y  f o r m a l i s m , uses the not ions of ob j ects  an d their ty pes and

representations. It also uses the notion of a data base. This plan-level structure roughly

corres ponds to a CONNIVER context with certa in (severe) restrictions on the type of assertions that

can be made. The imp lemenr a t ior of a data base mig ht be a O~,NiV ER-Iike associative data base.

In addition to the ob ject ty pes imp lied by the world descri ption (lines , points , and planes),

we will make use of equality buckets and. “non-~quality ” (distinctness) bu kets. Each ob ject has a

name. Two ob jec ts are EQ if they have the same name. We will see that two ob jects with different

names ma y be EQUAL (and that this s ituat ion is u n av~i, 1:b!e ~ in geometry world).

In addition to names , an ob j ect may h ive one or more r ep r se ’rit.~r ions .  For examp le, the

representation of a line is an ordered lust of po ints in that line. We kee p representations under an

indicator (in geometry the indicator happens to be the name of the type of the ob ject ). Two

objects may have identical representatio ns and be unequal , or the y may be equal with difforing

representations.

As we mentioned earlier , one w ay to implement representations us to use property lists.

A lthough the property list is a good model of representations , one s hould remember that

representations are part of the plan level (not tht code level) of the theory of geometr y world.

WRITING PLANS

We will describe one way to write pk ns. The reader should be warned that the plan

language ~ e wi ll present is somewha t limited in its ex p ressive power. However , this limitation does

not limit our abil it y to write code, only our abili y to say what that code does. As to the degree of

limitation , we will provide a surpr ising ly precise uiswer in the chapter ELOG C OF EXPERTS].

—

~

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —- ~~~~~~~~~ .— -—-~~~

-
.

GEOMETRY WORLD LANGUAGE FOR PLANS

In looking at various worlds , we find hat plans deal with two basic operations: finding

the name of an object from its descri ption, and maintaining representations. For examp le , looking

back to chapter [OVERVIEW OF ANA LOGY SECONO V IGNETT E -- BLOCKS] at the SCAFFOLOP plan, we can see that

it searches for two blocks X and Y which meet some set of conditions. If these can be found , then a

conclusion can be drawn.

The plans which find names of ob j i’cts can be further subdivided into plans which

corres pond to predicates and those which correspond to functions. These considerations will lead

to the following types of plans:

MAINTAINING REPRESENTATIONS
TO-REPRESENT -- creates a representation
TO-INCORPORATE -- adds an item to a representation
TO-COMBINE -- combines two repre~.entations

~ ACKWAR D-CI-iAINING COMPUTATIONS
TO-F IND -- a function plan
TO-DETERMINE -_ a predicate plan

FORWARD-CHAIN INC COMPUTATIONS
TO-CORRELATE -- generates trivial corollaries to assertions

SEARCH COMPUTATIONS
TO-GENERATE -- a function plan w h i c h, given a predicate with one of its

arguments unknown , returns possible objects for that unknown.

A plan has the form

(plan-type procedure-name world-description-form <step>~)

W ithin a plan, several types of steps can appear. In the SCAFFOLDP plan the step types RIND,

PATTERN , RESTRICT , and RETURN occur. We now will give the complete list.

-
,, . -,-

.
- ‘.

‘
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~- •~~ ~~~~~~~ ...
~
. .  

~—..-~-—- .—-- — 4



- .— ---— ~~ 

GEOMETRY WORLD ‘35 LANGUAGE FOR PLANS

(BIND <var uab le-s pec >~) Each var iable-spec  us either the name of a variable , or of the form
(variable (function <ar g>1)). This kind of plan step is used to establish variable
bindings.

(M A K E  variable type ) Create a new ob jec t of ;pec ified t’~pe , and give variable this ob ject as its
value.

(CONDITION predicate)  Insist t ha t  the p red cate is true. Typicall y a CONDITION fa t lure
indicates t hat the plan s not app licable.

(PREDICATE variable-list predic ate) Assi gn values to vari ables in the v a u s i ’~ - ‘i;t such that
~r~<i~c :te is true. Ty picall y each variable w ill be given a list (or 5C g 7 71 (f l t) of
poss ible values by a TO-GENERATE plan or a data base search

(PATTERN ob j ect nc~icat or match- patte rn) Note: the objecr or var iables in the ~: : .‘c/ i -p a t t e r n  can
be unknown. If multi ple patt e rn steps w i t h the same O b e ~ t and 17:d ic a : c r  appear ,
then t he ~xc! c~ w-~r of :ho;e ste ps is intended. Thus is the only imp licit
disj unction allowed in plans.

(RESTRICT variable-list predicate ) The p r ed i ate must be true. The : ‘ar ia t ’le-hs t contains the
variables whose values are being restr icted. If this ste p fails , cont rol (in the code
cor res pondirt~ to the plati ) goe s to the most recent set-point for a variable in the
var iable-l is t  to find another value (if possible).

(ABSOR B p red i ca te )  P i~ ca~~ has been d iscoverd  to be t rue and incorpora ted  into a
re presentat ion , so it should nc longer be in the data base. Information can be
found either in the data bast ’ or encoded in a re presentation. This plan step
c on c ep tuall y removes informat on from the data base that has been encoded in a
representation. If the code dces not maintain a data base , then there probably
will not be code to implement this plan step.

(FREEZE object indicator) The representat ion tinder indicator on object should no he further
modified. This is used when an equality is discovered to prevent redundancy.
It wi ll not be used in any exam p les, and is inc luded for comp leteness.

(ASSERT predicate) Predicate has been discovered to be true , and should be rerciembered in the
data base.

(RETURN value) Value will be TRUE or FALSE for predicates , and some ob ject for functions
and generators.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - :

~~~~~
--
~~~~~ ~~~~ 

-
~~~~~~

‘:
~~~~~~ 1__ __.__ . -- - -.—- — -—- ----



LANGUAGE FOR PLANS

MATCHING

Matching, used in PATTERN plan steps , is the only mechanism by which representations of

objects can be mod ified at the plan level of a theory (or, if you wish , the plan componen t of

expertise). A pattern has the form

(var 1 va:-2 ... var~)

where each var (a var iable , w ith value either a single object, or a segm en t , w hich is a lust of

objects) is in one of the following forms:

name -- name must be bound before a pattern match is attempted. Only the object “nam e”
or another object EO,UAL to “name ’ can be matched.

— name -- name must be bound before pattern match is attem pted. Only the ob ject “nanie”
can be matched. This is only used for dealing with equality buckets , and does not
occur in any exam ples.

?name -- name is unbound. This will match any element , with “name ” being bound to the
object matched .

? -- as above , but no variab le binding results

:name -- name is unbound. This will match a segment (of any length , inc luding zero
length). Name will be bound to the segment .

-- as above , but no variable binding results.

~nam e -- name must be bound. During ; matching “n a m e ” is ignored. If the match us
successful , the structure matched will be modified so that the ob ject (or ob j ects if
“n a m e ” is a segment) will appear in this location. Duplications (i.e., EQ_ ob je cts) wil l be
disallowed. If “name” is bound to a sequence , t he elements of the sequence will be
inserted in order , with duplications eliminated . If “name ” is bound to a single object,
that object wi ll be inserted if no duj :licat ions will result.

PATTERN steps include a hidden use of EQUAL so that usually one need not worry explicitl y about

equality in plans. We w.ll see examp les of cases where we do become concerned exp licit ly with

equality relations in IGEOMETRY WO RLDCONST RLCTIONS I

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ - - -  ~~~~~ .. 
_ _ _ _ _ _ _ _ _ _ _

_ _

GEOMETRY WORLD 37 LANGUAGE FOR PLANS

GLOBAL PLANS

We have built the notion of EQUAL into the pian language. To support this , we need to

be able to give two other kinds of informat ion. The first links typ e checking pred icates at the

descriptive level to the notion of type at t h e p lan level;

(TYPE-CHECKER unary-pred icate type-name)

This gives the notion of typ e s pecial sig nificance in plans.

Since equa lity is checked di f fe ren t l y ac- :ording to type (for exa m~ile , the rational numbers

A/B arid C/D are equal as rat ional numbers if A :D is equal ~s an interger to C~B) we need to

specif y how two ob j ects of the same type can b~ determined to be equal. (We ignore the case of

ob jects of different type being- equal). For this we use the form

(DEFINE-EQUAL type binary- pred icate-name)

where the default binary predicate name iS EQUA . It goes without saying that the binary predicate

must be an equivalence relation.

Th’~s in plane geometry

(TYPE-CHEI:KER PT PT)
(OEFI NE -EQLAL PT EQUAL)

would say that PT is a type checking predicate at the descriptive level for ob j ects of type PT at the

plan level , and that to determine if two objects of type PT are equal , the predicate EQUAL should be

used.

-~~~~~~~~

F
---- ____________

GEOMETRY WORLD ‘38 LANGUAGE FOR PLANS

GEOMETRY FORMALISM

We have not g iven much attention to actual code , preferri ng rather to restrict ourselves

to plans and descriptions. We instead assum € that there exists an algorithm which produces

implementation code from plans. Indeed , part of our definition of plan implied the ex istence of

such an algorithm.

We base our formalism on four rather similar geometry theorem provers wr i t ten by

Gelernter [G2], Goldstein [04j , Nevins [N2], and Ullman [UI]. These all emp loy a sing le data base

into which only true fact % are asserted. We will ilso allow the ass ertio n o~ negated predicates . since

if the predicate is known to be false , its negation is a true fact. Disjunctions cannot be , ss e ; ted

into the data base. Since imp lications are logic~.lly equivalent to disj unct ions . they also cannot be

asserted.

The control structure use d by the re geometry theorem pi over s was bas ica l ly a

pattern-directed mult i-processi ng AND/OR tree (Nilsson [N3]). Each node of AND/OR tree is a

possibly “hung” process which does not communicate with any other node except for returning

results. Associated with each node of the tree i~ a priority. These priorities (which are generated

in some automatic way) are used to determi ne which node to make ac~ive next. This control

structure is an early Al result [S5J. Since we have both a data base and the specia l representations ,

we can make deductions based on either. We will always prefer representatio n-based deductions.

Finally, we note that when attem pting to prove some proposition , we murt simultaneousl y attempt

to disprove it , since failing to prove a proposition does not mean the proposition is false.

‘..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

~~~~~~~ ~~~ 
-.--— .—

~~~~~~~~ 1JJ~~~~~~~~~~~~~ c
-
. .  . - ,,



1
GEOMETRY WORLD LANGUAGE FOR PLANS

EXAMPLE PLANS

We will make certain claims about the plan level represent atio ns of lines in plane

geometry . According to representation claim RC1 , if an ob j ect Y (V should be a point) is in the

representation of a line X, then we can conclude :hat V is in the line )< According to RC2, we claim

t hat ob jec ts in a line’s representation are ordered by the between predic ate BT~ N.

AOl
(REPRESENTATION -CLAIM 0< LN 1* V *) (IN-LN X Y ) )  .,. )

RC2
(REPRESENTATI ON-CLAIM 0< LN (* U * V * k *) (BTL.J N U V I-fl ) ...)

We maintain these representations of line~ with programs whose plans are as follows:

(TO—REPRESENT ILl (IN-LN L A )
:IL1— l (PATTERN L LN (“A ) )
: IL 1—2 (ABSORB (IN-LN L A ) ) )

This p lan says that if L is a line and A is asserted to be in line L, and if L’s

representation under the indicator LN is curre ntl~’ empty, then add A to i t .  Having done this , there

is no need to keep the assertion (JN—LN L A) in the data base , as it has been absorbed into the

representation of line L. A TO—REPRESENT plan creates new representations. We use TO—INCLUD E

plans to add to represent ations.

(TO—INCLUDE 1L2 (IN-LN L A )
:1L2—l (PATTERN L LN I? “A ))
: IL2— 2 (ABSORB (IN-LN L A ) ) )

This plan says that if A is asserted tD be in line L, and L’s representation under the

indicator LN already has one point in it , then A should be added to the representation. We have

been neg ligent in not making sure t hat the ne w point is not EQUAL to the point already present (see

chapter [GEOMETRY WORLD , CONSTRUCTIONS]).

The plan below handles the case when we know

(BT)4N X V Z)

and a line containing the point X has a repre sent at ion (under the LN indicator )

-. 
— ----~-“~~-~ ~~~~~~~~ ~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. .,.~~~~~~~~~~~~~~ * IL~~~~~~~~~:~~~~~~~~~~~~~ TIJ~~~~~~~~~~~ ~- -~~~~~~~~~~~~~ 


GEOM ETRY WORLD 70 LANGUAGE FOR PLANS

(V Z I-Il.

The plan then inserts X at the beginnin g of the tepresenta non , giving a new representation

(X V Z I-)) .

(TO—INCLUDE IL3 (IN-L N L A l
:1L3-l (BIND B C 0)
t IL3—2 (PAT TERN L LN (“A B C *0))
:1L3—3 (PATTERN L LN (*0 C B “A))

— :IL3—4 (RESTRICT (B C) (BT.- N A B C))
:1L3—5 (ABSORB (BT).iN A [0 B) [C OH)

1L3—G (ABSORB (BT~N [0 0] [B C] A))
: IL3—7 (ABSORB (IN-LN L A)))

The square brackets are “combinatorial ” so that

[C B]

is either C or B. Since the two PATTERN steps 1L3— s and IL3—3 have the same object and indicator ,

either pattern match will do; the two pattern steps are logicall y disjoint.

The following plan handles the more com plex case of putting the point A into the

middle of a representation.

(TO—INCLUDE 1L4 (IN-LN L A)
:IL4—l (BIND B C 0 E)
:1L4-2 (PATTERN L LN l*B C “A 0 *E))

1L4—3 (RESTRICT (C 0) (BTL4N C A 0))
:1L4-4 (ABSORB (BTL4N B C A))
: IL4— S (ABSORB (BTI- N A C B))
u 1L4—6 (ABSORB (BTLIN A 0 E l)
;1L4—7 (ABSORB (BTL4N E 0 A))
:1L4— 8 (ABSORB (BTI-JN [B C] A :~ E])) -
1L4-9 (ABSORB (BT)4 N [0 E] A [B C)))

:IL4—]. 8 (ABSORB (IN-LN L A)))

The code corres ponding to the above plans maintains representations for use by other

code. The plans for two predicates which use th~se representations are given below.

r

lifil ifi l Lt ~~~~~~~~~~ T~~T~~~~~~ii~in

—~ -. —- — -- —.--- ..--
~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GEOMETRY WORLD 71 LANGUAGE FOR PLANS

(TO- DETERM INE IN-LNP (IN-LN)< V)
IN-LNP-l (PATTERN)(LN (* V *1)

:IN-LNP-- 2 (RETURN TRUE))

(TO-DETERMINE BT(4NP (BT 14N X Y Z)
:BTL1NP—l (BIND LI

BTI4NP—2 (PATTERN ?L LN (* X * V * Z *))
BTI-JNP.-3 (PATTERN ?L LN (* Z * V * X * 1)
:BTL)NP—4 (RETURN TRUE))

Notice that the BTL4NP plan searches for a line t y having “?L” in a PATTERN Plan ste p. The plan

need not specif y how this search is to l)e acc omplished because that is code-level knowled ge.

The above provide a fairl y complete picture of the plans concerning the representation

of lines. It is sometimes necessar y to dup lica:e information. For exam p le , we a lso need the

following plan.

(TO-CORR ELATE INTERP-BTI-JNI (BT 14N X V Z)
IBT L4N1 (BIND 14)

:IBTL4N2 (PREDICATE 14 (BTL4 N X Z 14))
:IBTL4N3 (ASSERT (BT 14N Y Z 14)))

This plan duplicates a fact used in t he jus tifica t ion of BTI-JNP. Given an assertion (BTLJN A B C) ,

if we can find t hat (BTL4N A C 0) , then i.je can conclude that (BT14N B C 0) . This plan is

necessar y because we occasionall y need to draw inferences about BTI-JN when not all points have

been inserted into a re presentation . We will later see an exam p le of this (cha pter [ANALOGY

ALGOR iTHM S ,RESULT JUSTIFICAT ION]). At the code level we know we would not want to “r u n ” this

TO—CORR ELATE plan if we can absorb the BTL1N a ssertion into a representation. The plane geometry

ex pert has many more plans than those ~bove We wi ll have an opportunity to examine more of

them in chapter [ANALOGY EXAMPLES , NON-TR IVIAL ANALO GY).

~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.‘ -—“--.-— --.——
~~ .-

~~
-.
~~~~~
- A

______ —a L~~ ~~~~~~~~~ ...~~~ .~~~~~ .~~i - . .~~ ..L

GEOMETRY WORLD 72 LANGUAGE FOR PLANS

PLAN JUSTIFICATIONS

Plan justi fications, which must be supplied to the analogy process , have the form

(PLAN-JUS TIFICATION plan—name <step >~
)

where each step has the form

(s tep—l abe l predicate rule <argument> 1) .

For example, we repeat the plan justification given earlier for SCAFFOLOP (chapter [ovERviEw OF

ANALOGY ,SECOND VIGNETTE -- BLOCKS]):

(PLAN—JUSTIFICATION SCAFFOLDP
(Li (SUPPORTS BLOCK XI R u B STEPI)
(L2 (SUPPORTS V XI RT1I STEP2)
(L3 (STABLE V X) %RESTR ICT STEP3)
(L4 (NOT (EQUAL BLOCK V i) %RESIRICI STEP4)
(L5 (NOT (EQUAL V BLOCK)) EQTHMI L4)
(L8 (DISTINCT V BLOCK) DISTINCT-DEFINITION LS)
(L7 (SCAFFOLD BLOCK) FACT2S L6 L2 L3))

Three kinds of rules are used in plan justifications:

1. Theorem of world descrip ion. The arguments to this theorem will be other plan
j ustification ste ps corresponding to :he antecedents of the theorem (for examp le, step
L7 above). We suppressed the cor;’espondence between plan variables and theorem
variables.

2. Semantics of a plan ste p (which is given as ~ e argument). For examp le ste p L3 is
true because of the result returned by STEP3 of the plan , which evidentl y was a
RESTRICT plan step.

3. Representation claim. The argument will be a PATTERN plan step. For example,
jus tification step L2 above. Again the correspondence between plan variab les and
claim variables has been supressed.

— - ,.

-

-
- . .-

. .

~~~

, ‘,

~~

, . . , .

~~~~

.. . -.r. . : ‘ ‘ ‘ —. -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ - —..~ —.—. —.—————.—,~ —— .~~~~~~ — . — -..—————.. - ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~

r

GEOMETRY WORLD 73 REPRESENTATION CLAIM S

PROVING REPRESENTATION CLAIMS

We are now in a position to prove that the two representation claims , RC 1 and RC2 , are

true. In the literature on proving programs ccrrect , one typically finds that proving properties

about some data structure is very difficult. It i~; an interesting feature that in our plan language

t he proof of a representation claim always has a very simple and regular form . We will make use

of this simplicity in the result justif ication algori :hm (see [ANA LOGV ALGO RIThMS ,RESULT JUSTIFICATION)).

The proof of a represent at ion claim is always by induction on the s ize (length) of the

representation. Each TO-REPRESENT plan contributes a base s tep , each TO-INCORPORATE

plan contributes a weak induction step, and ea:h TO-COMBINE plan contributes a s tro ng (or

course -of -values) induction step, requ ired , for example, to combine congruence classes.

Let’s start with RC1, since that is t he easiest.

(X LN (* V *1 (IN-LN X V))

As promised , the base ste p is given by the plan for ILl, which should be viewed as a kind of

IF—ADDED demon. Matching up the var iables in the claim with those in the code (i.e..

(X L) (V A)) , we see that if the code actual ly does what the plan says (as we shall always assume),

then the representation claim will be true after :he code runs, since the call pattern (IN—LN L A)

had to be true in order for the program ILl to run. We write this as

(IL l —i (((X L) (V A)) (Li (IN—LN X Y) %CALL H)

where %CALL is the reason we j ust gave that (IN- LN X V) is thoug ht true.

Similar reasonin g holds for the plans IL2 , IL3. a n d IL4 , giving us the complete

representation claim.

:RCI
(REPRESENTATION-CLAIM (X LINE (* V *) (lN-LN X Y))

(ILl— i (((X LI (V A)) (Li (IN—L ~ X V i %CALL)))
(IL2— i ((0< LI (V A)) (Li (IN—LN X V) %CALL)))
(IL 3-2 (((X LI (V A)) (Li (IN-LN X VI %CALL)))
(IL3—3 (((X LI (V A)) (Li (IN—Lf\ X Y) %CALL)))

- ..
— ~~~~~~~~~~~~~~~

. , .

GEOMETRY WORLD 74 REPRESENTATION CLAIMS

(1L4—2 ((0< LI (V A)) (Li (IN-Lt~ X VI %CALL))))

With this, we can produce a PLAN-JUST IFICATI I]N for IN-LNP.

It is more difficult to prove representauon claim RC2:

(X LINE (* U * V * 1 4 *) (B T L 4 N U V I 4))

This claim is vacuousl y true after ILl and IL2 have run , so we don’t have an exp licit base step!

So much for rigor. Looking at IL3, we need to separate the insertions by IL3-2 and IL3—3 as we

did above. Concentrating on line 1L3-2 , if we match up the variables

(U A) (V B) (14 C)

then the c laim is true due to the restriction in line IL3—4. If we match up the variables with

(U A) (V C) (14 Di

then we know (BTI4N %B V 14) , where in the pioof of a representation claim we will write V.B to

reference the variable B in the plan being discussed. From the restrictio n we can conclude (BT14N

U %B V) . Finall y we have a geometry theorem P—B T L4 N—THEORE II 1 (in chapter [GEOMETRY

WORL D,AXIOMS]) w hich lets us use these two conclusions to deduce (BTL4 N U V 4) .

The third way to match up the variables is

(U A) (V DI (14 DI.

We conclude , as above , (BTWN %C V Li) and (BT L4 N %B %C V) by induction. The restriction

insures (BTI4N U %B %Ci. Two applications of P-BTLJN-THEOREtI 1 give us our result. Putting all

of this together we have part of the justification of representation claim RC2:

--
i

’
:
~::~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~

-
. - . ~~~~~~~~~~~~~~~~~~~~ -~~~~

~~~~~~~~~~~~~~~~~~~~~ 



GEOMETRY WOR LD 75 REPRESENTATION CLAIMS

(REPRESENTATION-CL AIM (X LN (* V *1 (IN-LN X Vi )
(1L 3-2

( ( ( U  A ) (V B) (14 C)- )
(Li (BTWN U V 1.1) %RESTRICT IL3-4I)

( ( ( U  A l (V C) (14 DI)
(Li (BTLJ N %B V 14) RC2 1L3-2I
(L2 (BTI1N U %B V ) %RESTR ICT IL3-4)
(L3 (BTI4 N U V 14) P-BTLIN-THEOREM1 Li L2I)

( ( ( U  A) (V 0) (14 DI)
(Li (BTI4N %C V 14) RC2 IL3-2)
(L2 (BTL1N %B XC V I RC2 IL3-2)
(L3 ( BTI1N U %B XC ) %RESTR ICT lL~-4I
(L4 (BTI4N U XC V ) P-BT14 N—THEO REr1 L2 L3)
(LS (BTI1N U V 14) P—BT 14N-THEOREI11 Li L A ) ) )  . . .1

Analysis for 1L 3—3 and 1L4—2 is similar. With RC2 proven we can justif y the plan for BTWNP.

In chapter [ANALOGY ALOOR ITHMS ,RESULT Ju;TIFIcATI0N ] we will show how these representation

claims and their proofs are used by the analogy process.

EXTENDED PREDICATE FOR ~~:s

Another important role which representation claims play concerns extended p redicate

fo rms.  We find it convenient to write (IN-LN L A B) instead of saying both (IN—LN L A ) and

( IN—LN L B) . The representation claim RC1 above allows us to convert the claim ( IN—LN L A B)

direct ly to giving L a representation under the LN indicator of the list (A B) , provided L does not

already have a representat ion there. Similarly, if we have the two claims

( L N - L N L A B C E )
~BTL4N , \ B C E )

we can give line L the represention (A B C E) without going through an expansion and

contraction. Without the IN—LN c laim, we would use the representation claim RC2

(* U *V * 1 4 *I -— > ( B T I 4 N U V L I )

to transform

4 ~~~-

—. 
~~~~ -. ~-


.-- -.-..-. .- . -
-
~~

-
~~~~~~~~~~~ - --—- ~~~~~~~ ‘~“

GEOMETRY WOR LD 76 REPRESENTATION CLAIMS

(BTI4N A B C E) -->
(BI t-IN A B C)
( BTL1N A B El
(BTI4N A C E)
(BTLJN B C El

We will be able to use these representuion claims to quickl y translate information from

one wor ld to another. Of course , this use of representat ion claims is only incidental.

If the predicate is a type-checker , we make use of a standard ob ject of type OBUCKET for

wh ich we ha ve a representation claim

(* X * V ~) -> (NOT (EQUAL X V ) )

This agrees with conventiona ’ usa ge, so that thclaning (LN Li L2 L3) will cause us to create a

distinctness bucket (sa y) 6015 with representat ion (Li L2 L3) under the OBUCKET indicator.

CONSTRUC TIONS

Writing f ree verse is like pl ay : ng ten ; z is wit /a t/a e net down.
-- Robe l Frost

As with certain kinds of modern poetry, writin g a geometry expert that doesn ’t dea l (at

some leve l) with constructions is like playing tennis without a net. The construction problem is

ver y hard; we should distinguish between diffe -ent kinds of constructions in the hope of finding

some kind that we can completel y handle.

Consider the following problem:

TRIV IAL PROBLEM
Given: (PT C)

(LN Li)
(LN L2)
(NOT (EQUAL Li L2))
( IN-LN Li C)
( IN-LN L2 C)
(IN-LN Li (INTERSECT L2 L3)) *

Prove: (IN-LN L3 C)

~~~~~L~~
__

~
~~~~~~~~~~~~ 

. 

~~~~~ 
-
~~~~~~~

-
~~~~:: _I~_~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

— .—.-- .—
~~~~~~~



r .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

~~~~~

.. - ..

~~~~~~~~~~~~~~~~~~

- .

~~~~~~~~~~~~~~~~~~~~~

GEOMETRY WORLD 77 CONSTRUCTIONS

Geometr icall y the situation is ver y simp le. The starred assertion claims that a sing le

point (say) 0 is in all three lines. Since C is in Li and L2, whic h are known to be distinct , we can

use the con t r a p os i t i ve  of axiom P-1 2 to sh uw that  C = D. Then since 0 is in line L3 “by

construction ”, C must be also “by equality. ’ This is an exam ple of a trivial construction .

Intuitively, a trivia l construction is one that could he accomplished by either searching

and matchin g representatio n s, or b y creati ng an ob j ect and assi gning it a :eprese ntat ion , where the

ar guments to the construction function are all that are required to build the pattern . Thus , with

our re presentation of lines , the functions INTE RSECT and LINE would be tr iv ial  constructions.

Similarl y, if we represented triang les by listi ng the vertices , then it would be trivia l to construct a

trian gle g iven its vert ices. We (mat hematic ~lly) close this definit ion by declarin g that  a

construction accom plished by a s t a n d c r d  seq uence of t r iv ia l  const ruc t ions is also a t r i v ia l

construction. Since an y construct ion can be accomp lished by some sequence of tr ivial constructions ,

the restriction to a s tandard sequence above is rquired.

No prior geometry ex pert problem solving system was able to solve trivial construction

problems; our technique represents an a ivance in this area. The reason others could not solve

t r iv ia l construct ion problems is their ins is tence that  there must a l w a y s  be a one - t o-one

corres pondence between ob ject names and their representations , i.e., using (and usin g the fact that

one is using) canonical representations p;events one fro~.’ heir~ able to solve trivial construction

problems. Consider: a corollary of a representation beir~ canonical is t hat a ll ob jects must be

distinct. Furthermore , the use of anUn/ nuus obj ects will nc: solve :he problem , since at the time of

creation we not only don’t know the tiam e of the objec t (al: 
~~~~~ 

existing), but we don’t know that

we don’t know i ts n a n e Ifl the problem ~bove , :ne must J~ ;: crea te ob~e~t 0, and onl y t/ie’n prove

it is equal to an ob ject already known.

We can solve t r iv ia l co nstruL : Io n problems because we relax the cons t ra in ts on

representations: we insist only t hat - 1 .~~~ ntat iot is fu l f i ll the~- re presentation claims.

. .
‘

~

~~~~~~~~~~~~~ -i~~ . :~~~~~~ ___ 4



- .  .

GEOMETRY WORLD 78 CONSTRUCTIONS

MISSING POINT CONSTRUCTIONS

Given two side s of a t r i2 ng le and the median to !/ ~e th ird , construct  a t r iang le. As
usual , only a compass and ruler (straight edge) may be used.

The reader may recall that the median of a triang le extends from the vertex to
the midpoint of the opposite s:de (of the triang le).

MISSING POINT CONSTRUCTION DIAGRAM

This very hard problem imp licitly names four points: A , B, C (the triang le vert ices), and the

midpoint M. Four lines are also implicitl y named (three sides and t he median). Unfortunately, we

need a fifth point , not given by the statement of the problem. The reader might try solving this

problem before reading further.

Wong [W7 1 has a heuristic that will generate this missing point which he calls the

midpo int reflection heuristic. Assume that we have the diagram above. Reflecting B through M

(the m idpoint of AC) gives us a point X. X i: at a distance 2:MED IAN from B. XC BA is a

parallelogram, so AX is congruent to BC (side I) The solution , then , is to lay out line segment AB

(given). Then construct point X at distance BC (given) from point A and 2:MEDIAN from B.

Through X construct a line L parallel to AS Finally construct point C on L so that XC is

congruent to AS. Triangle ABC is then the solution.

~~~~~~~~~~~~~~~~~~~~ ~~- ~~~~~~~~~~~~~~~ .— . ——.—----


r — --- - - - --- ---- -

~~

-. . . .

~~~ 

-

~~

-

~~~~~~~~ 

.
‘

GEOMETRY WORLD 79 CONSTRUCTIONS

The key point is to construct the point X. The problem statem ent does not give even a

hint that X exists or is needed. This is an exam ple of a missing ~oin1 construction; they are

alwa ys hard.

A third t ype of construction , a~so used in the problem above , is the locus construction .

Funt [F5] has written a program which can so lv-~ geometry problems using Pol ya ’s “pattern of two

lou” [P t] provided that the names of all points are imp licit in the statement of the problem and

that t hese points are distinct. Surpris1n~,ly, although Funt ’s program can solve rather involved

locus const: uctions , i t cannot perform trivial co-ist ruct ions! In fact , none of the ex pert geometry

problem solvers currentl y available are able to solve the problem “trivial problem ” given above.

EXPLANATION OF THE TRIVIAL CONSTRUCTION PROBLEM

Let ’s see how our formalism does on the “tr ivial construction problem ”. We have two

kinds of plans for INTERSECT app lied to lines: cne checks to see if we alread y have a point known

to be in both lines (see cha pter [ANALOGY EXAMPLES , TRIVIAL ANALOGY PROBLEM]), while the other creates a

new object and asserts that it is in both lines.

(TO—F IND MAKE-INTERSECT (INTERSECT X V)
(BIND P)

:MI—1 (CONDITION (DISTINCT X V I)
:MI-2 (CONDIT ION (LN X l)
:M I-3 (CONDITION (LN Y))
:MI-4 (MAKE P PT)
:MI—S (ASSERT (tN-LN i~ P 11
:M I-6 (ASSERT (IN-LN V P))

(RETURN P))

The pi
~ ~ does not make sure that the tw o lines are not parallel because the concept of parallel is

missing In incidence ~:eome:: , Th is plan ca nnot be just i f ied using ‘he ax ioms in [cEO MET ~~v

wOP ~ O A:~~T . . ,, ayin .c~~ see that theories iweJ not be either consiste nt or com plete. Sup pose this

plan produces an ob jec t D. Then af t e i proces :.in 6 the assertions in the “given ” portion of the

trivial construction problem , we will have

GEOMETRY WORLD .30 CONSTRUCTIONS

OBJECT NAME “IO I CATOR REPRESENTATIO N
Li LN (C D)
L2 - LN (C D)
L3 LN (DI
Dl DBUCKET (Li L2)
C POINT --
O POINT --

Now we will invoke the IN-LNP plan to eva luate

(IN-LIt L3 C)

This will cause us to perform a pattern match

(* C *) .igainst (Dl

and as it stands this match fails , causin g the program to hang. Later we will re-examine the hung

process, and reconsider the pattern match using the imp licit EQUAL test described in chapter

[GEOMETRY WORLDLAN G UAGE FOR PLANS]. This generate ; two goals

(EQUAL C Dl (DISTINCT C DI

Hopefu lly we wifl be able to prove one of these.

We have a plan

(TO—DETERMINE PI—EQUAL1 (EQUAL X VI
(CONDITION (PT Xl)
(CONDITION (PT V I)
(B INEI U VI
(PRE EI ICAT E U (IN-LN U X l)
(PRED I CATE V (IN—LN V X))
(RESTRICT (U) (IN-LN U VI)

I—,, . (RESTRICT (VI (IN—LN V Y))
(RESTRICT (U VI (D IsT ; NET U V) I
(ASS ERT (EQUAL X V i)
(RETURN TRUE))

which asks us to fin d two distinct lines that contain the two points. If ‘. -.-e can do this , we assert

t hat the two points are equal , and return true This plan finds the lines Li and L2, hence it

returns TRUE, so the pattern match in IN— LNP succeeds , and in time returns TRUE. We will show

hr’w a proof of (IN—LN L3 C) i-na y be obtained from this true result in chapter [ANALOGY

ALGOPITNMS,RESULT JUSTIFICATION).

GEOMETRY WORLD 81 CONSTRUCTIONS

In the situation above , we will never be able to pu~ another point into Li’s or L2’s

representation , because we will never be able to prove a BT~N assertion about the two points (and

another point) already there. Alternatively , if we had already known of two points in LI and L2,

we would not have been able to put D in. This is caused by the ‘overs i~ht ” mentioned in plan

1L2.

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



.
~~~_i.~.__._ ~ __

~~~~~~— ~~~~~~~~~~~~~~~~~ - - -  -,:-

ANALOGY ALGORIT HMS .32 MAP FORMATION AND EXTENSION

ANALOGY ALGORITHMS

Now that we know the structur e of plans and domain descriptions , we can present three

important al gorithms used in the analogy pro:ess . I will try to present these algorithms with

suf ficient detail to convince the reader that I could write a program that performs as claimed , but

yet not so much detail as to be tedious. Should I fall too far on one side or the other , I beg the

reader ’s patience.

MAP FORMATION AND EXTENSION

We have described the process by which semantic temp lates are generated elsewhere

(cha pter [OVERVIEW OF ANALOGY ,FIRST V i3~ ET TE -- T IC-TA C-TOE ]). These temp lates form the input to the map

formation algorithm. However , before this algotithm can be used we must decide which aspects of

the domain problem should be mapped. ‘We will see in chapter [ANALo GY EXAMPLES , NON-T~dVIAL ANALO GY)

that the preliminary s ummariza t ion step is absolutely necessary.

SUMMARIZATION

Since we are usin g a direct deductio n system (as opposed to , sa y, resolut ion theorem

proving [Cl)) we can always add more assert ions if a proof does not develo p init ially. We also

have access to t he current deduction ‘~IND/O R tree , so t hat we can see if any interesting

outstanding questions need answers. These two considerat ions tell us that postponing the transfer

of assert ions to the image world won ’t cost us an~’thing, and may be beneficial.

Suppose that in the domain world we are stuck (i.e., the current hig hest priority domain

subgoal cannot be proven or disproven , and no other activity can take place) on the assertion (or

function)

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - -~~~~~

,
~~~~ - . ---~~-- -~~~~---- ~~- —-—.-..~~- - ~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-

ANALOGY ALGORITHMS 3S MAP FORMATION AND EXTENSION

(PO~~1 ...OB~)

At a minimum, then , we will need to map this to the image world. Predicate P and the objects

OB~ are then needed in the summary. The surimary wi ll take the form of a number of “given ”

assertions , with the predicate we are stuck on at the “to prove ” portion . We now need to specify

what wil t be generated as the “g i ven . ”

The 0-order sum ma:’, consis ts of the ob jects
~~~ 

and the ireGi cate P.
The (ii .I)-o : der s u r l r ; l a r y  t f t u d e s  :, 1 ob jects , predic ates . and assertions in the n—order
summary, p lus

(I) A l  t he repres t ra t ions of t he n-o rder summary ob~t c : s , encoded by the
t e e .  an t  re(Jr eserlt . It ion cla ims.
(2) The suI . se:~ of an~ eqLuvr lence and distinctness buckets cor a ining n-order
summ ary ob~rc:s . enco ded in ~e-c heck in g prer: i c ates ,
(
~) An s asset t tufl ir the data base whose form does not use mote than one object
or predic ate no: in the ri-oider summary .
(
~

) The en ti re equivalence and dist inctness buckets con~ain in~ ob jects in the
(n-l )-order su mma ry.

It is worth not ing that the summarization algorithm may ta i l  to include some assertions

in the summary. These “widow ” assert ions may be included in the summary if called for by

outstanding questions in the image problem solving ef f ort .  Since this algor ithm is somewhat

conservative , and dependent on having domain world representa ti on cla m s , an implementat ion of

our theory of analogy would probabl y require some heurist ics concerning- when this algorithm

should be used. 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~ . ..~~ -


ANALOGY ALGORITHMS 34 MAP FORMATION AN D EXTENSION

MAP EXTENSIONS

The basic idea behind map extensions is that if domain type T maps to image type t and

if P is some domain predicate with semant ic temp late (P 1), then P’s image 0,_ must have semantic

template (O_ t). For funct ions , there is an extra constraint that if the temp late (F T) has result of

type R, then F’s image G must have temp late (C t) with result of type r- . In what follows , we will

only discuss predicates , since the only differe m.e between predicates and funct ions is this ex tra

constraint.

The idea above can be used in several ways: if we know the mapping of a predicate , we

can fill in the mappings of its argument ty pe. Similarly , we can figure out where a predicate can

go if we know the mappings of its arguments (in the semantic temp late , of course). It is important

to keep in mind that we map t yp es and sema ntic temp lates , not (except consequentiall y) ob jects and

predicates.

The situation above is an exact map. We are willing to do a certain amount of violence

to semantic temp lates , as outlined in the following rules , given in order of decreasing preference:

1. P->O~ (P S T)->(Q s t). This is the exact map described above.

2. P>O,, ~ (P S T . T)->(Q s t) ~here there is a re presentation claim for Q which
would treat (Q s t . , t) as merely an extended form.

3. P- >Q (P S T)-t ’(Q,_ t s). This is the reordering map. We are willing to try
mappings which preser ve type inventory, but not type order.

4. P->O,, ~ (P T T T)->(O,_ t t) . We arbitrarily drop some of P’s arguments , with
the later ones preferred. This is the normal homogeneous argument case.

5. P->Q,~ (P S T T 1) — > (0 s t t) . Again , we drop excess arguments of type T.
This is the mixed homogenecus argument case.

6. P->Q~ S— >s , T — >s , U—> s , (P S 1 U)->(Q s s) where the argument U is arbi t r a r i ly
dropped. Alternativel y, S or T may be dropped. This is a weak homogeneous map.

The map formation algorithm also use ; the following, more global rules.

_ _ _ _ -~~~~~-~~~~~-~~~-- . . .--—~

..- - . . ,.. ___ _
~~~~~~~~ _w,~_ ,t ..,- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ANALOGY ALGORITHMS ~5 MAP FORMATION AND EXTENSION

A. Avoid many-to-one ma ps of ob ject ty pes by not map ping types. This means that
exact maps may drop some arguments , because an argument ’s type is not being
ma pped.

B. Avoid many-to-o ne map s of predicates and functions by using the map which uses
the fewest predicate multiple ~naps.

C, Map extended forms (see chapter [GEOMETRY WORLD ,REPP ES E NT A TI ON CLAIMS)) intact.

D. Map as high as possible into typ .~ hierarchies.

E. Map into the most restr ict ive sub-type first (see examp le in cha pter [OvERvIEW OF
AN A LOGY FIRST VIGNETTE -- T IC-TAC -TO E]).

As yet , we have not develo ped any heurisncs for ad d ing arguments. In all cases , what

cannot be mapped is ignored.

RESULT JUSTIFICATION ALGORITHM

We need a way to transform a result and the justification of the plans used to generate

that result into a justification of the result . The distinction between proof of program correctness

(i.e., a proof that the program only produces co rect results) and proof of the result generated by

that program (i.e., a proof that the result is correct ) is a subtle , but ver y important one. One

proves that in general the result is correct , w hile the other proves that a particular result is correct.

In order to uerive a justification of a result we emp loy two different techniques . The

first is based on inter preting plans while running code , while the second is based on representation

claims. The important features of our result justification algorithm are:

1. We can postpone justif ying a result until after it has been generated.

2. We can produce a jus tification in a controlled manner , so that we w:h not look
deeper into a justification than nece5 .sary.



— — .  .- ..— - ----- ..—-- -~~-~-- : ‘
~~~~~~~~

:-
~~~~~~~~~~~~~~

-‘-
~~~~~~~~

--—- ‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_____

ANALOGY ALGORITHMS 36 RESULT JUSTIFICATION

PLAN BASED RESULT J USTIF ] :CAT IO N

Commentary attached to the code of an expert problem solver signals when plan steps

are com pleted. At that time we genera te an vistantiation of the plan step, usin g the exp licit

var iable corres pondence ~iven in the commentarj . However , since code can have awfu l things like

loops and GOTOs , a plan ste p can be completed a ly  number of t imes. We will only be interested in

the most recent completion of a plan step.

When a RESULT plan step is com p leted , we reco rd the most recen t step instant iations , and

associate t hem with the result. When the fi n al result is obtained (i.e., the top level goal is

achieved), it is a simple matter to trace throu g h the plan steps and , using the justifications of those

ste ps, obtain a justification of that resu lt.

We will see that we also must record the plan step instantiation whenever an ASSERT

plan step is com pleted , attachin g the instantiatio n to the assertion. Similaily, when a PATT ERN step

inserts an objec t into a representation , the plan instantiation is attached to t he inserted ob ject , as

well as the current “time ” in order to unwind any subse quent representation-based deductions.

The com pleted plan instantiation will then be a list of CONDIT ION , PREDICATE ,

PATTERN , and  RESTRICT plan steps , and of course the call pattern and any BIND plan ste ps which

use a function call. Each instant iat Lon will record the va riable bindings currently in effect , and

reference any subsidiary plan instantiations.

For exam ple, if a PATTERN plan step ’s code made use of a hidden EQUAL test , then the

instantiated PA TTERN plan step would reference the plan inst?ntiat ion associated with the result

returned by the EQUAL test.

Returning to the trivial construction problem’s solution , while processing the “given”, we

evaluated t he form

(INTERSECT L2 L3)

by using the plan MAKE—INTERSECT , The result of this evaluation was a new ob ject 0 (a point on 



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~ 
, .
~~~~~~~ - .. .--- ---—

—-- --.~~~~~

ANALOGY ALGORITHMS 37 RESULT JUSTIFICATION

both tines). The plan instantiation for MAK E— IN1ERSE CT making ob ject 0 would look like

:MI#20
(MAK E-INTERSECT

(M I-i (X L2) (V L3) LN-OISTINCT?#20)
(M i-2 (X L2) LN?#22)
(111-3 (V L3) LN?#23))

The important part of this plan instantiation is the variable correspondences for each step, and the

plan instan tiations for the subsidiary deductions (e.g. LN-DISTINCT?#23). Suppose we require a

proof th at

(IN-LN L3 0)

Whether this result is in the data base , or has 5een derived from a representation , we will know

that plan instantiation TII#20 is responsible. We look at the instantiation to find the name of the

plan. The plan justification (which , you will recall , isn’t even true!) is

(PLAN—JUSTIFICATION MAKE-INTERSE CT
(Si (OISTINCT X VI %CONO ITION M I—i)
(S2 (LN X) %C ON O IT ION M I—2)
(S3 (LN Y) %CONDIT ION Ml-3)
(S4 (EQUAL P (INTERSECT X Y)) P-OEFI Si S2 S3)
(SS (IN-LN x P) P-OEF1 S4)
(S6 (IN-LN V P) P—OEF1 S4))

Once we have all of th is , it is a f a it ly simp le matter to use the plan justi fications to

generate a justification of the result. Some of the steps will be justified by referring to some

theorem or axiom of the world descri ption , ot hers by reference to some pl.an, and final ly some will

be justified by representation claims . The first two present no diffic ulty -_ we Just do more of the

same, being ever so careful to keep variable names straight. Unfortunately representation claims

form a ver y effect ive road block.

Continuing the example . we may now der ive a proof by f i r s t i ns t an t ia t i n6 the

j ustification, and then tracking back from the gcal assertion to get

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

:

~~ :. ~~~~~~~~~~~~~~~~~~~~~~~



ANALOGY A LGORITHMS 38 RESULT J USTIFICATION

(Si (DISTINCT L2 L3) LN-OISTINCT?#20)
(S2 (LN L2) LN?#22)
(S3 (LN L3) LN?#23) -

(S4 (EQUAL 0 (INTERSECT L2 L3)) P-OEFX El S2 S3)
(S6 (IN—LN L3 0) P-OEF1 S4)

REPRE SENTATI O N CLAIM BAf ;ED RE SULT J USTIFI CA TI O N

Suppose the plane geometry expert oui lined in chapter [GEOMETRY WO RLD,LANGUAGE FOR PLANS)

were given the following assertions, where A, E,, C, D, E, F, and G are known to be distinct points

in line L, and initially L’s representation is (A C).

ASSERTION CODE RESULT
1. (BTL.J N A C E) IL3-3 rep— (A C El
2. (BTL.JN B C 0)
3, (BTl,~JN A B C) IL4-2 rep= (A B C El
4. (BTI4N A C B) IL4-2 rep~ (A C B C El
S. (BTI.JN B 0 El INTERP-ETl~Jl (2) asser t (BTI4N C 0 E)
6. (Bfl.JN C 0 E) 1L4-2 rep. (A C B C 0 El
7. (BThN F A 6) 1L3-2 rep.(F A C B C 0 El

Now suppose we use BTI,4NP to deduce (BIUN F B El. Using the algorithm above , the “proof” we

get of the fact is very short: it is true because representation claim RC2 says it is.

To drive the justification through deductions based on representations we will make use

of:

I. The time each object in a representatio n was placed there.

2. The plan line that inserted the object into the representation.

3. The plan instantiation generated when the insertion was performed .

Ste p 1. Find the most recentl y inserted object of those referenced by the deduction. In
the example this ob ject is F.

Step 2. Find the plan line that inserted that object. In the examp le, t hat is line 1L3-2.

Step 3. Reconstruct the correspondence between representation claim variables and

.., -,. _ .  -
4. - ~~~~~~~~~~~ ____________



— ~~—— - - --~~~~~ -~~~~~ .. , . — - - -.- ,. .~ -.,- ~~~~~~~~~~~~~~~~~~~~

ANALOGY ALGORITHMS 39 RESULT J USTIFICATION

plan variables. This can always be done since we have the values of the plan
variables in the instantiation attached to the inserted ob ject . In the examp le , the
corres pondence is (U A ,) (V D) (W D).

Step 4. In the representation claim proof, f i nd the clause for the plan line from step 2
and the corres pondence from Step 3. From this clause read off the jus tification.
This gives

(Li (BT L4 N C B El RC2 IL3-2)
(L2 (8TkN A C B) RC2 IL3-2)
(L3 (BT~4N F A C) ASSERT IC N7)
(L4 (BTI4N F C B) P-BTUN-THEOREM1 L2 L3)
(L5 (BT L4N F B El P-BTUN-THEOPEM1 Li L4)

Since the re presentation claim proof i; inductive , the jus t if i cat ion generation algorithm

wi ll be recurs i ve .  Cont inuing ,  in line L2 ~ was  most rece ntly inser ted , by I L 4 — 2  w i th

correspondence (U C) (V A ) ((4 0) .  Thus we find that L2 should expand to

(L2-i (B~~ N A C B) ASSERT ION4)

As for line Li , again ~ was most recent. Ho~ ever , we get ~ d ifferent variable corres pondence

(U A ) (V 0) (L El which directs us to ~ diffe rent c lause in the proof of R~~ Here we finJ that

P—BT (4N—THEOREM2 j ust if ies line Li prov ided that we can prove (5T~~ A B El. B was inserted by

1L4-2 in response to assertion 3. Again , P-B~ 4N - TH ECRE~~ j ust i f ies our conclusion , provided

( BTL4N A C El can be proven. Finall y, C was inserted in res ponse to assertion I.

The proof of (BT(4N F B El references assertions I, 3, 4, and 7, but not assertions 2, 5,

and 6. This is as it should be, since rhose three assertions had nothing to do with our result. On

the other hand , the justification of ( BTI4 N A 0 El would include references to assertion s 1, 2, 3, 5,

and 6, but not assertions 4 and 7.

:

~

-L1 ,

~

: ~
±-

~IT.
._ _
~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .  .4114



ANALOGY ALGORITHMS ~O DEBU (GING ALGORITHM

DEBUGGING ALGORITHM

Using the result just ification algorithm we can reduce a justification in a controlled

fas hion to any desired detail. The result and its justification will be in terms of the world

description (and possibly plan and representation claim refer ences ). Using the map extension

algorithm and by paying careful attention to where objects and assertions orig inally came from , we

can lift the result and (to some extent) its justification back to the domain world.

If the lifted assertion is true in the domain world (i.e., the lifted assertion is in the data

base, or is provable by the domain expert), then its justification need not concern us. Similarly, if

t he assertion is demonstrably false we are in trouble , and either must go back to the image world

for a different solution, or (as is more likt..ly) select a different analogy map.

Hence we are onl y inte rested in assertions that might be true. To determine if an

assertion is in fact true, we need to check its justification.

1. If the inverse map of the justific ation is known , t hen expand the justification step
in the domain world.

2. If the justification is pa rt of the world description , see if the lifted vers ion of the
world descri ption is valid in the domain world.

3. If the justification is either a representation claim or a plan , make a record that the
c laim or plan might be a good th ing to lift , and then ex pand that j ustification step in
the image world.

4. If the justification could not be lifted , try to continue , noting the possible presence
of a IIISSING-POSTCOND IT IO”J bug.

The above reduces the problem of justifi cation checking to checking the validity of some part of a

world descri ption. Since world descri ptions are theorems in the first ordei’ predicate calculus (with

a few exceptions made for definitions), it is tempting to suggest that we simp l y drag out our

favorite resolution theorem prover and let ‘er rip.

Certainl y that will prove the theorem true ~f it is. Since our wor ld descri ption may be

-- ~~~~~~~~~~~~~~~~~~~~~~ , 
..- -~~~~ .. — —- - --.



ANALOGY ALGORITHMS 91 DEBUGGING ALGORITHM

inconsistent and since we do not insist that our plans be consistent with the woi Id description , we

might very well succeed in proving the theorem is true even if it isn’t! Besides, if the t heorem is

not provable, we want to know why . Bugs in theorems correspond to bugs in plans.

ONE-STEP DEDUCTIONS

We em ploy a very imi:ed forn of theorem proving: the one step deduction. We will

att empt to prove a theorem as fol lows:

I For .ill do main wor ld  ax io ms , lemmas , and theorems ~ hose co nse quent has a
non-n ull r i tet  se ct io n .~ i:h the conse çuen t of the theorem we ire try ing to prove , see if
its in te c ~dent clause s ~ire a i d e d  in the antecedent of the theorem we are pro ’~ iris.

2 Simila: ly. t ry the con:: ~~us ives oT all lemmas , axioms , and ~heo: ems.

-~~~~ 
3 ~~ e ach ax iom , lemma , a nd theorem in the wor ld descr i pt ion , g enera te

iv i du .ill y, of cou: se t s d isjunc t ive normal form. Compai e (usin~ the unificat ion
.~ lg Orit hm :ci: th is ‘w i t h the theore m we are try ing to prove , a lso in d is junct ive normal
t u:m.

The e~ su n for the first two at tcm v s is primaril y aesthetic , althou gh some increase in efficiency

should also result. Ste ps 1 and 2 appear to work if they prove only sci ne of the consequences .

Indeed , a part icular app lication of a theorem may require only some of the conseq uents We know

what conse quent we want (the result we ate try ing to justif y), so these ste ps are correct as stated .

If none of these work , we can try expanding the justification in the image world , and

l ifting that. However , more often fai lure indicates a bug in the analogy map.

.
.
-

~

-

~

- . .- - . .-.—-- - .

~

. --

~

- - - , . - -.
- 

- .
~~

----,
~~~~

-.
-.—-..-,---- — -~...

- ~~~~~~~~~~~~~~~~~~~~~ .-- -—--. . —---- .---.-—---—-.. ——.-.-- .-

ANALOGY ALGORITHMS ‘)2 DEBUGGING ALGORITHM

BUG DETECTION

We are prima ril y int erested in three kinds of bugs: MIS S I NG- PRERE QUIS I TE ,

UNNECESSARY-PREREQUISITE , and t1I SS ING-PUS TCOND IT ION. The reader might imagine that

there is a fourth, which might be called UNNECESSARY-POSTCON DIT ION. I have never seen an

exam p le of th i s , a l t h o u g h it might oc c ur . Both M I S S I N G - P R E R E Q U I S I T E and

IIISSINC—P OSTCONDITI ON bugs manifest themselves in the justification checker. Suppose we have

the following situation

have : (IMPL I ES (AND Al A21 (AND Cl C21)
i-iant: (IMPL I ES (AND A2 A3 1 (AND Cl C3)l
r e s u l t : Cl

Then step I will fail to confirm that what we have corresponds to what we want. The nature of

the mismat ch is that Al is an excess antecedent ii what we have , and A3 is an excess antecedent in

what we wan t . If Al is va l id in the domain wor ld , it co r responds to a po ten t i a l

MISS ING—PREREQUISITE , and A3 to a potential UNNECESSARY—PREREQUISITE.

For the M ISSING-PREREQUISITE bug detected above , we

I. Note the bug that A l. isa MISS I N(-PREREQUISITE.

2. Note th e corres p ondence with a w a r n i n g a b o u t t h e p o t e n t i a l

UNNECESSARY-PREREQUISITE A3.

3. Assert C2 into the domain data base.

4. Justify Cl with the domain fact we have.

When we lift the p lan which gave rise to this bug, we will gert’rate either a CO NDI lION

or RESTRICT clause for Al as a patch.

M ISSING-PREREQUISITE bugs can be detected in another way. Any plan that adds

ob j ects to a representation must be documen ed in all relevant representation claim proofs.

Inability to provide this new proof clause may indicate that either the representation claim must be

-
~~~~~~~~~ ‘~~-r

ANALOGY ALGORITHMS ‘
~~~ DEBUGGING ALGORITHM

dropped or weakened , or that a MISSU~O-PREREOUJSITE bug has been detected.

A MIS SING—PREREQUISITE bug is fa i r l y sim ple to detect , since it is caused by a

(potent ia l) dom~ in ex pert fai l ing to do something it ~nu st do On the othe r hand ,

M ISS ING-P OSTC ONOIT IO N and UNNECESSPRY-PRL:REQUIS ITE bugs are caused by (potent ial) domain

ex perts failing’ to do something they 5/10141 (1 have done , and tryin g to do someth ing they s /wuld n ’t

have. We should not be ;ur prised that the condit ions for confirm ing these ~wo bugs a ppear

byzant ine.

A M ISS ING—P O STCONO IT ION poss ib ili ty is signaled in step 4 of :he justif ication checker.

If the j ustif ication succeeds , and if the call patte rn of a plan that was used to supp ly jus t i f ic at ion

to fill in the ga p is the same as the (l i f t ed) call pa t t e r n o f the p lan tha t g e n e r a t e d the

MISS I ~G — POS TC O NOI TI ON , then it is possible that the dom.i in plan should h av e asser ted the

M I S S I N G - P O S T C O ~~Dl T ION. Now we see if we h a v e a one step proof of the

MI SSING— POSTCONDI lION based on ~oma I.] p lan j us t i f i ca t i on a n d t he conc lus ion the

MISS I NG— PCSTCONO I TION was supposed o hav€ justified. If we can do all this , then generate a

new plan step (generall y an ASSERT plan step) for the domain plan.

UNNECESSARY-PR EREQUISITES are problematic in that usually their presen ce is not

signaled by anything in the final result j ustification. True, we do generate a warning above , but

this warning is only used if the antecedent is false in the domain world. Generall y we must resort

to a different techni que.

We examine the AND/OR tree in the ima ge expert. We find an OR node, all of whose

subgoals have hung. If the disj unction of the sub goals is f a l se or meoning !t ’ss in the domain

world , then that node may re present an unnecessary prerequisite To test this , we must re-solve the

ori ginal problem , gen erat ing a T~~ E out of one of the sub goal nodes. If the new rec ult

jus t i f ic at ion is valid ~when lif: eci) and made use of the node result , but not of the TRUE we

~enera:ed in the subr iode , then the U~NECE SSAR ’(- PR EREQU~S ITE bug is confirmed. When we if t

the plan corres ponding to the OR node, w ’e ignore the plan ste p that generated he subgoal .

~w
_

- ,.
- ~~~~~~~~ ,,. ~~~~~~~~~~~~

- ‘,‘ . , -..- ‘. . . .

ANALOGY ALGORITHMS ‘)d DEBUGGING ALGORiTHM

The reason for solving the problem again is to insure the relevance of the plan hung up

by the unnecessary prerequisite. Clearly we don’t want to lift irrelevant plans. Similar ly, if the

plan is used and produces an invalid ju sti f icatio .i , then we were in error to generate the TRUE. We

will see an exam ple of this in chapter [ANALOGY EXAMPLES , NON-TRIVIAl. ANAL OGY3.

14

~~~~ -
‘4* ,.,. . ,. ~~~~~~~~~~~~~~~~~ .-- - 0 ..~~~ —



AD—Afl 3 809 MASSACWSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE ETC F/a 6/se
USC OF ANALOGY To ACHIEVE NEW EXPERTISE. (U)
APR 77 R BROWN N000IU—75 C—0643

(NCLASSIFIED AI TReleO3

_ _ _  

P!U 
_ _



ANALOGY EXAMPLES TRIVIAL ANALOGY P ROBLEM

ANALOGY EXAMPLES

The importance of special representations (for example. listing points in order for the

representation of a line) cannot be overstated. Wald inger and Levitt [WI) point out “To as great

an extent as possible . we have chosen representat ions that model the semantics of the concepts we

use so as to make our deductions shorter and easier.” A major thrust of this research has been to

arrange for analogy to be able to lift these special representations to new worlds. The first three

problems in this chapter illustrate lift ing the representation of lines in two ways.

PROBLEM 1 -- a trivial analo~~~

While plane and solid geometry are not isomo rphic . there is a sub-world of solid

geometry that is isomorphic to plane geometry . The p~rp~se of our first problem is to show how

analogy functions in this simple case. Just to keep things from being devoid of complications, we

will have the analogy process teach the solid geometry expert a new concept: lines can intersect.

PROBLEM 1. Show that the intersection of distinct lines containing a point C is that po int C.

(FORALL (K L C) (IMPLIES (AND (LN L K)
(PT C)
(IN-LN K C)
(IN-LN L C))

(EQUAL C (INTERSECT K L))))

Several observations should be made. First , note that the LN pred icate has two arguments. Input

to the problem solver is processed by special pro :edures. Since we know that LN is a type checking

predicate from the semantic temp late generation process , we expand this form into a distinctness

bucket containing the two lines as obje cts as described in cha pter [GEOMET RY WO RI.O,REPPESENTA T ION

CLAIMS). The second observation is that I \TE RSECT has never been defined in solid geometry.



F

ANALOGY EXAMPLES ‘)6 TRIVIAL ANALOGY PROBLEM

The bare-bones solid geometry ex pert knows how to deal with problems of the above

form: having created objects named K, L, and C, it then asserts (LN L) ... (IN—LN L C) into

the data base. Finally, it tries to evaluate

(EQUAL C (INTERSECT K L))

by first evaluating the function call

(INTERSECT K L) .

Since there is no procedure willing to perform this computation, the solid geometry ex pert reports a

failure. At this time the solid geometry data basis contains two assertions:

(IN—LN K C)
(IN -LN L C)

The most we can reasonably t’x pect f rom analogy is:
1. Learn what INTERSECT means.
2. Learn how to implement a function that computes INTERSECT.
3. Learn how to react to assertions of the form

(IN-LN line point).
4. Learn how to represent lines.

Although this is the most we can expect , analogy gives us a little bit more!

STEP 1: MAP

The current outstanding problem is (EQUAL C (INTERSECT K LI) so the 0-order

summary has EQUAL, INTERSECT , C, K, and L. The 1-order summary includes the two IN—LN

assertions. Thus we will map everything. The m ap  formation algorithm suggests two possibilities:

LN—>LN LN.->PT
PT—>PT PT->L~
INTERSECT->! NTERSECT INTEREECT->LINE
IN .-LN—>IN-.LN IN—LN->IN-LN order of arguments reversed

We prefer exact maps, so we use the one on the left. The map on the right is interesting in that

analogy just tried to invent projective geometry.

~~~~•-~-~~- :i ~~:


!r

ANALOGY EXAMPLES TRIVIAL ANALOGY PROBLEM

STEP 2: SOLVE THE IMA GE PROBLEM

Plane geometry expertise is fully developed. When each assertion is entered in the data

base, it is examined by a procedure (invoked b~ the pattern of the assertion). This has occurred,

and the data base is now empty . The assertions have been used to set up objects and their

representations. We have

K t~pe=LN, representat io n~ (C)
L typ e~LN , representat ion” (C)
C typ e’.PT, no representation
OB1 type~DBUCKET , represent~t~on— (K LI

where the last object is a “distinctness bucket.”

We now evaluate (INTERSECT K LI (using a procedure FIND—INTERSECT whose plan is

given below), and get a return value C. We apply the inverse analogy map to the image object C,

and get the domain object C. We evaluate (EQUAL C C), getting TRUE as a result. This indicates it

would be worth while “lifting” the definition of INTERSECT and the proof that “C” is the correct

value.

STEP 3, PART 1: OBTAIN IMA GE JUSTIFICATI ON

We used the plan FIND-INTERSECT in the solution.

(TO—FIND FIND—INTERSECT (INTERSECT Li L2)
(BIND P)

:FI1 (CONDITION (LN Li))
:FI2 (CONDITION (LN L2))
:F13 (CONDITION (DISTINCT Li L2))
:FI 4 (PATTERN Li LN (* ?P *3)
:FI5 (PATTERN L2 LN (* P *1)

(RET URN P))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



______ 
-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ W

ANALOGY EX AMPLES ‘~8 TRIVIA L ANALOGY PROBLEM

(PLAN—JUSTIFICATION FIND-INTERSECT
(Li (LN Li) %CONDITION Eli)
(L2 (LN L2) %CONDITION FI2)
(L3 (DISTINCT Li L2) %CONDITION F13)
(L4 (IN-LN Li P) RC1 F14)
(LB (IN-LN L2 P) RC1 FIB)
(LB (IN—LN Li (INTERSECT Li L2)) P-DEF1 Li L2 L3)
(L7 (IN—LN L2 (INTERSECT Li L2)) P-DEF1 Li L2 L3)
(L8 (EQUAL P (INTERSECT Li L2) ) P-TH1122 Li L2 L3 L4 LB LB L7))

where P— THM22 is the contra positi v e of ax i om P — I 2 .  We get a proof  of

(EQUAL C (INTERSECT Li L2)) from the plan justificaion of FIND-INTERSECT by the result

justification algorithm in chapter [ANALOGY ALG)RITHMS,RESULT JusTIFIcATioN]. This proof uses Rd .

P—OEF1 (the definition of INTERSECT), and P-THl122.

STEP 3, PART 2: LIFT IM AGE JUSTIFICATION

We lift P-OEF1, getting S—DEF1. We then apply the inverse analog y map to P-THM22 to get (in

solid geometry)

:S-THM22
(FORALL (A B X Y)

( ItIPLIES (AND (LN XI (LN Y) (OI~ TINCT X Y) (PT A ) (PT B)
(IN-LN X A) (IN-L~ X B) (IN-LN V A) (IN-LN V B))

(EQUAL A B)))

We use the second kind of one step justification (chapter [A NALOGY ALGOP ITHMS ,PESULT JUSTIFICATION]) tO

get a proof of S—THl122. Knowing S-TNrI22 to be true, we can complete the lifted proof and add

the following to the analogy map for use in the next step.

S-THM22 -> P-THM22
S-12 -> P-12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _



—
~ 

-~~~~~~~~~

ANALOGY EXAMPLES TRIVIAL ANA LOGY PROBLEM

STEP 3, PART 3: LIFTING PLANS

We noted that FIND—INTERSECT , ILl , and RCX were used in the course of solvin g this

problem. Analogy now rewrites these into solid geometry plans. No bugs were detected in the

result justification , so this is a straightforward copy operat ion. We add the procedural

correspondences

S—F IND—INTERSECT — >  FIND—INTERSECT
S—ILl —> ILl
S—Rd -> RC1

to the analogy map.

LESSONS FROM PROBLEM 1

What have we learned as a result cf solving this problem? As much as could be

expected. We have both a definition and code for intersections of lines (under some

circumstances), We have the beginnings of code dealing with representations of lines. We also

know what to do with IN-LN assertions of inultitle point arguments by virtue of the solid geometry

representation claim S—RC1.

PROBLEM 2 -- Non-trivial analogy problem

We now turn to ~ur second problem. Let us assume that, by processes similar to that

g iven above, all the necessary expertise in dealing with points and lines has been learned by the

solid geometry ex pert.

We now want to increase our solid gi’ometry expertise to include the representation of

planes. We will start by posing a problem which asks solid geometry to prove that a plane is

-— ~
__1

~~~~~~~~~~~~ I~1~~ ’~ - ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~


-‘-~~-~~~ -~~ ~~~~~~~~- ----- - -~~
—.-— ---- -

ANALOGY EXAMPLES 100 NON-TRIVIAL ANALOGY

determined by two intersecting lines. Granted , this is an obvious solid geometry fact. However ,

the rigorous proof of this fact is far from obvious. The skeptical reader might wish to try his

hand. We wish to prove that

P R O B L E M 2. Three distinct points which determ ine two dist inct lines also (leterm ine a plane .
(FORALL (A B C P)

(IMPLIES (AND (PT A B C)
(NOT (EQUAL (LINE A B) (LINE B C)))
(PL P)
(IN-PL P A B C))

(EQU AL (PLANE A B C) P)))

We used an extended format for PT (which the solid geometry expert knows how to deal

with) and for IN—PL (which it doesn’t). There are trivial construction of both lines (understood)

and planes (not understood). Finally, the problen mentions points, lines, and planes, so the analogy

map must be non-trivial.

Processing is forced to halt when we try to assert

(IN-PL P A B C)

Recall that IN—PL is expected to have two arguments, the first of type PL and the second of type

PT. This form does not match its semantic template.

STEP 1: MAP

We must eventually use analogy to f.nd what this assertion means. Having no good

reason to abandon the analogy map used in prol lem I, we continue with

PT -> PT
LN -> LN
etc.

To find a mapping of IN—PL , we ask “What predicate do we have in plane geometry that takes two

arguments, one of them of type PT and the other one of another type?” One answer is IN—LN. But

this has an object of type LN as its other argument, so on the basis of matching semantic templates

~~~~ ~~~~~~~~~~~~~~~~~~~ —.-
~~~~~~~

-
~~

- - -—~~—------.-,. — - - -~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~ ..

ANALOGY EXAMPLES 101 NON-TRIVIAL ANALOGY

(rule 1 of the map extension algorithm in chapter [ANALOGY ALGORITHMS ,MAP FORMATION AND EXTENSION)) we

conclude

PL -> LN
IN-PL —> IN-LN

and add these to form a many -to-one analogy m~.p.

Construction of Analogous Problems Involves SUMMARIZING

We will eventuall y be forced to solve ~ problem in plane geometry to know how to treat

the ex pression (IN—PL P A B C) in solid geomelry. If we simply map everything we know down to

plane geometry , we will end up with a con rradic t ion: (I N— LN P A B C) and the claim

(DISTINCT (LINE A B) (LINE B C)) conflict with axiom P—I2. This means we must summarize

the current situation into a sub-problem. The next question is “What sub-problem?” We have

domain objects:

A typeu~PT
B type-PT
C type— PT
OB1 type-DBUCKET , represeri t~ t ion- (A B C)
0B2 type~LN , representat ion- (A B)
0B3 type~LN , representation~ (B C)
0B4 type=DBUCKET , represent~ tion= (OB2 0B3)

We are hung up by the IN-PL assertion and therefore by our goal (EQUAL (PLANE A B C) P1.

We will first generate the I-order summary and then use the map extension algorithm to map the

summary to plane geometry. We start off with the objects P, A, B, and C, thei r representations.

and type declarations resulting from relevant distinctness buckets. These assertions constitute the

“given ” portion of the sub -problem constructed by the summari zation process mn chapter [ANALOGY

ALGORITHMS,NAP FORMAT ION AND EXTE NSiON]. The “to ?rove” portion is supplied by the assertion solid

geometry could not deal with. Continuing, , we assert in plane geometry

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~.



ANALOGY EXAMPLES 102 NON-TRIViAL ANALOGY

(PT A B C )
(LN P)
( I N - L N P A B C )

The last assertion would give P the representation (A B C) if the assertion (BT[4N A B C) were

also present. Since it isn’t present , we expand th~ IN—LN assertion to

(IN-LN P A) (IN-LN P B) (IN-LN P C)

The first two are then removed from the data base by the TO-REPRESENT plan ILi and the

TO—INCLUDE plan 1L2, while the object P is given the representation (A B) . The third assertion

causes an attempt to prove or disprove the three statements

(BTI4N A B C) (BTUN A C B) (BTL4N C A B)

by the TO —INCLUDE plans IL3 and IL4 . (These plans may be found in chapter (GEOMETRY

WORLD,LANGUAGE FOR PLANS] in the section giving EXAMPLE PLANS). Naturally no progress is made on any

of these, so we continue to summarize.

We need to map the current domain goal

(EQUAL (PLANE A B C) P)

to an appropriate image goal in plane geometry. Finding no exact match for the mapped semantic

template, we note that the arguments to PLANE are of homogeneous type, and that the semantic

template for LINE in the image is also of homogeneous argument typc , with the appropriate (under

the map) value type. B) rule 4 of the map extension algorithm we add

PLANE -> LINE

to the analogy map, with a note to arbitraril y drop the last argument. 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~

_ 

____ _____ _____ A



- -  

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

ANALOGY EXAMPLES io~ NON-TRIVIAL ANALOGY

STEP 2: SOLVE IMAG E P ROBL EM

Then, noting that (PLANE A B C) -> (LINE A B) , it is easy to evaluate the latter

expression in plane geometry to get the object P. and by golly

(E QUAL P P)

STEP 3, PART 1: OBTAIN IM AGE JUSTIFI CATION

We used the following plane geometry plan to get this result:

(TO-FIND FIND-L INE (LINE P1 P2)
(CONDITION (PT P1))
(CONDITION (PT P 2))
(CONDITION (DISTINCT P1 P2))
(BIND LI
(PATTERN ?L LN (* P1 * P2 *))
(PATTERN ?L LN (* P2 * P1 *))
(RESULT L))

The proof rests on LINELEMIIA1 (proven by using P—I2):

:LINELEMMA1
(FORALL (P1 P2 Li L2)

(LIIPLIES (AND (PT P1)
(PT P2)
(DISTINCT P1 P2)
(LN Li)
(LN L2)
(IN-LN Li P1 P2)
(IN-LN L2 P1 P2))

(EQUAL Li L2)))

The image proof generated by the result justification algorithm applied to the plan justif ication
for FIND-L INE above reads

L~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~
..—.-.- -

~~~
— -  -

~~~~~~~ 
.-

~~~~~~~~~~~~



—
~

--- - - - -~~~~~~-~~~~~~
- -

~~~~~~~. . 
~~~~~~~~~~~~~~~~~~

--.-•~~~~~~~~~~~~~~~~~~~~~~

ANALOGY EXAMPL ES q~~~~~~ 104 NON-TRIVIAL ANALOGY

1. (PT A B) given
2. (LN P) given
3. (IN-LN P A B) given
4. (LN (LINE A B)) P-Il applied to 1
5. (IN—LN (LINE A B) A B) P-Il app lied to 1
6. (EQUAL P (LINE A B)) LINELEI1MA1 applied to above

We have now solved the summarized problem . Unfortunately, when we try to “lift ” the

justification , we find it is not correct!

STEP 3 , P A R T  2: L I F T  IM A G E  J U S T I F I C A T I O N  --
DEBUGGING the Analogy

The first hint of trouble occurs when we try to justify step

4* (PL (PLANE A B C ) ) .

To do this, we need to lift P—Il as it was used in this step:

(1* (FORALL (A B C)
(IMPL IES (AND (PT A) (PT B)) (PL (PLANE A B C))))

This theorem is not true, bu t no matter, because we try using brute force (our one step

deduction algorithm), and fail to prove Ii,:. Good -- we have detected a bug! We do f ind,

however , that we can prove (PL (PLANE A B C ))  in one step using S-14a. The “h f  ted” portion

of plane geometry allows us to prove in solid geometry that (NON-LN A B C) . (The appropriate

portion of plane geometry would be lifted by thu exercise A n any case by a recursive application of

the analogy process) .

We can now classif y the “bug” in the analogy to be a MISS ING-PREREQUISITE . With

this in mind, we add

S—14a — >  P— Il

to the analogy map, and a line providing non-coUmnearicy to the proof in solid geometry.

Having lifted step 4 of the image result justific ation, we proceed to lift step 5 as

~~~~~~~~~ 
4

.—~-— ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ‘~
.. .—. — ~~~~~~~~~ ~~

ANALOGY EXAMPLES ios NON-TRIVIAL ANALOGY

5* (IN-PL (PLANE A B C) A B) S-Ha

after checking that S-I4a does indeed prove this. This step will also need modificat ion. We now

need to lift LINELEIIMA1 (above) in preparation for lifting step 6 of the image justific ation. This

lemma in turn depends on axiom P— 12.

Fohl owir,~ e 1~r~of checking algorithr i , we translate the lifted version of L NELEF1MA1 to

disjunctive nor ma ’ form , t hen compare this to 11 axioms (also in their disj unctive normal form).

We discover that axiom S —IS g i ves us the d€ s i red eq uality provided that the points are not

colhinear and that all three points are in both Planes. We just proved the former , and know the

latter is true by S— 14a (appropriate assertions were made when it was apphed).

We make note of a second MISSING-PREREQUISITE bug on our bug list , patch line 5:: to

show that point C is also in (PLANE A B C) , anc. give the proof for

PLANELEI1MA1~(FORALL (P1 P2 P3 PL1 PL2)
(IMPL IES (AND (PT P1 P2 P3)

(NON-LN P1 P2 P3)
(PL PL1) (PL PL2)
(IN-PL PL1 P1 P2 F3)
(IN-PL PL2 P1 P2 F3))

(EQUAL PL1 PL2)))
Having done all that , we update the analogy map by adding

PLANELEMMAI -> LINELEMMAI
S-I5 -> P-I2

to the analogy map. Note we cleverl y got back the proper number of points: LINELEMMA1

quantified two points , w hile PLANELEMtIA1 quantifies three!

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -



—~ 
.- -__----___ .—.-_-.__—.— - 

_______

ANALOG Y EXAMPLES 106 NON-TRiVIAL ANALOGY

S T E P  3 , P A R T  3: C H E C K I N G  F O R  U N N E C E S S A R Y

PREREQUISITES

This comp letes th e proof. We are still not ready to lift plans. We have one anomaly

remain ir.g: in plane geometry there is an outstandin g question concerning the order of po in ts A , B,

and C in the “line ” P. We can easil y prove in soI~d geometry that

(NO T (OR (BT~4N A B C) ( ET ~.JN A C B) (BT~N C A B ) ) )

We can conclude that there is not an “obvious” candidate in solid geometry for the BT~N relation

with this analogy. Having thus app lied the UNNECESSARY-PREREQU IS TE bug detection algorithm ,

we also add this bug to our bug list.

STEP 3, PART 4: Lifting Plans for Problem 2

We can now lift the plans. Althou gh the bugs were detected by logical at~ ns . they are

noted with respect to the plan lines which gave rise to them. When we lift these questionable lines,

the bug type tells us what actions need to be taken to repair the plan. Thus we get

(TO—FIND FIND-PLANE (PLANE P1 P2 P3)
(CONDITION (PT P1))
(CONDITION (PT P2))
(CONDITION (PT P3)) ;due to LINELEMMA I bug
(CONDITION (DISTINCT P1 P2 P3)) :LINELEMMA1 bug
(CONDITION (NON-LN P1 P2 P3)) ;S-I4 bug
(BIND LI
(PATTERN ?L PL (* P1 * P2 * ) )
(PATTERN ?L PL (* P2 * P1 *))
(RESTRICT (L) (IN-PL L P3)) ;LINELEMIIA1 bug
(RESULT L))

(TO—INCLUDE S-1L3 (IN-PL P A )
(PATTERN P PL (“A *))
(ABSORB (IN-PL P A)))

where S— 1 L3 came from plane geometry IL3 , with severa l plan ste ps deleted due to the

UNNECESSARY-PREREQUISITE bug. We also add

- ~~~~~~~~~~~~~~~~~~~ —



r --- .-

~~~

- _—-_

~~

-- ._

~~~~~

— . - -

~~~~~~~~~ 

. . - - - -

~~~~

--_

~

- - - -

~~~~~~~

. .

~~~~~~

_ . _ _

ANALOGY EXAMPLES 107 NON-TRIVIAL ANALOGY

S—ILl .-> ILl
S—1L3 -> 1L3
FIND-PLANE -> FIND-LINE

to the analogy map. We also lift a representation claim about the representation of planes:

SP-RC1
(REPRESENTATION-CLAIM (X PL (* V *) (IN-PL X Y)) ..,)

We learned from this exam ple a little about representing planes , and how to construct a

plane from given points. We also learn€d that there is no concept corresponding to BTL4N which

applies to pcints in a plane. It is important to remember in all this that by “learn” we a lways mean

“write code for .”

PR OBLEM 3 -- Non-obvious a~~~Iogy

So far , the problems have been interesring, but not spectacular in that the analogies were

fairly obvious. The problem we will now solve has no obvious solution.

The problem involves the notion of a line being in a plane. We recognize that “IN” is a

trans itive , non-symmetric binary relation in sohic geometry : if A is IN B. and B is IN C, then A is

IN C, but if A is in B, then B is not necessar i y in A (almost certainly not) . The crux of the

problem is that there are no transitive , non-s ymmetric binary relations in plane geometry (as we

have described it). That we call “IN” by different names (IN—LN , IN—PL) according to argument

types just makes things worse . In this examp le we wi ll find an analogy where none can reasonably

exist .

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~+.k ‘~~~~~~~
“‘•

~“ ‘
‘~~~~~~~~~

‘
~~~~~~~~~~~~~~~~~‘



ANALOGY EXAMPLES 106 NON-OBVIOUS ANALOGY

The above examp le indicates we could rep lace both IN-LN and IN-PL in
solid geometry with a sing le predicate IN without affecting the analogy process
operation.

It is also worth pointing out that we don ’t need hig her level descriptions like
“transitive , non-symmetric binary re ation.” in fact , if high-level descriptions were to
form the basis of an analogy process , then that process would evidently fail on this
problem.

A SECOND-ORDER DEFIN ] TION

Suppose we wish to introduce the notion of “a line being An a plane” to our budding

solid geometry expert. We cannot say merely “if a point is in a line and that line is in a plane.

then the point is in the plane” because that only tells us how to use the fact that a line is in a

plane, not how to deduce it. We might wish to add “a line is in a plane if all points on that line

are in the plane”, w hich is correct , but te~tA n g~ for this condition involves a proof by contradiction .

We dislike proofs by contradiction for reasons detailed in chapter ELOGICS OF EXPERTS ,FORMALISMS AND

LOGICS]. Therefore we might try to add “a line s in a plane if two points of ‘~.at line are in the

plane.” This, of course, duplicates axiom S—I S in a definition, and thus cannot be allowed.

What we will do is similar to the des.ice used with INTERSECT: we will claim that for

line L and plane P, ( IN.-PL P L) is a predicate such that

(FORALL (A L P1
(IMPLIES (AND (PT A) (LN LI (PL P1

(IN-LN L A) (IN-PL P L))
(IN-PL P A ) ) )

In other words, the above is true “by definitior..” This is a “second-order ” definition, because it

really means

j”” 
~~~~~‘


- ~~~~~~ ~~~~~~ .r . ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ANALOGY EXAMPLES 109 NON-OBVIOUS ANALOGY

(FORALL (A L P ALPHA)
(IMPL IES (IMPL I ES (AND (PT A) (LN LI (PL P)

(IN -LN L A) (ALPHA P LI)
(IN-PL P A))

(IIIPLIES (ALPHA P LI (IN-PL P Li)))

where ALPHA is a universally quantified predicate.

STEP 1: MAP

We have our definition. To find how the defined predicate (IN-PL plane I m e)

is to be implemented , we use a clever n ick: we pose the definition as a problem! We continue

using the same analogy developed by problems I and 2, so that

PT -> PT
LN -> LN
PL -> LN
IN—PL — > IN-LN when app lied to plane and point

The image semantic template of IN-PL applied to plane and line under the current analogy is a

predicate applied to two lines, i.e., the same semaitic tem plate as EQUAL (applied to lines). With the

axioms given, it is also the only semantic template match. In fact , t here are four reasons why

EQUAL is a good choice for the analogy:

(1) Pragmatic. This choice works.
(2) Traditio n. In algebra one investigates the structure of groups and rings by way of maps

that send problematic substructures to identity elements, i.e., one imposes equivalence relations
on the structure.

(S) Conj ectural. Suppose we wanted to choose P to maximize the size (cardina lity) of the set “Q,_
such that for all X ,Y (P X Y) implies (~ X Y) . ” I suggest that EQUAL would be one of the
best choices. In other words, EQUAL “does more” than any other predicate .

(4). Philosop hical. We reall y wan t to write a program. A common joke is that writin g
programs is the same as debugging a blar k sheet of paper. We are essentiall y using EQUAL
as a blank stimulus in the hopes of debugging the response.

So we add as an exact analogy map

IN-PL — > EQUAL when applied to planes and lines.

4 ..-

-~.‘.e- ~~~~~~~~ ~~~z ~~~~~~~ _ _ ~:q
-~~~~ ~~~~~~~~~ ~~~~~ ~

‘
~~~~ ..~~~~~ ______ — —.. —-— .--



ANALOGY EXAMPLES 110 NON-OBVIOUS ANALOGY

With this map, the plane geometry problem we pose is

(FORALL (A L P)
(IMPLIES (AND (PT A) (LN LI (LN P)

(IN-.LN L A ) (EQUAL L P))
(IN-LN P A f l )

STEP 2: SOLVE THE IMAGE PROBLE M

To make a long story short, the image problem is solved with the proof being “by definition of

equality.” When this justification (a reference to a second-order equality axiom) is lifted , we get a

proof “by definition of IN.-PL” which is indeed correct!

STEP 3: LIFT THE PLANS

We now lift the plans. The image plan 1t4—LNP first searched P’s representation for A,

and failed. It then used the implicit EQUAL test to search for any “line” EQUAL to P, found L, and

proceeded to search L for A.

(TO—DETERM INE IN—LNP (IN-LN X Y)
:IN—LNP—l (PATTERN X LN (* V * ))
:IN—LNP—2 (RETURN TRUE) )

Thus the “l i fted” plan should first search P’s representation for the

object A , and fa i l i ng that, search for any line (because L’s i nverse is a line )

sa t i s f y ing the re la t ion  (IN —PL P x ) wher !r is a line,and then sea ich there for A.

The image plan is IN-LNP. The implicit EQUAL test shows up right before the pattern

step. We used a representation claim about equality buckets to do this test. To lift this claim

(under the current analogy map) we search for .a representation claim with a consequence (IN—PL

X VI . We find and verify SP-RC1 (written in the course of solving problem 2). This gives us a

lifted plan



ANALOGY EXAMPLES Ill NON-OBVIOUS ANALOGY

~TO—OETERM 1NE IN-PLP2 (IN-PL X VI
(BIND Z)
(PATT ERN X PL (* ?Z *1) ;SP-RC1
(RESTRICT (Z) (LN Z ) )  ;rnap reE t r ic t i on
(PATTE RN Z LN (* V * ))
(RESULT TRUE ))

So we learn three things by solving this problem: first that the use of the “definition”

should be in backward chaining rather than forward chaining, and second the point and details of

the patch required to implement the new interpietation of IN-PL, and third that lines can appear

in the representation of planes. Now if

(IN-PL plane l ine)

is ever asserted , we know what to do.

Problem 3, Continued

Thus armed, suppose we are given the problem:

(FORALL (A B C P)
(IMPLIES (AND (PT A B C)

(PL P)
(IN-PL P A B)
(IN-LN (LINE A B) C))

(IN-PL P C)))

The current analogy map transforms this to a plane geometry problem

Given: (PT A B C)
(LN P)
(IN-LN P A B)
(IN-LN (LINE A B) C)

Prove: (IN-LN P C)

The justification for the TRUE result obtained reads

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~ 
~~

ANALOGY EXAMPLES 112 NON-OBVIOUS ANALOGY

1. ( IN—LN P A ) g iven
2. (IN-LN P B) given
3. (EQUAL P (LINE A B)) FINO-LIF~E evaluating (LINE A B)
4. (IN—LN (LINE A B) C) g i ven
5, (IN—LN P C) equality, 3, 4

When we lift this reasoning, we find that step 4 is no longer valid. We have

Si. (IN—PL P A ) g i ven
S2, (IN-PL P B) g iven
S3, (IN—PL P (LINE A B))  generated by evaluating (LINE A B)

The lifted step of the proof S~ is from image step ~ by the correspondenc e

IN—PL — > EQUAL when IN-PL is app lied to a plane and a line. The image proof step ~ was

produced as a result of evaluating (LINE A El) , so one suspects that lifted step S3 should be

generated under similar circumstances.

W e use our solid geometry expert S-MAKE-LINE to construct (LINE A B) noting the

possibility of a MISSING—POSTCONDIT ION bug, and use the one step deduction algorithm to supply

the rest of the proof

S4. (EQUAL L (LINE A B)) S-MAKE-LINE
S5. (IN-LN L A )
SB. (IN-LN L B)
S7. ( IN—LN L C) given ( image as Eert ion 4)
S8. (IN-PL P C) S-IS S5,SS ,S1,S2, S7

Since S3 was generated by a plan with (after in~erse mapping) a call pattern (LINE X VI , and the

call pattern for S-MAKE-LINE is the same , the conditions for MISS ING-POST CON DIT ION are

satisfied. The second-order definition of IN—PL (for this particular set of arguments) gives us the

one step deduction that (IN— PL P LI is true. Thus we patch the S—MAKE—L INE, and of course f ix

up the plan j ustification.

~~~~~~~~~~~~ 
- ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘ ~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -.__



r -

ANALOGY EXAMPLES Il~ NON-OBVIOUS ANA LOGY

(TO—F IND S-MAKE-L INE (LINE P1 P2)
(CONDITION (PT P1))
(CONDITION (PT P2))
(CONDITION (DISTINCT P1 P2))
(BIND LI
(BIND P1
(MAKE L LN)
(PATTERN L LN (~P1 ‘P2))(PATTERN *P PL (* P1 * P2 *1) ;PATCH
(PATTERN *P PL (* P2 * P1 *1) ;PATCH
(ASSERT (IN—PL P L)) ;PATCH
(RESULT L) )

Ah, what a crooked path we have walked . If no natural analogy is available, the analogy

process blithely uses an unnatural one to achieve new expertise.

PROBLEM 4 -- A failure of ana,lo~ y

We will briefly sketch one way that the analogy process can fail. We wi ll try to reason

about “Farmer and River ” world on the basis of “Tower of Hanoi” world

Farmer and River world: A farmer takes a fox , a chicken, and a bag of grain on a
journey. They come to a river , and find a small boat. The farmer can only fit one of
t he three objects in the boat at ore time. The fox cannot be left alone with the
chicken, nor the chicken wit h the grain. What sequence of movements will result in
the farmer and his three objects getting to the other side of the river?
Formall y Permitted two -ob jec: groups are (FOX , GRA IN). Sides of the river are SIDE1
and SIDE2. Initially FOX , GRAIN , and CHICKEN are ON SIDEI. We want them ON SIOE2.

Tow~’r of Hanoi world: this is the s-r ing version. There are three pegs (named PECI ,
PEG2, and PEG3). PEG1 has three rings on it (BIG , MEDIUM , and SMALL). With the
restriction that a ring may never be placed on a smaller ring, how can all three rings
be moved to PEG2?
Fo r mally Permitt ed two-ob ject stacks a re (in order from top to bottom)
(BIG , SMALL), (BIG , MEDIUM ), (MED I UM , SMALL).

The map formation algorithm maps the ON predicate to ON, objects of type SIDE to objects of type

PEG, and objects of type COMPANION to objects of type RING (this is all obvious from the semantic

template for ON).

From the initial configuration , it is clea r that

.~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : ~


~~-.-- - -- —~~ -~~~~~~~~~~~~ -~~~-----
_ _ _ _ _ _ _ _

ANALOGY EXAMPLES 114 AN ANALOGY FAILURE

SIDE1 -> PEG1

From the goal configuration, we can easily decidi~ that

SI OE2 -> PEG2

We now have three possible maps:

MAP1 tIAP2 11AP3
FOX -> BIG ~T-, BIG ~~~~~~~~~~-> M EDIUM
GRAIN — > SMALL GRAIN -> MEDIUM GRAIN -> SMALL
CHICKEN -> MED IUM CHICKEN -> SMALL CHICKEN — > BIG

If we use either MAP1 or MAP3, then t t e (inverse map) situation after the first Tower of

Hanoi expert move leaves the chicken with th€ fox. This is good for the fox, but not for the

chicken. Thus we use I’IAP2. Now look at the solution to the Tower of Hanoi generated by our

ex pert , and the inverse map of those movements , recalling that we prefer ign oring object maps to

double maps.

SMALL—>PEG2 CHICKEN->SIDE2
MED I Ur1->PEG3 IGNORE
SMALL—>PEG3 I GNORE
BIG—>PEG2 FOX->E IOE2
SIIALL—>PEG1 CHICKEN->SIOE1
MEDIUM—>PEG2 GRAIN->SIOE2
SMALL—>PEG2 CH I CK~ ->91 0E2

Sure enough, analogy gave us the solution! Thei why do we claim this example is a failure of the

analogy process? Simply this: after getting the solution we try lifting the plans which generated it.

This effort is a disaster!

Since we insist that analogy actuall y increase expertise , we have no choice; we must

consider this application a failure.

‘

~~~~~~~ 
. 

.

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
- -- - - 

~
. 

~~~~
- - . . - - - - - . -.- --— — --

LOGICS OF EXPERTS 115 FORMALISMS AND LOGICS

LO GICS OF EXPERTS

The purpose of this chapter is to dev€Io p a way to express the limitations of our theory

of analogy. We have seen examp les of the analogy process operating in four different pairs of

worlds. We now ask “Is there something special about these worlds that might allow this analogy

process to work here but not in other worlds?” To answer this question we will present a closure

claim: given a description of a world this clairr will tell whether or not that world can be either

the domain or image world in the analogy process. That is, we will exprt’ss the limitations of our

analogy process in terms of a limitation on the kinds of worlds it can be used on.

LIMITATIONS OF ANALOG Y

The analogy theory has two components: the horizontal , concerned with extending and

appl ying the analogy map and its inverse, and the vertical , concerned with transforming and

relating programs to proofs and proofs to programs. The horizontal component has been

discussed in preceding chapters , so we will say nothing more about it here. However , the vertical

component is fairl y algorithmic, and fortuitously lends itself to a rather interesting kind of anaIys~s.

The results of this analysis will include

1. A limitation on our ability to go from program to proof.

2. A limitation on our ability to go from proof to program.

S. A hierarchy of world complexity.

The third result is the most im?ortant On the way to this , we obtain results indicatin g

tha t various current research efforts could , in theory, be successful , while other efforts would (in

theory) be unsuccessful. We can also show that the world of geometry was a very good world in

which to initially study analogy . The second limitation gives us an indication that using resolution

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- &~~~~~. 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~


-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . -- . - -, - - . -~~~~~~~~~~ - ~~~~. .~~~~~~~~~~~~~~~

LOGICS OF EXPERTS 116 FORMALISMS AND LOGICS

theorem proving to do expert problem solving is a very bad idea.

SUMMAR Y

We will develop a techni que by which we can characterize the power of an expert

problem solving system such as the geometr y formalism introduced in chapter [GEOMETRY

WO RLD,LANGIJAGE FOR PLANS]. We will also present a characterizat ion of the power required to handle a

world. These two characterizations are in the same terms, so we can compare them to tell whether

the formalism in principle can handle the world, and similarly whether a world needs in p rincip le

a less powerful formalism than the one proposed.

The point of all this is twofold . First , as outlined above , we can derive limitations to any

analogy process using proof-theoretic techniques . Second , we can make a philosophical statement

concerning the relative merits of problem solving theories (in a particular world). Given two

equally strong theories (i.e., both “do” as much), we can state: The better theory of p roblem solving

uses Me weaker fo rmalism. To believe otherwise is bad science. If some expert problem solver does

not handle aspects of a world that could in princip le be handled, then we can similarly criticize

that effort for being too timid.

DEFINITION OF FO RMALISM

Of ten we would like to say that some programming language is “more powerful ” than

another . This claim is usually not true due to annoying universal turing machine arguments. For

exam ple, we would like to claim that a theorem prover along the lines of (say) Ullman ’s [Ui]

geometry theorem prover is not as powerful (in an absolute sense) as a resolution theorem prover.

By this we mean that from the same “given ”, the resolution theorem prover would obtain a proof

while the other would not. But since both are w~itten in a language powerful enough to produce a

- .~~~
,

~~~~~~~~~~~~~~~~
_
~~~~~~~~~~~~~~~

_ ‘
_
~~~: 

a — - 
.----~~~~~ 

- -



r _ _ _ _  _ _ _ _  

. . - — - .  

LOGICS OF EXPERTS FORMALISMS AND LOG ICS

universal turing machine, they can simulate each other, hence our claim must be false.

A formalism might be thought of as i way to enforce a gentkman’s agreement not to

make un iversal turin g mach ines . A progra mming language , in add it ion t o providing

programming constructs , suppl ies a philo5oph y of techniques. If we can extract a promise to “play

the game”, we can make interesting (anc valuable) claims about the limitations of the language

w hich would be falsified if use were made of that language’s universal capabilities.

Since we wish to restrict what can be dr n e  without (significantly ) affecting /~ow it is done,

the proper place to begin is with plans and not code. By placing rather severe iestri ct ions on the

nature of plans and their jus tification , we can limit the power of a formalism to the point where

important observat ions cannot be obfuscated by :;ophomor ic universal turing machine arguments.

That is , by considering a form alism to encompass a programming langua ge, a plan

language, and a plan justification lan~ ua ge. we will be able to show that , for instance , the

geometry formalism introduced in chapte~ [GEOMETRY WORLD LANGUAGE FOR PLA~’~S] is strict ly weaker than

a resolution tneorem prover , not because jou coL ldn’t write code for the resolution theorem prover,

but because you couldn’t write a plan for that code.

PROBLEM SOLVING F ORM AL I SM S CORRESPOND TO LO GICS

Suppose we have a formalism like the ne used earlier for geometry. It had a single data

base into which only true assertions were entered These assertions had only two possible forms:

(predicate obj 1 obj2 . 0bj1,)

or

(NOT ( predicate obj 1 obj 2 , obj~,))

We remarked that this formalism had some limiiat ions in that it could not prove some theorems in

the classical propositional calculus . The “reasoning by cases ” examp le (using single letters to

represent assertions of the form above)

~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
. ~~~~~~~~~~~~~~

~

,

- . -,-

LOCICS OF EXPER TS 118 FORMALISMS AND LOCICS

REASONING BY CASES
GIVEN:

(IMPL IES A (AND B C))
(IMPLiES B (OR E F))
(IMPLIES C (OR E 0))
(1FF F (NOT 6))

PROVE:
(IMPLIES A E)

cannot be proven, since we need at some time to assert F and at some other time assert (NOT F) .

The restriction to a single data base implies that this course of events will result in both F and

(NOT F) being in the data base, hence the data base will be inconsistent. The alternat ive , asserting

(NOT E) and deriving a contradiction , is a clear violation of the edict “keep the data base

consistent .”

Coupled with an observation that the formalism will apply modus ponens automatically,

the above suggests that the formalism imp lements some kind of logic , but not the classical

propositional calculus . One mig ht now natwally ask “What other kind is there?” We can

axiomatize the classical propositional calculus as follows (Kleene [Ki], page 82):

CLASSICAL PR EDiCATE CALCULUS
Inference Rule: A , (IMPLIES A B)

~~
- B

la. (IMPLIES A (IMPLIES B A))
lb. (IMPLIES (IMPL I ES A B)

(IMPLIES (IMPLIES A (IMPL IES B C)) (IMPL IES A C)))
2. (IMPL IES A (IMPLIES B (AND A B))
3a, (IMPL IES (AND A B) A)
3b, (IMPLIES (AND A B) B)
4a . (IMPLI ES A (OR A B))
4b, (IMPLIES B (OR A B))
5, (IMPL IES (IMPLIES A C)

(IMPL IES (IMPLIES B C) (IMPLIES (OR A B) C)))
6, (IMPL IES (IMPL IES A B) (IMFL IES (IMPL IES A (NOT B)) (NOT A)))
7, (IMPL IES (NOT (NOT A)) A)

According to Kleene, replacement of axiom 7 with

7* (IMPLIES (NOT A) (iMPL IES A B))

results in a new logic: intuitionistic propositional calculus.

Intuitionistic logic insists that proofs be constructive. One way in which to enforce this

- - - - -. .-- — — .

~

-
~_~_~~1_i -i±~~~~~

I ,
-
~~~~~~~ 

.r ~~~~~~~~~~~~~~~~~~~~~~~ -.~~——-.-.-- - . .  14



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-. -- .-

~~
-

~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ --- . -. ..

LOGICS OF EXPERTS 119 FORMALISMS AND LOGICS

edict is to disallow “proofs by contradicti on.” Another is to disavow the princip le of the excluded

middle

(OR (NOT A ) A)

This can be seen to be equivalent to axiom 7 above. We can now ask “Does the geometry

formalism implement intuitionist ic logic? ” We w i )  see that the answer A s “No.”

It is evident that axiom 7 is not implemented , simply because double negatives cannot be

asserted. Axiom 7., on the other hand , is su pported (implemented) because we insist that the data

base be ke pt cons istent. Clearly Ia , lb . 2, 3a , ~b, and 5 are imp lemented. However , ‘Ia and 4b are

not, since disjunction cannot be as~e: :ed N eith er  is axiom 6 imp lemented. A pparently, the logic

which the geometry formalism implement s is not even as strong’ as intu it ioiiist ic logic.

One might ask about other problem solving system s , and the logic that corresponds to

them. Suppose we employ a resolution theorem prover as the basis for an expert problem solver ,

as was done, for exam ple, ifl QA3 and STRIPS. Then the logic assoc iated with these formalisms can

easily be seen to be classical logic.

Suppose we have the geometry formalism , but a llow facts to be deleted from the data

base. Then the forma lism corresponds to some kind of modal logic. It might seem that in this

particular case we would gain some ability: the reasoning by cases problem above which could not

be solved by the geometry formalism cou~d be solved if we allow assertions to’be deleted from the

data base. The reasoning, which is incorre ct , i~oes somethin g like this: “First we assert F, then

determine that :his ~roves E, then delete t he as ’ .ert ion that F is true. ” The reasoning is incorrect

because after assertin g F we make subsidiary deduct ions based on F being true , and a lthough F is

subsequently deleted , these subsidiar y de~uctions are not , (since de leting F does not delete those

facts asserted after F was asserted ) leavj ng the potential of an inconsistent data base. We will

return to this point short ly.

-1

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 
.-- - .

.

,
~~

-.
.-

.-
~~~ 

~~~~~~~~~~~~~~~~ 

,
.—_

-• . : . .

- .:~~~~~~~~~ .. ‘

LOCICS OF EXPERTS 120 FORMALISMS AND LOGICS

NEGATIONLESS INTUI TIONIS TIC LOGIC

We can easily verif y that the following will be supported by the geometry formalism:

NEGAT IONLE~;S INTUITIONISTIC LOGIC
Inference ru les:
P. 0 I- (AND P 0)
P. (IMPLIES P 0) 0
R , (IMPL I ES P 0) (IMPLIES F (AND 0 R))

Ax ioms:
1. (IMPL IES P (AND P P))
2. (IMPL IES (AND P 0) (AND 0 F))
3. (IMPLIES (IMPL IES P a) (IMFLIES (AND P R) (AND IJ R)))
4, (IMPLIES (AND (IMPL IES P 0) (IMPL IES 0 R)) (IMPLIES P RI)
5. (IMPL IES (AND P 0) P)

This set of inference rules and axioms form a logic extensivel y studied by Griss [G6)

called negationless intuiti onist ic logic.

FURTHER ABSTRACTION -- LOGIC OF WORLDS

By going from a formalism to the logic corresponding to that formalism , we have

obtained a certain degree of abstraction. We s~all now take one more step. We want to develop

the notic~n of “logic needed by a world.” To do this , we show (below) that the “contents ” of a world

are somewhat independent of the axio rnatization of t hat world (for the relation of models to

worlds, see [NOTE 11]).

We need to clarif y the sense in which i world is handled by a set of axioms and a logic.

We can characterize a world by listing the style 1 of questions we typicall y ask of the world. That

is, one geometry world is character ized by questions of congruence and incidence. Another

geometry world (which we have not discussed before) deals with questions concerning compass and

straight-ed ge constructions. In the blocks world we want to answer questions of planning, position ,

and support. In analysis we are concer ne~1 with conver gence (in various ways). The question “can

LOGICS OF EXPERTS 121 LOGIC OF WORLDS

an angle be trisected with compass arid stra ight-i~dge?” is not part of geometry world (as taug ht in

high school). The usual proof that the answer is “no” makes extens ive use of group theory (see

Fraleigh [F4]).

The notion of a world being handled is admittedly fuzzy. We can pin the notion down

somewhat by associating some number 0!
’ milestone proble ms with a world. Then a world can be

handled if its milestone problems can be solved.

Griss demonstrated that wit h respect to his axiomat iza t ion of Euclidian geometry,

negationless intuitionisric logic was sufficiently powerful to derive the milestones associated with

classical ax iomatic geometry [G7]. We must now ask if we can make this claim with respect to our

(or, rather, Hilbert’s) axiomatization. For an ans.~er we have

E~~UIPOTENCY THEOREM. Suppose a formalism with corresponding logic L
implements a world with axt omat izat ion A , and we have a proof in logic L that
(IMPLIES C P), and that intuit ioni.;tica lly (IMPLIES A G). We can then prove P in
the forma lism with an implementation axiomatized by A.

INTUITIONISTICALLYA _ _ _ _ _ _ _ _ _ _ _ _

BY WAY OF FORMALISM LOGIC I$ WITH LOGIC L

$ INTUITIONISTICAL LYp 4 p

THE DIAGRAM COMMUTES

For examp le , SU))~ OS~ we want to know if the geometr y formalism is expressi ve enough
to a llow us to write an ex 1~~rt ~eui’~~t : y problem solver , How could it not he? Suppose there were
a resul: P that cou ld he pro~ cl1 om Hdhcrt ’s axioms (ca ll these axioms A). If we could not get
our expert to prove P, t hen we would be in trouble.

Suppu~e .~~~‘ ~nu ’x Griss l a s an axi o miza t l on C (which happens to be .ilmost identical to
Hilberr ’s~ for ~ l i i c h ~h~ : is a ne~, a~~on 1c s c intui tlofl isti c proof of A. That is . (I M~’L I ES C P1 by
ne,~’ a:ior ’ ’~ s ‘ 4v:c j ri ~~ C O~~~i(Fiu ll y ~up ~~ri~ ’ :h.~ H u ber t ’s a.sio ms A rn~’ 1v G r i ss ’s ax i oms C
n uvioni~:ic ’~1ly (‘h. ’~ ~r) ~~~~n .~~~‘ :an us” ‘he eq uu pote ncy ‘h~~~ ru to ~ua: ~n~~t’ th a t ~,e can

cu ns : : . uc t i J ~c rams un uur ~o u u .d H :ha~ .~ull i t t us J : ’ .
~~
P f rom A ~u :he~ nore , a cor ol lar y of

oe e u upater ~: ~~ ~ra te lls us th. ,: ‘he iro~ : .~ I
-
~~~ an he co nst: ucted a l gcr ut hm icali~ ( for  n s :

by rn na logy process ilon b :i -u ’ ,r~i~s we have ~u e ~:eJ)

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- ~~

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

“ ‘

~~~~~

‘

~~~~~ 

‘ ‘  —---------- —---— - 
_ _ _

LOGICS OF EXPERTS 122 LOGIC OF WORLDS

What this equipotency theorem says is that we can discuss the logic required to “handle”

a world independentl y of both the formalism to which the logic corresponds and the

axiomatization of the world (up to intuitio nistic equipotency ). If we select some minimal

axiomatization of a world , then the logi c required by that world is the weakest logic required to

solve the appropriate milestone problems .

The proof of the theorem is trivial: simply prove C from A by intuitionistic means.

Then write the implementation of C in the formal system , using the proof obtained as j ustificaion.

[There is a bug in this proof which we will correc t short l y]. Since L corresponds to the formalism ,

the formalism is now ca pable of proving P.

TWO APPLICATIONS OF THE EQUIPOTENCY THEOREM

Sussman suggests that early ARSE may implement negationless inruitionistic logic. ARSE is

certainl y that powerful. Jon Doyle [DI] investigued the possibility of writing a geometry theorem

prover in early ARSE. We know by the equipotency theorem that this effort could have been

completed successfully. Doyle was , of course , more interested in controlling the deduction process

than proving theorems per se.

While on the sub je ct of efficiency, we must make a confession: we cannot , of course ,

make any claims about the efficienc y of various logics , nor compare the efficiency of one

formalism to another on the basis of their logics. Nonetheless , I conjecture that the weaker the

logic, the more efficient the implementation.

If Doyle had been investigating an analysis theorem prover , we know that t he effort

would have been unsuccessfu l since we know that intuitionistic logic is not sufficientl y powerful

for this task (see Heyting [HI]).

~~~~~~~~ 

I ‘..
— . ..

,“-, ..,,‘. ~~~~~~~~ .,

LOGICS OF EXPERTS 123 LOGIC OF WORLDS

A FALSE VERSION OF THE EC~UIPOTENCY TH EOREM

Suppose, in the statement of the equipotency theorem , we were to claim that classically

(IMPLIES A C) . Surprisingly, this falsif ues the theorem’ The reason is exp lained by ~ leene (1(1,

chapter XV , section S2, particularl y page 509] . whic h we restate:

A formula is said to he rec :. r : ive! ’, realizable if it is effecti vely computable. If A is
recurs ive ly realizab le and C can be deduced from A intuit ionist icall y, then C is also
recursivel y realizab le. Furthermore (and this is important in wh a t fol lows) the
rea lization of C can be obtained fro.ii the intuit ionistic proof.

If the proof of (IMPL IES A C~ is no-i-intuitionist ic , then a ll bets are off. The reason

has to do wit h the proof being co nst ruc . l~ an existence proof is not constructi ve , then one

cannot derive a function w hich will compute he object cla imed to exist f rom the proof. (Indeed,

such a function ma y not even be recursivel y realizable , btit this is nor the point.) W ith respect to

the equipotency theorem , we can no longer guarantee that we can implement the “axioms ” C in

terms of functions f rom A. Thus, we wi ll be bitten by the indicated bug. Similarly, if the proof is

intuitionistic , we are guaranteed of a way of realizing C. This note fixes the proof above.

Corollar y : C can be realized algorithmically.

A NEGATIVE RESULT

Analogy requires an ability to transform proofs to plans to code. This is used to

associate “bugs” in proofs to “bugs ” in code , and to associate proof “patches ” to code “patches.”

One might ask if this is, in theory, a lways possible. The answer is “No.”

The reason is given above -- in order to produce an ef fec t ive computation f iom an

existence proof , that proof must be intu itlonist ic. Therefore , if some exper t produced a result for

which we could only obtain a non-constructive proof (because the underlying logic of the expert

~~~~~~~~~~~~~~~ 
f,- --. .  ~~~~~~~~~~~~~~~~~~~~~~~~~ - - —- .—~~- - ------- . . - - _._lII~



~~~~~~~

—

~~~~~~~~~~
, 

- 
. 

—- - -- — •— T : ~~~~~~~~.: 
-

~~
- --- -- -- -—------. . -~~~~~ 

-. 
~
- —

~~~~

LOG ICS OF EXPERTS 124 LOGIC OF WORLDS

was not intuitionistic), t hen any analogy process along the lines we have suggested would be unable

to use t he lifted non-constructive proof to aid in plan or code generation.

Althoug h very unlikely, there may be a logic between intuitionistic and
classical logic such that proofs in this logic can “generate ” rea lizations. That is, Kleene
proved

intuition isti’: -> realizable
and further showed that

not (classica~ -> realizable)
We are now claiming the converse:

realizable - intuitionistic
but this might not be true.

The ana logy process cannot be guaran’eed to work if the problem solving forma lism has

classical predicate calculus as its corresponding logic. In particular , analogy cannot in principal

always succeed if the problem solving formalism is based on a resolution theorem prover.

I believe the above is the first argument against resolution which involves neither

efficiency considerations nor psychological spzculat ions ! If a problem solving forma lism has

classical predicate calculus as its corresponding logic , then under the inverse analogy map we may

find ourselves with a non-intuitionistic proof , an~ thus not be ab le to translate the proof (even if it

is still correct) into procedures.

A FORMALISM ’S CORRESPONI)ING LOGIC MAY BE MODAL.

As we remarked earlier , if a formalism allows facts to be deleted from a data base , then

we will require some kind of modal logic as the logic corresponding to the formalism. It is not

strict ly the case that the world must be descr ibed by a modal logic. McCarthy and Hayes[M5)

suggested that the “situationa l calculus ”, based on the classical predic ate calculus , be used to

describe worlds in which things “change. ”

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~.~~~~~~-~ —--—- ~
—.-. . -~~~~~ - — ,

LOCICS OF EXPERTS 125 LOGIC OF WORLDS

Like all good ideas, the idea behind the situational calculus is fairly simp le. To each

predicate and function we attach a “state vai’iabl~” (also called a situation tag) . For example, in the

Towers of Hanoi one might make the claim

(FORALL (X S) (IMPLIES (ON-PEG P1 R2 S) (ON-PEG P1 R2 (MOV E-R ING )( P1 5 ) ) ) )

w hich is supposed to indicate that moving a ring onto some peg does not result in any rings

already on that peg being removed. The “S” is a state variable.

This approach is less than elegant. The difficulties are well-known , and many were

pointed out in the McCarthy and Hayes article introducing the approach. The first difficulty is

known as the “Frame problem.” In wo r lds wi th  several functions on states (or even one state

change function), one is forced to deal explicitly with what does not change, a s well as what does.

Another difficulty arises in describing frame shift information . For examp le, suppose Robbie (a

we ll-dressed robot) in his top-hat , spats , and yes:: goes outside. It is clear in this circumstance that

Robbie’s top-hat , spats , and vest are also outside, since any state change involving Robbie’s location

also affects his attire. The situational calculus is not well suited to describing this type of world.

For a further discussion of this problem . (and a. solution) see Minsky [M7]. The two difficulties

are sides of the same coin. The Frame p roble m concerns getting’ rid of facts no longer valid, and

the Shift problem concerns determining what new facts are valid.

Rather than remaining in the class ical predicate calculus, we could introduce modalities.

McCarthy and Hayes discuss this possibility. Instead of the above statement in the situational

calculus, one wou ld have the following statement in some sort of temporal modal logic:

(FORALL (X )
( IMPL IES (ON-PEG P1 R2)

(AFTER-MO VE-RING X P1 (ON-PEG P1 R2f l ) )

If the formalism su pports the notion cf multip le-CONTEXTs (as above), then the logic

corresponding to the formalism will necessarily be a modal logic (or, equivalently, the forma lism

~~~~~~~~~~~~~~~ ~~~~~~~~ ~~ ~_~~_~~~~_t ~‘~ -±4~I.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _


LOGICS OF EXPERTS 126 LOGIC OF WORLDS

will use situation tags). The important question (for us) is “Does the ana logy process break down

on formalisms whose corresponding logic is modal? ” The answer is not clear at this time.

Ste pankova and Havel[S6] investigate i the relation between a formalism implementing

“deletion ” and the situational calculus. Their terminology is “image space ” and “situation space .”

Their result (their second correspondence theorem) indicated that a “solution” to a problem in

image space (i.e., a sequence of operations) exists iff there exists a (classical predicate calculus)

proof that the solution exists in situation space. That is, the proof that a solution exists can always

be converted to a sequence of operations which solve the problem, and vice versa. This result is

not at odds with our discussion above , due to a restriction on t he axiomatization of the image

space (essentiall y eliminating quantified situations). As they remark , this ax iomatizat ion is (almost)

always infinite.

ASSOCIATING LO GICS TO W O]~LDS

We pointed out above that there i~
; a sense in which a wor ld “requires ” a logic,

specificall y the minimal logic that can “handle ” the domain. We also saw that , while one can

remain in predicate calculus , it is often convenient to use modal logic to describe a world.

We would like to claim that some world “requires” a modal logic. Such a claim would not

be at odds with McCarthy and Hayes. Yes, t he rituational calculus is sufficient. But it may not be

necessary. Specificall y, there is a rather natural -iierarchy of modal logics (discussed below). Then

it is reasonable to claim that a dorr :~n “requires ’ some modal logic (but not a stronger one) in the

sense that the logic can handle the domain.

::: i..~ . ~~~~~~~~ -
r -. —~——.-_ .~~~ —.....—~~~~~ . ,~ , ,,


~~~~~~~~~~~~~ T~~~~~~~~~~~
’
~~~

’ ..-.-- -
~~~~~~~~~~~~~~~~~~~~~~~~ 

. — - - - -. - - - .—

LOG ICS OF EXPERTS 12’? LOGIC OF WORLDS

HEIRARCHY OF WORLDS

We have seen that we can associate a formalism with a logic. We have also seen that we

can associate a logic with a world (via the equipotency theorem). Finally there is a natural

hierarchy (induced by potency) associated with logics.

This gives us a hierarchy of problem worlds. Near the bottom we have worlds which

can be “handled” using negationless lntui :ionistic logic. Geometry is such a world , which indicates

that from the stand point of minimizing compledty the choice of geometry as an initial world in

which to explore analogy was correct. If we introduce op erators (like AFTE R—MOVE—RING in a tower

of Hanoi expert ) that in some sense “chan ge the state of the world”, then we will require some kind

of modal logic formalism.

Chained modal logics have a sequen e of CONTEXTs , wit h only one “valid ” at an y

time. It seems to be true that chained modal lcigics are no more powerful than their non-modal

“base” logic in the sense that if one coulc prove (IMPLIES P 3) in the chained modal logic, then

one could prove it (with the same proot ) in the “base” logic. Tower of Hanoi only requires a

chained modal logic, as does (apparentl y) the blocks world in its simple version [W3][Fl].

Within chained modal log ics (which aie usually thought of as temporal modal logics), we

can distinguish two varieties: “memoryless” and those with PLANNER-sty le backtrackin g. Tower

of Hanoi clearly only needs the “memory less” vil’iet y, whic h allows the state to change, but then

prevents return to the old state (except b) doing an operation which turns out to be the inverse of

the operation just performed). The blocks woi ld , on the other hand, was originally thought to

require backtracking.

The difference between memor’iless chained modal logics and chained modal logics with

backtracking is this: if we can delete an assertion and all assertions made since then according to

com putational history (i.e., chronolo gical backtracking ), then we have implemented a kind of

backtracking . There is another , which might be termed dependency bac A ’trac k fng and is used by

~. . _ _ ‘ ,t _~~~~~~~ ~~~~~



_ _ _  T~ -~”-~~~~~ :T ‘ 

LOG ICS OF EXPERTS 128 LOGIC OF WORLD S

Sussman, Doyle , et. a!. [S7][Dl].

As we pointed out above , sim ply having the ability to delete assertions does not (in

general ) increase the power of a formal ism to the extent that the “reasoning by cases” exa mple can

be solved. On the other hand , we can solve this problem with backtracking, provided disj unctive

assertions are su pported by the formalism.

1.ASSERT B
2, ASSERT C
3. ASSERT (OR E F) *

SI) I I t
4. ASSERT F 9, ASSERT E
5. ASSERT (NOT C)
6. ASSERT (OR E G)*
7. ASSERT E
8. DELETE 4

Of course, at step 4 we would have needed to try proving (NOT F) to insure that the

data base would not be inconsistent when we made the assertion. Nevins [Ni] describes this

approach in more detail .

A more com plex modal logic , “tree modal logic ”, allow ex p loration of multip le

CONTEXTs. Fahlman ’s [Fl) blocks world pr gram used CONNIVER’s multiple-CONTEXT

capabilities. Another use of more complex modalities occurs in describing “belief” systems. These

modal logics seem to be more powerful than thei~ 
“base” logics .

Another way to make the logic more complex is to introduce the BEFORE modality

AO
/\

O C

, 1~ ± ~
— .  — --.. -- - . - - . --- - - -----—-—-.



LOCICS OF EXPERTS 129 LOGIC OF WORLDS

In CONTEXT A we might ask “what would have happened if BEFORE X (i.e., in CONTEXT B) we had

done V (i.e., what is true in C)?” One sus pects t iat “common sense” reasoning may demand logics

with BEFORE modalities -- so a “common sense” world would have been a very bad choice as an

initial world in which to study analogy.

CLAIM OF CLOSURE

We claim to have achieved a solution to analogy problems between worlds that require

no logic stronger than negationless rntuthonjstic logic. The reason for believing this claim is that

such a world can be handled in the geometry forma lism (by the equipotency theorem). This claim

does not imply that all the algorithms described in this thesis are free from combinatorial

explosions; the map formation algorithm is particularl y sensiti ve to the number of types and the

number of “distinguished” objects of each type.

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  — - —



~~~~~~~~~ - - - . - - -- . .  - , — -. , — - — - .— - .~~~—.. -~~~~~~~~~~-- -

FUTURE WORK 130 PSYCHOLOGICAL VALiDATION

FUTUR E WORK

PSYCHOLOGICAL VALIDATIO N

We have not concerned ourselves with the psychological validity of our analogy theory.

We feel that first we must answer the question ‘How ran we get a machine to learn by analogy?”

Only then are we in a position to ask “Is it possi le that people learn by analogy in a similar way?”

George F. Luger [L3~ reported some preliminary results of a study to determine what (if

any) effect the solution of a problem had on the subsequent solutio n of a similar (in this case,

isomorphic) problem. We will look at these results rather carefully.

The two tasks Luger used were the four ring Tower of Hanoi peoblem, and the Tea

Ceremony. The Tea Ceremony playing mat is shown below. Four tasks:

FF: feeding fire (least noble)
SC: serving cakes
ST: serving tea
RP: reading poetry (most noble)

are initially performed by the Host . The Ceremony is a ritualistic dance in which tasks are

transferred from one person to another according to two rules:

1. A person may only give up the lea ;t noble task they are performing at the time .

2. A person may take on a new task providing it is not more noble that the least noble

task he is already performing.

The Ceremony is comp leted when the Youth is per forming all four tasks.

HOST YOUTH ELDER

FF SC

ST RP

L ~~~~~~~~•



FUTURE WORK 131 PSYCHOLOGICAL VALIDATION

This problem is isomorphic to the Tower of Hanoi (see chapter [ANALOGY EX A M PL ESAN

ANALOGY FAILURE]). Luger reported the results of ~n experiment imvolvin g two groups of sub jects.

Group I was first given the Tea Ceremony, then Tower of Hanoi. Group II was f i rst  g iven Tower

of Hanoi, t hen Tea Ceremony. Both groups were given ro y s (like the above mat) to work with.

They were told that they could , if they wished, reset the toy to start over.

Timings, and number of moves were recorded , along with the standard deviation (s).

GROUP I TC time 518 TOH time 149 TOTAL rime 667
19 sub jects s=366 s”125 s=38’?

moves 101 moves 40 moves 141
s=60 s= 2~

GROUP II TOH tim e ~99 TC time ~C6 TOTAL time ~~5
23 sub jects s=2i0 s=223 s~3C:6

moves 75 move~. 66 moves 141
s~33 5=33

Luger then reported that times for T~a Ceremony were significantl y different for both

groups (at .03 confidence level) and the times for Tower of Hanoi were also signif icantl y different

for both groups (at .01 confidence level). Similarl y both groups used signif icantl y d i f ferent

numbers of moves. Luger then concluded that :;omething was learned by doing the first problem

that could be “transferred ” to the second. By definition , transfer is accomp lished by “reasoning by

analogy.”

OUR ANALYSIS OF LUGER ’S DATA

In what follows , we will be using a confidence level of .05 (which is admittedl y liberal)

giving a critical value for Student ’s T tes : of about 1.68 (it is 1.689 for 36 degrees of freedom , 1.684

for 40 degrees of freedom , and 1.681 for 44 degrees of freedom). Note: we are asking if one score

~ 

_ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -.- , , . - , - -~~~~~~~~~~~~~~~~~ 

FUTURE WORK 132 PSYCHOLOGICAL VALIDATION

is better than another , not w hether they are merely different (which wou ld give a lower t-test

critical value).

We ask the following stattstical questions:

I. Did Group I do better on TOH? i=40 , t~4.559. Yes.

2. Did Group 2 do better on TC? v~.40 , t=2.31. Yes

These are the two answers which led to Lugar ’s conclusion. However , i t is easy to see

t hat these are not necessarily the proper question.;! Consider: if learning fry an a log ~ did occur , t hen

we expect to see some improvement w ithin each grou p. This means we want to ask

3. Did Group I improve on its second problern~ v=36, t=4.16. Yes.

4. Did Group II improve on its second problem? V =44, t=l .~i6. NO!

That ’s ver y surpris ing. Evidentl y there was reasoning b 1 ~na!og~ in only one direction.

Wait. Maybe (for some obscure reason), TC was j ust harder than TOH.

5. Did Grou p I do worse on their fi; st problem (TC) than Group II on theirs (TOH)?

v=40, t=i.255. No.

6. Did Group II take longer to do bcth problems? v=40 , t=0.3’17. No.

Having thus performed a two-way analysis of variation , we observe that the followin g

con jec ture is supported by the evidence:

The solution mechanism generated by the TC problem was immediatel y appli cable to
TOH. The solution mechanism generated by TOI-I was only marginally app licable to
the TC problem. Obtaining the ~.olution mechanism for TC is marginally more
difficu lt than obtaining the mechanism for TOH.

J

FUTURE WORK 133 PSYCHOLOGICAL VALIDATION

EXPLANATION OF RESU LTS

Simon [S4] gives several different algorithms for solving Tower of Hanoi problems. We

wi ll look at two of them (the target peg for these problems is peg 2):

I. Goal Recursion Strategy. This ~mploys the concept of a pyramid. Originally a

4- pyramid is on peg 1. To move an n-pyramid from peg A to peg B, first move an

(n-I)-pyramid to peg C, then move a ring from A to B, t hen move an (n-l)-pyramid

from C to B.

2. Move- pattern strate gy . On odd-numbered moves , move the sma llest disk (which is

necessaril y movable). On even-num)ered moves , move the next-sm allest disk that can

be move d (it can only go one place). The smallest disk moves in a constant direction.

I --> 2 --> 3 --> 1 if the number of disks is odd

1 <-- 2 <-- 3 <-- 1 if the number of disks is even.

Failure to note the “kicker ” at t he end of the move- pattern strat egy will result in

successful ly moving the rings, but to the wrong peg. That the target peg was selected ahead of

time is an extremel y bad feature of the experiment as it served only to add noise to the result.

One sus pects that the large standard dev ia t io n reported ~s due more to t his feature than to

differences in individual abilities

With the goal ~ec urs ior str ~ :~~ ,, C ni:~n1s on n i t : r c :u ,~ ‘~~ lineai ly with the number

of r~n~ s , whe rea s the move-oa:: e : n s ::a~~~y r~a ,~ s a constant me - o; ~~~~~ On the other ha nc~,

the ~uvP - p .~ .~r r str ~i:~~ y as 1i erc ~~~: 1~~ ~,
dr iven . : e p i : ng a ‘toy ” where ~c a l recurs ion does not.

For our pur poses , the im~. r ~~n: di~ ference between the two s t r a te g ie s is ;hat the

move-pattern strate gy requires a predicate FREE-TO-MOVEP which must be easy to compute.

~~~~~~~~~~~~~~~~~~~~~~ r - —

— . ~~~~~~~~~ .-~i.. 
. ,. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
“~~~~~~~~~ ., ‘ ,r~’”~~ ‘a”

- ______.—.- -

Fr-. ~~~~~~~~~
. — . .:=:~~. ..-.~~-~

- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-.-..---- -.—---.- .---- - .-
~~~

-—--.- - ,,

FUTURE WORK 134 PSYCHOLOGICAL VALIDATION

Goal recursion requires the notion of “ordered subsets ”, or “pyramid.”

We will assume that Group I (TC first) learned the goa l recursion algorithm while

Group II learned the move-pattern strat egy (due to the ease of comput itag FREE-TO-MOVEP).

This assumption is not supported by the exper imental results. Indeed , Luger does not appear to

realize that more than one strate gy is available . Nonetheless , I do not find this assumption at

variance with my intuition.

If this assumption is cor rect , then our theor y of analogy predicts that there will be little

observable improvement in Group II’s perforrn~ nce, whi le we should observe much improvement

in Group I. If analogy is to lift the move- patter n strategy to the Tea Ceremony world , it must first

lift FREE-TO-MOVEP. That predicate is relat ively expensive to compute in TC world. This

will block the analogy process , at least tem porarily. This blocking eff ect will naturally be reflected

in the time taken to solve the problem.

No similar problems are encountered in lifting goa l recursion to Tower of Hanoi world.

Indeed, some bonus is given since “pyramids ” can (presumably) be identified more readily.

Recall that our analogy process is not satisfied with a lifted solution until it has been

justified, either by lifting justi f ications from the image world , or by generating them in the

domain world using one step deductions . We might speculate that a sub ject wi ll become aware of

a solution (and the analogy which obtained it) only after that solution’s jus tification and plans

have been lifted. If this speculation is correct , our t heory of analogy w ifl makes two more

predictions. First , t he sub jects wil l not realize the problems are identical until they are “wit hin

sight of the solution.” That is, they will work on the problem, and then ex perience an “Aha !”

towards the end. Furthermore , those sub jects in Group II who do no better on TC than TOH will

not notice the isomorphism at any point.

~~~~~~~~~~~~~~~
‘_ ‘~~~~~ —-~~~~~~~~~~~

-

~
-

-~~~~~~~ 
=

~~~~~~~~~~~~~~~~ i~~~~ _~~~~~~~
½:

--— - - . -~~~~~~ ----.~~~~~~~~~~~~ -- ..—-,.,_ _. -—-

FUTURE WORK 135 IMPROVING ANALOGY

IMPROVING ANALOGY

In examinin g the analogy process , we can see at least four areas which require further

development before analogy can become trul y useful.

MAP EXTENSION and DEPTH -FIRST SEARCH

After appl ying constraint relaxat ion , the ma p formation and extension algorithm

embarks on a depth -first search on the tree of partial maps. In general , w hen one uses a

depth-first search , it is because one has nothing better to do.

Presumabl y, when a partial map is rej ected by the image semantics , t he way it is rejected

indicates what our next guess should be. Indeec., in the TTT examp le we observed two modes of

failure:

1. An assertion could not be mapped.

2. The image assertion was false.

We used this information to iso late the highes ’ node on the partial map tree which caused the

error .

In a similar manner , we sus pect that careful failure anal ysis should indicate not only

where t he error occurred (in the partial map tree), but w hich would have been a better choice.

Althou gh we can see a glimmer of how this might wo rk in the TTT examp le, we don’t have

enough clear examples to formulate an algorithm.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  _ _  . — -~~~-.  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FUTURE WORK 136 I M P R O V I N G ANALOGY

PATCHES INTO CODE

We have not reall y come to grips with the problem of inseitin g patches into code,

a lthough an obvious simple-minded trick was mentioned in the blocks world examp le.

The relation between plans and world descriptions is always made exp licit. The same

cannot be said for code and plans. Although we can tell when code has comp leted a plan step, we

cannot tell (in general) when that plan st€ p was started. We certainly have no explanation of why

the particular ordering and interleaving of plan steps was chosen.

The commentary indicated above may not be needed to insert patches into code; we may

be able to derive the required information from code and plan. On the other hand, ev en if we

had all this commentar y we wouldn ’t know what to do wit h it. Clearl y more research into this

aspect of the analogy process is required.

MODAL LOGIC

Op erators might be thought of as predicates on predicates. We might write the statement

“Adults don’t cr y over spilt milk ” as

(FORALL (X Y) (II1PLIES (AND (ADULT X)
(I11LK Y))

(AFTER-SP ILLED Y
(NOT (CRYING X l))))

where AFTER —SPILLED is an operator.

By design, none of the examples we have seen required t he use of operators. In chapter

[LOGICS OF EXPERTS , LOGIC OF WORLDS] we discussed modal logic and its relation to operators. It is clear

that most interesting worlds use operators , so €xte nding the analogy process in this direction is

important.

The map formation and extension a~gorithm would deal with operators after a little

4 ‘-

.
.

* —.- .‘~t -’ .-- ~~~~~~~~~~~~ ~~~~~~~~ ..~~~~. -~—‘- ——--- .- _—~~
-
~~ ~~~~~~~~~~~~~~~~

-‘::~___ ‘
~~—.---- — —

— T: :T~~~~-~~~~
.—--— . - -. -

~~~~~
--

~~~~~
-.- . -.-_------

==

FUTURE WORK 13’? IMPROVING ANALOGY

modification. Unfortunatel y, the plan language , the result-justification algorithm s the structure of

representation claims , and the theorem matcher portion of the debug and patch algorithm all must

be altered to handle operators.

A different problem, which mig ht als be solved by the mechanisms needed to handle

modalities , concerns the use of functional t .. In stIt ist ics , it is very convenient to think in terms of a

SIGMA funct ional, which takes a data set (a series of numbers), app lies a function to each element

of the data set , and then delivers the sum. Four ally, SIGMA is a function of a function , and thus

it cannot be directly expressed in the first -order predicate calculus.

MORE FLEXIBLE REPRESE NTATIONS

We restricted represen tat ions to have the form of a list of obj ects so that

REPRESENTATION-CLAIMs could have a simp le form and proof , and so that they could be

used in hand ling extended predicate forms. If represen tations are made more complex (for

examp le, allowing arbitrary list structure s , or arra ys , or hash tables as representations), we will be

forced to give up this simp licity. Since real prcgrams make extensive use of these more complex

representations , it is important that the analogy process be able to deal with them.

Another extension to the ana logy theory concerns describing plans for doing things like

sortin g representa t ions. The difficulty is that r~presentation claims are considered to be true for

all time. This means we cannot say, as we would want to in a sorting progra m, t hat some claim

about the representation (list) is now true, where it might not have been true previously.

A lthough work has been done on this problem by Suzuki [S91 Manna and Waldinger

(Ml), and others in relation to proving programs correct , we have not yet been able to bring

techniques from that school to bear on our probl~ms.

‘~~ ‘ ~~~~~~
—

- 4

- -~~~~~~~~~ -~~~~~~~~~~ . - -~~~~~~~~~~~~~~ -~~~~~~~~~~~ -- --~~~~

NOTES 138 AND EXTENDED COMMENTS

NOTES

NOTE 1.
We will frequently speak of an analogy map, w hich goes from the domain to the image

world just like a good map should.
Since our real interest is in the lifting operation (which is our shor hand for “app lying

the inverse analo gy map ”). the reader might wonder why we don’t have our ma ps go the other way.
The reason is that the map from domain to im~~e world may be many to one. This means that
the “inverse map ” is not wel l defined , so it is s t: - i .tly speakin g incorrect to call it a map.

The notion of “liftin g” unfor tu nate ly creates some confusion because al l the diagrams
have the domain on the left , while “lifting ” requires one to think of it on the top The term “lift ”
comes from considerin g topological coverin g spa es and their map to the space they cover.

NOTE 2.
It might be arg ued that the iuiter -wor ld / int ra-w o rld distinctio n is an illusion , since if

world A is analogous to wo ula B ~for examp le,
~

ane geometry world is ana logous to solid geometry
world), then they must be sub wor lds of some la ger world. That is , we can transfo ir.i inter-wor ld
analogy into intra-wor ld analogy by findi n g a su pe r-wor ld.

While the observation abov e is correct , (indeed , we can go both ways since irit ra-worid
analogy might be considered a special case of unte r -worid) it misses the mark. The distinction
centers on whe ther relat ions (or , if you p :efcr , I: red i ca t e sy in i b o ls ’ have di f ferent meanings on the
two sides of the analo gy . If the analo gy ~

v.d is a lways t he u de ui t : t ’ map oi~ predica te symbols (or at
least the ident i ty map on non-una ry predicate symbols), then we may assume that we are working
with an intra-wor ld analogy.

NOTE 3.
Pratt ~P2~ g ives a fundamenta l Cs dt hat loop less programs are onl y as tractable as the

theory (descr iptive component of e\p e : - tu ; e of he world in which the program works. That is ,
even if the code is ver y simp le in form dr.cuiess in fact), in order to prove some property of it we
ma y need to pno ;e hard theorems .~bout t he wo ld in which it ~o :ks . If he code has loops , then
we may need to prove str ic t l y ha: de: th ,-j

~err s t han those for loop less programs.

NOTE 4.
Recall that Evans ’s problem statement had the fo u m

A .s to B as C is to
Part of Evans ’s analysis ~or u ce : t e d the ;ansfo mation which w as app li”d to the .A d iag ram to
obtain the B. \Vhen Evans t in th y selects the best ma1) , the : :auus :u ~matiou can be iriap1ied . and
thus it might be sa~ that Evans also uses analogy to write programs. If this is a 1 a m , it is a
rather pecul iar one. Suppose I were to give Evans ’s “prog ram ” another pict u:e (sa 1 .‘ \) which was
identica l to diagram A. The “program ” wo u ld nut be able to run , exce pt u the ve :~ wea~ sense of
al lowing Evans analogy algorithm match Al and A , and hence del v ’r d~,i- ~n .~ni B as the a nswer.
That is , if one wishes to assert that Evands analogy proglam w ; i te s oth er p io g . am s , then one must
admit tha t the i nter p ieter for these new progra ~ns is Evans ’s :inalu5y program , and in that sense
cannot be distin guished from input data.

NOTE 5.
In the back of a text book one might iind answers to the problems in the text. These

solutions cons titute anticipated answers; they a,’e used by the student to check results. For the
same reasons the author provides these : t nsw e us , we want to give ana logy access to antici p ated

~

. ~T ’~ ‘±
~~ . ~

- ‘
~~

-
~~
‘: ~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -  ..



NOTES 139 AND EXTENDED COMMENTS

solutions.
How can we give these anticipated solutions to analogy ? One wa y is to state “prob lems”

as assertions. The problem for the expert problem solver (and thus for analogy) is to convince
itself that t he assertion is true. We can also ask the expert to prove theorems. Similarly, in the
midst of so lving some domain problem , t he ex pe rt may find itse lf blocked unless some predicate is
true; anthro pomorphically the expert wa n ts  the true result from that predica te and therefore has
an anticipated solution.

Another form of solution antici pation is a check on the answer. For examp le, suppose
the ex pert used analogy to find the square roo : of a number. Then the expert could check the
solution by squaring it.

NOTE 6.
We wish to use non-modal logic in ou: ITT world descr iption. If we had blank squares ,

then , for exam ple, the center square , 55, would iruin ally be blank .
(BLANK S5)

Now suppose the X player takes the center
(XEIJ S5)

Is SS blank? No. This means that something f t a t  used to he true has suddenly become false. Of
course one solution to this problem is to use situation tags , w hich is equivalent to using modal logic
in this exam ple.

We are using a different technique. Initialy each square is either XED or ZEROED , but we
don ’t know wJ i1~/ i. If we then learn that

(X EI) SS)
we might “prove ” that the corner square 58 is zeroed.

(ZER CED S8)
In this way play can proceed.

Stat ing the ru le
A square may be XED or ZEROED , but not both.

as we did forces us to use a non-modal formalism to write the TTT expert. Then it is a simp le
matter to show that ITT only needs negationless intuitionist ic logic , so we can use the c losure claim
in chapter (LOGIC OF EXPERTS) to show that analogy :an handle TTT world.

NOTE 7.
An ear ly form of semantic temp late was used by Kling [K2], although he did not try to

derive semantic temp lates from world descr iptions. For com parison , his semantic types were
STRUCTURE , SET , OPERAT OR , RELATION , OB JECT , PROPERTY , RE.LSTRUCTURE. The obvious
ob jection to t his set is chat it is useful only in art algebraic setting. Furthermore , in Nling’s system
semantic tem plates were necessaril y supp lied by the “user ” of the system. Finally, the fact that he
had so few t ypes means that they were not very useful in restricting possible maps. These
problems are eliminated by automatically deriving temp lates from the world description.

NOTE 8.
It is very tempting- to say “in TTT there is one squa re or. 4 rows , and in jA M there is one

road cor ‘a Im r g  4 t owns , so t Y : t  must be the co n; ect car ; es pondence. ” TI is count ing argument is
ver y appealng. but must he rej ec : :d Simila r l/ ,  we avoided takin g advanta ge of the fact th a t
there are 9 - ‘

~~1d ~~ ia r~~) a i d  S t o . s ; s  (:ows) e. mnlu e r . The reason we i-eject this style of counting’
arc men ’ us t t ~a t f i r s t , it i ; a ~. ’~ use of doriain ~urld ~JA~ ) knon led~ e to ~o uuuit  the nurnbeu’ of roads

~~ to ’ .J rus (wh ich we cannot assume to have yet ) .  and second it assume s ‘he two  wo rlds are
isomorp hic by testin g for equality in the numbers resulting from count in g. It also ass imes that the
worlds are finite , but fin iteness is not the proDlem here. While assumin g that ~~~ wor lds are
isomorphic might be a good heuristic , we don ’t want to make the notion fundamental to the

~

. ,
~~~

-
~~~~

- -
~~~~~~~~

-
~~~~

• 
~~~~ ~~ . ‘~t1~~ ’~’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~~~ .. 44



NOTES 140 AND EXTENDED COMMENTS

analogy process.

NOTE 9. By using the axioms for global stability, we can determine that if block C is removed
from the scene in the diagram in chapter (OV Ei~ViEW OF ANALO GY,SECOND VIGNETTE -- BLOCKS], then t he
scene without C is not globally stable. Howeve r , using FACT29

:FACT2S
(FORALL (B! 82)

(IMPLIES (EXISTS (B3 ) (AND ( DISTINCT B3 B2)
(SUPPORTS B3 Bi)
(STAELE B3 B!)))

(SCAFFOLD B2)))

we can prove that block C is scaffolding. Then using AX 101112

iAX IOTII2
(FORALL (X ) (IMPL IES (SCAFFOLD X )

(OSTABLE (SCENE-~4 ITHOU T X l ) ) )

i.~e can prove that the scene ~s g lcb a l  I~ st~ bIe w hthou t  b lock C. We have now proven
both a predicate and the negation of that predicate. The blocks wor ld description is inconsistent.

NOTE 10.
We define the intersection function as a function of two ar guments X and Y. We claim

that if X and Y are distinct lines , thei~ the following assert ions are true
( IN-LN X ( I l\TERSECT X Y ) )
( IN-LN Y ( INTE RSECT X Y ) )

We carefully avoid claiming that the result of app lying the intersect function to two lines is a
point.

The problem is that since a definition cannot convey any new informat ion , we f i r s t
inter pret the definitions in the Herbrand Un. v erse , so the result of a pp lying the INTERSECT
fur~.,.cion to two lines X and Y is a list of three elements:

( IN TER S ECT X Y )
for which the two assertions above are tiue in :he Herhrand Universe. If we were to claim that
the abov~e list is a point , what we wou ld really be saying is that there is a homomorp hism of the
Herbrand Universe onto plane geometry world such that ( INTERSECT X Y ) is mapped onto a
point. But, that such a ma p exists is new information.

Suppose we were to say that it is a “point. ” Since we a rc d iscuss in g (c lass ica l )
mat hematics , functions are deterministic , so the point returned by INTERSECT must be unique.
Further suppose (AN D ( O I S T I N T A El ) (PT A )  (PT B ) ) .  Then by P-Il we have a line
X = (LI NE A B) .  Suppose there were a distinct line Y such that ( 1 N—LN Y A ) and (I N—LN Y B) .
Then ( INTERS ECT X Y )  returns points A and B and by the result  being unique , A B,
contradiction! Thus such a line Y does not exist. Indeed, we know that it does not , but we have
just proven this fact wi thout  usin g axiom P 12. This should not be surprising because the
contrapositive of P-I2 is the proof of uniqueness. In other words , this “definition” re?.lly contains
an axiom hidden in the result-type declar at i on. ‘Ne must disallow such dei itlitions.

On the oiher hand , if we allow non-determinist ic functions , we would be able to prove
that the INTERSECT function , which we could declare returns objects of type PT , is determinsit ic by
the cont ra positive of axiom P-I2. The reason this approach (which is the typical one in
mathematics) was rejected is simply that in the p:~edicate calculus all functions are deterministic .

~~~~— — -.-_ ..f’-~~~t _ -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — -.-- — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — —



- ‘.

NOTES 141 AND EXTENDED COMMENTS

NOTE 11.
Mathematicall y, a model for a set of formula F is an int er pret at ion M for F such that

every formu la of F is true in M (see EMS). p. 145). Strictl y s peak i ng. then , a model for the
description component of a theory is not independent of that axiomatization , although when
considered as a map, the image of the inter pretalion may be independent.

Consider (say) finite abel ian group world. There are many models of finite abelian
grou ps (at least one for every inte ger). Sone of these models may be excluded by some
axiomatiaatio n but not by others (spec ifical y, t he abelian group with only one element).
Furthermore, theories may have non-standard models (for examp le, non-standard anal ysis).

Based on these considerations we can say that the notion of a world includes a set of
images of standard models of a theory.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~‘-

.
“

_ _ _ _ _ _ _ _ __:!__.___~~_. 1 ..LL ~.. ~
-

~~‘ — -~_--.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - . -- -~~~

BIB L IOGRA PH Y 142 AND REFERENCES

BIBLIOGRAPHY

[B1]Baner4i, R. B., and Ernst , C. W., “Strateg” Construction Using Homomorp hisms Between
Games ’, 1972, Artificial Intell ig ence i’ol. 3, p.223-249, North-Holland Publishing Company,
Amsterdam .

[C1)Chang, Chin-Liang, and Lee, Richard Char -Tung, S ymbolic Log ic and Mechanical Theorem
Proving , 1973, Academic Press , New York.

(D1)Doyle, Jon, Anal ys is by Pro p ag ation of Const r ~in ts in Elementar y Geometry P r obkm Solving, 1976,
MIT Al Working Paper 108.

(El]Evans, Thomas C., A Pro g-r am f or Me Solution of Geometric Analogy Intelligence Test Questions .
in [M3].

[Fl)Fahlman, Scott E., A planning S ys te 7n fo r Rob. t Construction Tasks , 197~’., TR283.

(F2)Feigenbaum , Edward A., and Feldman , Julia i eds., Cam put er s and Thoug ht , 1963, McGraw-Hill ,
Inc., New York .

[F3]Forder, Henry George, The F oundatio ’~s of E ’.cclidean Geometry, 1958, Dover , New York.

(F4)Fraleigh , John B., A Firs t CouTse in Abs r a ct Algebra , 1972, Addison-Wesley Publishing
Company, Reading, Mass .

[F5)Funt, Brian V ., A Proce d u r al App roach to Constructions in Euclidean Geometry, 1973, MS thesis ,
University of British Columbia.

EGI)Gardner , M., Mathematical Games , Scientific American Jan. 1976, p. 118-123

(G2]Celernter, H., Realization of a Geomet ’y - Tlieo r em Proving Machine , in [F2).

[G3]Coldstein, Ira P., Understanding Simp le Pi ct ’Ar e Programs , 1974, TR294.

[G4)Goldstein, Ira P., Elementry Geo; netry Theorem Proving , 1973, Al Memo 280.

(G5)Greenberg, Marvin J., Eu.cl idean and non-Eu dl idean Geometries , 1974, W. H. Freeman and
Company, San Francisco .

(G6)Criss, C. F. C., “Logic of NegatLonless ln uiuonisuc Mathemat ics ”, 1951, Proceedings of the
Section of Sciences , Series A , North-Holland Publishing Company, Amsterdam.

[G7]Griss, C. F. C., “Negationless Intuit ionisuc Mathemat ics III to lVb ”, 1951, Proceed ings of the
Section of Sciences , Series A, North-Holland Publishing Company, Amsterdam.

[H1]Heyting, A., I n tu iti onism: An Introduct ion , 1971, North Holland Publishing Co.. Amsterdam.

[H2)Hilbert, David (translated by P. Bernays), ,‘oundation s of Geometry, (1971), (The Open Court
Publishing Company, La Salle, Illinois).

(Kl)Kleene, Stephen Cole, I n troduction to Meta naMematic s , 1952, D. Van Nostrand Company, Inc.,

BIBLIOGRAPHY 143 AND REFERENCES

New York.

[K2]Kling, Robert Elliot ,Reason ing by Analo gy with Application to H eu; ist ic Probl em Solving: a
Case Stud y, 1971, Stanford AIM-l’k7.

[L1]Lewis, C. I., and Langford , C. H., S yrth olic Logic , 1959, Dover , New York.

[L2)Lines, L., Solid Geometry, 1965 , Dover , New Vork.

[L3]Luger , George F., Beh avioral EJf ec~s of Problem S t ruc tu re in Iso morphic Problem Solving
Situations , 1975, Edinburgh D.A.I. Research P eport No. 4.

[M1)Manna, Zohar , and Wa ldinger , Richard , “Knowledge and Reasoning in Program Synthesis”,
1975, Art if icial Intelli g ence , Vol. 6, p. l75-20S.

[M2)Manna , Z., and Wa ldinger , R., “Is “Sometine” Sometimes Better than “Always ”? Intermittent
Assertions in Proving Program Correctness ”, 1976, Proc. of 2nd Internat ional Conf on Software
Eng ineerin g, 32-39.

[M3)Margaris , An gelo, Fi r s t Ord e r Mati ie, na t ; cal Logic , 1967, Blaisde ll Publishing Company,
Waltham , Mass.

[M 4)Marr , D., and PoggA o , T., From Un d er s .an di ng Computation to Unders tand ing Neural
Circuitr y, 1976, MIT A! Memo 357.

(M52McCarrhy, J ., and Hayes , P., “Some Philoso p hica l Problems From the Standpoint of Artificial
Intelligence”, 1969, Machine intell ig ence 4, Edinburgh U. Press.

[M6)McDermott , Drew V incent , A s s i m i l a t i o n of N e w in fo rma t ion by a N a t u r a l
Lan~~ a ge-understanding Sys tem , 1974 ,TR291.

[M7]Minsk y, M., “A Framework for Represcntin~ Kinoledge”,1974, MIT Al Memo 306.

[M8)Minsk y, Marvin ed., Semantic Infor ; n otion Processin g, 196S, MIT Press , Cambrdge.

[M9]Moore, J., and Newell, A., How can ME RLi N Understand ? , 1973, Carnegie-Mellon University
memo.

[N l)Nevins , Arthur J., A Relaxation Ap / roac h t~~ Splitting in an Automatic Theorem Prover , 1974,
MIT A ! Memo 302.

[N2]Nevins, Arthur J., Plane Geometry Th eorem Proving Using Forward Chainin g, 1974, Al Memo
303.

[N3]Nilsson , Nils J., Problem-Solvin g M e th o ds in Art if icial Intelli g ence , 1971, McGraw-Hill , New
York.

[P 1]Polya , George, Mathematical Discove~y : On Understanding, Learn ing, an d Teaching Problem
Solving, 1962, John Wiley & Sons, New York.

[P2)Pratt , V. R. , Semantica l Consideration s on F loy d-Hoare Log ic , 1976 , MIT Labora tory for

~
.

~~. ~~~~~~~~~~~~~ .
-
~

—
~~ -~~~ - ‘.r~ - —

• ~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~

_ _

BIBLIOGRAPHY 144 AND REFERENCES

Computer Science TR-168.

[P3)Pratt , Vaughan R., The Co~np e’t ence/P erf or rnan ce Dichotomy in Programming, 1976, class notes .

(Rl)Rich , C. and Shrobe, H. E., Ini t ial Rebort on a L I S P Programmer ’s Apprent ice , 1976, TR-354 .

[S1]Sacerdoti , Earl D., “The Nonlinear Nature of Plans ”, 1975, Advance Papers of (li e Fourth I J C AI .

[S2]Scandura , Jose ph M., Wu lfec k II, Wal lace H., “Higher Order Rule Charac te r iza t io n of
Heuristics for Compass and Strai ght Ed3e Constructions in Geometry ”, 1974 , Art i f i c i a l
intelligence l’ol. 5, p. 149-183, North-Holland Publishing Company. Amsterdam.

~S3]Sheppard, David A., “A Plane Strategy for 3-D TTT”, 1975, J . Recreational j %la th ema ics , Vol.
8(3).

[S4)Simon , Herbert A., “The Functional Equivalence of Problem Solving Skills ”, 1975, Cognitive
Psycholo gy Vol 7, p. 263-288 , Academic Press , Inc.

[S5)Slagel , James R., A Heuris t ic P r ogra ’n that solves Symbolic Inte g rat io n Problems in F reshman
Calculus, in [F21

tS6jStepankova, Olga and Havel , Ivan M , “A Logical Theory of Robot Problem Solving”, 1976,
Artificial Intelligence , Vol. 7, p. 129-161.

[S71Sussman , Gerald Jay, and Stallrnan, Richard Matther , Heuris t ic Techniques in Computer Aided
Circuit Anal ys i s, 1975, MIT A! memo 228.

[S8)Sussman , Gerald Jay, A Comp utat i ona .’ ~
4
~tode ~ of Skill Acquisition , 1973, TR297.

[S9)Suzuki , Norihisa , Auto mati c l’er if ic i t :on of P rograms wi t / i Corn p l ex Data S t r u c t u r e s , 1975,
Stanford Al M -279.

[Ul~Ullman , Shimon , A Mo de’l~dr ive n Gec ’~ur ry T4. or em Prover , 1975, Al Memo 321.

EW I)Waldinger , R. J., and Levi:t , K. N., “Reasoning About Programs ”, 1974, Artificial Int ell ig ence ,
Vol. 5, p. 235-316.

(W2)Waters , Richard C., A S ystem fo r Un d e r s : z n d i n g t i : : ?‘~:: :ca! F O R T R A N Pr ogra ms , 1976,
MIT Al memo 368.

(WZ]Winograd , Terry, Procedures as a R ep r ~s e n t : t i ~ n f o r Data in a Computer Prog ram f o r
Understandin g Natural Langu age , 1971, TR1~.

[W4)Winston, P. H., (Ed.) The Psyc h olo gy of Co17.pu t er Vision , 1975 . McGraw-Hill , New York.

CW5)Winston , Patrick , personal communication 1976.

(W6)Winston , Patrick H , Learnin g Structural D4 ’sc? ip tons from Examp les , 1970, TR231.

[W7]Wong , Richard , Construction Heurist ics fo r Geometry and a Vector Alg ebra Rep resentation of
Geometry, 1972, MAC TM 28.

~ ~~~~~~~~~~~~~
. ~~~~~~~~~~~~

.~ ~~~~~~~~~

BIBLIOGRAPHY 145 AND REFERENCES

[W8)Woods , Frederick S., Higher Geor netr i, 1961, Dover , New York.

[W9]W ynne, Ba yard E., “Perfect Magic Cubes o~ Order 7”, 1975, J . Recreational Mathematics , Vol.
8(4).

TR -- MIT Al Lab Tech.iical Report

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ .. ____-_

~~

. . .


