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ABSTRACT

e e T

; We will take the view that the end result of problem solving in some world

should be increased expertness. In the contaxt of computers, increasing expertness reans

i writing programs. This thesis is about a_process, reasoning by analogy, that writes programs.

| Analogy relates one problem world to another. We will call the world in which

I we have an expert problem solver the IMAGE world, and the other world the DOMAIN

world. Analogy will construct an expert problem solver in the domain world, using the

image world expert for inspiration.

1 Analogy uses a map (the analogy map) from the expertise of the domain world to
the expertise of the image world. Expertise in a world may be divided into components
corresponding to (I) declarative description (in the predicate calculus), (2) code for
computing the values of predicates and functions, and (3) plans, which give the overall goal
of the code and a method for achieving that goal; it documents (or, if you prefer, explains
or describes) what the code does without desc ibing how to do it.

A crude view of analogy is

s S s i

Map domain problem to 1mage problem. Solve image
problem. Lift image solition to get domain solution.
Lift image theorems to get corresponding domain
theorems. Lift image plans to get corresponding
[ domain plans. Lift image code to get corresponding
4 domain code. Now solve domain problem using new
domain expertise.

i il

The focus of this research was to develop algorithms to form analogy maps, and to lift solutions,
justifications of solutions (how else can we believe they are correct?), plans, and their justifications. |
This process thus writes new expert problem solvers, hence achieving new expertise. é
Our theory of analogy is built around the notions of an ob ject, its type, and its |
representation. Ob jects (in our sense) are the sub ject of the theory of a world (that is, they are
sub jects in the sentences which describe the world). An intrinsic quality of an object is its type.
We consider type to be meaningful in the descridtion of a world, to the extent that we will present
a technique to derive type (and type hierarchies) from world description. Thus, in geometry, one
type would be "line"; the type "algebraic variety” (i.e, point, line, plane, hyperplane) would not be
used because it typically does not appear in descriptions of geometry world. Finally, an ob ject may
have several representations. In geometry, we might represent a line as a list of points which are
on it.
A reason for the relative success of expert problem solvers over uniform proof
procedures is their ability to use special representations to conveniently encode knowledge about the
world. In mathematics, the notion of representation is of extreme importance. These and other
uses of the notion of a representation led to a realization that perhaps the single most important
thing to be learned from reasoning by analogv was the "proper" way to represent ob jects in a
world.
Since the expertise of a world has threz components (code, plan, and description) we need
to specify which component has the notion of representation. The descriptive component
: (predicate calculus) does not have representations, but does have the notion of ob ject and type (in
i that type can be derived syntactically). The plan component has all three notions. Ir this
component representations are manipulated cnly by pattern matching. Finally, in the cod.
component, we have the notion of representaticn, but not (necessarily) the notions of ob ject and




| type. Representations may be implemented as property list lists, but this need not necessarily be the
implementation.

A fairly complex picture of analogy emerges. The analogy map goes between world
expertises, preserving components. Other processes (proving code and plans correct, and automatic
programming processes) go between the components of world expertise. Analogy and these other
processes are not independent. We will be able to detect "bugs’ in processes which go between
components. These "bugs” will correspond to "bugs” in the analogy map. Similarly, patches to the
analogy map will induce patches in the various components of expertise.

Thesis Supervisor: Marvin Minsky

Title: Professor of Electrical Engineering
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Analogy -~ a form of reasoning in which one thing is inferred to be similar to another thing in a
ceriain respect, on the basis of known similarity between the things in other respects.
4’ Random House Dictionary of the English Language

INTRODUCTION TO ANALOGY

The end result of problem solving in some world should be increased expertness. In the

context of computers, increasing experiness mears writing programs. This thesis is about a_process,

reasoning by analogy, that writes programs.

Suppose we have an expert prcblem solver in some problem world like the blocks world

(F1], or electronic circuit world [S7). Suppose further that we desire an expert problem solver in

some other world like rhetoric world, or boiler and radiator world. The task for our analogy
process would be to construct a new expert problem solver.

We will use the word world to refer to a problem domain, or problem area,

or narrow field of knowledge. Thit usage is suggested by the phrase "world of high

finance” and by the Al problem dormain called “the blocks world." We will learn how
a world can be characterized in chapter [LOGIC OF EXPERTS,LOGIC OF WORLDS).

(PROBLEM ) < SOLUTION ’ ( PROBLEM ’ ‘ SOLUTION ,

| f
L g g

WANT HAVE
DOMAIN WORLD IMAGE WORLD

We will call the world in which we have an expert problem solver the IMAGE world,
and the other world the DOMAIN world (for motivation of this terminology, see (NOTE 1))

Analogy will construct an expert problem solver in the domain world, using the image world expert
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for inspiration.

TAXONOMY OF ANALOGY This section may be skipped.

Normally when one thinks of analogy, one remembers problems of the form
Angels are to men as x are to animals
where one skillful in verbal analogy would fili in the x with the word men. Evans’s clasic Al
program [El] solved geometric analogy problems which have the form
Figure A 1s ‘o figure B as
figure D 1s to figure 1, 2, or 3.

The word "analogy” also brings to mind that endangered species, the slide rule. The
basis of the slide rule is, of course, the notion that numbers are analogous to lengths, and adding
numbers is analogous to concatenating lengths.

Since the common examples of reasoning by analogy given above differ, and are
different from our use of the term, we will now explore a taxonomy of analogy. Once we have
this taxonomy we will be able to specify what kind of analogy process we wish to investigate, and
to relate our investigations to other investigations of analogy. In developing a framework in
which to express these differences, we must distinguish three dimensions: sefting, usage, and
mechanism.

Setring: Evans's geometric analogy program [El] worked in cnly one world, having

SCLE
relations ABOVE, LEFT-OF, and INSIDE. We can thus claim that the setting of Evans's kind of
analogy 1s INTRA-WORLD, as opposed 10 ou INTER-WORLD analogies between different

worlds (see [INOTE 2] for further discussion of this dimension)

Usage: We can use analogy in at least three different ways: as a kind of mnemonic
device, as a reduction device, or as a speculation device. To make this distinction clear, consider

the following examples:
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L In chemistiy we might claim that organic acids are like inorganic acids, alcohols like
bases, and esters like salts. From this and a knowledge of inorganic chemistry we can
J conclude that an organic acid and an alcohol react to form an ester and some water.
This is an example of mnemonic usage. While we might hazard some
guesses about organic reactions on the basis of the analogy above, the only conclusion
we feei confident in making is thar both "sides” of the analogy are special cases of
something more abstract.

2. In algebra, when we wish to study some complex structure (like a noncommutative
group) it is often useful to look at komomorphic images. By “throwing away" part of
the problem structure, we reduce hard quest-as to similar, hopefully easier questions.

This 1s an example of reduction. Analogy can be used to reduce a problem
to a simpler, easier peoblem in the same or a different problem world. Qur ability to
deal with an object (in some world) is closely related to our ability to represent that
b ject in terms of other objacts in its world. This observation links two amazingly
successful problem solving techniques: "Divide and Conquer” (superposition) and
“Change Representations” (linear transforms). One kind of result we would expect
from a reductional use of reasoning by analogy is a way to represent ob jects in the
problem world (which we term the domain world).

3. We might notice that relatively few chemica! .eactions (outside of breaking
substances down by heating) occur during cooking. Pursuing this we might examine
various organic reactions, such as ester formation (esters smell nice) with an eye
towards being able to use them for cooking.

This use of analogy, speculation, seems at first to be not really analogy at all.
However, as one begins to consider the processes invalved (that is, mapping a problem
and solution in one problem world to a problem and solution in another), one is forced
to conclude that the term “analogy” could be used to describe this kind of reasoning.
We can characterize the speculative use of analogy by noting that embarrassingly
often we find ourselves with a very good solution, but with no problem that calls for
it.

e e SRy

| PROBLEM? |————————-> | PROBLEM

1 l

e

SOLUTION ANALOGY | soLuTioN

At other times we have a problem and solution, but unfortunately either the problem
isn't interesting or the solution isn't profitable.
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[ 0

PROBLEM » | PROBLEM? |
e |

BT a

SOLUTION + | SOLUTION? !
e -

In both cases, analogy might be useful, and when used, it is used for speculation.

The third dimension in our taxonomy concerns the mechanism the analogy process uses
to move between the image world and the domain world (or between image and domain problems
in an intra-world setting). The mechanism used for moving between worlds 1s strongly dependent
on the way worlds are described. That is, analogy mechanism is (for the most part) determined by
descriptive mechanism. Thus we can make distinctions in this dimension by refering to descriptive

mechanisms. There are at least three popular descriptive mechanisms:

Analytic. Objects in some world might be described (or , if your prefer, characterized)
by a set of coordinates in an appropriate feature space. The analogy mechanism for
this descriptive mechanism is then a map on the coordinates.

Example: Evans [El], MERLIN [M9].

Network. Ob jects are described (characterized) as nodes in a network with
distinguished links. If two nodes (or, more generally, sub-networks) are analogous, a
network mechanism identifies links “rom analogous nodes as analogous, and terminals
of analogous links as analogous, etc.

This mechanism can be distinguished from the analytic mechanism by
noting that with network analogies, the links names do not need to be isomorphic.
Examples: Winston [W6).

Axiomatic The emphasis in this mechanism is not on what ob jects are so much as on
the way they behave, ie, what various predicates and functions return when applied
to them. We do not need to confine ourselves to the predicate calculus to use this
descriptive mechanism.

Examples: Sussman, Stallman (S7], Doyle (DI]

We will be concerned exclusively with an inter-world setting, a reductional usage, and an axiomatic
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MAPPING WORLD KNOWLEDGE

Our goal is to use reasoning by analogy to write programs. As a first approximation, the
analogy first constructs a map from the domamn (or problem) world to the image (or solution)
world. It then must lift portions of the image e<pertise to create new domain expertness, For the
remainder of this chapter we will assume that we already have a map from the domain world to the
image world. After obtaining some unders:anding of how such a map is to be used, we will show in
chapter [OVERVIEW OF ANALOGY, FIRST VIGNETTE--TIC-TAC-"0E) how these analogy maps are obtained.

Our goal in using analogy is 1o write programs. Before I write a program, I need a
description of the world the program is to work in. If I am to write a program for dealing with,
say, plane geometry, I first need a description of the interaction of points and lines. Simularly, if [

am writing a program to play tic-tac-toe, I need t3 know the rules of the game.

GROBLEID GOLUTIOD PROBLE'D GOLUTIOO

[ !

I 1
k ? J L.[:]_.D .J

I EXPERT

IMAGE WORLD

DESCRIPTION
OF WORLD

DOMAIN WORLD
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The observant reader may notice that we already have a description of the image world:
the programs that deal with it. Why do we need another description? Unfortunately, this
imperative description is not suitable for our purposes; its utility is both theoretically and
practically limited. We are limited in practice by our inability to decide what a program is doing
without being given further information. That 15, we cannot determine the plan (i.e., what is being
accomplished by the computation) of an algorithm given only the code (i.e., a sequence of
operations which specify how the computation is accomplished). Moreover, we cannot, even in

theory, deduce that a program is correct only on :he basis of the program. For example

(DEFUN SOLVE-SECOND-DEGREE (A B C)
(QUOTIENT (DIFFERENCE (SQRT (DIFFERENCE (TIMES B B)
(TIMES 4 A C)))
B)

(TIMES 2 A))).
Is this program correct? We might say to ourselves "It 1s limited; it finds only one real root of a
second degree polynomial. Within that restriction it works." But that raises the real concern:
"Who said anything about polynomials?” Assuming arithmetic works (usually not a valid
assumption due to truncation errors and round-cff errors), the strongest claim we can make of this
program is (1) it halts, and (2) it returns a number (equal to the number it computes). Nor is code
easier to understand than the description of the world it works in, (see [NOTE 3]).

As a working definition, a plan is composed of two parts: an intention and a collection
of subgoals and constraints. A plan is consistent if it can be justified (using the description of the
problem world) by showing that accomplishing the subgoals sub ject to the constraints implies that
the intention of the plan has also been accomplished (we will give an exact definition of plans in
[GEOMETRY WORLD, LANGUAGE FOR PLANS]). In order to prove that code is correct, we first prove that its
plan is consistent, and then prove that the code does what its plan specifies.

One might wonder why we wish to prove programs are correct. We don't. However, we

cannot hope to correctly apply a program from one world to problems in another if we are unable
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to determine if that program is correct even in its own world. We wish to be able to prove that a
lifted program (that is, a domain program created by the inverse analogy map) is as correct as the
original image program in analogous situations. To emphasize our point by exaggerating it, if the
image code is incorrect, we wish to insur2 that the new domain code is incorrect in an analogous
way, reasoning “"we must have had good reason: to make the program incorrect in that particular
way."

To overcome the difficulties in proving raw code correct, we insist that plans be given

for the programs in an expert problem solver, and that those plans be justified by references to the

description of the world. We will therefore have
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n the image world we have a probler, stated in terms of the world description (eg. in
the predicate calculus). In rhe image expert problem solver's set of programs, executing Pl and
then P2 will produce a solution, either a truth value or some ob ject of the image world. The code
for Pl is attached by commentary to its plan. which is in turn attached to the image world
description (e.g., axioms). In the domain world we have a problem and an antiapated solution, but
lacking expertise {i.e, having no code and thus no plans) we are unable to forge a link between
problem and suspected solution.

The analogy process uses a map from the domain world to the image world. A simple

model of analogy would be

(SOLUTION)
@osuzm) )
y

MAP D*D
* l

[CORRESPONDENCE

E
L
—

INVERSE
MAP FOR CODE

DOMAIN ANALOGY IMAGE




INTRODUCTION TO ANALOGY 17 ANALOGY AND MAPS

The meaning of this diagram is: take the domain problem, apply the map to get an image
problem. Solve the image problem, and apply the inverse map to the image solution to get the
solution in the domain world. We can go one step further (so that something will be learned from
solving the problem). Apply the inverse map to the image program to get a program in the
domain world.

This view of analogy has two defects:

1. We have no assurance that the solution is correct.

2. Even if the solution is correct in this particular case, we have no reason to expect
that the new domain program is generally correct. Of course, if the two worlds
are isomorphic (as is usually the case in the literature on “reasoning by analogy”),
solution correctness will generally imply program correctness. For this reason,
one should not study analogy between isomor phic worlds.

Although we are ignoring the problem of getting an analogy map for the moment, we
must point out that it is meaningless to discuss map correctness independently of the results
obtained by using it. An analogy map is correct if and only if the lifted solution, lifted plans, etc,
are correct. The two defects noted above might Je summarized as "we don't know that the analogy
map is correct” by the definition of an analogy map being correct.

We can remedy the two defects outlined above by making use of plans and world
descriptions. The map from domain problems to image problems can sometimes be extended to
partial maps of domain descriptions to image descriptions. In these cases (and we will not consider
any others) we can derive a description of why a particular solution is correct in terms of the image
world description. This can be (inverse) mapped back into the domain world. See (1) in the
diagram below.

If the facts which justify the image solution remain valid after being (inverse) mapped
into the domain world, then we know that the tolution is correct. More importantly, we can now
apply the inverse map to image plans (see (2) in the diagram). If this plan is compatible with

domain plans, we can apply the inverse map to programs (see (3) in the diagram). We will often

abbreviate the expression “apply the inverse ana'ogy map to" with the verb "lift."
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i

At this point, the reader may have forriulated a list of questions:

I. What if the map is many to one. or even many to many? Generally this will not
happen with objects. On the other hand, it probably will occur with predicates and
functions.

2. What if a fact (after being lifted) is not correct? Then the validity checker will
object. We must try to salvage the plan.

3. Is it possible for a lifted plan to be invalid, even if all of its facts are valid? Yes,
since part of the theory justifying the plan may not be valid.

4. Is it possible for a plan to be lifted if some of its facts are not valid? Yes.

5. Why can't we just translate programs and ignore plans? We cannot figure out what
programs do. See the above discussion.

6. Why couldn’t we just produce code directly from plans (in the domain world)?
Perhaps, eventually, we will have the technology to do this. But we certainly don't
have it now.

7. The idea of mapping is good. Where does the map come from? There are two
sources: either analogy can be told, or it can figure one out for itself.

We will try to answer these questions in what follows.

STRUCTURE OF A THEORY

We have introduced three components of expertise because the analogy process requires

them. We would now like to argue that this division of knowledge is appropriate on other

grounds, first by connecting the two notions of expertise and theory, and second by showing the

dangers involved in not making this division.

Marr and Poggio [M4] suggest that the theory of a world can be divided into four levels.

Using their example of the Fourier transform, these levels are:

L

DESCRIPTION. Mathematically, the Fourier transform obeys various axioms. These

axioms, and relations between the Fourier transform and other mathematical ob jects,
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can be given independently from any discussion of how Fourier transforms can be

“computed.”

II. PLAN. Given that one wishes to take a Fourier transform of something, one can
proceed in various ways: numerically by way of the old “"slow” Fourier transform, or
by the FFT, or the FFFT. One can take them "by analog means” as i1s done in the ear -
(one-dimensional Fourier transform) or by using lasers (two-dimensional Fourier
transform). One can also take symbolic Fourier transforms by doing integration.

Plans specify goals, intentions, and canstraints.

IIl. CODE. Depending on the plan chosen, and the mechanism available, one can encode
in, say, your favorite computer language, a program for actually computing the

transform. Code specifies control flow and data flow (see [R1]).

IV. MECHANISM. Suppose that one has an FFT algorithm in FORTRAN. The
efficiency of running this alyorithm will depend on the particular computer having,

for example, hardware multiplication, and bit-reversal instructions.

Normal usage of the term thcory refers to a list of definitions and axioms, i.e., the

description level above. Suppose I hac a computer program that, given a periodic function,

returned the Fourier transform of that function. Then it would be proper to claim that the
computer program embodied, or had, or was a theory of Fourier transforms. This program would
be a predictive theory of Fourier transforms at the code level. Now suppose I had two different
programs which took symbolic Fourier transforms equally well (i.e, same answers on all problems),
but one ran twice as fast as the other. It is conceivable that in some sense both programs have the

same theory of Fourier transforms, but in another sense the faster one has a better theory.
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Assuming that the observed difference is due to coding inefficiency, the two theories are different
at the code level, but the same at the plan level.

With this extended notion of rheory, .t is easy to see that the components of expertise
correspond to levels of a theory. This suggests that we should claim that analogy operates on
theories of worlds. We will use "expertise” and "theory” interchangably from now on when
refering to knowledge about a world.

Goldstein [G3] used a similar division: at level I he had models; at level 11 he had plans
for constructing pictures which would satisfy the models; at level 1Il he had LOGO programs
which were supposed to actually draw the pictures.

Thinking in these terms gives us insigit into an important difference between Sussman’s
(S8] and Goldstein’s approach to debugzing. The real world does not present us with level I
theories on a silver platter. Sussman therefore .d not give his program debugging system direct
access to the description of the blocks world. Ra:her, he arranged for his primitives (i.e, PUTON)
to simply enforce the hidden blocks world description. Similarly, the level 11 theory was not
explicitly given to his program debugger; it was merely hinted at in a number of places, leaving
the task of synthesizing the level II theory to HACKER.

In attempting to reflect his view of the real world, Sussman paid a heavy price: most of
the complexity of his thesis was devoted to untangling the theory of the blocks world, not to
debugging programs (i.e, making level III actually do what level II said it should). We are not

willing to pay this price; we insist that the thre2 top levels be explicitly provided. We also insist

that the code of our experts do what the plans claim.
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INTRODUCTION TO ANALOGY

EVANS’S GEOMETRIC ANALOGY PROGRAM

We can contrast our theory of analogy with that presented in Evans's landmark paper

(E1]

C D1 D2

Evans’s program solved problems of the form "A isto B as C is to .." where some list of

pictures DI, D2 are provided to fill in the blanks. If we cast his problem form into ours, we will

have

G
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1 r
8 7

Evans first constructs a description of the operation of the image expert in order to
obtain a correspondence between objects in A and in B. He then constructs a number of maps

from C to A (maps Ml and M2, for example).

L,,) - LT—J ~

ANALOGY MAPS

Evans then extends each map so that DI, D2, etc, can be mapped to B. Finally, Evans selects the
“best” of these extended maps. B's inverse under this map is the answer. The result of Evans's
analogy program is a "best fit." Winston [W5] suggests an improvement on Evans's scheme:
instead of constructing all those maps and using the inverse at the last possible moment, why not

use the inverse early in the effort. The modified procedure maps C to A, applies the transform T,

then takes the inverse of the result B. This type of procedure is generally termed "analysis by
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synthesis."

If MFITM(C)=DI, then DI is the solut on. Similarly for D2. Otherwise a new ML T, or

M is tried. We can be clever, using failure analysis to guide the next selection.

If we could apply our theory of analogy to this kind of problem, we would take
Winston's suggestion one step further. We would insist that the result of reasoning by analogy

shou!d be a program. After constructing and debugging the map between the two sets of

e L e e o sk i i b e e e

diagrams, we would use the "winning" analogy map to write a program in the domain world so
that the domain expertise may be extended. This last step, the core of our research, is the
fundamental distinction between our approach to analogy and Evans's. (It might be argued that

Evans also produces a program. For a refutation, see [NOTE ¢].)




o
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ANALOGY PROCESS

FOCUS OF THIS RESEARCH

The focus of this research was to dev:lop algorithms to form analogy maps, and to lift
solutions, justifications of solutions (how else can we believe they are correct?), plans, and their
Jjustifications. We are not setting out to make a theory of human reasoning by analogy, our
interest is computational rather than psychological.

Our theory of analogy is built around the notions of an ob ject, its type, and its
representation. Ob jects (in our sense) are the sub ject of the theory of a world. That is, if the first
order predicate calculus is the descriptive language, then the variales are quantified over the
collection of all objects (and therefore the subjects of predicate calculus sentences). An intrinsic
quality of an ob ject is its type. The type of an cbject is unique (that is, an ob ject cannot have two
types), pre-specified, and immutable. We consicler type to be meaningful in the description of a
world, to the extent that we will present a technique to derive type (and type hierarchies) from
world descripiion. Thus, in geometry, one type would be "line”; the type "algebraic variety” (ie,
point, line, plane, hyperplane) would not be used because it typically does not appear in

descriptions of geometry world. Finally, an object may have several representations.
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REPRESENTATIONS

A reason for the relative success of expert problem solvers over uniform proof
procedures is their ability to use special representations to conveniently encode knowledge about the
world. In mathematics, the notion of representat on is of extreme importarice.

We will now give several examples of representations. The fundamental result of the
theory of finite abelian groups is that they can be canonically represented as products of prime
power groups. Another ma jor result of algebra ;s that a polynomial can be represented either by a
sequence of coefficients or by a sequence of values. The importance of the fact that a signal can
be represented as the sum of sine and cosine signals is well known. A ma jor insight results from
the observation that if a signal is represented by the coefficients of a polynomial, then the Fourier
transform of that signal can be represented by a sequence of values of that polynomial. Note that
all of these representations are relatively unstructured; they are simply lists (sometimes ordered) of
other ob jects in the same world. That is, groups are represented in terms of other groups, signal
functions are represented in terms of other fun:tions, and polynomials as a list of elements from
the underlying field (which is part of polvnomia! world).

These and other uses of the notion of a representation led to a realization that perhaps
the single most important thing to be learned from reasoning by analogy was the "proper” way to
represent ob jects in a world.

Since our theory of a world is on three levels (code, plan, and description) we need to
specify which levels have the notion of represeatation. The descriptive level (predicate calculus)
does not have representations, but does have the notion of object and type (in that type can be
derived syntactically). The plan level has the notions of ob ject, type, and representation. At this

level representations are lists of plan level objects and are manipulated only by pattern matching.

Finally, at the code level, we have the notion of representation, but not (necessarily) the notions of

ob ject and type. Representations at the plan level may be implemented at the code level by
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property list lists, but this need not necessarily be the implementation. Arrays, tables, and lambda
expressions may also implement (plan level) representations. Typically, at the code level

representations may be manipulated by the LISP functions CAR, CDR, and CONS.

ESTABLISHING CLOSURE

In Artificial Intelligence it is highly desirable to be able to solve all problems of a
specified nature. Generally it has been fairly simple to state the constraints under which a problem
space is closed (in the sense that all problems in the closed space can be solved). However, since
analogy operates on theories of worlds, our problem space is the space of all worlds, and even
stating a closure condition becomes a ma jor pro ject.

We claim (leaving the explanation and demonstration for chapter [LOSIC OF EXPERTS]) to be

able to solve analogy problems at least betweer worlds whose underlying logics are negationless

intuitionistic.

-
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OVERVIEW OF ANALOGY

VIGNETTES -- TOWARDS THE ANALOGY PROCESS

Analogy is a process which operates on "expert problem solvers.” Simply stated, the
analogy process consists of three phases: map, solve, and lift.

Normally the analogy process will use the map from the previous problem. By using this
“old" map we preserve the context of discussion of the previous problem. This means that some
importance is attached to the order in which problems are presented to the domain expert, and
thus to the analogy process, much as in the Winston learning program [W6].

To try a different analogy, we can either try forming a completely new analogy by
starting with the empty map, or we can use sorie other previously constructed map as a starting
place. We do not suggest any sort of backtracking. When we say (in what follows) “try another
analogy” we have in mind abandoning the current map and starting afresh. A refinement of this
idea would be to guarantee that when we try to form a "new" map, we will have at least one
difference in the way ob ject types are mapped (between the new map and current maps).

Finally, we assume that the image world is given.

We will now give an outline of the analogy process. We will give explicit algorithms in
the chapter [ANALOGY ALGORITHMS], and examples cf analogy operation later in this chapter and in

chapter [ANALOGY EXAMPLES].

. MAP. When some expert encounters a problem which cannot be solved (due to incompleteness

on the part of the expert), analogy can map this problem into an analogous problem in some other

world.
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Ll. Summarize the domain problem. It is necessary to summaiize the domain problem,
since it may be impossible to find an analogy map capable of mapping the entire
domain problem to an image problern.

1.2. Extend the current analogy map to include any new operations. Note that either
the current map or the extension may be empty.

1.3. Apply the analogy map to the summarized problem. The result of this step is an
analogous image problem.

2. SOLVE. The appropriate expert problem solver for the new world solves the analogous image

problem. If the solution attempt fails, then we either change the analogy map, or change the

analogous problem by including further details.

2.1. Obtain a solution to the analogous problem.

2.2. If no solution can be obtained, enlarge the summary from part 11 and continue the
solution attempt.

2.3. Apply the inverse map (extending if necessary) to the solution.
2.4. In cases where the domain solution is anticipated (see [NOTE 5] for an

explanation of "anticipation”), if it and the (inverse of) newly obtained solution
disagree, form a different analogy map.

3. LIFT. If the solution attempt succeeds, then we need to "lift" the solution back into the domain

world.

3.. Obtain (from the expert problem solver) the reason why the solution is thought to
be correct.

3.2. Apply the inverse map to the reasoning (extending the map if necessary).

3.3. If the reasoning is based on false assumptions (detected by the justification checker
in [ANALOGY ALGORITHMS,DEBUGGING ALGORITHM]), form a different analogy.

3.4. If the reasoning is incomplete, note the presence of a bug and obtain a patch.

3.5. If we are unable to lift all of the reasoning behind the solution, and cannot find a
replacement in the domain, try another analogy.

36. If we are able to lift all of the reasoning, then lift the plans and the code which
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generated the solution, making use of previously detected bugs and their patches.

We will present three vignettes to illustrate: how analogy maps are developed, how
Process description can be used to obtain the reasoning behind a solution, and finally how
programs can be lifted. Two world pairs are used in the vignettes. The first pair consists of two
simple games: “Tic-tac-toe” and “Jam." The o:her pair of worlds consists of a version of the
blocks world (as investigated by Fahlman [F1]), end the “rhetoric" world. These vignettes are very
much “toy” problems; there is no guarantee that the analogy process (as presented in later chapters)

can correctly deal with more complex problems in these worlds.

TIC-TAC-TOE WORLD

Surprisingly, the game of Tic-Tac-Toe (abbreviated TTT from now on) is interesting in
its own right. The grade school 3X3 version of TTT is, of course, a draw if both players move
optimaliy. The interest in TTT arises from higter dimensions and/or larger boards. The 3X3X3
game is a win for the first player (take the center). The popular 4X4X4 version is still unsolved
(see Sheppard [S3] for strategic considerations). In this TTT, after three moves (6 ply) there are
1,499,409,707 positions, not accounting for symmetry.

TTT is isomorphic to so-called magic squares. In particular, one has an isomorph of 3X3

TTT called "number scrabble":

8 3 4 Players alternately select integers between | and 9.
1 5 9 The first player to total 15 wins.
6 7 2

In number scrabble, of course, the player does nct see the board.

One might naturally ask "Are there magic cubes corresponding to either the 3X3X3 or
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4X4X4 TTT games?” The answer is no (see M. Gardner [Gl]). Well, then, are there any magic
cubes at all? The answer here is, surprisingly, "yes." Gardner gives an 8XSX8 magic cube, while
Wynne [W9] gives a 7X7X7 cube. “Are there magic cubes of other orders, specifically 5%X5X5 and
6X6X6?" The answers are, respectively, “yes, unknown, and unknown.”

Banerji and Ernst [Bl] investigated the use of analogy to transfer strategies from one
form of TTT to another. Although, as we menticned before, one cannot hope to gain much insight
into the analogy process through considerations ofl isomorphic worlds, we will use TTT and another
of its isomorphs (JAM, described below) to illustrate how initial analogy maps are formed.

Assume that we have an expert TTT playing program. We will describe JAM (i.e., give the
rules and starting configuration of the game) and then use "reasoning by analogy" to obtain a JAM
expert. Since the two worlds are isomorphic, we will be essentially finished after we develop the
analogy map (although we will have no way cf knowing this until we actually lift the various
components of expertise). In non-isomorphic worlds (like the rest of the examples in this paper)

the "develop map" step is only the beginning of the analogy process.
RULES FOR TIC-TAC-TOE AND JAM

TTT is played on a grid with squares labeled as above (except numbers are preceeded

with the letter "S"). There is a type hierarchy imposed on the squares:

the CENTER square is S5
the CORNER squares include S8, 52, S4, 56
the SIDE squares include S, S3, S9, S7

There are eight rows; each row is a triplet of squares. The game is won when all

squares in a row are XEQ; it is lost when they ire all ZEROED. A draw is likely. We list all the

squares in the various rows:
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ROW-A contains squares S8 $3 S4
ROW-B contains squares S1 S5 9
ROW-C contains squares S6 S7 S2
ROW-D contains squares S8 S| S6
ROW-E contains squares S$3 S5 §7
ROW-F contains squares S4 S$9 S2
ROW-G contains squares S8 $5 S2
ROW-H contains squares S¢ S5 S6 ‘

Rows are also broken into types:

the DIAGONALS are ROW-G, ROW-H
the NORMALS are ROW-A, ROW-B, ROW-C, ROW-D, ROW-E, ROW-F.

The game of JAM is played on the following network:

JAM DIAGRAM

The circles are “towns" and the lines are “roads." All sections of a road are blocked when either
the "red” player or the "blue” player blocks the road. A town is isolated when all roads leading to

that town are blocked by one color. The first player to isolate a town wins. Thus if the red player
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blocked roads 2, 6, and 7, then town C would be isolated, and red would win. The names of the

roads and towns make the isomorphism to TTT clear.
WORLD DESCRIPTIONS

Now we will try to give the TTT and JAM world descriptions more formally in the
predicate calculus. I would like to think that the world description below is natural, and merely a
rewrite of the rules given above. In TTT we neec. to say:

(DECLARATION (CENTER S5)

(CORNER S8 S2 S4 Sb)

(SIDE S1 S3 S9 §7))
This type of statement simply says that the "declared” assertions are always to be true. In order to
say that the center, corners, and sides are all squares, we give the following facts:
(FORALL (X) (IMPLIES (SIDE X) (SQUARE X)))
(FORALL (X) (IMPLIES (CORNER X) (SQUARE X)))
(FORALL (X) (IMPLIES (CENTER X) (SQUARE X)))
One might wonder why we don't give the type/sub-type relation (eg., SIOE is-a SQUARE) explicitly.
We need to be able to discover relations like this anyway, so we will take this opportunity to show
that the system can deduce them. The reader should observe that we have not said what the
predicate SQUARE tests. None of this description is actually used explicitly by the TTT expert code;
it is present because it is needed to justify the TTT expert‘and for use by the analogy process.

Continuing, we name the rows:

(DECLARATION (ROW ROW-A ROW-B ROW~C ROW-D ROW-E ROW-F)
(DIAGONAL ROW-G ROW-H))
(FORALL (X) (IMPLIES (DIAGONAL X) (ROW X)))

We have rows, a special kind of row we call a diagonal, and three kinds of squares. The final bit

of description says how the squares and rows relate:
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(DECLARATION
(IN-ROW ROW-A S8)
(IN-ROW ROW-A S3)
(IN-ROW ROW-A S4)
(IN-ROW ROW-B S1)
etc.)

As soon as we give the rules of the game, we will be done.

1. A square may be XED or ZEROED, but not both.
(FORALL (X) (IFF (XED X) (NOT (ZEROED X))))
This rule excludes the possibility of a square being blank for technical reasons (see [NOTE

6)).

2. The machine always plays X, so a win ccndition occurs as follows:
(IMPLIES (EXISTS (X) (FORALL (Y) (IMPLIES (AND (ROW X) (SQUARE Y) (IN-RCW X Y))

(XED Y))))
(WIN))
We do not know that (IN-ROW X Y) implies (ROW Y) yet, so the rule must be stated as
above.

3. Similarly, we describe a lose condition
(IMPLIES (EXISTS (X) (FORALL (Y) (IMPLIES (AND (ROW X) (SQUARE Y) (IN-ROW X Y))
(ZERCED Y))))
(LOSE) )
The list continues. There are some rules which cannot be stated because we are missing a

notion of “"change” (for example, the rule that play alternates).

I will admit that this isn't very pretty, but then again there probably isn't a very elegant

way to say the above (other than putting it in English and pictures). In any case, we need to do

the same analysis for JAM.
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(DECLARATION (ROAD R1 R2 R3 R4 RS F6 R7 R8 R9)
(TOWN ABCDEFGH)

(PLAYERS
{ON-ROAD
(ON-ROAD
(ON-ROAD
{ON-ROAD
(ON-ROAD
(ON-ROAD
(ON-ROAD
etc. )

(FORALL (X) (IFF

RED BLUE)
R8 A)
R& D)
R8 G)
RS G)
RS B)
RS H)
RS E)

(BLOCKED-BY X RED) (NOT (BLOCKED-BY X BELUE))))

(FORALL (Z) (IMPLIES (EXISTS (X)

(FORALL (Y)
(IMPLIES (AND (TOWN X) (ROAD Y)
(PLAYER Z) (ON-RCAD Y X))
(BLOCKED-BY Y Z))))
(WIN Z)))

We should make several comiments about the differences in the two world

descriptions:

1. JAM has players, while TTT does not (or so it seems)

2. TTT' s expert plays “X“, JAM 1s ambivalent

3. TTT has a type hierarcty, while JAM does not (or so it seems).

These differences were introduced in an attempot to follow the English description, but the real

reason for them is to let us show that none of these differences confuse our analogy process.

WORLD DESCRIPTIONS GENERATE SEMANTIC TEMPLATES

The first step in the analogy map generation process is to produce a set of semantic

templates. A semantic template is a specification of which ob ject types can be valid arguments of a

form. Thus, for each predicate and function, semantic templates give the possible argument types.

For example, in JAM the predicate ON-ROAD takes two arguments: the first is a ROAD; the second 1s

a TOWN. The semantic template for this predicate looks like
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(ON-ROAD ROAD TOWN)
We will generate semantic templates in a purely syntactic way from the world descriptions given
above.
The first step in forming semantic templates is to decide what types of ob jects are
present in a world. We make the observation that unary predicates typically are type-checkers.

Thus, by simply listing all the unary predicates we can get a list of potential ob ject types:

17T JAn
SIDE TOWN
CENTER ROAD
SQUARE PLAYER
ROW WIN %
CORNER

DIAGONAL

XED x

ZEROED x

We can reject some of these by noting that a tyse-checking predicate must be used as such, i.e., it
must be applied to a quantified variable on the left hand side of an implication (for this purpose
only, IFF is not decomposed into two implications). This eliminates XED and ZEROED in TTT, and
WIN in JAM.

We can make use of a further ubservation: if P and Q are type checking predicates, then
facts of the form

(FORALL (X) (IMPLIES (P X) (Q X)))

establish a type hierarchy. In the above, P is a kind of Q. Searching the description of TTT for

this pattern yields the two hierarchies:

ROW SQUARE
| ”~

DIAGONAL SI0E CENTER CORNER

Since TTT is the image world, it would not be unreasonable to insist that these hierarchies be given
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explicity. Alternatively, we could perforr an exhaustive search of all ob jects in the world, since
TTT world is finite. However, these other techniques are not generally available to us for use on
the domain world (JAM) where we lack the requisite expertise.

Finally, we examine the facts about the games to determine the type of their arguments,
generalizing upward in a type hierarchy if necessary. This gives us the semantic templates
(IN-ROW row square)

(XED square)

(ZEROED square)

in image world TTT, and for domain world JAM we get

(WIN player)

(ON-ROAD road town)

(BLOCKED-BY road player)

The interested reader should see [NOTE 7] for an early form of semantic template. Armed with

the list of ob ject types, the type hierarchy, and the semantic templates we have automatically

derived, we are ready to form the analogy map.

SYNTACTIC GENERATION AND SEMANTIC REJECTION

We are about to use analogy to create enough expertise in a JAM expert to allow it to
make a move. To do this we must first give the JAM expert a problem to solve, then form an
analogy map from JAM to TTT.

We will generate in a very syntactic way possible maps from JAM to TTT, and use our TTT
expertise to reject most of these proposals on semantic grounds. To start, we present the JAM
expert with a problem to solve: our first move

(BLOCKED-EY R8 BLUE).
Since there is no JAM expert yet, we immediately resort to analogy. We want to map this assertion

to the TTT expert in the hopes of gaining enough JAM expertise (by analogy, of course) to proceed.
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We must first summarize the current situation in JAM and then try to map this summary
to TTT. We discuss the summarization process in chapter [ANALOGY ALGORITHMS,MAP FORMATION AND
EXTENSION]. For now, we accept the necessity of first mapping all the declarations in JAM, and then
mapping the first JAM move. Thus the first order of business is to map the assertion (found in the
first DECLARATION)

(ON-ROAD R8 A).

In developing maps, we start as high as possible in the image type-hieraichy. The

domain types are ROAD, TOWN, and PLAYER, while possible image ob ject types are ROW and SQUARE.

Our choices for analogy maps from JAM to TTT are

map ALPHA map BETA map GAMMA

TOWUN -> SQUARE ROAD -> SQUARE ROAD, TOWN -> SQUARE
ROAD -> ROW TOWN -> ROW PLAYER -> ROW
PLAYER -> ? PLAYER -> ? or vice versa

While we only have six possibilities now (two maps each for ALPHA and BETA, and the
map GAMMA and its reverse), we will need to contain the possible combinatorial explosion somehow.
One technique is to immediately prune :he possiblities tree. Using GAMMA to map the predicate
ON-ROAD, we get a partial image semantic templa‘e

(? SQUARE SQUARE)
with ™" indicating that the image predicate is unknown. This doesn't match any template in TTT,
so we tentatively reject this map (the rejection isn't complete since we have more tricks up our
sleeve in chapter [ANALOGY ALGORITHMS,MAP FORMATION ANC EXTENSION]) to use if we must). Similar
reasoning re jects GAMMA's reverse.

In maps ALPHA and BETA, we need to decide what to do with PLAYER. We always prefer

NOT to map an object type at all over making DOUBLE maps. So for our first choice we leave

PLAYER unmapped. This gives BLOCKED-BY a pzrtial image semantic template
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(? ROW) for ALPHA

) (? SQUARE) for BETA
The image of BLOCKED-BY's semantic template under map ALPHA doesn’t match anything except
the type checking predicate ROW. Since this would give us a double map (e.g., both BLOCKED-BY
and ROAD would go to ROW), we will tentatively reject it. BETA will map BLOCKED-BY to either XED
or ZEROED by ignoring BLOCKED-BY's second argument, which is of type PLAYER (see chapter
[ANALOGY ALGORITHMS,MAP FORMATION AND EXTENSION), ma) extension rule 4). Similarly, applying map BETA
to the domain semantic template for ON-ROAD results in a partial image semantic template with an
unknown image predicate:
(? SQUARE ROAD)

There is no direct match here, but there is a predicate with the same type inventory (i.e., the same
number of each argument type in the semantic template): IN-ROW. We will tentatively use this
map (by map extension rule 3). Our analogy map is now

ROAD -> SQUARE

TOWN -> ROW

ON-ROAD -> IN-ROW (switch arguments around)
BLOCKED-BY -> XED or ZEROED (igrore second arg)

Note that roads and towns are being mapped into type hierarchies. The inverse map will

then impose a type hierarchy on the domain (JAM), which is exactly what ought to happen.

USING CONSTRAINT PROPAGATION

Now that we know the functional form of the map, we must determine the details of the
correspondence between ob jects in the two worlds. For example, we have 9 roads and 9 squares.
One way to proceed is simply to try all possib'e maps, and rely on the TTT expert to complain

about the maps that are not cricket. Assuming that the map is to be one-to-one, there are

9! or 362880 possible maps. This is too many maps to consider, so we will make use of the type
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hierarchy in TTT (the analogy map must be cons:stent with this hierarchy) The idea is to generate
partial maps, and then use the TTT expert to force unique extensions. That is, suppose we pick a
road to map to the center square (S5), and then pick 4 other roads to map to the corner squares.
Then either the configuration is illegal as it stands, or all subsequent choices are forced. There are
9:C(8,4) or 630 of these maps. We can do even better, since if we pick a road as center and two
towns as diagonals, then everything else is determined. There are only
1xC (4,2) +6xC (3,2) +4xC(2,2) or 22

such maps. Our strategy is going to be to map 1oads to the center (and failing that to corners and
sides), and map towns to diagonals (and fallmg -hat, to other rows). Expertise in TTT will provide
constraints on possible images for roads and towns, and once a particular image is selected, TTT
expertise will propagate further constraints. The reader should notice that our constraint
propagation scheme does not make use of any expertise in JAM. For a discussion of an alternative

“counting” scheme which violates the expertise restriction, see [NOTE 8]

IMAGE SEMANTICS AND DEPTH-FIRST SEARCH

To implement our scheme, we rieed the notion of "most restrictive type.” I don't know a
general way to determine when one sub-lype is more restrictive than another. However, in finite
worlds the most restrictive type is the one with :he fewest members. We can use our expertise in
TTT to determine that CENTER is more restrictive than the other two types of SQUARE, and similarly
that DIAGONAL is more restrictive than ROW (we don’t need semantics for the latter since any
sub-type is more (or at least as) restrictive than its super-type).

Following this observation, we will guess that

R8 (which should be a corner) -> SS (the center)
A (which should be a non-diagonal row) -> ROW-G (a diagonal)

This lets us map the first of the JAM declarations.
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(ON-ROAD R8 A)-> (IN-ROW ROW-G SS)
where the latter is true in TTT. Continuing, we map

(ON-ROAD R8 D) ->(IN-ROW ROW-H SE)
(ON-ROAD R8 G)->(IN-ROW ROW-B SE)

(ON-ROAD RS E) cannot be mapped
The semantics of the image rejects this particular map. We eventually go back to R8->S5 and
decide that this must not be true, since it has not been possible to assume this and find an analogy
map not rejected by the semantics of TTT. We will therefore change our mind, and map R8 to S8
(or, equivalently, some other corner). Proceeding we map A->RON-G (again assuming diagonal) and
{ON-ROAD R8 A)->(IN-ROW ROW-G S&)
D->R0OW-A
G->ROW-D
(ON-ROAD RS G)->(IN-ROW ROW-D SE) false!

We go back to the last assumption, and try again. This time we map A->ROW-A, and D to a

diagonal. This fails, so we finally try mapping G to a diagonal (say ROW-G in TTT world), which

succeeds. In this way the map is completed.
i The next problem is to map (ELOCKED-BY R8 BLUE)
3 (BLOCKED-BY R8 BLUE)->(XED R8).
This is rejected by the TTT program as an illegal move because it wants to make XED assertions. So
we add
BLOCKED-BY -> ZEROED (when second arg = BLUE)

to the analogy map. We will get the other one when TTT gives back proper response, completing

the map formation process.
It is worth pointing out once again thzt all the semantic knowledge resided in the image
world. This is entirely fitting, since that is where the supposed expertise is. The result of playing

JAM "by analogy" will be the construction of a .AM expert (which will be almost a carbon-copy of
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the TTT expert). Since the two worlds are in fac: 1somorphic, the lifting process is straightforward.
We will give an explanation of this lifting process in chapter [ANALOGY ALGORITHMS,DEBUGGING ALGORITHM],
and an example in the third vignette (below) operating between the blocks world and rhetoric
world.

SUMMARY -- COMBINATORIAL EXPLOSIONS

This TTT example raises the question of combinatorial explosion in the search for an
analogy map. In the examples we will examine, :his feared combinatorial explosion does not occur.
Indeed, we have introduced several techniques to prevent it. However, our success on this example
should not be taken as a guarantee that this syntactic search for an analogy map will always work.

For the purpose of making an analogy map, we have assumed that we have nc expertise
in the domain world, thus restricting ourselves t¢ using only syntactic clues in the statement of the
axioms of the domain world. We have alse avo.ded using so-called high-level characterizations of
the domain world predicates and functions. It is not hard to imagine that, for example, the
hypothesis that some domain predicate is an equivalence relation (if true) could be quite useful in
the map formation process.

To fully state the rules of TTT, we would need to introduce the notion of change, either
by using situation tags ((M5]) or by using some form of modal logic. While I have not fully
investigated the impact of the presense of modal operators on the analogy process, they are
particularly interesting since the use of modals (syntactically predicates of several variables and one
predicate, like NOT, FORALL, and EXISTS) intraduces another kind of semantic template, and also
allows us to divide predicates into classes depending on which are influenced by which modals.
For exaraple, in TTT we might use the AFTER-MOVE-X modal operator to indicate that some
experssion becomes true after some square hac been XED. Surprisingly, introducing change by

introducing modals actually reduces the combinatorial explosion. On the other hand, if situation

tags are used in a way that is equivalent to using modals, then there is a slight increase in the
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combinatorics of mapping ob ject types due to the introduction of a new type: the situation-tag.
Fortunately, by the time the images of the domain predicates are determined, all incorrect maps of

ob ject types have been rejected, so the analysis of this case proceeds as above.

INTRODUCTION TO BLOCKS AND RHETORIC WORLD

Our second example is more interesting and less finite. We will make use of an analogy
between the notion of physical support in the blocks world and logical hsupport in rhetoric world.
The example is particularly interesting due to a demonstration that analogy i1s able to operate in
the presence of logically inconsistent world descriptions.

In the blocks world, if block A's center of gravity is over block B, then (modulc friction
and stability considerations) it is safe to remove block C. In this situation, C is said to be

scaffolding.

In a discussion or debate, consider some conclusion A in a situation whose essential
feature is B. Suppose some inessential feature of the situation C makes the conclusion more
palatable Then one could (successfully) argue that A would still be the appropriate conclusion on
the stiength of B alone. In this situation, C mizht be called "window dressing” for conclision A,

provided that C is a relatively minor argument. We take this as the definition of the window

dressing predicate.
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Suppose we wish to develop a "rhetoric world"” expert along the lines of a highly
successful blocks world expert. We will do this by means of “reasoning by analogy.” In the above,
we might discover that the situations are analogous, and thereby become interested in rewriting a
program SCAFFOLDP of one argument in the blocks world to become a program

WINDOW-DRESSINGP of one argument (in rhetoric world).

SCAFFOLDP -- THE EXAMPLE PROGRAM

Before we can begin to apply the analogy process, we must fully describe the blocks

world expert, which is written in LISP. Our attention will be focused on the following program:

BLOCK is the block we suspect is scaffolding.

SP is used for several purposes, but it is the block BLOCK supports inside the loop.
SPSPL is a list of blocks which support the block supported by the block BLOCK.
It is not necessary to understand this program in detail at this time.

(DEFUN SCAFFOLDP (BLOCK)
(PROG (SP SPSPL)
(SETQ SP (GET BLOCK °*SUPPORTS))
(COND ((COR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
(SETQ SPSPL {GET SP 'SUPPORTED-EY))
LoorP
(COND ((NOT SPSPL) (RETURN NIL))
((ECUAL (CAR SPSPL) BLOCK))
((STABLE (CAR SPSPL) SP) (RETURN 'TRUE)))
(SETQ SPSPL (CDR SPSPL))
(G LOOP)))

This program determines whether or riot some block is scaffolding, that is, it determines
the truth value of the predicate SCAFFOLD. The program does not return FALSE, so it cannot say

definitely that a block i1s not scaffolding; it is a fairly quick test that can be used when we don't

wish to pay the price of a full analysis of the situation.

This program should be viewed as an imperative description of an aspect of behavior in

the blocks world. It is a description of how tc determine if a block is scaffolding; it does not
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describe what the program does, only how to do it in terms of LISP functions. Indeed, complaints
that this program is not transparent are quite justified. As we will need this "what" information,
we will attach commentary to our program which will describe the plan of the program, after
Goldstein [G3].

We need to say that the program first finds a block X such that BLOCK supports it. We
will write this using the SUPPORTS predicate:

(SUPPGRTS BLOCK X)
The program furthermore determines that X is unique. Then the program tries to find a Y such
that Y supports block X:
{SUPPORTS Y X)

sub ject to the restriction that the two blocks X and y be stable in isolation, for which we write:

(STABLE Y X).

INCONSISTENT DESCRIPTIONS ARE ALLOWED

It is worth pointing out here that the program has a "bug” in it. In the following

situation, block C is clearly not scaffolding, yet the program will return “true.”
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] 4 While A is “stable” on B considered in isolation, B is not stable on D without the support C. We
might insist (say, in AXIOM12), in the description of the blocks world, that if some block X is
SCAFFOLDing, then the scene is "globally” stable if X is "disappeared.”
s AXIOM12 :
(FORALL (X) (IMPLIES (SCAFFOLD X)
(GSTABLE (SCENE-WITHOUT X))))
Then the blocks world in inconsisten:, since removing C (claimed by our program to be

scaffolding) from the above scene results in an unstable block configuration. We will see that this

; program can nonetheless be proven correct by using a theorem of the blocks world. Indeed, we will

see the theorem responsible for this (named FAZT29) shortly. Thus it must be the case that the
theory of the blocks world that we are using is inconsistent. See [NOTE 9] for a demonstration of
the inconsistency.

Minsky closed his paper "A Framework for Representing Knowledge"” [M7] with the

following paragraph:

! I cannot state strongly enough my conviction that the preoccupation with
i Consistency, so valuable for Mathematical Logic, has been incredibly destructive to
i those working on models of mind. At the popular level .. At the "logical” level it has
: blocked efforts to represent ordinary knowledge, by presenting an unreachable image
| of a corpus of context-free "truths” that can stand almost by themselves. And at the
| i intellect-modelling level it has blocked the fundamental realization that thinking
i begins first with suggestive but defective plans and images, that are slowly (if ever)
refined and replaced by better ones.

The relevancy of this comment is that, despit: what appears to be a predicate-calculus proof

approach, we neither insist nor suggest that warld theories be either consistent ar complete.

s ¢ : e :
. £ b SN iy s ML i 8 R o ol O I A e ) ™
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FROM CODE TO PLANS

We will find it convenient to describe programs by stating their plans in terms of pattern
matching. Thus, we will say that the way SCAFFOLOP determines that (SUPPORTS BLOCK X) is by
doing a pattern match on part of BLOCK's representation:

(PATTERN BLOCK SUPPORTS (?X)).
That is, if the list found under the property SUPPORTS has one element, the list matches the
pattern, and the pattern variable X is bound to that element. Similarly, the program finds Y by
matching
(PATTERN X SUPPCRTED-BY (x ?Y %))

where = will match any list of elements. Y supports X, which is also supported by BLOCK, the
scaffold candidate. As soon as we make sure that the configuration of X and Y is (locally) stable in
STEP3 below, and that BLOCK and Y are not equal (in STEP4), we will be willing to conclude that
(SCAFFOLD BLOCK) is true. We can combine these into a description of a plan, specifically a plan

TO-DETERMINE the truth value of a predicate SCAFFOLD in four easy steps.

(TO-DETERMINE SCAFFCOLDP (SCAFFOLD BLOCK)
(BIND X Y)

:STEP1  (PATTERN BLOCK SUPPORTS (?X))

:STEP2 (PATTERN X SUPPORTED-BY (x ?Y x))

:STEP3 (RESTRICT (Y) (STABLE Y X))

+STEP4 (RESTRICT (Y) (NOT (EQUAL BLOCK Y)))
(RETURN TRUE))

This is the plan of the program. We have labe ed the four steps using the colon convention (that

is, :LABEL labels the LISP s-expression which follows). We now need to explicitly match up the

steps in the plan with the program:
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(DEFUN SCAFFOLDP (BLOCK)
(PROG (SP SPSPL)
(SETQ SP (GET BLOCK 'SUPPQORTS))
(COND ((CDR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
;<= STEP1 (X SP)
(SETQ SPSPL (GET SP 'SUPPORTED-BY))
LOoP
(COND ((NOT SPSPL) (RETURN NIL))
3 <-STEP2 (Y (CAR SPSPL))
( (EQUAL (CAR SPSPL) BLOCK))
s <-STEP4
((STABLE (CAR SPSPL) SP)
s <-STEP3
(RETURN 'TRUE)))
(SETQ SPSPL (CDR SPSPL))
(GO LOOP)))

The semi-colen introduces commentary which (in this case) indicates that various plan steps have

been tentatively completed, and gives a correspondence between plan variables and code variables.
Having said this, we have two concerns:

(1).Why is it that finding such a block Y allows us to conclude that

(SCAFFOLDOP BLOCK) should return TRUE?

(2) Why do we believe that the plan actually finds such a ¥?

JUSTIFICATION OF PLANS

Suppose that in the description of the blocks world we declare “If some block supports
another block, and the scene is stable without the first block, then the first block can be considered

scaffolding (for the second).”

:FACT29
(FORALL (B1 B2)
(IMPLIES (EXISTS (B3) (AND (DISTINCT B3 B2)
(SUPFORTS B3 B1)
(STAELE 83 B1)))

(SCAFFOLD B2)))

i o ke
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Having labeled this declaration FACT29, we can use it as the answer to question (I). This is the fact
responsible for the inconsistency noted above.

Turning to question (2), we need to px'ovidg justification for the program’s commentary
(contained in the "plan”). We need to acknowledge the fact that if a block A appears in another
block B's representation (under the indicator SUPPORTS), then we know (SUPPORTS B A). The
same conclusion can also be drawn if B appears in A's representation under the SUPPORTED-BY

indicator.

:RT18
(REPRESENTATION-CLAIM h
(X SUPPORTS (% Y %) (SUPPORTS X Y)) <justification>)
:RT11
(REPRESENTATION-CLAIM
(Y SUPPORTED-BY (x X %) (SUPPORTS X Y)) <justification>)

We are using notation explained in chapzer [GEOMETRY WORLD,LANGUAGE FOR PLANS]. Labeling these two
facts as RT18 and RT11 respectively, we can explain why we believe that the plan will accomplish
its aims.

The plan justification has the form of a sequence of named sta.ements relating steps in
the plan to facts about the world. Each statement in a plan justification must give a rule by which
the predicate is "deduced”. The rule %RESTRICT refers to the semantics of that kind of plan step.
EQTHM1 and DISTINCT-DEFINITION refer to equality and dictinctness definitions in the blocks

world description.

(PLAN-JUSTIFICATION SCAFFOLDP
(L1 (SUPPORTS BLOCK X) RT18 STEP1)
(L2 (SUPPORTS Y X) RT11 STEP2)
(L3 (STABLE Y X) %RESTRICT STEP3)
(L4 (NOT (EQUAL BLOCK Y)) %RESTRICT STEP4)
(LS (NOT (EQUAL Y BLOCK)) EQTHML L&)
(L6 (DISTINCT Y BLOCK) DISTINCT-DEFINITION LS)
(L7 (SCAFFOLD BLOCK) FACT28 L6 L2 L3))

i The plan justification is interesting in that use is not made of the fact that X is the only block
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supported by BLOCK. Just as we will allow world descriptions to be inconsistent, so will we allow
plan justifications to be incomplete (one might call this kind of incompleteness a superstition).

We now have three layers of knowledge about SCAFFOLOP: we have the actual code (i.e.,
how to do the computation), we have the plan (ie, what the computation does), and finally we
have the description (ie, why the computation works). We have commentary linking the code to

its plan, and we have the plan justification linking the plan to the description of the blocks world.

FROM PLAN JUSTIFICATION 7O RESULT JUSTIFICATION

Having completed the description of tne blocks world and its plans, we can finally start
to apply the analogy process. In order to make use of code, plan, and justification we need to pose
the expert problem solving system a problem. Suppose that in rhetoric world we want to show

(WINDOW-CRESSING C)
and we know that

(SUPPORTS B A)

(SUPPORTS C A)

(DEFENSIBLE A B)

(RELATIVELY-MINOR C A)

Assume that by using the analogy map generation process discussed earlier (and perhaps having
solved previous problems), we have obtained the following analogy map:

WINDOW-DRESSING -> SCAFFOLD

SUPPORTS -> SUPPORTS
DEFENSIBLE -> STABLE

A -> A RTS12 -> RT18
B ->B RTS13 -> RTLL
C->C

Applying this map to the summarized rhetoric world problem (see chapter [ANALOGY ALGORITHMS MAP

FORMATION AND EXTENSION]), we get the assertions
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:GIVEN1 (SUPPORTS B A)
:GIVEN2 (SUPPORTS C A)
:GIVEN3 (STABLE A B)
in the blocks world. By mechanisms explained elsewhere (chapter [GEOMETRY WORLD,LANGUAGE FOR

PLANS]), these assertions generate ob jects and representations (1e., property lists):

A SUPPORTS (), SUPPORTED-BY (C B)
B SUPPORTS (A), SUPPORTED-BY ()
C SUPPORTS (A), SUPPORTED-BY ()

If in the blocks world we now evaluate the predicate (SCAFFOLDP 'C) it will return
TRUE. Interpreting the plan while running the code gives

call BLOCK = C

stepl pattern = (A), X = A

step2 pattern = (CB), Y =B

step4 ---true---

step3 ---true--- by GIVEN3
Note that Y is bound to B. That is becausa the first time around the loop, (CAR SPSPL) was C, and
of course C equals C.

We use this information in conjunction with the plan justification to generate the
following proof that C is SCAFFOLD.

1. (SUPPORTS C A) RTI®@

2. (SUPPORTS B A) RT11
3. (STABLE B A) (GIVEN3)

6. (DISTINCT B C)
7. (SCAFFOLD C) FACT29 applied to 7, 2, 3

O N i ad  SESARL
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LIFTING JUSTIFICATIONS OF RESULTS

We can now obtain (via the inverse analogy map) the reason why C's analog (in rhetoric
world) is window dressing. While the of“icial justification for the conclusion (SUPPORTS C A) in
step | of the proof is RT18, we can "unwind” this proof based on representations so that we know
step 1 is "given" by GIVEN2 (see [ANALOGY ALGORITHM3,RESULT JUSTIFICATICN]).

The only interesting part of this "lifting” process occurs when we try to lift the last step.
We have (from the introduction to blocks world and rhetoric world) the following fact:

:FACTSS
(FORALL (Al A2)
(IMPLIES (EXISTS (A3)
(AND (DISTINCT A3 A2) (SUPPORTS A3 Al)
(DEFENSIBLE A3 Al) (RELATIVELY-MINOR A2 A3)))
(WINDOW-DRESSING A2)))

When we apply the inverse map to FACT23 in the blocks world, we discover (using the
one-step deduction algorithm in [ANALOGY ALGOFITHMS,DEBUGGING ALGORITHM]) that in rhetoric world
LIFTED-FACT2S is not provable.

:LIFTED-FACT23

(FORALL (Bl B2)
(IMPLIES (EXISTS (B3) (AND (DISTINCT B3 B2)
(SUPFORTS B3 Bl)

(DEFENSIBLE B3 Bl1)))
(WINDOW-DRESSING B2)))

We do, however, discover that the consequent of the domain world version of FACT29 matches the

consequent of FACTSS5@ and that
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1. All antecedents in LIFTED-FACT29 are trie

2. LIFTED-FACT29' s antecedents are a subset of FACTS58' s antecedents

3. The rest of LIFTED-FACTS58' s antecedents are true in rhetoric world.

This configuration indicates that there is a MISSING-PREREQUISITE bug in the
analogy
FACTSS8 -> FACT29

in that the restriction (RELATIVELY-MINOR A2 £3) in rhetoric world’s FACTS58 was omited. With
this noted, the conclusion that C is window dressing is justified. For a full discussing of bugs, see

chapter [ANALOGY ALGORITHMS DEBUGGING ALGORITHMS].

PATCHES IN RESULT JUSTIFICATIONS GIVE PATCHES TO
PLANS

We now need to apply the inverse map to the plan. The (RETURN TRUE) step of the
plan is justified by step L7 in the plan justification. This step in turn relies on FACT23. When the
plan is lifted, we naturally also lift its justification. The bug noted above generates a patch to the
plan and plan justification: a further restriction is applied to Y. This gives the domain plan for

WINDOW-DRESSINGP:

(TO-DETERMINE WINDOW-DRESSINGP (WINDOW-CRESSING ARGUMENT)
(BIND X Y)

:STEP1 (PATTERN ARGUMENT SUPPORTS (?X))

:STEP2 (PATTERN X SUPPORTED-BY (x ?Y %))

¢SHEP3  (RESTRICT (Y) (DEFENSIBLE Y X))

:STEP4 (RESTRICT (Y) (NOT (EQUAL ARGUMENT Y)))

:PATCH1 (RESTRICT (Y) (RELATIVELY-MINOR ARGUMENT Y))
(RETURN TRUE))

and the appropriately patched plan justification {not shown).

We now lift the code. Most of the work is simply replacing function names. The only
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problem is where to insert the patch, anc what the modification looks like. In this case we order
the difficulties associated with routines which compute the restriction and the difficulty associated
with the routine to compute the patch. Then we insert code for the patch immediately before the
code computing the next most difficult plan step (or, rather, before the code that completes the
next most difficult plan step). In this case, the only step more difficult to compute than the patch
is STEP4. Thus in the code, we will place code for PATCH1 immediately in front of code for STEP4.

This gives

(DEFUN WINDOW-DRESSINGP (ARGUMENT)
(PROG (SP SPSPL)
(SETQ SP (GET ARGUMENT °’SUPPORTS))
(COND ((CDR SP) (RETURN NIL)))
(SETQ SP (CAR SP))
: <- STEP1 (X SP)
(SETQ SPSPL (GET SP 'SUPPORTED-EY))
LOOP
(COND ((NOT SPSPL) (RETURN NIL))
; <- STEP2 (Y (CAR SPSPL))
((EQUAL (CAR SPSPL) ARGLMENT))
1 <- STEP4
((AND (RELATIVELY-MINOR ARGUMENT (CAR SPSPL))
s <= PATCHI
(DEFENSIBLE (CAR SPSPL SP))
;<- STEF3
(RETURN *TRUE))))
(SETQ SPSPL (CDR SPSPL))
(GO LOOP)))

Actually writing the patch requires some sophistication in programming.
Note that this program has :he same "bug" (confusion between local and global
defendability) that SCAFFOLOP has. Furthermore, like SCAFFOLDP, it superstitiously insists that the

WINDOW-DRESSING support only one argument -- even though there is no apparent good reason for

doing so.
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In place of "point", "line", ard "plane" we must at all times be able to say "beer mug",
“table", and "chair.”
--- David Hilbert

GEOMETRY WORLD

We saw in chapter [OVERVIEW OF ANALOGY,FIRST VIGNETTE -- TIC-TAC-TOE] the dangers of trying to
study reasoning by analogy between isomorphic worlds. This observation gives us the first of the

following criteria for the sub ject of our next, more advanced and interesting example.

Non-isomorphism. The pair must not be isomorphic.

R

Richness. The worlds should be rich in analogies.

Non-trivial. The worlds mus: be non-trivial, since almost iny scheme will work on toy
problems. Ideally we would choose a world in which there are still unsolved problems.

Well-defined. The worlds should be well:defined and understood. Preferably the
description of the worlds should be obtained independently of our investigation.

e

Existing Expertise. There should already be an expert problem solver for these
worlds. Again, we prefer thar the expert be developed independently. Ideally, we want
several expert problem solvers for the worlds
On the basis of these criteria we chose plane geometry and solic geometry as the pair of
worlds in which to study analogy. We then restricted ourselves to a small portion of geometry,
called incidence geometry, which concerns problams of points, lines, and planes intersecting and
being determined (as in “two points determine a line"). Even these portions of geometry satisfy the
criteria given above.
é Recall from [INTRODUCTION TO ANALOGY, ANALOGY AND MAPS] that we plan to reason about the

domain world, solid geometry, by solving analogous problems in the image world, plane geometry.

However, before we can use analogy on these two worlds we must first:

1. Write the code for a plane geometry world expert problem solver.
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2. Give the plans for the code.
3. Give the justification for believing the plans are correct.
4. In order to give the justification of the plans, we will need a description of plane
geometry world.
There are a variety of ways to describe geometiy world: set theoretic [F3] and analytic [W8] come
to mind. We will use Hilbert's axioms [H2] to cescribe these two worlds, both because his axioms

are closest in spirit to Euclid, and because in the literature they are the most widely used.

PLANE Gec :try Axioms

We will have two groups of axioms, concerned with incidence and with order. The

axioms are numbered so as to correspond with Hilberi's axioms in [H2).

Plane geometry axioms are preceded with a P, while sohd geometry axioms are
preceded with S. We will give the predicate calculus versions of the axioms used in the
roblems. The remainder of the axioms are given for completeness.
& P

P-11. Given two points, there is a line that contains them.
(FORALL (A B) (IMPLIES (AND (PT A) (FT B))
(AND (LN (LINE A B))
(IN-LN (LINE A B) A)
(IN-LN (LINE A B) B))))

Note that we don't insist that the two points be distinct. This claims that two points determine at
least one line.

P-12. For every two distinct points, no more than cne line contains them.
(FORALL (A B)
(IMPLIES (AND (DISTINCT A B) (PT A) (PT B))
(NOT (EXISTS (X Y) (ANC (DISTINCT X Y) (LN X)
(LN Y) (IN-LN X A)
(IN-LN Y A} (IN-LN X B)
(IN-LN Y B))))))

P-13a. Each line contains at least two points.
The predicate calculus statement of this axiom has an occurance of the LN predicate on the left of

an implication. This tells us that LN, a unary predicate, is a type checker (see [OVERVIEW OF
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ANALOGY,FIRST VIGNETTE--TIC-TAC-TOE]).
P-13b. T here are at least three non-collinear points.

We also have a set of axioms dealing with the concept of “order.” These are included,
even though our examples are in incidence geometry, because of the important role they play in

the representation of a line.

P-Illa. The BTW N relation implies that the points are co-linear.
(FORALL (A B C)
(IMPLIES (AND (PT A) (PT B) (PT C) (BTWN A B C))
(EXISTS (L) (AND (LN L) (IN-LN L A)
(IN-LN L B) (IN-LN L C)))))

P-1Ilb. The order of the BTW N arguments may be reversed.
(FORALL (A B C)
(IMPLIES (AND (PT A) (PT B) (PT C) (BTWN A B C))
(BTWN C B A)))

P-112. For two points A and C there always exists at least one point B on the line containing A and C
such that C lies between A and B.

P-113. Of any three points on a line there exists no more than one that lies between the other two.
Using the axioms above, we can prove important theorems, like
P-BTWN-THEOREMI:
(FORALL (A B C D)
(IMPLIES (AND (PT A) (PT B) (PTC) (BTWN A B C) (BTN B C D))
(BTWN A C D))
P-BTWN-THEOREM2:
(FORALL (A B C D)
(IMPLIES (AND (PT A) (PT B) (PT C) (BTWN A B C) (BTWN A C D))
(BTWN B C D)))
In addition to axioms, we also include definitions. For various reasons, we disallow

definitions which introduce any new knowledge; definitions are strictly and purely notational.

Enforcing this edict is harder than one might think. For example, we have the definition of

INTERSECT:




o
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P-DEFL Define a function INTERSECT. Insist that it take two distinct lines as arguments. If this
condition is met, then the reswlt is in both of the given lines.
(DETERMINES (INTERSECT A B)
((LN A) (LN B) (DISTINCT A B))
((IN-LN A (INTERSECT A BE))
(IN-LN B (INTERSECT A B))))

The form for the function call is followed by a list of restrictions on the arguments (i.e., the
function is only defined if the arguments meet these restrictions), and then a list of claims about
the value returned by the function.

This definition requires some explana‘ion. We have not declared the type of the result
of applying the INTERSECT function to two distinct lines. We have only given the minimal
properties we wish this returned ob ject to have. The meaning of a DETERMINES definition is "If it
can be proven for some type G (Q may be, for example, PT, LN, or PL) that two ob jects of type Q are
equal if they fulfill the claims of the definition, then the type of the value returned by the
function being defined is Q." We can then prove that if two distinct lines have two points X and Y
in common, then X = Y. Hence the intersection of these two lines is the point X (or the same point
under the name Y), and thus we have proven that INTERSECT returns ob jects of type PT.

We are forced to define INTERSECT this way by purely logical considerations. (For a full
discussion, see [NOTE 10]). However, this definition also makes reasoning about intersection by
analogy easier. If we uniformly replace IN-LN by IN-PL, we will be able to prove in solid geometry

that the intersection of two planes is not & point, and that it is a line. A very syntactic and natural

transformation is all that is required to "lift" the definition.
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SOLID Geometry Axioms

S-11,S-12,5-13a,5-13b,S-11la,S-111b,S-112,S-113 are all identical to P-etc.

S-DEFIL. We define a predicate of three argumen:s to be true if and only if the three arguments are
points and there is no line containing all of them.
(DEF-PRED (NON-LN A B C)
(AND (PT A)
(PT B)
(PT C)
(NOT (IN-LN (LINE A B) C))))

S-14a. For three non-collinear points there is always a plane containing them.
(FORALL (A B C)
(IMPLIES (NON-LN A B C)
(ANO (PL (PLANE A B C))
(IN-PL (PLANE A B C) A)
(IN-PL (PLANE A B C) B)
(IN-PL (PLANE A B C) C))))
S-14b. Every plane contains at least one point.
(FORALL (P) (IMPLIES (PL P)
(EXISTS (A) (AND (PT A) (IN-PL P A)))))
S-15. For three non-collinear points, no more than e plane contains them.
S-16. If two points of a line are in a plane, then a!l points in that line are in the plane.

S-17. If there is one point in two distinct planes, then there is a second distinct point also in both
planes.

Note that INTERSECT is not defined in solid geometry. Although the above five axioms
completely describe what a plane is, they don't give even a hint about how planes should be
represented or manipulated by a program -- analogy must figure that out for itself.

Books on solid geometry are relatively rare. Lines [L2] is a good source of easy problems

(and hard ones).
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SEMANTIC TEMPLATES

The semantic templates for the two geometry worlds are derived according to the scheme

outlined in chapter [OVERVIEW OF ANALOGY,FIRST VIGNETTE -- TIC-TAC-TOE].

SOLID PLANE

(IN-LN LN PT) predicate (IN-LN LN PT) predicate

(LINE PT PT) function, valsLN (LINE PT PT) function, vals=LN
(BTWN PT PT PT) predicate (BTWN PT PT PT) predicate

(INTERSECT LN LN) function, valsPT
(PLANE PT PT PT) function, vals=sPL
(IN-PL PL PT) predicate

LANGUAGE FOR PLANS

Having described geometry world, we must now develop plans for dealing with it. A
plan is something more abstract than a program, but still has an algorithmic feel to it. Goldstein
[G3] suggests that a plan consists of PURPOSE ;statements attached to lines of code:

(PURPOSE code-reference explanation).
Goldstein gives examples of explanations:

(INSERT TRUNK TOP) -- Accomplish the TRUNK model part by a "state transparent
sub-procedure” inside the code for TOP.

(ACCOMPLISH (PIECE i (SIDE 1 TRIANSLE))) -- model parts can be divided into pieces,
each of which can be accomplished independently.

{SETUP HEADING FOR TRUNK) -- before a model part can be accomplished, a setup step may

be necessary.
To Goldstein a plan is a sequence of purpose statements corresponding to an execution sequence
(Manna and Wadlinger [M2]). Thus, if the program has a loop, we will have ROUND PLANS. If it
uses subroutines, it might require an INSERT PLAN. This notion of plan seems quite popular. We
find it again in Waters [W2] and Rich and Schrobe [R1]. Clearly, something describing control

structure must be included in commentary somewhere, but if we can, we would like to use a more
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abstract kind of plan.

Pratt [P3] suggests that programs be composed of two distinct components: the
competence component which is evidently close to an axiomatization of the world, and a
performance component, which consists of various heuristics offering advice about computations
discussed in the competence component. From this I gather that the performance component

contains plans, although Pratt’s examples do not always support this conclusion.
PLANS ARE PROGRAMS SANS CONTROL STRUCTURE

Good methodology demands that we give a definition of what a plans are which is
independent of the way we represent them. Doing this requires two steps. The first, a procedure
for generating programs from plans, gives a lower bound to the amount of knowledge in a plan.
The second step derives a plan from a prograry by factoring out control structure. This sets an
upper bound on the amount of knowledge in a plan. Anything between these two bounds will
serve as a plan. In particular, it appears that Rich and Schrobe [RI] have a structure they call a
deep plan which possibly can be abstracted into our notation for plans.

Suppose one is presented with a plan written in some suitable language (we will give
such a language shortly). Since we claim plans are closely related to programs, we would like to
believe we can more or less mechanically translate a plan into a program. A plan is a collection of
steps which, when all simultaneously satisfied, insure that the goal (or intention) of the plan is
satisfied. We demand that steps which give values to variables (the set-point for the variable) in
the plan occur before the steps which use those variables (of course). Within this restriction, the
algorithm randomly orders the plan steps. This insures that no control structure can be "hidden”
in the original sequence of plan steps. The algotithm then takes the plan steps and macro-expands
each one into a conditional (the plan step provided the predicate for the conditional) whose success

branch goes to the next step, and whose failure branch (if present) goes to the most recent set-point
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for a variable used in the expression. The control structure imposed by this algorithm is
reminiscent of CONNIVER possibilities hists.

We describe this algorithm to st a lower bound on the amount of knowledge present in
plans. Since we plan to use plans as a link between CODE and world DESTRIPTION, it is natural for
us to ask that plans be written in terms of the world description instead of (say) procedure calls.

The algorithm just sketched generates a program, but generally not the program that is
actually used by the expert. In going from code to plans, which are more abstract, we factor out
control structure. In going from plan to program, plan steps can be reordered, overlapped, and

split up. This observation sets an upper limit on the amount of knowledge in a plan.

PLAN CODE
STEP 1 -
STEP 2 [
STEP 3
STEP 4

Our view, then, is that plans are a list of goal descriptions with sufficient detail
provided so that the plan may be algorithmically transformed into a program (and this
algorithm should employ no additional information other than perhaps extrinsic
descriptions of other plans). Plans are linked to programs by commentary describing
the way plan variables are related to program variables, and the control structure
imposed on the plan steps. It may be the case that code is linked by this commentary
to several plans, as would be the case with some COND constructs.
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P ]

PLANS, OBJECTS, AND REPRESENTATIONS

In order to write plans, one must adopt a way of looking at computations. Our view of
computations, the geometry formalism, uses the notions of ob jects and their types and
representations. It also uses the notion of a data base. This plan-level structure roughly
corresponds to a CONNIVER context, with certain (severe) restrictions on the type of assertions that
can be made. The implementation of a data base might be a CONNIVER-like associative data base.

In addition to the ob ject types implied by the world description (lines, points, and planes),
we will make use of equality buckets anc “non-equality” (distinctness) buckets. Each object has a
name. Two ob jects are EQ if they have the same name. We will see that two ob jects with different
names may be EQUAL (and that this situation is unavoidable in geometry world).

In addition to names, an ob ject may huve one or more representations. For example, the
representation of a line is an ordered list of points in that line. We keep representations under an
indicator (in geometry the indicator happens 1o be the name of the type of the ob ject). Two
ob jects may have identical representations and be unequal, or they may be equal with differing
representations.

As we mentioned earlier, one way to implement representations is to use property lists.
Although the property list is a good model of representations, one should remember that

representations are part of the plan level (not the code level) of the theory of geometry world.
WRITING PLANS

We will describe one way to write plens. The reader should be warned that the plan
language we will present is somewhat limited in its expressive power. However, this limitation does
not limit our ability to write code, only our ability to say what that code does. As to the degree of

limitation, we will provide a surprisingly precise answer in the chapter [LOGIC OF EXPERTS].
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In looking at various worlds, we find rhat plans deal with two basic operations: finding
the name of an ob ject from its description, and maintaining representations. For example, looking
back to chapter [OVERVIEW OF ANALOGYSECOND VIGNETTE -- BLOCKS] at the SCAFFOLOP plan, we can see that
it searches for two blocks X and Y which meet some set of conditions. If these can be found, then a
conclusion can be drawn.

The plans which find names of objects can be further subdivided into plans which
correspond to predicates and those which correspond to functions. These considerations will lead
to the following types of plans:

MAINTAINING REPRESENTATIONS

TO-REPRESENT -- creates a represeritation

TO-INCORPORATE -- adds an item to a representation

TO-COMBINE -- combines two repretentations
BACKWARD-CHAINING COMPUTATIONS

TO-FIND -- a function plan

TO-DETERMINE -- a predicate plan

FORWARD-CHAINING COMPUTATIONS
TO-CORRELATE -- generates trivial corollaries to assertions

SEARCH COMPUTATIONS
TO-GENERATE -- a function plan which, given a predicate with one of its
arguments unknown, returns possible ob jects for that unknown.
A plan has the form

(plan-type procedure-name world-description-form <step> )

Within a plan, several types of steps can appear. In the SCAFFOLDP plan the step types BIND,

PATTERN, RESTRICT, and RETURN occur. We now will give the complete list.
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(BIND <variable-spec> ) Each variable-spec is either the name of a variable, or of the form
(variable (function <arg>i)). This kind of plan step 1s used to establish variable
bindings.

(MAKE variable type) Create a new ob ject of specified type, and give variable this ob ject as its
value.

(CONDITION predicate) Insist that the pred.cate is true. Typically a CONDITION failure
indicates that the plan is not applicable.

(PREDICATE variable-list predicate) Assign values to variables in the wvariable-list such that
predicate 1s true. Typically each variable will be given a hst (or segment) of
possible values by a TO-GENERATE plan or a data base search.

(PATTERN ob ject indicator match-pattern) Note: the object or variables in the match-pattern can
be unknown. If multiple pattern steps with the same ob,ect and indicator appear,
then the exclusive-or of those steps is intended. This is the only implicit
disjunction allowed in plans.

(RESTRICT variable-list predicate) The predicate must be true. The variable-list contains the
variables whose values are being restricted. If this step fails, control (in the code
corresponding to the plan) goes to the most recent set-point for a variable in the
variable-list to find another value (if possible).

(ABSORB predicate) Predicate has been discoverd to be true and incorporated into a
representation, so 1t should no longer be in the data base. Information can be
found either in the data base or encoded in a representation. This plan step
conce ptually removes informat.on from the data base that has been encoded in a
representation. If the code does not maintain a data base, then there probably
will not be code to implement this plan step.

(FREEZE object indicator) The representation under indicator on object should no be further
modified. This is used when an equality is discovered to prevent redundancy.
It will not be used in any examples, and is included for completeness.

(ASSERT predicate) Predicate has been discovered to be true, and should be rernembered in the
data base.

(RETURN value) Value will be TRUE or FALSE for predicates, and some ob ject for functions
and generators.
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MATCHING

Matching, used in PATTERN plan steps, is the only mechanism by which representations of
ob jects can be modified at the plan level of a theory (or, if you wish, the plan component of
expertise). A pattern has the form

(var| varg .. varn)

where each var (a variable, with value either a single ob ject, or a segment, which is a list of

ob jects) is in one of the following forms:

name -- name must be bound before a pattern match is attempted. Only the ob ject "name”
or another ob ject EQUAL to "name” can be matched.

=name -- name must be bound before paitern match is attempted. Only the ob ject "name”
can be matched. This is only used for dealing with equality buckets, and does not
occur in any examples.

?name -- name is unbound. This will match any element, with "name" being bound to the
ob ject matched.

? --as above, but no variable binding results

zname -- name is unbound. This will match a segment (of any length, including zero
length). Name will be bound to the segment.

« == as above, but no variable binding results.

“name -- name must be bound. During matching "name” is ignored. If the match is
successful, the structure matched will be modified so that the ob ject (or ob jects if
"name” is a segment) will appear in this location. Duplications (i.e., EQ ob jects) will be
disallowed. If "name" is bound to a sequence, the elements of the sequence will be
inserted in order, with duplications eliminated. If "name” is bound to a single ob ject,
that ob ject will be inserted if no duplications will result.

PATTERN steps include a hidden use of EQUAL so that usually one need not worry explicitly about

equality in plans. We will see examples of cases where we do become concerned explicitly with

equality relations in [GEOMETRY WORLD,CONSTRUCTIONS]
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GLOBAL PLANS

We have built the notion of EQUAL into the pian language. To support this, we need to
be able to give two other kinds of information. The first links type checking predicates at the
descriptive level to the notion of type at the plan level:

(TYPE-CHECKER unary-predicate type-name)
This gives the notion of type special significance in plans.

Since equality is checked differently aczording to type (for example, the rational numbers
A/B and C/D are equal as rational numbers if A:D is equal as an interger to C:B) we need to
specify how two ob jects of the same type can b2 determined to be equal. (We ignore the case of
ob jects of different type being equal). For this we use the form

(DEFINE-EQUAL typ2 binary-predicate-name)
where the default binary predicate name is EQUAL. It goes without saying that the binary predicate
must be an equivalence relation.

Thus in plane geometry

(TYPE-CHECKER PT PT)
(DEFINE-EQLAL PT EQUAL)

would say that PT is a type checking predicate ar the descriptive level for ob jects of type PT at che
plan level, and that to determine if two ob jects of type PT are equal, the predicate EQUAL should be

used.
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GEOMETRY FORMALISM

We have not given much attention to actual code, preferring rather to restrict ourselves
to plans and descriptions. We instead assume that there exists an algorithm which produces
implementation code from plans. Indeed, part of our definition of plan implied the existence of
such an algorithm.

We base our formalism on four rather similar geometry theorem provers written by
Gelernter [G2), Goldstein [G+4], Nevins [N2], and Ullman [Ul]. These all employ a single data base
into which only true facts are asserted. We will also allow the assertion of negated predicates, since
if the predicate is known to be false, its negation is a true fact. Disjunctions cannot be asserted
into the data base. Since implications are logicelly equivalent to disjunctions, they also cannot be
asserted.

The control structure used by thewe geometry theorem provers was basically a
pattern-directed multi-processing AND/OR tree (Nilsson [N3]). Each node of AND/OR tree is a
possibly "hung" process which does not communicate with any other node except for returning
results. Associated with each node of the tree is a priority. These priorities (which are generated
in some automatic way) are used to determine which node to make active next. This control
structure is an early Al result [S5]. Since we have both a data base and the special representations,
we can make deductions based on either. We will always prefer representation-based deductions.
Finally, we note that when attempting to prove some proposition, we must simultaneously attempt

to disprove it, since failing to prove a proposition does not mean the proposition 1s false.
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EXAMPLE PLANS

We will make certain claims about the plan level representations of lines in plane
geometry. According to representation claim RC1, if an object Y (Y should be a point) is in the
representation of a line X, then we can conclude :hat Y is in the line X. According to RC2, we claim
that ob jects in a line’s representation are ordered by the between predicate BTLN.

sREL
(REPRESENTATION-CLAIM (X LN (x Y %) (IN-LN X Y)) ...)

:RC2
(REPRESENTATION-CLAIM (X LN (x U x V x L x) (BTWN U V W)) ...)

We maintain these representations of lines with programs whose plans are as follows:
(TO-REPRESENT IL1 (IN-LN L A)

:IL1-1 (PATTERN L LN (~A))

:1L1-2  (ABSORB (IN-LN L A)))

This plan says that if L is a line and A is asserted to be in line L, and if L's
representation under the indicator LN is currentlv empty, then add A to it. Having done this, there
is no need to keep the assertion {IN-LN L A) in the data base, as it has been absorbed into the
representation of line L. A TO-REPRESENT plan creates new representations. We use TO-INCLUDE
plans to add to representations.

(TO-INCLUDE IL2 (IN-LN L A)
:IL2-1 (PATTERN L LN (2 7A)})
:1L2-2 (ABSORB (IN-LN L A)))

This plan says that if A 1s asserted to be in line L, and L's representation under the
indicator LN already has one point in it, then A should be added to the representation. We have
been negligent in not making sure that the riew point is not EQUAL to the point already present (see
chapter [GEOMETRY WORLD, CONSTRUCTIONS)).

The plan below handles the case when we know

(BTWN X Y 2)

and a line containing the point X has a representation (under the LN indicator)
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Y Z W.
The plan then inserts X at the beginning of the representation, giving a new representation
XY ZHW.

(TO-INCLUDE IL3 (IN-LN L A)

:IL3-1 (BINDBC D)

:1L3-2 (PATTERN L LN (A B C xD))

¢ IL3-3 (PATTERN L LN (xD C B ~A))
:IL3-4 (RESTRICT (B C) (BTWN A B C))
:1L3-5 (ABSORB (BTWN A [C B] (C D1))
:IL3-6 (ABSCRB (BTWN [C D) [B C] A))
:IL3-7 (ABSORB (IN-LN L A)))

The square brackets are "combinatorial” so that
(C Bl
is either C or B. Since the two PATTERN steps IL3-s and [L3-3 have the same object and indicator,
either pattern match will do; the two pattern steps are logically dis joint.
The following plan handles the more complex case of putting the point A into the
middle of a representation.

(TO-INCLUDE IL&4 (IN-LN L A)

:IL4-1 (BIND B C D E)

:1L4-2  (PATTERN L LN (xB C ~A U %E))
:1L4-3 (RESTRICT (C D) (BTWN C A D))
:1L4-4 (ABSORB (BTUN B C A))

:IL4-5 (ABSORB (BTWN A C B))

tIL4-6 (ABSORB (BTWN A D E))

+1L4-7 (ABSORB (BTWN E D A))

:IL4-8 (ABSORB (BTWN [B C] A D El))
:IL4-9 (ABSORB (BTWN [D E] A (B Cl))
:1L4-18 (ABSORB (IN-LN L A)))

The code corresponding ta the above plans maintains representations for use by other

code. The plans for two predicates which use th2se representations are given below.
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(TO-DETERMINE IN-LNP (IN-LN X Y)
: IN-LNP-1 (PATTERN X LN (x Y %))
: IN-LNP-2 (RETURN TRUE))

(TO-DETERMINE BTWNP (BTWN X Y 2)

:BTWNP-1 (BIND L)

¢BTUNP-2 (PATTERN 2L LN (x X * Y x Z %))
:BTWNP-3 (PATTERN 2L LN (x Z % Y x X %))
:BTUNP-4 (RETURN TRUE))

Notice that the BTUNP plan searches for a line ty having "?L" in a PATTERN plan step. The plan
need not specify how this search is to be accomplished because that is code-level knowledge.

The above provide a fairly cornplete picture of the plans concerning the representation
of lines. It is sometimes necessary to cuplicate information. For example, we also need the
following plan.

(TO-CORRELATE INTERP-BTWNL (BTWN X Y 2)

:IBTWN1 (BIND W)

: IBTUNZ (PREDICATE W (BTWN X Z W))

: IBTWN3 (ASSERT (BTWN Y Z W)))

This plan duplicates a fact used in the justification of BTWNP. Given an assertion (BTWN A B C),
if we can find that (BTWN A C D), then we can conclude that (BTWN B C D). This plan is
necessary because we occasionally need to draw inferences about BTWN when not all points have
been inserted into a representation. We will later see an example of this (chapter [ANALOGY
ALGORITHMS,RESULT JUSTIFICATION]). At the code level we know we would not want to "run” this

TO-CORRELATE plan if we can absorb the BTWN assertion into a representation. The plane geometry

expert has many more plans than those ibove We will have an opportunity to examine more of

them in chapter [ANALOGY EXAMPLES, NON-TRIVIAL ANALOGY].
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PLAN JUSTIFICATIONS

Plan justifications, which must be supplied to the analogy process, have the form
(PLAN-JUSTIFICATION plan-name <step>j)
where each step has the form
(step-label predicate rule <argument>.).
For example, we repeat the plan justification given earlier for SCAFFOLOP (chapter [OVERVIEW OF

ANALOGY,SECOND VIGNETTE -- BLOCKS]):

(PLAN-JUSTIFICATION SCAFFOLDP
(L1 (SUPPORTS BLOCK X) RT18 STEPL)
(L2 (SUPPORTS Y X} RT11 STEP2)
(L3 (STABLE Y X) %RESTRICT STEP3)
(L4 (NOT (EQUAL BLOCK Y)) %RESTRICT STEP4)
(LS (NOT (EQUAL Y BLOCK)) EQTHML L&)
(L6 (DISTINCT Y BLOCK) DISTINCT-DEFINITION LS)
(L7 (SCAFFOLD BLOCK) FACT29 L6 L2 L3))

Three kinds of rules are used in plan justifications:

L l. Theorem of world descriprion. The arguments to this theorem will be other plan
Jjustification steps corresponding to :he antecedents of the theorem (for example, step
L7 above). We suppressed the correspondence between plan variables and theorem
variables.

2. Semantics of a plan step (which is given as the argument). For example step L3 is
true because of the result returned by STEP3 of the plan, which evidently was a
RESTRICT plan step.

3. Representation claim. The argument will be a PATTERN plan step. For example,
Jjustification step L2 above. Again the correspondence between plan variables and
claim variables has been supressed.
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PROVING REPRESENTATION CLAIMS

We are now 1n a position to prove that the two representation claims, RC1 and RCZ, are
true. In the literature on proving programs correct, one typically finds that proving properties
about some data structure is very difficult. It is an interesting feature that in our plan language
the proof of a representation claim always has a very simple and regular form. We will make use
of this simplicity in the result justification algori:hm (see [ANALOGY ALGORITHMS,RESULT JUSTIFICATION]).

The proof of a representation claim is always by induction on the size (length) of the
representation. Each TO-REPRESENT plan contributes a base step, each TO-INCORPORATE
plan contributes a weak induction step, and each TO-COMBINE plan contributes a strong (or
course-of-values) induction step, required, for example, to combine congruence classes.

Let’s start with RC1, since that is the easiest.

(X LN {x Y % (IN-LN X Y))
As promised, the base step is given by the plan for [L1, which should be viewed as a kind of
IF-ADDED demon. Matching up the varialbles in the claim with those in the code (i.e.,
(X L) (Y A)), we see that if the code actually does what the plan says (as we shall always assume),
then the representation claim will be true after :he code runs, since the call pattern (IN-LN L A)
had to be true in order for the program IL1 to run. We write this as
(IL1-1 CC(X L) (Y A)) (L1 (IN-LN X Y) %CALL)))

where %CALL is the reason we just gave that (IN-LN X Y) is thought true.

Similar reasoning nolds for the plans IL2, IL3, and IL4, giving us the complete

representation claim.

:RCI

(REPRESENTATION-CLAIM (X LINE (x Y x) (IN-LN X Y))
(IL1-1 (C(X L) (Y A)) (L1 (IN-LN X Y) %CALL)))
(IL2-1 (X L) (Y A)) (L1 (IN-LN X Y) %CALL)))
(IL3-2 (((X L) (Y A)) (L1 (IN-LN X Y) %CALL)))
(IL3-3 (((X L) (Y A)) (L1 (IN-LN X Y) %CALL)))
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(IL4-2 (((X L) (Y A)) (L1 (IN-LN X Y) %CALL))))
With this, we can produce a PLAN-JUSTIFICATION for IN-LNP.
It is more difficult to prove representation claim RC2:
(X LINE (x U x V » W x) (BTUNU V W)
This claim is vacuously true after IL1 and IL2 have run, so we don't have an explicit base step!
So much for rigor. Looking at IL3, we need to separate the insertions by [L3-2 and IL3-3 as we
did above. Concentrating on line [L3-2, if we match up the variables
(U A (vB) (WC)
then the claim is true due to the restriction in lins [L3-4. If we match up the variables with
(UaAa) (vC LD
then we know (BTUN %B V W), where in the proof of a representation claim we will write %.B to
reference the variable B in the plan being discussed. From the restriction we can conclude (BTKN
U %B V). Finally we have a geometry theorem P-BTWN-THEGREMI (in chapter [GEOMETRY
WORLD,AXIOMS]) which lets us use these two conclusions to deduce (BTWN U V W).
The third way to match up the variables is
(U A (VD (WD),
We conclude, as above, (BTWN %C V W) and (BTWN %B %C V) by induction. The restriction

insures (BTWN U %B %C). Two applications of P-BTWN-THEOREML give us our result. Putting all

of this together we have part of the justification of representation claim RC2:

e
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(REPRESENTATION-CLAIM (X LN (x Y %) (IN-LN X Y))
(IL3-2
(U A) (VB) (W)
(L1 (BTWN U V W) %RESTRICT IL3-4))
(A (VO WD)
(L1 (BTUN %B V W) RC2 1L3-2
(L2 (BTUN U %B V) %RESTRICT [L3-4)
(L3 (BTWN U V W) P-BTWN-THEOREM1 L1 L2))
(U A (VD) WD)
(L1 (BTWN %C V W) RC2 IL3-2)
(L2 (BTWN %B %C V) RC2 IL3-2)
(L3 (BTUN U %B %C) %RESTRICT ILZ-4)
(L4 (BTUN U %C V) P-BTWN-THEOREM1 L2 L3)
(LS (BTWN U V W) P-BTWN-THEOREM1 L1 L&))) . . .)

Analysis for IL3-3 and [L4-2 is similar. With FIC2 proven we can justify the plan for BTWNP.
In chapter [ANALOGY ALGORITHMSRESULT JUSTIFICATION] we will show how these representation

claims and their proofs are used by the analogy process.

EXTENDED PREDICATE FORMS

Another important role which represantation claims play concerns extcnded predicate
forms. We find it convenient to write (IN-LN L A B) instead of saying both (IN-LN L A) and
(IN-LN L B). The representation claim RC1 above allows us to convert the claim (IN-LN L A B)
directly to giving L a representation under the LN indicator of the list (A B), provided L does not
already have a representation there. Similarly, if we have the two claims

(IN-LN L A B C E)
(BTWN A B C E)

we can give line L the represention (A B C E) without going through an expansion and
contraction. Without the IN-LN claim, we would use the representation claim RC2

(k U xV xWx) -=> (BTN UV W

to transform
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(BTWN A B C E) -->
(BTWN A B C)
(BTWN A B E)
(BTWN A C E}
(BTWN B C E)

We will be able to use these representation claims to quickly translate information from
one world to another. Of course, this use of representation claims is only incidental.

If the predicate is a type-checker, we make use of a standard ob ject of type DBUCKET for

which we have a representation claim
bk X % Y x) -> (NOT (EQUAL X Y))
This agrees with conventiona' usage, so that declaring (LN L1 L2 L3) will cause us to create a

distinctness bucket (say) GO15 with representation (L1 L2 L3) under the DBUCKET indicator.

CONSTRUCTIONS

Writing free verse is like playing tennis with the net down.
== Robeit Frost

As with certain kinds of modern poetry, writing a geometry expert that doesn't deal (at
some level) with constructions is like playing tennis without a net. The construction problem is
very hard; we should distinguish between diffe-ent kinds of constructions in the hope of finding

some kind that we can completely handle.

Consider the following problem:

TRIVIAL PROBLEM
Given: (PT C)

(LN LD)

(LN L2)

(NOT (EQUAL L1 L2))

(IN-LN L1 ©)

(IN-LN L2 C)

(IN-LN L1 (INTERSECT L2 L3))x
Prove: (IN-LN L3 C)

St
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Geometrically the situation is very simple. The starred assertion claims that a single
point (say) D is in all three lines. Since Cis in L1 and L2, which are known to be distinct, we can
use the contrapositive of axiom P-12 to show that C = 0. Then since D i1s in line L3 "by
construction”, C must be also "by equality.” This is an example of a trivial construction.

Intuitively, a trivial construction is one that could be accomplished by either searching
and matching representations, or by creating an ob ject and assigning it a representation, where the
arguments to the construction function are all that are required to build the pattern. Thus, with
our representation of lines, the functions INTERSECT and LINE would be trivial constructions.
Similarly, if we represented triangles by listing the vertices, then it would be trivial to construct a
triangle given its vertices. We (mathematically) close this definition by declaring that a
construction accomplished by a standard sequence of trivial constructions is also a trivial
construction. Since any construction can be accomplished by some sequence of trivial constructions,
the restriction to a standard sequence above is required.

No prior geometry expert problem solving system was able to solve trivial construction
problems; our technique represents an advance in this area. The reason others could not solve
trivial construction problems is their insistence that there must always be a one-to-one
correspondence between ob ject names and their representations, i.e, using (and using the fact that
one is using) canonical representations prevents one froin being able to solve trivial construction
problems. Consider: a corollary of a representation being canonical is that all ob jects must be
distinct. Furthermore, the use of anonymous ob jects will not solve the problem, since at the time of
creation we not only don't know the name of the ob ject (already existing), but we don’t know that
we don’t know its name. In the problem above, one must first create ob ject O, and only then prove
it 1s equal to an ob ject already known.

We can solve trivial construction problems because we relax the constraints on

representations: we insist only that representations fulfill their representation claims.

NVPR e
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MISSING POINT CONSTRUCTIONS

Given two sides of a triangle and the median to the third, construct a triangle. As
usual, only a compass and ruler (straight edge) may be used.

The reader may recall that the median of a triangle extends from the vertex to
the midpoint of the opposite side (of the triangle).

MISSING POINT CONSTRUCTION DIAGRAM

This very hard problem implicitly names four points: A, B, C (the triangle vertices), and the
midpoint M. Four lines are also implicitly named (three sides and the median). Unfortunately, we
need a fifth point, not given by the statement of the problem. The reader might try solving this
problem before reading further.

Wong [W7] has a heuristic that will generate this missing point which he calls the
mid point reflection heuristic. Assume tha: we have the diagram above. Reflecting B through M
(the midpoint of AC) gives us a point X. X 15 at a distance 2:MEDIAN from B. XCBA 1s a
parallelogram, so AX is congruent to BC (side 1) The solution, then, is to lay out line segment AB
(given). Then construct point X at distance BC (given) from point A and 2:MEDIAN from B.

Through X construct a line L parallel to AB  Finally construct point C on L so that XC is

congruent to AB. Triangle ABC is then the solution.
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The key point is to construct the poin: X. The problem statement does not give even a
hint that X exists or is needed. This is an example of a missing point construction; they are
always hard.

A third type of construction, also used in the problem above, is the locus construction.
Funt [F5] has written a program which can solv: geometry problems using Polya’s “pattern of two
loci” [P1] provided that the names of all points are implicit in the statement of the problem, and
that these points are distinct. Surprisingly, although Funt's program can solve rather involved
locus constructions, it cannot perform trivial constructions! In fact, none of the expert geometry

problem solvers currently available are able to solve the problem “trivial problem” given above.

EXPLANATION OF THE TRIVIAL CONSTRUCTION PROBLEM

Let's see how our formalism does on the “trivial construction problem”. We have two
kinds of plans for INTERSECT applied to lines: cne checks to see if we already have a point known
to be in both lines (see chapter [ANALOGY EXAMPLES, TRIVIAL ANALOGY PROBLEM]), while the other creates a
new ob ject and asserts that it is in both lines.

(TO-FIND MAKE-INTERSECT (INTERSECT X Y)

(BIND P)
tMI-1 (CONDITION (DISTINCT X Y))

MI-2 (CONDITION (LN X))

:MI-3  (CONBITION (LN Y))
tMI-4 (MAKE P PT)

tMI-S5  (ASSERT (IN-LN X P))
:MI-6  (ASSERT (IN-LN Y P))

(RETURN P))

The plan does not make sure that the two lines are not parallel because the concept of parallel is
missing in incidence geometry. This plan cannot be justified using the axioms in [GEOMETRY

WORLD,AXIOMS ), again we see that theories need not be either consistent or complete. Suppose this

plan produces an object D. Then after processing the assertions in the "given” portion of the

trivial construction problem, we will have
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CBJECT NAME NDICATOR REPRESENTATICON
L1 LN (C D)
| LN (C D)
L3 LN (0)
D1 DBUCKET (Ll L2)
€ POINT --
0 POINT --

Now we will invoke the IN-LNP plan to evaluate
(IN-LN L3 C)
This will cause us to perform a pattern match
(x C x) against (D)
and as 1t stands this match fails, causing the program to hang. Later we will re-examine the hung
process, and reconsider the pattern match using the implicit EQUAL test described in chapter
[GEOMETRY WORLD,LANGUAGE FOR PLANS]. This generates two goals
(EQUAL C D)  (DISTINCT C D)

Hopefully we will be able to prove one of these.

We have a plan
(TO-DETERMINE PT-EQUAL1 (EQUAL X Y)

(CONDITION (PT X))

(CONDITION (PT Y))

(BIND U V)

(PREDICATE U (IN-LN U X))

(PREDICATE V (IN-LN V X))

(RESTRICT (U) (IN-LN U Y))

(RESTRICT (V) (IN-LN V ¥))

(RESTRICT (U V) (DISTINCT U V))

(ASSERT (EQUAL X Y))

(RETURN TRUE))
which asks us to find two distinct lines that contain the two points. If we can do this, we assert
that the two points are equal, and return true. This plan finds the lines L1 and L2, hence it
returns TRUE, so the pattern match in IN-LNP succeeds, and in time returns TRUE. We will show

hew a proof of (IN-LN L3 C) may be obtained from this true result in chapter [ANALOGY

ALGORITHMS,RESULT JUSTIFICATION].
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In the situation above, we will never be able to put another point into LI's or L2
1 representation, because we will never be able to prove a BTUN assertion about the two points (and
another point) already there. Alternatively, if we had already known of two points in Ll and L2,

we would not have been able to put D in. This is caused by the “oversight” mentioned in plan

IL2.
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ANALOGY ALGORITHMS

Now that we know the structure of plans and domain descriptions, we can present three
important algorithms used in the analogy process. 1 will try to present these algorithms with
sufficient detail to convince the reader that I could write a program that performs as claimed, but
yet not so much detail as to be tedious. Should I fall too far on one side or the other, I beg the

reader’s patience.

MAP FORMATION AND EXTENSION

We have described the process by which semantic templates are generated elsewhere
(chapter [OVERVIEW OF ANALOGY,FIRST VIGNETTE -- TiC-TAC-T0E]). These templates form the input to the map
formation algorithm. However, before this algorithm can be used we must decide which aspects of
the domain problem should be mapped. We will see in chapter [ANALOGY EXAMPLES, NON-TRIVIAL ANALOGY]

that the preliminary summarization step is absolutely necessary.

SUMMARIZATION

Since we are using a direct deduction system (as opposed to, say, resolution theorem
proving [Cl]) we can always add more assertions if a proof does not develop initially. We also
have access to the current deduction AND/OR tree, so that we can see if any interesting
outstanding questions need answers. These two considerations tell us that postponing the transfer
of assertions to the image world won't cost us anvthing, and may be beneficial.

Suppose that in the domain world we are stuck (i.e, the current highest priority domain

subgoal cannot be proven or disproven, and no other activity can take place) on the assertion (or

function)
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(P OB, .. OBJ).

At a minimum, then, we will need to map this to the image world. Predicate P and the ob jects
OB, are then needed in the summary. The surimary will take the form of a number of "given”
assertions, with the predicate we are stuck on a: the “to prove" portion. We now need to specify

what will be generated as the "given."

The O-order summary consists of the ob jects OB, and the precicate P.

The (n+l)-order summary includes all ob jects, predicates, and assertions in the n-order
summary, plus
(1) All the representations of the n-order summary ob jects, encoded by the
relevant representation claims.
(2) The subsets of any equivalence and distinctness buckets containing n-order
summary ob jects, encoded in tvpe-checking predicates.
{3) Any assertion in the data base whose form does not use more than one ob ject
or predicate not in the n-order summary.
(#) The entire equivalence and disunciness buckets containing objects in the
(n-1)-order summary.

It is worth noting that the summarization algorithm may fail to include some assertions
in the summary. These "widow" assertions may be included in the summary if called for by
outstanding questions in the image problem solving effort. Since this algorithm is somewhat
conservative, and dependent on having domain world representation claims, an implementation of

our theory of analogy would probably require some heuristics concerning when this algorithm

should be used.
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MAP EXTENSIONS

The basic idea behind map extensions is that if domain type T maps to image type t and
if P is some domain predicate with semantic temiplate (P T), then P’s image Q must have semantic
template (Q_t). For functions, there is an extra constraint that if the template (F T) has result of
type R, then F’s image G must have template (G t) with result of type r. In what follows, we will
only discuss predicates, since the only difference between predicates and functions is this extra
constraint.

The idea above can be used in several ways: if we know the mapping of a predicate, we
can fill in the mappings of its argument type. Similarly, we can figure out where a predicate can
go if we know the mappings of its arguments (in the semantic template, of course). It is important
to keep in mind that we map rypes and semantic templates, not (except consequentially) ob jects and
predicates.

The situation above is an exact map. We are willing to do a certain amount of violence

to semantic templates, as outlined in the following rules, given in order of decreasing preference:

L. P->Q,(PS T)->(Q s t). This isthe exact map described above.

2. P>Q,(PS T ... T)>(CQ. s t) where there is a representation claim for Q which
would treat (Q s t ... t)as merely an extended form.

3. P->Q, (P S T)->(Q t s). This is the reordering map. We are willing to try
mappings which preserve type inventory, but not type order.

4. P>Q (PTT ... T)>(Qt t). Wearbutrarily drop some of P’s arguments, with
the later ones preferred. This is the normal homogeneous argument case.

5P>Q,(PS T T ... T)->(Q s t t). Again, we drop excess arguments of type T.
This is the mixed homogenecus argument case.

6. P->Q, S->s, T->s, U->s5,(P S T U)->(Q s s) where the argument U is arbitrarily
dropped. Alternatively, S or T may be dropped. This is a weak homogeneous map.

The map formation algorithm also uses the following, more global rules.
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A. Avoid many-to-one maps of ob ject types by not mapping types. This means that
exact maps may drop some arguments, because an argument’s type is not being
mapped.

B. Avoid many-to-one maps of preclicates and functions by using the map which uses
the fewest predicate multiple maps.

C. Map extended forms (see chapter [GEOMETRY WORLD,REPRESENTATION CLAIMS]) intact.
D. Map as high as possible into typ2 hierarchies.

E. Map into the most restiictive sub-type first (see example in chapter [OVERVIEW OF
ANALOGY,FIRST VIGNETTE -- TIC-TAC-TOE]).

As yet, we have not developed any heuristics for adding arguments. In all cases, what

cannot be mapped is ignored.

RESULT JUSTIFICATION ALGORITHM

We need a way to transform a result and the justification of the plans used to generate

that result into a justification of the result. The distinction between proof of program correctness

(e, a proof that the program only produces co-rect results) and proof of the result generated by

that program (i.e, a proof that the result is correct) is a subtle, but very important one. One

proves that in general the result is correct, while the other proves that a particular result 1s correct.

In order to aerive a justification of a result we employ two different techniques. The

first is based on interpreting plans while running code, while the second is based on representation

claims. The important features of our result justification algorithm are:

1. We can postpone justifying a result until after it has been generated.

2. We can produce a justification in a controlled manner, so that we w:li not look
deeper into a justification than necessary.
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PLAN BASED RESULT JUSTIFICATION

Commentary attached to the code of an expert problem solver signals when plan steps
are completed. At that time we generate an iastantiation of the plan step, using the explicit
variable correspondence given in the commentary. However, since code can have awful things like
loops and GOTOs, a plan step can be completed any number of times. We will only be interested in
the most recent completion of a plan step.

When a RESULT plan step is completed, we record the most recent step instantiations, and
associate them with the result. When the final result is obtained (i.e., the top level goal is
achieved), it is a simple matter to trace through the plan steps and, using the justifications of those
steps, obtain a justification of that result.

We will see that we also must record the plan step instantiation whenever an ASSERT
plan step is completed, attaching the instantiation to the assertion. Similarly, when a PATTERN step
inserts an ob ject into a representation, the plan instantiation is attached to the inserted ob ject, as
well as the current "time” in order to unwind any subsequent representation-based deductions.

The completed plan instantiation will then be a list of CONDITION, PREDICATE,
PATTERN, and RESTRICT plan steps, and of course the call pattern and any BIND plan steps which
use a function call. Each instantiation will record the variable bindings currently in effect, and
reference any subsidiary plan instantiations.

For example, if a PATTERN plan step’s code made use of a hidden EQUAL test, then the
instantiated PATTERN plan step would reference the plan instantiation associated with the result
returned by the EQUAL test.

Returning to the trivial construction problem’s solution, while processing the "given”, we
evaluated the form

(INTERSECT L2 L3)

by using the plan MAKE-INTERSECT. The result of this evaluation was a new ob ject 0 (a point on
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both lines). The plan instantiation for MAKE-INTERSECT making ob ject D would look like

:MI#20
(MAKE-INTERSECT

(MI-1 (X L2) (Y L3) LN-DISTINCT?#28)

(Mi-2 (X L2) LN?4#22)

(MI-3 (Y L3) LN?8#23))
The important part of this plan instantiation is the variable correspondences for each step, and the
plan instantiations for the subsidiary deductions (eg. LN-DISTINCT?#23). Suppose we require a
proof that

(IN-LN L3 D)

W hether this result is in the data base, or has been derived from a representation, we will know

that plan instantiation M1#28 is responsible. We look at the instantiation to find the name of the

plan. The plan justification (which, you will recall, isn't even true!) is

(PLAN-JUSTIFICATION MAKE-INTERSECT
(S1 (DISTINCT X Y) %CONDITION MI-1)
(S2 (LN X) %CONDITION MI-2)
(S3 (LN Y) %CONDITION MI-3)
(S4 (EQUAL P (INTERSECT X Y)) P-DEF1 S1 S2 S3)
(SS (IN-LN X P) P-DEF1 S4)
(S6 (IN-LN Y P) P-DEF1l S4))

Once we have all of this, it is a fairly simple matter to use the plan justifications to

generate a justification of the result. Some of the steps will be justified by referring to some

theorem or axiom of the world description, others by reference to some plan, and finally some will

be justified by representation claims. The first iwo present no difficulty -- we just do more of the

same, being ever so careful to keep variable names straight. Unfortunately representation claims
form a very effective road block. }

Continuing the example, we may riow derive a proof by first instantiating the

justification, and then tracking back from the gcal assertion to get
J 8 B
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(S1 (DISTINCT L2 L3) LN-DISTINCT?#20)

(S2 (LN L2) LN?#22)

(S3 (LN L3) LN?#23)

(S4 (EQUAL D (INTERSECT L2 L3)) P-DEF1 €1 S2 S3)
(S6 (IN-LN L3 D) P-DEF1 S&)

REPRESENTATION CLAIM BASED RESULT JUSTIFICATION

Suppose the plane geometry expert outlined in chapter [GEOMETRY WORLD,LANGUAGE FOR PLANS]
were given the following assertions, where A, B, C, D, E, F, and G are known to be distinct points

in line L, and initially L's representation is (A C).

ASSERTION CO0E RESULT

1. (BTWN AC E) IL3-3 rep=(A C E)

2. (BTUN B C D)

3. (BTWN A B C) IL4-2 rep=(A B C E)

4, (BTWN A G B) [L4-2 rep=(A G B C E)

5. (BTWN B D E) INTERP-BTW1(2) assert (BTWN C D E)
6. (BTUN C D E) [L4-2 rep=(A G B CD E)
7. (BTWN F A G) IL3-2 rep=(F AGBCDE)

Now suppose we use BTWUNP to deduce (BTWN F B E). Using the algorithm above, the "proof” we
get of the fact is very short: it is true because rearesentation claim RC2 says it is.

To drive the justification through deductions based on representations we will make use

of :

1. The time each ob ject in a representation was placed there.
2. The plan line that inserted the ob ject into the representation.
3. The plan instantiation generated when the insertion was performed.
Step 1. Find the most recently inserted ob ject of those referenced by the deduction. In
the example this ob ject is F.
Step 2. Find the plan line that inserted that ob ject. In the example, that is line 1L2-2.

Step 3. Reconstruct the correspondence between representation claim variables and




ANALOGY ALGORITHMS 39 RESULT JUSTIFICATION

plan variables. This can always be done since we have the values of the plan
variables in the instantiation attached to the inserted ob ject. In the example, the
correspondence is (U A) (V D) (W D).

Step 4. In the representation claim proof, find the clause for the plan line from step 2
and the correspondence from Step 3. From this clause read off the justification.
This gives
(L1 (BTWN G B E) RC2 [L3-2)
(L2 (BTWN A G B) RC2 IL3-2)
(L3 (BTWN F A G) ASSERTION7)
(L4 (BTWN F G B) P-BTWN-THEGREM1 L2 L3)
(LS (BTHN F B E) P-BTWN-THECREML L1 L4)

Since the representation claim proof is inductive, the justification generation algorithm

will be recursive. Continuing, in line L2 5 was most recently inserted, by 1L4-2 with

g
correspondence (U C) (V A) (W D). Thus we find that L2 should expand to
(L2-1 (BTWN A 5 B) ASSERTION&)

As for line L1, again G was most recent. However, we get a different variable correspondence
(U A) (V D) (W E) which directs us to a different clause in the proof of RC2. Here we find that
P-BTWN-THEOREMZ justifies line L1 provided that we can prove (BTWN A B E). B was inserted by
IL4-2 in response to assertion 3. Again, P~B"WN-THEOREMZ justifies our conclusion, provided
(BTWN A C E) can be proven. Finally, C was inserted in response to assertion l.

The proof of (BTWN F B E) references assertions 1, 3, 4, and 7, but not assertions 2, 5,
and 6. This is as it should be, since those three assertions had nothing to do with our result. On

the other hand, the justification of (BTWN A D E) would include references to assertions 1, 2, 3, 5,

and 6, but not assertions 4 and 7.

.
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DEBUGGING ALGORITHM

Using the result justification algorithm we can reduce a justification in a controlled
fashion to any desired detail. The result and its justification will be in terms of the world
description (and possibly plan and representation claim references). Using the map extension
algorithm and by paying careful attention to where ob jects and assertions originally came from, we
can lift the result and (ro some extent) its justification back to the domain world.

If the lifted assertion is true in the domain world (i.e, the lifted assertion is in the data
base, or is provable by the domain expert), then its justification need not concern us. Similarly, if
the assertion is demonstrably false we are in trouble, and either must go back to the image world
for a different solution, or (as is more likely) select a different analogy map.

Hence we are only interested in assertions that might be true. To determine if an

assertion is in fact true, we need to check its justification.

1. If the inverse map of the justification is known, then expand the justification step
in the domain world.

2. If the justification is part of the world description, see if the lifted version of the
world description is valid in the domain world.

3. If the justification is either a representation claim or a plan, make a record that the
f claim or plan might be a good thing to lift, and then expand that justification step in
' ‘ the image world.

4. If the justification could not be lifted, try to continue, noting the possible presence
of a MISSING-POSTCONDITION bug.

The above reduces the problem of justification checking to checking the validity of some part of a
world description. Since world descriptions are theorems in the first order predicate calculus (with
a few exceptions made for definitions), it is tempting to suggest that we simply drag out our

favorite resolution theorem prover and let 'er rip.

Certainly that will prove the theorem true if it is. Since our world description may be
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inconsistent and since we do not insist that our plans be consistent with the world description, we
might very well succeed in proving the theorem is true even if it isn't! Besides, if the theorem is

not provable, we want to know why. Bugs in theorems correspond to bugs in plans.

ONE-STEP DEDUCTIONS

We employ a very limited form of theorem proving: the one step deduction. We will

attempt to prove a theorem as follows:

1. For all domain world axioms, lemmas, and theorems whose consequent has a
non-null intersection with the consequent of the theorem we are trying to prove, see 1f
its antecedent clauses are included in the antecedent of the theorem we are proving.
2 Similarly, try the contrapositives o all lemmas, axioms, and theorems.
3 For each axiom, lemma, and theorem in the world description, generate
(individually, of course) its disjunctive normal form. Compare (using the unification
algorithm [Cl]) this with the theorem we are trying to prove, also in disjunctive normal
form
The reason for the first two attempts is primarily aesthetic, although some increase in efficiency
should also result. Steps | and 2 appear to work if they prove only some of the consequences.
Indeed, a particular application of a theorem may require only some of the consequents. We know

what consequent we want (the result we are trying to justify), so these steps are correct as stated.

If none of these work, we can try expanding the justification in the image world, and

lifting that. However, more often failure indicates a bug in the analogy map.
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BUG DETECTION

We are primarily interested in three kinds of bugs: MISSING-PREREQUISITE,
UNNECESSARY-PREREQUISITE, and MISSING-POSTCONDITION. The reader might imagine that
there is a fourth, which might be called UNNECESSARY-POSTCONDITION. [ have never seen an
example of this, although it might occur. Both MISSING-PREREQUISITE and
MISSING-POSTCONDITION bugs manifest themselves in the justification checker. Suppose we have

the following situation

have: (IMPLIES (AND Al A2) (AND Cl C2))
want: (IMPLIES (AND A2 A3) (AND C1 C3))
result: Cl
: Then step | will fail to confirm that what we have corresponds to what we want. The nature of
the mismatch is that Al is an excess antecedent in what we have, and A3 is an excess antecedent in
[ what we want. If Al is valid in the domain world, it corresponds to a potential
MISSING-PREREQUISITE, and A3 to a potential UNNECESSARY-PREREQUISITE.
For the MISSING-PREREQUISITE bug detected above, we
1. Note the bug that Al 1s a MISSING-PREREQUISITE.
2. Note the correspondence with a warning about the potential
UNNECESSARY-PREREQUISITE A3.
3. Assert C2 into the domain data base.
4. Justify Cl with the domain fact w2 have.
When we lift the plan which gave rise to this bug, we will generate either a CONDITION
or RESTRICT clause for Al as a patch.
MISSING-PREREQUISITE bugs can be detected in another way. Any plan that adds

ob jects to a representation must be documented in all relevant representation claim proofs.

Inability to provide this new proof clause may indicate that either the representation claim must be
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dropped or weakened, or that a MISSING-PRERE(IUISITE bug has been detected.

A MISSING-PREREQUISITE bug is fairly simple to detect, since it is caused by a
(potential) domain expert failing to do something it must do. On the other hand,
MISSING-POSTCONDI TION and UNNECESSARY-PREREQUISITE bugs are caused by (potential) domain
experts failing to do something they should have done, and trying to do something they shouldn't
have. We should not be surprised that the conditions for confirming these (wo bugs appear
byzantine.

A MISSING-POSTCONDITION possibility is signaled in step 4 of the justification checker.
If the justification succeeds, and if the call pattern of a plan that was used to supply justification
to fill in the gap is the same as the (lifted) call pattern of the plan that generated the
MISSH:JG-PDSTCDNDITIDN, then it is possible that the domain plan should have asserted the
MISSING-POSTCOKDITION. Now we see if we have a one step proof of the
MISSING-POSTCONDITION based on domain plan justification and the conclusion the
MISSING-POSTCONDITION was supposed to have justified. If we can do all this, then generate a
new plan step (generally an ASSERT plan step) for the domain plan.

UNNECESSARY-PREREQUISITES are problematic in that usually their presence is not
signaled by anything in the final result justification. True, we do generate a warning above, but
this warning is only used if the antecedent is false in the domain world. Generally we must resort
to a different technique.

We examine the AND/OR tree in the image expert. We find an OR node, all of whose
subgoals have hung. If the disjunction of the subgoals is false or meaningless in the domain
world, then that node may represent an unnecessary prerequisite. To test this, we must re-solve the
original problem, generating a TRUE out of one of the subgoal nodes. If the new result
justification is valid (when lifted) and made use of the node result, but not of the TRUE we
generated in the subnode, then the UNNECESSARY-PREREQUISITE bug is confirmed. When we iift

the plan corresponding to the OR node, we ignore the plan step that generated the subgoal.
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The reason for solving the problem again is to insure the relevance of the plan hung up
by the unnecessary prerequisite. Clearly we don't want to lift irrelevant plans. Simularly, if the

plan is used and produces an invalid justification, then we were in error to generate the TRUE. We

will see an example of this in chapter [ANALOGY EXAMPLES, NON-TRIVIAL ANALOGY].
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ANALOGY EXAMPLES

The importance of special representations (for example, listing points in order for the
representation of a line) cannot be overstated. Waldinger and Levitt (W1] point out "To as great
an extent as possible, we have chosen representations that model the semantics of the concepts we
use so as to make our deductions shorter and easier.” A ma jor thrust of this research has been to
arrange for analogy to be able to lift these special representations to new worlds. The first three

problems in this chapter illustrate lifting the representation of lines in two ways.

PROBLEM 1 -- a trivial analogy

While plane and solid geometry are not isomorphic, there is a sub-world of solid
geometry that is isomorphic to plane geometry. The purpose of our first problem is to show how
analogy functions in this simple case. Just to keep things from being devoid of complications, we

will have the analogy process teach the solid geometry expert a new concept: lines can intersect.

PROBLEM L. Show that the intersection of distinct lines containing a point C is that point C.
(FORALL (K L C) (IMPLIES (AND (LN L K)

(PT C)

(IN-LN K C)

(IN-LN L C))

(EQUAL C (INTERSECT K L))))

Several observations should be made. First, not2 that the LN predicate has two arguments. Input
to the problem solver is processed by special procedures. Since we know that LN 1s a type checking
predicate from the semantic template gereration process, we expand this form into a distinctness

bucket containing the two lines as objects as described in chapter [GEOMETRY WORLD,REPRESENTATION

claMs). The second observation is that INTERSECT has never been defined in solid geometry.
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The bare-bones solid geometry expert knows how to deal with problems of the above ]
form: having created ob jects named K, L, and C, it then asserts (LN L) ... (IN-LN L C) into
the data base. Finally, it tries to evaluate

(EQUAL C (INTERSECT K L))
by first evaluating the function call
(INTERSECT K L).
Since there is no procedure willing to perform this computation, the solid geometry expert reports a
failure. At this time the solid geometry data base contains two assertions:
(IN-LN K C)
(IN-LN L C)
The most we can reasonably expect from analogy is:

1. Learn what INTERSECT means.
2. Learn how to implement a function that computes INTERSECT.
3. Learn how to react to assertions of the form
(IN-LN line point).
4. Learn how to represent lines.
Although this is the most we can expect, analogy gives us a little bit more!

STEP 1: MAP

The current outstanding problem is (EQUAL C (INTERSECT K L)) so the O-order
summary has EQUAL, INTERSECT, C, K, and L. The l-order summary includes the two IN-LN

assertions. Thus we will map everything. The map formation algorithm suggests two possibilities:

LN->LN LN->PT

PT->PT PT->LN

INTERSECT->INTERSECT INTERSECT->LINE

IN-LN->IN-LN IN-LN->IN-LN order of arguments reversed

We prefer exact maps, so we use the one on the left. The map on the right is interesting in that

analogy just tried to invent pro jective geometry.
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STEP 2: SOLVE THE IMAGE PROBLEM

Plane geometry expertise is fully developed. When each assertion is entered in the data
Lase, it is examined by a procedure (invoked by the pattern of the assertion). This has occurred,
and the data base is now empty. The assertions have been used to set up ob jects and their
representations. We have
type=LN, representation=(C)
type=LN, representation=(C)

type=PT, no representation
Bl type=0BUCKET, representztion=(K L)

O0Nr X

where the last ob ject is a "distinctness bucket.”

We now evaluate (INTERSECT K L) (using a procedure FIND-INTERSECT whose plan is
given below), and get a return value C. We apply the inverse analogy map to the image ob ject C,
and get the domain ob ject C. We evaluate (EQUAL C C), getting TRUE as a result. This indicates it
would be worth while "lifting” the definition of INTERSECT and the proof that "C" is the correct

value.

STEP 3, PART 1: OBTAIN IMAGE JUSTIFICATION

, We used the plan FIND-INTERSZCT in the solution.

(TO-FIND FIND-INTERSECT (INTERSECT L1 LZ)
(BIND P)
:FI1 (CONDITION (LN L1))
1 :FI2 (CONDITION (LN L2))
i :FI3 (CONDITION (DISTINCT L1 L2))
| tFl4 (PATTERN L1 LN (x ?P %))
| tFIS (PATTERN L2 LN (x P %))
(RETURN P))
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(PLAN-JUSTIFICATION FIND-INTERSECT
(L1 (LN L1) %CONDITION FI1)
(L2 (LN L2) %CONDITION FI2)
(L3 (DISTINCT L1 L2) %CONDITION FI3)
(L4 (IN-LN L1 P} RCl FI4)
(LS (IN-LN L2 P) RCl1 FIS)
(L6 (IN-LN L1 (INTERSECT L1 L2)) P-DEF1 L1 L2 L3)
(L7 (IN-LN L2 (INTERSECT L1 L2)) P-DEF1 L1 L2 L3)
(L8 (EQUAL P (INTERSECT L1 L2)) P-THM22 L1 L2 L3 L4 LS L6 L7))

where P-THM22 is the contrapositive of axiom P-12. We get a proof of
(EQUAL C (INTERSECT L1 L2)) from the plan justificaion of FIND-INTERSECT by the result
justification algorithm in chapter [ANALOGY ALGORITHMSRESULT JUSTIFICATION]. This proof uses RC1,

P-DEF1 (the definition of INTERSECT), and P-THIM22.

STEP 3, PART 2: LIFT IMAGE JUSTIFICATION

We lift P-DEF1, getting S-DEF1. We then apply the inverse analogy map to P-THM22 to get (in
solid geometry)
:$S-THM22

(FORALL (A B X Y)

(IMPLIES (AND (LN X) (LN Y) (DISTINCT X Y) (PT A) (PT B)
(IN-LN X A) (IN-LN X B) (IN-LN Y A) (IN-LN Y B))
(EQUAL A B)))

We use the second kind of one step justification (chapter [ANALOGY ALGORITHMS,RESULT JUSTIFICATION]) to

get a proof of S-THM22. Knowing S-THM22 to be true, we can complete the lifted proof and add

the following to the analogy map for use in the next step.

S-THM22 -> P-THM22
S-12 -> P-12
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STEP 3, PART 8: LIFTING PLANS

We noted that FINO-INTERSECT, IL1, and RC1 were used in the course of solving this
problem. Analogy now rewrites these into solid geometry plans. No bugs were detected in the

result justification, so this is a straightforward copy operation. We add the procedural

correspondences

S-FIND-INTERSECT -> FIND-INTERSECT
S-IL1 -> ILI
S-RC1 -> RC1

to the analogy map.

LESSONS FROM PROBLEM 1

What have we learned as a result cf solving this problem? As much as could be
expected. We have both a definition and code for intersections of lines (under some
circumstances), We have the beginnings of code dealing with representations of lines. We also
know what to do with IN-LN assertions of multitle point arguments by virtue of the solid geometry

representation claim S-RC1.

PROBLEM 2 -- Non-trivial analogy problem

We now turn to our second problem. Let us assume that, by processes similar to that
given above, all the necessary expertise in dealing with points and lines has been learned by the
solid geometry expert.

We now want to increase our solid geometry expertise to include the representation of

planes. We will start by posing a problem which asks solid geometry to prove that a plane is
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determined by two intersecting lines. Granted, this is an obvious solid geometry fact. However,
the rigorous proof of this fact is far from obvious. The skeptical reader might wish to try his
hand. We wish to prove that
PROBLEM 2. Three distinct points which determine two distinct lines also determine a plane.
(FORALL (A B C P)
(IMPLIES (AND (PT A B C)

(NOT (EQUAL (LINE A B) (LINE B C)))

(PL P)

(IN-PL P A B C))

(EQUAL (PLANE A B C) P)))

We used an extended format for PT (which the solid geometry expert knows how to deal
with) and for IN-PL (which it doesnt). There are trivial construction of both lines (understood)
and planes (not understood). Finally, the problery mentions points, lines, and planes, so the analogy
map must be non-trivial.

Processing is forced to halt when we try to assert

(IN-PL P A B C)

Recall that IN-PL is expected to have two arguiments, the first of type PL and the second of type

PT. This form does not match its semantic template.

STEP 1: MAP

We must eventually use analogy to f.nd what this assertion means. Having no good

reason to abandon the analogy map used in protlem [, we continue with

PT -> PT
LN -> LN
etc.

To find a mapping of IN-PL, we ask "What predicate do we have in plane geometry that takes two
arguments, one of them of type PT and the other one of another type?” One answer is IN-LN. But

this has an ob ject of type LN as its other argument, so on the basis of matching semantic templates
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(rule 1 of the map extension algorithin in chapter [ANALOGY ALGORITHMS,MAP FORMATION AND EXTENSION]) we

| conclude

PL -> LN
IN-PL -> IN-LN

and add these to form a many-to-one analogy mzp. E

] Construction of Analogous Problems Involves SUMMARIZING

We will eventually be forced to solve « problem in plane geometry to know how to treat
the expression (IN-PL P A B C) in solid geomeiry. If we simply map everything we know down to
plane geometry, we will end up with a coniradiction: (IN-LN P A B C) and the claim
(DISTINCT (LINE A B) (LINE B C)) conflict with axiom P-12. This means we must summarize
the current situation into a sub-problem. The next question is "What sub-problem?” We have

domain ab jects:

A type=PT

B type=PT

C type=PT

0B1 type=DBUCKET, representztion=(A B C)
0B2 type=LN, representation=(A B)

083 type=LN, representation=(B C)

0B4 type=DBUCKET, representction=(0B2 0B3)

We are hung up by the IN-PL assertion and therefore by our goal (EQUAL (PLANE A B C) P).
We will first generate the l-order summary and then use the map extension algorithm to map the
summary to plane geometry. We start off with the objects P, A, B, and C, their representations,
and type declarations resulting from relevant distinctness buckets. These assertions constitute the
“given” portion of the sub-problem constructed by the summarization process in chapter [ANALOGY

ALGORITHMS MAP FORMATION AND EXTENSION]. The "to arove" portion is supplied by the assertion solid

geometry could not deal with. Continuing, we assert in plane geometry
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(PT A B C)

(LN P)

(IN-LN P A B C)
The last assertion would give P the representation (A B C) if the assertion (BTUN A B C) were
also present. Since it isn’t present, we expand the IN-LN assertion to

(IN-LN P A) (IN-LN P B) (IN-LN P C)
The first two are then removed from the data base by the TO-REPRESENT plan IL1 and the
TO-INCLUDE plan IL2, while the object P is given the representation (A B). The third assertion
causes an attempt to prove or disprove the three statements
(BTWUN A B C) (BTWN A C B) (BTKkN C A B)

by the TO-INCLUDE plans IL3 and IL4. (These plans may be found in chapter [GEOMETRY
WORLD,LANGUAGE FOR PLANS] in the section giving EXAMPLE PLANS). Naturally no progress is made on any
of these, so we continue to summarize.

We need to map the current domain goal

(EQUAL (PLANE A B C) P)

to an appropriate image goal in plane geometry. Finding no exact match for the mapped semantic
template, we note that the arguments to PLANE are of homogeneous type, and that the semantic
template for LINE in the image is also of homogeneous argument type, with the appropriate (under
the map) value type. By rule 4 of the map extension algorithm we add

PLANE -> LINE

to the analogy map, with a note to arbitrarily drop the last argument.




ANALOGY EXAMPLES 103 NON-TRIVIAL ANALOGY

STEP 2: SOLVE IMAGE PROBLEM

Then, noting that (PLANE A B C) -> (LINE A B), it is easy to evaluate the latter
expression in plane geometry to get the object P, and by golly

(EQUAL P P)

STEP 3, PART 1: OBTAIN IMAGE JUSTIFICATION

We used the following plane geometry plan to get this result:

(TO-FIND FIND-LINE (LINE P1 P2)
(CONDITION (PT P1))
(CONDITION (PT P2))
(CONDITION (DISTINCT P1 P2))
(BIND L)

(PATTERN ?L LN (x Pl x P2 x))
(PATTERN 2L LN (x P2 x Pl x))
(RESULT L))

The proof rests on LINELEMMAL (proven by using P-12):

:LINELEMMAI
(FORALL (P1 P2 L1 L2)
(IMPLIES (AND (PT P1)
(PT P2)
(DISTINCT P1 P2)
(LN L1}
(LN L2)
(IN-LN L1 P1 P2)
(IN-LN L2 P1 P2))
(EQUAL L1 L2)))

The image proof generated by the result justification algorithm applied to the plan justification

for FIND-LINE above reads
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. 1. (PT A B) given
| 2. (LN P) given
3. (IN-LN P A B) given
4, (LN (LINE A B)) P-I1 applied to 1
5. (IN-LN (LINE A B) A B) P-11 applied to 1
6. (EQUAL P (LINE A B)) LINELEMMAL applied to above

We have now solved the summarized problem. Unfortunately, when we try to "lift" the

justification, we find it is not correct!

STEP 3, PART 2: LIFT IMAGE JUSTIFICATION --
DEBUGGING the Analogy

The first hint of trouble occurs when we try to justify step
4x (PL (PLANE A B C)).

To do this, we need to lift P-11 as it was used in this step:

Ilx (FORALL (A B C)

(IMPLIES (AND (PT A) (PT B)) (PL (PLANE A B C})))

This theorem is not true, but no matter, because we try using brute force (our one step
deduction algorithm), and fail to prove Il:. Good -- we have detected a bug! We do find,
however, that we can prove (PL (PLANE A B C)) in one step using S-14a. The "lifted” portion
of plane geometry allows us to prove in solid geometry that (NON-LN A B C). (The appropriate
portion of plane geometry would be lifted by this exercise in any case by a recursive application of
the analogy process).

We can now classify the "bug” in the analogy to be a MISSING-PREREQUISITE. With
this in mind, we add

S-l4a -> P-11
to the analogy map, and a line providing non-collinearity to the proof in solid geometry.

Having lifted step 4 of the image result justification, we proceed to lift step 5 as
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Sk (IN-PL (PLANE A B C) A B) S-l4a
after checking that S-14a does indeed prove this. This step will also need modification. We now
need to lift LINELEMMAL (above) in preparation for lifting step 6 of the image justification. This
lemma in turn depends on axiom P-12.

Following the proof checking algorithm, we translate the lifted version of LINELEMMAL to
disjunctive normal form, then compare this to 1l axioms (also in their disjunctive normal form).
We discover that axiom S-15 gives us the desired equality provided that the points are not
collinear and that all three points are in both planes. We just proved the former, and know the
latter is true by S-14a (appropriate assertions were made when it was applied).

We make note of a second MISSING-PREREQUISITE bug on our bug list, patch line 5: to

show that point C is also in (PLANE A B C), anc. give the proof for

PLANELEMMAL :
(FORALL (P1 P2 P3 PL1 PL2)
(IMPLIES (AND (PT P1 P2 P3)
(NON-LN P1 P2 P3)
tECEBE DY S(PESREZ) '
(IN-PL PL1 P1 P2 F3)
(IN-PL PL2 P1 P2 F3})
(EQUAL PL1 PL2)))
Having done all that, we update the analogy map by adding

PLANELEMMAI -> LINELEMMAI
S-15 -> P-I2

to the analogy map. Note we cleverly got back the proper number of points: LINELEMMAL

quantified two points, while PLANELEMMAL quantifies three!
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STEP 3, PART 3: CHECKING FOR UNNECESSARY
PREREQUISITES

This completes the proof. We are still not ready to lift plans. We have one anomaly
remaining: in plane geometry there is an outstanding question concerning the order of points A, B,
and C in the "line” P. We can easily prove in solid geometry that

(NOT (OR (BTWN A B C) (ETWN A C B) (BTWN C A B)))
We can conclude that there is not an "obvious” candidate in solid geometry for the BTWN relation
with this analogy. Having thus applied the UNNEECESSARY-PREREQUISITE bug detection algorithm,

we also add this bug to our bug list.

STEP 3, PART 4: Lifting Plans for Problem 2

We can now lift the plans. Although the bugs were detected by logical means, they are
noted with respect to the plan lines which gave rise to them. When we lift these questionable lines,
the bug type tells us what actions need to be taken to repair the plan. Thus we get

(TO-FIND FIND-PLANE (PLANE P1 P2 P3)
(CONDITION (PT P1))
(CONDITION (PT P2))
(CONDITION (PT P3)) idue to LINELEMMAL bug
(CONDITION (DISTINCT P1 P2 P3)) ;LINELEMMAL bug
(CONDITION (NON-LN P1 P2 P3))  ;S-14 bug
(BIND L)
(PATTERN ?L PL (x Pl x P2 x))
(PATTERN 2L PL (x P2 x Pl %))
(RESTRICT (L) (IN-PL L P3)) s LINELEMMAL bug
(RESULT L))

(TO-INCLUDE S-IL3 (IN-PL P A)
(PATTERN P PL (~A x))
(ABSORB (IN-PL P A)))

where S-1L3 came from plane geometry IL3, with several plan steps deleted due to the

UNNECESSARY-PREREQUISITE bug. We also add
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S-I1L1 -> IL1
S-1L3 -> IL3

FIND-PLANE -> FIND-LINE
to the analogy map. We also lift a representation claim about the representation of planes:
:SP-RC1
(REPRESENTATION-CLAIM (X PL (x Y x) (IN-PL X Y)) ...)

We learned from this example a little about representing planes, and how to construct a
plane from given points. We also learned that there is no concept corresponding to BTWN which

applies to pcints in a plane. It is important to remember in all this that by "learn” we always mean

"write code for."

PROBLEM 8 -- Non-obvious analogy

So far, the problems have been interesiing, but not spectacular in that the analogies were
fairly obvious. The problem we will now solve has no obvious solution.
; The problem involves the notion of a line being in a plane. We recognize that "IN" is a
transitive, non-symmetric binary relation in solic geometry: if A is IN B, and B is IN C, then A is
IN C, but if A is in B, then B is not necessari'y in A (almost certainly not). The crux of the
problem is that there are no transitive, non-symmetric binary relations in plane geometry (as we
have described it). That we call "IN" by different names (IN-LN, IN-PL) according to argument
types just makes things worse. In this example we will find an analogy where none can reasonably

exist.
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The above example indicates we could replace both IN-LN and IN-PL in
solid geometry with a single predicate IN without affecting the analogy process
operation.

It is also worth pointing out that we don't need higher level descriptions like
“transitive, non-symmetric binary reation.” In fact, if high-level descriptions were to
form the basis of an analogy process, then that process would evidently fail on this
problem.

A SECOND-ORDER DEFINITION

Suppose we wish to introduce the notion of "a line being in a plane” to our budding
solid geometry expert. We cannot say merely "if a point is in a line and that line is in a plane,
then the point is in the plane” because that only tells us how to use the fact that a line is in a
plane, not how ta deduce it. We might wish to add "a line is in a plane if all points on that line
are in the plane”, which is correct, but testing for this condition involves a proof by contradiction.
We dislike proofs by contradiction for reasons detailed in chapter [LOGICS OF EXPERTS,FORMALISMS AND
Logics]. Therefore we might try to add "a line s in a plane if two points of t.at line are in the
plane." This, of course, duplicates axiom S-16 in a definition, and thus cannot be allowed.

What we will do is similar to the device used with INTERSECT: we will claim that for
line L and plane P, (IN-PL P L) is a predicate such that
(FORALL (A L P)

(IMPLIES (AND (PT A) (LN L) (PL P)

(IN-LN L A) (IN-PL P L))
(IN-PL P A)))

In other words, the above is true "by definitior." This is a "second-order” definition, because it

i really means
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(FORALL (A L P ALPHA)
(IMPLIES (IMPLIES (AND (PT A) (LN L) (PL P)
(IN-LN L A) (ALPHA P L))
(IN-PL P A))
(IMPLIES (ALPHA P L) (IN-PL P L))))

where ALPHA is a universally quantified predicate.

STEP 1. MAP

We have our definition. To find how the defined predicate (IN-PL plane line)

is to be implemented, we use a clever trick: we pose the definition as a problem! We continue

using the same analogy developed by problems | and 2, so that

PT -> PT
LN -> LN
PL -> LN

IN-PL -> IN-LN when applied to plane and point

The image semantic template of IN-PL applied to plane and line under the current analogy is a
predicate applied to two lines, i.e, the same sematic template as EQUAL (applied to lines). With the

axioms given, it is also the only semantic template match. In fact, there are four reasons why

EQUAL is a good choice for the analogy:

(1) Pragmatic. This choice works.

(2) Traditon. In algebra one investizates the structure of groups and rings by way of maps
that send problematic substructures to identity elements, i.e, one imposes equivalence relations

on the structure.

(3) Con jectural. Suppose we wanted to choos2 P to maximize the size (cardinality) of the set "Q
such that for all X,Y (P X Y) implies (Q X Y)." I suggest that EQUAL would be one of the
best choices. In other words, EQUAL “"does imore” than any other predicate.

(4). Philosophical. We really want to write a program. A common joke is that writing
programs is the same as debugging a blark sheet of paper. We are essentially using EQUAL

as a blank sumulus in the hopes of debugging the response.

So we add as an exact analogy map

IN-PL -> EQUAL when applied to planes and lines.

NON-OBVIOUS ANALOGY
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With this map, the plane geometry problem we pose is

(FORALL (A L P)
(IMPLIES (AND (PT A) (LN L) (LN P)
(IN-LN L A) (EQUAL L P))
(IN-LN P A)))

STEP 2: SOLVE THE IMAGE PROBLEM

To make a long story short, the image problem is solved with the proof being “by definition of

equality.” When this justification (a reference to a second-order equality axiom) is lifted, we get a

proof "by definition of IN-PL" which is indeed correct!
STEP 3: LIFT THE PLANS

We now lift the plans. The image plan [N-LNP first searched P’s representation for A,
and failed. It then used the implicit EQUAL test to search for any "line" EQUAL to P, found L, and
proceeded to search L for A.

(TO-DETERMINE IN-LNP (IN-LN X Y)

: IN-LNP-1 (PATTERN X LN (x Y x))
s IN-LNP-2 (RETURN TRUE))
Thus the "lifted" plan should first search P's representation for the

object A, and failing that, search for any line (because L's inverse is a line)
satisfying the relation (IN-PL P x) wher2 x is a line, and then search there for A.

The image plan is IN-LNP. The implicit EQUAL test shows up right before the pattern
step. We used a representation claim about equality buckets to do this test. To lift this claim
(under the current analogy map) we search for a representation claim with a consequence (IN-PL

X Y). We find and verify SP-RC1 (written in the course of solving problem 2). This gives us a

lifted plan
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| ({TO-DETERMINE IN-PLP2 (IN-PL X Y)

! (BIND 2)

1 (PATTERN X PL (x ?Z %)) ;SP-RC1
(RESTRICT (Z) (LN 2)) smap restriction
(PATTERN Z LN (x Y x))
(RESULT TRUE))

So we learn three things by solving this problem: first that the use of the “def inition”
should be in backward chaining rather than forward chaining, and second the point and details of
the patch required to implement the new interpietation of IN-PL, and third that lines can appear
in the representation of planes. Now if

~ (IN-PL plane line)

is ever asserted, we know what to do.
Problem 3, Continued

Thus armed, suppose we are given the problem:

(FORALL (A B C P)
(IMPLIES (AND (PT A B C)
(PL P)
(IN-PL P A B)
(IN-LN (LINE A B) ©))
(IN-PL P C)))

The current analogy map transforms this to a plane geometry problem

Given: (PT A B C)

(LN P)

(IN-LN P A B)

(IN-LN (LINE A B) C)
Prove: (IN-LN P C)

The justification for the TRUE result obtained reads
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1.
2.
3.
4.
S.

NON-OBVIOUS ANALOGY

(IN-LN P A) given

(IN-LN P B) given

(EQUAL P (LINE A B)) FIND-LINE evaluating (LINE A B)
(IN-LN (LINE A B) C) given

(IN-LN P C) equality, 3, 4

When we lift this reasoning, we find that step 4 is no longer valid. We have

Sl.
S2.

(IN-PL P A) given
(IN-PL P B) given

S3. (IN-PL P (LINE A B)) generated by evaluating (LINE A B)

The lifted step of the proof S$3 is from image step 3 by the correspondence

IN-PL -> EQUAL when IN-PL is applied to a plane and a line. The image proof step 3 was

produced as a result of evaluating (LINE A B), so one suspects that lifted step S3 should be

generated under similar circumstances.

We use our solid geometry expert S-MAKE-LINE to construct (LINE A B) noting the

possibility of a MISSING-POSTCONDITION bug, and use the one step deduction algorithm to supply

the rest of the proof

S4.
SS.
S6.
S7.
S8.

(EQUAL L (LINE A B)) S-MAKE-LINE
(IN-LN L A)

(IN-LN L B)

(IN-LN L C) given (image ascertion 4)
{IN-PL P C) S-16 S5,S6,S1,S2,S7

Since S3 was generated by a plan with (ater inverse mapping) a call pattern (LINE X Y), and the

call pattern for S-MAKE-LINE is the same, the conditions for MISSING-POSTCONDITION are

satisfied. The second-order definition of IN-PL (for this particular set of arguments) gives us the

one step deduction that (IN-PL P L) is true. Thus we patch the S-MAKE-LINE, and of course fix

up the plan justification.

|

|
f
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(TO-FIND S-MAKE-LINE (LINE P1 P2)
(CONDITION (PT P1))
(CONDITION (PT P2))
(CONDITION (DISTINCT P1 P2)) !
(BIND L)

(BIND P)

(MAKE L LN)

(PATTERN L LN (“P1 ~P2))

(PATTERN %P PL (x P1 x P2 x))  ;PATCH
(PATTERN xP PL (x P2 x P1 %))  ;PATCH
(ASSERT (IN-PL P L)) +PATCH
(RESULT L))

Ah, what a crooked path we have walked. If no natural analogy is available, the analogy

process blithely uses an unnatural one to achieve new expertise.

PROBLEM 4 -- A failure of analogy

We will briefly sketch one way that the analogy process can fail. We will try to reason

about "Farmer and River" world on the basis of "Tower of Hanoi" world

Farmer and River world: A farmer takes a fox, a chicken, and a bag of grain on a
journey. They come to a river, and find a small boat. The farmer can only fit one of
the three objects in the boat at ore time. The fox cannot be left alone with the
chicken, nor the chicken with the grain. What sequence of movements will result in
the farmer and his three ob jects getting to the other side of the river?

Formally Permitted two-ob jec: groups are (FOX, GRAIN). Sides of the river are SIDE1
and SIDE2. Initially FOX, GRAIN, and CHICKEN are ON SIDEl. We want them ON SIDE2.

Towsr of Hanoi world: this is the 3-ring version. There are three pegs (named PEGI,
PEGZ2, and PEG3). PEGl has three rings on it (BIG, MEDIUM, and SMALL). With the
restriction that a ring may never be placed on a smaller ring, how can all three rings
be moved to PEG2?

Formally Permitted two-ob ject stacks are (in order from top to bottom)
(BIG, SMALL), (BIG, MEDIUM, (MEDIUM, SMALL).

The map formation algorithm maps the ON predicate to ON, ob jects of type SIDE to ob jects of type
PEG, and ob jects of type COMPANION to ob jects of type RING (this is all obvious from the semantic

template for ON).

From the initial configuration, it is clear that
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SIDE1 -> PEGL
4 From the goal configuration, we can easily decide that
SIDE2 -> PEG2

We now have three possible maps:

MAP1 MAP2 MAP3

FOX -> BIG FOX -> BIG FOX -> MEDIUM
GRAIN -> SMALL GRAIN -> MEDIUM GRAIN -> SMALL
CHICKEN -> MEDIUM CHICKEN -> SMALL CHICKEN -> BIG

If we use either MAP1 or MAP3, then tte (inverse map) situation after the first Tower of
Hanoi expert move leaves the chicken with the fox. This is good for the fox, but not for the
chicken. Thus we use MAP2. Now look at the solution to the Tower of Hanoi generated by our
expert, and the inverse map of those movements, recalling that we prefer ignoring object maps to

double maps.

SMALL->PEG2 CHICKEN->SIDE2
MEDIUM->PEG3 IGNORE
SMALL->PEG3 IGNORE
BIG->PEG2 FOX->SI1DE2
SMALL->PEG1 CHICKEN->SIDEL
MEDIUM->PEG2 GRAIN->SIDE2
SMALL->PEG2 CHICKN->SIDE2

Sure enough, analogy gave us the solution! Thea why do we claim this example is a failure of the
analogy process? Simply this: after getting the solution we try lifting the plans which generated it.
This effort is a disaster!

Since we insist that analogy actually increase expertise, we have no choice; we must

consider this application a failure.
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LOGICS O EXPERTS

The purpose of this chapter is to develop a way to express the limitations of our theory
of analogy. We have seen examples of the analogy process operating in four different pairs of
worlds. We now ask “Is there something special about these worlds that might allow this analogy
process to work here but not in other worlds?” To answer this question we will present a closure
claim: given a description of a world this claim will tell whether or not that world can be either
the domain or image world in the analogy process. That is, we will express the limitations of our

analogy process in terms of a limitation on the kinds of worlds it can be used on.

LIMITATIONS OF ANALOGY

The analogy theory has two components: the horizontal, concerned with extending and
applying the analogy map and its inverse, and the vertical, concerned with transforming and
relating programs to proofs and proofs to programs. The horizontal component has been
discussed in preceding chapters, so we will say riothing more about it here. However, the vertical
component is fairly algorithmic, and fortuitously lends itself to a rather interesting kind of analysts.

The results of this analysis will include

1. A limitation on our ability to go from program to proof.
2. A limitation on our ability to go from proof to program.

3. A hierarchy of world complexity.

The third result is the most important  On the way to this, we obtain results indicating
that various current research efforts could, in theory, be successful, while other efforts would (in

theory) be unsuccessful. We can also show that the world of geometry was a very good world in

which to initially study analogy. The second limitation gives us an indication that using resolution
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theorem proving to do expert problem solving is a very bad idea.

SUMMARY

We will develop a technique by which we can characterize the power of an expert
problem solving system such as the geometry formalism introduced in chapter [GEOMETRY
WORLD,LANGUAGE FOR PLANS]. We will also present a characterization of the power required to Aandle a
world. These two characterizations are in the same terms, so we can compare them to tell whether
the formalism in principle can handle the world, and similarly whether a world needs in principle
a less powerful formalism than the one proposed.

The point of all this is twofold. First, as outlined above, we can derive limitations to any
analogy process using proof-theoretic techniques. Second, we can make a philosophical statement
concerning the relative merits of problem solving theories (in a particular world). Given two
equally strong theories (i.e, both "do" as much), we can state: The better theory of problem solving
uses the weaker formalism. To believe otherwise is bad science. If some expert problem solver does
not handle aspects of a world that could in principle be handled, then we can similarly criticize

that effort for being too timid.

DEFINITION OF FORMALISM

Often we would like to say that some programming language is "more powerful” than
another. This claim is usually not true due to annoying universal turing machine arguments. For
example, we would like to claim that a theorem prover along the lines of (say) Ullman's [Ul]
geometry theorem prover is not as powerful (in an absolute sense) as a resolution theorem prover.
By this we mean that from the same “given”, the resolution theorem prover would obtain a proof

while the other would not. But since both are w-itten in a language powerful enough to produce a
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universal turing machine, they can simulate each other, hence our claim must be false.

A formalism might be thought of as 1 way to enforce a gentleman's agreement not to
make universal turing machines. A programming language, in addition to providing
programming constructs, supplies a philosophy of techniques. If we can extract a promise to "play
the game”, we can make interesting (anc valuable) claims about the limitations of the language
which would be falsified if use were madz of that language’s universal capabulities.

Since we wish to restrict what can be done without (significantly) affecting fow it is done,
the proper place to begin is with plans and not code. By placing rather severe restrictions on the
nature of plans and their justification, we can limit the power of a formalism to the point where
important observations cannot be obfuscated by sophomoric universal turing machine arguments.

That is, by considering a formalism to encompass a programming language, a plan
language, and a plan justification language, we will be able to show that, for instance, the
geometry formalism introduced in chapte. [GEOMETRY WORLD,LANGUAGE FOR PLANS] 1s strictly weaker than
a resolution theorem prover, not because you couldn't write code for the resolution theorem prover,

but because you couldn’t write a plan for that code.

PROBLEM SOLVING FORMALISMS CORRESPOND TO LOGICS

Suppose we have a formalism like the one used earlier for geometry. It had a single data
base into which only true assertions were entered T hese assertions had only two possible forms:
(predicate obj) objy « « obj,)
or
(NOT (predicate objy Objy + . . objn))
We remarked that this formalism had sore limiiations in that it could not prove some theorems in

the classical propositional calculus. The "reasoning by cases” example (using single letters to

represent assertions of the form above)
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REASONING BY CASES

i GIVEN:
(IMPLIES A (AND B C))
(IMPLIES B (OR E F))
(IMPLIES C (OR E G))
(IFF F (NOT G))
PROVE:

(IMPLIES A E)
cannat be proven, since we need at some time to assert F and at some other time assert (NOT F).
The restriction to a single data base implies that this course of events will result in both F and
(NOT F) being in the data base, hence the data base will be inconsistent. The alternative, asserting
(NOT E) and deriving a contradiction, is a clear violation of the edict "keep the data base
consistent.”

Coupled with an observation that the formalism will apply modus ponens automatically,
the above suggests that the formalism implements some kind of logic, but not the classical
propositional calculus. One might now naturally ask "What other kind is there?” We can
axiomatize the classical propositional calculus as follows (Kleene [K1], page 82):

CLASSICAL PREDICATE CALCULUS
Inference Rule: A, (IMPLIES A B) |- B

la. (IMPLIES A (IMPLIES B A))
lb. (IMPLIES (IMPLIES A B)
(IMPLIES (IMPLIES A (IMPLIES B C)) (IMPLIES A C)))
2. (IMPLIES A (IMPLIES B (AND A B))
3a. (IMPLIES (AND A B) A)
3b. (IMPLIES (AND A B) B)
4a. (IMPLIES A (OR A B))
4b. (IMPLIES B (OR A B))
S. (IMPLIES (IMPLIES A C)
(IMPLIES (IMPLIES B8 C) (IMPLIES (OR A B) C)))
6. (IMPLIES (IMPLIES A B) (IMFLIES (IMPLIES A (NCT B)) (NOT A)))
7. (IMPLIES (NOT (NOT A)) A)

According to Kleene, replacement of axiom 7 with
7% (IMPLIES (NOT A) (IMPLIES A B))
results in a new logic: intuitionistic propositional calculus.

Intuitionistic logic insists that proofs be constructive. One way in which to enforce this
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edict is to disallow “proofs by contradiction.” Another is to disavow the principle of the excluded
{ middle
(OR (NOT A) A)
This can be seen to be equivalent to axiom 7 above. We can now ask "Does the geometry
formalism implement intuitionistic logic>* We w Il see that the answer is "No."

It is evident that axiom 7 is not implerented, simply because double negatives cannot be
asserted. Axiom 7, on the other hand, is supported (implemented) because we nsist that the data
base be kept consistent. Clearly la, Ib, 2, 3a, b, and 5 are implemented. However, 4a and 4b are
not, since disjunction cannot be asserted. Neither is axiom 6 implemented. Apparently, the logic
which the geometry formalism implements is not even as strong as intuitionistic logic.

One might ask about other problem wolving systems, and the logic that corresponds to
them. Suppose we employ a resolution theorem prover as the basis for an expert problem solver,
as was done, for example, in QA2 and STRIPS. Then the logic associated with these formalisms can
easily be seen to be classical logic.

Suppose we have the geometry formalism, but allow facts to be deleted from the data !

base. Then the formalism corresponds to some kind of modal logic. It might seem that in this

particular case we would gain some ability: the reasoning by cases problem above which could not
be solved by the geometry formalism could be solved if we allow assertions tosbe deleted from the
data base. The reasoning, which is incorrect, goes something like this: "First we assert F, then
determine that this proves E, then delete the assertion that F is true.” The reasoning is incorrect
because after asserting F we make subsidiary deductions based on F being true, and although F is
subsequently deleted, these subsidiary deductions are not, (since deleting F does not delete those

facts asserted after F was asserted) leaving the potential of an inconsistent data base. We will

return to this point shortly.




S Bt —

LOGICS OF EXPERTS 120 FORMALISMS AND LOGICS

NEGATIONLESS INTUITIONISTIC LOGIC

We can easily verify that the following will be supported by the geometry formalism:

NEGATIONLESS INTUITIONISTIC LOGIC
Inference rules:
P, Q |- (AND P Q)
P, (IMPLIES P Q) |- Q
R, (IMPLIES P Q) |- (IMPLIES F (AND Q R))

Axioms:

1. (IMPLIES P (AND P P))

2. (IMPLIES (AND P Q) (AND Q F))

3. (IMPLIES (IMPLIES P Q) (IMFLIES (AND P R) (AND Q R)))

4, (IMPLIES (AND (IMPLIES P Q) (IMPLIES Q R)) (IMPLIES P R))
5. (IMPLIES (AND P Q) P)

This set of inference rules and axioms form a logic extensively studied by Griss [G6]

called negationless intuitionistic logic.

FURTHER ABSTRACTION -- LOGIC OF WORLDS

By going fron: a formalism to the lagic corresponding to that formalism, we have
obtained a certain degree of abstraction. We stall now take one more step. We want to develop
the noticn of "logic needed by a world." To do this, we show (below) that the “contents” of a world
are somewhat independent of the axiornatization of that world (for the relation of models to
worlds, see [NOTE I11)).

We need to clarify the sense in which 1 world is handled by a set of axioms and a logic.
We can characterize a world by listing the styles of questions we typically ask of the world. That
is, one geometry world is characterized by questions of congruence and incidence. Another
geometry world (which we have not discussed before) deals with questions concerning compass and

straight-edge constructions. In the blocks world we want to answer questions of planning, position,

and support. In analysis we are concerned with convergence (in various ways). The question "can
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an angle be trisected with compass and straight-edge?" is not part of geometry world (as taught in
high school). The usual proof that the answer is "no” makes extensive use of group theory (see
Fraleigh [F4)).

The notion of a world being handled is admittedly fuzzy. We can pin the notion down
somewhat by associating some number of milestone problems with a world. Then a world can be
handled if its milestone problems can be solved.

Griss demonstrated that with respect to his axiomatization of Euclidian geometry,
negationless intuitionistic logic was sufficiently powerful to derive the milestones associated with
classical axiomatic geometry [G7]. We must now ask if we can make this claim with respect to our
(or, rather, Hilbert’s) axiomatization. For an answer we have

EQUIPOTENCY THEOREM. Suppose a formalism with corresponding logic L
implements a world with axiomatization A, and we have a proof in logic L that

(IMPLIES G P), and that intuitionistically (IMPLIES A G). We can then prove P in
the formalism with an implementation axiomatized by A.

INTUITIONISTICALLY
A _ G
| BY WAY OF FORMALISM LOGIC L
:WITH LOGIC L
¥ INTUITIONISTICALLY
P o P

THE DIAGRAM COMMUTES

For example, suppose we want to know if the geometry formalism is expressive enough
to allow us to write an expert geomet:y problem solver. How could it not be? Suppose there were
a result P that could be proven from Hilbert's axioms (call these axioms A). If we could not get
our expert to prove P, then we would be in trouble.

Suppose we know Griss has an axiomization G (which happens to be almost identical to
Hilbert's) for which there is a negationless intuitionistic proof of A. That is, (IMPLIES G P) by

negationless intuitionistic logic. Finally suppose that Hilbert's axioms A imply Griss's axioms G
intuitionistically (they do) Then we can use the equipotency theorem to guarantee that we can
construct programs in our formalism that will let us prove P from A. Furthermore, a corollary of
the equipotency theorem tells us that the programs can be constructed algorithmically (for instance,
by an analogy process along the lines we have suggested).

-,

.

s
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1 What this equipotency theorem says is that we can discuss the logic required to "handle”
a world independently of both the formalism to which the logic corresponds and the
axiomatization of the world (up to intuitionistic equipotency). If we select some minimal
axiomatization of a world, then the logic required by that world is the weakest logic required to
solve the appropriate milestone problems.

The proof of the thecrem is trivial: simply prove G from A by intuitionistic means.
Then write the implementation of G in the formal system, using the proof obtained as justificaion.
[There is a bug in this proof which we will corrst shortly]. Since L corresponds to the formalism,

the formalism is now capable of proving P.
TWO APPLICATIONS OF THE EQUIPOTENCY THEOREM

Sussman suggests that early ARSE may implement negationless intuitionistic logic. ARSE is
certainly that powerful. Jon Doyle [D1] investigated the possibility of writing a geometry theorem
prover in early ARSE. We know by the equipotency theorem that this effort could have been
completed successfully. Doyle was, of course, more interested in controlling the deduction process
than proving theorems per se.

While on the sub ject of efficiency, we must make a confession: we cannot, of course,
make any claims about the efficiency of various logics, nor compare the efficiency of one
formalism to another on the basis of their logics. Nonetheless, I con jecture that the weaker the
logic, the more efficient the implementation.

If Doyle had been investigating an analysis theorem prover, we know that the effort

would have been unsuccessful since we know that intuitionistic logic is not sufficiently powerful

for this task (see Heyting [H1]).
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A FALSE VERSION OF THE EQUIPOTENCY THEOREM

Suppose, in the statement of the equipotency theorem, we were to claim that classically
(IMPLIES A G). Surprisingly, this falsifies the theorem! The reason is explained by Kleene [KI,
chapter XV, section 82, particularly page 509 ], which we restate:

A formula 1s said to be recursively realizable if 1t is effectively computable. If A s
recursively realizable and G can be deduced from A intuitionistically, then G 1s also
recursively realizable. Furthermore (and this is important in what follows) the
realization of G can be obtained from the intuitionistic proof.

If the proof of (IMPLIES A G: is noa-intuitionistic, then all bets are off. The reason
has to do with the proof being construciive. I an existence proof is not constructive, then one
cannot derive a function which will compute the ob ject claimed to exist from the proof. (Indeed,
such a function may not even be recursively realizable, but this is not the point) With respect to
the equipotency theorem, we can no longer guarantee that we can implement the "axioms” G in

terms of functions from A. Thus, we will be bitien by the indicated bug. Simularly, if the proof is

intuitionistic, we are guaranteed of a way of realizing G. This note fixes the proof above.

Corollary: G can be realized algorithmically.

A NEGATIVE RESULT

Analogy requires an ability to transform proofs to plans to code. This is used to
associate "bugs” in proofs to "bugs” in code, and to associate proof “patches” to code "patches.”
One might ask if this is, in theory, always possible. The answer is "No."

The reason is given above -- in order to produce an effective computation from an
existence proof, that proof must be intuitionistic. Therefore, if some expert produced a result for

which we could only obtain a non-constructive proof (because the underlying logic of the expert
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was not intuitionistic), then any analogy process along the lines we have suggested would be unable

to use the lifted non-constructive proof to aid in plan or code generation.

Although very unlikely, there may be a logic between intuitionistic and
classical logic such that proofs in this logic can “generate” realizations. That is, Kleene
proved

intuitionistic -> realizable
and further showed that
not (classical -> realizable)
We are now claiming the converse:
realizable -> intuitionistic
but this might not be true.
The analogy process cannot be guaranteed to work if the problem solving formalism has
classical predicate calculus as its corresponding logic. In particular, analogy cannot in principal

always succeed if the problem solving formalism is based on a resolution theorem prover.

I believe the above is the first argument against resolution which involves neither
efficiency considerations nor psychological sp2culations! If a problem solving formalism has
classical predicate calculus as its corresponding logic, then under the inverse analogy map we may
find ourselves with a non-intuitionistic proof, and thus not be able to translate the proof (even if it

is still correct) into procedures.

A FORMALISM'S CORRESPONDING LOGIC MAY BE MODAL.

As we remarked earlier, if a formalism allows facts to be deleted from a data base, then
we will require some kind of modal logic as the logic corresponding to the formalism. It is not
strictly the case that the world must be descrited by a modal logic. McCarthy and Hayes(M5]
suggested that the "situational calculus”, based on the classical predicate calculus, be used to

describe worlds in which things "change.”
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Like all good ideas, the idea behind the situational calculus is fairly simple. To each
predicate and function we attach a "state variabl:" (also called a situation tag). For example, in the

Towers of Hanoi one might make the claim

(FORALL (X S) (IMPLIES (ON-PEG P1 R2 S) (ON-PEG P1 RZ (MOVE-RING X P1 S))))
which is supposed to indicate that moving a ring onto some peg does not result in any rings
already on that peg being removed. The "S" is a state variable.

This approach is less than elegant. The difficulties are well-known, and many were
pointed out in the McCarthy and Hayes article introducing the approach. The first difficulty is
known as the "Frame problem.”" In worlds with several functions on states (or even one state
change function), one is forced to deal explicitly with what does not change, as well as what does.
Another difficulty arises in describing frame shift information. For example, suppose Robbie (a
well-dressed robot) in his top-hat, spats, and ves: goes outside. It is clear in this circumstance that
Robbie’s top-hat, spats, and vest are also outside, since any state change involving Robbie's location
also affects his attire. The situational calculus is not well suited to describing this type of world.
For a further discussion of this problem. (and a solution) see Minsky [M7]. The two difficulties
are sides of the same coin. The Frame problem concerns getting rid of facts no longer valid, and
the Shift problem concerns determining what new facts are valid.

Rather than remaining in the classical predicate calculus, we could introduce modalities.
McCarthy and Hayes discuss this possibility. Instead of the above statement in the situational

calculus, one would have the following statement in some sort of temporal modal logic:

(FORALL (X)
(IMPLIES (ON-PEG P1 RZ)
(AFTER-MOVE-RING X P1 (ON-PEC P1 R2))))
If the formalism supports the notion cf multiple-CONTENTS (as above), then the logic

corresponding to the formalism will necessarily be a modal logic (or, equivalently, the formalism
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will use situation tags). The important question (for us) is "Does the analogy process break down
on formalisms whose corresponding logic is modal?" The answer is not clear at this time.
Stepankova and Havel[S6] investigated the relation between a formalism implementing
“deletion” and the situational calculus. Their terminology is “image space” and “situation space.”
Their result (their second correspondence theorem) indicated that a “solution” to a problem in
image space (i.e, a sequence of operations) exists iff there exists a (classical predicate calculus)
proof that the solution exists in situation space. That is, the proof that a solution exists can always
be converted to a sequence of operations which solve the problem, and vice versa. This result is
not at odds with our discussion above, due to a restriction on the axiomatization of the image
space (essentially eliminating quantified situations). As they remark, this axiomatization is (almost)

always infinite.

ASSOCIATING LOGICS TO WORLDS

We pointed out above that there is a sense in which a world "requires” a logic,
specifically the minimal logic that can "handle” the domain. We also saw that, while one can
remain in predicate calculus, it is often convenient to use modal logic to describe a world.

We would like to claim that some world "requires” a modal logic. Such a claim would not
be at odds with McCarthy and Hayes. Yes, the situational calculus is sufficient. But it may not be
necessary. Specifically, there is a rather natural aierarchy of modal logics (discussed below). Then

it is reasonable to claim that a domxin "requires' some modal logic (but not a stronger one) in the

sense that the logic can handle the domain.

-
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HEIRARCHY OF WORLDS

We have seen that we can associate a formalism with a logic. We have also seen that we
can associate a logic with a world (via the equipotency theorem). Finally there is a natural
hierarchy (induced by potency) associated with logics.

This gives us a hierarchy of problem worlds. Near the bottom we have worlds which
can be "handled" using negationless intuizionistic logic. Geometry is such a world, which indicates
that from the standpoint of minimizing comple<ity the choice of geometry as an initial world in 1
which to explore analogy was correct. If we introduce operators (like AFTER-MOVE-RING in a tower

of Hanoi expert) that in some sense “change the state of the world”, then we will require some kind

of modal logic formalism.

Chained modal logics have a sequence of CONTEXTs, with only one "valid” at any
time. It seems to be true that chained modal logics are no more powerful than their non-modal
“base” logic in the sense that if one coulc prove (IMPLIES P Q) in the chained modal logic, then
one could prove it (with the same proof) in the "base” logic. Tower of Hanoi only requires a
chained modal logic, as does (apparently) the blocks world in its simple version [W3](F1].

Within chained modal logics (which are usually thought of as temporal modal logics), we
can distinguish two varieties: “memoryless” and those with PLANNER-style backtracking. Tower
of Hanoi clearly only needs the "memoryless” variety, which allows the state to change, but then
prevents return to the old state (except by doing an operation which turns out to be the inverse of
the operation just performed). The blocks world, on the other hand, was originally thought to
require backtracking.

The difference between memoryless chained modal logics and chained modal logics with
backtracking is this: if we can delete an assertion and all assertions made since then according to

computationa! history (i.e., chronological backtracking), then we have implemented a kind of

backtracking. There is another, which might be termed dependency backtracking and is used by




LOGICS OF EXPERTS 128 LOGIC OF WORLDS

Sussman, Doyle, et. al. [S7)[DI].

As we pointed out above, simply having the ability to delete assertions does not (in
general) increase the power of a formalism to the extent that the “reasoning by cases” example can
be solved. On the other hand, we can solve this problem with backtracking, provided disjunctive

assertions are supported by the formalism.

1.ASSERT B
2. ASSERT C
3. ASSERT (OR E F) x

split
4., ASSERT F 9. ASSERT E
S. ASSERT (NOT G)
6. ASSERT (OR E G)x
7. ASSERT E
8. DELETE &

Of course, at step 4 we would have needed to try proving (NOT F) to insure that the
data base would not be inconsistent when we made the assertion. Nevins [N1] describes this
approach in more detail.

A more complex modal logic, “tree modal logic”, allow exploration of multiple
CONTEXTs. Fahlman's [FI] blocks world pragram used CONNIVER's multiple-CONTEXT
capabilities. Another use of more complex modalities occurs in describing "belief” systems. These
modal logics seem to be more powerful than thei- "base" logics.

Another way to make the logic more complex is to introduce the BEFORE modality

Ow
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In CONTEXT A we might ask "what would have happened if BEFORE X (i.e., in CONTEXT B) we had
' done Y (i.e, what is true in C)?" One suspects that "common sense” reasoning may demand logics
with BEFORE modalities -- so a "common sense” world would have been a very bad choice as an

initial world in which to study analogy.

CLAIM OF CLOSURE

We claim to have achieved a solution to analogy problems between worlds that require
no logic stronger than negationless intuitionistic logic. The reason for believing this claim 1s that
such a world can be handled in the geometry formalism (by the equipotency theorem). This claim
does not 1mply that all the algorithms described in this thesis are free from combinatorial

explosions; the map formation algorithm is particularly sensitive to the number of types and the

number of "distinguished” ob jects of each type.
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FUTURE WORK

PSYCHOLOGICAL VALIDATION

We have not concerned ourselves with the psychological validity of our analogy theory.
We feel that first we must answer the question 'How can we get a machine to learn by analogy?”
Only then are we in a position to ask "Is it possi>le that people learn by analogy in a similar way?”

George F. Luger [L3] reported some preliminary results of a study to determine what (if
any) effect the solution of a problem had on the subsequent solution of a similar (in this case,
isomorphic) problem. We will look at these results rather carefully.

The two tasks Luger used werz the four ring Tower of Hanoi peoblem, and the Tea

Ceremony. The Tea Ceremony playing mat is shown below. Four tasks:

FF: feeding fire (least noble)
SC: serving cakes
ST: serving tea
RP: reading poetry (most noble)
are initially performed by the Host. The Ceremony is a ritualistic dance in which tasks are
transferred from one person to another according to two rules:
1. A person may only give up the least noble task they are performing at the time.
2. A person may take on a new task providing it is not more noble that the least noble

task he is already performing.

The Ceremony is completed when the Youth is performing all four tasks.

HOST YOUTH ELDER
FF sC

ST RP
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This problem is isomorphic to the Tower of Hanoi (see chapter [ANALOGY EXAMPLES,AN
{ ANALOGY FAILURE]). Luger reported the results of an experiment imvolving two groups of sub jects.
Group [ was first given the Tea Ceremony, then Tower of Hanoi. Group II was first given Tower
of Hanoi, then Tea Ceremony. Both groups were given foys (like the above mat) to work with.
They were told that they could, if they wished, reset the oy to start over.

Timings, and number of moves were recorded, along with the standard deviation (s).

GROUP | TC time 518 TOH time 149 TOTAL time 657
19 sub jects $=366 s=125 $s=387 ]
moves 101 moves 40 moves 14l
$=60 $=29
GROUP II TOH time 299 TC time 306 TOTAL time 705
23 sub jects =210 $=223 $=306
moves 75 move: 66 moves 14l
s=33 s=233

Luger then reported that times for Tea Ceremony were significantly different for both
groups (at .03 confidence level) and the times for Tower of Hanoi were also significantly different
for both groups (at .0l confidence level). Similarly both groups used significantly different
numbers of moves. Luger then concluded that something was learned by doing the first problem
that could be “transferred” to the second. By definition, transfer i1s accomplished by “reasoning by

analogy.”

OUR ANALYSIS OF LUGER'S DATA

In what follows, we will be using a confidence level of 05 (which 1s admittedly hiberal)

giving a critical value for Student’s T tes: of about 1.68 (it 1s 1.689 for 26 degrees of freedom, 1.684

for 40 degrees of freedom, and 1681 for 44 degrees of freedom) Note: we are asking if one score

T Lt s .
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is better than another, not whether they are merely different (which would give a lower t-test

critical value).

We ask the following statistical questions:
1. Did Group I do better on TOH? v=40, t=4.559. Yes.
2. Did Group 2 do better on TC? v=40, t=231. Yes
These are the two answers which led to Lugar's conclusion. However, it is easy (o see
that these are not necessarily the proper questions! Consider: if learning by analogy did occur, then
we expect to see some improvement within each group. This means we want to ask
3. Did Group I improve on its second problem? v=35, t=1.16. Yes.
4. Did Group Il improve on its secorid problem? v=t4, t=1.46. NO!
That's very surprising. Evidently there was reasoning by analogy in only one direction.
Wait. Maybe (for some obscure reason), TC was just harder than TOH.
5. Did Group I do worse on their first problem (TC) than Group II on theirs (TOH)?
v=40, t=1.255. No.

6. Did Group II take longer to do bcth problems? v=40, t=0.247. No.

Having thus performed a two-way analysis of variation, we observe that the following

con jecture is supported by the evidence:

The solution mechanism generated by the TC problem was immediately applicable to
TOH. The solution mechanism generated by TOH was only marginally applicable to
the TC problem. Obtaining the solution mechanism for TC is marginally more
difficult than obtaining the mechanism for TOH.
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EXPLANATION OF RESULTS

Simon [S4] gives several different algorithms for solving Tower of Hanoi problems. We

will look at two of them (the target peg for these problems is peg 2):

l. Goal Recursion Strategy. This employs the concept of a pyramid. Originally a
4-pyramid is on peg |. To move an n-pyramid from peg A to peg B, first move an
(n-1)-pyramid to peg C, then move a ring from A to B, then move an (n-1)-pyramid

from C to B.

2. Move-pattern strategy. On odd-numbered moves, move the smallest disk (which is
necessarily movable). On even-numoered moves, move the next-smallest disk that can

be moved (it can only go one place). The smallest disk moves in a constant direction.

1-->2-->3-->1 if the number of disks is odd

I <=2 <=3 <--1 if the number of disks is even.

Failure to note the "kicker" at the end of the move-pattern strategy will result in
successfully moving the rings, but to the wrong peg. That the target peg was selected ahead of
time is an extremely bad feature of the experiment as it served only to add noise to the result.
One suspects that the large standard deviation reported s due more to this feature than to
differences in individual abilities.

With the goal recursion strategv, demands on memory increase hinearly with the number
of rings, whereas the move-pattern strategy makes a constant memory demand. On the other hand,
the move-pattern strategy is perceptually driven, requiring a "toy” where goal recursion does not.

For our purposes, the important difference between the two strategies is that the

move-pattern strategy requires a predicare FREE-TO-MOVEP which must be easy to compute.
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Goal recursion requires the notion of “ordered subsets”, or "pyramid.”

We will assume that Group I (TC first) learned the goal recursion algorithm while
Group II learned the move-pattern strategy (due to the ease of computing FREE-TO-MOVEP).
This assumption is not supported by the experimental results. Indeed, Luger does not appear to
realize that more than one strategy is available. Nonetheless, I do not find this assumption at
variance with my intuition.

If this assumption is correct, then our theory of analogy predicts that there will be little
observable improvement in Group II's perform:nce, while we should observe much improvement
in Group L If analogy is to lift the move-patterr strategy to the Tea Ceremony world, it must first
lift FREE-TO-MOVEP. That predicate is relatively expensive to compute in TC world. This
will block the analogy process, at least temporarily. This blocking effect will naturally be reflected
in the time taken to solve the problem.

No similar problems are encouritered in lifting goal recursion to Tower of Hanoi world.

Indeed, some bonus is given since "pyramids” car (presumably) be identified more readily.

Recall that our analogy process is not satisfied with a lifted sclution until it has been
justified, either by lifting justifications from the image world, or by generating them in the
domain world using one step deductions. We might speculate that a sub ject will become aware of
a solution (and the analogy which obtained it) only after that solution’s justification and plans
have been lifted. If this speculation is correct, our theory of analogy will makes two more
predictions. First, the subjects will not realize the problems are identical unul they are "within
sight of the solution." That is, they will work on the problem, and then experience an "Aha!”
towards the end. Furthermore, those sub jects in Group 1l who do no better on TC than TOH will

not notice the isomorphism at any poifit.
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IMPROVING ANALOGY

In examining the analogy process, we can see at least four areas which require further

development before analogy can become truly useful.

MAP EXTENSION and DEPTH-FIRST SEARCH

After applying constraint relaxation, the map formation and extension algorithm
embarks on a depth-first search on the tree of partial maps. In general, when one uses a
depth-first search, it is because one has nothing better to do.

Presumably, when a partial map is rejected by the image semantics, the way it is re jected
indicates what our next guess should be. Indeec, in the TTT example we observed two modes of
failure:

1. An assertion could not be mapped.

2. The image assertion was false.

We used this information to isolate the highes- node on the partial map tree which caused the
error.

In a similar manner, we suspect that careful failure analysis should indicate not only
where the error occurred (in the partial map tree), but which would have been a better choice.
Although we can see a glimmer of how this might work in the TTT example, we don't have

enough clear examples to formulate an algorithm.
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PATCHES INTO CODE

We have not really come to grips with the problem of inserting patches into code,
although an obvious simple-minded trick was mentioned in the blocks world example.

The relation between plans and world descriptions is always made explicit. The same
cannot be said for code and plans. Although we can tell when code has completed a plan step, we
cannot tell (in general) when that plan step was started. We certainly have no explanation of why
the particular ordering and interleaving of plan steps was chosen.

The commentary indicated above may not be needed to insert patches into code; we may
be able to derive the required information from code and plan. On the other hand, even if we
had all this commentary we wouldn't know what to do with it. Clearly more research into this

aspect of the analogy process is required.

MODAL LOGIC

Operators might be thought of as predicates on predicates. We might write the statement
“Aduits don't cry over spilt milk" as
(FORALL (X Y) (IMPLIES (AND (ADULT X)

(MILK Y))
(AFTER-SPILLED Y
(NOT (CRYING X)))))

where AFTER-SPILLED is an operator.

By design, none of the examples we have seen required the use of operators. In chapter
[LOGICS OF EXPERTS,LOGIC OF WORLDS] we discussed modal logic and its relation to operators. It is clear
that most interesting worlds use operators, so extending the analogy process in this direction is
important.

The map formation and extension a'gorithm would deal with operators after a lhttle
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modification. Unfortunately, the plan language, the result-justification algorithm, the structure of
representation claims, and the theorem matcher portion of the debug and patch algorithm all must
be altered to handle operators.

A different problem, which might alss be solved by the mechanisms needed to handle
modalities, concerns the use of functionals. In statistics, it is very convenient to think in terms of a
SIGMA functional, which takes a data set (a series of numbers), applies a function to each element
of the data set, and then delivers the sum. Formally, SIGMA 1s a function of a function, and thus

it cannot be directly expressed in the first-order predicate calculus.

MORE FLEXIBLE REPRESENTATIONS

We restricted representations to have the form of a list of objects so that
REPRESENTATION-CLAIMs could have a simple form and proof, and so that they could be
used in handling extended predicate forms. If representations are made more complex (for
example, allowing arbitrary list structures, or arrays, or hash tables as representations), we will be
forced to give up this simplicity. Since real prcgrams make extensive use of these more complex
representations, it is important that the analogy jrocess be able to deal with them.

Another extension to the analogy theory concerns describing plans for doing things like
sorting representations. The difficulty is that rzpresentation claims are considered to be true for
all time. This means we cannot say, as we would want to in a sorting program, that some claim
about the representation (list) is now true, where it might not have been true previously.

Although work has been done on thi¢ problem by Suzuki [S9], Manna and Waldinger
[M1], and others in relation to proving programs correct, we have not yet been able to bring

techniques from that school to bear on our problams.
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NOTE L

We will frequently speak of an analogy map, which goes from the domain to the image
world just like a good map should.

Since our real interest is in the lifting operation {which is our shorthand for "applying
the inverse analogy map"), the reader might wonder why we don't have our maps go the other way.
The reason is that the map from domain to image world may be many to one. This means that
the "inverse map" is not well defined, so 17 1s strictly speaking incorrect to call it a map.

The notion of "hfting” unfortunately creates some confusion because all the diagrams
have the domain on the left, while "lifting” requires one to think of it on the top. The term "hft"
comes from considering topological covering spaces and their map to the space they cover.

NOTE 2.

It might be argued that the inter-world/intra-world distinctiori is an illusion, since if
world A is analogous to worla B (for example, p ane geometry world 1s analogous to solid geometry
world), then they must be sub-worlds of some larger world. That is, we can transform inter-world
analogy into intra-world analogy by finding a super-world.

While the observation above is correct, (indeed, we can go both ways since intra-world
analogy might be considered a special case of inter-world) it misses the mark. The distinction
centers on whether relations (or, if you prefer, predicate symbols) have different meanings on the
two sides of the analogy. If the analogy rnap is always the identity map on predicate symbols (or at
least the identity map on non-unary predicate symbols), then we may assume that we are working
with an intra-world analogy.

NOTE 3.

Pratt [P2] gives a fundamental result “hat loopless programs are only as tractable as the
theory (descriptive component of expertise) of ithe world in which the program works. That is,
even if the code is very simple in form (loopless in fact), in order to prove some property of it we
may need to prove hard theorems about the world in which it works. If the code has loops, then
we may need to prove strictly harder theorems than those for loopless programs.

NOTE 4.
Recall that Evans’s problem statement had the form
AistoBasCisto ..

Part of Evans's analysis concerned the transfo'mation which was applied to the A diagram to
obtain the B. When Evans finally selects the best map, the transformation can be mapped, and
thus it might be said that Evans also uses analogy to write programs. [f this is a program, it is a
rather peculiar one. Suppose I were to give Evans's "program” another picture (say Al) which was
identical to diagram A. The "program” would not be able to run, except i1 the very weak sense of
allowing Evans analogy algorithm match Al and A, and hence deliver diagram B as the answer.
That is, if one wishes to assert that Evans's analogy program writes other programs, then one must
admit that the interpreter for these new programs is Evans's analogy program, and in that sense
cannot be distinguished from input data.

NOTE 5.

In the back of a text book one might find answers to the problems in the text. These
solutions constitute anticipated answers; they a’e used by the student to check results. For the
same reasons the author provides these answeis, we want 10 give analogy access to anticipated
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solutions.

How can we give these anticipated solutions to analogy? One way Is to state “problems”
as assertions. The problem for the expert problem solver (and thus for analogy) is to convince
itself that the assertion is true. We can also ask the expert to prove theorems. Similarly, in the
midst of solving some domain problem, the expert may find itself blocked unless some predicate is
true; anthropomorphically the expert wants the true result from that predicate and therefore has
an anticipated solution.

Another form of solution anticipation is a check on the answer. For example, suppose
the expert used analogy to find the square roo: of a number. Then the expert could check the
solution by squaring it.

NOTE 6.

We wish to use non-modal logic in ou: TTT world description. If we had blank squares,
then, for example, the center square, S5, would initially be blank.

(BLANK S5)
Now suppose the X player takes the center
(XED SS)

Is S5 blank? No. This means that something ttat used to be true has suddenly become false. Of
course one solution to this problem is to use situztion tags, which is equivalent to using modal logic
in this example.

We are using a different technique. Initialy each square is either XED or ZEROED, but we
don’t know which. If we then learn that

(XED SS)
we might “prove” that the corner square £8 is zeroed.
(ZERCED S8)

In this way play can proceed.

Stating the rule

A square may he XED or ZERCED, but not both.

as we did forces us to use a non-modal formalism to write the TTT expert. Then it i1s a simple
matter to show that TTT only needs negationless intuitionistic logic, so we can use the closure claim
in chapter [LOGIC OF EXPERTS] to show that analogy :an handle TTT world.

NOTE 7.

An early form of semantic template was used by Kling [K2], although he did not try to
derive semantic templates from world descriptions. For comparison, his semantic types were
STRUCTURE, SET, OPERATOR, RELATION, OBJECT, PROPERTY, RELSTRUCTURE. The obvious
ob jection to this set is that it is useful only in an algebraic setting. Furtiermore, in Khing's system
semantic templates were necessarily supplied by the “user” of the system. Finally, the fact that he
had so few types means that they were not very useful in restricting possible maps. These
problems are eliminated by automatically deriving templates from the world description.

NOTE 8.

It 1s very tempting to say “in TTT there is one square or: 4 rows, and in JAM there 1s one
road corraining 4 towns, so that must be the correct correspondence” This counting argument is
very appealing, but must be rejected. Similarly, we avoided taking advantage of the fact that
there are 9 roads (squares) and 3 towns (rows) earlier. The reason we reject this style of counting
argument is that first, it makes use of domain world (JAM) knowledge to count the number of roads
and towns (which we cannot assume to have yet), and second it assumes the two worlds are
isomorphic by testing for equality in the numbers resulting from counting. It also assumes that the
worlds are finite, but finiteness 1s not the proolem here. While assuming that (~wo worlds are
isomorphic might be a good heuristic, we don’t want to make the notion fundamental to the
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analogy process.

NOTE 9. By using the axioms for global stability, we can determine that if block C is removed
from the scene in the diagram in chapter [OVERVIEW OF ANALOGYSECOND VIGNETTE -- BLOCKS), then the
scene without C is not globally stable. However, using FACT29

:FACT29
(FORALL (B1 B2)
(IMPLIES (EXISTS (B3) (AND (DISTINCT B3 B2)
(SUPFORTS B3 Bl)
(STAELE B3 Bl1)))
(SCAFFOLD B2)))

we can prove that block C is scaffolding. Then using AXIOM12
{AXIONM12
(FORALL (X) (IMPLIES (SCAFFCLD X)

(GSTABLE (SCENE-WITHOUT X))))

we can prove that the scene is glcbally stable without block C. We have now proven
both a predicate and the negation of that predicate. The blocks world description is inconsistent.

NOTE l0.

We define the intersection function as a function of two arguments X and Y. We claim

that if X and Y are distinct lines, then the following assertions are true

(IN-LN X (INTERSECT X Y))

(IN-LN Y (INTERSECT X Y))
We carefully avoid claiming that the result of applying the intersect function to two lines is a
point.

The problem is that since a definition cannot convey any new information, we first
interpret the definitions in the Herbrand Un.verse, so the result of applying the INTERSECT
fusiction to two lines X and Y is a list of three elements:

(INTERSECT X Y)
for which the two assertions above are true in :he Herbrand Universe. [f we were to claim that
the above list is a point, what we would really be saying is that there is a homomorphism of the
Herbrand Universe onto plane geometry world such that (INTERSECT X Y) 1s mapped onto a
point. But, that such a map exists 1s new information.

Suppose we were to say that it is a "point.” Since we are discussing (classical)
mathematics, functions are deterministic, so the point returned by INTERSECT must be unique.
Further suppose (AND (DISTINCT A 8) (PT A) (PT B)). Then by P-Il we have a line
X = (LINE A B). Suppose there were a distinct line Y such that (IN-LN Y A) and (IN-LN Y B).
Then (INTERSECT X Y) returns points A and B and by the result being unique, A = B,
contradiction! Thus such a line Y does not exist. Indeed, we know that it does not, but we have
just proven this fact without using axiom P-[2. This should not be surprising because the
contrapositive of P-I2 is the proof of uniqueness. In other words, this "definition” really contains
an axiom hidden in the result-type declaration. ‘We must disallow such det initions.

On the other hand, if we allow non-deterministic functions, we would be able to prove
that the INTERSECT function, which we could declare returns ob jects of type PT, is determinsitic by
the contrapositive of axiom P-I2. The reason this approach (which is the typical one in
mathematics) was rejected is simply that in the predicate calculus all functions are deterministic.
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NOTE Il

Mathematically, a model for a set of formula F is an interpretation M for F such that
every formula of F is true in M (see [M2), p. 145). Strictly speaking. then, a model for the
description component of a theory is not independent of that axiomatization, although when
considered as a map, the image of the interpretation may be independent.

Consider (say) finite abelian group world. There are many models of finite abelian
groups (at least one for every integer). Sore of these models may be excluded by some
axiomatization but not by others (specificaly, the abelian group with only one element).
Furthermore, theories may have non-standard models (for example, non-standard analysis).

Based on these considerations we can say that the notion of a world includes a set of
images of standard models of a theory.
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