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FORWARD

The purpose of this investigation is to find the theoretical
solutions to scattering of electromagnetic fields by dielectric bodies
of revolution. This is the first part of the final goal of solving
scattering by buried dielectric objects. The principal technique
used in this investigation is the unimoment method which was developed
for the purpose of solving scattering by dielectric bodies under
contract DAAK02-71-C-0206. The application of this method to scattering
by dielectric cylinders in a 2-dimensional space has been reported in
the final report of the above contract. In this report, we shall extend
the method to scattering in 3~dimensions. In the application of the
unimoment method, one frequently has to deal with the finite difference
or finite element method. In this report, we start with a discussion
on these two methods regarding their differences and similarities. A
method of inverting banded sparse matrix is also developed, and finally,
the development of a special potential formulation of the Maxwell's
equations for the axial symmetric problems, and the solution of the

% f scattering problems.




FINITE METHODS IN ELECTROMAGNETIC SCATTERING E

Kenneth K. Mei, Michael E. Morgan and Shu-Kong Chang

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT
Recent development in the unimoment methodl has brought finite difference2
and finite element methods3 into the computational techniques of electro-
magnetic scattering. In this paper the various finite methods and their
potentials in the scattering computations are examined. A section on

programming technique is included for those uninitiated and the applications

‘of the finite methods in 2-dimensional and 3-dimensional scattering problems,
together with some of the associated computational subject matters are

presented. 5
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Introduction

Recent development in the unimoment methodl has brought finite
diffetence2 and finite element methods3 into the computational techniques
of electromagnetic scattering. Finite difference had been a dominant
computational method of solving partial differenti 1 equations, until it
was overshadowed by the finite element methods in the mid-sixties. Recent
development in sparse matrix algorithms has also changed the manner by which
the finite methods are implemented. Originally, the relaxation methods were
the main tools of solving finite difference equations, but now almost all
finite equations are inverted instead of iteratively solved. The finite
element method which was first developed by the structural engineers is now
applied in almost all engineering disciplines. It is now well understood.

4l have been developed

Mathematical analysisa and sophisticated techniques
for it. In antenna and scattering computations the finite techniques are
gtill like new found friends, and the acquaintance with them 1s yet to
be developed. The purpose of this paper is to examine those methods from
the stand point of one who is interested in electromagnetic scattering
computations. A section on programming technique is included for those
uninitiated andrthe applications of the finite methods in 2-dimensional

and 3-dimensional scattering problems, together with some of the associated

subject matters are presented.

Finite Methods

In this paper the term finite methods is meant to include finite
difference, weighting function, Galerkin's and finite element (or Ritz
finite element) methods. Literally any numerical method that approximates
continum mathematics by discrete mathematics may be termed a finite method,

however, that is not usually what we mean. For instance the moment method

e




of solving integral equations is not classified as a finite method. A

finite method is traditionally used to solve differential or partial
differential equations directly.

During the last fifteen years computation in electromagnetic scattering
problems have been actively pursued almost entirely in terms of integral

equations. Needless to say the drift to integral equation is very natural

and for good reasons. In integral equations the computations are limited

to the scatterer or antenna while in the finite methods they are generally
spread over the entire space. In integral equations the radiation

conditions are automatically satisfied while in the finite methods they
require special numerical treatments which are often unsatisfactory. Recent
advances in communications and remote sensing have urgently demanded the
results of scattering by dielectric and lossy inhomogeneous bodies. The only
practical approach to such problems appears to be direct solution of

partial differential equations rather than solution by integral equation,

the formulation of which in an inhomogeneous medium is already a difficult

- ] y ey 1
task. Recent development in the applications of finite methods has

essentially cleared the way for general applications of the finite methods
in electromagnetic scattering.
For the sake of brevity we shall discuss the methods first in one

dimension. Letgjybe a differential operator or more specifically for

. 2
illustration we set éf = g_f ; The obiective of the finite methods
dx
is to solve the equation
Lox) = £(x) (1)
with boundary conditions ¢(0) = a
¢(1) = b




In most numerical methods, the independent variable is discretized
as shown in Fig. 1. The formulations of the finite methods are illustrated
in the following:
Q-
2
dx

Finite difference from fundamental meaning of derivative:

s O B

= f i = 1w NF2 c2)
(Ax)2 i

Weighting function method T (WFM I)

1.2 1
i—ﬁéil W (xhdx = s Bl Cedde | & b, 2inl (3)
0 dx . 0 .

Weighting function method II (WFM II) (Integration by parts of WFM I)

TR S 1
' 5 g_‘ﬁ _.._1_ = ‘ 4
® (x)Wi(x)]O % ds so £ (OW, (%) dx (4)

Galerkin's method
N
o(x) = igl aici(x) and set wl,(x) in (4) to .:i(x)

(Ritz) Finite Element

1
Minimize I = s (3852 & 2667dx (5)
0 dx

In most text books the wefighting function methods are not distinguished by
whether integration by parts is used or not. For convenience of the
following discussion we shall call it weighting function method II when
integration by parts is used, otherwise weighting function method I.

We shall name the set of functions which are used to approximate

the solution 4(x) the trial functions, thus




N
o(x) = 3 ac (x) (6)
difa]l

where Ci are trial functions. wi(x) are a set of weighting functions.

The following are a few definitions of commonly used terms:

patch function - functions which are zero outside an element and its
close neighbors, such as those shown in Fig. 2.

element - a line segment (one dimension), area (two dimension) or

volume (three dimension) as a result of discretization.

interpolate - a set of trial functions is termed interpolative

if it is wunity at one node and zero at all other nodes. An interpolative

trial function has the property that

N
¢(x) = ¥ aL(x)

i=1

where ai represents $(xi).

conformity - a set of trial functions is termed conforming if each

of its members 1s continuous.

Only those methods that use patch functions as trial functions and
weighting functions will be considered as finite methods.
; It is well-known that the finite difference equations are derived from
Taylor's series. It is not difficult to relate the finite difference

equation to the W.F. method. Consider a quadratic patch function

Qi(X) =A +B (x-x)+ Cy(x - xi)2 (7)

passing through o(xi_l), @(xi). ®(x1+1). It is immediately evident

vixi) - ¢(xit}) o(xy0y) - 20(x.) + o(x;_,)

Ai = o(xi); Bi =~ — 0 W 1

2Ax S| : 2 o
2(Ax)




N
In (3) let ¢(x) = Y Q (%) , the weighting functions W (x) be
i=1

S(x - xi), and we find that (3) reduces to the finite difference equation (2).

lIMZ

On the other hand, in (5) let ¢(x) = aici(x)
i 1
1 M s ) M
I = 5 {[ 2: aiii Gx)'15 + 2F E: aiii(x)}dx
Bl i ]
3 i M
_— = ' ' D2EE } =
= J’ {2['2 a;8;" (01E, ' (1) + 266, () Hx = 0
j 0 i=1
= g2 oM (8)

which is equivalent to (4) if the trial functions Ei(x) and the weighting

funct 3 wi(x) are the same set of functions, and wi(O) = WM(I) = 0.

restrictions

While W.F. method I and II seem to be only a simple mathematical
step away from each other, their numerical constraints are quite different.
In the simple example of Egs. (3) and (4), it is evident that in W.F.
method I the trial functions must be at least Quadratic and the weighting
functions be integrable; while in W.F. method 1I, the trial functions can
be linear and the weighting function must belong to C', (W'(x) integrable).
The consequence is: one can use linear functions as trial functions in
W.F. method II, but not in method I.

Another important observation is that the union of the set of trial
functions must cover the entire region, while the weighting functions are
not so required. Thus, in the W.F. methods, the weighting functions may
be sampling functions e.g. pulses or patch functions which do not overlap,
such as shown in Fig. 3 as opposed to those patch functions of Fig. 2

which are used as trial functions.

-6-




oOone important property of sampling is that discrepancies in the trial
functions may be suppressed by the weighting functions. An obvious
discrepancy in the W.F. method T using piecewise quadratic trial functions

/,

is that the trial functions are not conforming, as illustrated in Fig. 4.

If we use the left of the quadratic for X, - %; it B SNk %; and
the right quadratic for S X < o £ the discentinuit
L 2 T < X4 5 » the scontinuity

is obvious. Yet it causes no ill effect because the weighting functions
are zero at the discontinuities.

The case of discontinuity becomes very serious for the finite element
method, since the trial functions are now chosen to be the weighting
functions and the union of trial functions must cover the entire region. The
derivatives at the discontinuities result in delta functions, and the
square of delta functions are not integrable. That is why elements must
be conforming in the finite element method. However, being non-conforming
may still not be fatal in the finite element method. Frequently the
irregularities are ignored and the computations still may yield good
results, although just as frequently they may fail. Nonconforming elements
are often referred to as ''variational crime' in finite element literatures,
and there exists a test, known as the ''patch test,'" which may be used
to predetermine whether a specific sct of non-conforming elements would
converge to the correct result. In one dimension, conforming elements
are easilyobtained even for high order polynomial '‘approximations. Any
piecewise polynomial function, which is non-zero at only one node is
a conforming element. In two or more dimensions conforming requires

extra effort, which may result in increasing the number of nodes or the

band of the matrix or both.




ey vy

Consider the W.F. method Il using linear functions for both

Ci(x) and Ui(x) such as those shown in Fig. 2a. The integral in (4)

from X1 becomes

X X

1 ¢1 ks ¢1—1 1 d i ¢1+1 e 1
AX i AX oy X - AX : i X o
*1-1 ‘ i- =
$. == 2y, di
+1 =
s _L___ﬁENL_ﬂm);l (9)

which is almost identical to the finite difference equation (2) except
that the right hand side of (2) is collocation and that of (4) is
weighted by a linear patch function. Indeed the base of the weighting
function may be reduced without any e¢ffect on the equation.

Now, consider a quadratic trial function used in W.F. method II, i.e.,

£.(x) = 4 ?_1_"'.1._‘3} (x =~ i gltl_ﬂ,iv_l-:_b_'_l (= )2
2 28% Sy S Ity
OoxX
(10)
then,
el S R g Dl by BT i
dx 2Ax 2 T e
.lx
dw,

If the weighting function is even with respect to X E;l will be odd
function w.r.t. X thus the first term in (11) will have no contribution

dEi(x) dwi(x)
in the integral of the product ———- -———— , and we shall get an

dx dx
equation again identical to the finite difference equation.
It seems that all finite methods can be reduced to the same equations.

The fact is that, in this particular example, the second order polynomial

operated on by the differential operator results in a constant. As a result,




for this example a sampling weighting function set is as good as any
distributed weighting function set. Indeed, the quadratic functions are
the best approximation functions one can get to solve this particular
problem, because the differential equation is satisfied not only at the
nodes but also between nodes, and any attempt to use higher ordered

approximations usually makes the approximation worse rather than better.

Two Dimensional Problems

The above is the story for one-dimensional equations. In two
dimensions many of the above discussions are still valid, but there are

other complications.

(A) Conformity

Conformity of elements in one dimension is never a problem, hut
in two-dimensioms it is a major problem when high order approximations are
to be considered. Consider a tyvpical finite element discretization in
Fig. 5. The elements are triangular and the trial functions are pyramidal
like linear patch functions. Obviously a visual representation of the
relation between our trial functions and the problem gecmetry requires the

use of one additional dimension. A typical trial function consists of 6 elements

and 7 nodes. Referring to Fig. 5, a linear trial function centering at
the point i, consists of six planes which have values one at the point i
and 0 at the other nodes, such as shown in Fig. 6.
It is evident that the linear elements are coaforming, i.e., any
linear combination of such trial functions shall have no discontinuity.
The second order approximation in the finite element methods uses

a piecewise quadratic function for ¢(x,y) within each element,

2 2
¢(x;y) = a, +ax+ay+a, xy+ax + 4y (12)
O ] 2 ; A 5 X

e
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The quadratic function of (x,y) has six devrees of freedom. The
three nodes of a triangular element are not sufficient to determine the
six coefficients of the quadratic. Extra nodes need to be added, such
as shown in Fig. 7, in which a node is designated on each side of an
element. These trial functions are now conforming. Quadratics which are
unity at one node and zero at the rest of the nodes of a triangular
element can be found either by inverting a 6 x 6 matrix or by using an
area coordinate system (for details see refs. [5], [7].) The second order
approximation in the finite element method gives better accuracy but it
also increases the number of nodes and increases the bandwidth of the
matrix.

In finite difference assuming square mesh, the usual five point

equation for the Laplacian operator gives, (referring to Fig. 5)

b By T T Y Y g P A

It is a result of quadratic approximation of ¢(x,v) near ¢i, but it is

not a complete quadratic. Indeed, a five point equation cannot represent
a complete quadratic which has six coefficients. The missing term in
(13) is a, x y, which can be omitted if the mesh is rectangular.

3

The trial functions result in (13) are not conforming but the
discrepancy is again suppressed by the weighting functions. Again, for
solving Laplace's equation,the quadratic equation of (13) satisfies
the differential equation between nodes along the mesh, and it should be
a better approximation than the nine point finite difference equations
(fourth order polynomial) which satisfies the differential equation only
at the nodes. Many engineers have been surprised to find that their

nine point finite difference equations give worse results than the




five point finite difference equations when dealing with Laplace's equation.

(B) Consistency
Because of the sampling property of the finite difference equations,
there are frequent inconsistancies, particularly when dealing with

inhomogeneous media. In the case of a Helmholtz equation for a

continuously inhomogeneous medium, the finite difference equation is,

e TR i, B w (14)
1E 1 2=~

Pren T Py TR

¢, ¢

pur Yy g0 9 are assumed to be

where the field points ¢i+N' ¢ ioN

in a homogeneous medium & Let i be replaced by i + 1, we find ¢i,

i

are now assumed to be in a homogeneous medium ¢, .. This type of

%541 i+1

inconsistency, while tolerable, is not very satisfying theoretically.
The problem becomes more serious when a node is situated at a material
discontinuity such as shown in Fig. 8. There are several ways of
handling material discontinuities in the finite difference method but
in general they are not satisfying.

In the finite element method, the fields are clearly identified in
each patch, hence there is no ambiguity like that of the finite
difference. Furthermore, the quadratic functions in the finite element are
plecewise quadratic and a typical trial function actually consists of
six piecewise quadratic functions, while in the finite difference method
the requirement of twice differentiability on the trial functions

necessitates a single polynomial to cover a group of connected nodes.

(C) Flexibility
Because the polynomials in the finite elements method are complete,
the method is essentially independent of the shape of the triangular

element. In the {fofte difference method, the polvnomtal is incomplete,




hence it is restricted to rectangular meshes. It can be made to be
independent of mesh geometry, however, by using a six point difference
mesh such as shown in Fig. 9. Indeed, for a six point finite difference,

since it is now independent of mesh geometry, the mesh is no longer
needed. The only requirement is that the nodes are relatively uniformly
distributed. A survey of recent developmentsin variable grid finite
difference methods can be found in Ref. ([&].

The usual applications of tne finite difference method use rectangular
mesh, with the boundary nodes specially treated by extrapolation or
interpolation.9 The merit of such a shceme is the simplified programming,
and the disadvantage is reduced accuracy and the difficulties involved
in finding the normal derivatives from the solution. In the finite element
method, using triangular elements, it is necessary to store information
about the locations of the nodes, and also the information about the elements,
i.e., the nodes which form a particular element. Finite difference
methodsusing variable mesh should require the same information, i.e.,
the information about the neighboring nodes of a control node must be
available. Consequently, finite difference method using variable
mesh is about as flexible as the finite element method, and the degree
of complexity in programming for both methods are about the same.

The conclusion is that the finite difference method is about as good
as linear approximation in the finite element method. The higher order
approximation in the finite element method should be more accurate than
the corresponding approximations in the finite difference method, yet the
finite element method would require more nodes. The finite difference

method using a rectangular grid is simple to program but less flexible, and by

] e
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using star meshes it can be made more flexible but its complexity is
raised to that of the linear finite element method. The method not very
often used is the W.F. method Il, with which one may use piecewise
polynomial trial functions as in the finite element method yet with a

% much relaxed conformity requirement. It will be a worthwhile project to
investigate whether the relaxed conformity requirement on W.F. method II
can reap some of the benefits of higher order approximations without

increasing the nodes or bandwidth of the resulting matrix.

Programming Technique

To implement the finite methods one need first to describe the geometry
and construct the mesh, followed by generating the matrix and solving the

matrix. These basic steps are described in the following:

(1) Mesh Construction

In most practical problems, the node numbers are large and the
mesh topology is complicated. Therefore, it is almost an impossible task
to instruct the computer in an exact mesh geometry. The best
strategy 1is to construct a rule which the program can follow to generate
the mesh automatically. There are many ways of automatic mesh generation.
In the following we shall describe one of them, which we have used
very effectively:

(a) Construct a regular mesh inside the circular boundary

This can be done in many ways a few of which are shown in Fig. 10.
These mesh can be generated automatically. Fig. 10(a) is used if the
center part of the circle is included. Fig.10(c) is used when the center

part of the circle is not included in the finite method.

=] 3=




(b) Find the intersections of the scatterer contour with the mesh

line

If the mathematical formula of the scatterer contour is known, it
is relatively easy to find the intersections of the contour with the
mesh lines. For the mesh geometry of Fig. 10(c¢) it is a particularly
easy task, because we only need to find the intersections between the
contour and the radial lines. One of the two nearest nodes to an
intersection point along the radial line is now shifted to the intersection
point. The rest of the nodal points along the particular radial lines
are now shifted so as to make the perturbation equally distributed. It
is noticed that there are two possible orientations of the diagonal
hypotenuse of the triangular elements between two adjacent radial lines.
We shall call those elements of Fig. lla, left handed (LH) elements and
those of Fig. 1lb, right handed (RH) elements. The choice on the type

of element may be made based on the rule,

=
Ri+1 > Ri LH element

e
R1+1 < Ri RH element

Using the above rules, the contour of a distorted raindrop is discretized

in Fig. 12.

(2) Computation of Matrix Elements

The key to the programming of any finite method with variable elements
is the name list of nodes, which form a particular element. Referring to
Fig. 13, we generate an array ELEM(I,J), where I, is the numbering of the
element and the dimension for J is three. This array is used to store
the list of the nodes which form the particular element 1. For example,

ELEM(12,1) = 3; ELEM(12,2) = 6, ELEM(12,3) = 7. Of course, the coordinate
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locations of each node should be stored in another array.

With the information of the elements and nodes available, we now
consider the generation of the matrix elements. [n the following, we
shall consider the generation of the matrix element of the two-dimensional
Helmholtz equation using the weighting function method II. Thus we

compute the integral,
I (VU « VW, + szw.)ds {15)
S i it

Both U and W will be piecewise linear functions, therefore the result
will be identical to the finite element method.
A typical linear element h, with nodes (h)l’ (h)z, (h)3 should have

the field within the element described by a linear function,

= + + ¢
Uy = 21 T 2wt T Amd’ (16)
The coefficients ¥ epys oFE found by matrix inversion,
a 3 (17)

2wy~ Y Ym

The vector U(h) consists of the field at the nodal points hence U(h)i’ ‘

(i=1,2,3), and
i

Bt Yoot

" 1 Fan Yave (18)

L %ya Yo

Let us consider wi to be a linear pyramid function which is unity at node {1 |

and zero at the surrounding six nodes, such as shown in Fig. 14. Throughout |

the entire process of weighting integrals, each element will be weighted

by three different weighting functions, each of which may be represented

w]be




by a linear function which is unity at one node of the element and zero
at the other two. The function which is unity at node (h)i is actually
part of the weighting function (h)i, and the coefficients generated by it
: Jeh . .th ;
are associated with the (h)i equation or the (h)i row of the matrix.
To each U in an element h, there are three associated weighting

(h)

functionsw(h)j (3 = 1,2,3). Let w%h)_be part of w(h)j which is associated

with the element h and which has value at the node (h)j and zero at the

other two nodes of element h.

3 = d J j
L R LT (18)
and
=3 _lo-
Yoy T N
where

ool f

The gradient of U(h) gives;
0 0 0] 1 0 0 o] st
w..=% 1 o} la...l=l0 1 of R . U (19)
o le o P2y fg o1 W W
T3
and the gradient of w{h) is,
3 0.0 8} . .
W =10 1 O}N n, (20)
R L R

The integral Lh) VL(h) Vw(h) ds is,

I et [o 0 o] iy o] iyt
U 0 1 o] N 0 1 O[N, . n, ds
m ™ oo 1) W o o 1) (M]3

T'EJ

= U ) Mn)




where A

(h)

A(h)PJ(h)1 is recognized as the contribution to

G[(h)j, (h)i] (i

1,2:3),

G in the location G[(h)j, (h)i].

Simularly the second integral of (15) can
T
“2,[ ‘.’fr)‘";rlu)
PR

it

2 j
k .I U W ds
(h) (h) " (h)

2 I T -1T
=k oL N
e
- 2 _‘T . _'
ot I”(h) Ty 98

The ith element of the vector aih) is thus the

row and (h)ith column of the matrix. The inte

= f xides

(h)

Iij

found by using the local coordinates,

may be

u

v

x, = gyt Xy2 T Xmy3)/3

)/ 3

Yo * a1 * Yoo T Yoy

h 5 : '.= j j
is the area of the element h, and p [p(h)l, p(h)Z’ o

This value should be accumulated in the array

j T

(h)3)

the matrix element

be carried out by

1 n
il {1 x vl N(h) njds
Ly

(22)
ey

2 -1 -

X X xé N(h) nj ds
ly xy x

(23)

tl
contribution to the (h)j 3

grals

(24




The following table gives the most useful results [10]:

i+ Iii
0 A (area of triangle)
1 0
A S g | i 4 i 3
2 12(“Ivl + u,v, + ujvs)
A : 0 s 4
3,4 30 (Ul\ll + u,vs + u ‘V})
2% 1] i ij
4 10559V * uvy ¥ uyv3)
where ug = x(h)i e h
Vi T Ymyi " e
and
A = |det N /2
I (h)}
2 2 : . Ll
If k = ko e where e(x,y) is a function of position, we mav represent

€(x,y) by piecewise polynomial functions, and the integrals can be found

accordingly.

(3) Solving the linear equations

The dimension of the unknown vector u is usually very large.
Fortunately the matrix G(I,J) is usually sparse and banded. Referring
to Fig. 13, we notice that the nodes (1,2,3,4) are only connected to
the interior nodes (5,6,7,8) which are only connected to the interior
(1,2,3,4) and (9,10,11,2) etc. Representing these nodal values of the

field by vectors,

~18-~




=

Vl = (ul’uz'u3,u4)
2 = (“5’“6’“7’“8)

vy = (ug,u;4,u)050;5)

Vi = (U300 ,0U)50U;0)

we can represent the banded matrix by the vector equations

V. + AV v d, = 2
o B & TRl b T (2

The matrix equation is thus, (referring to Fig. 13)

- '~

bacs 6, @ B LR a
A 1 1
6i=|B2 A G O]V o |4 (26)
0 B, 4, € 33 53
[0 o 8, ally, L4, ]

where all Ai's are 4 x 4 sparse matrices, Ci's are lower triangular

sparse matrices (frequently diagonal) and Bi's are upper triangular

sparse matrices (frequently diagonal); Bl = C& = 0 and the vector dj
represent the contributions from the boundary values.

The solution can be obtained by the following block-by-block

elimination method. Assume

vip = RV, 4 sy L& 1,250, (27)
Eq. (25) can be rewritten as
V. ma (A, *BR) 0¥, (A, #BEY T (B8, +4,) (28)
i | s N o S oy 11 i i i i’1 i

~19-
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Comparing (28) with (27) with i = i+l, we get

e (29)

i+l i ST i

and

s L o e (30)

Si+1 i 14 i%1 ¥ %
The above two recurrence formulas can be initiated with i = 1 in Eq. (25),

which results in

v, = -A c,v, - A d (31)

Comparing (31) with Eq. (27) for i = 2, we get

_ .1
R2 = Al Cl
5, = -a7ld 5
2 b I
Comparing (32) with (29) and (30), it is clear that
R, =0
. } (33)
8y * 0
The end condition at i = N is
= L R
BNVN_l + ANVN dN 0 (34)
Substituting Eq. (27), with i = N, into (34) we get,
V. =- (A +BR) L (BS +d) =% (35)
N AN NRN N N N N+1
To summarize, we have the following procedure:
(I) Use the fnftial condfitions (33)
(II) To generate R s, (i = 1,2,...,N+1) from the recurrence

s (A
formulas (29) and (30).
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(III) Use the end condition (35)

(IV) To calculate Gi (i = N, N-1, N=2,...,1) from (27).

Applications

(A) Two Dimensional Scattering

Equation (29) clearly indicates that all the Ri matrices can be
computed independent of the boundary values. Therefore, we may obtain
a set of the solutions of the interior problem based on a set of specified
boundary values from the same Ri's. The vectors gi's are dependent on
the boundary values but their computations are not as time consuming as
those for Ri's. From the interior solutions the normal derivatives for
each Dirichlet problem can be found.

Let the exterior solution be expanded in a finite series of cylindrical

harmonics, assuming symmetry with respect to the x-axis,

(2)

s kkr) r > a (36)

N
u(;) = a cos np H
:xz;o 4

and the interior solution be expanded into N + 1 linearly independent
solutions described in the previous section,

N
u(r) = 2: bn un(r) r <@ (370
n= 0
where a is the radius of the circumscribing circle, and the normal derivatives
au
st
or

an and bn’ we equate (36) and (37), and their normal derivatives at

(a) are found via the solutions un(;). To find the coefficients

r = a, to get
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e T ——

n/2 . N s
j {U(a,p) + 2: a_ cos n¢ Hn (ka)} cos m¢ dé
0 n=20
N m/2
= 2: bn s Un(a,¢) cosmd d¢ (m = 0,1,2,...,N) (38)
n=20 0

N aH(Z) 1
I {5; (a,¢) + 2: a_  cos n¢ 3;2 (ka)} cos m¢ d¢ s
0 n=20 )

N m/2 AU (a,¢)
= Y b — o cos m¢ d¢ (m = 0,1,..:,N) (39)
=0 n 0 a

The above should result in a 2(N+1) x 2(N+l) matrix from which the

coelficients can be found. A word of advice here regarding the normal

ey and Mo
derivatives ir i (kr). In general, the exact values of the

normal derivatives of the incident field and the Hankel's functions are known

on r = a, however, it is advisable to use their approximate values

AUtf? Aﬂéz)
Ara and o (a) instead. The reason is that the right side of (39)

contains approximate derivatives obtained from the finite difference
of the nodal values. They are not equal to the exact derivatives. The
equality of the approximate and the exact derivatives can be enforced in
(39) only throughthe alteration of the coefficients from their proper
values. Indeed, equation (39) is more meaningful if both sides have the
same order of approximation.

A few solutions of the 2-dimensional scattering are shown in
Fig. 15-16. The details of the 2-dimensional solution can be found in

Ref. [3].

(B) Three Dimensional Scattering

(1) Formulation

A truly arbitrary three dimensional scattering problem of reasonable
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size is not going to be solved economically in the foreseeable

future using any presently available technique. The three dimensional
scatterers that can be investigated reasonably economically are axially
symmetrical. An axially symmetrical scatterer with non-axially svmmetric

incident fields can be decomposed into azimuthal modes,

E(p,z,@) = 2: —L;m(o,?.\e)mv (40)
m = o

@

noﬁ(pyz)¢) = Z Em(p,z)uj

m = -x

m¢

where no = 1207 ohms. We shall use the cylind cal coordinates for the
interior problem instead of spherical coordinates so that the integrals
resulting from the finite methods will be more manageable. The above

azimuthal components can be solved independently of one another.

Let R = kp and Z = kz, and A5 and wm 2 be the two scalar potentials,
w -~ -
m,l b ¢ e (42)
R m
("
m, 2 I e 4
R o hy =1

The rest of the field components can be derived from the potentials

by the following formulas:9

I 3 e = me(m¢ X vwm,l » R“rvwm,z) (44)
b x hm = Jf_(mo x vwm'z + Rcrvwm’l) (45)
where
. e S
fm = lur(R.l)lr(R,/)R - m"| (46)
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The differential equations of wm

and ¢ are
m, 2

“

s 1

v . [fm(Rcrvwm + m¢ x Vwm’z)] et Lrwm’l/k =0 (47)

il

[}
o

Vs [fm(RCerm,z - m x Vwm,l)l + “rwm,Z/R (48)

These differential equations can be recast into the minimization of the

functional,

y
]

js L(R,Zw')l,’w"z,'fwl,v,bz)di{dz (49)

where

<!
]

. + mo 7 + 7 ='md v
Eallo g v CRe Uy mE R VU o0 6 W S (RITE, 5 = Bex VY

2 2
(eg¥y 1"+ ugdy p )R (50)

It is noticed that fm(R,Z) is singular at the surfaces where

R/:;E; = lml. This can happen when Mo and e are both real. The nodal
fields do not, however, behave erratically at these surfaces and, in fact,
except at points which correspond to material interfaces, the modal

field components are uniformly holomorphic.

(2) Singular Integrals

In the application of finite methods to (47) and (48) or (50) the

singular integrals of the type,

2. s
- A 35 i,
Q j 5 5 dRdZ (51

r,s :
i e yR -m
r'r

are often encountered. The integration of (51) may be effected as follows:




Consider the integral
I = J:z g (R)Z°dRdZ . (52)

Using the two dimensional Stoke's theorem,
g

x e .
| fov ds ¢3Qv de (53)
! Q
and letting
‘ s+1
? TR,z - - BRE g, (54)

we have

— s~ ol
Vxv=-g(R)Z ¢ and ds = -¢dRdZ
and (53) becomes

il

f g(R)z°dRrdz = == ¢ g(R)zS’rl dR . (55)
Q N

Applying (55) to (51) we get

r_s+l
o I i) . 5 G
Qr,s T s+l ¢ 2 e (56)
1Y) erurR - m

For a typical element the clockwise contour of (56) is shown in Fig. 17.
Consider a typical integration along a line segment, such as from the ith

node to the jth node. Along this path the linear functional dependence

of Z(R) = aR + B where

(Z. = Z,)
= i = -
a ?i?—:—ﬁzy and B Z1 aR1 (57)

3 s+
is substituted into the integrand of (56), and the term Zb+1 = (aR + B)g :

is expanded into binomial series in powers of R. The resultant integrals

will be of the form,




VR'
Ia(l,m) = ‘kf [In(kR ~ m) + In(kR + m)] % } all m (60)
2k '

=

The remainder of the integrals may be generated using the recurrence formula

A

&

m ;
IQ(n.m) = I')(n.O) + ;(-?' IQ(n =2 m)k . (61)

An important result to be noted is the fact that even for the case of lossles:

media, where k = 'tr“r is real, the quadrature in I( will produce

d
complex values when the integration passes through the simple pole singularity
in the integrand. The pole locations for the case of real and complex k

are illustrated in Fig. 18, and hence the integration path deformation
necessary for real k, where & = 0. 1In pathing through the pole, with
increasing R, the appropriate natural log function in (59) and (60)

will pick up an additional jm to add to the integral, which is contributed

by the residue of the integral. The Global System matrix, will thus include

complex elements even in the lossless media case.

Results
Using the above described formulas and computational techniques,
we are able to compute the scattering of plane waves by dielectric
; HE s .
bodies of revolution of various shapes. To verify the computed results
we first compute the scattering by a dielectric sphere, the exact result

of which is known. 1In the computations, we deliberately off set the center

|
|
|
|




of the scatterer from the origin, so that computationally speaking
the geometry is no longer regular. The comparison of the results {s
shown in Fig. 19 for the scattering amplitude and Fig. 20 for the phase.
As computational techniques becomes more sophisticated, verification
of the computed results soon becomes a problem, because classical solutions
of a few special geometries will not be sufficient to confirm the computations
of complex problems. Experimental verification may eventually be the only
way to confirm the validity of general programs. We have both computed
and measured the bistatic scattering of a finite dielectric cylinder with
a spherical void in the center such as shown in Fig. 21. The computed
and measured results are shown in Fig. 22 and 23. Their agreement is
truly remarkable. These results should definitively confirm the applicability

of the unimoment method in electromagnetic scattering problems.

Further development

At the present using linear finite elements methods, it is possible
to solve axially symmetrical dielectric scattering problems which have a
maximum dimension of about “10' using the CDC 7600 computer. Actually
it is difficult to be exact regarding the limitation of the method because
it should depend on the dielectric constant and geometrv of the scatterer.
At this stage, however, it is quite evident that the immediate limitation
of the method is the capacity of the computer in handling finite element
equations in a large closed region. Fortunately, finite element techniques
have been extensively investigated by structural engineers and improvements
of these techniques have been reported at each of the related conferences.
The finite element technique described in this paper is quite elementary.

Yet, with this elementary approach, we have already extended the art of
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scattering computation quite significantly. It is conceivable that more
sophisticated finite methods could enhance the dimensions of solvable

interior problems to the point that the size of the matrix, resulting from ,
enforcing the continuity conditionson the separable surface, becomes the
limiting factor of the computation. Therefore, the most needed effort |

is to exploit the power of the finite element method and to popularize 1its

use among the electromagnetic comnunity.

The application of the technique is very broad indeed. Current
problems, such as, scattering by advanced composite, materfials absorption by
biological material, scattering by buried obstacles, just to name a few,
can all be analyzed with finite methods. It is also conceivable that
the unimoment method can be combined with the method of momentsto solve
a variety of problems, which consist of wires and bodies of revolution.

In conclusion, we would like to emphasize that the application of finite
methods in antenna and scattering problems is not an alternative to the
method of moment, rather it is its supplement. It is obvious that the
finite method is most uneconomical where the method of momentsis most
economical, such as in thin wire problems, whereas the finite method is

most attractive where the method of moments is most clumsy, such as scattering

by inhomogeneous material bodies.
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Fig. 1. Discretization of an independent variable
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Fig. 6. A typical linear trial function for 2-dimensional finite
element method.
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Fig. 7. Discretization and nodes for quadratic elements in a 2-dimension
finite element method.
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Fig. 8. Nodes on material discontinuities.
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Fig. 14. A linear weighting function.
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