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1.0 DATA BASES USED

The first phase of this study involved generating an algorithm for giving

a probability that two oil samples (the suspect sample and the spill sample)

are the same. This was done using fluorescence spectra of some 230 oil samples

furnished by the Coast Guard Research and Development Center. These include

crude oils, heating oils and lubricating oils.

The second phase of this study involved independence of infrared and

fluorescence spectra of oils. For this phase we had infrared and fluorescence

spectra of 30 oil samples. The fluorescence spectra were furnished by the

C~ast Guard R&D Center and the infrared spectra were furnished by J. Mattson.

These oils are listed in Table 1.

2.0 DIGITIZING DATA

A spectrum S is the graph of a function defined on some interval on the

real line. To do computations we need to approximate the spectrum S by a vector

in some Euclidean space Rn; i.e., with an ordered n—tup le X of real numbers (1).

This should be done in a manner dictated by the computations to be made. In

general we would like to make n as small as we can without losing so much

information that our computational goal cannot be achieved . Thus we want the

numbers going into our n—tuple X to contain the kind of information we seek.

Here is a specific example. Fluorescence spectra of oils decay

exponentially af ter  some wavelength (e .g . ,  about 380 tim for crudes). Now an

exponential curve is completely determined by knowing two points on it. So if

we read amplitudes at more than two points in the exponential tail—off region,

we are increasing n without getting any more information for identification

purposes.

Similarly, if we know that between a peak and an adjoining valley the

spectrum is essentially linear, we get no information by reading an amplitude

in this linear region.

Now the ordered n—tuple X of real numbers does not have to be simply the

amplitudes of S read at certain wavelengths. Any real number assignment which

gives good differences for some different samples is a candidate for a component

1
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TABLE 1

OILS USED IN STUDY

OIL NUMBER COAST GUARD DESIGNATION

1 AN032F02

2 M1035F02

3 ANO13FO2
4 AR022F02

5 HEOO5FO2
6 GUO31FO2

7 GUO11CVE

8 EX045F04

9 ANO29FOS

10 EXO17FO5

11 GUO32FOS

12 GU058F05

13 AM025F06

14 EXOO7FO6

15 INOO 1FO6
16 CO022F06

17 GU034F06

18 GU033F06
19 UNO13DO2
20 CO023D02

21 SHO38DOO

22 ANO16DOO
23 IJNOO2DOO

24 EXO44DOO
25 GEOO8DOD

26 EPO2 1DOX

27 PEGUO75MOD

28 INOO3MOD

29 EXOO6MD F

30 EX059F04

2
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of X (2). For example, one may assign a real number describing sharpness of a

peak or valley. But, of course, the ith coordinate of X must be measuring the

same thing for each spectrum.

For fluorescence spectra of oils we have the exponential tail—off and we

have essential linearity between a peak and adjacent valley. Also amplitude

readings at all peaks and valleys is insufficient f or we would have spectra

S1 ~ S2 for different spectra and yet the corresponding vectors X1,X2 are

almost identical. Thus components for sharpness must be added in.

3.0 CLUSTERING

In the 230 fluorescence spectra, assigning amplitudes for all valleys and

peaks and assigning sharpness factors for all valleys and peaks gi~’es for each

spectrum S a vector X in 68—dimensional space, X c R68. Since probabilistic

calculations involve measuring a large number of distances between vectors,

they would be beyond the capabilities of most computers with 230 vectors in R’~~.

However, examination of these spectra shows that they naturally fall into

33 groups or clusters: the intercluster distances being great compared with

intracluster distances. (For a review of cluster analysis, see reference (3).)

Now, within a given cluster, some peaks and valleys are completely absent and

readings taken there would be wasted. Thus, for a given cluster , we can greatly

reduce the dimension of the vector X assigned to a spectrum. Of course we

still need sharpness factors, because the problem of S1 ~ S2 but X1 X2 (when

not using sharpness) quite naturally occurs for 
~1 

and S2 in the same cluster.

The dimension of vectors X which give good separation within a cluster was about

12 to 14.

4.0 ASSUMPTIONS FOR PROBABILITY COMPUTATION

1. Reproducibility of spectra is sufficiently accurate that a spectrum

may be considered a point in Rn.

2. The library is sufficiently representative so that for any given oil

we can unambiguously say that it is “essentially like” exactly one in the

library.

3

— ~~~~~~~~~~~~~~~~ .. -------.



- .

.
-~ -~ ---~ - ~~~~~~~ - ..-~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~- - — -~~~~~~~~~~~~~~~~~~

- -
~~~~~

-
~~~~~~ ~~~- -

3. The clusters have been chosen so that there is essentially zero

probability of any two oils being the same if they fall into different clusters.

Also we assume that assigning any oil to the cluster with the nearest centroid

gives the right assignment.

With these assumptions the algorithm given in the next section gives a com-

bined probability satisfying the standard conditions required of a probability

function. These standard conditions are listed in any text on probability

theory such as references (4) or (5).

5.0 THE ALGORITHM

The probability that two unknowns X and Y (spill and suspect) are the

same is obtained by combining two probability factors. (This is all for

fluorescence —— not to be confused with our later combinations of probabilities

for fluorescence and infrared.)

Let N be the number of spectra in the library (about 230). Let C1,C2, . . . ,

~ 
denote the number of elements in the clusters (so that C1 + C2 + ... + C 33 =

.
~~~~~

. Let C~ be the cluster containing X. If Y is also in Cj we set

N - Cj
N

and if Y is not in Cj we use zero. (This slight lack of symmetry in treatment

of X and Y is unimportant , for if X and Y are in different clusters, the proba-

bility of identity is quite low).

If X and Y are not in the same cluster, we say the total probability of

identity is 0. If X and Y are in the same cluster (say the Ith) we calculate a

second probability factor P2 as follows: We now represent all vectors in the

ith cluster as vectors in the space of dimension 12 to 14 used for that cluster.

Let X ’ and Y’ now denote the spill and suspect in this space. Let nx be the

number of vectors in the jth cluster within a distance (d (X ’,Y ’)  of X ’ . Define
ny similarly. Set

Ci _ nx+ny
2

Ci

4
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The final probability then that X = Y is given by:

P = 1 - (l-P1)(l-P 2 )

6.0 THE COMPUTER PROGRAM

The computer program on punched cards has been sent to the Coast Guard R&D

Center in Groton. It suffices to say here that the program will: (1) compute

the sharpness factors needed to augment the amplitude readings, (2) do linear

interpolation and exponential interpolation to generate the 68—dimensional

vectors for the entire library, (3) decide (using these 68—dimensional vectors)

to which clusters X and Y belong , and (4) carry out the probability computa-

tion as described above in the algorithm .

On several unknowns this program proved completely successful. But for

some different library of spectra , it should not be used without some ref m e —

ments which were not needed for our library of fluorescence spectra.

7.0 INDEPENDENCE OF DATA

The purpose of this study was very limited and specific . Our objective

was to investigate the degree of independence or, conversely , dependence between

data obtained from the infrared and fluorescence spectra of oils. Other work

has been done on this problem by Killeen and Chien (6).

The motivation behind such a study is quite simple. Various procedures

exists for determining the probability of a match , P1, between a spill sample
and a source sample using data obtained from the fluorescence spectra of oils

(7). In addition, procedures have been developed for determining the probability

of a match, P2, using data obtained from the infrared spectra of oils (8). What

is needed is a method for combining the individual probabilities of a match into

an overall probability of a match, 
~~ 

Obviously , such a probability would be

a more accurate and reliable measure of the probability of a match than either

of the individual probabilities , for it incorporates more information about the

problem at hand .

In order to develop the means for combining the individual probabilities ,

an investigation of the independence of the two types of data , that 
obtained5
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from the infrared spectra and that obtained from the fluorescence spectra , must

be made. This paper describes the work which has been conducted at Rice

University to accomplish this end.

7.1 Data Base Used

The data base used in this investigation came from 30 d i f f e r€ r t

types of oils and was supplied by the U. S. Coast Guard R&D Center in Groton ,

Connecticut .  These oils are listed in Table 1. The oil types broke down as

follows : six No. 2 fuel  oils , two No. 4 fuel  oils , four No. 5 fuel  oils , six

No. 6 fuel oils , two No. 2 diesel oils , nine diesel oils (unspeci f ied) ,  and one

crude oil from Venezuela .

The infrared spectra were obtained using a Perkin—Elmer Model 180

infrared spectrophotometer (with cells of pathlengths 0.12±0.03 mm) which used

electronic ratioing (rather than usual optical nu l l ) .  The spectrophotometer

had an ordinate resolution (in %T) of one part in 12 ,000 and an abscissa resolu-

tion (in wavenumbers) of 0.01 cm~~. It was interfaced with a Data General NOVA

1200 minicomputer .

The fluorescence spectra were obtained from oil samples diluted to

100 ppm in cyclohexane (wt/wt)  run on an uncorrected Perkin—Elmer MPF—3 spec—

trofluorometer with excitation at 254 am and bandwidths : excitation, 34 nm and

emission , 1.5 nm.

For each of the oils in the data base, samples of the amplitudes of

the infrared spectra at various frequencies were determined. In addition ,

measurements of the amplitudes of the fluorescence spectra at selected fre-

quencies were supplied . The frequencies used for the infrared study are given

in Table 2.

By dig i t izing or sampling each spectra at a number of frequencies,

one can get a series of real numbers representative of each spect ra .  In the

present study , 20 measurements of the infrared and 20 measurements of the

fluorescence spectra of each oil were made. These measurements can be listed

in vector form.  We shall let the vectors V1 = (v fl , vj 2 , .  . . ,vi2O ) and W = (W il,

wi2,.. . ,wj~ 0) represent the infrared and fluorescence spectra of the i—th oil

of the data base. In the following section, the experiments conducted to deter-

mine the degree of independence between the two types of data are discussed .

6
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TABLE 2

FREQUENCIES AT WHICH SMIPLES WERE TAKEN

VARIABLE FREQUENCY USED FOR FREQUENCY USED FOR
NUMBER INFRARED FLUORESCENCE

1 1629 cm~~- 290 am

2 1603 295

3 1304 300

4 1166 305

5 1154 310

6 1032 315

7 963 325

8 918 335

9 888 345

10 870 355

11 846 365

12 832 375

13 809 385

14 793 395

15 781 405

16 765 415

17 741 425

18 722 435

19 697 445

20 673 455

7
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7.2 Experiments Performed to Determine the Degree of Independence

Since both types of spectra are given rise to by the basic physical

properties of the oil, we expect there to be some degree of dependence . How-

ever, we also expect that since the infrared and fluorescence spectra are

actually measurements taken at different domains of the physical spectrum ,

there should be some independence between these two types of spectra . To begin

with, the Euclidean distance between each pair of infrared vectors was calcu-

lated. We represent the distance between vectors V~ and V~j as d1~ . Similarly ,

the pairwise distance between vectors in the fluorescence domain were calculated

and are represented by d~j. The distances are important in the sense that in

estimating the probability density structure of the data, the distance between

vectors representative of the underlying random process is important (9). In

addition , most of the algorithms which exist for determining a match between a

spill and a source are based on minimum distance or nearest neighbor arguments.

As a first step of analysis, the histogram of the distances for each

type of spectra was prepared . These histograms are listed in Figure 1 and 2.

Comparison of the two histograms is interesting . The infrared histogram peaks

for a value of distance of 0.2 and then decays in a generally exponential

fashion. In contrast , the fluorescence histogram consists of a number of local

minima and maxima. It also contains more of its area for higher values of

distance than the infrared histogram. Due to the discrepancy in the shape of

these two histograms, one is led to believe there is some degree of independence

between the two types of data considered .

In order to gain further insight into the structure of the data,

a scatter diagram of the distance data was prepared and is shown in Figure 3.

This diagram plots the -‘alue of distance in the fluorescence domain vertically

versus distance in the infrared domain horizontally. If a true linear relation-

ship existed between the values of d
~j 

and ~~~ we would see a bunching of the

scatter diagram points along the regression line of d1~ on ~~~ If a simple

nonlinear relationship existed , we would expect to see this disp layed as bunching

along a curve on the scatter diagram. However , we see neither of the above in

the figure. Instead , we see a general smearing of the data points with some

8
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FIGURE 1

HISTOG RAM OF DISTANCES IN INFRARED DOMAIN
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Relative Frequency (Percent)
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Distance Between Vectors in Fluorescence Domain

FIGURE 2

HISTOGRAM OF DISTANCES IN FLUORESCENCE DOMAIN
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Fluorescence Distance
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FIGURE 3

SCATTER DIAGRAM OF DISTANCES IN FLUORESCENCE AND INFRARED DOMA INS
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bunching of points near the lower end of each axis. This general type of

structure indicates that there is a good deal of independence between the dis-

tance calculated.

The correlation coefficient between the two types of distances is

defined as: 2 0
E —

i~l ~~i+i 
(djj—d)(d jj—d )

= 

(var d)lh’2(var d*)
1
~
”2

where d is the mean of the infrared distances and

is the mean of the fluorescence distances.

For values of p
~ 

close to 1, there is a strong linear relationship

between the infrared and fluorescence distances. For p 1 small, there is not a

strong linear dependence present. For the data considered , p was found to be

0.47, which indicates that there is not a strong linear relationship.

The value of the ratio of the distance ~~ to d1~ as calculated is

represented by r i~ (i = 1,2,. ..29; j = 1+1,... ,30). The values of ru were

histogrammed and the resulting plot is given in Figure 4. If there were a high

degree of dependence between the two variables, we would expect to see a high

degree of structure in this histogram. For instance, if there were a highly

linear relationship, we would expect to see a high narrow spike in the histogram

of the distance ratio. In contrast, if the data were completely independent,

we would expect a high degree of uniformity in the amplitude of the histogram.

By examining the histogram of Figure 4, we see a good degree of uniformity for

values of the ratio less than 2. We then see a high degree of uniformity but

of a lower level of values of the ratio greater than 2 but less than 7.5. This

indicates that these types of data are fairly independent.

Further information can be obtained by dividing the oils of the data

base into six categories: No. 2 fuel oils, No. 4 fuel oils, No. 5 fuel oils,

No. 6 fuel oils, crude oils, and diesel oils. The mean of each of these classes

was estimated using the f1uoresce~ce and the infrared data. The distance

between the means for each pair of classes was calculated for each type of data.

The results are presented in Figure 5. It is readily seen that the classes with
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CLASS CLASS DISTANCE (INFRARED) DISTANCE (FLUORESCENCE)

1 2 0.43 1.43

1 3 0.27 1.53

1 4 0.37 1.53

1 5 0.48 1.49

1 6 0.23 0.21

2 3 0.42 0.20

2 4 0.58 0.25

2 5 0.67 0.21

2 6 0.36 1.52

3 4 0.19 0.20

3 5 0.30 0.19

3 6 0.48 1.63

4 5 0.14 0.27

4 6 0.57 1.61

5 6 0.69 1.49

Class 1: No. 2 Fuel Oils
Class 2: Crude Oils
Class 3: No. 4 Fuel Oils
Class 4: No. 5 Fuel Oils
Class 5: No. 6 Fuel Oils
Class 6: Diesel Oils

FIGURE 5

DISTANCES BETWEEN MEANS FOR VARIOUS OIL CLASSES 
. 
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means relatively close under fluorescence data are not necessarily close under

infrared and vice versa. This indicates a fairly high degree of data indepen-

dence.

Based on this data we feel that the formula

= 1 — 2(1 P1) (l P2)

for combining P1 and P2 is quite conservative; i.e., it will not give too high

a value top. However, it will require much more computation before we would

feel justified in lowering the “2” in the formula.
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