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SECTION I

INTRODUCTION AND SUMMARY

This research program’s goal is the advancement of optimal linear

control design technology to the point where it yields operational control

laws that meet conventional design specifications. The results for single

input systems are reported in L i ] .  This report presents results on

1 the characterization of optimal multi-input systems.

The major results established during this phase of the program were:

• Equivalence of quadratic state weighting to quadratic weighting

of m responses where m is the dimension of the input ,

• Characterization of quadratic performance indices in terms

of asymptotic eigenvalues and eigenvectors ,

• Characterization of the effect of compensator s on high

frequency attenuation properties, and

• Development of a procedure for constructing quadratic

( performance indices based on modal design specifications.

I The equivalence result provides a direct generalization of the concept of
I 

. . L i ]model response weightin g for single input systems and hence serves as

I an aid in the interpretation of the asymptotic properties of optimal sy s tems .

This result also provides a general form for performance indices which

I have fewer parameters th an the state form and hence possess less

redundancy. [ 2J  

— ~~~~~~~~~~~~~~~~~~~~~~~~ — . 
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The asymptotic eigenvaluel eigenvector characterization provides

important insight for the weight selection process of linear optimal

design. This characterization provides a complete description of the

quadratic performance index in terms of nm independent optimization

parameters where n is the dimension of the state vector.

High frequency attenuation properties are especially important for

operational control systems. Optimal systems without compensator s

are shown to have first order attenuation characteristics. Thi s may be

insufficient for many applications. The characterization of compensator

effects on attenuation provides a guide for selection of the proper control

system structure to meet design specifications .

The above results are derived in Section II . Section III presents the

development of the procedure for constructing quadratic performance

indices from design specifications. Application of this procedure to an

illustrative example is also described in Section III .

Since transmission zeros of rnultivariable systems play a key role in the

asymptotic characterization, Appendix A summarizes the important

concepts of multivariable system zeros.

2  
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SECTION II

I
CHARACTERIZATION OF OPTIMAL MULTI -INPUT SYSTEMS

We consider the linear controllable system

k = Fx 1- Gu , x(0) = x0 
(1)

where x is an n-vector and u is an m-vector* with m generally greater

than one and less than or equal to n• We are interested in basic

characteristics of linear control laws that are optimal with respect to a

quadratic performance index of the form

~ ‘ r [ ~
’Q

~ ÷ u ’Ru ldt , Q~~~0, R >  0 (2)

with (Q, F) observable. It is well known that the optimal contr ol is given

by

u = K x  (3)

where the gain matrix K satisfies

I K -R 1G’ P (4)

with P being the positive definite symmetric solution of the Riccati

equation

P F ÷  F’ P - PGR 1G’ P ÷  Q = 0 (5)

*The components of u are assumed to be independent , i. e. Rank (G) = m.

~~~~~~~~~~~ 
- -‘ - - 411- ~~ T ~~~~~~~~~~ ~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



We will first present the known characterization in terms of the return

difference. Then we present a new result on the equivalence of quadratic

p erformance indices of the for m (2 ) to the form

J =j ~(r ’ r u ’ Ru)dt  (6)

where

r = C x  (7)

is an m -vector. Optimal systems are then characterized in terms of

asymptotic eigenvalues and eigenvector s. A unique relationship be t wee n

these asymptotic properties and the weighting matrices in the performance

index is then established. Finally optimal systems are characterized in

terms of their high-frequency attenuation properties.

THE RETURN DIFFERENCE EQUATION

The Riccati equation (5) may be rewrit ten using (4) as

P(sI-F) -i- (— sI -F ’)P + K’RK = Q (8)

Multiplying by G’ (-sI-F’)~~ on the left and ( s I - F )  1G on the right , gives

G’(-s I-F’) ’PG + G’P(sI-F) 1G + G ’( -sI—F ’) 1K ’RK(sI-F) 1G

= G’(- sI-F’) ~ Q (sI-F)~~ G ( 9)

4
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Since PC. -K’R , adding R to both sides , and rearranging yields*

[I-K (-sI-F)
1G]’ R[I-K( sI-F) 1

G1

= R + G’(-sI-F )l Q(sI-F) 1G (10)

where the return difference matrix is the mxm matrix

T(s) = I -K (sI -F) ’G ( i i )

For s j W,  the last term of the sum on the right hand side of (10) is non-

negative for all real 
~~. 

Thus , optimal systems may be cha racter iz ed by

the inequality

L T ( -j ~ ) I ’ RT(j~ ) >  R for all real 5 ( 12)

EQUIVALENCE OF x ’Qx TO x ’C’Cx IN THE PERFORMANCE INDEX

Assume that we are given the system (1) and performance index (2) .  Let us

f irs t  m a k e  the change of control variables .

v = /Ru ( 13)

where /R is the positive definite symmetric square root of R. Then (1)

and (2) may be rewritten as

= Fx ~
- Gv, x( O) = x ( 14 )

J = ~~~[x ’Qx + v’vJdt (15)

where G = GV R ) ’. The optimal control is

*1 is used in equation (10) and subsequent equations to denot e the identit y
matrices of appropriate dim ensions. -

‘

5
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v = Kx = (/R)Kx ( 16)

The re turn  difference matrix for the system ( 14 )  with control ( 16) is

T(s) = I - K( sI -F) 1G ( 17)

and the re turn  difference equation is

[T(-s)  1’ T(s) - I = G ‘(-sI-F’ ) l Q(sI -F) 1G ( 18)

For s j w , the right hand side of (18) is non-negative for all real

According to Molinari 112] , Popov [3 1 has shown that t T ( -j z ) 1 ’T (j ~ ) - I 
~ 

V

implies the existence of an mxm matrix C such that

[T ( - s )j ’ T(s) -I  = G’(-sI-F’) C’C(sI-F)G ( 19)

For such a matrix C, let

(20 )

be the optimal control for the system (14) and the performance index

T ~~~ (x ’C tx + v’v)dt (21)

The return difference equation for the system (14) with the control given

by (20 ) is

= G’(-sI-F’) ~ C’C(sI -F) 1Ci ( 2 2 )

where

T(s) = I-1~(sI-F) 1G. (23)



-_ _- _

Thus , from ( 17) , ( 19), (22)  and (23), we have

[ T ( - s ) J  ‘T(s) = [I - K(-sI -F)  1G1 ‘[I - K(sI-F) 1GJ

= [I -~~ (- sI-F) 1G 1’[I  - f~(sI-F )
1Gj (24)

The factorization of LT(-s)J T(s) was shown by Youla 14 , Theorem 2 ]  to be

unique to within a constant unitary matrix, which implies

I - i~(sI-F)~~ G = M E l  - 
~(sI-F)~~GJ (25)

where M is constant and M’M = I. Equation (25) may be rewritten as

l-M = (~~-MK) (sI-F)~~~Ô (26)

The left hand side of (26) is independent of s, and the limit of the right

hand side of (26) as s tends to infinity is

Urn (i~ -Mk) O/ s  = 0 ( 2 7 )
s-.~

which implies M = I. Thus ,

0 = (i~ - k) ( sI -F ) 1G ( 2 8 )

which is an identity ins . For Is i large, (sI-F)~~ may be written as

(s I-F) ” = s~~ ~ (Fs 1)~ (29)
j=o

Th erefore ,

(1< - ~ )F~Ô = 0, j = 0, 1, 2 , ,.. (30)

Equation (30) together with the controllability of (I” , O) implies that ~ = K .
This establishes that t i l l ’  performance indices (15) and (21) are  equivalent

in the sense that  they vi ’ ld the  same optimal controller . Writ ing t h ese

IL 
--~~~~ -~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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performance indices in terms of the original control vector , u , gives the

equivalence of the performance index (2) to (6) for the system (1) with r

defined by (7) for some mxn matrix C.

ASYMPTOTIC EIGENVALUE/E IGENVECTOB CH.-\R ACTE RIZ ATION

For this discussion we consider the sys tem (1) and the q u a d r a t i c  perfor-

mance index in the form

3 = (r ’r +  pu ’Ru)dt (31)

where r is given by (7) and p is a positive real scalar parameter. We are

interested in the asymptotic properties of the optimal closed-loop system

as the parameter p tends to zero. A complete characterization will be

given for the case when the pair (C , F) is observable and the matrix CG

has rank m,

The optimal control is u = Kx where the feedback gain matrix is

K = - p ’ R 1G’P (32)

and P = P’ ~ 0 is the solution of the Riccati equation

PF + F’P - p ’PGR 1G’P + C’C = 0 (33)

The return difference equation for the optimal system is

[T(-s)J’pR T(s) = p R 4 G ’(-s I-F’) ~ C’C( sI -E~’)
1G (34)

where T(s) is the return difference matrix ( 11).

8 
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The determinant of the return difference matrix is

LsI- F -GKLT(s) = 
lsI-F~ 

(35)

Taking the determinant of (34) and rearranging yields

I ø~
(s) ~~(- s) = 0 (s) ~~ (-s)~~I + -~---R

1 H ’(-s) C ’CH(s) (36)

- 
where

0 (s) = lsI-F ~~, ~~(s) IsI-F-GK

and H(s) (sI-F) ’1 G. The polynomials, ~~(s) and 
~~~~~ 

are the

open-loop and closed-loop characteristic polynomials respectively.
I Equation (36) may be analyzed to determine the asymptotic nature of the

closed-loop eigenvalues as p tends to zero.

The right hand side of (36) is a polynomial in p
1 which may be written as

q i ( - s )  1i (s) ~~
‘ a.( s)p ~~ (36)

I ~~=°
where a = 1 and for j = 1, 2, ... ,

I a .(s) = E Ej th ordered principal minors of R 1H ’(-s)C ’CH(s)J (37)

We note that each a
3
(s) is a ratio of polynomials in s2 with the denominator

equal to ~‘ (-s) 1i (s) . Thus

I Vi (s) q i ( - s )  a .(s) = n .(s 2 ) (38)

with the maximum degree of n
3 

being n -j .

I
I

- I



Kwakernaak describes the asymptotic properties of zeros of general

polynomials of the form (36) as p tends to zero in reference 5. Let us

here consider the special case in which the degree of n is n-rn and the

rank of CG is m~ in this case , as p tends to zero , n-rn roots of i,li (s)

approach the roots of n ( s 2) which have negative real parts. These are

the zeros or the left half plane mirror images of the zeros of the

determinant:

I C ( sI— F ) ’G I (39)

The zeros of (39) are the transmission zeros associated with the input-

output system described by (1) and (7) . Append ix A summarizes recent

research on system zeros. The remaining m closed-loop eigenvalues

approach infinity in multiple Butterworth patterns. To examine the

nature of these eigenvalues, we consider 0~
(- s) 

~~~~~ 
= 0 for s

sufficiently large so that Ø 0(-s)  00( - s) # 0. Then from (36) we ar e

interested in the equation

0 = ~I + p 1R ’H ’( s) C tH(s) I
—1 ~ S

R ~H ( - s ) C CH(s)R (40)

For Is large (40) may be written as:

;i  
1 2  (D + O ( , s l 2

))~ = 0 (41)

where D = R~~~G’C ’CGR~~

a nd 0 ( I s I  
2 ) indicates terms wh ich  tend to zero  as 1 s 1 2 

~

10
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Thus

= L x(D)+ 0(~s~~
2) (42)

where x(Matrix ) denotes the eigenvalues of the matrix, and in our case

D > 0 so that x (D) are real and positive. Hence x [D + 0 ( t s l  
2 )] =

x (D)[1 + 0 ( I s I  2 )] 5~~ that as p -. 0, m poles approach infin ity along the

real axis at ~~~ rate of p

I
Kwakernaak [5] points out that if the determinant (39) has less than n-rn

I zeros or if the rank of CG is less than m then the eigenvalues which go to

infinity may group into several Butterworth patterns with different growth

I rates.

I It is somewhat disconcerting that when C is of rank m at most n -rn

asymptotic eigenvalue locations may be specified in the finite plane. It

is possible to have more than n-rn finite asymptotic eigenvalue locations

b y choosing C to have rank less than m • Such an input-output system

is called degenerate (see Appendix A) .  If C is chosen to be a qxn matrix

where q < m , then equation (36) gives

I 
~~~~~~~~~~~ 

= Ø0(s)Ø 0
( -s) ‘m ~~~~H ’(-s)C’CH(s) I

I = 0~
(
~ )0~

(
~~

) I 1q + CH(s) R 1 
H’(_

sC’I

= O (s)0 0
( -s) j~ I + “ + 0

q CH(s)R H’( — s) C ‘I i
( 43)

I
I
I 

11
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The elements of CFI(s)R are ratios of polynomials, the denominators

being of degree n and the numerators of degree less than or equal to n-l .
The determinant, I CH(s)R ’H ’(-s)C I is a ratio of polynomials , the

denominator being of degree 2qn and the numerator being of degree at

most 2q(n-1). The degree of ~‘ (s)~I.’0(-s) is 2n . Cancellation of the

denominator with ~i (s)4i (-s) and common factors in the numerator takes

place in (43), Thus the coefficient of in (43) is a polynomial of

degree at most:

- - 2q(n- 1) + 2n - 2qn = 2(n-q) (44)

The matrix C may be chosen to achieve the maximal degree , 2(n-q) .  In
this case there are n-q finite asymptotic pole locations. It appears tha t

this may be of some advantage as it allows more poles to be specified .
If a vector C were used , then q = l  and it is possible to have n - i  finite

asymptotic poles. U nfortunately, in g e n e r a l  when  q < r n , all n-q poles

may not be specified arbitrarily. Consider the following example

0 1 0 0  0 0

F = 0 0 0 0 G =  1 0

0 0 0 1  0 0
4 0 0 0 0  0 1

H = 12 C = Ic 1 c2 c3 c4 J

12



Then

=

— 2  0

1 
8 - 1 8  

0 L2 ~~~
— 0 0

I S 4 p S C  1 1 -1 C
I 0 — 2 0 0 — 2  —

S 5 5

I L4 j3 0 0
S S

I ~-3 -~2 0 0
I 5 S

= s  + p~~’s C  1 -l C’
I 0 0 — 4 — 3
I S S

0 0 ~-3 —~ 2
S S

= ~4 ~~~ + 
~ 

[(c r
2 

+ c3
2) - (c 2

2 
+ c4

2)s2
]1

Thus while three poles will be finite as p -. 0, two will be at zero

independent of the choice of C. In this example the pair (C , F) is not

observable , but similar examples can be constructed with an observable

I pair .

No general characterization of the nature of the pole restriction has been

found . Apparently the only general statement we can make is that for a

I qxn matrix C, where q<m , the n-q finite poles cannot be arbitrarily

specified.

13 
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For an mxn mat r ix  C it is well know n that the zeros of (39) rna~’ be selected

arb i tra r ’ il y by approp r i ate l y choosing C. There are a m u l t i t u d e  of methods

fo r selecting C to achieve desired zeros . The di f f i cul ty  is that the choice of

C is not unique since only n-rn parameters are needed to specif y the n-rn

ze ros. This diff icul ty with nonuniqueness will be removed by cons ider ing

the freedom to specify eigenvectors corresponding to these asymptot ic’

eigenvalues.  The character izat ion will be completed with  cons idera t ion  of

th e m eigenvalues that approach inf ini ty  and their associated e igenvectors .

We begin the discussion of eigenvectors with the following resul t  established

b~- Moo re [61:

Lemma 1

The vectors x. and associated distinct complex numbers s . are
1 1

closed-loop eigenvectors and eigenvalues , respectively, of the

system (1) with feedback (3) if and only if there exist rn-vectors

su ch that

( s.I- [’)~~ G 
~~~ 

= x. ~~5)

= Kx. i = 1, 2, .. ., n (46)
1 1

This lemma shows that the eigenvectors achievable with linear

state variable feedback are confined to rn-dimensional subspaces

determined by their associated eigenvalues . This eigenvector

adjustment plus arbitrary pole placement is precisely the freedom

offered by linear state variable feedback.

The rn-vectors , 
~~~

, may be character ized with respect to the r e t u T ’r ~
difference as follows :

14
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Lemma 2

The rn-vectors are identical (except possibly for magnitude)

L to the nonzero vector s v. determined by

T(s.) v. = 0, i = 1 2 •.., n (47)
1 1

To show this, note that the ~& . ‘s from (45) and (46) satisfy (47), i. e~

T(s.) = - K(s.I-F)

p~~ -K x .
1 1

= 0  ( 48)

Moreover , solutions of (47) are unique except for magnitude as

long as the s.’s are distinct. For this case , the ~~~~ interpreted

as transmission zeros of T(s), have unit geometric and algebraic

multiplicity and , hence , the rank deficiency of T(s) at Si 15 one.
It then follows that with appropriate norrnalization

= i = 1, 2 , .,., n (49)

For the cas e i n w hich th e ra n k of CG is rn , we ma\  su m m a r  i i c  the

asymptot ic  eigenvalue/ eigenvector properties in th e  f o r m  of a theorem.

With  the rank of CG being full and  h e n c e  the rank of th e mxn  m a t r i x

C being full there is no loss in general i ty  tu n o r m a l i ze  (‘ to he of th e

form

C = W C  (50)
0 0

whe r e W0 is a nons ingular  mx m  m a t r i x  and

C = IC 11 I i  (51)

15
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Such a normalization maybe achieved by a state t ransformation which reorders

the state variables. With this notation we may state  the following theorem.

Theorem 1

Let r = Cx with C satisfying the conditions

i) the rank of CG is m

ii) C is in the form described by equations (5 ”)  and (51)

iii) the zeros of tC(sI-F) G are distinct and have negative

real parts.

Then , the optimally controlled system (1) with respect to the performance

index (31) has:

n-rn asymptotically finite eigenvalues

S1
0
. = 1, 2, ... , n—rn (52)

and m asymptotically infinite eigenvalues

~~ -~~~5. p  , i 1, 2 , • ., , m (53)

where the s~
0 have negative real parts and if for some i, s~

0 is not real
0 . . . 0there is a s~ which is the complex con)ugate of s. and the S

i 
are real and

negative. The ~~~~ are distinct and have associated eigenvectors

= (5
i

0I_ ~~~)
_

~~~~ 
~~~~ 

(54)

where the s.~ and are defined by

C(s .°I-F) 1G V .
0 

= 0, v1
° ~ 0 (55)

16
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The eigenvectors associated with the asymptotically infinite eigenvalues

I are

x. = G V. ( 56)
1 i

1 where the s and v are defined by

I H = (N ’)~~ S 2N ’ (57)

W ’ W  = [(C GN) ’1 1 (C GN) 1 (58)
I 0 0 0 0

I with

N ~ [V.

W 

v ... v (59)

i i 2

S 4~diag (s1~~s2 
a ... S )  ( 60)

1 [5 71This theorem combines known results from the literature ‘ concerning

the asymptotic behavior of eigenvalues with new results for the behavior

of the corresponding eigenvectors. The following proof emphasizes the

I new results,

I Proof of Theorem:

I From Lemma 2, the optimal ~~~~~~~~~~~ eigenvalues and eigenvectors

are characterized by (47) which may be premultiplied by p T (-s~)R yield-

I
p T’( . s~)R T(s

~
) v1 

= 0 (6 1)

1 Then from the return difference equation (34), we have

I E p R + H’(-s 1) C ’CH(s .) Jv ~ = 0 (62 )

17
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We are interested in the asymptotic behavior of the pairs (s i. -~~ ) as ~

tends to zero , In [7 ]  it is show n that if the  rank of CG is m , then there

will be 2 (n -m) such pairs for which the s . values remain f in i te. The s .

values will be symmetric abou t t h e  imaginary  axis . i ’ho~ e in the left

half-p lane will be the cigenvalues of the - - t abl e  elu~ ed-loop sv5 t e n i .

Taking the limit of ( ( ; 2 )  as ~ approaches ze ro v i i i

H ’( — s. )  C ’ClI ( s .)v .  = 0 ( h 3 )
1 i i

Condition iii ) and the synu-n t r v  condit ion on t i a -  s va1u~~ imp ly t1i ~~t

rI-I ‘(— sj C ’ ~ 0 for s. with negative r i 1  pa ct — . h ence f rom (i ;~i)  ~~ have

for the stable s .,

C I 1(sj ’~. = 0 ‘~~. ~ ii i = 1 2 . . . , n - r n  (~ - -1)
i i  I

which establishes equaticai (~~5) , a nd equation (54) follows ~r oc l e mm a  1.

It is known 1 5j  that the remaining rn closed-loop eigenvalues approach

infinity in m first-order ~~ut t e r \ ’ e r th  patter ns . Thei r corresponding

eigenvect or s can be determ ined by using a power series ~~xp a n~~ion in s~~~
of equation (62),  i. e .

0 = [p H - (s.) 2 [G ’(I-F ’s. l )C ’J C(I +F ~ 
1 

+ 
~~• ~~~~ v.

= p[ R - ~~ s~
) 2 [(CG) tG + O(s~ 

2 ) 11 
~

= p (R - 1(CG) ’CG 4 o( pa 1
2) 1)  

~~

. ( ; 5 )

where 
~~~

. = s. p~~. As p tends to zero , 
~~~

. approaches s.~ and the

asymptotically infinite pairs satisf y

0 = [H - (s ) (CG) CG I V. , Vi ~ 0 ( ( i t t )

18
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From this equation and condition i) we can derive:

-l -l ~~-2
0 = [[(CG) ’I R(CG) - (s. ) 1)CG V i , v . #~ 0, i 1, 2, ..., m

(6 7)

This equat ion implies tha t the symmetric matrix [(CG) ’J ’
~ R(CG) 1 has

eigenvalues (s.d12 and orthogonal eigenvectors CG vi. If we normalize

the V~~ by the condition

ICG v .  = 1, i = 1, 2, •.  ., rn (68)

we have

(CGN)’CGN = I (69)

and

R = (CG)’CGN S 2 (C GN) ’CG (70)

where the matrices N and S are defined in (59) and (60) . From condition

ii), equations (69) amd (70) may be rewritten as

W ’ W = [(C 0GN) ’1 ”
~ (C GN)~~

and

R = (C G)’ W ’  W C G N S  2(C GN) ’W ’  W C G

= (C G) ’[( C GN) ’I 1S 2(C GN) ’C G
0 0 0 0

= ( N ’) 1 S 2 N 1

establishing equations (58) and (57) . Equation (56) which characterizes

the corresponding eigenvectors follows directly from Lemma 1 for s. =
_ 1  1

p ~ tending to infinity in magnitude as p tends to zero . This completes

the proof of Theorem 1.

19
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This theorem provides important  new insights for the w ig J i t  ~~1ection

process in linear optimal design .

We note first  that the asymptotic properties provide a complete character-

ization of the performance index (3 1) in terms of nm free  parameters. l’h-

finite modes are characterized by (n -m )  eigenvalues (s . °) plus ( n- i- i )  (n - r n )

pa rameters for their associated normalized directions ( -
~~.
°). We will

show in section III that these provide a unique definition of C via equation

(55) .

Similarly, the asymptotically infinite modes are c har ac ter i z e d  by ( r n - i )

pa rameters for the normalized eigenvalues (s.~ ) and ( r n - i )  (rn)  for their

associated normalized directions (v .~~). These provide unique definition s

of H and W via equations (57) and (58). Together with the sealar ~~,

these parameter s specif y the criterion completely. These observa tion s
are summarized in Table 1. Note that the scala r p is the on iy remaining

“trade-off” parameter in the specification. It indexes the optinial eigen-

value and eigenvector loci implicit in C0, R and W , thus tr adi ng off

control energy against the degree to which the asymptotic p r op er t ies  ar t -
achieved.

We not e next that the asymptotically finite eigenvalues (s .°) cor respond to
transmission zeros of the square response transfe r matrix C U ( s )  and

0 0 ,, . Uthat the vectors (x.  , V . ) are state- and control -zero directions [9]
associated with these transmission zeros. Moreover , for each fixed

finite s
1
0
, the elgenvectors achievable with linear optimal design correspond

precisely to those achievable with arbi t rary l inear  state feedback (L e m m a

1). The existence of zeros and zero directions in CU (s) are algebraic

20 
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structural  properties of the performance index which must be “ built into ”

the criterion if we wish to achieve desirable dominant modes and rn oJ~

distributions in the final closed-loop system.

As a final observation, we note that Theorem 1 provides for the f i r - t  t in -

an explicit way to adjust the behavior of asymptotically inifinite n odez .

‘I’h~ se modes have particular significance to designers because t i e - v

govern the characterist ics of control actuation devices . Note t I i ~ t t he

eigenvectors of asymptotically infinite modes are in the range epa~ - - of C .

Hence , if the state model includes actuator dynamics with G nonzero only

for actuator row s, the asymptotically infinite modes are actuator modes.

According to equations (53) and (56) - (60),  these modes have bandwidth

ratios and cross couplings specified entirely by computable matrices U0
and W . In the past , designers were forced to struggle iteratively to

achieve bandwidth ratios and couplings consistent with hardware cen~ t ra in ts .

HIGH-FREQUENCY ATTENUATION CHARACTERISTICS

We wi ll firs t show that optimal mul t i - input  sys tems have the prop er t~ t h a t

the re turn rat io m a t r i x  at the input possesses a f i r s t  or de r  a t t e n u a t i o n

cha racterist ic for large frequencies . Then we show that  including a compel-

sator increases the order of a t tenuat ion  at the ac tua tor .

For the system ( 1) with control being optimal with respect to ( 2 ) ,  i .e.

the control u is determined by (3), (4), and (5) , the return ratio matrix at

t i i t ’ input u is:

A (s) K (sI - - 1~’)
1G (71 )  

~~---- ----- -- - - -- ~~~ - -~~~~~~~~~~~- ------- - - - -~~~~~~~~~~-
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Expanding the right hand side of (71) in a power series in s 1 for ~~1 large yields

A
u

(s) = s -(i +j) K F~G (72)

The matrix KG = -R 1 G’PG is nonsingular since H and G’PG are positive

definite. Thus, we may write (72) as

I A (s) = ~~~ KG [I + 0(s~~~,J  (7 3)

for ~~ large. This demonstrates that A ( s) possess es the first order

I attenuation characteristic.

Now let us consider the case in which a compensator is included. For this

purpose let us suppose the vector u consists of two subvectors u 1 and u 2
and that the compensator is inserted in the u

2 path. The block diagram

of such a system is shown in Figure 1. The differential equation

description for the system is

k = Fx + G 1u 1 + G2u 2

~c F x  + G v  (74)
c c c  c

u = lix2 c

The performance index for this system is

J = s: [[x ~, x C
l4

[Q~~
1 

~:][~
] ÷ 

~~~~~~~~~ 
~~~~~

(7 5)

Ii I
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The optimal control is

lu il 1K11 K1211x 1 (76)

Lvi L’ 21 K 22j [x j

w ith
K 11 K 12 

= - 

H 11 R 12 
1 G1’ 01 

P 11 P 12 (77)
K21 K22 R 1

1
2 R 22 0 G~j 

P 1~ P 22

where

P 11 P 12 F G 2H 
+ 

F G2H ‘ P 11 
p121+ ~~11

P 12 P 22 0 F 0 Fc P l2 P 22j Q i’2 ~~22
(7 8)

= 

P 11 P 12 G 1 0 H 11 R 121 
-1 G~ 0 P11 

p
12

~~l2 P22 0 Gc R I 2  R 22j 0 G ’ P 1~ P 22

Note that

R 11 R 12 
-1 

— 

H1
1 -R

1
1R 12R 22

1

R

~
2 R 22 

— 

R 22
1R 1’2R 1

1 R 22
1 

+ R 22
1R 1’2R 1

1R 12 R 22 ’

(79)

where H 1 
= H 11 

- R 12 R 22
1R 1~~. (80)

~~~~

- 
--

~~~~~~
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The matrix A may be partitioned consistent with the partitioning of u as

( A )
11 

( A )
12

A = 

U’. ) ) 1 ( A )
22

K
11 * K 12 (sI-F -G K

22)
1
G2K2

(sI-F) 1

H(sI-F )1G [ 1 4- K22(sI-F -G K22)
1
G 1 K 2

(sI-F) 1 
1G

1
G
2J

(8 1)

Then for large ~~~

( A ) 11 = s 1K 11 G 1 + 0(s 1)

= -s ’R 1
1 1G P 11G 1 R 12R 22 

1 G ’  P
1
1
2
G
1 1 + O(s 2 )

(82)

and if R 12 0,

( A )
11 

= ~~ R 11
1 

GIP 11G 1[I + 0(s 2 ) J  (83)

Thus if R 12 
= 0, ( A )

11 has the attenuation characteristic of a system

without compensation. If R 12 ~ 0 the order of attenuation of some of the

elements might be increased because of cancellations occurring in the

first term of equation (82).

2 f ; 
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The remaining terms in A~ 
may be written for large s as

( A ) 12 = s 1K 11G 2 U(s 2 ) (84)

I 
( A ) 21 = f l( sI - I ’  )~~ G [s 1K 21G 1 

0(s 2) ] (85)

( A )
22 

= 1I(sI-F )~~ G [s 1K 22 G 9 + U(s 2 ) ] (86)

Equations (85) and (86) show that the compensator’s attenuation

I characteristic is “ added ” to the first order (at least) characteristics of

the u 2 subvector .

I
I

I 
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SECTION HI

SYNTHESIS P R O C E D UR E  RASED ON

TIlE ASYMPTOTIC CI IARACT E I t I ZAT ION

In this section we will describe a procedure for constructing the  quad rat i c

weighting matrices of the performance index from desired speci f ica t ions

of closed-loop eigenvalues and eigenvectors . As an i l lustrative examp le

the result s obtained with this procedure for the lateral axis control ler

desi gn for the F-4  will be described .

WEIGHTING MATRD( CONSTRUCTIO N

A key fea ture of the asymptotic interpretat ions above is t h e  s t r u c t u r a l

requirement that C(sI-F) 1G must  possess transmission zeros  and zero

directions corresponding to the (s . °, V . )  pai rs . L ’h is section provides a

construction procedure to “ build ” such response t ransfer  m at r i~ t ’s based

on desired closed-loop specifications .

We begin with the assumption that (without los s of i~e n e r i l l t \  ) t h e  l l n i l r i \

(; has been transformed to the form

0

with  (
9 

an mxm nonsingular matrix .

211



Further , we assume that for desired closed-loop eigenvalues , S
0
, the

corresponding vectors x .’1’ which describe the desired mode distributions

in state spacet can be specified by the designer , i. e., the desired modes

should look like

x1(t) = x i * eSi t ; i 1, 2 , ... , n- rn (88)

It will generally be true that only a few of the components in x~
4’ are

actually specified. The rest can be arbitrary. To account for this , we
*reorder and partition x . as follows:

R. r~.** 1 1
j~~~ 

-} = [----- (89)

*wher e 
~~~

. is the specifled subvector , v’s are the unspecified components ,

and (...) 1 denotes the reordering operation .

In accordance with L e m m a  1 and Theorem 1, the desired mode (89) may

not belong to the set of eigenvectors achievable by optimal linear design :

= [(s 1
0I~ 1l lG ) i 

~~~
0 

*
The designer  is f r t ’ to select V

i 
so as to best approximate -

~~

. wit h .y .

One ~ av to do this is by orthogonal projections ,

Vj 
= (t’ L)

1 

~~~~~ 
(9 1)

t A known mode distribution in some output space y = Cx with C non-
singular would obviously serve as well .

28 
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although other methods may be more suitable in particular applications.

We will assume here that [V
1

; i = 1, 2 , ..., n -m )  have been determined

by some procedure and result , via equation (54), in the following eigen-

vectors

0 0 0X [ x  x , ... x 1 (92)
1 2 n-rn

where care was taken to assure that no linear combination of the x .
0
’s lie

in the range space of G. We then define the projection matrix

p = i -x (~~‘X)~~~~~~ ’ ( 9 3 )

and note that

PG~~~~~0 i f ~~~~~ 0 (94)

Let us partition the matrix P in the form

P 11 P 21 (95)
P 1 P12 22

with P22 being an mxm matrix. Conditions (87) and (94) and the non -

singularity of G 2 imply that P 22 is nonsingular. Thus , C0 may be defined

as

C0 
= [0 P 22

1JP = [P
22 

1P 1~ :I 1 ( 9 6)

To verify that C0 has the desired structural property, we not e that

C o(si
oI_ F) _ 1

G V
i 

= [ 0P 22
’IP (s~

0I_ F) lG V
i

= [°:~ 22 
i P x .

= 0, i = 1, 2 n - rn  (97)

30 
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and that for sufficiently large ~~~ the rank of ç3(sI-F) is m. Thus , there

is a rank reduction at s 0 which means s 0 is a t ransmission zero , and hence

an asymp tot ica l ly f ini te  eigenvalue with corresponding eigenvector x~~.

I LLU ST 1~ATIVE EXAMPLE

For purposes of i l lustration we consider the inner loop lateral axis design

I problem for the F-4 fighter aircraft at a low dynamic pressure flight condi-
- 

tion taken from reference f lO ] .  The dynamics are

x F x + G u

f with

PS stability axis roll rate

r stability axis yaw rate

I x = 

angle of sideslip

bank angle

o rudder deflection

0 aileron deflection

I 
= 

a rudder command

0 aileron com ma ndac

Matrices I’ and G are  given in Table 2 . Not e that they include f irst  order
actuator dynamics with 10 and 5 rad/ sec  bandwidths . i’h, ’s, ’ ha ve been
made deliberately slower than the hydraulic actuators available on the h’ - 4



__

(approximately 20 and 10 r a d / s e c)  in order to i l l u s t r a t e  the  s i g n i fi c an c e  of

the freedom to choose asymptotically i n f i n i t e  eigenva lues and ei~~en~’e~- t o rs

to achieve desired closed-loop actuator  charac te r i s t i c s.

Table 2. F’ and G Matrices

-.746 .387 -12.9 0. .952 6.05 
-

.024 -.174 4.31 0. -1 .76 -.416

.006 -.9994 -.0578 .o369~ . 0092 - . 00 12
F =  

1. 0. 0. 0, 0. 0.

0. 0. 0, -10. 0.

0. 0. 0. 0. 
J 

0. -5 .

_
0.

0. 0.

0. 0.
G =  0. 0.

20. 0.

0. 10.

32
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From the point of view of fighter handling qualities , all four of the lateral

axis closed loop roots have desired values which can be taken from MIL

F8785B , as done , for example, in reference [i O i .  The results are as

follows:

a) Roll subsidence mode -4 . 0

b) Dutch roll mode -0.63 ± j 2 .42

c) Spiral mode -0 .05

Each of these poles can be assigned~an asymptotic eigenvector , ~~~~~~ which

distributes the modal response , e 1 among the state variables and outputs

of the system. However , each eigenvector is constrained to lie in a two

dimensional subspace defined by Equation (54) . An element in this sub-

space was selected by finding the best linear projection of an unconstrained

desired vector , x~ , on the subspace . The results of the eigenvector

selection are:

- -4t (1)
a) Roll subsidence mode (e x )

Desired x* = [1. 0 0 v v vi

Attainable x(1) 11 . -.007 0 -.25 .13 -.56]

b) Dutch roll mode , real part (e ’ 63t (c os 2 . 42t)x (2) )

Desired x* = 10 v 1. 0 v v i

Attainable 
(2) 

= 10 15.6 1. 0 17 .86 -.103]

33
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C) Dutch roll mode , imaginary part (e~~ 
63t (sin 2 . 42t)x~~~ )

Desired x* = [0 1. v o l ~ vi

Attainable x~~ [0 1, 6. 16 0~ -9.49 14. 6 1

- 
-
. 05t (4)

d) Spiral mode (e x

Desired x* = [v v 0 1. v vi

Attainable x~~ = [- .05 .037 0 1. ’ - . 0014 -.0079]

A few comments are in order to explain these choices. Consider, for

example, the roll subsidence mode . The desired eigenvector is taken to

be x* = ( 1 0 0 v -. v) which means that the mode should show up

dominantly on roll rate, but not on yaw rate or sideslip (we want no side-

slip buildup during turn entries). These ar e basically handling quali ty

considerations. The v~s in the vcctor indicate that we do not care how

much of the mode shows up on these components. Certainly, since

= 
1
~p~~ft some mode content has to be expected on x 4 and similarly, if

the surfaces are actually controlling the mode, 3ome mode content should

also appear in x 5 and x6. The linear projection which best achieves

these objectives is shown as above . Note that we can sa t i s fy  our

desires almost perfectly.

Simila r arguments  also apply to the dutch roll mode . In this case we

want rio - t i l it o r y  dutch roil c ontent on roll rate  and bank ang le . This is

a kt’v handling quality requirement for all well-behaved lateral  control

laws 1101 .

Sr - - — - - - ~~~~~~~~~~~~~~ - - - 
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In the case of the spiral we want the mode to show up dominantly on bank

angle (corresponding to steady turns)  with , again , no substantial sideslip

component . The latter is a basic turn coordination requirement .

Once the eigenvectors are specified , it remains only to compute the matrix

C via Equation (96) and then to select eigenvectors and eigenvalue ratios

for the asymptotically infinite roots. The matrix C 0 is sh own in Table 3.

Table 3 . C M at r ix
0

- . 131 .567

-.612 . 160

1. 64 -2 .39
= 

. 0175 . 0303

1. 0.

0. 1.

F o r  decoup led a c t u a t o r s  the m at r i x  N de f ined  in (59)  and i - n a t r i x  S of eq.  ( 6 0 )

were  chosen to be

[o.s o l  [1 o
N

~~~L~) 1]  s = L O 0. 5

to achieve a two-to-one bandw idth ratio . I The n  f r o m  ( - 5 7 )  and (58) ,

-l () 1 (1

Ft = W ’ W =

0 -1 0 0 100

I
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These s~-t cct ions  complete the sp’ i f 5 c a t i on  of the p e r f o r m a n c e  index

except for the  scalar p a ramet e r , ~~. Optimal controllers w e re  computed

for - vcral  values of this p a r a m e t e r .

R epr -a x i t a t iv e  resu l t s  are shown in Table 4 and Fi gure  2 . The cigen-

values and eigenvector ch aract er i s t i c s  indeed approach their  predicted

a s y m ptot ic  values , as cart  be seen in ‘Fable 4 . Reasonable ac tuator

bandwid ths  are obtained wi th  ~ = 0. 0025.

The controller gains shown in Table 4 indicate that  the ac tua tors  at this

dc~~igr i  value are essentially uncoupled (very small  cross-feeds  from one

to the other) and have jus t  enoug h feedback around themselves to

produce the bandwidths  available with the a i rcraf t ’s exist ing hydraulics .

Transient  response character is t ics  achieved for a range of ~ -values are

shown in Figure ~~. Although only roll r ate  and sidesli p rcspon ses ar e

given for  s in i p lici tv , d ramat ic  improvement  in cross coup ling b etw e en

roll motion and dutch roll is c lear ly  evident . Roil t r an s i en t s  approach

their  intended f i r s t  order 0. 25 sccorm d r esponse  t ime , and sidesli p

re~~ponses approach the i r  intended sJ.i1~h i t l v  oscillator second-order

( - F i t r J c t e r ’ i st i c s . ( r -oss coupling vanishes as the e igenvectors  approach

their intended a sy mp t o t i c  d i rect ions .

‘rhis example  i llustrates that  it is p -~- 1h1f to a a t i s f ~- complex h andl ing

~ u a l i t v  ~p c i i i  i t i o r i s  arid i t i  in I ut b a nd w i d t h  d m a  r i t - t e r i st i c s  with

standar d  q u a dr a t i c  p e r f or m : i  lit indict c-~ if the  - -c i  r im t - t u r e  of the  t - r i t t ’r i on

is based on m s v m i i p t o t i c  - I n i r ct~~r t ~~t n - - .
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APPENDD( A

ZEROS OF MULTIVARIABLE SYSTEMS

This Appendix gives a summary of the important concepts and an outline

of the literature on transmission zeros of multivariable systems. While

many intuitive notions about zeros for scalar systems are retained , the

multivariable case is not a trivial extension of the scalar . Examples are

given to illustrate important ideas .

S U M M A R Y  OF IMPORTANT CONCEPTS

1. Given the system :

~c t F x + Gu

y z C x + Du

(x € Ri’, ~ € R m, y e R~ )

the transmission zeros may be defined to be the set of complex

numbers x which satisf y the following inequality:

- X I  G 1 -j
rank 

C D 
< n + m i n (m ,p)

2, Transmission zeros are invariant with respect to coordinate trans-

formation , state feedback , and nonsingula r input and output t r a n s  -

formation .
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3. Transmission zeros may include the entire complex plane. The

remaining points will assum e this is not the case s

4. Almost aLl nonsquare systems (in fr p) have no zeros.

5. For square systems (m p) the definition in [8] is equivalent to

defining transmission zeros as zeros of:

F -XI G
det

C D

= det(F - XI) detlC ~kI -F) 1 G + DI

6. For square systems, the number of zeros is at most n -m-d  where d is

the rank deficiency of CG.

7. Transmission zeros are not the same as the zeros of the numerators

of the various transfer functions relating inputs to outputs . The latter

are not invariant with respect to feedback .

8. For high-gain feedback systems where u = ky the system poles migrate

to the transmission zeros or infinity as k approaches infinity.

9. A zero at X corresponds to the system blocking the transmission of

certain input signals proportional to cU.

41
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OUTLIN E OF LITERATURE ON TRANSMISSION ZEROS

There has been considerable interest recently in transmission zeros of

multivariable systems. Rosenbrock [81 apparently was the f irst  to offer

a definition. Most of the literature offers little insight and many of the

results are incorrect . We will present the most significant results here

and try to clarif y som e of the issues . The in ter ested r eader may consult

the literature for details , and we will point out the most obvious errors

therein.

Much of the difficulty arises because the transmission zeros of a system

are, in general, quite different from the zeros of the various scalar

transfer functions relating inputs and outputs , as in the single-input

single-output controllable-observable case ,

Rosenbrock 181 defines zeros of a transfer function matrix in terms of

the numerator of the diagonal elements of its McMillan standard form . If

y(s) G(s) u (s) ,  (y is length p, u is lengt h m , and G is pxm), then

G(s) = N( s)/ d ( s )  where d(s) is the monic least common denominator of tli t

elements of G. Then N (s) can be brought to Smith form by the t ranaforma-

tion L(s) N (s) R(s) = S(s) where L and R are unimodular polynomial

matrices. Cancelling any common factors between S(s) and d(s) yields

the McMillan for m of G which we denot e by M(s) as follows:

M(S) = [diag(c 
~
(s)/i

~
LI
~
(s)) 0p r n _ p i~ m > p (A . 1)

or M(s) diag(e .(s)/i~.(s)), ni p (A. 2)

dia g(e ( s )/ i J .1
~
(s) )

or M(S) = , in < p (A . 3)
U

p - r l l , m
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I
The poles of G are the zeros of the denominator polynomials 

~~~~~~ 
in M(s)

and the zeros of G are the zeros of the c

The following illustrative example was given in [81.

~~
2 ~~~~~1)(s + 2)

G( s) =

1 s + 3
(s + l)(s -t- 2) (s + 2)

2

d(s) = (s + 1) 2 (s 2) 2

( s + 2) ( s +  1)(s + 2)

N(s)

(s + 1)(s + 2) (s + 1) 2
(s + 3)

1 0

S(s) =

0 ( s + 1) 2(s + 2) 3

•
1 0

(s + l)
2(s + 2) 2

M(s) =

0 s~~~2

Notice that although G is proper , M is not . Also, G has one zero at -2 ,

and there is not a zero at -3.

I
__  —-—~~~~~~~~

-- -~~~~~~~~
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Kwakernaak and Sivan [7 ]  define the zeros of the system*

* = F x -i- Gu (A .4)

y Cx + Du

n in p
(x e R , U € R , y e R

for m = p and D = 0 as the zeros of the polynomial det (Is-F)x

det(C(Is-F) 1G). If H(s) C(sI-F) 1G then:

det [H(s)]  = , d(s) = det(sI-F) (A .5)

Now:

lim s
in

~ (s) 
= 

Jim m det[C Is-F~~~GJ
-
~~~~~ 

d( s) I s i  -
~~~~~

= 
lim det[Cs(sI-F) 1G 1

-~~~~~

= det(CG) (A .6)

This shows that the degree of d(s) is greater than WA s) by at least m, hence

~(s) has degree n-m (when det(CG) ~ 0) or less.

Wolovich [i i i  attempts to present a somewhat more general state-space

approach to multivariable system zeros by essentially defining a zero as a

value of s for which the matrix

*Controllabiity and observabiity will be assumed throughout unless
otherwise stated .
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F-sI  G
I (A . 7)

C D

loses rank. The normal rank of a matrix is usually taken to be the

maximum rank over s and a zero can be thought of as a value of s for which

I the rank is less than the normal rank. Wolovich incorrectly states that if

the rank of G and the rank of C are both greater than or equal to

1 r = min( m, p) , then the normal rank of (A . 7) is n+r . For the case p = m

and D = 0, Wolovich’s definition is equivalent to that given in [7 1  because

F-sI G -l
det = det(F-sI) det[C(sI-F) GI (2 .8)

I C 0

However , it is possible , as the following example demonstrates , for

observable-controllable systems with C and G each of full rank to have the

matrix in (A . 7) be of rank less than n+r ,

Example: Consider the controllable, observable linear sy stem with n = 3,

m = p = -~

t
y Cx

whe re

I 0 1 0 0 0  1 0  U
F =  0 0 1 G =  1 0 C =  

~ ~ U

I 0 0 1  0 1

4 9
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For this system , we ha ve

[1’-sI Gi
de t i  JL c  oJ

so the rank of (A . 7) is less than 3 -t- 2 = n + min(m , p)

Kouvaritakas and MacFarlane [12 , 131 use a geometric approach to describe

multivariable zeros . For square sy stems (p = m) they define the svstein

zeros to be the ze ros of

r sl-F Gi
det I (A . ~)

L C  0]

and almost correctly point out that the number of zeros are n -m - d  where d

is the rank deficiency of CG. As we shall see , the dete rm inant m ay  be

zero for all s rendering the definition somewhat useless in general , but the

approach is interesting and can provide worthwhile insights .

Davison and Wang [141 and Desoer and Schulman 1151 have provided some

apparently correct and definitely useful insights .

Davison and Wang, like Wolovich , define the tr ansmission zeros of (A . 4)

to be the set of complex numbers  X which satisf y the following inequali ty

[F-X I Gi
rank 

I 
< n ~

- min(m , p) . ( -\ . 10)
L C  DJ
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They point out that a cont r ollable observable system with G and C full rank

may have zeros ever ywhere in the complex plane . They call these systems

degenerate and assume that all their systems are nondegenerate . The

above definition is shown to coincide with those of Kwakerna ak and Sivan

and Rosenbrock.

It is also noted that

IF- xI Gi
rank l IL c  DJ

[T(F + GK - XI)T 1 TGV1
= rank - I 

(A . l l )
[u(c + DK)T 1 UDV]

for any nonsingular T e R~~
n , nonsingular V € ~~~~~~ nonsingular U ~

and K e R t
~~

n , and hence that the transmission zeros (X I are invariant

with respect to coordinate transformation, state feedback and nonsingular

input and output t ransformations.

Davison and Wang also prove that the class of square systems having less

than n- rn zeros must lie on a hypersurface in the p a r a m e t e r  space for  those

systems . Thus , they conclude that for almost all square syst ems , the r m ’

are ri - rn zeros .

Davison and Wa ng have many other control-related results  on ~~‘ros , and

claim to have as well some efficient algorithms for calculating z -ros~
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Desoer and Schulman [151 give a very interesting account of zeros using

purely algebraic techniques. The rational matrix transfer function H ( s )

is viewed as a network function of a multiport and H(s) (n
0xn~) is factored

into D,~(s) 
‘N~,(s) = N (s) D (s) 1

. A zero of’ ii( ) is defined to be a point

z where the local rank of N~,(z) drops below the normal rank. The intui t ive

con cept tha t a zero of a multiport corresponds to the system blocking the

transmission of signals pr oportiona l t o eZ
~ is deve loped rigorously via

several theorems .

MacFarla ne and Karcanias [161 have written a rather complete survey of

poles and zeros of multivariable systems. They t rea t z er os from the

algebraic , geometric and complex-variable points of view and give severa l

apparently new and worthwhile intuitive approaches . Fur thermore , there

are no glaring errors in the paper . This is definii.ely good (tho ugh lengt hy)

reading on the subject .
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