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SECTION I

INTRODUCTION AND SUMMARY

This research program's goal is the advancement of optimal linear
control design technology to the point where it yields operational control
laws that meet conventional design specifications., The results for single
input systems are reported in [1]. This report presents results on

the characterization of optimal multi-input systems.

The major results established during this phase of the program were:

(] Equivalence of quadratic state weighting to quadratic weighting

of m responses where m is the dimension of the input,

® Characterization of quadratic performance indices in terms

of asymptotic eigenvalues and eigenvectors,

° Characterization of the effect of compensators on high

frequency attenuation properties, and

® Development of a procedure for constructing quadratic

performance indices based on modal design specifications.,

The equivalence result provides a direct generalization of the concept of
model response weighting“] for single input systems and hence serves as
an aid in the interpretation of the asymptotic properties of optimal systems,

This result also provides a general form for performance indices which

have fewer parameters than the state form and hence possess less

(2]

redundancy,




The asymptotic eigenvalue/eigenvector characterization provides

important insight for the weight selection process of linear optimal
design. This characterization provides a complete description of the
quadratic performance index in terms of nm independent optimization

parameters where n is the dimension of the state vector,

High frequency attenuation properties are especially important for
operational control systems. Optimal systems without compensators
are shown to have first order attenuation characteristics, This may be
insufficient for many applications. The characterization of compensator
effects on attenuation provides a guide for selection of the proper control

system structure to meet design specifications,

The above results are derived in Section II, Section III presents the
development of the procedure for constructing quadratic performance
indices from design specifications, Application of this procedure to an

illustrative example is also described in Section III,

Since transmission zeros of multivariable systems play a key role in the
asymptotic characterization, Appendix A summarizes the important

concepts of multivariable system zeros.
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SECTION II

CHARACTERIZATION OF OPTIMAL MULTI-INPUT SYSTEMS

We consider the linear controllable system
x = Fx + Gu, x(0) = X (1)

where x is an n-vector and u is an m-vector* with m generally greater
than one and less than or equal to n, We are interested in basic
characteristics of linear control laws that are optimal with respect to a

quadratic performance index of the form

g=[ Ix'Q+u'Ruldt, Q2 0, R> 0 (2)
with (Q, F) observable., It is well known that the optimal control is given
by

u = Kx (3)

where the gain matrix K satisfies

1

K=-R a'P (4)

with P being the positive definite symmetric solution of the Riccati

equation

PF+ F'P-PGR IG'P+Q =0 (5)

*The components of u are assumed to be independent, i,e. Rank (G) = m,




We will first present the known characterization in terms of the return
difference., Then we present a new result on the equivalence of quadratic

performance indices of the form (2) to the form

. — & £ ¢ 3

J J' o(r r+ u Ru)dt (6)
where

r = Cx (7

is an m-vector., Optimal systems are then characterized in terms of
asymptotic eigenvalues and eigenvectors, A unique relationship between
these asymptotic properties and the weighting matrices in the performance
index is then established. Finally optimal systems are characterized in

terms of their high-frequency attenuation properties,

THE RETURN DIFFERENCE EQUATION
The Riccati equation (5) may be rewritten using (4) as
P(sI-F) + (-sI-F’)P + K'RK = Q (8)

Multiplying by G’ (-sI-F')-1 on the left and (sI—F)-lG on the right, gives
G'(-sI-F) 'PG + G'P(s1-F) 1G + G-s1-F) 'K'RK(s1-F) lG

= G'(-sI-F) 1 Q (s1-7) LG (9)




Since PG = -K'R, adding R to both sides, and rearranging yields¥
[1-K(-sI-F) 1G]’ R[I-K(sI-F) 1G]
= R+ G'(-sI-F) ! Qs1-F) la (10)
where the return difference matrix is the mxm matrix

T(s) = I-K(sI-F) 'G (11)

For s = jy, the last term of the sum on the right hand side of (10) is non-
negative for all real . Thus, optimal systems may be characterized by

the inequality

[T(-jw) ]’'RT(jw) > R for all real u (12)

EQUIVALENCE OF x'Qx TO x'C'‘Cx IN THE PERFORMANCE INDEX

Assume that we are given the system (1) and performance index (2). Let us
first make the change of control variables.
v = /Ru (13)

where /R is the positive definite symmetric square root of R, Then (1)

and (2) may be rewritten as
x = Fx + Gv, x(0) = x_ (14)
J={ :[X'Qx + v/v]dt (15)

where G = G(/ R)_l. The optimal control is

*I is used in equation (10) and subsequent equations to denote the identity
matrices of appropriate dimensions,




~

v = Kx = (/R)Kx (16)

The return difference matrix for the system (14) with control (16) is
T(s) = 1 - K(sI-F) LG (17
and the return difference equation is

[(T(-s)' T(s) - I = GA-sI-F) "} Qs1-1) 1G (18)

For s = jo, the right hand side of (18) is non-negative for all real w.
According to Molinari [2], Popov [3] has shown that [T(-jm)]’:l‘(jw) -I50

implies the existence of an mxm matrix C such that

(T(-5)]1"T(s)-1 = & (-sI-Fn L CrC(s1-F)G (19)

For such a matrix C, let
v = Kx (20)

be the optimal control for the system (14) and the performance index

J= r: (x'C Cx + v'v)dt (21)
The return difference equation for the system (14) with the control given
by (20) is

[T(-5)]"F(s)-1 = GH(-sI-F)  C'Cls1-F) G (22)
where

T(s) = 1-K(sI-F) LG, (23)




Thus, from (17), (19), (22) and (23), we have

[ - K(-s1-F) 16111 - K(s1-F) 1G]

[:1“( -5)]'T(s)

(1 - K(-sI-F) G111 - R(sI-F) 1G] (24)

The factorization of [T(-s)] T(s) was shown by Youla [4, Theorem 2] to be

unique to within a constant unitary matrix, which implies
I - R(s1-F)1G = MII - R(sI-F) 1G] (25)
where M is constant and M’M = I, Equation (25) may be rewritten as
I-M = (K-MK) (sI-F) 16 (26)

The left hand side of (26) is independent of s, and the limit of the right

hand side of (26) as s tends to infinity is

lim (R-MK) &/s = 0 (27)

S
which implies M = I, Thus,
0= (R -K) (s1-F) "G (28)

which is an identity in s. For |s| large, (sI-F‘)_1 may be written as

(sI-F‘)-1 = s-1 z (Fs_l)J (29)
j=o
Therefore,
K-KFE=0j=0,1, 2, ... (30)

Equation (30) together with the controllability of (I¢, &) implies that K = }:
This establishes that the performance indices (15) and (21) are equivalent

in the sense that they yield the same optimal controller, Writing these




performance indices in terms of the original control vector, u, gives the
equivalence of the performance index (2) to (6) for the system (1) with r

defined by (7) for some mxn matrix C,

ASYMPTOTIC EIGENVALUE/EIGENVECTOR CHARACTERIZATION

For this discussion we consider the system (1) and the quadratic perfor-

mance index in the form

J= r: (r'r+ pu'Ru)dt (31)

where r is given by (7) and p is a positive real scalar parameter, We are
interested in the asymptotic properties of the optimal closed-loop system
as the parameter p tends to zero, A complete characterization will be
given for the case when the pair (C, F) is observable and the matrix CG

has rank m,

The optimal control is u = Kx where the feedback gain matrix is
K=-, 'R a'P (32)

and P = P’ > 0 is the solution of the Riccati equation

- lopicic =0 (33)

PF + F'P - p "PGR
The return difference equation for the optimal system is
[T(-s)]'pR T(s) = oR + G(-sI-F/) ! c’c(sI-F) LG (34)

i where T(s) is the return difference matrix (11).




The determinant of the return difference matrix is

T(s) = %‘ﬂ (35)

Taking the determinant of (34) and rearranging yields

i g N T
¢c(s) ¢c(-s) = ¢o(s) ¢°( s)| 1+ . R ~ H'(-s) C'CH(s) | (36)
where

8,(s) = |sI-F|, ¢ (s) = [sI-F-GK |

and H(s) = (sI-F)_lG. The polynomials, ¢o(s) and ¢c(s), are the

open-loop and closed-loop characteristic polynomials respectively.

Equation (36) may be analyzed to determine the asymptotic nature of the

closed-loop eigenvalues as p tends to zero.

The right hand side of (36) is a polynomial in p-l which may be written as

v (s T aj(s)p'j (36)

j=o

where ao= landfor j=1, 2, ..., m,

aj(s) = z:[jth ordered principal minors of R-IH’(-s)C'CH(s)} (37)

We note that each aj(s) is a ratio of polynomials in 52 with the denominator
equal to xlzo(-s) xpo(s). Thus

V() Yo(-9) als) = nj(s2> (38)

with the maximum degree of n;i being n-j.




Kwakernaak describes the asymptotic properties of zeros of general
polynomials of the form (36) as p tends to zero in reference 5. Let us
here consider the special case in which the degree of n_ is n-m and the
rank of CG is m, In this ?ase, as p tends to zero, n-m roots of x/xc(s)
approach the roots of nm(sz) which have negative real parts, These are
the zeros or the left half plane mirror images of the zeros of the

determinant:
|cs1-F) G| (39)

The zeros of (39) are the transmission zeros associated with the input-
output system described by (1) and (7). Appendix A summarizes recent
research on system zeros. The remaining m closed-loop eigenvalues
approach infinity in multiple Butterworth patterns. To examine the
nature of these eigenvalues, we consider qsc(-s) q)c(s) = 0 for |s |
sufficiently large so that @0(-5) ¢o(—s) # 0. Then from (36) we are

interested in the equation

0=|I+ o 'R HA-9) C CH(s)|
o I ’ -1
=|I+p R "H(-s) C CH(s)R " | (40)
For |s | large (40) may be written as:
1-Ls72 @+ o5 = 0 (41)

where D =R ?G'c’‘cGR™®

- -2
and 0(|s| 2) indicates terms which tend to zero as |s| ~ + =,

10
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. A (42)

g2 = %x(on 0(

where A(Matrix) denotes the eigenvalues of the matrix, and in our case
D > 0 so that \ (D) are real and positive, Hence A [D + 0(|s]| -2)] =
A (D)1 + 0(]s]| -2)] so that as p -~ 0, m poles approach infinity along the

real axis at the rate of p-% .

Kwakernaak [5] points out that if the determinant (39) has less than n-m
zeros or if the rank of CG is less than m then the eigenvalues which go to
infinity may group into several Butterworth patterns with different growth

rates,

It is somewhat disconcerting that when C is of rank m at most n-m
asymptotic eigenvalue locations may be specified in the finite plane. It
is possible to have more than n-m finite asymptotic eigenvalue locations
by choosing C to have rank less than m, Such an input-output system

is called degenerate (see Appendix A). If C is chosen to be a gxn matrix

where q < m, then equation (36) gives
-1
- , R qu-
0.(8)8.(-s) = ¢ (s)g (-s) | I+ . H'(-s)C’CH(s) |

¢0(s)¢o(—s) | Iq v 1; CH(s) R_l HY-s)C ')

8 (s)g (-s) (1+7°" + o7 CH(s)R ! H/(-s)C

.3
(43)

11




The elements of CH(s)R-% are ratios of polynomials, the denominators
being of degree n and the numerators of degree less than or equal to n-1,
The determinant, | CH(s)R 'H'(-s)C | is a ratio of polynomials, the
denominator being of degree 2qn and the numerator being of degree at
most 2q(n-1), The degree of t,l/o(s)wo(-s) is 2n, Cancellation of the
denominator with #/o(s)lllo(-s) and common factors in the numerator takes

q

place in (43), Thus the coefficient of o * in (43) is a polynomial of

| degree at most:

{ 2q(n-1) + 2n - 2qn = 2(n-q) (44)

The matrix C may be chosen to achieve the maximal degree, 2(n-q). In
this case there are n-q finite asymptotic pole locations. It appears that
this may be of some advantage as it allows more poles to be specified,

f If a vector C were used, then q=1 and it is possible to have n-1 finite

| asymptotic poles., Unfortunately, ingeneral whenq<m, all n-q poles

may not be specified arbitrarily, Consider the following example

-

0]l

01 0 [0 0

B0 0 0 0 T

0 0 0 1 0 0

0 0 0 0 0 1

| i i Wb
| R = I @ =i 1
5 2 B B B




Then

tl/c(s)wc(-S) =

Sa+p

n
0
+

s4 {s

-18

4

wl|= n-

8ac

(=

-ISBC

+ p-l [(012

C

CI

Thus while three poles will be finite as g » 0, two will be at zero

independent of the choice of C,

In this example the pair (C, F') is not

observable, but similar examples can be constructed with an observable

pair,

No general characterization of the nature of the pole restriction has been

f ound,

Apparently the only general statement we can make is that for a

gxn matrix C, where q<m, the n-q finite poles cannot be arbitrarily

specified,




For an mxn matrix C it is well known that the zeros of (39) may be selected

arbitrarily by appropriately choosing C. There are a multitude of methods
for selecting C to achieve desired zeros. The difficulty is that the choice of

C is not unique since only n-m parameters are needed to specify the n-m

zeros. This difficulty with nonuniqueness will be removed by considering
the freedom to specify eigenvectors corresponding to these asymptotic
eigenvalues. The characterization will be completed with consideration of

the m eigenvalues that approach infinity and their associated eigenvectors.

We begin the discussion of eigenvectors with the following result established

by Moore [6]:

Lemma 1

The vectors X, and associated distinct complex numbers s; are
closed-loop eigenvectors and eigenvalues, respectively, of the
system (1) with feedback (3) if and only if there exist m-vectors
B such that

=1
(SiI-P) G (45)

n
»

i

(V8 Kx. is= 1, 2, seee, N (46)
1 1

This lemma shows that the eigenvectors achievable with linear
state variable feedback are confined to m-dimensional subspaces
determined by their associated eigenvalues, This eigenvector
adjustment plus arbitrary pole placement is precisely the freedom

offered by linear state variable feedback.

The m-vectors, u;, may be characterized with respect to the return

difference as follows:

14




Lemma 2

The m-vectors w; are identical (except possibly for magnitude)
to the nonzero vectors Vi determined by

T(Si) vi=0.i= 1. 2% saaahl (47)
To show this, note that the p.i's from (45) and (46) satisfy (47), i.e.

T |
T(Si) T K(siI F) "Gy

=0 (48)

Moreover, solutions of (47) are unique except for magnitude as
long as the si's are distinct, For this case, the si's, interpreted
as transmission zeros of T(s), have unit geometric and algebraic
multiplicity and, hence, the rank deficiency of T(s) at s is one,

It then follows that with appropriate normalization

U m g E™ Y, 2 cnes D (49)

For the case in which the rank of CG is m, we may summarize the
asymptotic eigenvalue/eigenvector properties in the form of a theorem.
With the rank of CG being full and hence the rank of the mxn matrix

C being full there is no loss in generality to normalize C to be of the

form
C=WC (50)
o o
where W0 is a nonsingular mxm matrix and
'
Co=1Cy 111 (51)

15




Such a normalization maybe achieved by a state transformation which reorders

the state variables. With this notation we may state the following theorem.

Theorem 1

Let r = Cx with C satisfying the conditions
i) the rank of CG is m
ii) C is in the form described by equations (57) and (51)

iii)  the zeros of 1C(sI-F)—1G] are distinct and have negative

real parts,

Then, the optimally controlled system (1) with respect to the performance
index (31) has:

n-m asymptotically finite eigenvalues

si°, i=1,2, ..., n-m (52)

and m asymptotically infinite eigenvalues
s: P B N SR (53)

where the si0 have negative real parts and if for some i, sio is not real
there is a s, which is the complex conjugate of sio and the sim are real and
negative, The sio's are distinct and have associated eigenvectors

1 o

o _ T
e (si I-F) "G Vi (54)
where the sio and vio are defined by
C(s,°1-F) 16 v% = 0, v ° 4 0 (55)
i i i
16
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The eigenvectors associated with the asymptotically infinite eigenvalues

are
x. =G Vi (56)

where the sim and vim are defined by

R =(N) 1s7?n! (57)
= =1
' = ’
W!W = [(CGN)'] ~ (C_GN) (58)
with
é @® @® @
N 2= lv vy eeev ] (59)
.__A . ) © @
S # diag (Sl Sy eee S ) (60)
This theorem combines known results from the literature £3, ¥l concerning

the asymptotic behavior of eigenvalues with new results for the behavior
of the corresponding eigenvectors, The following proof emphasizes the

new results,
Proof of Theorem:

From Lemma 2, the optimal controller's eigenvalues and eigenvectors
are characterized by (47) which may be premultiplied by T (-si)R yield-
ing
‘(- =
pT’(-8,)R T(s)) v, = 0 (61)
Then from the return difference equation (34), we have

[pR + H’(—si) C’CH(si)Ivi =0 (62)




We are interested in the asymptotic behavior of the pairs (Si, \,i) as p
tends to zero, In [7] it is shown that if the rank of CG is m, then there
will be 2(n-m) such pairs for which the e values remain finite, The 85
values will be symmetric about the imaginary axis. Those in the left
half-plane will be the eigenvalues of the stable closed-loop system.

Taking the limit of (62) as p approaches zero yields
H'(-s,) C'CH(s,)v. = 0 (63)
i il

Condition iii) and the symmetry condition on the 8, values imply that
p—l'(-si)C'l # 0 for s, with negative real parts, Hence from (63) we have

for the stable 8
CHE)v, =0, w40, 1=1, 2, is., 0~m (64)
1 1 i

which establishes equatici (55), and equation (54) follows from LLemma 1.

[5]

It is known that the remaining m closed-loop eigenvalues approach

infinity in m first-order Butterworth patterns, Their corresponding

eigenvectors can be determined by using a power series expansion in s,
‘
of equation (62), i,e.

0= [pR - (s 216" (-F's, " 4 L Cr lCmE 571 v LGy

o{E - g si)'zl(cc) G + o(si"z)]} vy

o(R - (oi)-2 [(CG)'CG + 0(p0i-2)]] Vi (65)

where o " 8 p”« As ptends to zero, o approaches siw and the

asymptotically infinite pairs satisfy

_ - @ ‘2 Vi «© @ .
0= [R (s0> (CG) CG]vi - 70 (66)

18




From this equation and condition i) we can derive:

@®

0 = {[(cG)'] "} r(ca) ! - (si‘”)'zncc; oD kO i1, 2, ., m

(67)

This equation implies that the symmetric matrix [(CG) ']_1 Ft(CG)-1 has
eigenvalues (sim)_2 and orthogonal eigenvectors CG Vi If we normalize

the \): by the condition

lce v'| =1,i=12 ..., m (68)
we have

(CGN)’'CGN = 1 (69)
and

R = (CG)'CGN S 2 (CGN)'CG (70)

where the matrices N and S are defined in (59) and (60)., From condition
ii), equations (69) amd (70) may be rewritten as
7 - 1 -1 '1
Wo Wo [(COGN) ] (COGN)
and
R =(C GY W!W C GNS XC GNYW 'W C G
(o) o 0 o (o) O o0 o
g ' n-1q-2 -1
(c 6 [(COGN) 1 7s (C_ GN) "C G
= (v ts2n7t
establishing equations (58) and (57). Equation (56) which characterizes
the corresponding eigenvectors follows directly from Lemma 1 for s; =
-k
siw o © tending to infinity in magnitude as p tends to zero. This completes

the proof of Theorem 1,

19
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This theorem provides important new insights for the weight selection

process in linear optimal design,

We note first that the asymptotic properties provide a complete character-
ization of the performance index (31) in terms of nm free parameters, The
finite modes are characterized by (n-m) eigenvalues (sio) plus (m-1) (n-m)
parameters for their associated normalized directions (vio). We will

show in Section III that these provide a unique definition of Co via equation

(55),

Similarly, the asymptotically infinite modes are characterized by (m-1)
parameters for the normalized eigenvalues (sim) and {m-1) {(m) for their
associated normalized directions (vim). These provide unique definitions
of Ro and Wo via equations (57) and (58), Together with the scalar g,
these parameters specify the criterion completely, These observations
are summarized in Table 1, Note that the scalar g is the only remaining
"trade-off" parameter in the specification, It indexes the optimal eigen-
value and eigenvector loci implicit in Co' Ro and WO, thus trading off
control energy against the degree to which the asymptotic properties are

achieved,

We note next that the asymptotically finite eigenvalues (s.9) correspond to

(8] !

fransmission zeros of the square response transfer matrix CH(s) and

""state~ and control-zero directions [9]"

that the vectors (xio, vio) are
associated with these transmission zeros. Moreover, for each fixed

finite sio, the eigenvectors achievable with linear optimal design correspond
precisely to those achievable with arbitrary linear state feedback (Lemma

1). The existence of zeros and zero directions in CH(s) are algebraic
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structural properties of the performance index which must be " built into"
the criterion if we wish to achieve desirable dominant modes and mode

distributions in the final closed-loop system.,

As a final observation, we note that Theorem 1 provides for the first time
an explicit way to adjust the behavior of asymptotically inifinite modes,
These modes have particular significance to designers because they
govern the characteristics of control actuation devices., Note that the
eigenvectors of asymptotically infinite modes are in the range space of G,
Hence, if the state model includes actuator dynamics with G nonzero only
for actuator rows, the asymptotically infinite modes are actuator modes.
According to equations (53) and (56) - (60), these modes have bandwidth
ratios and cross couplings specified entirely by computable matrices }{o
and WO. In the past, designers were forced to struggle iteratively to

achieve bandwidth ratios and couplings consistent with hardware constraints.

HIGH-FREQUENCY ATTENUATION CHARACTERISTICS

We will first show that optimal multi-input systems have the property that
the return ratio matrix at the input possesses a first order attenuation
characteristic for large frequencies. Then we show that including a compen-

sator increases the order of attenuation at the actuator.

For the system (1) with control being optimal with respect to (2), i.e.
the control u is determined by (3), (4), and (5), the return ratio matrix at

the input u is:

A (s) = K(s1-F) G (71)




Expanding the right hand side of (71) in a power series in s-1 for |s|

large yields

K FIG (72)

The matrix KG = -R_1

G’'PG is nonsingular since R and G'PG are positive
definite, Thus, we may write (72) as

=1

Au(s) = s " KGI[I+ O(S-l)] (73)

for |s| large. This demonstrates that Au(s) possesses the first order

attenuation characteristic,

Now let us consider the case in which a compensator is included. For this
purpose let us suppose the vector u consists of two subvectors u, and u,
and that the compensator is inserted in the u, path, The block diagram

of such a system is shown in Figure 1, The differential equation

description for the system is

¥ =Fx+G,u +G2u

171 2

He
n

Fx +Gv (74)
ce c

2ch

=
n

The performance index for this system is

Q > o R R., |lu
P el T ’11 12 v lulv'] 1‘1 12 )] 71 1 dt
o c Q X 1 R R
12 22 [+ 12 22
(75)
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The optimal control is

Ble By B} * (76)
v Kor Kool *c
with i
_1 r
B Bzl [®*a S G O 1P11 Ppa .
! (] ’
B Ee BRL R e Re N By
where
. - 1 :
Pjy Piof{ F GoH + F GH Py, Py , QU Qe
’ '} !
[Piz Paa)|® Fe) [© Fof [Piz Faz) (Y2
(78)
P P E G 0ﬁ —R .| Ylar o |lp, P
11 Pz} % 11 Ryo 1 n Piz
= ’ ’ '] ’
Sis Taal GCJ M1 B v B %9 Faa
Note that
-1 -1 -1 <3
s O - | RO, Bl Tl
/ -1, =1 -1 = =1 -1
Ris Rgy Ryy RygR; = Ryy "+ Ry RioRy RigRas
(79)
o " =l ’
where Rl = R11 R12R22 R12' (80)

1SV
1)

{



The matrix Au may be partitioned consistent with the partitioning of u as

(Au)ll (Au)12

Rl =k ey L
K (sl Fc GCK2 G2K2(SI F)

13 *®ys 2

=

-1 -1 -1
H(SI-FC) GC[I+K22(s1«FC-GCK22) GCJKZ(SI-F) [GIGZJ

(81)

Then for large |s|,

s | -1
(Au)ll = s K‘IIGI +0(s )
e ‘1 '1 1 = =1 ’ ' =2
s 'Ry " [G/ PG} “Ri,Ryy  GIPHG T+ 065 7)
(82)
and if R12 = 0,
By m s i Yare 6 leote™) (83)
u'11 11 171171

Thus if R12 = {, (Au)11 has the attenuation characteristic of a system

without compensation, If R12 F 0 the order of attenuation of some of the

elements might be increased because of cancellations occurring in the

first term of equation (82),




-

The remaining terms in Au may be written for large |s| as

| . -2
(Au)12 =s Kllcz +0(s 7) (84)
g | -1 -2
(Au)21 = H(sl lc) GC[s K21G1 + 0(s )1 (85)
. e -1 -2 ’
(.A.u)22 = H(sI FC) Gcls K2202 + 0(s 7] (86)

Equations (85) and (86) show that the compensator's attenuation

characteristic is ""added" to the first order (at least) characteristics of

the u2 subvector,




SECTION III

SYNTHESIS PROCEDURE BASED ON
THE ASYMPTOTIC CHARACTERIZATION

In this section we will describe a procedure for constructing the quadratic
weighting matrices of the performance index from desired spucifications
of closed-loop eigenvalues and eigenvectors., As an illustrative example
the results obtained with this procedure for the lateral axis controller

design for the F-4 will be described,
WEIGHTING MATRIX CONSTRUCTION

A key feature of the asymptotic interpretations above is the structural
requirement that C(SI'F)-IG must possess transmission zeros and zero
directions corresponding to the (sio, vio) pairs, This section provides a
construction procedure to "build" such response transfer matrizes based

on desired closed-loop specifications,

We begin with the assumption that (without loss of generality) the matrix

(; has been transformed to the form

with G, an mxm nonsingular matrix,

&




Further, we assume that for desired closed-loop eigenvalues, sio, the

*
corresponding vectors X, which describe the desired mode distributions
in state space‘r can be specified by the designer, i.e., the desired modes

should look like

* sot
xi(t)=xi ei ;i=1,2, ..., n-m (88)

*
It will generally be true that onlya few of the components in x, are
actually specified, The rest can be arbitrary., To account for this, we

*
reorder and partition x, as follows:

[xi*} Pal-ctee (89)

*
where Y is the specified subvector, v's are the unspecified components,

and {...} ! denotes the reordering operation,

In accordance with Lemma 1 and Theorem 1, the desired mode (89) may

not belong to the set of eigenvectors achievable by optimal linear design:

v . o -1 Ri o L o
i = = T\ B i
{(si I-F) G} v, v (90)

\'4

*
The designer is free to select Vio so as to best approximate Y with yio.

One way to do this is by orthogonal projections,

\)io = (t’L)-l r.'yi* (91)

A known mode distribution in some output space y = Cx with C non-
singular would obviously serve as well,
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although other methods may be more suitable in particular applications.
We will assume here that {vio; i=1, 2, ..., n-m} have been determined
by some procedure and result, via equation (54), in the following eigen-
vectors

b = 4 e i G (92)

) A . 0 :
where care was taken to assure that no linear combination of the xi 's lie

in the range space of G, We then define the projection matrix
Bl X &Xrx) 1 xe (93)
and note that

PGy FOifu £ O (94)

Let us partition the matrix P in the form

P P
sa Pl T 053
!
Pl Py

with P22 being an mxm matrix. Conditions (87) and (94) and the non-
singularity of G2 imply that P22 is nonsingular, Thus, Co may be defined

as

- ' -1 & b
Co [0:P22 » [P22 P12:Im] (96)

To verify that Co has the desired structural property, we note that

> R - I R | - N | o
C(s, I-F) "G v~ = [0/P,, IP (s, "I-F) "G v

! -1 o
[OjP,, 1P x,

=0, i %1, 2 vev, O-In (97)




il
and that for sufficiently large |s|, the rank of G (sI-F) "G is m. Thus, there
is a rank reduction at si° which means si° is a transmission zero, and hence

an asymptotically finite eigenvalue with corresponding eigenvector xio.
ILLUSTRATIVE EXAMPLE
For purposes of illustration we consider the inner loop lateral axis design

problem for the F-4 fighter aircraftat alow dynamic pressure flight condi-

tion taken from reference [10]. The dynamics are

;c = Fx + Gu
with
Py stability axis roll rate
re stability axis yaw rate
B angle of sideslip
x =
) bank angle
ér rudder deflection
ba aileron deflection
- .
o} ] rudder command
. rc
13} aileron command
ac

Matrices I and G are given in Table 2, Note that they include first order
actuator dynamics with 10 and 5 rad/sec bandwidths, These have been

made deliberately slower than the hydraulic actuators available on the ¥ -4




(approximately 20 and 10 rad/sec) in order to illustrate the significance of
the freedom to choose asymptotically infinite eigenvalues and eigenvectors

to achieve desired closed-loop actuator characteristics.

Table 2. T and G Matrices

[ 746 .387 12,9 0. .952
. 024 - 174 4,31 0. -1.76
. 006 -.9994 -.0578 .0369] . 0092
) 1. 0. 0. R
0. 0. 0. 0. -10.
L 0, 0, 0, 0, 0.
[ 0. 0.
0. 0.
0. 0.
) 0. 0.
20, 0.
0. 10.
L i
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From the point of view of fighter handling qualities, all four of the lateral
axis closed loop roots have desired values which can be taken from MIL~

F8785B, as done, for example, in reference [10]. The results are as

follows:
a) Roll subsidence mode -4,0
b) Dutch roll mode -0,63'% § 4,42
c) Spiral mode -0.05

Each of these poles can be assign%qtan asymptotic eigenvector, x(i), which
distributes the modal response, e 1 among the state variables and outputs
of the system. However, each eigenvector is constrained to lie in a two
dimensional subspace defined by Equation (54). An element in this sub-
space was selected by finding the best linear projection of an unconstrained
desired vector, x¥*, on the subspace. The results of the eigenvector
selection are:

a) Roll subsidence mode (e_4tx(1))

(L. 0 0 v| v v]
[1. -.007 0 -.25 13 -.56]

b) Dutch roll mode, real part (e * 63t(cos 2, 42t)x

Desired x*
(1)

Attainable x

(2))

Desired x* = [0 v L, 0 l v v]

Attainable x(z) [o 15,6 1, 0 l 7.86 -,103]

w
aon




(3))

-.63
c¢) Dutch roll mode, imaginary part (e ° 6 t(sin 2. 42t)x

Desired x* = [0 1. v 0] v v]

Attainable x(s) = [0 ; 28 6,16 Oll -9,4914.6]
d) Spiral mode (e * 05tx(4))

Desired x* = [v v 0 1 v v]

Attainable x(4) = [-,05 .037 O i :-.0014 -.0079]

A few comments are in order to explain these choices, Consider, for
example, the roll subsidence mode, The desired eigenvector is taken to
bex* =(1 0 0 v <+ v) which means that the mode should show up
dominantly on roll rate, but not on yaw rate or sideslip (we want no side-
slip buildup during turn entries), These are basically handling quality
considerations, The v's in the vector indicate that we do not care how
much of the mode shows up on these components, Certainly, since

¢ = [p_dt, some mode content has to be expected on x , and similarly, if
JFg

4
the surfaces are actually controlling the mode, some mode content should

also appear in x_ and x,, The linear projection which best achieves

o 6 (1)

these objectives is shown as x above., Note that we can satisfy our

desires almost perfectly,

Similar arguments also apply to the dutch roll mode, In this case we
want no oscillatory dutch roll content on roll rate and bank angle, This is

a key handling quality requirement for all well-behaved lateral control

laws [10],




In the case of the spiral we want the mode to show up dominantly on bank

angle (corresponding to steady turns) with, again, no substantial sideslip

component, The latter is a basic turn coordination requirement,
Once the eigenvectors are specified, it remains only to compute the matrix

C0 via Equation (96) and then to select eigenvectors and eigenvalue ratios

for the asymptotically infinite roots. The matrix Co is shown in Table 3.

Table 3. Co Matrix

[ 131 . 567
-.612 .160
1.64 -2.39
c’=
o L0175 . 0303
5 0.
L . 1 A

For decoupled actuators the matrix N defined in (59) and matrix S of eq. (60)

were chosen to be

"

o O
wn
o
=
o O

N

o,

to achieve a two-to-one bandwidth ratio, Then from (57) and (58),

R = and W w = 1

w
9]

s e

Maaahia it




These selections complete the specification of the performance index
except for the scalar parameter, 5. Optimal controllers were computed

for several values of this parameter,

Representative results are shown in Table 4 and Figure 2, The eigen-
values and eigenvector characteristics indeed approach their predicted
asymptotic values, as can be seen in Table 4, Reasonable actuator

bandwidths are obtained with o = 0.0025.

The controller gains shown in Table 4 indicate that the actuators at this
design value are essentially uncoupled (very small cross-feeds from one
to the other) and have just enough feedback around themselves to

produce the bandwidths available with the aircraft's existing hydraulics.

Transient response characteristics achieved for a range of p-values are
shown in Figure 2, Although only roll rate and sideslip responses are
given for simplicity, dramatic improvement in cross coupling between
roll motion and dutch roll is clearly evident, Roll transients approach
their intended first order 0, 25 second response time, and sideslip
responses approach their intended slightly oscillatory second-order
characteristics, Cross coupling vanishes as the eigenvectors approach

their intended asymptotic directions,

This example illustrates that it is possible to satisfy complex handling
quality specifications and actuator bandwidth characteristics with
standard quadratic performance indices if the structure of the criterion

is based on asymptotic characteristics,
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1.

APPENDIX A

ZEROS OF MULTIVARIABLE SYSTEMS

{ This Appendix gives a summary of the important concepts and an outline
of the literature on transmission zeros of multivariable systems, While
many intuitive notions about zeros for scalar systems are retained, the
multivariable case is not a trivial extension of the scalar, Examples are

given to illustrate important ideas,

SUMMARY OF IMPORTANT CONCEPTS

Given the system:

Fx + Gu

n

.
X

"

y = Cx + Du

(xe R®, ue Rm,ye rP)

the transmission zeros may be defined to be the set of complex

numbers A which satisfy the following inequality:

B =Nl G
rank < n + min (m, p)
C D d
Transmission zeros are invariant with respect to coordinate trans-

formation, state feedback, and nonsingular input and output trans-

formation,




Transmission zercs may include the entire complex plane. The

remaining points will assume this is not the case,
Almost all nonsquare systems (m # p) have no zeros.

For square systems (m=p) the definition in [8] is equivalent to

defining transmission zeros as zeros of:

F -l G
det
C D

= det(F - \I) det[C GI-F) ' G + D]

For square systems, the number of zeros is at most n-m-d where d is

the rank deficiency of CG,
Transmission zeros are not the same as the zeros of the numerators
of the various transfer functions relating inputs to outputs, The latter

are not invariant with respect to feedback,

For high-gain feedback systems where u = ky the system poles migrate

to the transmission zeros or infinity as k approaches infinity,

A zero at A corresponds to the system blocking the transmission of

certain input signals proportional to e)‘t.
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OUTLINE OF LITERATURE ON TRANSMISSION ZEROS

There has been considerable interest recently in transmission zeros of
multivariable systems, Rosenbrock [8] apparently was the first to offer
a definition, Most of the literature offers little insight and many of the
results are incorrect, We will present the most significant results here
and try to clarify some of the issues, The interested reader may consult
the literature for details, and we will point out the most obvious errors

therein,

Much of the difficulty arises because the transmission zeros of a system
are, in general, quite different from the zeros of the various scalar
transfer functions relating inputs and outputs, as in the single-input

single -output controllable-observable case,

Rosenbrock [8) defines zeros of a transfer function matrix in terms of

the numerator of the diagonal elements of its McMillan standard form, If
y{s) = G(s) u(s), (y is length p, u is length m, and G is pxm), then

G(s) = N(s)/d(s) where d(s) is the monic least common denominator of the
elements of G, Then N(s) can be brought to Smith form by the transforma-
tion L(s) N(s) R(s) = S(s) where LL and R are unimodular polynomial
matrices, Cancelling any common factors between S(s) and d(s) yields

the McMillan form of G which we denote by M(s) as follows:

M(S) = [diag(e i(s)/tl/i(S))E 0p,m_pl, m >p (A1)
or M(s) = diag(e i(s)/ylli(s)), m = p (A.2
diag(e i(S)/lPi(S))
or M(S) = 5 <D (A, 3)
0p-m,m
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The poles of G are the zeros of the denominator polynomials x//i(s) in M(s)

and the zeros of G are the zeros of the ¢ i(s).

The following illustrative example was given in [8].

fain ] ]
P 1)2 (s + 1)(s + 2)
G(s) =
1 s+ 3
i (s + 1)(s + 2) (S+2)2 .
d(s) = (s + 12 (s + 2)2
92
(s + 2)° (s + 1)(s + 2)
N(s) =
(s + 1)(s+2) (s+ l)z(s + 3)
1 0
S(s) =
0 (s + 1)2(s + 2)3
1
r - 0
(s + l)z(s + 2)2
M(s) =
0 s+ 2

Notice that although G is proper, M is not,

and there is not a zero at =3,

43

Also, G has one zero at -2,




Kwakernaak and Sivan [7] define the zeros of the system*

for m

% = Fx + Gu
y = Cx + Du
(x e Rn,u eRm,y € Rp)

p and D = 0 as the zeros of the polynomial det (Is-F)x

det(Clis-F) 1G). If H(s) = C(sI-F) G then:

Now:

= YUs) - ;
det[H(s)] d(s) * d(s) = det(sI-F)
lim s"Ws) . lim m ol
ls| == al&)  |s| o= ° det[C(Is-F) "G]
= Hlir_f‘m det[Cs(sI-F) 'G]
= det(CG)

(A.4)

(A. 5)

(A.6)

This shows that the degree of d(s) is greater than Y{s) by at least m, hence
Ys) has degree n-m (when det(CG) # 0) or less.

Wolovich [11] attempts to present a somewhat more general state-space

approach to multivariable system zeros by essentially defining a zero as a

value of s for which the matrix

#*Controllability and observability will be assumed throughout unless

otherwise stated,
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(A.7)

loses rank, The normal rank of a matrix is usually taken to be the
maximum rank over s and a zero can be thought of as a value of s for which
the rank is less than the normal rank, Wolovich incorrectly states that if
the rank of G and the rank of C are both greater than or equal to
r = min(m, p), then the normal rank of (A, 7) is ntr, For the case p = m
and D = 0, Wolovich's definition is equivalent to that given in [7] because
F-sl G 1
det = det(F-sI) det[C(sI-F) "G] (2,8)
C 0
However, it is possible, as the following example demonstrates, for
observable-controllable systems with C and G each of full rank to have the

matrix in (A, 7) be of rank less than n+r,

Example: Consider the controllable, observable linear system with n = 3,

m=p =2
x = Fx + Gu
y = Cx
where
0 1 0 0 0 1 0 0
F=10 0 1 G=|1 0 C=010
g o 1 0 1
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For this system, we have

F-sI G
det =0
€ 0

so the rank of (A, 7) is less than 3 + 2 = n + min(m, p)

Kouvaritakas and MacFarlane [12, 13] use a geometric approach to describe
multivariable zeros. For square systems (p = m) they define the system
zeros to be the zeros of

sI-F G

det (A.9)
(& 0

and almost correctly point out that the number of zeros are n-m-d where d
is the rank deficiency of CG., As we shall see, the determinant may be
zero for all s rendering the definition somewhat useless in general, but the

approach is interesting and can provide worthwhile insights,

Davison and Wang [14] and Desoer and Schulman [15] have provided some

apparently correct and definitely useful insights,

Davison and Wang, like Wolovich, define the transmission zeros of (A, 4)
to be the set of complex numbers A which satisfy the following inequality
F-\1 G

rank < n + min(m, p), (A.10)
C D
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They point out that a controllable observable system with G and C full rank
may have zeros everywhere in the complex plane, They call these systems
degenerate and assume that all their systems are nondegenerate, The
above definition is shown to coincide with those of Kwakernaak and Sivan

and Rosenbrock,

It is also noted that

E- I G
rank
C D
T(F + GK - \DT | TGV
= rank -5 (A, 11)
U(C + DK)T UDV
for any nonsingular T e Rnxn’ nonsingular V ¢ Rmxm’ nonsingular U ¢ rP*P
and K ¢ Rmxn’ and hence that the transmission zeros {1} are invariant

with respect to coordinate transformation, state feedback and nonsingular

input and output transformations,

Davison and Wang also prove that the class of square systems having less
than n-m zeros must lie on a hypersurface in the parameter space for those
systems, Thus, they conclude that for almost all square systems, there

are n-m zeros,

Davison and Wang have many other control-related results on zeros, and

claim to have as well some efficient algorithms for calculating zeros,
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Desoer and Schulman [15] give a very interesting account of zeros using

purely algebraic techniques, The rational matrix transfer function H(")

is viewed as a network function of a multiport and H(s) (noxni) is factored

into DL(S)-IN{I(S) = Nr(s) Dr(s)-l. A zero of H(") is defined to be a point

z where the local rank of N&(z) drops below the normal rank, The intuitive

concept that a zero of a multiport corresponds to the system blocking the
e s . zt . - :

transmission of signals proportional to e is developed rigorously via

several theorems,

MacFarlane and Karcanias [16] have written a rather complete survey of
poles and zeros of multivariable systems, They treat zeros from the
algebraic, geometric and complex-variable points of view and give several
apparently new and worthwhile intuitive approaches, Furthermore, there
are no glaring errors in the paper, This is definiiely good (though lengthy)

reading on the subject,




9.
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