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1.0 SUMMARY

A one-aixth scale model pragram was conducted concurrently with the full- scale demonstrator program (Reference
1 Final Report) This mocel *2sing was directed t1oward developing and evalualing Coanda noise suppressor
configur~tions and their ability to suppress engine noise while the engine s installed 1in an aiframe. The initial
studies consisted of three mode! tests bul were subsequently expanded to inciude two add.ional test
configurations

To adapt the Coanda syslem to in-airframe usage considerations must be given to:
. Initial aircraft tapipe vertical and honizontal nusalkgnment relative to the suppressor inlet
. Fore and aft posiioning of engine exhaust relative 10 the suppressor inlet

. Adaptation to twin-engine aircraftisuch as the F-4 and F- 14 and any adverse eftects on attachment and
cooling of the turning of twin fiows

[ Accommodation of coannular airflows (such as TF30-P-408 and TF4 1engines) and size extrapolation of
current suppressors to accommodate coannular airflows simulating the scaled engine airflow range of
47010600 Ibs .sec (Itshould be notedthatthe current full-scale Coanda noise suppressor configuration
was designed to handle airfiows to 300 Ibs sec)

Modei te sting was accomplished in the Boeing-Wichita Acoustic Arena facility descrnbed laterin Section 2.0. The
same program rationale was maintained that was utlized for the previous (Reterences 2 and 3) scale-mode!
programs. thats. the tests were prmanly aerothermodynamic with imited acoustic evaluation. Each of the five
model tests in this program are summarnzed in the following paragraphs

Single Engine Tailpipe Misalignment Tes|

The trst model test in this senes evaluated the effects of arplane taipipe movement and initial misalignment on
Coanda flow attachment and system cooling Theinletto the tirst gjector was sized large enough to capture the fiow
fromthe engine exhaust with a misalignment of engine centeriine to ejector centerline of six inches (full scale) in any
direcion To accommodate the misalignment, it was necessary 10 increase the ejector area ralios (epctor exit
area pnimary nozzle area) and the last ejector aspect ratio (exit width exitheight) as comparedto previous models.
A schematic of the mode! setup i1s shown on Figure 5:n Paragraph 3 2. Tests were run with the nozzle displaced
oneinch (model scale) in the honizontal and vertical directions with and without the adapter sectior installed. Metal
surface temperatures. internal static pressures. and flow attachment data (cbtained from the Coanda exit pressure
and temperature rake) were recorded plus ambient conditions and exhaust nozzle flow parameters

REFERENCES

1. Test Cell Expernnental Frogram - Coanda Refraction Noise Suppression Concept - Advanced
Development,” Finai Technical Report for Navy Contract N00O156-74-C-1710, Navy Document Number
NAEC-GSED-97. The Boeing Company. Wichita. Kansas. March 1976

2. Ballard. R E .Brees. D W .and Sawdy. D T . Feasibiity and imiuial Model Studies of a Coanda Refraction
Type Noise Suppressor System. Tne Boeing Company. Wichita Kansas, D3-9068. January 1973.

[

Ballard. R E . and Armstronn. D. L . “Conhiguration Scale Mocdel Studies of a Coanda‘Refraction Type Noise
Suppressor System. The Boeing Company. Wichia Kansas. D3-9258. October 1973
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The results of the single-engine misalignment test indicate that the Coanda suppressor system may be adapted to
in-airframe ground runups and account lor iniia! arrcraft misalignment and tailpipe movement relative to the
suppressor inlet. The transition ejector set used was not optimal. However, the data and subseguent analysis
indicate that mcreasing the tfirst ejector inlet area to capture the misaligned tlow need not create any cooling
problems. Misalignments that could reasonably be expected in service can be tolerated in all directions without
serniously affecting flow attachment

Coannular Flow Test

A second modeltest was run to determine the effects on Coanda flow attachment of the coannular flow produced by
fan engines such as the TF41 and TF30-P-408 (nonafterburning) These tests evaluated the effects on jet
deflection of exhaust flow with a nigh veiocity annulus of cooier gas surrounding the hot exhaust primary core. A
bypass rato of approximately 1.0 was used These scale-modi! tests provided data and operational trends that
may be extrapolated to full-scale operation of long duct, coannular flow, turbofan engines, and to engines with
aitlows higher than 300 Ibs.sec

Figure 28 in Paragraph 4 2.1s a schematic of the coannular flow test setup A dual flow system with the center fiow
heated to the TF30-P-408 pnmary conditions was provided Ewxisting model hardware from previous tests.
Reference 3. was used for the ejector set and Coanda surface. (These model components were the ones used to
define the demonstration full-scale test articie.) The test included misaignment configurations similar to those
accomplished in the preceding pure turbojet flow simulation test. Similar data were recorded with the exception
that. in this test, two sets of exhaust nozzie tlow parameters were required: the pnimary jet and the cooler annulus of
tan awflow

The results of the coannular flow model test indicate no adverse effects on flow attachment at any power level due
1o the cooler fan air surrounding the primary flow. and with the presence of the fan air there are no system cooling
problems These tests provide assurance of the feasibility of turning the low bypass ratio flows of engines like the
TF41 and TF30-P-408; however. feasibility with higher bypass ratio turbotfan jets such as the TF34 (6 to 1 bypass
ratio) were not evaluated.

Inital Twin-Engine Test

The third modet test was the initial step in developing & Coanda flow turning system for twin-engine aircraft with
closely spaced engines. The object of the test was to observe: (1) the effects of concurrent jet deflection of two
distinct power jet sheets in the same dellection chamber. (2) any adverse boundary conditions between two distinct
energy levels of dynamic gases which might prevent deflection, and (3) to determine if a divider wall 1s required
between the two flows

Figure 36 1n Paragraph 5.2 1s a schemat:c of the initial twin-engine rnodel test setup. A new model was fabricated for
this test consisting of three ejectors with removable internal sphtters and a "double wide” Coanda deflection
surface with a removabl2 splitter Facility changes were required 1o provide the second nozzle flow with an exit
centerline simulating the distance between awrcraft (F-4, F-111, and F-15) engines. Only one side of the twin system
was instrumented {or metal surface temperatures, interna! static pressures. and flow attachment data (Coanda exit
pressura and temperature rake). The other side was run at 1dle conditions and system symmetry assumed for the
case of interchanged power setlings (It should be noted that current airplane ground test limitations restrict the
second engine o dle power while the first engine 1s at any power up to afterburning.) Ambient conditions and the
two exhaust nozzle flow parameters were also recorded Test conditions were run with nozzle to ejector inlel
rusahgnments (ot'sets) in the vertical and honzontal drection for contfigurations with and without the ejector
sphitters. and with and with.out the Coanda surface sphtter.

The resuits of the initial twin-engine test indicate the feasibiily of turning the two engine flows using the Coanda
concep! The results also show that the Coanda surface sphtier 1s necessary but that ejector sphtters are of no
particular benefit for flow turming. This test contiguration pointed out the need o revise the ejector configuration to

i
L
]
1
§
g
]
k|

s il e ke e b e it i S, | L i st it

3
3
j
El
3




NAEC-GSED-98
Page 3

permit secondary (cooling) ar entrainment to the area between the two engine tlows This was subsequently
accomphshed and was iested durning the fifth senes of model tests.

Single-Engine Tailpipe:Suppressor Translation Tes!

The purpose of the teurth test series was 1o determine the effect. on fiow attachrnent and system cooling, of varying
the distance belween the engine exhaust nozzle and suppressor nlet Engine installations such as on the F-4
asrcraft where the engine exhaust s relatively far forward of the aft stabilizer necessitated this study. Additionally, In
the case of an engine test celi installaton, the distance from the engine tailpipe 10 the ejector inlet varies because
the location of the engine thrust trailer in the cellis t:ixed and the various engines differ in length and in their fore and
aft positioning on the thrust trailer

The same test hardware usedn the tirst (misangnment) test was used for this translation test even though the first
test results indicated that ejector set to be inefiicient for cooling. This was done to eliminate the cost of building a
new model since relalive cooling performance could be determined. A schematic of the translation test setup 1S
shown on Figure 56 in Paragraph 6.2.

The results of the translation test indicate no problem with fiow attachment or cooling due to increasing the
translation distance between the nozzle exit and the suppressor {(i.e.. ejector) inlet. On the contrary, the flow
attachment seems to be improved with greater translation distances, probably because the mixing which occurs
prior o entering the suppressor provides a more uniform flow at (he ejectortransition exit. With increased
translation distance. the ejector inlet size has to be increased because of the expansion of the exhaust flow. If,
however, the translation distance 1s too great. the exhaus! entrains more secondary air (pnor to the gjector inlet)
than the ejector 1s capable of pumping, and results in back flow unless the ejector area i1s increased.

Twin-Engine Misalignment Test

The hth and last model test senes was a misalignment test of a twin-engine model that was difterent from the initial
twin-engine suppressor model of the third test series. The ditference was primarily in the transition ejectors. This
ejector set was designed to allow more secondary entrainment between the two engine fiows than in the previous
model used in the nitial twin-engine test. This model was also designed with a dual five-ejecior transition section.
The trst two gjectors were cylindnical and could be removed. The five ejectors were used to study the feasibiiity of
extending the transition section outin front of the suppressor to capture the flow from aircraft, such as the F-4, which
have the engine exhaust forward of the airplane empennage. The purpose of the test was to evaluate the effects of
concurrent jet deflection of two distinct jet flows, as well as to determine any adverse effects on tlow attachment and
system cooling of angular and offset misalignments to the exhaust nozzle.

Figure B4 in Paragraph 7.2 1s a schematic of the test setup. The transition consisted of a double set of five ejectors.
The ejectors exit onto a “double width™ Coanda surface with a removabie center splitter. One side of the twin
system was instrumented for metal surface temperatures, internal static pressures, and flow attachment data
(Coanda exitpressure andtemperature rake) The other side was operated al idle conditions and system symmetry
was assumed. Ambient conditions and the two exhaus! nozzle flow parameters were aiso recorded. The test was
conducted with one engine at afterburning. full military. and idle while the other was at 1dle power setting. Test
condittons were run with five, four and three ejectors on each side. Nozzle to ejector iniet offset and vertical angular
misakignments were tested with the three ejector dual transition

The results of the twin-engine misalignment test indicate that no severe problems would be encountered in
adapting the Coanda suppressor system to a twin-engine arrcratt This model demonstrated that, with a carefully
developed ejeclor transition section, the high Coanda sphtter and surface temperatures measured during the initial
twin-engine test (discussed previously in this summary) can be reduced to within the desired 10007 goal. The model
test also demonstrated thal offset and angular misalignments encour: 2red by poor imitial aircraft positioning and
arrcraft taiipipe motion dunng engine runup do not appreciably affect suppressor operation.
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2.0 INTRODUCTION

The objective of the one-sixth scale model test program was to perform preliminary investigations adapting the
Coanda refraction exhaust noise suppressor concept lo engines in-airframe ground runup applications.Some of
the aspects which must be considered for in-aiframe applications include allowance for motion of the aircrah
engine tailpipe duning operation, fore and aft posiioning relative to the suppressor inlet. adaptation to twin engine
arrcraft (such as the F-4 ang F-14) and size extrapolation of current suppressors to accommodate coannular
arlows simulating the scaled engine airflow range of 470 to 600 Ibs:sec. The current full scale configuration
{described in Relerence 1) 1s designed to handle aiflows to 300 Ibs sec. An outline of the method of investigating
these aspects by scale modeltesting s given below The same program rationale was maintained that was utiized
for the previous scale model programs. References 2 and 3. that i1s. the tests were orimarnly aerothermodynamic in
nature. with hmited acoustic evaluations These tests were run independently, but concurrently with the full scale
testprogram These model tests. as well as the full scale test. were funded by the Reference 4 Navy contract. The
niial stucies consisted of thiee model tests but were subsequently expanded o include two additional test
cenfigurations

Thes model tests were designated as Task V of the Reference 5 Program Plan Document and were accomplished
during (he penod of October. 1974 through December. 1975 A schematic of the flow transitioning and flow
deflecting components of the Coanda.refraction noise suppressor system s shown on Figure 1.

The first configuration that was tested evaluated the efiects on Coanda flow attachment and ejector and Coanda
cookng of vertical and honzontal offset (misaignmenis) between the exhaust nozzle and suppressor inlet
centerines. These olsels were to simulate initial misalignment of the arrcraft tailpipe and suppressor inlet as well
as any engine tailpipe movement duning runup. These effects were evaluated with and without the adapter plate
between the nozzle and ejector inlet. The set of ransition ejectars were revised from previous configurations
{reported in References 2 and 3) to enlarge the first ejector inlet enough to capture the flow when misaligned.
Offsets of one-inch (mode! scale) were tested which 1s equivalent to six inches full scale

A second model test senies was run 1o determine the effects on Coanda flow attachment of the coannular flow
producedinfan engines such as the TF41 and TF30-P-408 (nonafterburning). These tests evaluated the effects on
jetdeflection of exhaust flow with a igh velocity annulus of cooler air surrounding the hot exhaust primary core flow.
Since previcus tes! conditions simulated only pure turbojet engines. these tests were to provide data and
operational frends that may be extrapolated to full scale operation of long duct turbofan engines. The method used
was lo provide a dual flow system witn a hot inner core. sized to one-sixth scale of a TF41 or TF30-P-408 engine.
Exising model hardware from previous testing was used. The results cf these tests were used to determine a
method of extrapolating the current suppressor size to thal necessary to accommodate engine airflows up to 600
Ibs-sec. (it should be noted that the curreni fuli scale Coanda noise suppressor configuration was designed to
handle aifflows to 300 1bs sec.)

The third seres of model tests was conducted as the initial step in developing a Coanda noise suppressor system
for twin-engine arrcraft ground runup application. The object of those tests was 10 determine: (1) the effacts of
concurrent jet deflection of two et sheels. of distinctly ditfering power, 1n the same dellection chamber: (2) any
adverse boundary conditions between two distinct energy levels of dynamic gases which might prevent deflection;

REFERENCES

4 Contract NO0156-74-C-1710. “Coanda Retraction Noise Suppressor System.” Naval Air Engineering Center
and The Boeing Company. July 1974

5. Ballard. R E  and Burton. L L. Navy Coanda Refraction Ground Nosse Suppressor Program Plan.” The
Boeing Company, Wichita. Kansas D3-9574-1. Augus! 1975
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and (3)to determine If a divider wall1s required between ihe two chambers. These tests required a new model with
“double width " ejectors and Coanda surface each with removable center splitters. Test simulation was conducted
alternately with one engine at afterburning and the other atidle: with one engine at full military and the other atidle;
and with both engines atidle power settings The tests were repeated with and without a center surface boundary
{splitter) instalied in the ejectors and Coanda surface. The resulls of this test were used to influence the model
conhguration for the twin-engine misahgnment test (fifth test senes)

The purpose of the fourth model test series was to determine the etfect on flow attachment as the distance varies
between the engine exhaust and suppressor inlet. Engines installedin aircraft with the exhaust plane forwarg of the
stabilizers (such as the F-4 aircraft) made 1t necessary 1o study the eftects of transiation of the engine exhaust from
the suppressor inlet. Existing model hardware from the single engine misalignmenttest (first test seriws) was used.
The distance from exhausl nozzie 1o suppressor inlet was increased up to the point at which the inlet size would not
capture the expanding flow. The effects of offset misalignments at the increased translation distances were also
evaluated

The fitth and last model test series of this development contracl was a misalignment test of a twin-engine model
contiguration A different mode! configuration than that used tor the third test senies was fabricated vath the
capability of offset and angular {in the vertical plane) misalignments to the exhaust nozzle. The purpose of this test
was to study a different model configuration {than in the initial twin-engine test) for any adverse effects of concurrent
jet defiection of two distinct jet flows, as well as to determine if olfset and angular rmisalignments create any adverse
etfects on flow attachment and system cooling The model consisted of a double set of five transition gjectors which
exited into a double width Coanda surface with a removable center splitter The first two ejectors were removable to
allow testing with three, four, and five ejectors. The test was conducted by alternately simulating one engine at

afterburing and the other atidle; one engine at full military and the other at idie: and both engines at idle power
settings.

The model testing was accomplished in the Boeing-Wichita Acoustic Arena facility shown on Figure 2. The Arena
wall s 16 feet high. inclined at an angle of 30 degrees o the vertical and 1s 100 feet in diameter at the base. The
burner (hot gas generator) 1s a two stage configuration. The first stage 15 a J47 jet engine burner can and spray
nozzles. capable of reaching gas temperatures of 1500 F at the 15-pound per second maximum airflow rate. The
second. or afterburning stage consists of a central fuel spray nozzle and eight radial spray bars and a flame holder.
This stage 1s water jacketed and can boost the jet exhaust temperature 1o 3000°F. The pnimary airflow source has a
300 psia Iine pressure. A secondary airflow source 1s available with a 60 psia ine pressure with a maximum flow
rate of 40 pounds per second of cold air to simulate fan flows All necessary revisions to the facility for the tests
outhined above are subsequently described in the following sections in which that particular test is discussed.

A pictoriail block diagram of the Acoustic Arena data acquisition system i1s shown on Figure 3. The burner and
airflow controls are housed In a small building next to the Arena with a window tor visual observation ot the model.
The control instrumentation 1s shown in the upper rnght of Figure 3 The data acquisitton instrumentatien, computer,
and printer are housed at a remote site and are shown at the lower center of Figure 3.

The Arena data acquisition system s built around the Vanan 620:L Mimi-Computer, which is a general purpose
digital computer. The central processing unit of the computer has a 12K memory system. The input'output system
provides the interface between the computer electronic system and the electromechanical devices that input data
to the computer or oulput the computed results The Beehive CRT (cathode ray tube) terminal enabies control of
the computer. and. the printer lists the data. The Tri-Data model 4036 provides program joading or storage of data
on magnelic tape. The multiplexer allows each channel 1o be sampled sequéntiaily or randomly, as required. The
A D converter converts the analog signal to a digital voltage level. A pressure scanner valve allows all the total
pressures 10 be measured by the same - 15 psid transducer. Ambient pressure was measured by a 15 psia

transducer A second pressure scanner vaive and a + 5 psid transducer were used to measure stalic prassures.
Statham pressure transducers were used
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Temperature measurements were taken through four temperature scanners. Thermocouples were
Iron-Constantan and Cromel-Alumel Pace. and Research Incorporated reference junctions were used.

For both temperatures and pressures. signal processing was accomplished by use of a B & F Instruments, Inc.
signal conditioner and a Dynamics amphfier The conditioned signal was connected to a monitor panel which
permitted manual monitoring capability as well as calibration moniornng

The fuel flow was measured by a 1 gpm turbine type tlow transducer in the primary fuel ine and a 5 gpm turbine type
flow transgducer in the afterburner fuel ine. The signal was conditioned by a Cox signal conditioner and the signal
sent to the monitor parel The flow rates were also displayed on digital voltmeters in the test control room. The
moritor panel inpuls were paralleled to the multiplexer input nanel where further monitoring was possible The
signats then went into the muluplexer for processing

Although no acousiic data were recorded during the testing descrnbed in this document a discussion of the acoustic
data acquisttion sysytem is provided lor reference information. The accustic instrumentaiton system begins with
the Bruel & Kjaer Models 4135 and 4136 microphone buttons These are coupled to General Radio Model 560-P42
preamphfiers A microphone scanner selects the proper channel for input to the autogain amplifier for signal
processing The General Radio Modei 1925 Real Time Analyzer integrates the signal and the computer interfaces
the signal to the computer input

Two computer programs were used for data acquisiion One program was used tor performance data and the other
for acoustic data. when recorded

The acoustics program allows manual selection of the microphcne data to be recorded. When the data from each
microphone are analyzed. the compulter signals the microphone scanner to advance one position. Data are taken
sequentially The analyzed acoustic data are printed in tabular form and plots of SPL versus frequency in one-third
octave bands Computations of OASPL and PNL converted to tull scale equivalent distances are also provided.

The performance program provided automatic data acquisition. Once the program was started. ail parameters
were sampled and the scanners automatically controlled by the computer. The raw performance data in the form of
digital voltages were converted to engineenng units and calculation performed in the CPU. The data were then
listed in tabulated form
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3.0 SINGLE ENGINE TAILPIPE MISALIGNMENT TEST

3.1 Objectives

One problem that anses from the use of ground runup Noise suppressors on in-airframe applications that is not
present for test cell suppressor application 1s the ailgnment of the engine exhaust and the suppressor inlet. In test
cell noise suppressors. the engine 1s ngidly constrained on a test trailler or stand which positions the exhaust
centeriing on the exhaust suppressor centerine. With the engine in-airframe, however, the aircraft i1s usually
constrained by the wheels and:or tail hook which allow sume tailpipe movement due to changes in engine power
settings Another possibility for sizable alignment vanation is the initial positioning of the aircraft relative to the
supprassor. Stnngent inihial arrcraft ahgnment requirements create ime consuming problems for the suppressor
operalors and are therefore undesirable

The singie engine tailpipe misalignment test was the initial step in ascertaining acceptable alignment critena for
in-airframe applications of the Coanda ground runup noise suppressor. The objective of the test was to evaluate the
effects on Coanda flow attachment and ejector and Coanda cooling of vertical and horizontal oftset misalignments
between the exhaust nozzle and suppressor nlet centerhines. The inlet to the first ejector was sized large enough to
capture the flow from the engine exhaust with a misalignment of engine to suppressor centerlines of six inches (full
scale} in any direction The six-inch dimension was supphed as a maximum requirement by the Navy Technical
Manager for this program.

A secondary objective of this test was to determing the effectthe adapter plate in front of the ejectors (see Figure 1)
has on the flow attachment and cooling with misahgnments. The purpose of the adapter plate was to inhibit flow
entrainment next to the exhaust nozzle. thus assurnng No pressure “'suck down " at the nozzle as well as providing
an acoustic barrier for noise emitting from the ejector inlet The fact that this adapter has an opening that closely fits
the exhaust flow diameter creates a problem forin-airframe application. Allowar.ce for tailpipe movement and initial
arrcraft misalignment would require that the adapter float with the awrcraft tailpipe The complexity of such an
adapter makes it desirability questionable. Previous Boeing-Wichita 1R&D testing has indicated that the nozzie
static pressure depression due to the presence of the ejector inlet decreases rapidly at a short distance between
engine exhaust and suppressor inlet. Theretore, it the adapter does not prove to be of appreciable acoustic or
aerothermodynamic benetit, it may be deleted. Acoustic measurements were planned during this test to determine
the acoustic benelit, if any, of the adapter. It became apparent, however, that it would be difficult to isolate the inlet
emitted noise from the exhaust noise without enclosing the Coanda and ejectors. Theretore, it was decided to
determing the inlet adapter acoustc effectivity during the full scale tests repornted in Heference 1.

3.2 Mode! Description and Test Apparatus

The one-sixth scale model used in this test was designed with the inlet of the first ejector large enough to capture the
flow from the engine exhaust with a misalignment of the engine and ejector centerine of one inch (six inches full
scate)in any direction. To accommodate the misalignment, it was necessary to increase the ejector area ratios and
the last ejector aspect ratio (exit width.exit heightj as compared 10 previous models. Each of the three ejectors was
convergent (n area progression (inlet area larger than exit area). The Coarda surface had the same curvature
developed by previous model tests for the full scale demonstration, however, it was a litlle wider due to the larger
aspectratio of the third gjector exit. Dimensional drawings of the ejectors, adapter. and Coanda surface are shown
on Figure 4. The first ejector has an inlet area of 63 .6 N2 and an exii area of 49.5 in2 which results in an exit area
ratio {ejector exitarea pnmary nozzle area) of 1. 65, based on the afterburning nozzle area. The second ejector has
aninlet area of 54 7 1n2. an exit area of 52.5 N2 which 1s an exit area ratio of 1.75 The third ejector has an inlet area
ot 57.6 In2, an exit area of 55.5 N2, and exit area ratio of 1 85 The primary nozzles used (not shown) are 4.31
inches and 6 18 inches in diameter (14 60 N2 and 30.00 in2 area) for military rated thrust and afterburning,
respeclively. These nozzles simulate the exit area of a TF30-P-12A engine at military rated thrust and afterburning.

A schematic of the model setup wilh adapter i1s shown on Figure 5 Static pressures are provided at the nozzle lipto

| Treceding 23}73 Zsavh -
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measure the pressure changes that may atfect engine operating condiions. Stauc pressure pons are provided on
the internal wall of the ejectors to determine the ejec.ar pumping charactenstics and along the Coanda surface
centerline 1o measure the exten! of the pressure gradient that produces the flow turming. Thermocouples are
provided on the ejectors and Coanda surface 1o measure the metal surface temperatures so that the etfects of
conhiguration changes on system coolng may be determined. A total pressure and total temperature rake is
provided at the Coanda surface exitlo obtain exit flow condiions (Mach number. veloCity, efc ) and to determine the

' extent of flow attachrnent

Figure 615 a photograph of the model setup in the Acoustic Arena Test Facility and Figure 715 a close-up of the new
large inlet gjector and exhaust nozzle The exising Coanea support rame trom previous model tests (Reference 2)
was used The ejectors are positioned such that the exit plane of one coincides with the inlet plane of the next. The
exhaust nozzle 10 gjeclor inlet spacing was 2.0 inches withou! the adapter and 1 59 inches with the adapter

(adapter was half way between nozzie and ejector inlet)

33 TestPlan
Table 1 presents the lest configurations thatwere run for evaluating single engine tailpipe misalignment. Also histed
are the data that were recorded for each configuration The tocation of the pressure and temperature

H
instrumentation on the model s shcwn on Figure 5 The conliguration numbers are histed on ali dala shown later in
this repart as an aiwd i dentiication. 1t should be noted in the column of Table 1 that descnbes the misahgnment
direction that the model is moved rather than the exhaust nozzle This was necessary because of the stationary

el

attachment of the burner and nozzle system to the faciity floor When the configuration is described as "Model
1-inch down  the exhaust nozzle centeriine 1s one inch above the ejector modei centerline. and for -"Modei 1-inch
up  the nozzle centerine 1s one inch below the ejector model centerhne Al ambient condiions such as £
termperature. pressure reiative humidity, wind velocity. elc.. were recorded along with the data shownin Table 1. -
=
The flow conditions isted 10 Table 1 are simulated TF30-P-12A engine conditions and are defined in Table 2. E
k)
34 Tesl Resulls and Conclusions 3
3
341 Coanda Flow Turning Data 3
3
2

The effect of misalignment .n gach direction without the adapter installed on mixing and fiow attachment at military
raled thrust condiions 1s presented in the Coanda exit veloCily proliles of Figure 8. These data indicate a shght
improvementin flow attachment when the primary exhaustis misahgned below lhe ejector centerline suchthat the
flow impinges on the ejector lower surface. The attachment was stightly reduced with misalignment to the side as
indicated by the peak velocity being farther from the Coanda surface, however. a shigh! decrease in attachment is
not altogether detnmental since 1t causes a decrease in peak velocity. probably from enhanced mixing

%
a
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The Coanda exit velocity profiles for ahgned and misaigned configurations with the adapter plate installed (see
Figure 5) at military rated thrust conditions are presented on Figure 9 These daia indicate a considerable
improvement i flow attachment for the contiguration with misakgnment to the stde due to the presence of the
adapter. This improvement 1S also indicated by the Coanda surtace static pressures presented on Figure 10 and
Figure 11 for the configurations without and with adapters. respectively. Without the adapter and with misalignment
10 the side. the surface static pressure approaches ambient faster at the fast 20 of tiow turming (70° to 907) than the
other configurations which indicates impending tlow separation On Figure 11, with the adapter instalied. this trend
1 not observed. The exit velocity prohles of Figure 9 also indicate '/mproved attachment (peak velocity closer to
Coanda surface) for \he ahgned and flow toward upper ejeclor surface configurations with the adapter. The
- improvement n attachment for these configurations 1s not refiected in the Coanda surface static pressures (Figures
10 and 11}. therefore, the higher exit velocities could be caused by a reductior in the mixing with the adapter

e ol el kel

installed.
The Coanda exit velocily protiles for ahgned and misaligned configurations at afterburning power with and without
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the adapter are presented on Figures 12 and 3. respectively. These data indicate very good fiow attachment with
no apparent change due to misalignments at one inch (equivalent to six inches full scale) in any direction. The data
also indicate no significant change in flow attachment or mixing due to the adapter plate.

Figures 14 and 15 present the Coanda surface static pressures for the aligned and misahgned configurations at
afterburning power with and without the adapter, respectively These data also vernfy excellent flow attachment and
that the misalignments and-or adapter plate create no significant changes 1o fiow attachment at afterburning
conditons. The nigh static pressures (approximately ampient; at the entrance to the Coanda surtace are the resuit
of the gap between the last ejector upper surface and the Coanda surface. The purpose of that gap 1s to allow
entrainment ol additional secondary ar for coohing the surface.

3.42 System Cooling Data

Figures 16 and 17 present the Coanda surface temperatures for the aiignea and misaligned model configurations
at afterburning power with and without the adapter, respectively. The peak temperatures reached on the Coanda
surface indicate that the ejector set used 1o transition the primary flow 1s not efficient at providing a cooling film for
the Coanda surface Peak temperatures were at least 400 degrees more than those reached on the model,
described in Paragraph 3.2 and 1n Reference 3, which was used to develop the full scale demonstrator unit. The
new ejector set was designed with a larger aspect ratio (exit width-extt height) than the previous model, and
included an enlarged first ejector intet to capture the misaligned flow. These changes made it necessary to enlarge
the ejector area ratios (ejector area primary flow area) The higher Coanda surface termperatures were not
alinbuted to these changes butrather that all three ejectors were made shghtly convergent in flow area progression
instead of constant area The ejector theory upon which the analysis for thus program s based indicated that
convergent area progression ejectars have reducad entrainment capability relative to constant area ejectors This
reduced pumping capability due to the convergent area progression was to be compensated for by the increased
arearatio. mentioned above, which increases ejector pumping. However. the arearatio increase did not sutficiently
ircrease the entrainment enough to overcome the effects of the convergence. In addition to the area increase, the
ejectors should have been lengthened to further increase pumping capability. This deficiency illustrates the
necessity for detailled computer analysis prior 1o fabncation to ensure cooling capabiiities within the 1000°F design
goal. In Figures 16 and 17, the configuration with the primary flow misaligned toward the upper surtaces of the
ejectors (1.e.. ejector centerline below nozzie centerline) has a lower peak Coanda surface temperature (by 150
degrees). This lower temperature is the resuit of the higher velocity flow past the upper surface causing more
entrainment of secondary air at the upper surface of the second and third ejector entrance and the gap between the
third ejector exit and the entrance to the Coanda surface This 1s also shown by the ejector upper surtace
temperatures and static pressures for that conhguration.

Figures 18 through 21 present the ejector surface temperatures and internal static pressures for the aligned and
misaligned model configurations at afterburning power without the adapter plate installed. These data also indicate
aless efficient cooling than in previous models. The upper and lower surtaces (no data measured on lower surface)
are expected to be the hottest due to the impingement of the expanding flow caused by the oval shape of the ejector
exit. The aft recorded temperatures should also be the hottest as the entrained secondary flow from the ejector inlet
mixes out. These data indicate that the first ejector 1s the only one with a significant change in temperature Gue to
misalignments. The internal static pressure data are an indication of the entrainment of secondary airflow. A value
of the ratio of internal static to ambient pressure below 1.00 at the ejector inlet indicates secondary air entrainment
at that area of the ejector inlel. A value above 1 00 indicates a lack of entrainment at that position

Figures 22 through 25 present the ejector surface temperatures and internal static pressures lor the aligned and
misaligned model configurations at afterburning power with the adapter plate instalied. The most significant
difference in these data with the adapter and the previous data without the adapter is seen in the internal static
pressures. espectally at the first ejector inlet. The adapter plate tends to equalize the inlet static pressure indicating
more uniform entrainment around the inlet. whereas. without the adapter. there was a large change in static
pressure at the inlet on the side toward which the primary flow was misaiigned. The ejector surface temperatures
were not sigmficantly atfected by the presence of the adapter plate.
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3 4.3 Conclusions
The following conclusions may be made from the resul!s of the single engine misalignment test:

L] The Coanda suppressor system may be adapted to in-airframe ground runups and account for initial
aircraft misalignment and tailpipe movement relative to the suppressor inlet

L] The transition ejector set used was not optimum and pointed out the need for detailed analysis to
deveiop a better design

. The data and subsequent analysis indicate thatincreasing the first ejector inlet diameter to capture the
misaligned flow need not create any cooling problems

o Misalignments can be tolerated in all direct.ons without significantly affecting flow attachment.
. The adapter plate does nol demonstrate enougn benefit from either a tiow dynamics or cooling

standpoint 1o warrant the complexity of applying it to an in-airframe apphcation. (The acoustic benefil of
such an adapter 1s investigated at full scale ang reported in Reference 1))

. et m e - row - e e =

3
H
H



[<2]
@
o)
w
]
Q
O
w
<
z

N
-
]
o
[\
o

T SR Y e

v x x 301S OL + 300N H31IAVIA €9 9 ONINGNg 919 91
w314y 1IN
R . ) 1 ewmdne | T T LT
v X X 40 1 1300w H3I13IWVIQ €9 9 . 819 S\
H3L4V 1N _
. ) _ N T R i
iy X d X NMOO  1300W | H313WVIC €99 ONINUNG 819 * vi
ﬁ ._ Y314V 1IN ]
| ONINYNG
v X 3INON H31IAVIO €9 9 819 £l
i ¢ * X H314V 1N
e A P e - JERAv e - e —e ]
i ONINYNG
v ; , X 1S Ol .1 1300 3NON 2t
° ! X * s 0 ‘H3L3Y N4 89
R e A I R R Y171 ot T A b
vS ! X ‘ N .4 130N NON ) 819 H
] | X ! an .+ 136 3 9314V N4
S T s I SR _ o
‘ DNINGNE
2s : ! X g .1 1300W NON g1 9 01
. X | NMOO 3 w 3NO ‘¥344v N4
— -— —_ . . _ - - —_— —q
€5 b« L« INON | 3NON ONINENG 819 6
, ! : i ‘¥314Y N4
. - : ! i ! ] ; ! —_
i “ X _ X © 3G OL 4 1F300W | H3ILIAVIO ZS b _ AHV LI 1104 ey g
T i | gon | A - oo
6€ X X ) d0 1L 1300 ! B313IAVIO C9 b _ AHVIEIIN 21N ] itv A
I | _ | | R
ov X _ x ; NMOO | T300W | YI13WvIQ2av | ABVYLITIW 1103 Ity g
—_ = . _ m ” - P
8t X _ X i INON HILINVIO ZIF . AHVYLITIN 1INS (14 s
. . } | ' w S
£e X i X s O1 + 1300W INON AHTLIHN 704 14 4
- - | * d -
22 X ! X dN L 1300 INON V ABVLIUW 1104 £ v : £
. ]
- . ~ W - J— _
4 X X NMOG L 1300W INON 1OABYLITIN N4 tev Z
-, ~ . ; - o Lo e _
12 X ” X INON _ INON _ AHVIITIN 1IN 4 _ e t
— L |
HIAWON 1%y Wity INIWNOIIVSHY | HILIVAY NOILIONOD HI13WvIg HILNNN
NOY 1S3 ! 11x39 IV NS HOL1D3r3 31ZZON _ MOV 31ZZON NOILYHNDIINOD
R S —— —
vivd i ﬁ AdVAIEd

SNOILLVYHNDIINOD 1S31 AINFWNONVYSIN 3dIdNVL INIONT ITONIS

m..uIOZ. NI SNOISN3WIO v 310N

t 378vs

g M i)
L T (R

AR 1R



NAEC-GSED-98

Page 16
TABLE 2. ONE-SIXTH SCALE EXHAUST NOZZLE FLOW CONDITIONS
SIMULATING TF30-P-12A ENGINE AT SEA LEVEL STANDARD
_____ e —————— e — e
EGT AIRFLOW
EPR (Tt10) (Wa)
ENGINE CONDITION {Pt10 P2) ‘F | LBS/SEC
IDLE 1.05 270 1.90
| o
FULL MILITARY 2.12 730 6.86
FULL AFTERBURNING 1.93 2920 667
1 1
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Ejector transition and exhaust mode!.
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Figure 16.
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4.0 COANNULAR FLOW TEST

4.1 QObjectives

This model test senes was conducted to determine the effects on Coanda flow attachment of the coannular flow
produced in fan engines such as the TF41 and TF30-F-408. These are nonafterburning turbofan engines with the
fan flow mixed with the primary flow just prior 10 the exhaust nozzle. which results in a highly stratified coannular
flow. The model tests were to evaluate the etfects on jet geflection of exhaust flow with a high velocity annulus of
cooler gas surrounding the hot exhaust primary core fiow. Since the full scale test program (Reference 1) involved
only testing with a turbojet afterburning engine. these scale model tests provided data and operational trends that
may be extrapolated to full scale operation of long duct. coannular flow, turbotan engines. A secondary objeciive of
these tests was 10 determine a means for sizing the flow transitoning and deflecting components for suppressor
systems to handle nonafterburning engine airtiows up to 600 bs:sec. (The current full scale configuration was
designed for up to 300 1bs sec)

42 Model Description and Test Apparatus

The Acoustic Arena lacilily described in Section 2.0 was used for the coannular flow test. A dual flow system with
the center flow heated to the TF30-P-408 primary conditions and sized to one-sixth scale was provided. The bypass
ratio (fan airtlow primary aiflow) 1s 1.01 for this engine simulation. Figure 26 is a schematic of the coannular flow
engine Ssimulation ng

The transition ejectors. Coanda surface, and support frame used for the coannutar fiow test were existing hardware
from previous testing. Reference 2. and were the model components used to develop the configuration of the full
scale test and demonstration article. The first ejector was revised to enlarge its inlet to allow for misailgnments as in
the test of the preceding section of this report. Figure 27 presents dimensional drawings of the transition ejector and
Coanda surface model components used for this test senes. The first gjector had an inlet area of 62.5 in2 and exit
area of 43 5.n2. which resulls in an exit area ratio {ejector exit area exit nozzle area) of 2.98, based on the exit
nozzle area of 14.60 in? of the coannuilar flow engine simuiation rig shown on Figure 26. The area ratio of these
ejectors seem large because they are based on the nozzle area of a nonafterburning nozzle whereas those area
ratios quoted for previous models were for atterburning nozzle areas (30.0 in2 at model scale). The first ejector is
the only one of this set with a convergent area progression. The second ejector has an area of 46.5in2 at the infet
and ex/t which is an area ratio of 3.18. The third ejector has a constant area progression at 51.0 in2 resulting in a
3.49 area ratro. The exhaust nozzle used was 4 31 inches in diameter and the exit flow was the combined,
coannular pnmary and fan flow simulating the exhaust of the TF30-P-408 engine.

A schematic of the model test setup 1s shown on Figure 28. Static pressures are provided on the nozzie lip to
measure the pressure changes that may atfect engine operating conditions. Static pressure ports are provided on
the internal wall of the ejectors to delermine the ejector pumping characteristics, and along the Coanda surface
centerline to measure the extent of the pressure gradient that produces the flow turning. Thermocouples are
provided on the ejectors and Coanda surface to measure the metal surface temperatures. A total pressure and total
temperature rake is provided at the Coanda surface exit to obtain exit flow conditions (Mach number, velocity, etc.)
and to determine the extent of flow attachmeni.

Figure 29 1s a pholograph of the coannular flow simulation rig and Coanda model setup in the Acoustic Arena test
iaciity and running with smoke added to the flow for visualization purposes The ejectors are positioned such that
the exit plane of one coincides with the inlet plane of the next. The exhaust nozzle to ejector inlet spacing was 2.0
inches.

43 TestPlan

Table 3 presents the test configurations that were run for evaiuating the coannular flow exhaust in a single engine
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Coanda deflector system Also listed are the data that were recorded tor each configuration. The location of the
pressure and temperature instrumentation on the model is shown on Figure 28. The configuration numbers are
listed on all data shown in this report as an aid in identificaticn. The test included misalignment configurations
similar to those accomplished in the preceding pure turbojet flow simulation test. it should be noted in the column of
Table 3 that cescribes the misalignment direction that the model was moved rather than the nozzle. This was
necessary because of the stationary attachment of the burner and nozzle system to the facility floor. When the
conhiguration 1s descnbed as "Model 1 inch down’ the exhaust nozzle centerline ts one inch above the ejector
model centerline. and for "Mode!l 1 inch up™ nozzle centerhine 1s one inch below the ejector model centerhine. All
ambient conditions such as temperature, pressure, relative humidity. wind velocity, etc., were recorded along with
the data shown in Table 3 Two sets of exhaust nozzle flow parameters were recorded: the primary jet and the
cooler annulus of fan aiflow. The flow conditions listed in Table 3 are simulated TF30-P-408 engine conditions
(scaled to one-sixth scale) and are detined in Table 4

4 4 Tes' Results and Conciusions
441 Coanda Flow Turning Data

Figures 30. 31, and 32 present veiocity profiles calculated from total pressure and temperature data measured at
the exit of the Coanda surla face tor dle, 75 percent, and 100 percent intermediate power, respectively. Data for
both aligned and misaligned conhgurations are presented The profiles indicate the amount of mixing (from their
level) and the qualty of flow attachment {from the location of the peak velocity) to the Coanda surface. These data
indicate excellent mixing and flow attachment for the ahgned configuration and tor the nozzle misaligned toward the
boitom of tive gjector inlet However, the configurations with the nozzle misaligned either 1o the side or top of the
ejector infet show some degradation of flow attachment at all power settings, as indicated by the movement o the
higher velocity streamlines to a greater distance from the Coanda surface. The degradation of flow attachment for
those configurations is not signiicant encugh, however, to create any problem with any acoustic enclosure tha:
wouid be placed around the deflector surface.

Figures 33 and 34 show the Coanda surface static pressure data for aligned and misaligned configurations at 75
percent and 100 percent intermediate pcwer, respectively. These data venty the excellent flow attachment
indicated by the velocity profiles because the lowest static pressure levels are as low as those seen previously only
with high velocity afterburning flow (Figures 14 and 15). However, the abrupt decrease in pressure gradient beyond
the 50° position, on the detiection surface, indicates a weakening of flow attachment, probably due to decreased
flow velocity caused by more complete mixing than with the previous afterburning flow. The fact that the static
pressure has nearly recovered o ambient ievel at the 90° position indicates a weakening of attachment to the
surface.

442 System Size Analysis

The evidence from all previous model tests and from the full scale tests (References 1 and 3) indicates that the
present system size will operate satisfactorily for the required engines ranging in airflow from 143 bs/sec to 263
its sec {full scale). However, to extend the range to include 600 tbsisec airflow engines would require more than
one size unil. It may be possible to cover the range up to 600 Ibs/sec engines with only two unitsizes: one that will
handle engines up to 300 Ibsisec and another for engines from approximately 350 to 600 Ibsisec. The
determination of the necessary size can be based on the model scale tests. These tests were run at one-sixth scale
to the TF30 engine which means the scaled mass flow was

(1/6)2 (242) . 672 Ibs-sec

If these models are considered to be vanable scale factor models. then for a €70 Ibs'sec engine simuiation, the
scale factor would be

SF = VWmg Wis - V672600 - 106
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This means the model scale dimensions would be multiplied by 1..106 for the 600 Ibsisec unit which makes it about
1.5 umes the size of the present Coanda and ejector system. This assumes the flow dynamics and thermodynamic
characterstics of the system scale similarly at 1:10 scale as they have for the current 1,6 scale which is reasonable.

4 43 Conclusions
The conclusions that may be made from the results of the coannular flow test are:
’ There are no significantly adverse effects on flow attachment at any power level due the the cooler fan
air surrounding the primary flow for low bypass ratios such as the TF30-P-408 and TF41 engines.
However. operation with higher bypass ratio turbofan engines, such as the TF34 (6 to 1 bypass ratio).

was not evaluated.

o With the presence of the fan flow. there are no system cooling problems.

. Full scale units for larger airflow engines may be sized simply by using the correct model scale factor
(within reasonable scaling factor imits) based on the model airflow 2nd full scale airflow requirement.
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TABLE 3. COANNULAR FLOW TEST CONFIGURATIONS
DATA
CONFIGURATION FLOW CONDITION® NOZZLE EJECTOR | SURFACE | EXIT | TEST RUN
NUMBER (TF30-P-408 ENGINE) MISALIGNMENT P& T, | P&T, | NUMBER

17 ©oLe NONE X X 127

18 75 PERCENT | NONE X X 127

19 INTERMEDIATE NONE X X 127

20 IDLE MODEL 1 DOWN x | X 128 |

21 | 75 PERCENT MODEL 3" DOWN X x 1 128

22 I INTERMEDIATE MODEL 1 DOWN X x | 128

23 " loLe MODEL 1 UP X | X 129

24 75 PERCENT MODEL 1 UP x | x 129

25 INTERMEDIATE MODEL 1 UP X X 129

26 IDLE MODEL 1" TO SIDE X X 130

27 75 PERCENT MOUEL 1 TO SIDE X X 130

28 INTERMEDIATE MODEL :" TO SIDE X X 130

‘PRESSURE RATIO AND TEMPERATURE CONDITIONS ARE PROVIDED IN TABLE 4.
TABLE 4. ONE-SIXTH SCALE EXHAUST NOZZLE FLOW CONDITIONS SIMULATING
TF30-P-408 ENGINE AT SEA LEVEL STANDARD
PRIMARY SECONDARY
EGT AIRFLOW FGT | AIRFLOW
ENGINE EPR (Ty7) (Wp) FPR (M2 8) (Wg)
CONDITION (Py7 Pyo) F LBS.SEC (Ppa 5 Pio) o LBS'SEC

IDLE 1.055 320 | 100 1.05 60 1.00
75 PERCENT 204 875 322 173 | 80 | 324
INTERMEDIATE 248 11€0 355 2.00 60 3.58
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5.0 INITIAL TWIN ENGINE TEST

51 Objectives

The third mode! test of the series was an initial step in developing a Coanda flow turning system for twin engine
aircralt with closely spaced engines (such as the F-4. F-111, and F-15 aircraft). The F-14 engine exhaust
centerlines are wide enough apart to easily adapt 1o two separate single engine transition ejector/Coanda defiector
systems housed in one acoustic enclosure, therefore, its engine spacing was not included in this series of model
tests.

The object of these initial twin engine simulation tests was to observe: (1) The eftects of concurrent jet deflection of 13
two distinct power jet sheets in the same deflection chamber, {2} any adverse boundary conditions between two i
distinct energy levels of dynamic gases which might adversely attect attachment, and (3) to determine if a divider ¢
wall1s required between the two flows. The results of this test were used 1o influence the configuration of the model

for the twin engine misahgnment test discussed later in Section 7.0.

5.2 Model Descniption and Test Apparatus

This test senies was run 1n the Boeing-Wichita Acoustic Arena Test Facility described earlier in Section 2.0. The
data acquisition system was the same as that outlined in that section. Facility changes were required to provide the
second nozzle flow with an exit centerline simulating the distance between aircraft (F-4, F-111, and F-15) engines
at one-sixth scale. The nozzles were placed nine inches apart which is equivalent to 54 inches full scale. The
second nozzle flow system was provided with a J47 engine burner and controls to heat the air to the required A
temperature for exhaust simuiations up to 1500°F. -

ve

A new model was fabricated for this test consisting of a three ejector transition with removable internal splitters and
a "double wide ' Coanda deflection surface with a removable splitter. Dimensional drawings of the model
components are shown on Figure 35. With the removable spiitters installed, the ejectors have the following flow
passage {per engine) areas:

Inlet Exit :
Ejector Area Area Ratio Area Area Ratio
1 63.0 in2 210 45.0 n2 1.50
2 51.0 1n2 1.70 51.0 in2 1.70 i3
3 57.0 in€ 1.90 57.0 in2 1.90 >

These arsas indicate a convergent first ejector and constant area progression second and third ejectors. The first
gjector is of necessity, convergent, so the inlet is large enough to capture misaligned flow. However, the second
and third ejectors are constant area which is preferable as seen in previous testing. The areas (per side) will change
somewhat (enlarge) with the splitters removed; however. this is insignificant when itis considered that the whoie
ejector (both sides) is open to the combination of fliows from both engines which is usually a high power setting on :
one side and i1dle on the other. .

The Coanda surface has the same rotated logarithmic spiral curvature that was developed in previous testing

(Referenze 3) for the full scale test article The "double wide" surface has a center divider (splitter) that is
removable.

Figure 36 1s a schematic of the transition ejectors and Coanda deflection surfac. setup behind the twin engine

B
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simulation ng. Aiso shown is the static pressure and metal temperature instrumentation used for this test. Only one
side of the twin system was instrumented for metal surface temperatures, internal stalic pressures and flow
attachment data (Coanda exit pressure and temperature rake). The other side was run at idle conditions and
system symmelry assumed for the case of interchanged power settings. Static pressures were provided at the
nozzle ip to measure the pressure changes thal may affect engine operating conditions. Static pressure ports are
provided on the internal wall of the ejectors to determine the ejector pumping characteristics and along the Coanda
surface centerline (of one <ide) lo measure the extent of the pressure gradient that produces the flow turning. The
metal surface thermocouples are to determine the effects of configuration changes on system cooling. A total
pressure and temperature rake is provided at the Coanda surface exit to obtain exit flow conditions (Mach number,
velocity. etc ; and to determ.ne the extent of flow attachment at the S0° deflected pasition.

Figure 37 1s a photograph showing the twin engine flow simulation rig instatled in the Acoustic Arena.

Figures 38. 39. and 40 are photographs of the initial twin engine Coanda model in the Acoustic Arena. A new
Coanda surface and transition ejector support frame was fabricated to accept the "double wide " twin modei. The
ejectors were positioned such that the exit plane of one coincided with the inlet plane of the next. The exhaust
nozzle to gjector inlet spacing was 1.75 inches.

53 Test Plan

Table 5 presents the test configurations that were initially planned as well as those additional runs that were added
as the testing progressed. The tes! runs that were planned with both nozzles at military power conditions were not
accomphshed. (It should be noted that current airplane ground test limitations restrict the second engine to idle
power while the lirst engine is at any p'oww up to afterburning). Model configurations were tested alternately with
one engine at afterburning and the other at idle; with one engine at full military and the other atidle; and with both
engines at idle power settings..Thg, tegts were repeated with and without the Coanda surface center splitter and
ditterent combinations of ejector splitters. Once the best configuration was found with the nozzle and ejectors
aligned. test conditions were run with nozzle to ejector inlet misalignments (otfsets) in the vertical and horizontal
directions similar to the single engine misakgnment test of Section 3.0. As in previous tests, the misalignments were
accomplished by moving the model as the nozzle is stationary mounted. Ambient conditions, as well as the two
exhaust nozzle flow parameters, were recorded aiong with the data indicated in Table 5. The configuration
numbers are listed on all data shown in Paragraph 5.4 as an aid to identification. The flow conditions listedin Table
5 are simulated TF30-P-12A engine conditions and were defined previously in Table 2 in Paragraph 3.3.

54 Test Results and Conclusions
5.4.1 Coanda Flow Turning Data

Figure 41 presents the Coanda ext velocity profiles calculated from total pressure and temperature Jata recorded
by the exitrake atthe end of the Coanda surface for various model configurations at atterburning power. These data
indicate the only acceptable configurations for flow attachment are those with the Coanda surface center splitter
installed either with or without the ejector splitters. The presence of the ejector splitters does not have much effect on
flow attachment with the Coanda sphtter installed; however, the ejector splitters seem to further reduce the flow
attachment when the Coanda divider is not present. The Coanda surface static pressure data at afterburning power
shown on Figure 42 indicate the same results as the fiow profiles discussed above. The configurations without the
Coanda surface divider (splitter) demonstrate surface static pressures, beyond the 20° turned position, that are
higher (closer 1o ambient) than those with the Coanda splitter instatled. This results in a lower pressure gradient
across the flow and less chance of good flow attachment. All of these configurations, even those whose data
indicate good flow attachment, produce high Coanda surface static pressures (low pressure gradients) when
compared to the single engine results reported previously in Paragraphs 3.4 and 4.4. A comparison of the Coanda
exit velocity profiles from those previous tests and this test indicate a much lower exit velocity for the twin Coanda
configuration wshich explains the high surface static pressures.
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Figure 43 presents the Coanda exit velocity profiles for the mode! with vanous splitter configurations at full military
and idle power conditions. The data at idle power is not conclusive for comparison of configurations as the total
pressure data was too low for good resolution it is presented unly to show that the flow attaches at idle cond.tions.
The military power data show the same result as the afterburning data; i.e., the Coanda splitter has to be installed
for good flow attachment. There is some evidence (Configuraticn 38 S-2) that removal of the ejector splitters
increases the flow attachment at nulitary power. The Coanda surface static pressure data for various splitter
conhgurations presented on Figure 44 verify the tlow attachment conclusions drawn from the exit flow profile data at
military power.

Figures 45 and 46 present the Coanda exit velccity profiles and corresponding Coanda surface static pressures,
respectively, for vertical and horizontal nozzle to ejector misalignments at afterburning power. The misalignment of
nozzle to ejector centerlines was one inch model scale which is equivalent to six inches full scale. The model
contiguration was without any ejector splitters and with the Coanda surface splitter installed. These data indicate
virtually no degradation to flow attachment due to any of the misalignments.

Figures 47 and 48 present the Coanda exit velocity profiles and corresponding Coanda surface static pressures,
respectively, for vertical and horizontal misalignments at full military power simulation. Again, the ejector
centerines were offset from the nozzle centerline one inch at model scale and the model configuration used was
without ejector splitters and with Coanda surface splitter installed. These data indicate only a slight degradation of
flow attachment with a sideways m:salignment of the pnmary flow 1oward the outer sidewall (away from the splitter)
as shown by the shightly wrequiar shape of the exit velocity prolile in the region 0 - 12 inches from the Coanda
surtace

542 System Cooling Data

Figure 49 shows the Coanda surface temperatures for rnode!boniiguranons with ejector and Coanda splitter
vanations at afterburning power condil.ons. The temperature levels measured indicate inadequate cooling
provided by the transition ejectors. This was attributed to the hab»hty of the ejectors (as designed) to entrain
secondary air in the area between the two flows atthe second andihird ejector inlets. The temperature levels on the
Coanda surface are unacceptable and a new ejector design was (eveloped for the next twin engine test discussed
laterin Section 7.0. The configurations with the Coanda splitter installed produced the towest peak Coanda surface
temperatures. again indicating the necessity of that spitter. The (\oanda surface temperatures for the
configurations without the Coanda divider decrease more rapidly beyonﬁ the 30° position because of poor flow
attachment to the surface in that area. .
Figure 50 presents Coanda surface temperature data for the model config yrations with misalignments of one inch
(model scale) in the vertical and horizontal directions at afterburning sin \'ation. These data indicate very little
change in Coanda surface temperalures due to any misalignment direction 1 "he significance of these data is that it
may be expected thal misalignments of at least six inches may be toler: ﬁ’d in a full scale suppressor without
causing any additional cooling problem at the Coanda surface. \

1
Coanda splitter and sidewall temperature data for misatignment configura | ns with afterburning power primary
flow simulations are presented on Figure 51. The mode! configuration used w\3 with no ejector splitters but with the
Coanda surtace sphitter instalied. Of pnmary importance is the indication tt 41 ail misatignments cause both the
splitter and sidewall 1o be hotter than when nozzle and ejector centerlines are 'kxligned. A further indication that lack
of secondary air entrainment between the flows 1s the cooling problem is seen {1th the nozzle misaligned to the side
(closer to the sidewa!l). The sidewall temperature increases by about 340 but ]:e splitter does not demonstrate any
corresponding decrease in temperature. \

|

Figure 52 gives the transition ejector surface temperatures with sphitter vat\l\'ions at afterburning power. The
temperatures at the upper surface, especially at the aft2nd of each gjector. i1s th: | 0ttest because of the oval shape
of the ejector exit which atlows the flow to impinge on tr i2se surfaces as it1s sprez { !nlo the rectangutar shape of the
transition exil. The much higher {emperature of the sphiters in the second {id third ejectors again indicate

AN b1 e o it it cuw:._muuﬂmlmmmduMWMMJmuhmwﬂmM‘Lu“MM‘MMMHM&“MJMJHM»UM{MM!‘MMWM vl e B v A
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inadequate cooling arr between the two engine flows The presence of the sphtters in the ejectors does not
appreciably affect the gjector side and upper surface temperatures.

Figure 53 presents the transition ejector surface temperature data with primary nozzle misalignments. The model
contiguration used was without ejector spiitters and with the Coanda surface splitter. The significant resulits shown
by these data are that the surface of the first ejector toward which the misalignment is made increases in
temperature to ievels well above the 1000°F design goal. The eftect of misalignment on the temperatures of the
second anc third ejector 1s much less pronounced and generally results in temperatures below the 1000°F goal.

Figure 54 is a summary of the transition ejector internal stauc pressure data for spliter and misalignment
configuration vanations at afterburning power. indications are that, with nozzle and ejector centerlinas aligned and
with or without the ejector splitters, the third ejector does not entrain secondary flow This conclusion is drawn from
the tactthat all the iniet static pressures for that ejector are above ambient pressure. Increasing the area of the last
ejector would probably reheve the problem. The upper (and lower) surface static pressures atthe aft edge of the first
ejector are above ambient pressure because of the flow impingement on those convergent surfaces which causes
the desired spreading effect to the pnmary flow. Misalignment of the flow toward the upper (or lower) surface
causes the first stage ejector inlet pressure on that surface to increase to well above ambient, again because of the
inward slope of those sudaces This stagnation of the edge of the primary flow atth2 upper and lower surfaces is the
reason for the high first gjector inlet temperatures seen with vertical misalignment on Figure 53. Misalignment to the
side causes the inlet static pressure of the first stage at the side closest to the flow to decrease further below
ambient because the ejector side surfaces slope away (diverge) from the flow. This does not allow any stagnation to
occur and the higher velocity flow close to the eje stor inner surface causes a lower static pressure.

54.3 Conclusions
The following conclusions may be made from the results of the initial twin engine model test:

s The Coanda suppressor system may be adapted to in-airframe runups of twin engine aircraft with
closely spaced engines.

. The transition ejector set used in this test did not provide adequate self-cooling. It is not entirely clear
whether spltters in the electors serve any useful purpose. It appeared from the results of these tests that
they only served tc block air entrainment between the two nozzles. This inability to educt air between the
two closely space jets was the reason for the insutficient cooling of the Coanda surface and splitters
and also contnbutes to the lack of firm flow attachment to the Coanda surface.

. Flow wurniag at military power was not satisfactory For most configurations, the main body of the flow
seemed 10 he turning only about 6C°. Although firm attachment was not achieved, satisfactory flow
turning was obtained at afterburning conditions both with and without the ejeclor splitters (Coanda
surface splitter installed).

. The twin engine Coanda ground noise supprassor requires a splitter on the Coanda surface to separate
the two flow streams. When a high power and a low power jet stream are discharged over a Coanda
surtace with the proximity of the tvpical twin engine aircraf, the higher power stream almost completely
entrains the lower power jet. While this is not inherently undesirable, it does seem to have a detrimental
effect on attachment to the Coanda surface

. Misalignments in any direction may be tolerated without any adverse effscts on flow attachment. Some
increase n temperature will accompany misalignments at the first gjector and Coanda surface. A
conhguration of transition ejectors to improve secondary entrainment between the engine exhausts and
at the third ejector inlet should help alleviate the cooling deficiencies.
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Figure 39.
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Initial twin engine Coanda model in acoustic arena.

2

T S
Al .
T .

Figure 40. Rear view of inttial twin erigine Coanda model.

Lt o, G ] ot e i, MW‘AMA\A“;&WMJMNMM‘ iy WMMMM d

b R s i sl

il

! Wi 1l

[

T T

il o i . s

.



-

500 q

COANDA EXIT VELOCITY  FT SEC

20C 4

NAEC-GSED-98

Page 49
-~ - I - - - TS T T T T T - 'I
l MODEL CONFIGURATION |
. } . AL vhA o]
SYMBOL J{ NO 1 O SCHPTION ]
0] | 32 I NO EJECTOR SPLITTERS  NO COANDA SPLITTER |
Q s I ALL EJECTOR SPUITTERS NG COANDA SPLTTER |
A | a ALL EJECTOR SPUITTEAS  WITn COANDA SPLITTER i
! O | 405 1 l NO LJECTOR SPUITTERS  WIThi COANDA SPUTTER |
- — —_ L. I . P . R —
° M
. I ' AFTEABURNING CONDITIONS |
! 1
PyPa 193 |
Tl 2920 F
=
I
| .
! g
300 A —_—
1
—
|
1
H
|
i I :
‘ + > 4 + = 4 .
0 4 8 12 16 20 24 28 :

DISTANCE FROM COANDA SURFACE  INCHES

Figure 41. Coande exit velocity profiles — initial twin engine mode! test -

spiltter variations - afterburning power
[ | B o

H | WODE L LA SUBATOY
! SYMB NG l SSCRIPTL,EN
: O CU0r M BCTGR SPLGE R, NG ORNEA YT TR
(a} | % P ans T s NG LOANDA SPL LR ,
] .
A | v Bt SOLVHEHGS waTe LOALOA 5P tTial
0 [ RN B T I I POV N IR
R [
o
)
>
*
w
o
ary
23
=&
w
Siw
wa
w
Yz
wlet
i |
~7r|§ EJECTORS & NOZZLE ALIGNED |
é 96 4 . T R . ' . AP TERQUANING CONOITIONS —— 4
F4 I P '
< ! Fory 0yl :
l 1 . : : . | i
4 + e B A Tl SEIEIEPE Y SRR S R—
2 10 20 10 e ,,,, ) S e 90
ANGLF FIA COANDA 125t DEGREFS T
Figure 42. Coanda surface pressures — initial twin engine test — splitter variations

— afterburning power.

b W 1 i Ll

“




NAEC-GSED-98
Page 50

D ONEGIHATION

i
o
- 1

i TARY D& SCHIW TN
N AR an L s __l
» VRO EJE Tk SPUTTERS  NO COANUA SPLITTER 1
»” | AL EJECT 4 50U TTERS  ped COANDA SPUTTER !
Wit A AN kAL R SPOITERS Wit COANDA SPUTTLA I

WS 5 IND TEIECIM SR TIEH Wit COANDA SPLITTER

Y |- S L ESEUTTH GROTTER W COANDA SPUTTER !

» TAC ELEy TLO SPUTIEAG Wit COANDA §PUN TER :
NC MISALIGNMENTS

' 10LE CONDITIONS |
| PPy 105 T, 270F

] |
i - i
—
| SvuBly
[IRE - i
H (o] 1 no
| (e} bow
: N R
Lo
% vy |
o [T
|
M
wr
L 0y
. '
e
<
by
M
LY
s
(=]
z
<
N
o
3y . -
(SR |
7o
v
-
: J
Iz
v
(a3
-
= 1)
w
<
c
z
2
s

DISTANCE FROM

Figure 43. Coanda exit velocity profiles — initial twin engine test — splitter variations - idle and full

military power.

CISTANCE Filhe Jooat o o if ACE INCHE S

FULL MILITARY CONDITIONS
PPy 2 T, 130F

6 20 24 r

8 12
{GANDA SULRFAZE  INCHES

I . ML LN LA O |
,eTuBa 1 TS o~ e
i O [ l NOR LT 2 SE T gAY CANia SPLTT(A H
: [®] [ | ALCELECTIU SELITLR,  NO LCANDA SPLITTER !
| A l 305+ | NO S AN S EJITLR CRUITTENS W T LDANDA SBUTTER
: [o] L3S | M g0 ESPUTTER Wil COANCA SFLITTE R !
: ﬁ | 3457 I N P RS T 3 F IR SR TTER W.Te (LANGA SPLTTER
; o »

- 1

[

101 T— ]

RE

PPy 22 T,

€
8

STATY PR
AMBIENT PRESSUAE

CQANQA SURFACE

FULL MILITARY CONDITIONS

Figure 44. Coanda surface pressures
power,

——

AL EJE. 0N COLTTERS Wi CORNDA SETTER

30T . i

1
an (50

ANGUE THOS - CANGARET Y DELREES

20

~ initial twin engine test — splitter variations

- full military

ol

™

L e L




s S S = e S e S RS o ] Bl e

NAEC-GSED-98
Page 51

WMUCEL CONBIGURATION

i et i i it

T svmeon wo 1 B CESCRIPTON ‘I
VO ] S 1 £ 10R 8 Lt LENTERUNES AUGNEC |
(a] | 40 ENTICH G b INCH BELOW NOZZLE § |

| A | a6 EIECTIHR @ 1 iNCn ABOVE NOZ2LE § |
i S |- l EHCIORG * NEH 1S $I0E°OF NOZZLE § |

‘FLOW CLOSER TO SIDEWALL & FARTHER FAOM SPUTTER
500 W _‘_ALL M!:c;_AﬂG':lME_NTS wiTHOUT [JECT(_)B S_F_’LI":'_T_ER_S _ﬁ WITH C_OANDA SPL :TT,EH,;
H I ! : .
| ! : AFTERBURNING CONOITIONS
|

PIPg 193 T, 2920F

- FTSEC

COANDA EXIT VELOCITY

o

8 12 16 20 24 28
CISTANCE FRCHK! COANDA SURFACE INCHES

Figure 45. Coanda exit velocity profiles - initial twin engine test — with misalignment
— afterburning power.

| MOLE . TONFIGLRAL.ON

P s e o - - - T e
|_ Svveo NO DESCAIPTION
| Q 1 4051 T [UECTOR A NOZZLE CENTERL NES ACGNED |
(@] | 4) ELECIOR IR BELOW NolLE |
! A | 46 €37ITR g 1 INC ABOVE NIZZE § '
H (o] Doag D EJELTOR Y CNCe T SILE DT NCZZIE G
tmmmece e e . - -
TFLOW CLOSER TC SICEWALL 4 FARTHES FAOM SPUITTER
101 ALL M.SALIGNMENTS WITHOUT EJECTOR SPLITTERAS & WiTH COANDA SPLITTER
7: ST : T [ Y :
! ' AFTERBURNING CONDITIONS i
¢ . ! : PPy 193 T, 2920°F |
3 IR R
ely,
ary
A ;
A :
S!&l 3
b 3
ge ;
<z =
w W =
@ =
jg E
Fip
< =z
Si :
z| :
b4 E|

[ 0 23 30 a5 5 [N 0 80 90
ANGLE FAOM COANDA INLET  GEGREES

Figure 46. Coanda surtace static pressures - initial twin engine test — with
misalignment - afterburning power.

3
g
i
E- |
E
3




NAEC-GSED-98
Page 52

. ——
MOUDEL CONFIGURATION !

4
______ DESCRIPTION

SYMBOL NO
a 0
A aa
o a7

1
!
|

B
§

EJECTOR § 1 INCH BELOW NOZZLE §
EJECTOR G 1 INCH ABOVE NOZZLE ¢

EJECTOR ¢ 1-INCH TO SIDE*OF NOZZLE ¢

*FLOW CLOSER TO SIDEWALL & FARTHER FROM SPLITTER

o ALL MISALIGNMENTS WITHOUT EJECTOR SPLITTERS & WITH COANDA SPLITTER

; o T T
@ | K FULL MILITARY CONDITIONS
= ! ! PiPa = 212 Tj = 730°F
z 200 - - --——~-———4~————
) =N |
S | i
\;’ D - 1 -
0 i hdll _o
S 100 ‘ - - —
x - .
2 e
o
2
<
e
O 0 +
0 4 8 12 16 26 24 28
DISTANCE FROM COANDA SURFACE - INCHES
Figure 47. Coanda exit velocity profiles - initial twin engine test — with misalignment

)
b
S
Vvi
w 1004
@ .
85
22
<2
v—l-l‘:-'
SE 99 T
P
gz
w
T
5
N
e L
g 981
2!
g
2
I}
0

~ full military power.

-7 e [ —
. MOCEL CONFIGURATION |

i"w(_» T 7 _DESCAPTION

“svagol -

1

(0] 11 EIECTOA § * :NCH BELUW NOZZLE § |
A 1 EJECTOR § 1 INCM ABOVE NOZZLE § |
l O e | EJECTOR § 1 INCH TO SIDE0F NOZZLE § j

*FLOW CLOSER TO SIDEWALL & FARTHER FROM SPLITTER
ALL MISALIGNMENTS WITHOUT EJECTOR SPLITTERS & WITH COANDA SPLITTER

. ' I I
' .
. ! ! ! FULL MILITARY CONDITIONS
PyPy 212 T] s 730°F

S

16 ) G a3 X B 70 8C 90
COANDA SURFACE ANGLE DEGREES

Figure 48. Coanda surface static pressures - initial twin engine test — with misalignment
- full military power.

e

L

Jops -v-'-,tnmlvvm"_suwm-wmymm.qw‘”mwi-@



NAEC-GSED-98

Page 53

‘1amod Buiuingiaye —
wawubesiw yum — 13} |apow

auibua umy eI — sasnjesadwa) adeBUNS BPUBOS 0§ ainbi4

S$334D3Q - 319NV 3OV4HNS VONVOD

00L 06 08 O/ 09 05 Oy 06 0 O 0O
T & 1T 7
J.0262- 11 €61 = Bdid .
™ SNOILIGNOD DNINHNBHI 14V T T
i | N |
L e s -
| I | j
i : '
1|||.+,.-|.| -I%Il*l - IAT T IT-..ITu I
I
! _
— J_| S U
—— _ T T T
P “1||+| ||«Il . +— 1 ,l_..
I _
- !_F_ + = = —
I I I

H3L11TdS VAONVOD HLIM
% SHILLNGS HOLO3INMI LNOHLIM SINIFWNSIIVSIW 1Y
HI1117dS WONS JIHIHY4 ® 1Tvm3aIS Ol HISO1D MO,

_ % 31770N 40,301S OL HONE L 3 HOLD3r3 6v V e

3} 31720N 3408V HONI ¢ 3 8O0 av \v/
, % 377z0N M0138 HONI L B HO1D3M3 £ 8]
Q3INDITY SINITYILINID 3IZZON F BO:DIMT | 1-SOY @)
f 7 “nouwawssaa .M!ozul ﬂo_w.xﬂ.w M
7T T Noiwvenounoo Y3aow |

2t

1 00vL

0091

j—

— NOILYHNO!

3YNLYH3IdW3L 3OV4HNS YVONYOD

4

-samod Buninqiaye -
suoneuea 10ds — 1S3} |spow

auibua uimy jeIpUl — saunjesadwa) acepns epueo)  “6p ainbiy

$334933d - 319NV 30V4HNS YONVYOD
001 o,m 08 0. 09 05 Oy O 0O O 0
;m $ \wy +

M | M !
N A I L.:-LT!

Q3NDITV 31ZZON 8 SHOL03r3
: N

- A

+00¢

- 00%

H3L117S VONt 00 H1IM - SHILLINGS HOLOIFION | 1-Sov e
H3111NdS YONY OO HLIM - SEILIUNGS 501233 1Y ov q
HILLITdS VARYOD GN - SHILLNGS HO123r3 Tiv 9 0
H31117dS YONYOD ON - SB31117dS HOLD3r3 ON e (@)
T 777 TNoiLamos3o ON | 08WAS
NOILYHNOIINOD 13A0N

3HNIVHIdWIL 3DVIHNS YONVYOD

3




NAEC-GSED-98
Page 54

b it Sl i M

——— — -
- MODEL CONFIGURATION
[ svwmsoL NO ~ DESCRIPTION
o) 4051 | EJECTOR & NOZZLE CENTEALINES ALIGNED
& a3 EJECTOR G ! INCH BELOW NOZZLE §
A 46 | EJECTOR G ' INCH ABOVE NOZZLE ¢ |
2o a9 ! EJECTOR & 1 INCH TO SIDE OF NOZZLE §
! (FLOW CLOSER TO SIDEWALL) |
i

F

e b e 1t bl

llh s o i

COANDA SPLITTER TEMPERATURE

0 10 20 30 40 50 60 70 80 90
COANDA SURFACE ANGLE - DEGREES

NO EJECTOR SPLITTERS
WITH COANDA SPLITTER
AFTERBURNING CONDITIONS
PiPgq =+ 193 Tj - 2920°F

[ 1 400 d - ‘—T - - _?“ - T
Y O B
D ! - .
[,
& 1000F— A T = ;
W - ! ! |
% i : : :
80 = — - r~————————-=‘=\?»-—,
w ! .
o r . . | | H
- | R !
T 600F——— s !
2 . i ! i
g - ' |
Q 4004—--- ot oL L L
wn 00 . ] . . . :
) : ;
Z 2007 i e op s s
S | : | t |
© o - 1 — —

0 10 20 30 40 50 60 70 80 90
COANDA SURFACE ANGLE - DEGREES

Figure 51. Coanda splitter and sidewall temperatures - initial twin engine mode! test
- with misalignments - afterburning power.
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Figure 52. Ejector surface temperatures - initial twin engine model test splitter variations
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6.0 SINGLE ENGINE TAILPIPE/SUPPRESSOR TRANSLATION TEST
6.1 Objectives

The purpose of the fourth test seres was to determine the effect on flow attachment and system cooling of varying
the distance between the engine exhaust nezzie and the suppressor inlet. Engine installation such as on the F-4
aircraft where the engine exhaust is a iarge distance forward of the aft stabilizer necessitated this study. In such
cases, the suppressor inlet cannot be extended near the engine exhaust plane because of possible damage to the
arcraft during positioning or during runup movement. This 1s because of very little clearance between the aircraft aft
of the engine exhaust and the suppressor extension. Similarly, in the case of an engine test cell instaliation, the
distance from the engine tailpipe to the ejector inlet varies because the iocation of the engine thrust trailer in the cell
1s fixed and the vanous engines differ in length and in their fore and aft positioning on the thrust trailer.

6.2 Model Description and Test Apparatus

The Acoustic Arena facility and its data acquisition system described in Section 2.0 was usea for the single engine
transiation test described in this section.

The same one-sixth scale modsl hardware used in the first misalignment test (Paragraph 3.2) was used for this
translation test even though the first test resuits (Paragraph 3.4} indicated the transition gje ctor set from that model
10 be inefficient for cooling. This was done to eliminate the cost of fabricating a new model since relative cooling
performance could be determined. Dimensional drawings of the ejectors and Coanda surface are shown on Figure
55. The firstejector has aninlet area of 63.6 12 and an exit area of 49.51n2 which results in an exit area ratio (ejector
exitarea;prnmary nozzle areaj of 1.65, based on the afterburning nozzle area. The second ejector has an inlet area
0!54.7 in2, an exit area of 52.5 in2 which is an exit area ratio of 1.75. The third ejector has an inlet area of 57.6 in2,
an exit area of 55.5in2, and exit area ratio of 1.85. The primary nozzles used (not shown) are 4.31 inches and 6.18
inches in diameter for military rated thrust and afterburning, respectively. The afterburning nozzle is water jacketed
to provide cooling. These nozzles simulate the exit area of a TF30-P-12A engine at military rated thrust and
afterburning.

A schematic of the modei setup with instrumentation 1s shown on Figure 56. Static pressures are provided at the
nozzle lip to measure the pressure changes that may atfect engine operating conditions. Static pressure ports are
provided onthe internal wall of the ejectors to determine the ejector pumping characteristics and along the Coanda
surface centeriine 10 measure the extent of the pressure gradient that produces the flow turning. Thermocouples
are provided on the ejectors and Coanda surface to measure the metal surface temperatures so that the effects ot
configuration changes on system cooling may be determined. A total pressure and total temperature rake is
provided atthe Coanda surface exit to obtain exit flow conditions (Mach number, velocity, etc.) and to determine the
extent of flow attachment.

Figure 57 is a photograph of the model setup in the Acoustic Arena Test Facility and Figure 58 is a close-up of the
large inlet ejector and exhaust nozzle. The existing Coanda support frame from previous model tests (Reference 3)
was used. The ejectors are positioned such that the exit plane of one coincides with the inlet plane of the next. The
exhaust nozzle to ejector inlet spacing was varied by moving the model on a track with a roller system provided on
the support frame. Vertical misalignments are accomplished by jack screws provided on the model support frame
and sideways misalignment by adjustment of the track that positions the support frame.

6.3 Tes! Plan

Table 6 presents the model contigurations that were tested for evaluating the effects of translation distance coupled
with misalignments on flow attachment to the deflection {Coanda) surface and on system cooling. Also listed are
the data recorded for each configuration. The configuration numbers are listed on all data shown later in this repont
as an aid in identitication. It should be noted in the column of Table 6 that describes the misalignment direction that
the model s moved rather than the exhaust nozzle. This was necessary because of the stationary attachment of the
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burner and nozzie system to the facility floor. All ambient conditions such as temperature, pressure, relative
humidity, wind velocity, etc , were recorded along with the dala shown in Table 6.

The fiow conditions listed in Table 6 are simulated TF30-P-12A engine conditions and wera defined earlier in “'able
2 (Paragraph 3.3).

The configurations consisted of nozzle to ejector transiation distances of 2, 6, 12, and 18 inches at military power
and 2, 6, and 12 inches at afterburning. The maximum distance the nozzle was translated away from the ejector
inlet was limited only by the first ejector iniet size. The afterburning nozzle is larger thus accounting for the lesser
transiation distance at afterburning. Tufts were placed on the ejector lip to indicate whether the flow was being
captured by the ejector inlet or if some was “spilling” around the ejector lip. All configurations shown in the table
indicated the entire exhaust plume was captursd by the ejector inlet.

6.4 Test Results and Conclusions
6.4 1 Coanda Flow Turning Data

Figure 59 presents a summary of Coanda exit velocity profiles with the nozzle and transition ejectors aligned and at
military rated thrust (MRT) for transiation distances of 2, 6, 12, and 18 inches (mcdel scale) whichis squivalentto 1,
3. 6. and 9 feet fuil scale. These data indicate that at MRT the tiow attachment actually improves with increasing
nozzle to ejector inlet distance. This s probably the result of more comgplete mixing thus a more uniform flow at the
Coanda surface entrance. The corresponding Cecanda surface static pressure distributions are presented on
Figure 60. The pressure gradient shown by these data indicate a very good Coanda surface flow attachment. Data
at the 90° deflected position contirm the velocity protile data; i e., the two-inch translation data shows the least
pressure gradient (pressure gradient is the difterence between unity and the normalized Coanda surface static
pressure) and therefore et as strong flow attachment

Figures 61, 63, 65, and 67 present the Coanda exit flow velocity profiles for the misaligned (vertically and
horizontally) configuration at military rated thrust and translation distances of 2, 6, 12, and 18 inches (modei scale),
respeclively. Figures 62, 64, 66, and 68 nresent the corresponding Coanda surface static pressure distributions for
the misaligned configurations at translation distances of 2. 6. 12, and 18 inches. respectively. The data for a
two-inch translation distance (Figures €1 and 62) indicate an improvement in flow attachment with the nozzle flow
misaligned toward the lower surface of the transition ejectors and a slight detriment to attachment with the flow
misaligned honzontally to the side. Misalignment toward the upper ejector surface indicated flow attachment similar
to the aligned configuration. These results are indicated by the d.stance from the Coanda surface at which the peak
velocity occurs and the relative level of the normalized surface stetic pressure at the 90° position.

Data for the six-inch translation distance (Figures 63 and 64) at MRT conditions indicate an improvement in flow
attachment for the aligned cenfiguration as was seen previously on Figure 59. The relative variation in flow
attachments between the different misalignments remained simular to the two-inch translation, thus the only real
improvement was with the aligned configuration.

The 12-inch translation distance flow atiachment data at MRT (Figures 65 and 66) indicate an improvement in the
attachment for the configurations misaligned to the side and toward the lower ejector surface. This improvement
was to the extent that all configurations, aigned and misaligned, produced nearly equal Coanda exit velocity
profiles and 90° position Coanda surface static pressures

Coanda exit velocity profiles and Coanda surface pressure data for the 18-inch translation distance at MRT
(Figures 67 and 68) indicate virtually no ditfference in attachment between any misaligned and aligned
configurations.

Figure 69 presents Coanda exit velocity prohiles at afterburning conditions for translation distances of 2, 6, and 12
inches (model scale) with the nozzle and transition ejectors aligned. These data show no ditference in Coanda flow
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attachment or mixing due to the vanation in translation distance The translation distance was limitedto 12 inches at
efterburning povzer due to the larger nozzle size (atlarger distances the ejector inlet would not be large enough to
capture the expanding nozzle flow)

Figures 70 and 71 present Coanda exit velocity profile data at afterburning nozzle conditions and translation
distances of two and six inches (modei scale), respectively. for the misaligned configuration. These data indicate no
appreciable change in tlow attachment or mixing due to misalignment in any direction at either translation distance.

Figures 72, 73. and 74 present Coanda surface static pressurgs normalized by ambient pressure for aligned
configurations with translation, two-inch transiation with misalignment and six-inch translaton with misalignment,
respectively These data verify the analysis of the exitvelocity data of Figures 69, 70, and 71, 1.e., neither translation
distance nor misalignment is detnmentai to the Coanda flow attachment at alterburning conditions All
configurat:ons run at afterburning flow conditions iltustrate excellent flow attachment.

642 System Cooling Data

The transition ejector set used for this test was the same hardware that was fabricated for the single engine
misaignment test (Section 3.0). It was discovered in thal test that the ejector design was not correct for suthicient
cooling of the Coanda surface due to convergent area progressions of the ejectors and ejector lengths that were too
short (see discussion in Paragraph 3.4.2). It was decided to go ahead as previously pianned and use these ejectors
even though inadeguate cooling would be shown. This was done instead of incurring the additional expense of
redesign and fabrication of a new set of ejectors because the relative temperature ¢ ges caused by any model
configuration would be representative of those in a properly designed system. There . .. (he absolute levels of the
following data are not as important as the differences produced by madel configuration changes.

Coanda surface temperature data at afterburn.ng conditions are presented on Figure 75 for the configurations with
nozzie  ejector centerlines aligned and translation distances of 2, 6, and 12 inches. The peak temperature
decreds J about 50° with translation distances greater than two inches but did not decrease further between 6 and
12-inch transtations.

Coanda surface temperatures for the two-inch translation distance and aligned and misaligned configurations are
shown on Figure 76. The results with the ejectors moved one inch up so that the nozzle flow is loward the iower
surface of the ejectors are virtually the same as with the nozzle and ejectors aligned. However, with the ejectors
moved one inch downward, so thatthe flow is toward the ejector upper surfaces. the Coanda surface temperature is
about 300" cooler at the inlet and remains cooler in decreasing amount until the 457 turned position. The surface
temperatures are about the same as for the aligned configuration from that position to the Coanda exit. The initial
lower temperature for the ejectors moved one inch down configuration may be a continuation of the “ricochet
eftect” through the ejectors described tater in this section. The fact that the model misaligned one inch to the side
configuration shows Coanda surface temperatures lower than the aligned configuration at all positions beyond the
Coanda inlet may also be related to this effect.

Figure 77 presents the Coanda surface temperatures at the six-inch transiation distance for aligned and misaligned
configuration at afterburning power conditions. The greater transiation distance tends to equalize the peak
tempaerature for all configurations at a value about 50° less than the highest temperature configurations at the closer
distance. The same trands that were evident at the two-inch translation distance are seen in six-inch translation
data but not nearly as pronounced.

Misahignments at the 12-inch distance did not allow the first ejector iniet to capture the entire flow as was evidenced
by the tufts on the infet lip turning outward on the side closest to the fiow The trends from the two and six-inch
translation data indicate that greater distances would show no difference in Coanda surtace temperatures due to
any misalignment and a shight overall decrease in temperature due to mixing over the increased translation
distance (assuming the transition ejectors were enlarged enough to capture the flow).

i i
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Transiion ejector internal static pressures for afterburning conditions and translation distances of 2, 6, and 12
inches with no misalignment are shown on Figure 78. The corresponding ejector surtace temperature data along
the side and top surfaces are shown on Figure 79. The most important aspect of these data is that the greater
translation distances allows the jet 1o expand and more nearly lill the ejectors, which reduces the ejector
entrainment (especially the first ejector). This is evidenced by the higher inlet static pressures recorded with
increased translation distence (Figure 78) and the corresponding higher ejector temperatures with increased
transiation distance (Figure 79). This indicates that the ejector area should be sized for the entire entering flow,
including entrainment, rather than just the pnmary flow rate. The higher surface temperatures on the side of the
second and third ejector inlets, when compared to the top temperatures, were caused by the smaller gap on the
sides of the ejector inlets and, thus, a thinner film of cooling air. The ejectors were designed with the greater amount
of the area increase between ejectors at the upper and lower surfaces because the transitioning to rectangular flow
requires more cooling of those surfaces.

Figures 80 and 81 present the ejector internal static pressure data and ejector surface temperature data,
respectively, for the two-inch translation distance with aligned and misaligned flow at afterburning conditions.
Temperatures were higheston the first ejector and lowest on the second and third ejectors for configuration with the
flow misaligned toward the upper ejector surface. The lower temperatures on the top of the second and third ejector
were probably due to the flow impinging more directly on the upper surface of the first ejector and then ricocheting
off and impinging on the lower surtace of the second and third ejectors. The peak temperature on the first ejector
was increased by about 250° due to misalignment. The configuration with the fiow misaligned toward the lower
surface of the ejectors has the lowes! temperature at the top surface of the first ejector because the flow impinges
more direclly on the lower surface. The first ejactor top surface temperatures for the sideways misaligned
configuration were about the same as for the model aligned; however, the side temperature levels were about the
same as those recorded at the top with the misalignment toward the upper surface.

Figures 82 and 83 present the ejector internai static pressure data and ejector surface temperature data,
respeclively, for the six-inch translation distance with aligned and misahgned tlow configurations at alterburning
conditions. The results are qualitatively the same as for the two-inch transiation distance. The peak temperatures
are within data repeatability of the values for two-inch translation. The “ricochet’ effectis still evident but seems o
be less pronounced. This is shown by the temperature measurements of the second and third ejector tor the various
configurations approaching more equal values. Again, this is caused by a more complete filling of the ejectors with
expanding primary flow than is possible at the lower transiation distance.

6.4.3 Conclusions

The following conclusions may e made from the results of the single engine tailpipe suppressor translation modet
test:

. The Coanda suppressor system will operate at the nozzle/ejector inlet translation distance required for
the F-4 aircraft as long as the transition ejectors are sized large enough to handle the flow.

. There are no detrimental etfects on flow attachment or cooling dus to increasing the distance between
the nozzle exit and the suppressor (1.e.. transition ejector) iniet. On the contrary, the flow attachment
appears 1o be improved with greater translation distances, probably because the jet spreading and
mixing which occurs prior to entering the suppressor provides a more uniform flow at the
ejector.transition exit.

e The eftect of oftset misalignments of nozzle and ejector centerlines on Cnanda flow attachment was
reduced by increasing translation distance (i e ., flow attachment for misal:gned configuration was nearly
the same as for the aligned configuration atthe greater translation distances). Agan, this is because the
spreading jet “fills” the ejector and provides a more uniform exit flow.

° The ejector areas (and hrst elector inlet) have to be increased it the translation distance 15 too great
because the exhaust spreads and entrains more secondary air (prior to the ejector inlet) than the ejector
1s capable of pumping which would result In back flow
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TABLE 6. SINGLE ENGINE TAILPIPE TO SUPPRESSOR TRANSLATION TEST CONFIGURATIONS

NOTE: ALL DIMENSIONS IN INCHES

PRIMARY DATA
CONFIGURATION [ /0720E FLow NOZZLE.EJECTOR | NOZZLE'EJECTOR SURFACET BT TTEST RUN
NUMBER  |ieeo ]l conmion | TRANSLATION | MISALIGNMENT P & T | Pi&aTi | NUMBER
50 431 |FULL MILITARY 2 NONE X x 21
51 431 EFULL MlLlTARV——‘F 27_ S ;\AODEL 1°UP § x X 22
52 T4 FuLL MILTARY 2 MODEL 1 DOWN x X 23
53 431 4' FULL MILITARY 2 MODEL 1" TO SIDE x Ty 3
54 4.31 : FULL MILITARY 6 NONE X—— X 26
55 431 | FULL MILITARY 6 MODEL 1° UP x | x 25
56 i a3 "FULL MILITARY 6 | MobeL 1 DowN X X 24
57 L 431 {FULL MILITARY 6 MODEL 1" TO SIDE X X 34
58 1 431 | FULL MILITARY 12 NONE | x| x|
59 ] 431 [FULL MILITARY 12 | MODEL 1° UP x x 28
60 | 431 !FULL MILTARY 12 MODEL 1~ DOWN X X 29
61 a3 TRUL MILTARY | 12 MODEL 1 TO SIDE X X 35
62 JI 431 FULL MILITARY 18 NONE X X 30
72 1 431 |FULL MLITARY | 18 MODEL 1" TO SIDE X x 36
73 | 431 FULL MILITARY 18 MODEL 1" UP X X 31
74 431 | FULL MILITARY 18 MODEL. 1" DOWN X X 32
63 | 618 AFTERBURANING | 2 ] wome | x X 53
64 ] 618  |AFTERBURNING 2 MODEL 1” UP X X 54
65 " 618 |AFTERBURNING 2 MODEL 1" DOWN x X 52
66 . 618 | AFTERBURNING 2 MODEL 1" TO SIDE x X 4
67 | 618 | AFTERBURNING 6 NONE X X 49
66 618  |AFTERBURNING 6 | Mooet 1~ up x | x | s
69 6.18 Ansneunnm?r 6 TmoveL 1 oown | x x 51
70 | 618  |AFTERBURNING & MODEL 1~ TO SIDE X X 47
7 618  |AFTERSURNING 12 NONE X X a8
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Figure 55. Dimensionsl drawinge of single engine Coanda surface and ejectors.
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MQODEL CONFIGURATION
SYMBOL NO DESCRIPTION .
(0] 50 2-INCH TRANSLATION  MODEL AND NOZZLE ALIGNED =
o] | o 6-INCH TRANSLATION  MODEL AND NOZZLE ALIGNED
A | 58 12 INCH TRANSLATION MODEL AND NGZZLE ALIGNED
0] i 62 18-INCH TRANSLATION MODEL AND NOZZLE ALIGNED
400 l T I — T I
| ! | MILITARY POWER CONDITIONS |
' | i PPy = 212
Q _ <
SQ ! T, = T30°F
2 .J i |
E 300 i &T I
) ’
=
Q |
S
o 200 et -
> : !
- v !
b4 | |
w .
<« | ;
g 100 B S
<
@]
© |
| |
04 | | 1 :
0 4 8 1? 16 20 24 28

DISTANCE FROM COANDA SURFACE  INCHES
Figure 59. Coanda exit velocity profiles - translation test with model centered (military power).
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Figure60. Coanda surface pressure distribution - transiation test with model centered (military power).
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MODEL CONFIGURATION
SYMBOL NO DESCRIPTION
0] 50 EJECTOR & NOZZLE CENTERLINES ALIGNED
o 51 EJECTOR § 1 INCH ABOVE NOZZLE ¢
A 52 EJECTOR § 1 INCH BELOW NOZZLE §
| 03 53 EJECTOR @ 1 INCH TO SIDE OF NOZZLE ¢
400

P/Pa = 2.12

P—W\l ! } Ty - 730°F
300 i - — -

g T 1 = T 1
2-INCH TRANSLATIOHIJ DISTANCE, ! MILITARY POWER CONDITIONS
i

- FT/'SEC

> ’
=
O H
O :
@ 2004 x4~ D
>
— f
X ‘ M_r-o\q )
m H
é { i !
Z 100 —+ -f—
Q | :
) ‘

0 } 4 }

0 4 8 12 16 20 24 28

DISTANCE FROM COANDA SURFACE INCHES

Figure 61. Coanda exit velocity profiles — 2-inch translation with misalignment (military power).
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Figure 62. Coanda surface pressure distribution - 2-inch translation with misalignment (military
power).
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Figure 63. Coanda exit velocity profiles — 6-inch transiation with misalignment (military power).
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Figure 64. Coanda surface pressure distribution — 6-inch translation with misalignment
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i 1 MODEL CONFIGURATION
Fomeor Two 1777 oescremon T
(SYMBOL | NO_ L _OESCRPTION
}' © %6 | EJECTOR & NOZZLE CENTERLINES ALIGNED '
A 59 ‘ EJECTOR ' INCH ABOVE NOZZLE § i
! (O] | 6c €IECTOR G 1 INCH BELOW NOZZLE § |
. :
' O P e EJECTOR ¢ 1 NCH TO SIDE OF NOZ2LE §
[ DR S S O o
400 y
O }
w
v '
= 30C A :
1
: |
=
o)
o i
o 200 —4‘
>
[t v
L)I.(J : H I i H |
< __1 12-INCH TRANSLATION DISTANCE i |
3 z 100 4 177 "TMILITARY POWER CONDITIONS = = "7 777 - e
1
8 i PPy 212 T 730F ) I ;
f | 1 B i
I |
| | |
0 | . | |
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DISTANCE FROM COANDA SURFACE  INCHES
Figure 65. Coanda exit velocity profiles — 12-inch transiation with misalignment (military power).

SUIRE

SYAFACE STATIC PRESS
AMBIEN . PRESSURE

COANDA

T
I : i
| . ! | : I ‘
| I 12 INCH TRANSLATION DISTANCE | |
e - . MILITARY POWER CONDITIONS -
! 1BP, 212 1 730F ! :

954

ANGLE FADM ADANDA NET DEGREES

Figure 66. Coanda surtace pressure distribution -- 12-inch translation with misalignment
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Figure 67. Coanda exit velocity profiles - 18-inch transiation with misalignment (military power).
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MODEL CONFIGURATION
SYMBOL NO. DESCRIPTION
0] 63 2.INCH TRANSLATION MODEL CENTERED
0 67 6-INCH TRANSLATION MODEL CENTERED
A 7 12-INCH TRANSLATION MODEL CENTERED
800 — T r
i AFTERBURNING CONDITIONS
' P/P, = 1.93
Ti = 2,920°F
700 4 N
600
O
w
o
T 5004 !
> !- |
S i
Q !
@ 400
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=
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In !
g | ' |
Z 300 ; - r
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@] i |
&) i
!
i
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|
0
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Figure 69. Coanda exit velocity profiles - translation test with model centered (afterburning power).
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7.0 TWIN ENGINE MISALIGNMENT TEST

71 Objectives

The tifth mode! test of the series was a continuation of the development of a Coanda flow turning system for twin
engine arcraft with closely spaced engines (such as F-4, F-111 and F-15 aircraft) that was begun by the Initial Twin
Engine (described in Section 5.0} Model Test. Tha fitth and last model test of the senes was a misalignment testof a
twinengine del that differed from the initial twin engine suppressor made! primarily in the transition gjectors. This
ejector set was designed to allow more secondary entrainment between the two engine flows than in the previous
twin enginie model test. The purpose was to study a different improved) model configuration for any adverse effacts
of concurrent jet deflection of two distinct jet flows, as well as determine 1f offset and’or angular misalignments
create any adverse effects of concurrent jetattachment ana system coziing The model had a five ejector transition
to study the feasibility of extending the transition section out in front of the suppressor ta capture the flow from
arrcraft. such as the F-4, which have the engine exhaust torward of the airplane empennage.

7.2 Model Description and Test Apparatus

The Acoustic Arena facility described earher in Section 2.0 was used to run this test series. The data acquisition
system was the same as that outhned in that section. Faciity changes were required to provide the second nozzle
tiow: therefore. the twin flow rig buil: for the Initial Twin Engine Test (Section 5 .0) was remnstalled. The nozzles were
placed nine iInches apar which i1s equivalentto 54 inches full scale, simulating the distance between the F-4, F-111
and F-15 aircraft engines. The second nozzle system flow was provided with a J47 engine burner and controls to
heat the air to the required temperature for exhaust simulations up to 1500°F.

A new mode! was fabricated for this test consisting of dual five-ejector transition sections with centerline spacing
simulating the centerline distances between the F-4, F-111 and F-15 aircraft (54 inches full scale). and a double
width Coanda surface with a removabie center splitter. The first twa ejectors of each set were cylindrical and
removable. The flows of the dual engines are separated through the first three ejectors but the last two pairs are
joined into units without a dvider wall. Figure 84 shows a schematic of the ejector, Coanda surface and dual tiow ng,
along with the iocations of the stalic pressure and surface temperature pickups.

Figure B5 presents dimensional drawings of the Coanda surface and transition ejectors. The transition section is
designed to change the flow from circular to rectangular for introduction into the Coanda flow turning surface. The
first ejector 1s convergent in area with an inlet of 44 in2 per side and an exit of 38 in2 The exit area ratio based on
the atterburning nozzie is 1.27. The second ejector 1s cyhndnical with an inlet and exit area of 42.9 in2 which results
inan arearatio (based onthe atterburning nozzle exitarea) of 1.43. The first two ejector sets were tabricated of .090
inch thick Inconel. The third ejector set starts the transition from circular to rectanguilar. It has a constant area of
48.3 in2 which 1s an area ratio ot 1.61. The fourth ejector sel continues the transitioning toward a rectangular tlow.
The spreading of the flow 1n the horizontal plane causes the twin flow passages to begin 1o overlap at the fourth and
tifth stages without a divided wall between the two flows. The overlap and resulting decrease in ejector flow area
was aliowed because one engine runs at idle (low flow) condition while the other i1s at the high airflow conditions;
therelore, the total pnmary fiow converging Into orc gjector is not much greater than for one engine at maximum
powaer. It the overlap in gjectors were not allowed, the (et exhaust would have (o be transitioned outward as well as
reshaped to rectangular. The fourth ejector had aninlet area of 53.7 in2 and exit area of 52.2 in2 per side. The fifth
ejector was one umit without a divider ar.d had an inlet area of 57.1 1n2 and exit area of 54 in2 per side. The trird,
fourth and fifth ejectors were tabricated of 09 thizk stainless steel. The last ejector exithas an area ratio (based on
the afterburning nozzle area) of 1.80 and an aspect ratio (width;height) of 1.83 per side; however. the exit is one
long rectangle which results in an aspect ratio of 3.65.

The Coanda surtace curvature is based on a logarthmic spiral with a six-inch straight section at each end. The
Coanda surtace 1s provided with a removable sphtter and sidewalls as shown in the sketch on Figure 85.
Photographs of the ejector and Coanda system in their support stand are shown on Figures 86 and 87.
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Figure B8 shows the twin engine Coanda model installed in the Acoustic Arena prior 1o testing. Figure 89 is a
photograph of the Coanda model taken from upstream showing the twin flow systems.

Annstrumentation list for the twin engine model 1s seen in Table 7 Location of the instrumentation on the model is
shown on Figure 84 and can also be seen on Figures 88 and 89 Temperatures and pressure data were measured
on the Coanda surface every 10 angular degrees at points directly ir: line with the primary nozzle centerline. The exit
rake which measureg pressure and temperature of the flow at 14 points across the Coanda exit was also initially
located along this line. Pressure and temperature were measured on the Coanda sidewall at alternate angular
positions (07, 207, 40°, 60°. and 80°) and temperatures were measured at corresponding positions on the Coanda
splitter. Forward and aft temperatures and pressures were measured on the top and side of each ejector. Forward
measurements were approximately one inch from the inlet piane and gft measurements approximately one inch
from the exit plane.

In addition to the usual tour primary nozzle static pressure pickups. two more were added at the 9 o'clock and 3
o'ciock posion {looking upstream) on the prmary and secondary nozzles, respectively

73 Test Plan

Table 8 presents the mode! configurations that were tested for evaluating the twin engine Coanda flow turning
system. The configuration changes consist of varying the engine power setting, the number of transition ejectors
and misalignments (both oftset and angular) between exhaust nozzie and ejector iniet. Also listed are the data
recorded lor each configuration. The configuration numbers are listed on all data shown later in this report as an aid
in i[dentihication. It should be noted 1n the column of Table 8 which describes the misalignment direction that the
model 1s moved rather than the exhaust nozzle. This was necessary because of the stationary attachment of the
burner and nozzle system to the facility floor

Figures 90, 91,92, and 93 illustrate the offset and angular misalignments described for the configurations listed in
Table 8. The configuration numbers are given on these figures 1o aid in (dentification.

The flow conditions histed i Table 8 are simulated TF30-P-12A engine conditions and were defined carlier in Table
2 (Paragraph 3.3).

7.4 Test Results and Conclusions
7.4.1 Coanda Flow Turning Data

Figures 94 and 95 present Coanda ext velocity profites computed from the exit rake total pressure and temperature
data for mode! contigurations with three, four and five ejector transitions and no misalignment at military (MRT)
power and afterburning (A/B) conditions, respectively. In each case, the other engine was at idle conditions. The
four ejector transition was not run at military conditions (see Table 8). These data indicate no difference in fiow
attachment or Coanda surface mixing because of the number of ejectors in the trans:tion ‘section. The Coanda
surface slatic pressure data for these same model configurations are presented on Figures 96 and 97 for MRT and
A/B flow conditions, respectively. These data also indicate very little difference in flow atiachment due to the
number ot ejectors. Both exit velocity profiles and surface static pressure data indicate very good flow attachment at
both MRT and A B conditions.

Figures 98 and 99 show Coanda exit velocity profiles and Coanda surface static pressures, respectively, for the five
ejector lransition configuration with and without ofset misalignments of one inch (see Figure 90) at MRT primary
nozzle conditions. These data show that the only significant deterioration flow attachment occurs with sideways
oftsets of nozzle and ejector centerlines. The static pressure data for the sideways misalignment (Figure 99)
indicates flow detactment at the 10° position which is not acceptable flow turning. It will be shown later that a
sideways offset misahgnment of 2 inch would probably have produced actaptable flow turning.
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Figures 100 and 101 present Coanda exit velocity profiles and Coanda surtace static pressures, respectively, for
the five ejector transition configuration with one-half inch offset as well as angular misalignments of 3° (in the
vertical plane) at MRT primary nozzle conditions. Figure 91 shows the different misalignment configuration. All
configurations resulted in data that indicate good flow attachment occurred regardless of the misalignment. The
configuration with the transition inlet angled upward and the nozzle offset downward (ejector centerline offset
upward) shows a very shght decrease in the strength of flow attachment by the peak velocity (Figure 100) being
turther from the Coanda surface than for the other configurations and by the Coanda surface static pressure (Figure
101) being higher than the other configurations at the 40° to 90° positions.

Figures 102 and 103 present Coanda exit velocity profiles calculated from exit rake total pressures and
temperatures for the three ejector transiion configuration with offset misalignment at mititary rated thrust and
afterburning conditions, respectively. The offset misalignments at military were one inch as before except for the
sideways offset which was reduced to one-half inch where excellent flow attachment is shown. The offsets at
afterburning conditions were reduced to one-haif inch because the larger nozzle allowed impingement on the
ejectorinlet at a one inch offset. All configurations demonstrate good flow attachment and Coanda surface mixing.
The Coanda surface static pressures for these same model conhgurations are presented on Figures 104 and 105.
These data also indicate good flow attachment at all offset configurations and primary flow conditions for the three
ejector transition

Figures 106 and 107 present Coanda exit velocity profiles for the three ejector transition configuration with one-hatt
inch offset misalignments in addition 1o angular misalignments of 3” (in the vertical plane) at MRT and A/B primary
nozzle conditions, respechively. Figure 93 shows the different misalignment configurations. All configurations
resulted in data indicating good Coanda flow attachment regardiess of the misalignment configuration. Only the
configuration with the transition inlet angled upward and the prnmary nozzle offset downward at MRT indicates any
decrease in fiow attachment strength. This 1S indicated by lower velocities near the Coanda surtace and peak
velocity further away than for the other configurations. The Coanda surface static pressures for these
conhigurations at military flow conditions shown on Figure 108, however, do not clearly indicate a decreased flow
attachment for the configuration with inlet angled upward and nozzle oftset downward. These data indicate superior
attachment strength (lower static pressures) in the 10" to 30° positions for both configurations with inlet angled
upward and then equivalent pressure differentials to the other configurations at the 40° 10 90° positions. This may
indicate that with the smaller military primary nozz2!e and the transition angted away from the Coanda surface, there
is improved mixing and thus lowcr exit veloc'ties at the Coanda 90° position. The Coanda surface static pressure
data for the offset and angular misaligntnents and afterburning conditions are shown on Figure 109. These data

support the exit velocity profile (Figure 107) data indicating good Coanda surface flow attachment for ail
misalignment configurations tested

7.42 System Cooling Data

Coanda surface ternperature data taken up the centertine of the hot side of the twin Coanda surtace for the three,
four and five ejector transition model contigurations without misalignments are shown on Figure 110. The hot side
nozzie was at afterburning conditions and the other at idle. It 1s obvious from these data that the three-ejectr
transition provides for better surface cooling than the five-ejector set, and considerably more thar the four-ejector
configuration. These data may produce a question as to why the velocity profiles for these configurations (shown on
Figure 95) were so nearly the same,yet, the Coanda surface temperatures indicate quite different results. These
seemingly incompatible data may be explained by remembaering that the secondary air entrainment and mixing in
the Coanda flow turning far exceeds that provided by the ejectors. Therefore, large differences in ejector pumping
are not evident in the Coanda exit velocity profiles and the Coanda surface cooling (at least the first portion) is
dependent on the ejector pumoing capabiiies. The temperatures recorded for the three ejector transition
configuration are acceptable (below 1000“F)

Typicai full scale Coanda surface temperature data were shown on Figure 110 to illustrate that modcl scaie testing
shows higher surface temperature data at the upper portion {above the 30" position) of the Coar 1 surface. These
differences are due to the difficulty in scaling conduction heat transter (i.e., the scale model Cc anda su-face is only

AN Mo



NAEC-GSED-98
Page 84

one-sixth as long as the tull scale surface, therefore, it takes much less time ir model scale for the tempera.ure at
the upper part of the surface to be influenced by the hotter peak temperature of the lower portion of the surface).
This indicates that only peak Coanda surface temperature should be considered from the scale model data.

The Coanda surface data for model configurations with three-ejector transition and offset nozzle to ejector
centerline misalignments at A/B nozzle conditions are presented on Figure 111. In general, all misalignments
cause an increase in Coanda surface temperature, probably because off-center fiow decreases the pumping
efficiency of the ejectors. Coanda surface temperalures reached 1200°F for the sideways musalignment
configuration.

Figure 112 presents the Coanda surface temperature data from the three ejector transition modet with offset and
angular nozzle to ejector centerhine misahignments and afterburning primary nozzle conditions. Offset
misahgnments both up and down with the transition ejectors angled upward at the inlet cause an increase in
Coanda surface temperature (up to between 1250 and 1290°F in local areas). This is because the primary flow
impinges more upon the upper ejector surfaces in these configurations and effectively “shuts off* air entrainment at
these upper surfaces, thus providing less cooling to the Coarnda surface. The configurations with the transition inlet
angled downward illustrate only slightly higher {(up to 1100 ) Coanda surface temperatures than tor the aligned
configuration.

Figures 113, 114 and 115 present ejector surface temperature and internal static pressure data for afterburning
conditions without misahgnment and the five, four ana three-gjector transition, respectively. Several important
lems are indicated by these data:

N The higher than ambient static pressures at the first ejector inlet of the five ejector set (Figure 113)
indicate the first ejector area was 100 small to accommodate the expanding primary flow plus free jet
entrainment upstream of the point at which the expanding jet meets the ejector walis.

. The high temperature at the top (and probably bottom also) of the round first gjector inlet in all
contigurations indicate that the prmary flow 1s trying to attach to the convergent upper and lower
surfaces of the transition ejectors.

° The higher than ambient static pressures at the inlet of the 1ast ejector in all (three, four and five-ejector)
configurations indicate a lack of secondary air pumping in the last ejector. This would be improved by
enlarging the exit area of the last ejector.

Figures 116, 117 and 118 present the ejector surface temperatuie ancd internal static pressure data for the
three-ejector configuration with the pnimary nozzle at afterburnmng conditions and offset upward, downward and to
the side, respectively. The general trend from thuse data is that the first ejector inlet temperature increases
aramatically on the side toward which the nozzle is offset, and then the temperature decreases at the second
ejector on that side but increases on the opposite side. {Note: Data on Figures 117 and 118 are from sides opposite
the direction of offset ) This trend1s due to the ricochet effect discussed earlier as well as the tendency for the flow to
attempt to attach 1o the ejector side toward which the nozzle 1s misaligned. The third ejector exit temperatures
remain relatively constant except tor the configuration (No. 127B, Figure 118) oftset to the side for which the
sidewall temperature opposite the offset direction increased in temperature 10 above 1200°F (about 400° increase
from the configuration without misalignment).

Figures 119 through 122 present the ejector surface temperature and internal static pressure data for the three
ejector configuration with the primary nozzle at afterburming conditions and with offset and angular misalignments.
Again, the first gjector inlet temperatures were q ite high (between 1500 £ad 1700°F) on the side toward which the
nozzie was oftset. Otfsets of nozzle downward (see Figure 122) does not show the temperatura rise because there
were no thermocouples on the lower surfaces The configurations with the transition inlet angles upward with
offsets both upward and cownward caused an increase (1o a surface temperature betweusn 1150 to 1300°F) in the
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temperature at the side and exit of the second and third ejectors. This 1s probably from the spreading of the hot
primary flow after it impinged on the gjector upper surfaces.

7.43 Conclusions

The folloaing conclusions may be made from the results of the twin engine misalignment test:

b The Coanda suppressor system will operate with offset and:or angutar misalignments between nozzle
and ejector centerlines. However. as was seen in previous single engine misalignment tests the
sideways or honizontal misalignment 1s imited to about half (three inches full scale) that tor vertical
misalignments (six inches full scale).

. The ejector system used could be improved by slight changes in areas The tive ejector transition needs
1o have the first ejector area increased (or 1ts length decreased). Both five and three ejeclor transitions
need to have the exit area of the last ejector increased These changes would help the system cooling
problems

. Coanda surface cooling 1s more acceptable with the three-ejector transition than with the five-ejector
configuration used in this test because of more etficient ejector pumping. This conclusion, however,
would not be true If the five-ejector set had been sized correctly. Generally offsel and/or angular
misalignments cause increased Coanda surface temperatures but not to a level that would create
senous problems

° Offset and or angular misalignments create tirst ejector inlet temperaitures that are undesirable (1500
to 1700 F) for low carbon steel. It such misaignments are to be encountered in actual suppressor
operationitis recommended that atleast the first ejector be fabricated from a high temperature material
such as Inconel.
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TABLE 7. TWIN ENGINE INSTRUMENTATION REQUIREMENTS
TYPE AND LOCATION UNITS QUANTITY  RANGE ACCURACY
STATIC PRESSURE AT NOZZLE psia 8 0-20 + 05 ps
STATIC PRESSURE EJECTOR WALLS psia 12 1016 + 02 ps
STATIC PRESSURE COANDA SURFACE asia 10 10 - AMB = 02 p8i
TOTAL PRESSURE COANDA EXIT RAKE psia 14 AMB - 20 = 1%
SURFACE TEMPERATURE THERMOCOUPLE ‘F 12 AMB - 1500 * 2%
EJECTOR WALLS
SURFACE TEMPERATURE THERMOCQUPLE F 10 AMB - 1300° = 2%
COANDA SURFACE
SURFACE TEMPERATURE THERMOCOQUPLE °F s AMB - 1500° + 2%
COANDA SPLITTER
TOTAL TEMPERATURE COANDA EXIT RAKE °F 14 AMB - 1300° = 2%

GENERAL INSTRUMENTATION REQUIREMENTS

il ittt

TOTAL PRESSURE JET EXHAUST psia ©) 0-35 = 19%

TOTAL TEMPERATURE JET EXHAUST F @ ©) 0 - 1600 = 2% 5

AIRFLOW - PRIMARY JET LBS SEC 1 0-80 < 1% 4
® e

AIRFLOW - COANNULAR OR 2ND NOZZLE LBS SEC 1 0-100 = 1%

FUEL FLOW - PRIMARY JET gpm 1 0-35 = 1%

FUEL FLOW - COANNULAR OR 2ND NOZZLE gpm 1 c-07 = 1%

AMBIENT PRESSURE psia 1 — = 1%

AMBIENT TEMPERATURE F 1 - - 2%

@ ONE EXHAUST PRESSURE AND TEMPERATURE REQUIRED FOR MISALIGNMENT TEST AND TwC EACH FOR
COANNULAR AND TWIN ENGINE TESTS

@ FOR AFTERBURNING CONDITIONS (=3000°F) SET UP ON A PREDETERMINED FUEL AND AIRFLOW RATE. FOR
NONAFTERBURNING CONDITIONS MEASURE TEMPERATURE DIRECTLY

@ MEASURE AND RECORD STANDARD FLOW NQZZLE. P. AP. AND TEMPERATURE. AND CALCULATE MASS FLOW IN A
COMPUTER PROGRAM
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' TABLE 8
‘l TWIN ENGINE MISALIGNMENT TEST CONFIGURATIONS
i PRIMARY
; NOZZLE DIA. DATA
i CONFIGU INCHES FLOW CONDITION | EJECTOR
RATION LEFT. GRY T LEFT. RIGHT | CONFIGU. | NOZZLE/EJECTOR [SURFACE | EX1T | TESTRUN
NUMBER | HAND | HAND | HAND HAND | RATION MISALIGNMENT [P, &Tm |P & T, | NUMBER
84 143t laxn 10LE 1DLE SETQF 5 NO QFFSET.NO X X : 56-1
: ; ! ANGULAR ] '
R e i S . ANGULAR .___ - i
85 3 431 MILITARY | IDLE |SETOFS6 | NOOFFSET.NO X x 56-2
| | i - ANGULAR |
86 a3 43 (OLE IDLE SETOF 5 MODEL 1'* DOWN X X 6571
L___ - N o NO ANGULAR o
87 {431 {431 | MILITARY | IDLE |SETOFS | MODEL 1~ DOWN x x 57.2
|y T T | noangunar L .
. 88 | 431 431 IDLE IDLE [SETCFS5 : MODEL 1" UP X X 591
S - . NO ANGULAR — —
89 a31 a3 MILITARY | 1DLE , SETOF5 | MODEL 1" UP X X 59.2
S I ; b L _NOANGULAR .
90 “a3n { 4n 1DLE | IDLE |SETOFS5 ! MODEL 1" TOSIDE| X x 601
. ot NO ANGULAR | ]
Nn | 431 Fag MILITARY | IDLE | SETOF 5 MODEL 1" TOSIDE| X X 60-2
' I ' NO ANGULAR
] - IS S IO | LA
92 R 1OLE | IDLE |SETOF5 | MODEL OFFSET. | X x 61-1
| : | i 1727 DOWN,INLET |
f e L L 300O0OWN T
93 1431 1431 | MILUTARY | IDLE |SETOF5 | MODEL OFFSET, ] X X 61-2
i . [ 172" DOWN, INLET ;
i l i 30 DOWN ! E
T 1 T B
94 T43Y ! 431 | IDLE JIOLE [ SETOFS | MODEL OFFSET, x x 631 =
| | 1/27 UP, INLET 3
: o
bt 39 up T 3
95 fa31 a3 MILITARY | IDLE :SETGF5 | MODEL OFFSET X x 63-2 3
; | 172" UP, INLET 30 =
| ' P 45
% 431  am IDLE IDLE |SETOFS5 | MODEL 1/2” DOWNl x X 4.1 3
i X 1 INLET30UP N 4
97 a1 | a3 MILITARY | IDLE |SETOFS& | MODEL 1/2°DOWN' X X 64.2 1
| — N _ INLET 30 UP . 3
98 1431 4.31 IOLE IDLE | SETORS | MODEL 1/2" UP x X 621 3
. | f o _|_NLET 30 DOWN 1
99 |43 4 MILITARY | IDLE |SETOFS5 | MODEL 1/2" UP X I x 62:2 3
: | INLET 32 DOWN =
— AL 3
100 618 | 431 AFTER. 1 IDLE |SETCQFS | NOOFFSET X X 65 4
BURNING | ] NO ANGULAR E
006 618 4 AFTER. IDLE |SETOra | NOOFFSET X X 67 3
i BURNING | [T NO ANGULAR | B 3
101|618 [431 | AFTER. | IDLE |SETOFS | MODEL 1"DOWN | X x 66 E
| BURNING '@ | _NO ANGULAR
102 1618 {431 | arTeER | 1DLE [SETOFS | MODEL1"UP | X X NOT RUN :
= BURNING NO ANGULAR 3
103 618 |41 AFTER. IDLE ISETOFS | MODEL 1~ TOSIDE| X X NOT RUN i
BURNING 1. i woaneuar | | T | 7 T 3
104 618 | a; AETER. IDLE |SETOF5 | MODEL OFFSET X x NOT RUN 3
| | BURNING 1/2" DOWN. INLET E
L 3°00WN 1 B _ ;
105 618 . 4N AFTER IOLE SET OF 5«| MODEL OFFSET X X NOT RUN E
| BURNING ! 12 0p, INLET 3
R (R T B L i = -
106 618 | am AFTER IDLE | SETOFS | MODEL 1/2° DOWN' X x NOT RUN 4
- __JBURNING | 1 INLET 30 UP E
107 518 | 431 AFTER. IOLE [SETOFS | MODEL 1/2° UP X X NOT RUN E
| BURNING INLET 39 DOWN 3
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;
i
: TABLE 8
. TWIN ENGINE MISALIGNMENT TEST CONFIGURATIONS (CONT'D)
T
PRIMARY B —I
NOZZLE DIA ! DATA
: CONFIGU- INCHES FLOw conDITION | EJECTOR | ——
- RATION [LEFY. | RIGHT!I  LEFT. HIGHT- | CONFIGU- © NOZZLE/EJECTOR [SURFACE | EXIT | TEST RUN
: NUMBER | HAND | MAND | HAND | HAND | RATION | MISALIGNMENT | P& Tm | P&, | NUMBER
: 108 431 . 431 !IDLE " IDLE ISETOF3 | NOOFFSET X 0ox 851
: : . NO ANGULAR |
109 la f 43 PMILITARY | IDLE SETOF 3 NO OFFSET X X 85.2
! NO ANGULAR
_h;--T*Hffm. T e B plal
119 431 14 |DLE 1DLE SETOF 3 MODEL 1" DOWN X X 841
: o b _ [ NODANGULAR __
1M 431 431 '_MILITARY : 10LE SETOF 3 MODEL 1" DOWN X X l 84.2
: ' L P NO ANGULAR |
n2  lam: 1431 |iOLE | IDLE [SETOF3 | MODEL 1" UP X x | 88
l ! : NO ANGULAR :
. I T G N A I W LA R —
! 13 FETIFED _'Mu.nmv { '/DLE [SETOF3  MODEL 1" UP X x | 882
: e i} . _NOANGULAR__ L
[ i1aa }a 3 i 431 IDLE | 'DLE [SETOF3 | MODEL 1/2"' TO x x 861
- | , ' SIDE.NOANGULAR
S -4 SR S e —r-— b - —_
148 43 431 IDLE IOLE  |SETOF3 ! MODEL1/2°TO | x X 871
: : | ! i - sme,&gANGULAR
: RS S SN S A R :
1154, kY a31 "MILITARY | IDLE SETOF3 | MODEL1/2"TO X X 86-2
i : | : SIDE NO ANGULAR! |
N I 1
T | | o) |
‘T j T T 4 - Tty N ., - T
158 1431 1431 IMILITARY | IDLE |SETOF3 | MODEL /2" TO x % 812
: ! | SIDE . NO ANGULAR |
___T_._.L e _ . [ Ty S
116 1431 a3 IDLE | IDLE |SETOF 3 | MODEL OFFSET, x x 811
; i 1/2” DOWN INLET s
i . i 39 DOWN :
—— o et — - == - E
17 431 a4} MILITARY | |DLE |SETOF3 | MODELOFFSET. | x | X 81-2
| ! | 172 DOWN, INLET 4
e . — 3000WN - o *
118 431 la3ar o oLE | IDLE  [SETOF 3 | MODEL OFFSET, T x X 82.1 E
| ! ' 172 UP INLET :
- L _ I VAR SN S RN 1
119 "a31 143 'MILITARY | IDLE SET OF 3 MODEL OFFSET, | X x 822 E
i : ! 1727 UP.INLET ! : E
| ! : 3o yp | E
+— - t —_— —_—t e = —_——— 2
120 a3 a4 IDLE IDLE |SETOF3 | MODEL 172" DOWN | X boX 831 E|
| i | INLET 30 Up E
—=- e e -— — o S - S
121 1431 (431 [MILITARY | IDLE  [SETOF2 | MODEL 1/2” DOWN | X X 83.2 3
; ' L INLET 30 UP i E
—— .. e L | 3
122 [437 |43| DLE IDLE ISETOF 3 | MODEL 172" UF | X X 801 3
_ _ _.___|NLeT3ooowN_ | 4
123 431 adn MILITARY | IDLE |SETOF3 | MODEL 1/2"UP ' X x 80.2 §
. I DR I S INLET 3% DOWN - - E
124 618 4.3 AFTER IDLE |SETOF3 | NOOFFSET DX X 74 3
: I BURNING i NOANGULAR : H
- ...l BURNI - — e e ] L]
125 618|431 |AFTER. IOLE  |SETOF3 | MODEL 1/2° DOWN | X x 1 70 g
j | BURNING | L NO ANGULAR ' =
- b—— — =t et e s b o g - - ] S== - — = 4
126 618 [431  AFTER IDLE  ISETOF3  MODEL 1/2" UP x x 7 k|
. LBURNING | L i NOANGULAR | _______,____1__ 3
1274 1618|431 AFTER | IDLE |SETOF3 | MODEL1/2°TO | x | on 3
; ! | BURNING | ! SIDE_NO ANGULAR; i ‘ 3
1 1 d
5 i ' | l 1 | | 3
3
7 §
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: TABLE 8
t TWIN ENGINE MISALIGNMENT TEST CONFIGURATIONS (CONT'D)
3
i PRIMARY T
; NOZZLETTAT | DATA
. CONFISU- |___ INCHES FLOW CONCITION | EJECTOR |
- RATION LE Tﬁ“mcm—LTErY—r—mT‘. ] 71 CONFIGU- | NOZZLE/EJZCTOR BURFACE ‘ EXIT | TEST RUN
; NUMBER | HAND =~ HAND i HAND | HAND | RATION | MISALIGNMENT [P&Tm ;P & T NUMBER
= + T 4 e $
i 1276 (618 . 431  AFTER | IDLE |SETOF3 | MODEL 1/2” TO x 40X 73
' i i  BURNING i | S10€.NO ANGULAR |
L i i ! : |
| e : L : 4
: 128 616 431 IAFTER | IDLE !SETOF3 ' MODELOFFSET. | X I x 7
X : ) " 8URNING | | ;1.2 DOWN INLET !
; X _ ! o i o 3° DOWN : _
129 1618 | 431 ! AFTER. IDLE 1 SETOF3 ' MODEL OFFSET. x | x 75
: i : | BURNING | ! v 127 UP INLET
. ! 30UP
b —1 — e S S _TAA_-_"_L“ PNy S —
130 618 ' 431 I1AFTER. | IDLE | SETOF3 . MODEL 1/2°DOWN| X X 76
| ' BURNING : : . INLET 39 UP
b— — ——— — ———— - ———- - +— ————— —_—
131 | 6.18 a31 | AFTER IDLE | SETOF 3 MODEL 1/2 UP X X 78
' l | BURNING L INLET 3° DOWN
L
@ PRIMARY FLOW NEARER SIDEWALL
®) PRIMARY FLOW NEARER SPLITTER
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Figure 85. Dimensional drawings of Coanda surface and ejectors for twin engine misalignment test.
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Rear view of twin-engine Coanda misalignment test model.
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L

Figure 88. Twin-engine Coanda misalignment test model setup in Acoustic Arena.
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Figure 89. Dual flow nozzles and twin-engine Coanda test model in Acoustic Arena.
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MODEL CONFIGUAATION |
—_—— S .__A.__.—_-_._-——.—_-.;;
7 )

S YMBOL - M CESORPTION o

o] ) 100 ] MO ANCGLLAR OR OFF QT MIBALIGNIENT — § EJECTONS

A 1004 NO ANQULAR OR OFFSET MIBALIGNMENT — ¢ EXCTORS

=] i W 1 NO ANGULAR OR OFF SET WISALIGNMENT — 3 € 4 C1ORS

—_———— — 1 . e e = - e ———— = - e ——

102 1 B - 1 |

MUITARY POWE R CONDITIONS !
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Figure 96. Coanda surface static pressures - three and five ejector transitions without

misalignment (one engine at military and one engine at idle).
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Figure 97. Coanda surface static pressures - three, four and five ejector transitions without

misalignment (one engine at A/B and one engine at idle).
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I MODEL CONFIBURATION ?
| _svmBOC | NO_ |  DESCABTION ;
[0} 85 NO OFFSET OF ANGULAR MISALIGNMENT & EJECTORS |
(o] 3 EJECTOR G OFFSET 1 INCH BELOW NOXZILE § i
A ] EJECTOR § OFFSET 1 INCH ABOVE NGZLE § :
Lod » €JECTOR ¢ OFFSET 1 INCH TO SIDE OF NOZZLE § ‘
- N
500 ” T — — )
! MILITARY POWER CONDITIONS
P Py 212
T, T30F
: |
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Figuie 98. Cosnda exit velocity profiles - five ejector transition with offset
(one engine at military one sngine at idle).
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! MODED CONFIGURAT-ON

FU. 4
L SYmen T ! DESCRIPTION
~ 9 1 EJECTCR § OFFSET  INCw DTWN INET ) DOWN
. t
i ® % | EJECTOR G OFFSET : INCHUP INLET ) UP .
X a 3] i EJECTOR ¢ OFFSET . INCH DOWN IN_ET 3 UP |
i Lo} [T | EAECTORE ST NG S ALET > DOWN :
AR IR R . - )
600 o — - - e o - . - I
ACTARY FONER CONDITIONS
! P, Pa R B
I * 2I0F
3]
-
ur
—
'S
bd
=
3
&
>
=
>
(™)
<
=)
2
<
c
o

o f ! |

C Q o 1 %

ANCE FRUM COANDGA SURFAD

W R

N
g

o5

Coanda exit velocity profiles — five ejector transition with offset and angular
misalignments (one engine at military, one engine at idia).
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Coanda surtace static pressures - five ejector transitions with otfaet and
angular misalignments (one engine at military, one engine at idie).
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MOOEL CONFIGURATIOR

I sl 2 ol

124 EJCTOR AND NOZZLE CENTERLINES ALIGNED

128 ! EJECTOR G 1 INCH BELOW NOZZLE §

} EJECTOR ¢ 1 INCH BELOW NOZILE §
EJECTOR § *» INCH ABOVE NOZZLE §
£JECTOR § 1 INCH ABOVE NOZZLE §

11278 | EJECTOR G 1 INCH 10 SIDE OF NOLZLE §

NS VS R LA PIEr X IENIT 1 ST R

MILITARY POWER CONDITIONS

4 - -

Figure 104. Coanda surface static pressures - three ejector transition with oftset misalignments (one
engine at military and one engine at idle).
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Figure 105. Coanda surface static pressurss — three ejector ! ansition with oftset misalignments (one
engine at A/B and one engine at idle).
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e et - - e ——
00E, comncmn-w- ) i
[ NUMBER _<| |
caiP
| svmso a8 + OESCRIPTION
Q 120 strtaa‘ OFFSET -1 INCH DOWN iNLET 3 DOWN |
O e, 129 EJECTOR § OFFSET "1INCH UP WLET 3 UP
A | 121 %30 | EJECTOR G OFFSET s INCH DOWN INCET 3 OEG UP
! (o) e T jueuoa', OFFSET ", INCH LR MET 3 DEG DOWN |
e — - . - . . . —_ - - )
10048 — - - - 1 - | I 5 ! ST } sl

| MILITARY POWER CONDITIONS

i PPy 2127 730F : !

¥

924 -

COANDA SURFACE STATIC PRESSURE
AMBIENT PRESSURE

S N

0 10 20 30 40 50 60 70 80
ANGLE FROM COANDA INLET  DEGREES

Figure 108. Coanda surface static pressures - three ejector transition with offset
and angular misalignments (one engine at military and one engine at idie).
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Figure 109. Coanda surface static pressures — three ejector transition with offset
and angular misalignments (one engine at A/B and cne engine at idie).
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MODEL CONFIGURATION
SYMBOL NO DESCRIPTION 7
O 100 NO ANGULAR OR OFFSET MISALIGNMENT — 5 EJECI0ORS ';
o) 100A | NO ANGULAR OR OFFSET MISALIGNMENT — ¢ EJECTORS i
¥o 124 NO ANGULAR OR OFFSET MISALIGNMENT — 3 EJECTORS 3
secessecs 42A TYPICAL FULL SCALE DATA -2 EJECTORS - NO MISALIGNMENT 5
1400 i f T 1 ;
o : - i
' AFTERBURNING CONDITIONS ) 1
Q PiPa = 193 T = 2920°F 4
a i i;
3 ;
= 1200 }
a
W
Q H
z |
w
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w 1000 E
< =3
<
RS
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Z B
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Figure 110. Coanda surface temperatures - three, four and five ejector transitions - no 3
misalignment (one engine at A/B and one engine at idle). 4
3
' _ MODEL CONFIGURATION
! symeoL | NO — OESCRPTION
l o 124 EJECTOR AND NO2ZLE CENTERLINES ALIGNED i
! 0] 125 EJECTOR @ *;-INCH BELOW NOZZLE § =
A 128 EJECTOR @ '2-INCH ABOVE NOZZLE § -
o { 1278 | EJECTOP § 1 INCH TO SIDE OF NOZZLE § ‘ '
1400 p—— - ——p = n - —_ -

| I [ i

{ i
: ; - AFTERBURNING CONDITIONS
| | | PyPg = 1.93 T, = 2020°F

-

°F

1200 -

El

sl

Lt

COANDA SURFACE TEMPERATURE -

i |
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! | —
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——— T 1 z

10 20 3 40 50 60 70 80 90
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Figure 111, Coanda surface temperatures — three ejectors with offset misalignment
(one engine at A/B and one engine at idle)
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LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

A Area

AB Afterburner, afterburning

AD Analog to digital

Amb. Ambient

AR Area ratio

Conf Contiguraticn

CPu Central processing unit

CRES Corrosion reresistant steel

CRT Cathode ray tube

¢ Centerline

DA, dia Diameter

EGT Engine exhaust gas total temperature

EPR Engine pressure ratio: 1.e. Py Pyo tor nonalterburning and Pt10/P2 for

afterburning engines

F Degrees Fahrenheit

FGT Fan exhaust gas total temperature

FPR Fan pressure ratio. i.e.. Pyp 5.P2

FT., ft. Feet

FT_2_ ft.‘? Square feet

FT3, 03 Cubic feet

GPM. gpm Gallons per minute

GSED Ground Support Equipment Department

iN..in. Inch

IN,2, in2 Square inches

K Kilo (thousand)

Ibs. Pounds

H
\




M

MATL
MAX.

MIN.

MRT
NAEC
OASPL
PNL

PS!, psi
PSIA, psia

PSID. psid

Pa: Pamb

Ps
P

Pt1o

SEC., sec.

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS (CONTD)
Mach number
Matenal
Maximum
Mintmum
Military rated thrust
Naval Arr Engineering Center
Overall sound pressure level
Percewved noise level
Pounds per square inch
Pounds per square inch. absoiute
Pounds per square inch, differential
Ambient pressure
Internal static pressure
Total pressure
Primary total pressure
Free stream total pressure
Low pressure compressor inlet tolal pressure
Fan exhaust total pressure
Primary nozzle total pressure
Afterburning nozzie total pressure
Radius
Degrees Rankine
Second
Scale Factor
Sound pressure level
Square

Steel
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LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS (CONT'D)

Ta' Tamb Ambient temperature

T Jet temperature

Tm Metal surface temperature

Ty Total temperature

Tip Primary total temperature

Ties Fan exhaust gas total temperature

T2 Primary exhaust gas lotal temperature
Tuo Afterburner exhaust gas total temperature
TYP Typical

Wa Airflow rate
Wp Primary airflow rate
Wg Secondary airflow rate
wW.0 Without

4 Differential
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