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CHAPTER 1
Introduction

"The Purpose of Computing is Insight, Not Numbers”!1]

1.1 The Purpose of This Report

The principal objective of this report is to generate some of the insight
that Dr. Hamming succinctly stated to be the purpose of all computation.
Specifically, I will present a novel technique of numerical integration for
the solution of ordinary, first-order differential equations occurring in
initial-value problems; and I wiil anaiyze that method from a control-
theoretic viewpoint that is applicable to the analysis of any numerical
algorithm.

Intended readers include control engineers, who can greatly extend the
efforts discussed herein, and numerical analysts, who can use these concepts
along with their own effective methods to further enhance our ability to
numerically solve differential egquations.

A third audience to whom this report is addressed is comprised of tha
faculty and cadets of the United States Air Force Academy who are involved
in teaching and studying numerical methods. Specific applicability is
intended for courses in the Departments of Astronautics and Computer Science
and of Mathematics. To be useful to these people, the style of this report
is tutorial, and much is said that will be obvious and elementary to the
reader experienced in the fields of control theory and/or numerical analysis.

1.2 The Importance of the Subject

The Unite# States Air Force could not perform its mission, it could not
"fly and fight," if it did not possess the means to numerically compute the
solutions to differential equations. The motions o7 a hand grenade thrown
by a soldier, a bullet fired from a rifle, an aircraft on a strafing pass, a
smart-bomb following a laser designator, a ballistic missile on an inter-
continental trajectory, or a satellite orbiting the earth are all governed by
differential equations.

Differential equations describe more than the motion of objects. The
Riccati equation for optimal control is a differential equation, equations of
chemical kinetics are differential equations, the covariance matrix of a




Kalman filter propagates accoraing to a differential equation, and electric
circuits are described by differential equations; the 1ist is endless.

In most realistic situations, analytic solutions cannot be found. The
need for numerical solutions is self-evident: they are needed to accomplish
operational missions, they are needed for simulation (especially important
with the increasing amount of training via simulation), and they are needed
for design and analysis. Different situations, however, require different
approaches to their solutiors. The formalized differential-equation-solver
packages such as DVDO, GEAR, DE[Z], etc., are excellent for hiaghly accurate
solutions on large, ground-based systems, For the small airborne computer,
simpler, less genera]ized approaches are required, such as the technique

employed in the ballistic trajectory algorithm of Duke, et. a].[3]

1.3 Tunable Integration

A number of years ago, J. M. Smith thought it reasonable that since the
digital computer is a discrete operating device, the techniques of sampled-
data system analysis and digital filtering could effectively be used to
design methods for numerical integration on the digital computer. Thus was
born the concept of tunable integration as it is presented herein. Smith
has used the technique with considerable success.[4] Only little, however,
[6]’[7]’[8], and this

report is intended to increase its familiarity within the Air Force com-

has been formally written concerning the methodls]’

munity.

The technique is based upon the synthesis of a discrete approximation
to continuous integration. The result is a difference equation in which
adjustable parameters provide the capability to directly control the charac-
teristics (pole location, frequency response) of the integrator. This
capability makes tunable integration a technique that proffers tremendous
benefits in terms of ease and flexibility of use, large regions of stability,
controllable accuracy (via means other than variable order or step size),
and simplicity. High-order integrators of this type have been developed by
Smith[4]’l5], but this author feels that more significant benefits accrue to
the Air Force from the use of the low-order form in appropriate problems such
as airborne fire control. Thus, this report will restrict its attention to

the Tow-order form of tunable integration.




1.4 Overview

The organization of this report is based on using tunable integration as
a vehicle for demonstrating the application of control theory in analyzing
methods of numerical integration. The integration algorithm jtself and the
method of analysis are equally important parts of this report,

1.4.1 A Brief Qutline

Chapter 2 presents a general discussion of errors and how to define
error criteria in terms of the pole location and frequency response. The
concept of "ideal" integrators is used to demonstrate tnese error criteria
and to motivate the tunable integrator. Though the development also appears

e]sewherelsl’{7]

, the complete formulation of the zero-order-hold turabie
integrator is presented in detail in Chapter 3. An example problem is solved
using that integrator and clearly demonstrates the tuning property. Chapter
4 presents the frequency-response characteristics of the integrator. In
Chapter 5 a root-locus analysis is performed and stability is evaluated.

Also in that chapter is a short demonstration of how the freguency-response
and root-locus analyses can be used to initially tune an integrator. The
importance of program implementation is discussed in Chapter 6, wherein the
difference in properties between two program codes using the same basic
method, but programmed differently., is shown. Shampine, et. a].,iz} have
noted the significance of differing implementation upon the results obtained

with GEAR and DIFSUB, two packages using the same fundamental methods.

1.4.2 Background Knowledge

In order to understard this report, the reader should be familiar with
some basic concepts of linear and sampled-data control systems, and of
numerical analysis. Specifically, the reader should be somewhat familiar
with the following: Laplace transforms, block diagrams, transfer functions,
root-locus analysis, frequency-response analysis, control-system stability,
phase and gain compensation, sampling of continuous signals, the sampling
theorem, Z-transformations, difference equations, polynomial interpolation,
and classical methods of numerical integration. The true integrator is

continuous and the numerical integrator is discrete. Thus, familiarity with

concepts in both continuous and discrete control theory is important.




CHAPTER 2
A Question of Errors

In his "Essay on Numerical Methods“[]], Hamming cites five main ideas
germane to the study of numerical methods. The first of these is quoted at
the opening of Chapter 1. Two other ideas, or concepts, are truncation and
roundoff error, the fundamental error sources of any numerical method to be
implemented on a digital machine. Perhaps the most important consideration
for any numerical metnod is its error characteristics. The methods of control
theory provide a diffgrent perspective on the errors inherent in a numerical
algorithm. Tunable integration is a method of numerical integration that is
designed to take advantage of that perspective and to thereby provide excel-
lent error characteristics. In this chapter we shall look at the fundamental
question of errors.

2.1 Some Elementary Preliminaries

Roundoff error arises from the finite length of the "word" in a digital
computer. Hence, any number that cannot be represented by a finite number of
binary bits (most numbers) must be rounded off by the computer. The problem
is unavoidable, and, as Hamming suggests, one can only do one's best to mini-
mize its effects. A principal problem with roundoff is that it tends to
worsen as the number of computations increase or as computer word length
decreases. Thus, roundoff can be especially severe when using a mini or
micro computer to solve a differential equation over a relatively large
(compared to the integration step size) interval.

Truncation error, on the other hand, tends to require smaller integra-
tion steps, since it arises from the necessity to use finite polynomial
expansions to represent arbitrary functions. In a typical classical approach
to the development of numerical integrators, the integrand is expanded
polynomially and a truncated series from that polynomial is analytically - i
integrated over a specified interval to provide the desired integration A
formula.

(9]

As an example, let us derive Simpson's integration formula. Newton's

forward interpolation formula can be written as

10
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where Py is the polynomial expansion of y to n forward differences,

Aym = Mooy " ym. Let n = 2 so that we are approximating y by a quadratic in
k over the three point interval yo, yl, y? as shown in Figure 1 below.

> <.

k=0 k=1 k=2

Figure 1. Quadratic Fit to y

The integration over the interval gives us

t

> £, o2
[ indt =y ey v f gt = TS mk (2-2)
k=0

to t

where we note that dt = Tdk. Substituting for Py from Eq (2-1) and then
expanding the forward differences, we obtain

wl—

£ 2 . . 5
Y2 = Yo +-{jf [Yo +kAyo s k(k")"“/yo] dk = y, *
k=0

11
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Equation (2-3) is Simpson's rule, which has the general form

Y2 = yn,+ g'(yn+2 & 49n+1 * yn) (2-4)
To obtain it, we approximated the integrand y by a polynomial truncated to
the second order (in k) and then analytically integrated to obtain the
desired result.

Truncation error arises from all of the neglected terms in the expansion
of Py It represents the error in approximating the true integrand by the
selected polynomial over the interval of integration. Clearly, the larger
the interval over whiéh a given order polynomial is made to fit an arbitrary
function, the larger the errors will tend to be, and the more significant
will be the truncated terms.

The contradictory requirements of roundoff and truncation error are
shown in Figure 2.

ERROR

N\
\ TOTAL ERROR /
A\

L4
\
\ \ / TRUNCATION
\

\\\\’/
\

-~

*~ «= ROUNDOFF

~
L

STEP SIZE ——>
<— NUMBER OF COMPUTATIONS FOR FIXED INTERVAL

Figure 2. Error vs Step Size

2.2 An Important Aside

We have just derived the formula for Simpson's Rule by truncating the
Newton interpolation formula. Unless the function y itself goes to infinity
over the interval [t,, t, ], the error in the approximation will be finite,

%




and the error over a finite number of intervais will also be finite. The
integration of y, however, is here a quadrature; a given y, explicitly defined
as a function of t, has been approximated over a known interval. In the more
general problem with dynamics, y will depend on y, and errors in the computa-
tion of y will be fed back fo propagate and perhaps grow without bound. In
such a situation, an unbounded error can arise in a finite interval.

The question of such growth in errors is a question of stability, and we
will see later how the control system perspective provides a very convenient
way to examine the stability of a numerical integrator. Note for now that
many integrators, of which Simpson's is one, may be acceptable for quadrature
problems but are pateﬁtly unstable for the dynamic problem.

2.3 Errors From the Control System Point of View

From the discussion above, we can see how the classical approach leads
us to the use of the integration step size or the order of the integrator
(i.e., the degree of truncation) to the cc trol of errors. Means are avail-
able to evaluate bounded maagritudes for the errors, and can be found in many
references [1],[10],]11]. When one uses variahle-step-size or variable-order
algorithms to control those bounds, one pays the penalty of problems in
increased complexity and increased computational burden as the order increases.
Tunable integration and the control-theory analysis provide an alternative
approach to error control, one in which neither step size nor order are
varied. The parameters that tune the integrator control the error. Avoided
are the restart problems of changing step size (for the multistep methods)
and the complexity of higher order.

To discuss errors from the controi-system perspective, we must look at
the integrator itself as a control system. If we define a control system as
a collection of components and/or algorithms designed to take a given, known
or uncertain, input signal and from it produce an output with certain desired
properties, then the function of an integrator is clear: the numerical inte-
grator is a linear-transfer-function control system that takes an input
integrand and produces as its output the integral of the input. Schematically

we can portray this function as in Figure 3.

i




INPUT ] NUMERICAL | gyTPUT >

INTEGRATOR t,
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Figure 3, The Numerical Integrator as a Control System

The true integrator would produce the true integral at the output. How
far from the true integrator the numerical integrator is can be analyzed in
terms of the transfer function (using the Laplace variable s):

_ output(s
G(s) = input(s)
There are two fundamental properties of G(s), the analyses of which comprise
the heart of this report. These properties are 1) the locations of its poles
and zeros, and 2) the magnitude and phase characteristics of its frequency

response. How these properties differ from thcse of the true integrator is a
direct measure of the performance of our numerical integrator.

2.4 The True Integrator
In the Laplace domain the transfer function of the true integrator is

6 (s) = 1 (2-5)

This single pole at the origin maps into a single pole at (1,0) in the

z-plane, where z = eST. Thus, pole-zero maps of the true integrator in the

s- and z-planes are simply as shown in Figure 4.
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Fiaure 4. True Integrator Pole Location+

We should like any numerical algorithm to have a pole close to that of the
true integrator. We should also Tike as few additional poles in the algorithm
as possible, for additional poles result in additional lag which tends to be
destabilizing, and they add to the complexity of the algorithm.

A second basic property of the true integrator is its frequency response
magnitude and phase. Substituting jo for s in Eq (2-5), we have

e A

Jo

6y(Ju) = == - 2 (2-6)

The magnitude and phase are

"It is interesting to note that simply taking the z-transform of %-would

Fon . bl T 2 3 . : h
give ?t(z) =7 oy S The corresponding difference equation 1s X+
X # Xne1? which implies a unit integration step in order to have any
practical meaning.




M= (6 (Ju)] =1

(2-7)
Mdb =20 1og10 M = -20 1og10 w
¢ = Arg (6,(ju)} = -90° (2-8)
The corresponding Bode diagrams are as shown in Figure 5.
Mab N
4\
oL
0dbl—-——-
]
|
' -
|
, o)
qodE—- - o s -90
' l
| 1 > | | >
1 10 1 10
LOG, , w LOG, , W

Figure 5. True Integrator Frequency Response

Any numerical algorithm should have magnitude and phase characteristics
closely approximating the 20 db/decade gain slope and 90° of phase lag, at
least over the frequency range of interest.

These two fundamental properties of pole location and frequency response
provide a control system perspective for the analysis of numerical integration
techniques that will be used throughout the remainder of this report. Varia-
tions in pole location, additional poles and zeros, variation of M from 1/w,
and variation of ¢ from -90° are all direct measures of the error in the
numerical integration a1gorithm.+ We will later see a clear tie between

+The use of these criteria is not unfamiliar to the engineer involved in

simu1ation.|]2]’[]3]

16




phase and gain distortion and the classical concept of truncation error.

This will arise from the use of holding circuits to reconstruct sampled

signals. The reconstructed signals are simply polynomial approximations to
their continuous predecessors.

2.5 The "Ideal" Integratow’

Having defined what will be our control system perspective, we can
derive a set of ideal intecrators that have the exact properties desired, but
only for the design input. These ideal integrators take specified inputs and
transform them into the corivesponding known integrals for their output.++
For example, consider-an ideal cosine integrator. The z-transforms of input
and output are

z (z - cos udT)
Z {cos w,th = —
d z? - (2 cos udT) 7+]
(sin w T) Z
Z {sin w,t} = d :
d z2 - (2 cos de7'z+1

where y is the design frequency. The ideal transfer function is

1 Z{sin ';/dt“! Sin u‘dt

6;(z) = wy Zlcos wyt] " g (Z-cos wgT)

The Bode magnitude and phase are found by substituting eJ“"T for z in Eq (2-9):
sin w,T t4+
6" (Ju) = S, 7 :
wy (e - COoS wdT)

+This section is based on ideas proposed and initially developed by Ronald E.
Janosko.

(14]

m+This concept is not too dissimilar from the ideas presented by Fowler.

""Note that we have the sampled frequency response G*(ju) and not the

continuous-system response G(Jjw).




Sin wdT » ) %
M= - [1 + c0s? w,T - 2 cos wl 205 w,T] °
wy d d 1
(2-10)
e | sin wTl ’ :

| cos wl - €OoS de $

At the design frequency Wy these relations reduce to

]
]
(Yol
o

¢

Thus, at the design frequency we have the desired frequency-response charac-
teristics, independent of the time step selected, There is also only one
pole, though its location will depend upon the value of de.

What happens, however, if we use this ideal integrator at other than the
design frequency? If we let wdT = /6 {(the sampling ratio is thus 1/12; i.e.,
Jd/ws = wd/(Zﬂ/T) = 1/12), Eqs (2-9) yield the data shown in Table 1.

Table 1: Ideal Cosine Integrator Frequency Response

w/ug wg+ M w- M _\ ¢ (deg)
0.5 1.80 0.90 - 69
0.7 1.37 0.96 - 79
1.0 1.0 1.0 - 90
(8 0.79 1.02 - 98
1.5 0.69 1.04 -103

Both the magnitude and phase characteristics degrade as we move away from Wy
Note that both pFOdUCtS,rod- M and w .M, drift away from unity, which the
true integrator produces at all frequencies.

We noted above that the frequency response at the design frequency was
independent of T. Concomitantly, the accuracy is independent of T: the
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ideal integrator, not surprisingly, gives exact results regardliess of step
size. This can be seen by writing the difference equation for the integrator.
From Eq (2-9) that difference equation is

Rniy ® axn & bxn
where

a = cos wdT

b = —'sin de

“d

il

cos nwdT and K s iL-sin nwdT,we algebraically
d
=k sin [(n+1)w T], independent of T. Using the same
n+] u\d d

Given the initial conditions x _
obtain the result x

example as was used to generate Table 1, we can perform the numerical integra-
tion and see the actual errors. Let wy = 1 and T = +/6 so that de = n/6 as
before. The data in Table 2 show ten integration steps each for w = 0.5,

= 1.0 = wy» and w = 1.5.

Table 2: TIdeal Cosine Integrator Performance

w= 0.5 E TR e
t TR P e C e =
% ( xt1 ’ )t: X Y,
0 0 II { 0 Ir 0 0 { 0
0.524 | 0.518 | 0.500 500 | 0.555 0.471 | 0.500
1.007 | 1.000 ! 0.916 866 | 0.866 | 0.667 | 0.7
1,577 | v.414 1226 | 1.000 ! 0 | 0.4 1 0.031
094 1.7;'} 1.416 0.066 : 0.565 0.000 ! 0.2
2.618 | 1.932 | 1.47 0.500 | 0.500 | -0.471 : ~0.275
3.142 | 2.000 | 1.40 0.000 | 0 -0.667 | ~0.60)
3.665 | 1.932 | 1.219 | -0.500 | -0.500 | -0.471 { 0
9 | 1182 0 | -0.065 : -0.866 | 0.000 | -0.103
A L LS | -1.000 , -1.000 | 0.477 | 4.410
5.236 1.000 | 0.125 | -0.86€ : -0.866 0.667 | 0.709
(DU WSS (N—— -i e l__‘ L SR
Notes: 1. Xt(tn) = P sin wt : true integrator result
XAt q) = ax (t,) + bic(tn): ideal cosine integrator result
% (%) o8 wt .y @ = C0S wyls b= ?1?_'d1
C n’ n u

'
U




The relation between the data in the two tables is clearly seen in the case

of w=0.5. The magnitude is too small and the phase lag is too little in the
first table. The peak seen in Table 2 is less than the true peak and occurs
before it should, just as the frequency response data indicated. For w = 1.5
the larger-than-ideal magnitude is evident, but the excessive phase lag cannot
be seen due to the spacing of the data points.

Some additional ideal integrators are shown in Table 3.

Table 3: Ideal Integrators

" Input G(z)
u(t) T/(2-1)
]*

7+
iz T/2 =T
eat 1/a gt -1)

z-1
» : 1;;fos “dTA 21

Lo g SN wgl © z-1
i sin Azii ; 1
d Wy Z - COoS wdT

* o =
Tustin's Transformation

From this elementary analysis, admittedly using an example of quadrature
to make our points, it is clear how one can apply the methods of the control
engineer to the analysis of a numerical integrator. We have seen how the
ideal integrator may be derived from the perspective of a linear transfer
function. Its range of usafulness is, however, very Timited. If we define a
sampling ratio r as follows

r= w/ms, we = 2n/T (2-11)

20




then, for the example given earlier, w = 0.5 corresponded to r = 0.04, w = 1
to r = 0.08, and w = 1.5 to r = 0.13. We shall see in Chapter 3 that this is
indeed a very limited range of the sampling ratio. TIf one were to design an
integrator from the grcund up using a control-theory perspective, a prime
consideration would be making the useful range of r as large as possible.
This is precisely what has been done in the development of the tunable inte-
grator which we will discuss in depth beginning with the next chapter.




CHAPTER 3
Introduction to Tunable Integration

This chapter begins the heart of the report: the analysis of tiiable
integration (TI). In it we will briefly review the formulation of TI, which
is the brainchild of Jon M. Smith.[*]>1®] We wi11 derive the zero-order-hold
TI (ZOH-TI) formula and will demonstrate its application to a second-order
differential equation. The following two chapters will present frequency-
response and root-locus analyses, respectively.

3.1 Basic Formu1atioﬁ[5]

In Smith's words, the approach to developing the TI is one of "Synthesizing
a discrete approximatior to continuous integration. . .”[5] To do this, four
basic components are required: 1) samplers to represent the discretization of
the entire process of digital computation; 2) a reconstructor to provide a
continuous signal from the sampled input; 3) a compensator to enable control
of the distortion introduced by both the sampling and reconstruction processes;
and 4) an integrator to integrate the compensated signal. Given these four
components, there are two ways to construct the discrete intearator. The
first is to use continuous compensation as shown in Figure 6a, and the second

is to use discrete compensation as shown in Figure 6b.

Rr RECONSTRUCTOR COME%E?ATOR 1/s ‘;t’
17 RC(S) T

Figure 6a. Continuous Compensation

_ >( ___|RECONSTRUCTOR COMPENSATOR >r __| RECONSTRUCTOR 1/s >r

T Rc(s) C(s) T R(s) T

Figure 6b. Discrete Compensation
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Two families of integrators have been generated by Smith depending upon
the type of compensation. In general, for the same compensator, the continuous-
compensation integrators are less complex. Formulas for both types are

presented in [5]. Reference [6] develops a set of continuous-compensation
formulas that are less complicated than Smith's. In this report I will
discuss almost exclusively the ZOH-TI. Let us now look in detail at the recon-

structor and compensator.

3.1.1 The Reconstructor

As stated, the recnnstructor provides a continuous signal from the samples
it is provided. The complexity of the reconstructed signal, and its amplitude
and phase distortion, will be a function of the order of the reconstructor.

That order is essentially the order of the polynomial that is fit to the sample
points. Sirce we are here fitting polynomials to data points, this process is
related to the process typically followed in classical developments of numeri-

cal integrators. The difference arises from our control-system perspective

and the use of a compensator which aliows us to control the errors induced by
the polynomial approximation.
The zero-order-hold reconstructor provides a stair-step approximation to

a continuous signal as shown in Figure 7.

- ————— —— — ——
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- — - - - — - - ——
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Figure 7. Stair-Step Approximation




If we examine the response to a single sample, we see that it is simply a
rectangular pulse of magnitude equal to the sample value and of duration T.
Since the sample is ideally an impulse, that rectangle is the impulse response
of the zero-order hold as seen in Figure 8 (for a unit impulse).

rzoH (t

Tk b e s s U(t-T)

Fiaure 8. Zero-Order Hold Impulse Response

The figure also shows that the impulse response rZOH(t) is made up of a posi-
tive step function at t = 0 and a negative step at t = T:

rZOH(t) = y(t) - u(t-T) (3-1)

Taking the Laplace transform of Eq (3-1) gives the standard expression for a
zero-order-hold transfer function:

Ryg(s) = 55— (3-2)

We could take the z-transform of R and find that RZOH(Z) = 1, but that helps

1ittle since the transformation that must be taken for continuous-compensation

1

TI is L{R.C g}.

Other reconstructors that have been used to develop TI formulas are first-

and second-order and triangular holds, the last not being physically realize-
able but still being mathematically useful. While capable of improving
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accuracy, high-order holds add complexity and additional poles, both being
contrary to the objectives of simplicity and minimization of extraneous poles.
This is one of the primary reasons that this report deals primarily with the

Z0H-TI.

3.1.2 The Compensator
The function of the compensator is to enable control of the distortion

introduced by the sampling and reconstruction processes. Rather than utilize
the standard form of lead-lag compensators, Smith employs the complex exponen-

tial form

6ls) = xe¥ST 19-3)

Tne two parameters 2 and v will be seen later to be the gain and phase compen-

sation parameters of the TI. If we let s = o + jw, then

[C(Ju)| = re

i)
—~

AY‘Q (C(\]m)} YW

These relations show us that while y primerily affects phase compensation, 1t
also affects the gain. We will see this explicitly in the difference equation
for the ZOH-TI.

In empioying the compensator, Smith absorbs e"ST into the product R C %,
transforms back to the time domain and then transforms the result to the Z-

domain. [ have, instead, expanded the exponential and truncated after the
second term (admittedly creating more truncation error, but the control
perspective allows me to monitor and counter the deliterious effects). It is
in this manner that the continuous-compensation integrators of [6] were
developed. The compensator used for the remainder of this report is thus
C(s) = (1 + vsT) (3-4)

It is interesting that poth Smith's approach and my approach give the same
result for the Z0H-TI. The discrete compensater used by Smith is developed
using a trianqular hold and the compensator of Eaq (3-4). When used as in [5]
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with R; (see Figure 6b) being a zero-order hold, the result is again the same
form as the continuously compensated ZOH-TI.

3.2 Development of the Zero-Order-Hold Tunable Integrator

3.2.1 The Transfer Function
Using continuous compensation, a zero-order-hold reconstructor and the
truncated polynomial compensator, we can redraw Figure 6a as follows:

sT 1 X, (s) X?(S)

X DX "s) ] 1-¢ LI
'_)f_—q - A (14%5sT) . _—AT’——->

Figure 9, ZOH-TI

Note that the input X,(s) is sampled to provide X}*(s), and the cortinuous
output X?(s) is sampled to provide X?*(s). The transfer function of the
continuous path between the samplers is simply the product of the three
elements in the path:

0w |—

< = \
X *(S) )(1+YST,

By taking the z transformation of this, we obtain the total transfer function
between the input and output of this discrete integrator. Initially we can
write

o

o L e e R
G(z) = Z('f:$ o Zl

From a set of transform tables such as those in [10] and [11], we have the
result

1'Though no sampler exists between the reconstructor and compensator, the

mathematics of z-transforms allows us to factor out the term (1-e’ST), the

transformation of which is (2-1)/z.
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_ AT[yz+ (1-y)]

G(z) z-1
(3-5)
z-1
where
p = ATy
(3-6)
qzul

Eguation (3-5) is the transfer function of the ZOH-TI. Equations (3-6)
reiterate the earlier point that y affects both the phase and gain of the
integrator. More will be said about the frequency response and root-locus
characteristics of this integrator in the next two ciiapters, but for the
moment we can note that the pole-zero map of the basic integrator (an open-

loop device) is as shown in Figure 10.

Re{z}

Figure 10. Z0H-TT Pole-Zero Map

There is a pole at (1,0) matching the true integrator shown in Figure 4.

There is also a zero whose location depends on v according to the relation

for q in Eq (3-6). For y > % the zero is always within or on the unit circle,
while for y < % the zero will always be outside the unit circle (to the left
for vy -~ gorto the right for y < 0, though the desirability of ever using

¢ < 0 is very doubtful due to the excessive lag that would be induced). If a
loop were placed around the integrator to form a simple, first-order system,
then increasing the forward path gain, p, by increacing T would drive the pole
to the zero. For v > s the pole would never exit the unit circle and the
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system would never go unstable (it would be inaccurate, however), while for
y > %, sufficiently large integration steps would result in instability. This
will be clearly evidenced in plots to appear later in this chapter.

This brief analyses demonstrates the straight-fcrward manner in which a
numerical integrator can be studied using control system methodology. The
question of stability will be examined in more detail later, and the relation
between an examination of the actual integrator pole locations and the more
familiar, to numerical analysts, examination of the equation for propagation
of the integrator error will be shown.

3.2.2 The Difference Equation

From G(z) we can readily find the difference equation that represents the
algorithm to be programmed on a digital computer. Eq (3-5) yields the rela-
tion

Xz(z) = G(z)Xl(z)

(z=1)%.(z)

. ATlvz + (1-y)1X,(2) (3-7)

Since our objective has been to design an integrator, it is natural that X,
be representative of x and x, of x. Hence we say

X,
__‘_;;J,
X,

i

x|

and rewrite (3-7) as
(z-1)X(2) & ATlyz + (1-y)1X(z2) (3-8)

We will, in fact, desionate equality when we program Eq (3-8). The measure of
our efforts will be how weil x does represent the true integral of x. Noting
that zXn = Xn+1’ we write the desired difference equation of the ZOH-TI from
Eq (3-8) in the following form:

[_~xn+1 o XT[Yin+] + (I'Vfin] (3-9)




The ZOH-TI is an imnlicit integrator, requiring kn+1 to evaluate Xn41"
Therefore, a predictor-corrector procedure or an extrapolation of *n is

required. The effect of y is to weight the leading derivative x versus

i
the lagging derivative kn. rRecalling our previous discussion ofnt;e effect
of v on the location of the integrator zero, we can intuitively say that
vy <% tends to be a lag situation (destabilizing) and v > % tends to be a
lead situation (stabilizing). This lead-lag effect of y will become very

clear when we Took at the frequency response in Chapter 4.

3.2.3 Phase-Shifted Classical Integrators

Smith has observed that "many of the widely varied classical numerical
integration formuias . . . are actually the same integrator, differing only
in the amount of phase shift of the integrand.”[5] Letting y take on the
values 0, ., 1 and 3/2, we obtain four familiar integration formulas from

Eq (3-9) as shown in Table 4.

Table 4: The ZOH-TI and Classical Integrators

” Difference Equation (A =1) Riine
9"_,,q R X, ‘aEuler
- i ]
AR S A A (*n+3 tx,) Trapazoidal
.._} 2 bl Rpwy = % * Poipy Rectangular
T . .
5 - - %)
e *nt1 " % 2 (3% 1 = X,) Adams 2nd Order

[71%

3.3 An Example Application

Consider a damped second-order oscillator represented by the differential

equation

X + 200X + 0 2x = w 2f(t) (3-10)

-

"This is the same example as examined by Smith in [4] and (5]. In (71, I
explain the reasons for differences in our results.
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where W is the natural frequency, z is the damping coefficient and f(t) is a
forcing function. The Laplace transform of this equation is

s2X(s) + 2gwnsx(s) + w 2X(s) = w_2F(s)

n n

We can draw the block diagram of this system as in Figure 11.

S
v

Figure 11. Second-Order System Block Diagram
The ZOH-TI was implemented in the following manner:

I kn+1 and X4 Were initially assumed equal to kn and x_, respectively.

This is equivalent to using an Euler predictor.

2. Eq (3-9) was used to compute Xo41? which was, in turn, used to
evaluate kn+1‘ The process was iterated until convergence.

An analysis of block diayrams will be done in Chapters 5 and 6, but at this
point it should be noted that the final block diagram of the software system
is not obtained by simply replacing each integrator in Figure 11 with a ZOH-TI.
Tests have been run for a number of forcing functions (including step,
impulse, and sirusoidal) and the results are similar for each. We will here

present only the case of sinusoidal forcing at resonance; i.e., f(t) = sin wpte
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For this forcing function, the true solution is found by analytic means to be

o Etry by y U
x(t) =% e [E-cos wyt + 55 sin xdtJ - 5y C0s wt (3-11)
where wy = W, /1-:7 is the damped frequency. The plots that follow were

computed using wy = 1 Hz, 2 = 0.3, and » = 1. The integration step T and
phase-tuning parameter y were varied.

From Eq (3-11) we note that the true solution is sinusoidal, having an
expanding, exponential envelope with a steady state magnitude of g{ = 1.67.
Figures 12, 13 and 14 portray the results of solving the differential equation
(3-10) with the ZOH-TI tuned to three values of v: 0, 1, and %, respectively.

T=.10
/. (scaE =x3)

3.0

/

\\ i 1=.050

GAYMA = 0,00 r\ !A\ —T=.010

. ~—T=.001
= A [/ \! -
| \

2.0

x o _| /
(=)
2
i ‘_
o—t
o
1
:; T T 9 T T N T 1
'0.00 0.50 1.00 1.50 2.00 2.9 3100 s 4.00

TIME
Figure 12. ZOH-TI Solution for y = 0.0
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0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.5 400
Figure 13. Z20H-TI Solution for y = 1.0

These are the first three integrators shown in Tabl2 4, and since it is well
known that trapazoidal integration is the best of the three, the results are
not surprising. The significance of these data lies in their explanation
according to the laws of control theory. It is from that perspective that we
gain the insight as to what we have obtained with the tunable integrator and
as to how we can view all methods of numerical integration in a common light.
So forget for the moment that we know these as three classical integrators.
A1l three integrators perform well at an integration step of T = 0.001
sec, and the curves plctted at that step size closely match the true solution
of Eq (3-11). At that step, the sampling ratio is r = md/ws = .95 x 10”2 and
in Chapter 4 we will see why it is perfectly reasonable for all three to
produce similar results at that step size. In Figure 12, y = 0, and we have

32




(=]
- T T T T ] T T 1
10.00 0.50 1.00 1.50 2.00 2.0 3.0 i %.00

Figure 14. ZOH-TI Solution for y = 0.5
intuitively noted that this situation tends to produce a lot of phase lag. In
fact, as we increase T the amount of lag increases and the peaks are delayed
and the solution diverdes, havino completely blown up at T = 0.100. (Note the
change in scale for that curve.) Quite the opposite occurs in Figure 13 where
vy = 1.0. Our intuitive feeling of lead is buttressed by the progressively
earlier occurrence of the peaks as T increases. Rather than going unstable,
however, sensitivity ic lost and the solution decreases in magnitude, producing
a bounded rather than unbounded error. Note that the shift of y from zero to
unity has completely changed the sensitivity of the integrator to increases in
step size. The third figure of the seauence shows the results for a balance
between lead and lag. When v = 0.50 we can increase the integration step by
two orders of magnitude and still have a faithful representation of the true

solution.
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We are not restricted to discrete values of v, however, and therein lies
the beauty of tunabie integration. In this example,a vy of about 0.52 appears
to give the best fidelity. The continuous shifting of the solution with
variations in y is displayed in Figure 15. This is the step response of the
system and the true solution is :
'(,mnt Ldn

(cos wdt + ¢ — sin wdt) (3-12)
U,‘d

1.50

1.20

0.90

0.30

0.00

(=

L3

o T T = L T T T 1

'0.00 0.50 1.00 1.0 2.00 2.50 3.00 3.50 4.00
TIME

Figure 15. ZOH-TI Step-Response Solution

The true soluticn at t = 0.5 sec is x(0.5) = 1.367918 and this is seen to be
accurately reproduced by the curve computed with v = 0.5 and T = 0.001. The
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remaining curves are computed for the values of v indicated on the figure and
T =10.100. For y= 0.53 the solution matches the true value to three decimal
places at a time step two orders of magnitude larger than .001.

3.4 The Advantages of Tunable Integration

In this chapter we have synthesized a discrete approximation to the
continuous process of integration. This discrete numerical integrator
possesses the controls necessary to manipulate its phase and amplitude charac-
teristics in a manner that allows tuning the system for the best results. The
ability to tune the integrator increases its region of stability and accuracy
at larger time steps (see the discussion in Chapter 5 on stability) thereby
allowing for increased computational speed and decreased computational cost.
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CHAPTER 4
Frequency-Response Characteristics of the ZOH-TI

4.1 Why the Frequency Response

In Chapter 2 we saw how the performance of a numerical integrator could
be assessed by comparison of its magnitude and phase-angle characteristics
with those of the true integrator as expressed by Eqs (2-7) and (2-8) and
portrayed in Figure 5. For this comparison we need to evaluate the frequency
response of the numerical integrator. This has been done in [6] for several

continuously and discretely compensated tunable integrators. The analysis of
only the ZOH-TI will Be presented here. Rosko[]Z] looks at the frequency
characteristics of a number of "discrete integrators," such as Tustin and
Boxer-Thaler, and Tou[]3] Eriefly looks at a number of quadrature formulas,
such as rectangular and Simpson.

There is a point worth noting before we proceed, and it is implied by
Tou's use of the word quadrature. In the three referenced analyses, the
frequency response of the open-loop integration formula is evaluated. The
information so garnered cannct be used indiscriminantly in the evaluation of
software for the solution of differential eauations, for, in determining the
solution, the dynamics of the differential equation and the manner of imple-
menting the algorithm are important. This open-loop frequency-response data
must be used with other information to get a full evaluation of the integrator,
but it is a useful and important part of the overall picture of integrator

performance.

4.2 Methods of Evaluation
There are a number of approaches possible to obtain the desired data, and

the choice of which to use is relatively free. Three analytic methods avail-

j q‘T

able are as follows. One can simply make the substitution z = e”" ', as do

Rosko and Tou, and obtain G*(jw) directly from G(z). Smith!>! takes an alter-

2 : 1+w
native approach to -he same end. He makes the transformation z = where

w =] tan (uT/2). (A little algebra shows that this relation for z is equiva-

lent to GJMT.)

output in the z-domain by multiplication of G(z) and the z-transform of the

The third analytic approach involves obtaining the actual
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input and then taking the inverse transformation of the result. Determination

of the magnitude and phase is then by inspection; e.qg.,

A sin (wt+o) = 270 | Zisin wt)6(2)! (a-1)

If one disdains algebra, the frequency response can be determined by
actually integrating a sinusoidal signal and evaluating the amplitude and
phase of the resultant output. This numerical approach is fraught with a
number of problems, principally with respect to interpolation between data
points to find peaks and cross-overs as the sampling ratio increases. There
is also a bias generated in the solution, which must be subtracted out before
any evaluation is made. The third analytic method is very tedious, but it
does enable an analytic attack on evaluating the bias in the numerical compu-
tation. The remaining two approaches are equivalent and either should be
preferable to the novice. The method used by Tou and Rosko will be employed
in what follows.

4.3 Frequency Response of the ZOH-TI
To find 6*(jw), we begin by writing the second of Eqs (3-5) in the

following form:

6(z) = P&l:gé::l_

J=2

Now make the substitution z~' = e 39T and obtain

r*( ',.) B (e+ij/2 _qe"‘ju\T/Z)
G (Jw p pjmT/Z _e-jmT/Z

From Euler's equation, we know that

JwT/2 -jwl/2
: e R R T S T
sin wl/2 2j
Mence, we can write Eq (4-2) as

LPJmT/Z _qe-jmT/Z)
sin wl/2

6*(jw) = (-jp/2)
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Expanding the remaining exponentials, we obtain the result

6*(jw) = 5 (1-a) [%{g-- i cot mez] (4-3)

This is written in a more useful form by applying Eas (3-6) to p and q and
noting that

u.\T__i_ :_w_“":h K
T T g r (4-4)
The final result is then
G (jw) = %;'[(ZY-]) - j cot rn] (4-5)

The magnitude and araument of G*(ju) are readily found from Eq (4-5)
according to their definitions in Egs (2-7) and (2-8). The appropriate rela-

tions are
M= 2L [(2y-1)? + cot? rn* (4-6)
1= 5 [(2y cot® rr] =
¢ = -tan” :ggi:§f { (4-7)

These last three relations tell us much about the properties of the ZOH-TI,
nroperties which |[6] shows appiv generally to all of the tunable integrators
developed to date. One general observation is that the phase characteristics
of the ZOH-TI are independent of X, and depend on T only through r. The
performance of a numerical intearator depends not on the frequency of the
input signal nor the lenath of the intearation step, but upon the relative
size of that step compared to that frequency. A second observation is that X
and T will have a scaling effect on the output magnitude. Thus, we have a
simple analytic justification for Smith's observation that y affects the
transient response and ). the steady state solution.[4]
There are two tynes of symmetry apparent. One is the symmetry of ! as a
function of v about some value Yy here Yo © 0.5. Thus, the Bode maanitude
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plot for a rectangular integrator (y=1) is the same as for an Euler integrator
(v=0). Smith observes that this arises naturally for the ZOH-TI because "the
zero-order hold integrand reconstruction process introduces exactly a half
period of lag which is compensated by a half period of lead when vy = + 5.“l]5}

The second type of symmetry is the mirror imagery of ¢ as a function of
r. There is often, though not always, a y¢ about which equal displacements of
v produce equal displacements of ¢. For the ZOH-TI the value of y, is the
same as Yy (i.e., 0.5) and ¢(Y¢) = -90° for all r. #

The last general property is the appearance of the term cot rn in all of
the gain relations. As r becomes small, this term dominates the exoression
for M and all inteqrafors have approximately the same maanitude characteris-
tics. If we expand the expression for M with r << 1, we find that M ¥ X/w and
we match the true integrator gain slope of 20 db/decade. Since the phase of
the integrator approaches -90° for all values of » when r is small, we have a
very cogent demonstration of why small intearation steps result in satisfactory
performance by nearly any integrator.

The Bode nlots of Mdb and ¢ versus 1oq1or;shown in Figures 16 and 17,
respectively, were generated using T = 0.002 sec. Due to information limita-
tions of the sampling theorem, only values of r < % have been used. The
symmetry of M and mirror imagery of ¢ are evident, as is the 20 db/decade
slope of M for small r. The slope remains at that value longest for
v = 0.2 and 0.8, these ther being the best choices for controlling amplitude
distortion. It is interesting to note that at r = % (log r = -0.3) the output
of the trapazoidal integrator would be zero (since the intearand samples are
being taken precisely one-half period apart). We observed in Chapter 3 the
difference in output of the second order system when there was a lot of lead
compensation (y=1) and when there was none (y=0), the latter case being
unstable at large T (or r). Both situations produce the same magnitude
characteristics, but areatly different phase characteristics, for the open-
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Figure 16. Z0H-TI Bode Magnitude Plot

loop integrator. Since both gain margin and phase margin’ affect system
stability, it is reasonable to say that the phase characteristics are more
important to integrator performance. This was empirically observed by Smith[4]

and is here analytically explained.

TGain and phase margin are defined by the relations
Gain Marain = -|6(ju )|y for Arg {6(juw )} = -180°
Phase Margin = 180° + Arg {G(ju,)} for |6(jw,)| =1

These terms are normally applied to the open-loop transfer function, GH, of a
closed-loop control system.
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Figure 17. Z0H-TI Bode Phase-Angle Plot

Fiqure 17 clearly shows the lead-compensation effect of y for y > % and
the additional lag (beyond -900) when vy < %. Just as was observed in Figure
13, increasing the integration step, and concomitantiy the truncation error,
does not necessarily induce greater lag and instability, thouagh it does induce
error. The best tuning to control phase distortion is y = %, for then
s = -90°. Combining ideal phase characteristics and relatively good magnitude
characteristics, the trapvazoidal intearator is obviously, and well-known to
be, a good integrator. It is interesting to note that except for y = 0.5,
all of the phase curves pass through 0° or -180° of ohase at r = .

4.4 Tuning based Upon the Frequency Response
The freauency response data for the ZOH-TI have been related after-the-
fact to the previously discussed results of the second-order system forced at
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resonance. One would, however, like to be able to use this analysis in an

a priori manner. For simple problems the approach is straightforward. A
tradeoff must be made between the competing demands of amplitude and phase
fidelity. If there is a clearly dominant frequency in the intearand, then the
appropriate combination of sampling ratio and tuning can be selected to meet

; the criteria of the problem,.such as total solution time or computer cycle
time. When there are multiple frequencies of equivalent importance, the diffi- |
culty of tuning is greatly increased. When a single integrator cannot be
tuned to cover the frequency band of interest, then one possible approach
would be to spectrally separate the integrand prior to inteqration with
recombination after ihtegration. The complexities of such an approach and the
difficulties imposed by nonlinear problems have not been examined by this
author. In very complex oroblems one may be left with no alternative but to
tune the integrator empirically. 1In any event, frequency response data such
as shown here should not be used alone, but in combination with other analy-
tical tools such as the root locus. This will be discussed in the next
chapter.

Return briefly to our example problem of the previous chapnter to see how
we might have proceeded in an a priori manner. If the objective is to maxi-
mize the step size with phase error the primary criterion, then one would
choose y near 0.5. Making y a little larger than 0.5 gives a cushion of phase
lead and also improves the magnitude characteristics. The values of r = Ud/ﬂs
for the four time steps to be considered are 0.95 x 10°%, 0.95 x 1077,

0.47 x 107, and 0.95 x 10~! respectively for T = 0.001, 0.010, 0.050, and
0.100. The logarithm of the largest value is -1.02. Looking at Figures 16
and 17, one can see that a value of vy only a little larger than 0.5 will
provide nearly ideal magnitude and phase characteristics. Thus, one should
expect that v = 0.52 will allow use of T = 0.100. The value of 0.52 was used
to generate the step response of Figure 18. Compare this figure with Figure

15, and note the increase in range of allowable step sizes that is afforded by
proper tuning. Clearly, freauency response data can aid in the selection of
the intearation formula to be used in the solution of differential equations.




R P T Y . T P

Figure 18. ZOH-TI Step Response with y = 0.52
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CHAPTER 5
Root-Locus and Stability Considerations

5.1 The Approach

The ZOH-TI has a pole at z = 1 and a zero at z = q = lil, as shown in
Figure 10. Changing the value of y shifts the location of the zero, and it
also has a pronounced impact on the output of the integrator and its frequency
response, as was demonstrated in Chapters 3 and 4. The frequency response was
evaluated for the open-ioop intearator, and the pole-zero map likewise applied
only to the integrator itself. To perform a root-locus analysis we must
implement the ZOH-TI in a closed-loop system. How important the manner of
implementation is will be shown in Chapter 6. We will only examine a first-
order system so that the details can be kept to a minimum level of complexity.
After looking at this root locus, we will discuss the assessment of stability
using the root-locus together with the frequency response.

5.2 Root Locus of a First-Order System with the ZCH-TI
5.2.1 The Implementation
We consider the differential equation

X + x = f(t) (5-1)

where 1 is the system time constant. The block diagram of this simple first-

order system is given in Figure 19.

F(s) = Ve X(s) 7 X!s)

7

Figure 19. First-Order System Block Diagram”

paths by replacing 1/s with 1/1s. This form of simplification will be done

l "In the diagram we could remove the 1/t blocks from the input and feedback
in subsequent block diaagra s.
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We have seen that the 7ZOH-TI is an implicit algorithm, requiring some

type of predictor for Xo41 OF extrapolator for x ; we shall use an Euler

n+1
predictor in combination with the ZOH-TI corrector. The section of computer
code dealing with the actual integration of x could be programmed in FORTRAN

as the following sequence of steps:

Y = F/TAU
DX1 = Y-X/TAU (5-2)" |
X1 = X+T*DX1 J |
DX = Y-X1/TAU
(5-3)
X = X+LAMDA*T* (GAMMA*DX+(1-GAMMA)*DX1)

Equations (5-2) represent the Euler predictor and Eqs (5-3), the ZOH-TI
predictor. We assume that F is evaluated prior to Eas (5-2) and that the
appropriate iterative loops are defined.

Let us Took at these eguations as recursion relations and attempt to
follow the flow of information through the software.',"+ Neglect for the moment
the association of any time base with the variables, since we separately track
the independent variable on the digital computer by incrementina it with the
integration step. Supponse that we are in the 100th pass through Eqs (5-2) and
(5-3), having completed 99 passes. Subscripting the variables to indicate the

number of the respective evajuation, we can now write

Y100 = Fro0/™AY W

DXTy0n = Yyog-ee/TAV

X1300 * ¥ag*T*DX110 > (5-4)

PX100 = Y100™*1100/ ™AV .
X100 = Xoq*LAMDAXT* (GAMMAXDX, o +(1-GAMMA)*DX1, 0 ) |

“We could more simply write DX1 = (F-X)/TAU, but have chosen this form to
relate to the subsequent discussion on implementation.

:”.Thﬁ‘ idea for this approach was provided by J.M. Smith in private conversation.




Note that X99 is the stored value of X until the last computation.

n+l - Xn’

identify the increment T in time with a unit increment in the subscript. Thus,

At this time, associate a time base with X and, recalling that z™!X

we can transform Eqs (5-4) into algebraic form:

Y(z) = F(z)/x A
DX1(z) = Y(z)-2"'X(z) /1

X1(z) = z7'X(2)+T-DX1(z) > (5-5)
DX(z) = Y(z)-X1(z)/7

X(z) = z='X(2)3T[yDX(z)+(1-y)DX1(2)] J

5.2.2 The Block Diagram

It is from Eqs (5-5) that we can derive the transfer function of the
software algorithm and then perform the root-locus analysis.

The question at this juncture is what is the appropriate transfer function
for the integrator? Is jt X/DX or is it X/DX1? Since X1 and DX are internal
to the algorithm, we should seek X/DX1. From the last of Eqs (5-5), we have

11 ';Lillll“ o D&%‘%' g

We can obtain DX/DX1 by subtracting the second and ?ourth of Egs (5-5) and
then substituting for X1 from the third. Proceeding, we have

—

DX1(z)-DX(z) = ;-[z"X(z)+T-DX1(z)-z'lx(z)] R DX1(z)
or
OXRZ). . 1 =
oXi(z) - |/ (5-7)
Combining Eqs (5-6) and (5-7) we get the desired relation
X(z) . e &
IO AT(1-yT/1) 3= (5-8)

This same result could be obtained from the methods of block-diagram manipula-
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tion, or signal-flow graph analysis, by drawing the diagram corresponding to

Eq (5-5) and then reducing it to simplie form.

Equation (5-8) is the "integrator" transfer function. The integrator we
have, however, is a result of the manner in which we implemented (or programmed,
if you will) the algorithm. We did not simply substitute Eq (3-5) for the
Z0H-TI and T/(z-1) for the Euler integrator into the 1/s block of Figure 19.
In fact, we did not even program a true Euler integrator as can be seen from
Eq (5-5) and will be made very clear in the next chapter.

In this formulation we note that the position of the open-loop zero is no
longer a function of the value of v. The tuning parameters, as well as the
ratio T/1 (which is analogous to our sampling ratio r = w/ws in the freauency
response), now affect the forward loop gain. As this gain varies, the pole
location will change, thereby tracing out the root locus.

The integrator of Eq (5-8) can now be incorporated in the overall soft-
ware system by noting the inputs to DX1 and the feedback of X aiven by Eq
(5-5). We will see from the result that this will not be eauivalent to simply
substituting Eq (5-8) for 1/s in Figure 19. The inputs to DX1(z) are } F(z)
and X(z) fed back through z='/t. As noted for Figure 19, the 1/t factor can
be moved to the forward-path side of the summing junction. With this simpli-

fication we have the block diagram of Figure 20.

1
F(z) : DX1(z)
- ” I X(1= ¥n Tz
T

v

Figure 20. ZOH-TI/Euler Implementation of tx + x = f

Comparison of Figures 19 and 20 shows that the key difference from direct
substitution of Ea (5-8) for 1/s is the delay in the feedback loop that is
due to the Fuler predictor. This delay has a significant impact on stability.

a7




Another interesting comparison shows the advantage of using the ZOH-TI
for the corrector in this analysis. If we retrace our steps using a rectan-
gular integrator instead of the ZOH-TI, then the block diagram of Figure 20
takes the form shown in Figure 21.

E(z . 1 DX1(z) 1—T/r iz

A 4

Figure 21. Rectangular/Euler Implementation of tx + x = f

What the ZOH-TI provides is an ability, other than by means of step size, to
control the forward loup gain and to thereby control overall system stability.
Note that in both diagrams the block Tz/(z-1) appears: this is the open-loop
transfer function of the rectangular integrator.

5.2.3 The Root Locus

We initially need to compute the open- and closed-loop transfer functions.
If the forward path transfer function is designated as G(z) and the feedback
path as H(z), then Figure 20 tells us that

& Al Al A
G(Z)-TH- ‘Zj
and
Hezm=az =

The open-loop transfer function is the product of these:

GH & G(z)H(z) = A (1 - %I) %%% (5-9)




The complete, closed-loop transfer function X(z)/F(z) is given by the re]ationL

1z OBl
F(z 1+GH ~ z-(1-K)

I >

T

—

where

o IS N (5-11)
Equation (5-10) is the transfer function of the computer software that solves
the differential equation 1x + x = f with an Euler predictor and a ZOH-TI
corrector. One could in fact very simply replace the entire algorithm of
Eq (5-2) with the single difference equation correspbonding to Ea (5-10); i.e.,

g = (I-K)xn + Kf (5-12)

n+ n+l

Taking x(t=00) = 0, £{t) =al{t), T = 1 sec, T = 0.1 see, x = 1, and v = 0.5,
we find the values of x at t = 0.1 sec and t = 0.2 sec to be respectively
0.095 and 0.180975 by buth Egqs (5-2) and (5-12). The difficulty (or perhaps
advantage, depending on one's perspective) with Eq (5-12) is the need to
predict the forcing function f(t) rather than the state x at tn+1‘
The root locus maps the change in pole location as the forward-path gain 3
increases. Beginning at the open-loop position the poles move toward the
open-loop zeros. Equations (5-9) and (5-10) show a single open loop pole at
1+$ and a closed-loop zero at z = 0. Thus, the single pole takes on the

Z
value 1-K, and as K increases it moves from the point (1,0) to -~ along the
Re{z} axis. When K = 2, the pole is at (-1,0). For yT/1 sufficiently large J
we could make K < 0, but that would immediately make the system unstable. !
Hence, we plot the root locus as shown in Fiqure 22. f
£

$See [16], or any other similar text, for a discussion of sampled-data control
system analysis.

s o e o men

Sk .
Note that we are no longer designing a simple integrator, so that this nole
at z = 1 is not necessarily ideal.
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(1,0)

Figure 22. Root Locus for ZOH-TI Euler Implementation

The root locus can now be used for two important analyses. The first is the
matching of the pole of this discrete model to that of the continuous system.
This type of analysis is performed in [14]. OQur attention in this report will
be restricted to the second use of the root locus: stability analysis.

5.3 Stability Considerations

5.3.1 General Comaents

Recall from the frequency-response analysis that stability does not
guarantee accuracy, and thus we see how to use the frequency-response analysis
along with root-locus analysis. Fidelity of the integration can be specified
by examination of the former and stability of the result can be ascertained
from the latter. One can also combine these two analyses with root-matching
techniques, and then trade off the competing requirements.

Before proceeding, rote that stability information is also available from
the Bode plots of Chapter 4. The gain and phase margins both being greater
than zero is the indicator of stability, where

Gain Margin = -|6(juw ) for Arg {6(ju )} = -180°

(5-13)
Phase Margin = 1807 + Arq (G(jw,)} for [G(juw,)| =1
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From Figures 16 and 17, it is apparent that these quantities are not necessarily

readily found for the simpie integrator. In these figures, w, corresponds to
log r = -3.5, for which the phase margin is ~ +90° regardless of y. The gain
margin, however, does not exist for y > 0.5. For y < 0.5 it is the negative
value of the gain, in db, at r = 0.5. These data alone would tend to indicate
that no stability problems should occur for any value of y shown. The integra-
tor, however, is part of an overall system and its lag, contributing to the
system's lag, can produce instability. Nate also that T just scales the gain
in Eq (4-6), thereby only serving to shift the magnitude plots along the
ordinate. As T increases, the curves shift upward and cause both gain and
phase margins to decrease when vy < 0.5, thereby decreasing stability. When

0.5, the gain margin decreases but the phase margin increases. Thus, we
have yet another bit of insight as to what the impact of changing step-size is,
insight with a different perspective than that of truncation error. We also
see why the frequency-response data should be used in conjunction with other
analyses such as the root-iocus, since the former is not conclusive.

5.3.2 Analysis of the First-Order System

The region of stability in the z-plane Ties within the unit circle, and
therefore the sampled-data system represented by Eq (5-10) (which is our soft-
ware transfer function) is stable for values of K in the interval [0,2]. This
interval presents us with a range of possible values for the tuning parameters
A and v and the sampling ratio T/7, all of which will yield system stability.

To see what choices of v might be available to us, let A = 1; then the

Timits on K give

o<I(1-t)ce
foy2i(-F) (5-14)

lot of acceptable values of y versus T/t then takes the form of Figure 23.
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Figure 23. Stability Region for Tuning

It is interesting to note that the lower bound on K generates the upper bound
on y and vice versa. This is quite logical since larger values of K move the
system towards instability and lower values of v move the integrator towards

instability. This figure also parallels the results of Chapter 3 in that it

points out that for small values of T/t, the choice of y has much latitude.

(See, for example, Figures 12-14.)

5.3.3 A Trial Solution

We nave looked at the frequency response of the ZOH-TI, and we have locked
at the root locus of the ZOH-~TI/Euler pair applied to a first order system and
the stability implications of that application. A brief example demonstrates
one possible approach to tuning based on those analvses. Let v =1 sec,
f=cos t (w=1 rad/sec) and choose an integrator with as large a time step
as possible to give reasonable fidelity. Figures 16 and 17 show that for y in

wy
~N

- ; -;i"‘ll



the range .49 to .51 we obtain a fairly good magnitude characteristics up to
about log r = -1 or r = 0.1. Fiaure 23 shows this should be well within the
region of stability of the system, and that we should be able to approach the
information Timit of T/t = %. The value of r would imply T = g¥1-= 0.63, and
T/t = % would imply T = 0.5.7 Let's be conservative and choosewT 0.2, which
gives r = 0.032 and T/~ = 0.2. From Figure 16, we see that Mdb for r = 0.032
{(log r & -1.5) is about -40 db. Since that figure was produced for T = .002

rather than T = 0.2, we raise the curve 40 db’' and see that ) should be about

i

unity (since 1/w = 1 gives the true integrator gain as zero db and this is

what we have). A
The true solution to Eq (5-1) when f(t)

cos wt is

AR A

ek Wi e 5. i T i {5
Xt(t) = “_C;—')‘g e }m* (cos wt + wr sin wt) (5-15)

Using » slightly larger than unity, * = 1.01, and vy = 0.51, the computed
solution xc(nT) compares to the true solution as shown in Table 5. The value

of the gain K is 0.18 from Eq (5-11). Though not providing excellent accuracy,

this simple combination of the Euler and ZOH-TI has given a reasonable rapro-
duction of the true solution. Better tuning and a slightly smaller time step
would improve the results. Accuracy was not the point of this demonstration,
nowever. The objective was to show how one could initiate the tuning process

by using the frequency-response and root-locus data.

“Note that one criteria reflects sampling relative to the input f(t) and the
other relative to the system time constant t. One should not expect two such
similar values of T to arise in general.

"'Since T scales the magnitude, as shown by Eq (4-6), the curve for T = 0.2 is

simply 40 db above that for T = 0.002.

o
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Table 5: True Solution vs ZOH-TI/Euler

£ True Z0H-TI/Euler
xt(t=nT) xc(nT)
0.8 .482 .458
1.0 .507 473
1. 2 .497 +453
3.8 ~-.713 -.705
4.0 ~.714 -.720
4.2 ~.688 -.708
. 6.8 .681 .698
7.0 .705 .708
o .701 .690
10.0 ~.692 -.704
10.2 ~-.707 -.706
10.4 ~.694 -.680

| would make one mora point before proceeding. If the z-transform of
0os wt is multiplied by TCL(z) from Eq (5-10) and the result is expanded by
navtial fFractd no 3 e 1 ~ z -
partial fractions, one of the terms will have the factor TR The solu

+1] :
. , where C is

tion component corresponding to this term has the form C[1-K]
an explicit function of K, T and w. This is the term corresponding to the
exponential in Eq (5-15), and when K > 2 it will oscillate with increasing
size, corresponding to the previously identified instability for values of K

greater than two.

5.3.4 Stability from Two Perspectives

When most numerical analysts talk about the stability of a numerical
procedure, they refer to the propagation of errors through the algorithm and
; question whether or not an error introduced at one point will die out or grow
h without bound. Rosko presents a clear presentation of this type of analysis
] in [12].

1 Following Rosko's presentation, take the multistep method




where eRn is the roundoff eyrcr at the nth step. A similar relation holds for
the true value of x at to41> When eR, is replaced by et s the local truncation
error. The difference between the two values of x is the error, and it vpropa-
gates according to the relation

m

m
Cott T 5%% aien—i A Eg% bien—i i En

where En = eTn -eRn. Given that x = f(x,t), the mean-value theorem allow us
to write this relation as

m
= = 5 T ) =
(1 Tb_]fxnﬂ) e Eo"a* *Thyfx .)€ * E, (5-17)
where
\f
= S ICE g [
fxn = n’tn) and i s.xn,xt(tn)J

Typically, the assumption is made that fx is at worst slowly varying, so
it is taken as a constant, €. The characteristic equation corresponding to

Eq (5-17) is then, in terms of z,

m .
0= 9(z) = (1-Tb_1f, Ja™ ' - 3 (a, +Tb,f )" (5-18)
-1 x T i x
i=0
To be stable we want all the roots of Eq (5-18) to lie within the unit circle.
Consider, for example, an tuler integrator. The relation Xot1 = *n + Tkn

gives us from Ea (5-16)

m= 0 (I-step integrator)
a, * 1
by =0

) 1




Equation (5-18) becomes

0=y, (2) = 2= (1+Tf) (5-19)

1

and we have the criterion for stability as

+TF ] < (5-20)

For fx real, we have the reaion of stability given by the relation

Tf, €[-2,0] (5-21)

Compare this result with one obtained via the type of analysis presented
earlier in this chapter. For the first-order system =2xamined, as we will see
in Chapter 6, a true Euler integrator can be implemented to provide the block
diagram of Fiqure 24.

T 2
(Z-1)

v

Fiqure 24. True Euler Implementation of tx + x = f
The closed-Toop transfer function is
T PTRRU Fy 48 -

This is stable for

Q-1 <1

(5-23)
0< T/t <2 |

These relations are identical to Eqs (5-20) and (5-21), for Ty = =M.
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Now consider Simpson's integrator (see Eq (2-4)), in the form

2 s ; - :
X1 = Xnop * 7[Ry * 8 * %) (5-24)

The parameters of Eq (5-16) are

m =1 (two-step integrator)
A = 0, dy, = 1
b“] = /3 bo =4/3, b] = 1/3

and the characteristic equation is

0 =vy,(z) = (1-1/3 fx) z* - 47/3 foz - (1+7/3 fx) (5-25)

The roots of this quadratic are

" rfx

Rosko notes that for ail real values of fo one or tne other of these two
roots will be outside the unit circle, except for fo = 0 which outs the two
roots on the unit circle. Thus, as we pointed out in Chapter 2, this inte-
qrator is not suitable for soiving differential equations.

If we look at the basic integrator transfer function, as was done in
Chapter 4, then for Simpson's integrator we have

6(z) = T/3 (22 +4z+1)

z2-]

The poles of the integraior itself, without regard to the system it is
employed in, are at z = + 1, and the zero outside the unit circle at -2-vV3
will attract a pole whenever the integrator is implemented in the solution

of a differential equation, clearly an unstable situation.




e

Thus, in these two cases at least, looking at either the error equation
or looking at the basic integrator transfer function or the overall software
transfer function has led us to the same conclusion.

Observe that for both the Euler and the Simpson integrators, the
characteristic polynomials of the basic inteorator are the same as for the
respective error equation, Eas (5-19) and (5-25), when the dynamics are
neglected; i.e.,

Euler rbl(z)’Tf - = z-1
X

i ) | = 720
Simpson \Ll(z):Tf‘(=0 z?-1

The relation between what has been done in this report and some of the more
familiar approaches to stability is now a little clearer. Looking at the
basic integrator pole locations gives a quick look at stability independent
of system dynamics. A feel for what will happen at relatively small time
steps is gained, for then fo <<

The frequency response data are based upon sampling ratios relative to
the input signal f. The root locus analysis, and the error propagation
analysis, are dependent upon sampling relative to the characteristic system
frequencies (recall the importance of T/7 in our analysis of this chapter).
Therefore, we have formulated in these last three chapters an initial capa-
bility to design, using control-theory methods, an integrator to meet
criteria for sampling relative to dominant freauencies in both the driving
function and the system itself. The approach is not yet fully or rigorously
defined, but a beginning has been made.
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CHAPTER 6
The Effect of Implementation

6.1 Why Worry?

One might easily be tempted to take a given numerical algorithr and
program it for the computer in any convenient manner without regard to the
manner of programming. That programming, however, has a significant impact
on the performance of the software and can make the difference petween a
successful solution and an unsuccessful one. Shampine, et. al.[Z] noted this
phenomena with respect to the GEAR and DIFSUB routines which use essentially
the same numerical mefhods.

To fully analyze a package as large as GEAR or DIFSUB in the manner of
this chapter would be a tremendous undertaking, and based upon the success of
those routines would not be justified now. Future developments, however,
should pay attention, initially, to the manner of implementation. The methods
of control theory provide a convenient means for the analysis, for separable
parts of the software can be designed and their subseouent interactions as
coupled systems can be systematically analyzed. The emphasis of this chapter
is on an approach to analyzing numerical methods rather than a specific
method, so I will only present an elementary example of the considerations

involved.

6.2 Implementation of ix + x = f

Let us take the same examnle problem as was used in Chapter 5, but deal
only with the predictor part of the method employed therein, the Euler inte-
grator. The way this integrator was implemented in Chapter 5 did not produce
a true Euler intearator. The difference between that implementation and true
Euler implementation is cogently demonstrated by a frequency response analysis

such as the one in Chapter 3.

6.2.1 A "Mixed-Mode" Euler Integrator
For convenience, we repeat Eq (5-2) at this point, but change DX1 and X1

to DX and X, respectively.




Y = F/TAU )
|

DX = Y-X/TAU ? (6-1)
X = X+T*DX ;

As noted in the previous chapter, we assume that F is evaluated prior to the
computation of Y. It is also assumed that the independent variable is updated
prior to computing F. Though this looks Tike an Euler integrator, it is not a
true Euler integrator because of the way in which DX is computed.

Based upon the first part of Eq (5-4) we have the pass-count evaluation
(where TI is the independent variable time) as follows:

Tlion = Thggt! 5

Fro0 = F(TIygp)

Y100 = Froo/ ™V - (6-2)"
DX100 = Y100 = %99/ TAV

X100 = *g9* T"PXy00 J

To compute DX100 we have used Y from pass 100 and X from pass 99. Hence,
UX]OO is an approximation to x at some time which is correctly associated with

neither TI99 nor TI]OO'

In terms of z, we convert Eas (6-2) to the transformed relations

Y(z) = F(z)/~
pDX(z) = Y(z) - z"'x(z)/7 (6-3)
X(z) = z2'X(z) + T-DX(z)

where we neglect the first two relations for Tl and F, their not being a
factor in the result. From these relations, we can write the integrator
transfer function

"This is the actual implementation used for the predictor of Chapter 5.
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G(z) = —~ (6-4)

This, however, lTooks just like a rectangular integrator, having the corres-
ponding “ifferenc. equation

= K+ THE o (6-5)

We programmed what we thought was Euler, got what looks like rectangular, and
actually have neither since DXn+] is not really in+1’ combining, as it does,
YIOO and X99. _
The block diagram for the overall system is similar to Figure 20. The
inputs to G(z) and the feedback of X(z) are evident in Eq (6-3). Thus, we

have Figure 25.

Flz) o DX(7) Tz X(z)

L7
T

Figure 25. Mixed-Mode Euler Impliementation of tx + x = f

The open and closed-loop transfer functions are

N

|
|

’ (69

1/TZ i
2) = - A
T (2) = =7y J

[t is interesting to compare Figure 25 with Figures 20 and 21, and to compare

ot
I~
—3

GH =

r

N
—d

£qs (6-6) with Cqs (5-9) and (5-10). The forward-path gain is now simply

K= T/t and the root locus is identical to that shown in Figure 22, with
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the different definition of K. Hence, if K = T/t > 2 the integrator will be
unstable. This is precisely the result of Eq (5-21) as obtained from the
error propagation equation. It is also the 1limit for undistorted reconstruc-

tion of a signal imposed by the sampling theorem.

k 6.2.2 A "True" Euler Implementation of tx + x = f
Revise the coding of Eq (6-1) as follows:

W=Y
Y = F/TAU
(6-7)
DX = W-X/TAU
X = X+T*DX

What we have done is introduce further delay into the system by creation of
the dummy variable W. The effect of the additional delay can be seen in the
development of the closed-loop transfer function.

Proceeding as befcre, the pass-count relations are

B 3

TI]OO = TIgg + T
100 = Y99
Fr00 = F(Ti00)

& (6-8)
Y100 = Fr00/TAY
DX]OO = N100 ~ ng/TAU
X100 = Xa9 * TDXyq9 )

and the important relations in terms of z are
W(z) = 27'Y(2)
Y(z)} = F(2)/1
(6-9)

DX(z) = W(z) - z7'X(z) /1
z=1x(z) + T*DX(z)

><

—
N

~—
"
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The integrator transfer function takes the same form as before:
G(z) = =5 (6-4)

We do not have the same result, however, because of what DXn+] represents. It
can now be clearly associated with kn because of the delay associated with W.
The inputs to DX and the feedback of X provide the block diagram of

Fiqure 26a, which can be aiternatively put in the form of Figure 26b.

F(z i W(Z DX(z) Tz X(z) S
T +_ z-1
Z’l
; i
| ‘

Figure 26a. True-Euler Implementation of tx + x = f

_F(z) 1 zoxz)| T X(z) o

Figure 26b, Reduced Block Diagram

The latter figure is similar to Figure 19 and T/(z-1) is the transfer functien
for the Euler integrator. This is a rare instance where the desired integrator
does simply replace 1/s in the continuous-syster block diagram.

Open- and closed-loop transfer functions for the true Euler implementation

are
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eI )

} (6-10)
Tal® * oSk

~N

—

Comparison with Eqs (6-6) shows that the effect of W has been to delete the
closed-loop zero (which had been a source of phase lead). The open- and
closed-loop pole locations are identical in the two forms of integrator:

z (1-T/¢). Fiqure 22 represents the root locus with K = T/t. Both inte-
grators go unstable at T/t = 2, but the phase characteristics are very differ-

ent prior to that, as we will now see.

6.3 Comparison of Frequency Responses
Jsing the method of Chapter 4 and Eqs (6-6), we find the sampled-data
transfer function, maagnitude, and phase-angle relations of the closed-loop

system with the mixed-mode Euler integrator to be

™ (5.) = V/21-Q0-T/7) cos wT - j(1-T/1) sinwT]

(T/t)" +4(1-T/1) sin" T/2

-

|
|
+

f
'
-4 1
0 |
;.»
"
|
—

(6-11)
s (r) = —tan-t ) —(=T/1) sin® e |
“mm* ‘ o e
Yy cos Zrn+ 2 $In T
Similarly, for the true-Culer implementation we find
P (g = MALI/Tz 25t WT/2 - §5inaT]
= (T/1)" +4(1-T/1) sin” wl/2
M) = e
s (5 T/7) + (1-T/1) sin’ ro)'®
: (6-12)
1 7‘1'
Py (Y‘ -tan'l ‘ — ‘,,__'_:-___ {
e (T/7-2sin rr )




Note that Eqs (6-11) apply equally to the ZOH-TI/Euler combination by replacing
T/t with K from Eq (5-11). Also note that M = Mte’ which is not surprising.
since both implementations have the same open-loop transfer function.

Since we are trying to solve the continuous-system differential equation.
the frequency response of the continuous system provides a valid criterion
against which to measure the two forms of Euler implementation. The transfer
function of interest is

e
TeLls) = 7945

The gain and phase relations for TCL(ju) are readily found to be

: 1 3 e ol
(6-13)
o(w) = -tan™! {1w} = -tan”! }%;:{

For small values of T/t and r we should expect to have a close approxima-
tion to the continuous system. This is indeed the case, for by using smali-
anglec approximations and neglecting T/t compared to unity we have from Egs
(6-11) and (6-12)

EfT 1

Mom = Mt v . L = s
© (rm) 24 (T/0)2 B1° 1412077
and

2rm |- _gap-!

T

() " -tan~! ; {Tw!
where we assume (rn)? << T/7. Once again we have seen why at small integra-
tion steps we have a fairly free choice of integration methods.

0f more importance, especially to the present discussion, is what happens
at larger samplina ratios. Consider the specific value of T/t = 0.3. Then,
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for various values of r, we obtain the data shown in Table 6 and plotted in

Figure 27.
Table 6: Frequency-Response Comparison
Somling, | Sten | Trie-tuler, | System | ized-tode | True Euter
' Gain (M) Gain (Mmm:Mte) Phase (¢) mm te
.001 .9998 .9998 - 1.200 - 0.8399 - 1.200
.003 9980 .9986 - 3.595 = 2517 - 3.597
.006 296228 .9945 - 7.162 - 5.0'8 - 7.178
.010 .9788 .9850 - =11.83 - 8.298 - 11.90
.030 .8467 1 . 8854 -32.14 -22.78 - 33.58
.060 6227 | 6913 -51.49 -36.43 - 58.03
.100 .4309 .5018 -64.48 -43.49 - 79.49
.300 . 1572 .2164 -80.96 -28.69 -110.4
.500 | .0951 § w1765 -84.55 0.0 -180.0
Note that these data do not show what happens as we increase T/t. We already
know that instability arises for T/1 > 2.

The difference in performance to be expected from the two codes with
I/t = 0.3 is clear. While both have less of a drop off in gain beyond the
break frequency (w = 1/t, r = T/1f/2n) than does the continuous system, their
phase characteristics are dramatically different. The true Euler implementa-
tion has far more phase lag, and, if part of a larger simulation effort, could
more readily induce overall system instability. The mixed-mode Euler has even

Tess phase lag than the continuous system.

6.4 The Conclusion
The conclusion to be drawn from this analysis is obvious. One must not
simply program an algorithm on the digital computer without regard for the

effects of the manner in which the program is implemented.
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Figqure 27. Comparison of Frequency-Response Characteristics
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CHAPTER 7
Conclusions and Recommendations

7.1 Summary

The fundamentals underlying tunable integration have been presented in
this report, and they have been analyzed in the context of a control-theory
approach that is applicable to the analysis of any technique for the solution
of differential equations.

The initial discussions were of a general nature and defined the errors
resulting from numerical methods in terms of frequency-response characteris-
tics and pole-zero locations. The concept of an ideal integrator, exact for
a specified input, was used to motivate the tunable integrator.

A detailed explanation of tunable inteagration and derivation of the ZOH-
TI was followed by a demonstration of tuning for the solution of a second-
order differential equation. The ZOH-TI was then thoroughly analyzed for its
open-loop frequency-response properties. The effect of tuning upon magnitude
and phase-angle characteristics was cogently portrayed in Bode plots of Mdb
and 4. The use of these data for a priori tuning of the integrator was
briefly discussed, preparatory to a more detailed discussion of tuning
following the root-locus analysis.

To define the closed-loop system for a root-locus analysis, the first
order differential equation tx + x = f was used. The ZOH-TI was employed as
a corrector for a mixed-mode Euler predictor, and the block diagrams and
transfer functions for the software packace were developed. These clearly
showed the effect (and value) of the tuning parameters on forward-path gain
and, hence, on pole position as the root-locus was traced out.

A discussion of stability showed the coupling between integration step
size and the integrater tuning parameters. A stability region was graphi-
cally depicted. The combined use of frequency-response and root-locus-
stability considerations was then demonstrated as an anproach to a priori
tuning. The final portion of this part of the report related the approach to
stability taken herein to the more familiar approach involving the error-

propagation equation.




The final topic dicsussed was the effect of program implementation. It
was demonstrated how an apparently innocuous change in program coding could
seriously affect the frequency response of the integrator.

7.2 Conclusions

There are numerous conclusions to be drawn from the research reported on
herein. [ briefly state the more important ones below.

1. Control-theory methods of analysis are important and useful for the
analysis of numerical methods.

2. The tunable integrator can be formulated as a low-order integrator
with an inherent capability to adjust its frequency-response and pole-zero
characteristics. This provides means other than variation of order or step
size to control inteagrator performance. The result promises significant
savings in ccmputational burden and time.

3. Frequency-response and root-locus analyses provide the data for
initial, albeit elementary, a priori tuning of the tunable integrator.

4. The method of implementing a chosen algorithm in computer code has a
significant effect upon software performance. Control theory provides an
effective way to analyze the potential performance of alternative code forms.

5. This report has not, nor was it intended to, developed a software
package that in any sense can be thought of as a user-oriented tool in the
manner of packages such as GEAR.

7.3 Recommendations

Again, simply enumerating, I make the followina recommendations for
follow-on work in this area.

. Proposals have appeared in the literature for standardization of test
problems used in evaluating numerical integrators.[17’]8] Test cases such as
those proposed by Kroah and others employed in [2] and [19] should be employed
to thoroughly evaluate the performance range and error characteristics of the
tunable integrators.

2. Many classicai integrators can be shown to be special cases of the
tunable integrators. The theory should be fully developed to tie the classi-

cal and tunable concepts toaether, to analyze the truncation model of error of
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the former versus the phase-and-cain model of error of the latter, and to

fully exolain the behavior of tunable integrators. A start toward this end
has been made in the control-theory analysis of this report.

3. At present, emploving a tunable integrator on a comnlex system
reauires empirical determination of the proper tuning-parameter values. An
elementary aporoach to a priori tuning has been discussed. Far more sophis-
ticated and reliable aporoaches are required.

4. The Air Force and other technological communities have a potentially
valuable tool at hand. The capability of tunable integration to solv.: problems
where storaqe space and computation time are limited, but a degree of accuracy
is reauired,must be experimentally determined by actual implementation when-
ever feasible.
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