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D t  ~ci by J V Brawley * and Jack Levine

ABSTRACT . Let K = GF(q) denote the finite field of order

q, let G denote the group of one-to-one maps (permutations) of 1<

onto K , and let GL(n ,K) denote the group of n n invertible matr ices

ove r K. Each triple (~~1,~~2,A) c G~~ G~~ GL (n ,K) determines a permuta-

tion of the vector space K~ of n 1 matrices ove r K as follows :

11(X) = -
~1 

1
Ac~2

(X); X c K
n
, where 

~~~~

. acts on X componentwise and A

acts on X via matrix multiplication . Two triples (i
1

1 rt
2

1A) and

(~~1 1~~2,B) are called equivalent iff they determine the same permuta-

tion J . This paper determines for a given (c~1
,:t 2

,A ) those equivalent

(~~1
,~~2

,B). It turns out that this problem is equivalent to the

following one. Given A E GL (n,K) find all g
11g 2 ~ G such that the

mapping g1Ag
2 

1
1s a linear transformation on K1’. The solution to

• this latter problem is seen to depend on whether or not A has all row

• sums equal and whether or not A is a monomial matrix. If A is monomial

then the role A plays in the solution depends on the subgroup of

K* = K —{O} generated by the set Q of all quotients of nonzero elements

of A , and if A is not monomial it depends on the subfield of K generated

by Q.

The equivalence relation defined above has its roots in algebraic

• cryptography where it arises from a question about equivalent crypto-

systems based on Hill’s method of matrix multiplication .

*Research supported in part by O.N.R. Contract NOOQ14-76-C-0130.



Introduction .

Let K GF(q) denote the finite field of order q = ~m , p a

prime , let G denote the group of one—to-one maps (permutations)

of K onto K , and let GL(n,K) denote the group of n ~ n invertible

matrices over K. Associate with each triple (c~1,a
21A ) in G ~ G GL(n ,K)

a permutation 
~ of the vector space K

n 
of n 1 matrices over K as

follows:

n (X) X c

where is interpreted as acting componentwise on a vector X in

and A acts on x via multiplication X -~-AX . Two triples (ct
1

,t
2
,A)

and (~ 1
,~~2

,B) are called equivalent iff they determine the same per-

mutation fl of K’~; i.e., a1 ~Aa2 
= 

~ 1 

1B~2, in which case we write

( L
1,a 2

,A) .. (~~ 1
,~~~2, B) .

The relation while of interest in its own rights has its roots

in algebraic cryptography (see below) where it arises from a question

concerning equivalence of cryptosystems based on Hill’s method (3 ,41

of matrix multiplication.

The basic problem which we solve in this pape r is the following:

Given (a 1,cz2,A) find all eauivalent (~ 11~~2 1 B) and determine their

number. This problem is readily reformulated (see the next section)

t into the following problem . Given A c GL(n ,K) find all (g1,g2) pairs

in G x G  such that g1Ag2 is in GL(n,K) and determine their number.

___________________________________



2

By way of notation we use K* to denote the multi plicative

group of K. We use ~ to denote the n 1 matrix in K~ each of

whose elements equals a ~ . K. Thus for example , g(a) = g(a) for

every g ~ G.

The present work is a generalization of previous studies

[1 ,2] which treated the case where = and 
~~ ~2 

and

emphasized the cryptological aspects. Many of the ideas and

results of those earlier papers are applicable to the present

case. The most striking difference between the two cases is

in the changing of the essential role of the matrix A. In

[1] and [2] the important features of A were (i) whether or not

its row sums were all equal to 1 and (ii) the field and group

generated by its nonzero entries a .. . In the present case the

important features of A are Ii ) whether or not A has equal row

sums and (ii) the field and group generated by the set of all

quotients of nonzero entries from A.

The reader particularly interested in cryptographic inter-

pretations should consult [1 , Sections 1 and 2J . The essential

idea is briefly described as follows:

Cryptographic Interpretation . Think of the members of K

as being the letters of some alphabet , and consider “words” as

being members of K~ . Then each (a1,a2,A) defines a substitution

system which replaces a plain-text word X with a cipher-text

word Y using the equation Y = a1
1Act2 (X). This is essentially

the Hill system. In practice in domain K of is actually a

set of letters with no algebraic structure and the mapping ‘t~~

serves to carry these letters to the finite field K whose

I __ 
-
~~~~

. - -  -— - - . - -~~ ---



3

algebraic structure can be utilized . For this reason 
~2 

is

called the piain-text alphabet as it converts plain-text

letters to field values and is called the g4p~her-text

alphabet as aj’ converts field values to cipher letters.

L. -_ _
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The Basic Problem.

We now assume (cj
1,a2

,A) is given and seek those equivalent

Since (cx 1
,cj
2
,A) - - (~ 1

,~~21B) iff ~1 
Act

2 
=

it follows that (ct 1,ct2,A) (f~1 1~~2
,B) iff g

1
Ag

2 
l 

= ~ where

= and g2 
= ~2c*2

1. Hence we can determine all triples

equivalent to the given triple by the following procedure :

(i) Find all (g
1
,g2

) E G ~ G such that g1Ag2 
1 
is linear;

i.e., in GL(n,K)

(ii) For each (g 1
,g
2) found in (i) put ~l 

=

= q2~ 2 
and B = g 1

Ag
2

1
.

The collection of all triples (~ 11~~2,B) obtained in this way is

precisely the set of triples equivalent to (~~1
,t 2,A) . Moreover,

the number of equivalent triples clearly equals the number of (g1~ g2
)

pairs determined in (i). Thus , we can focus our attention on the

following problem : Given A characterize those (g
1,g2

) such that

is linear and determine their number. We shall now attack

this latter problem.

For convenience , we call a permutation h G normalized

if h (O) = 0 and h(l) = 1. We let H denote the subgroup of normalized

permutations and define the normalization operator ~ ‘ : G H by

ip (g) = h where h(x) (g(l) = g(O)) ~(y(x) -y(O )). Our next theorem

allows us to restrict our search for (g1
,g2) pairs where g1Ag2

1

is linear to normalized pairs.

--
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THEOREM 1. For each A GL(n ,K), let GA ~~~ 
HA ~~

sets defined by

(1) GA = {(g 1,g2) ~: G ~G: g1Ag2
1 is linear}

(2) HA = {(h 1,h2) L H < H: h1Ah;
1 is linear },

and let ~ : G G -~ H H be the componentwise normalizip~ o n er at o t~~or

~~(g1 1g
2
) = (~ 4j(g1

) , T:~(g
2
)). Then ~ maps GA onto HA . Moreover,

if A has constant row sums, all equal to r , then the set of

in GA which map to a given (h1,h2) c H
A 

is precisely

~~~ ~! 2.~ (g1,g2) pairs defined by

(3) g1(x) = m
1h1

(x) + b2m1m~~h1(r)

g2 (x) = m2h2(x) + b2,

where m1,m2,b2 vary over K with m1 ~ 0, , m2 # 0. If A does not

have constant row sums, the set of (g1,g2) ~ 
GA mapping to a

given (h1,h2) E H
A 

is precisely the set of (g1,g2) pairs of

the form

(4) g1(x) = m
1h1(x) , g~~(x) = m2h2 (x),

where m1 and m2 vary over the nonzero elements of K.

Proof. Let (g1,g2) £ GA so that g1Ag~~ 
= B ~ GL(n ,K).

Since g1A = Bg2 it is easily seen from the fact g1Aa = Bg2 (a)

for all a c K that (i) g1(~ ) = Bg2 (O) (ii) A has constant row

sums if f B has constant row sums , and (iii) if A and B do not

have constant row sums g1(0) = g2(0) = 0. Putting h
~ 

=

- __________________ - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~____ -__-~ - —..- —
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i=l ,2 we note that for X K
n

= m
~
h(X) +

g~h1
1 (x) = rn1X + E .

h.g.(X) = m . (X-b.)
11  1

where m . g (l) - g~~( O ) ,  b. = g.(0). It follows that

h1Ah1
1(X) = h

1
g
1
1
g1

Ag
2
1
g2
h2

1 (X) = h1g1
1Bg2h;

1(X) = h1g1
1 (B(m2X+S2) =

m1
1(m 25X+Bb2-b1) = m

1
1
m2

BX ; hence (h
1
,h
2
) E HA

. If A has unequal

row sums we note that b
~ 

= g~~
( O )  = 0 implying g

~ 
has the form

(4). If A has all row sums equal to r , we note that h1Ah2
1 (i) =

m1
1m2B(T) implies h(r) = m1 m2rB where rB is the row sum of any

row of B; thus, since g1(~ ) Bg2 (O) we see that b1 
= r b 2 

=

m~~m1h(r)b2 showing that g1 and g2 have the form (3).

Finally, let (h1,h2) ~ 
HA ; i.e., h1Ah2

1 
= C ~ GL(n ,K),

If A has constant row sums r then so does C and h1 (r) = r
~~
;

thus if g1 and g2 are any two permutations defined by (3) then

equations (5) are valid and g1Ag
1 (X) = g1h1

1h1Ah2
1h2g2

1(X) =

= g1hj
1(C(m 1 (X—E 2))) = m

1m2
1CX - m1m;

1Cb2 + =

m1m2
1CX - m

1
m
2
1h(r)~~2 + b1 

= m1m;
1CX. Thus (g1,g2) E GA . A

similar argument is valid when A does not have constant row sums

• so the proof is complete.

COROLLARY 1.1. Let A L GL(n ,K). Then

i t
q(q-l)2 1H I; if A has constant row sums

(6) IGA I 2 
A — ______ — ___

(q-l) HA l ; otherwise.
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COROLLARY 1.2. Let A GL(n ,K) and let (h
1
,h
2

) HA . I f

and g2 are defined ~~ (3) or (4 ) according as A does or does

not have constant row sums, then

h1Ah2
1 (h1 (a..)) = h

1
( A ) .

— l —lg1Ag2 
= m1

m
2 h1 

(A).

Proof. Put C = h
1
Ah

2
1
. We need only show that C = (h1 (a. )).

Letting U., , C., and A. denote respectively the jth columns of

I (identity matrix) , C and A we have C~ = CU~ = h
1

Ah
2
1
U . =

h1
(AU.) = h

1 (A.); thus, c .. 
=

Since it is now clear how to obtain GA sets from HA sets

we now attack the problem of finding HA given A.

Recall that A is monomial iff A has exactly one nonzero

entry in each row and column . The set of monomial matrices

denoted by M is a subgroup of GL(n ,K). It will be convenient

to treat separately the case A ~ M and A c M.

THEOREM 2. Let A GL(n ,K) - M = M ’ , let Q denote the sub-

field of K generated ~~ the set of all quotients a/b where

a,b are nonzero entries in A , and let h ,h be normalized
1 2

permutations of K. The mapping h1Ah;
1 is linear if and only if

for all entries a 
~ 

of A , for all x , y c K and for all c 
~ Q

—

~

-

~

•- -
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we have

(7) h1 (x+y) = h1(x)+h1 (y)

(8) h1(cx) = h1 (c)h1 (x)

(9) h1 (a..x) = h1 (a..)h 2 (x).

Proof. Suppose first that h1 and h2 satisfy conditions (7)

and (9) of the Theorem. Putting C = h
1

(A )  = (h1 (a..)) we have

Ch2X = (~ c ..h 2 (x.)) = (~ h1(a..)h2 (x.)) (~ h1 (a..X.) ) =

(h1(~ a ..x .)) = h
1AX. Thus h1Ah2 = C is linear.

Now suppose h1Ah2
1 

= C is linear. Then h1A = Ch
2 
where

C = h~~(A) (by COROLLARY 1.2). Let U~ and Uk be the jth and kth

unit vectors , and let x,y £ K. Then hlA(xU~
+YUk) = hl (A)h2 (xUl

+yUR)

so that hl (a. . x+b
~k

y) = h1 (a.~~)h2 (x) + hl
(b ik ) h

2
(y). Taking

y = 0 we obtain condition (9) , and using this condition we have

further that h1 (a..)h2 (x) + h1 (b..)h 2 (y) = h1 (a..x) + h
1
(b. .y).

Since some row of A has two nonzero entries we have h(ax+by) =

h(ax) + h(by ) for a,b ~ 0. Take x = a 1x’ and y = b
1
y’ to

obtain h1(x’+y ’) = h1(x’) + h1 (y’) so condition (7) is valid .

We complete the proof by showing (7) and (9) imply (8). Let

c = a/b denote a quotient of two nonzero entries a ,b from A.

From (9) we have h1(ax)/h 1(a) = h1 (bx)/h 1(b) ; hence , putting

x = y/b we obtain h1 (cy) = h1(a)h1 (y)/h 1(b) . Taking y=1 shows

that h1(c) = h1(a)/h 1(b); hence , h1(cy) h1 (c)h1(y). Now it

is readily argued that the set defined by S = (S £ K : h1(sx) =

h1(s)h1(x) 
} is a subfield of K , and since S contains c = a/b

t 
________________________



9

it contains Q. Thus (8) is valid.

I t  should be noted that the field Q generated by the quotients

of elements from A is a subfield of the field generated by the

elements of A. It should also be noted that THEOREM 2 implies

h
2 

is uniquely determined by h
1 . The next  theo rem shows that

any h
1 ~ H sa tisfying ( 7 )  and (8) can be used to construct an

where (h
1
h
2

) H
A
.

THEOREM 3. Let A and Q be as in THEOREM 2 , let

h
1 

r H sa t is~~ ( 7 )  and (8) , and let a be a nonzero  en try in A .

Then the mapp ing h
2 

def ined ~~

h2 (x) 
= (h1 (a))

1 (h1(ax)

is in H and is independent of the choice of A.

Proof. Clearly h2 ~ H; thus let ~~~ 
be an arbitrary non-

zero entry in A and put c = a.~~a
1 Q. Since h1 (a11

) =

h1 (a. a 
1a) = h1(ca) = h1 (c)h 1 (a) it follows that h

1
(c) =

thus , h1 (a.~~x) = h1 (cax) = h1 (c)h1 (ax)

h1 (a..)(h 1 (a))~~~h1 (ax) . Hence , h2 (x) = (h1 (a))~~~h1 (ax) =

(h,(a~~ ))~~~h1(a..x) and the proof is complete.

In [l ,p.l27 ,THEOREM 4.2] the authors give an exp licit

description of those functions h ~ H satisfying (7) and (8)

for a given subfield Q = GF (pt) of K GF(Pm). In particular

it is shown that h satisfies (7) and (8) iff h has the form

h(x) = 
~

‘ o(a
~
)w.

i=l
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where d = [K : Q ]  = m/t , <l ,w
l t w2

,. ..t w
d 

i s an a rb it r a ry ordered

bas i s for K over Q,and a
1
,... t ad 

F Q are the coordinates of x

with respect to a fixed ordered basis (l,v2 1 . . ~~~~~~~ of K over

Q. Moreover , the number of such h fu nct ions is shown to be

d
( 1 0)  N

1
(m,t) = t ~ (p

~~-p
’
~~) .

i=’

Pu tt i ng all of these ingred ien ts together it  is now c l ea r

how to find for a given nonmonomial matrix A all (g 1,g2) pairs

such that  g
1Ag2

’ is linear. This procedure is summarized below

after we indicate how to proceed in case A is monomial.

THEOREM 4 .  Let A c M and let R denote the subgroup of K *

generated by all quotients of the nonzero entries of A. Then

(h
1 1 h2

) L H H is in HA iff for all x K , c R and nonzero

entries a of A we have

(11) h
1
(cx)  = h

1
(c )h

1
(x)

( 12)  h 1 (ax ) = h
1
(a ) h

2
(x ).

THEOREM 5. Let A and R be as in THEOREM 4, let h
1 

sat is f y

(11),  and let a be a nonzero entry in A. Then the map h2 de-

fined 
~
y

h2 (x) = h1 (ax)/h 1 (a)

is in H and is independent of the choice of a.

.- . -

~

-•... .—-—-———-—- —~~~
-— ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

,•
~~



11

The proofs here are similar to those above and w ill be

omitted. Note again that (12) impliesh
2 

i s uniquely determined

by h
1
. The functions h1 ~ 

G sat isf ying (11) have been described

in (l ,p.131 ,THEOREM 5. 2] .  The number of such functions is

shown to be

( 1 3)  N2 (m,r) = (e_l)!r e~~~~(r)

where r = I R I  and e = (p m_l )/r , and ~ is the Euler t-func tion.

A procedure for finding those (~~1,1~2
,B) triples eq u i valent to

a given (‘~1,~~2,A) as well as a procedure for find ing HA and

G
A given A is described as follows :

1. If A / M (respective ly A M) determine the subf ield

• Q = G F ( p t
) of K (subgroup R of K*) generated by the set of

quotients of nonzero elements of A.

2. Determine the mappings h1 satisfying (7) and (8)

(respec t ive ly (11)). The number of such mappings is given by

( 10)  (respective ly (13)).

3. Pick an arbitrary nonzero entry a in A and for each

h1 found in step 2 determine h2 by h2 (x) = h1 (ax)/h 1 (a). The

pairs thus obtained are the members of HA . here h
1Ah;

1 
= h

1
(A),

and HA l N1 (m,t) (respectively, N2 (m,r), r = R I ) .

4. Construct the set GA by obtaining for each (h1h2) pair

the corresponding (g1,g2) pairs described in THEOREM 1. Here

—l — lg
1
Ag2 = in

2 
m1h1(A) where m1 

= g1(l) 
- g1(0) , m2 = g2 (l) 

- g2 (0).

The number of such pairs is given by COROLLARY 1.1 together with
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p
the above formula for H A I~

5. For each (g11g 2) G
A determine (v 1,~-:2,B) by 

~~ 
=

g
1~~1, 

~2 
= g2

z2 ,  B = m
2
1
m1h1

(A). The number of such tri ples

- is G
A l .

Using  techn ique s sim i l a r  to those in [ 2 ] one can now f in d

the number of equivalence classes of the relation but this wi l l
not be developed here .

— J
_—
~~
_ — — - - - - _ _ _

- -—— _
~~i_ _ _ _ _

__~~~ ~~
— — -------,. -—-
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Let  K = GF(q) denote the finite field of order q, let G denote the group of
one-to-one maps (permutat ions)  of K onto K , and let GL (n , K ) denote the group of n n
inver t ib le  matr ices  over K. Each t r iple ( :~~ ,a , A) ~ . GX GX GL (n , K) dete rmines  a permu-

tation of the vector space K~~, of n ’ 1 matrices over K as follows: 1 1 ( X )  = ~t1

X E K , where ~~~ . acts on X componentwise and A acts on X via matrix multip lication .
1 

1~P
Two triples (c*11 ct2 1A) and (~~1,~~21B) are called equivalent iff they determine the same

permutation Ii. This paper determine~ for a given (cz~ ,c~~,A) those equivalent ~~~~ .B~

It turns out that this problem is equivalent to the followinci eric . Given A I GL(n ,K)

find all g
1
,g
2 

C G such that the mapping g
1
Ag2 

~ is a linear transformation on K~~.

The solution to this latter problem is seen to depend on whether A has all row sums
equal and whether or not A is a monomial matrix. Moreover , if Q is the set of .ill
quotients of the nonzero entries of A then the role A plays in the solution is a
function of either the subfield of K or the subgroup of K* = K - {o} generated by Q.

The equivalence relation defined above has Its roots in algebraic cryptography
where it arises f r om a question • about eqivalent cryptosystems based on Hill’ s method
of matrix multiplication .
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