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ABSTRACT. Let K = GF(q) denote the finite field of order
.. g, let G denote the group of one-to-one maps (permutations) of K

onto K, and let GL(n,K) denote the group of n xn invertible matrices
over K. Each triple (ul,az,A) £ GxGxGL{n,K) determines a permuta-
tion of the vector space K" of nx1 matrices over K as follows:
n(x) = al-lAaz(X); X € Kn, where ay acts on X componentwise and A
acts on X via matrix multiplication. Two triples (ul.az,A) and
(31,32,5) are called equivalent iff they determine the same permuta-
tion . This paper determines for a given (al,az,A) those equivalent
(81,32,8). It turns out that this problem is equivalent to the
following one. Given A ¢ GL(n,K) find all 9,79, € G such that the
mapping glAgz_lis a linear transformation on K". The solution to
this latter problem is seen to depend on whether or not A has all row
sums equal and whether or not A is a monomial matrix. If A is monomial

then the role A plays in the solution depends on the subgroup of

K*

i

K -{0} generated by the set Q of all quotients of nonzero elements
of A, and if A is not monomial it depends on the subfield of K generated
by Q.

The equivalence relation defined above has its roots in algebraic
cryptography where it arises from a question about equivalent crypto-

systems based on Hill's method of matrix multiplication.

*Research supported in part by O.N.R. Contract N00014-76-C-0130.




Introduction.

Let K = GF(q) denote the finite field of order q = p", p a
prime, let G denote the group of one-to-one maps (permutations)
of K onto K, and let GL(n,K) denote the group of n xn invertible
matrices over K. Associate with each triple (al,az,A) in G xG * GL (n,K)
a permutation | of the vector space K" of n x1 matrices over K as
follows:

R(X) = _lAa?(X); ek,
-

g |
p : ; ’ ; n
where ay is interpreted as acting componentwise on a vector X in K

and A acts on X via multiplication X-» AX. Two triples (a ,az,A)

1;
and (81,82,8) are called equivalent iff they determine the same per-
mutation || of Kn: T e g al-lAaz = Bl_lBBZ, in which case we write
(rxl,o.z.A) o (Bl-Bz.B) .

g The relation . while of interest in its own rights has its roots
in algebraic cryptography (see below) where it arises from a question
concerning equivalence of cryptosystems based on Hill's method (3,4]
of matrix multiplication.

The basic problem which we solve in this paper is the following:
Given (al.az,A) find all equivalent (61,82,8) and determine their
number. This problem is readily reformulated (see the next section)

into the following problem. Given A ¢ GL(n,K) find all (91’92) pairs

in G x G such that 91Ag2-1 is in GL(n,K) and determine their number.

N e 1




By way of notation we use K* to denote the multiplicative
group of K. We use a to denote the n x 1 matrix in kK" each of
whose elements equals a « K. Thus for example, g(a) = g(a) for
every g £ G.

The present work is a generalization of previous studies
[1,2] which treated the case where a; = o, and Bl = 82 and
emphasized the cryptological aspects. Many of the ideas and
results of those earlier papers are applicable to the present
case. The most striking difference between the two cases is
in the changing of the essential role of the matrix A. 1In
[1] and [2] the important features of A were (i) whether or not
its row sums were all equal to 1 and (ii) the field and group
generated by its nonzero entriesaij. In the present case the
important features of A are (i) whether or not A has equal row
sums and (ii) the field and group generated by the set of all
quotients of nonzero entries from A.

The reader particularly interested in cryptographic inter-
pretations should consult [l1, Sections 1 and 2]. The essential
idea is briefly described as follows:

Cryptographic Interpretation. Think of the members of K
as being the letters of some alphabet, and consider "words" as
being members of K". Then each (al,az,A) defines a substitution
system which replaces a plain-text word X with a cipher-text
word Y using the equation Y = aIlAaz(x). This is essentially

the Hill system. 1In practice in domain K of a; is actually a

set of letters with no algebraic structure and the mapping ay

serves to carry these letters to the finite field K whose




algebraic structure can be utilized. For this reason a, is

called the plain-text alphabet as it converts plain-text

letters to field values and ay is called the cipher-text

alphabet as aIl converts field values to cipher letters.
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The Basic Problem.

We now assume (a ,az,A) is given and seek those equivalent

1
: ¥ -1 L -1
(Bl,sz,B). Since (ul.az,A) . (Blrﬁle) AEE ay Auz = 81 862
: p -1
it follows that (ql,uz,A) S (BI,BZ,B) P EF glAg2 = B where

9, = 81“1 and 9, = 82“2_1‘ Hence we can determine all triples
equivalent to the given triple by the following procedure:

(i) Find all (gl,gz) ¢ G xG such that glAgz_l is linear;
i.e., in GL(n,K)

(ii) For each (gl,gz) found in (i) put Bl = g%y
52 = 9,0, and B = glAgz_l.
The collection of all triples (81,82,8) obtained in this way is
precisely the set of triples equivalent to (ul,az,A). Moreover,
the number of equivalent triples clearly equals the number of (gl.gz)
pairs determined in (i). Thus, we can focus our attention on the
following problem: Given A characterize those (gl,gz) such that
glAgz—l is linear and determine their number. We shall now attack
this latter problem.

For convenience, we call a permutation h ¢ G normalized
if h(0) = 0 and h(l) = 1. We let H denote the subgroup of normalized

permutations and define the normalization operator ¢y : G *H by

p(g) = h where h(x) = (g(l) = g(O))-l(g(x)-g(O)). Our next theorem
allows us to restrict our search for (91'92) pairs where glAgz-l

is linear to normalized pairs.

.




THEOREM 1. For each A ¢ GL(n,K), let GA and H, be the

A
sets defined by

kY . ; =1 ;
(1) 6, = {(gl,gz) e GxG: glAgz is linear}

: ; S o
(2) HA = {(hl,hz) € HxH: hlAh2 is linear},

and let y : GxG-»HxH be the componentwise normalizing operator

W(gl:gz) = (w(gl),w(gz)). Then | maps G, onto H,. Moreover,

if A has constant row sums, all equal to r, then the set of

(91’92) in G, which map to a given (hl,h2) € Hy is precisely

the set of (gl,gz) pairs defined by

-1
(3) gl(x) mlhl(x) + bzmlm2 hl(r)

gz(x) = mzhz(x) + b2,

where ml,mz,b2 vary over K with my # 0,_m2 # 0. If A does not \

have constant row sums, the set of (gl’92) 5 GA mapping to a

given (hl'hz) € Hy is precisely the set of (9,,9,) pairs of

the form

(4) gl(x) = mlhl(x) ’ gz(x) = mzhz(X)'

where m, and m, vary over the nonzero elements of K.

Proof. Let (gl,gz) £ GA so that glAg;l = B £ GL(n,K).

Since g,A = Bg, it is easily seen from the fact glAE = Bgz(E)
for all a ¢ K that (i) gl(ﬁ) = Bgz(ﬁ) (ii) A has constant row
sums iff B has constant row sums, and (iii) if A and B do not

have constant row sums gl(O) = 92(0) = 0. Putting hi = w(gi),




ol 0yt

i=1,2 we note that for X Kn

g, (X) = mh(x) + b,

(5) g,h] (¥} =mx + B,

Lol
h,g, (X) = m " (X-b,) ,

where mi = gi(l) - gi(O), bi = gi(O). It follows that

-1 gl -1 -1 -1 b -1 -1 G -1 - . _
hlAhl (X) = hlgl 9,79, g,h, (X) = hlgl B92h2 (X) = hlql (B(m,X+b,) =

-1 - = =]
my (szx+Bb2-b1) = m;m,

row sums we note that B = gi(O) = 0 implying 9; has the form

(4). If A has all row sums equal to r, we note that hlAh;l(T) =
1L

1 T ; P :
my mZB(l) implies h(r) = my merwhere ry is the row sum of any

row of B; thus, since g, (D) = Bgz(ﬁ) we see that b, = er2 =

m;lmlh(r)b2 showing that g, and g, have the form (3).

BX; hence (hl'hz) ESH If A has unequal

AC

i : -1 _
Finally, let (hl’h2) € HA' i.e., h Ah2 = C ¢ GL(n,K),

1

If A has constant row sums r then so does C and hl(r) = rC;

thus if 9, and g, are any two permutations defined by (3) then

equations (5) are valid and glAggl(X) = glhIlhlAh;lhzggl(x) =
1 -

- o e SIEI T S & e
glh1 Ch,g, (X) = glh1 (C(m2 (X-b,))) = m;m, CX - mm, Cb, + b, =
=} -1 B

m,m, CX - mlm2 h(r)b2 + b1 = mym, CX. Thus (gl,gz) £ GA'

similar argument is valid when A does not have constant row sums

A

so the proof is complete.

COROLLARY 1.1. Let A € GL(n,K). Then

q(q-l)zlﬂAl; if A has constant row sums
(6) |G

’—-

(q-l)2|HA ; otherwise.




COROLLARY 1.2. Let A ¢ GL(n,K) and let (hl'h2) ¢ H If

A: 22
g, and g, are defined by (3) or (4) according as A does or does

not have constant row sums, then

_l— S
hlAh2 = (hl(aij)) = hl(A).
and
glAg;l = mlmglhl(A).
Proof. Put C = hlAhgl. We need only show that C = (hl(aij))'

Letting Uj’ Cj' and Aj denote respectively the jth columns of

I (identity matrix), C and A we have Cj = CUj = hlAhEIUj =

hl(AUj) = h (Aj); thus, cij = hl(ai.).

1 J

Since it is now clear how to obtain GA sets from HA sets

we now attack the problem of finding H, given A.

A
Recall that A is monomial iff A has exactly one nonzero
entry in each row and column. The set of monomial matrices

denoted by M is a subgroup of GL(n,K). It will be convenient

to treat separately the case A ¢ M and A ¢ M.

THEOREM 2. Let A ¢ GL(n,K) - M = M', let Q denote the sub-

field of K generated by the set of all quotients a/b where

a,b are nonzero entries in A, and let h .h2 be normalized

permutations of K. The mapping hlAh;1 is linear if and only if

for all entries aij of A, for all x,y € K and for all c € Q




we have

(7) hl(x+y) = hl(x)+h1(y)
(8) hy(ex) = h,(c)h; (x)

(9) hl(ain) = hl(aij)h2(X)’

Proof. Suppose first that hl and h2 satisfy conditions (7)

and (9) of the Theorem. Putting C = hl(A) = (hl(aij)) we have

Ch,X = (Zcijhz(xj)) - (Xhl(aij)hz(xj)) = (Zhl(aijxj)) =
= = : :
(hl(Xaijxj)) = hlAX. Thus hlAh2 = C is linear.
Now suppose hlAh;l = C is linear. Then hA = Ch, where

€ = hl(A) (by COROLLARY 1.2). Let Uj and Uk be the jth and kth

unit vectors, and let x,y £€ K. Then hlA(xUj+yUk) = hl(A)hZ(XUj+yUR)

1

y = 0 we obtain condition (9), and using this condition we have

so that hl(aijx+biky) = h (aij)hz(x) + hl(bik)hZ(y)' Taking

1

Since some row of A has two nonzero entries we have h(ax+by) =

further that hl(aij)hz(x) + hl(bij)hZ(y) = h (aijx) + hl(bijy)'

h(ax) + h(by) for a,b # 0. Take x = a 'x' and y = b ly' to
obtainlﬁ(x'+y') = hl(x') + hl(y') so condition (7) is valid.

We complete the proof by showing (7) and (9) imply (8). Let

¢ = a/b denote a quotient of two nonzero entries a,b from A.
From (9) we have hl(ax)/hl(a) = hl(bx)/hl(b); hence, putting

X = y/b we obtain hl(cy) = hl(a)hl(y)/hl(b). Taking y=1 shows
that hl(c) = hl(a)/hl(b); hence, hl(cy) = hl(c)hl(y). Now it
is readily argued that the set defined by S = {s ¢ K : hl(sx) =

hl(s)hl(x)} is a subfield of K, and since S contains ¢ = a/b

B —— S ————
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it contains @. Thus (8) 1s wvalid.

It should be noted that the field Q generated by the quotients

of elements from A is a subfield of the field generated by the
elements of A. It should also be noted that THEOREM 2 implies

h2 is uniquely determined by h The next theorem shows that

1°
any hl € H satisfying (7) and (8) can be used to construct an

h., where (hlhz) € H

2 A’

THEOREM 3. ©Let A and Q be as in THEOREM 2, let

h, ¢ H satisfy (7) and (8), and let a be a nonzero entry in A.
Then the mapping h2 defined by

-1
h2(x) = (hl(a)) (hl(ax)

is in H and is independent of the choice of A.

Proof. Clearly h2 € H; thus let aij be an arbitrary non-
y =i :
zero entry in A and put c¢ = aija € Q. Since hl(aij
-1 .
hl(aija a) = hl(ca) = hl(c)hl(a) it follows that hl(c) =

Y=

(hl(aij)(hl(a))—l; thus, hl(aijx) = hl(cax) = hl(c)hl(ax) =
1

o 5 =il L
hl(aij)(hl(a)) hl(ax). Hence, hz(x) = (hl(a)) hl(ax) =
=, !
(hl(aij)) hl(aijx) and the proof is complete.
In [1,p.127,THEOREM 4.2] the authors give an explicit
description of those functions h ¢ H satisfying (7) and (8)

for a given subfield Q = GF(pt) of K = GF(pm). In particular

it is shown that h satisfies (7) and (8) iff h has the form

hix) = } o(aj)wy
i=1




10

where d = [K:Q] = m/t, <1,w1,w2,...,wd- is an arbitrary ordered
basis for K over Q, and ayr---saq £ Q are the coordinates of x
with respect to a fixed ordered basis (l,vz,...,vd) of K over

Q. Moreover, the number of such h functions js shown to be
(10) Nl(m.t) =t

Putting all of these ingredients together it is now clear
how to find for a given nonmonomial matrix A all (gl,gz) pairs
such that glAggl is linear. This procedure is summarized below

after we indicate how to proceed in case A is monomial.

THEOREM 4. Let A ¢ M and let R denote the subgroup of K*

generated by all quotients of the nonzero entries of A. Then

(hl,hz) € HxH is in HA iff for all x € K, ¢ € R and nonzero

entries a of A we have

1

(L) hl(CX) hl(c)hl(x)

1}

(12) hl(ax) hl(a)hz(x).

THEOREM 5. Let A and R be as in THEOREM 4, let hl satisfy

(11), and let a be a nonzero entry in A. Then the map h, de-

2
fined by

hy (x) = hl(ax)/hl(a)

is in H and is independent of the choice of a.




11

The proofs here are similar to those above and will be
omitted. Note again that (12) impliesrb is uniquely determined

by h The functions h, ¢ G satisfying (11) have been described

15 it
in (1,p.131,THEOREM 5.2}. The number of such functions is

shown to be
(13) N, (m,r) = (e—l)!re—l¢(r)

where r = |R| and e = (pm-l)/r, and ¢ is the Euler ¢-function.
A procedure for ﬁhﬁingijmse(ﬁllﬁz,B) triples equivalent to

a given ( A) as well as a procedure for finding Hy and

<xl ’ <12 ¥
GA given A is described as follows:

1. If A £ M (respectively A ¢ M) determine the subfield
Q = GF(pt) of K (subgroup R of K*) generated by the set of
quotients of nonzero elements of A.

2. Determine the mappings h, satisfying (7) and (8)

1
(respectively (11)). The number of such mappings is given by

(10) (respectively (13)).
3. Pick an arbitrary nonzero entry a in A and for each

hl found in step 2 determine h. by hz(x) = hl(ax)/hl(a). The

2

pairs thus obtained are the members of H,. HHere hlAh;l = hl(A)'

A
and [Hp| = N;(m,t) (respectively, N,(m,r), r = [R|).
4. Construct the set GA by obtaining for each (h1h2) pair

the corresponding (gl,gz) pairs described in THEOREM 1. Here

G | = g i 2
glAg2 =m, mlhl(A) where m = gl(l) 91(0)’ m, = gz(l) 92(0).

The number of such pairs is given by COROLLARY 1.1 together with




12
r the above formula for ]HA].
5. For each (gl,gz) S GA determine (gl,ﬁz,B) by By, =
LS B
9y 82 = gya,, B = m, mlhl(A)' The number of such triples
is !GA].

Using techniques similar to those in [2] one can now find
the number of equivalence classes of the relation but this will

not be developed here.
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