

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING PROGRAM QUARTERLY TECHNICAL REPORT

Contract Number DAAB07-76-C-8135

LIGHT EMITTING DIODES FOR FIBER OPTIC COMMUNICATIONS

Prepared By:

LASER DIODE LABORATORIES, INC. 205 Forrest Street Metuchen, New Jersey 08840

Second Quarterly Report For the Period 1 January 1977 to 31 March 1977

Approved for public release; distribution unlimited.

Placed by:

U. S. Army Electronics Command, Production Division Fort Monmouth, N. J. 07703 MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING PROGRAM QUARTERLY TECHNICAL REPORT

Contract Number DAAB07-76-C-8135

LIGHT EMITTING DIODES FOR FIBER OPTIC COMMUNICATIONS

Prepared by:

Albert Gennaro Product Development Manager

LASER DIODE LABORATORIES, INC. 205 Forrest Street Metuchen, New Jersey 08840

ACCESSION for White Section B.f. Section NTIS UNANNOUNCED 000 JUSTIFICATIC cons .0 11 DISTRICTION SF CIAL

Second Quarterly Report for the Period 1 January 1977 to 31 March 1977

This project has been accomplished as part of the Army Manufacturing and Technology Program, which has as its objective the timely establishment of manufacturing processes techniques or equipment to insure the efficient production of current or future programs.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Destry this report when it is no longer needed. Do not return it to the originator.

EPORT NUMBER 1. GOVT ACCESSION NO. * REGPENT'S CATAGOG NUMBER TILE Land Summa, LIGHT EMITTING DIODES FOR FIBER OPTIC */ "THE OF REPORT & FEMOD CONCERED. Quarterly Report 1-1-77 to 3-31-77 LIGHT EMITTING DIODES FOR FIBER OPTIC */ "THE OF REPORT & FEMOD CONCERED. Quarterly Report 1-1-77 to 3-31-77 MUTOR(a) • CONTRACTOR GRANT ANUMBER (a) Albert Gennaro • CONTRACTOR GRANT ANUMBER (a) New Jersey 0 205 Forrest Street 2769778 Wetuchen, New Jersey 07703 U. S. Army Electronics Command Fort Monmouth, New Jersey 10. PROBAM (LEMENT PROJECT, TAXE 39 CONTROLING OFFICE WAME AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 13. SECURITY CLASS. (of this report) MORDEL-PP-I-PI-1 13. SECURITY CLASS. (of this report) 39 MORTORING AGENEY WAME & ADDRESS (d) different from Controlling Office) 13. SECURITY CLASS. (of this report) BORTITORING AGENEY WAME & ADDRESS (d) different from Controlling Office) 13. SECURITY CLASS. (of this report) BORT FORMULA STATEMENT (of the abstract entered in Block 20. If different from Report) 13. SECURITY CLASS. (of this report) BUSTRIEUTION STATEMENT (of the abstract entered in Block 20. If different from Report) 13. SECURITY CLASS. (of this report) BUSTRIEUTION STATEMENT (of the abstract entered in Bloc	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
LIGHT EMITTING DIODES FOR FIBER OPTIC Quarterly Report COMMUNICATIONS 1-1-77 to 3-31-77 6. PERFORMING ORG. REPORT NUMBER AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(*) Albert Gennaro DAAB07-76-C-8135 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS. Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey 2769778 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE J. S. Army Electronics Command June 29, 1977 Fort Monmouth, New Jersey 07703 39 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)		BEFORE COMPLETING FORM D. 3. RECIPIENT'S CATALOG NUMBER
LIGHT EMITTING DIODES FOR FIBER OPTIC COMMUNICATIONS /Quarterly Report 1-1-77 to 3-31-77 J AUTHOR(a) E CONTRACT ON CAMPACTION NAME AND ADDRESS Albert Gennaro DAAB07-76-C-8135 PERFORMING ORGANIZATION NAME AND ADDRESS DAAB07-76-C-8135 Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey Control Project, TASK AREA & MOK WIT NUMBER(a) U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 II. REPORT DATE June 29, 1977 JUNETRIBUTION STATEMENT (of the Report) MONITONING AGENCY NAME & ADDRESS(if different from Controlling Office) Is. DECLAPT-IPTICIC DISTRIBUTION STATEMENT (of the Abbreck onlessed in Black 20, If different from Report) SupplementARY NOTES		(9)
COMMUNICATIONS		S. TYPE OF REPORT & PERIOD COVERED
E PERFORMING ORG. REPORT HUMBER E PERFORMING ORG. REPORT HUMBER AUTHOR(a) Albert Gennaro Performing organization name and address Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey Controlling Orflice Wake And Address Los Army Electronics Command Fort Monmouth, New Jersey Controlling Orflice Wake And Address Los Army Electronics Command Fort Monmouth, New Jersey Controlling Orflice Wake And Address Los Army Electronics Command Fort Monmouth, New Jersey Controlling Office Wake And Address Los Army Electronics Command Fort Monmouth, New Jersey Controlling Office June 29, 1977 June 20, 1977 Ju	LIGHT EMITTING DIODES FOR FIBER OPTIC	
AUTHOR(c) Albert Gennaro PLATEONNING ORGANIZATION NAME AND ADDRESS Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 NUMBER OF PAGES 2769778 10. NUMBER OF PAGES 2769778 11. NUMBER OF PAGES 39 NONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 13. SECURITY CLASS. (of Mix report) 14. DESCLASSING CONTRACTION DAME & ADDRESS(II different from Controlling Office) 15. DESCLASSING CONTRACTION DAME & ADDRESS (II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. II different from Report) SUPPLEMENTARY NOTES XEY VORDS (Continue on reverse side II necessary and Identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED Apstract (Continue on reverse side II necessary and Identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications, is discussed with regard to materials synthesis via LEP, wafer fabrication,	COMMUNICATIONS	1-1-77 to 3-31-77
Albert Gennaro DAAB07-76-C-8135 DAAB07-76-C-8135 DAAB07-76-C-8135 DEFERONMING ORGANIZATION NAME AND ADDRESS Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey 2769778 2769778 2769778 2769778 2769778 12. REPORT DATE JUNE 29, 1977 13. NUMBER OF PAGES U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 39 WONITONING AGENCY NAME & ADDRESS(// different from Controlling Office) 15. SECURITY CLASS. (cf Mix report) 15. DECL #35FFCATION/DOBHGRADING ECHEDULE DISTRIBUTION STATEMENT (cf Mix Report) SUPPLEMENTARY NOTES	1	6. PERFORMING ORG. REPORT NUMBER
PERFORMING ORGANIZATION NAME AND ADDRESS Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey Contracting office NAME AND ADDRESS Customer Street Metuchen, New Jersey 2769778 Contracting office Name AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 Moniforing AGENCY NAME & ADDRESS() different from Controlling Office) Us. S. Control of the Address of the Address of the Address of the Proof Is. DECL ASHFICATION/DOWNGRADING Distribution Statement (of the Address of the Address o	AUTHOR(.)	8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS Laser Diode Laboratories, Inc. 205 Forrest Street Metuchen, New Jersey Contracting office NAME AND ADDRESS Customer Street Metuchen, New Jersey 2769778 Contracting office Name AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 Moniforing AGENCY NAME & ADDRESS() different from Controlling Office) Us. S. Control of the Address of the Address of the Address of the Proof Is. DECL ASHFICATION/DOWNGRADING Distribution Statement (of the Address of the Address o	111	The second second
Laser Diode Laboratories, InC. 205 Forrest Street Metuchen, New Jersey CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 WONITORING AGENCY NAME & ADDRESS(II different hom Controlling Office) WONITORING AGENCY NAME & ADDRESS(II different hom Controlling Office) Is. SECURITY CLASS (of this report) Is. SECURITY CLASS (of this report) Is. DECL SUPPLEMENT (of this Report) Approved for public release; distribution unlimited. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side If necessary and Identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessary and Identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	Albert Gennaro	DAAB07-76-C-8135
Laser Diode Laboratories, InC. 205 Forrest Street Metuchen, New Jersey CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 WONITORING AGENCY NAME & ADDRESS(II different hom Controlling Office) WONITORING AGENCY NAME & ADDRESS(II different hom Controlling Office) Is. SECURITY CLASS (of this report) Is. SECURITY CLASS (of this report) Is. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side If necessary and Identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessary and Identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Metuchen, New Jersey 2769778 CONTROLLING OFFICE NAME AND ADDRESS June 29, 1977 U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 June 29, 1977 Fort Monmouth, New Jersey 07703 June 29, 1977 JUNETORING AGENCY NAME & ADDRESS(I different from Controlling Office) June 29, 1977 MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) J. SECURITY CLASS (of the report) JUNETORING AGENCY NAME & ADDRESS(I different from Controlling Office) J. SECURITY CLASS (of the report) JUNETORING AGENCY NAME & ADDRESS(I different from Controlling Office) J. SECURITY CLASS (of the report) JUNETORING AGENCY NAME & ADDRESS(I different from Controlling Office) J. SECURITY CLASS (of the report) DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, If different from Report) J. SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES J. J. Security and Teaching Diode J. J	Laser Diode Laboratories, Inc.	AREA & WORK UNIT NUMBERS
Incomposition of the endotres o		
U. S. Army Electronics Command Fort Monmouth, New Jersey 07703 ATTN: DRSEL-PP-I-PI-1 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. DECLASSIFICATION/DOWNGRADING SUPPLEMENT (of the ebetract entered in Block 20, II different from Report) SUPPLEMENTARY NOTES REY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		
0. 5. Army Electronics conduction 9. MONTORING AGENCY NAME & ADDRESS(II different from Controlling Office) 10. NUMBER OF PAGES 39 11. SECURITY CLASS. (of this report) 11. SECURITY CLASS. (of this report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract enlered in Block 20. If different from Report) SUPPLEMENTARY NOTES REV WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode		
ATTN: DRSEL-PP-I-PI-1 39 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Is. DESTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. II different from Report) Supplementary NOTES REV WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED Apstract (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting dides for fiber optic communications, is discussed with regard to materials synthesis via LPE, wafer fabrication,		
Is. DECLASSIFICATION/DOWNGRADING Ist DESTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, II different from Report) DISTRIBUTION STATEMENT (of the abatract entered in Block 20, II different from Report) SUPPLEMENTARY NOTES REFY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	ATTN: DRSEL-PP-I-PI-1	
SCHEDULE DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed on Block 20. If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
SCHEDULE DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the observed on Block 20. If different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		19/2961
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		15. DECLASSIFICATION DOWNGRADING
Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		SCHEDULE
KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	Approved for public release; distributi	on unlimited.
KEY WORDS (Continue on reverse side if necessary and identify by block number) Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		
Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessery and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,		
Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessery and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different i	
Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessery and identify by block number) The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different i	
The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different i	
The design and fabrication of high speed etched-well light emitting diodes for fiber optic communications is discussed with regard to materials synthesis via LPE, wafer fabrication,	DISTRIEUTION STATEMENT (of the abstract entered in Block 20, 11 different i SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide	rom Report) 405-62
with regard to materials synthesis via LPE, wafer fabrication,	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED	rom Report) 405-62
	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number The design and fabrication of high spee	rom Report)
	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side If necessary and identify by block number The design and fabrication of high spee emitting diodes for fiber optic communi with regard to materials synthesis via	rom Report)
	DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number Light Emitting Diode Fiber Optic Communications Gallium Aluminum Arsenide Double Heterojunction LED ABSTRACT (Continue on reverse side if necessary and identify by block number The design and fabrication of high spee emitting diodes for fiber optic communi with regard to materials synthesis via and device assembly in a manufacturing	rom Report)

TABLE OF CONTENTS

Section			Page
I		Introduction	1
II		Manufacturing Methods and Technology Engineering	1-26
	2.1	Materials Technology	1
	2.1.1	Liquid Phase Epitaxial Synthesis of Device Structure	2
	2.1.2	Wafer Processing for Etched Well Light Emitting Diode Chip Fabrication	
	2.2	Packaging Technology	12
	2.2.1	Package Design	13
	2.3	Diode Assembly Technique	13-20
	2.4	Device Evaluation and Testing	20
	2.4.1	Device Evaluation	20-22
	2.5	Test Equipment	22
	2.5.1	Life Testing and Burn-In	26
III		Summary and Conclusion	26-31

LIST OF FIGURES

Figure	Page
1	Photomicrograph of Double Heterojunction Structure 4
2	Hinged Photomask 6
3	Sketch of Hinged Photomask 7
4	Photomicrograph of Prealigned Photomask Showing Contact Aperture Centered in the Fiber Well 8
5	Etched Well
6	Spray Etch Equipment
7	Wafer Processing Flow Chart for the Manufacture of Etched-Well Light Emitting Diodes 11
8	LED Stud Assembly
9	LED Fiber-Ferrule Assembly with Support Sleeve 15
10	Pakcage Components and Completed Assembly 16
11	Alignment Fixture
12	Alignment Fixture (Close-Up)
13	Sketch of Alignment Fixture
14	Alignment Fixture and Power Measuring Instrument. 19
15	Pulse Driver
16	Sine Wave Driver
17	Transient Suppressor
18	Photograph of Goniometer Showing Rotatable Head . 28
19	Photograph of Goniometer Showing Close-Up of Mounting Fixture
20	Goniometer Block Diagram
21	Test Socket in Open Position
22	Test Socket in Closed and Clamped Position 30
23	Burn-In and Life Rack Circuitry

LIST OF TABLES

Table		Page
1	Double Het Run Sheet	3
2	Etched-Well LED Data	21

APPENDICES

Α.	Engineering Man-Hour Utilization for the	the		
	Second Quarter of the Program	•	• •	32
в.	Distribution List			33-39

Page

SECTION I

INTRODUCTION

The primary objective of this Manufacturing Methods and Technology Engineering Program is twofold. First, the manufacturing methods and techniques necessary for the volume production of the light emitting diode for use in fiber optic communications as outlined in Specification SCS-511 must be developed and implemented to insure the highest degree of device quality and reliability at a reasonable cost. Secondly, verification of device performance and quality for LED's produced in a volume manufacturing environment must be carried out by means of rigorous testing and evaluation in accordance with SCS-511 in order to demonstrate the technical adequacy of the manufacturing methods developed under this contract.

The major program objectives for the second quarter of the program include the optimization of the epitaxial process to yield material to meet the performance characteristics of SCS-511, construction of device assembly and test fixtures, fabrication of initial engineering samples and the determination of test equipment required for the characterization of the LED.

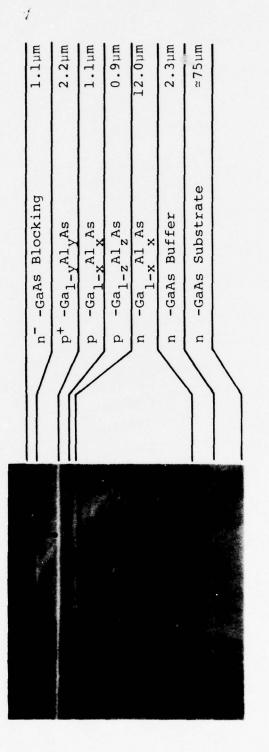
SECTION II

MANUFACTURING METHODS AND TECHNOLOGY ENGINEERING

2.1 Materials Technology.

2.1.1 Liquid Phase Epitaxial Synthesis of Device Structure. Sample wafers were grown to determine the melt compositions and growth times that would yield structures compatible with the performance characteristics required by Specification SCS-511. Of the wafers grown during this period, units from BUR-B-19 exhibited the most satisfactory performance with regard to output power and peak wavelength. The performance characteristics of these units are discussed in detail under paragraph 3. Table 1 shows the melt compositions for wafer BUR-B-19. In addition to the melt compositions, growth conditions are listed as well as the individual layer thicknesses obtained from the photomicrograph of a cleaved and stained cross section of the wafer (Figure 1). GaAs ingot and slice numbers are recorded to maintain traceability. Vacuum readings less than 200 µm indicate system integrity and absence of leaks. A hydrogen flow rate of 150 cc/min was maintained for an overnight period in order to reduce the background 0, level below 1.0 ppm, prior to the growth run. It has been determined that a minimum of 2 hour flushing is required to produce defect free crystal growth. Although in general the growth process has been optimized, a slight adjustment in the aluminum content of the active layer must be made to bring the peak wavelength into the range as specified by SCS-511. 2.1.2 Wafer Processing for Etched Well Light Emitting Diode

Chip Fabrication.

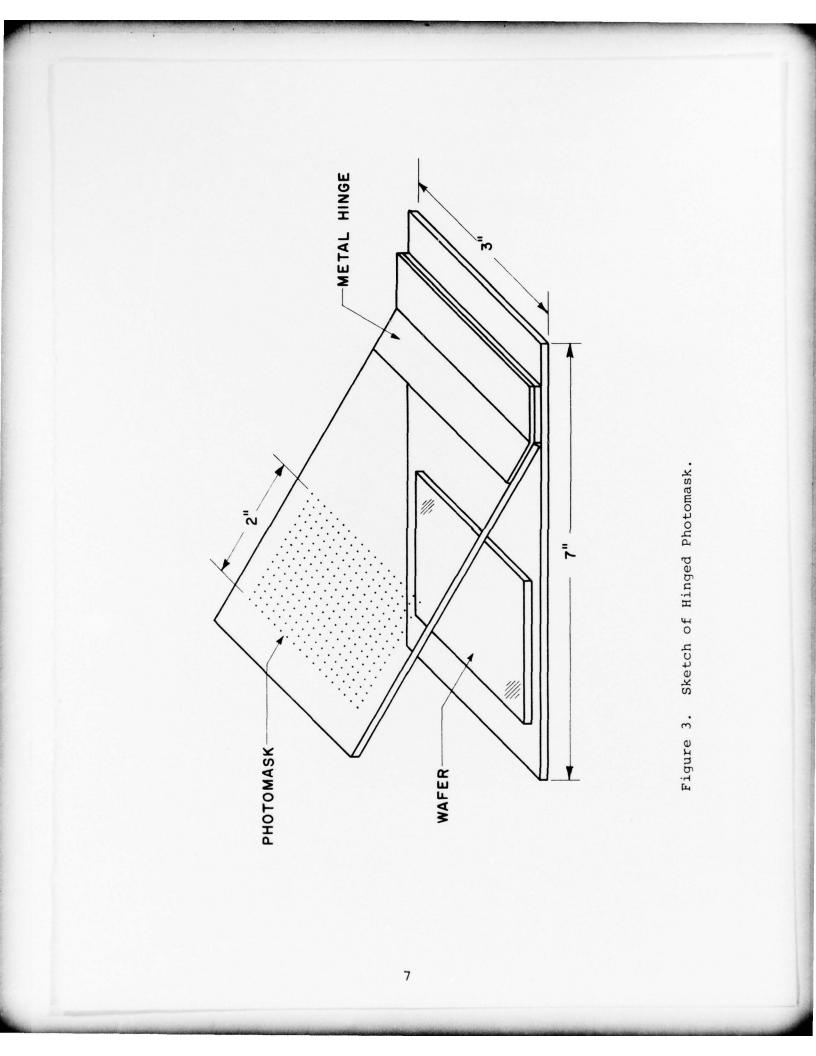

TABLE 1. DOUBLE HET RUN SHEET

Run # BUR-B-19	Crystal #8756	Job #
Date March 7, 1977	Slice #26	Туре

Bin #	GaAs Gm	Ga Gm	Dopants	Growth Time Min.	Temp. °C	Layer Thickness µm
1	1	5	2 Те	10	804	1.1
2	2	10	4 Te 10 Al	90	801	10.8
3	1	5	10 Ge 1.5 Al	1.5	784.5	0.5
4	1	5	200 Ge 6.5 Al	15	784	1.3
5	1	5	500 Ge	10	781	1.1
6	1	5	No Dopant	5	779	0.7
7	1	5	50 Al	Wipe	778	-
8	-	-	-	-	-	-
9	-	-	-	-	-	-
10	-		-	-	-	-

Vacuum: 150 μ	Flow Rate: 150 cc/min.	Flush Time: Overnight
0 ₂ at Ram: 0.75 ppm	02 at Run : 0.7 ppm	Surface Condition: Good

Comments:



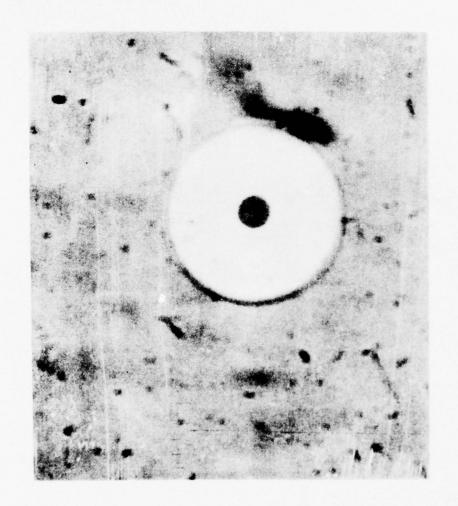
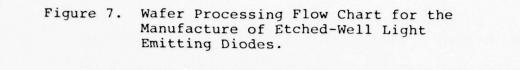

Photograph of Typical Double Heterojunction Structure Required for the Manufacture of Etched-Well Light Emitting Diodes for Fiber Optic Communications. Figure 1.

Figure 2 is a photograph of the hinged mask used to maintain registration of the'n-side etch-well and the 'p'side contact dot. The "hinge" is in reality a continuous strip of metal, which, because of its temper, allows the two masks to be separated slightly but provides sufficient pressure to maintain good mask contact with the epi wafer. A spacer is positioned in the hinge area which allows a separation of the two masks on the order of .005". The wafers to be used with the mask are polished to .0045" + .0001" on the 'n'-side of the wafer. A thick (5 µm) layer of Au-Ge is then deposited on the 'n'-side of the wafer. This layer is used as an ohmic contact to the 'n'-side and as an etch mask during the "well" etch step. This eliminates the need for alignment of a contact mask after "well" etching. Photo-resist is applied to both sides of the wafer by spinning it on a teflon vacuum chuck, one side at a time. After a 30 min. cure, the wafer is placed between the plates of the hinged mask. The best cleaved edge of the wafer is positioned against an alignment strip. This strip has been placed parallel to the mask pattern and is used to position the crystal planes parallel to the mask pattern. Exposure of the resist is made by subjecting the mask and wafer sandwich to UV radiation, one side at a time. The exposed photoresist is then developed and the resulting patterns are a 40 µm diameter area of exposed GaAs on the 'p' side, concentric with a 225 µm diameter area of exposed Au-Ge over GaAs on

Figure 2. Hinged Photomask.


Photomicrograph of Prealigned Photomask Showing Contact Aperture Centered in the Fiber Well. Figure 4.

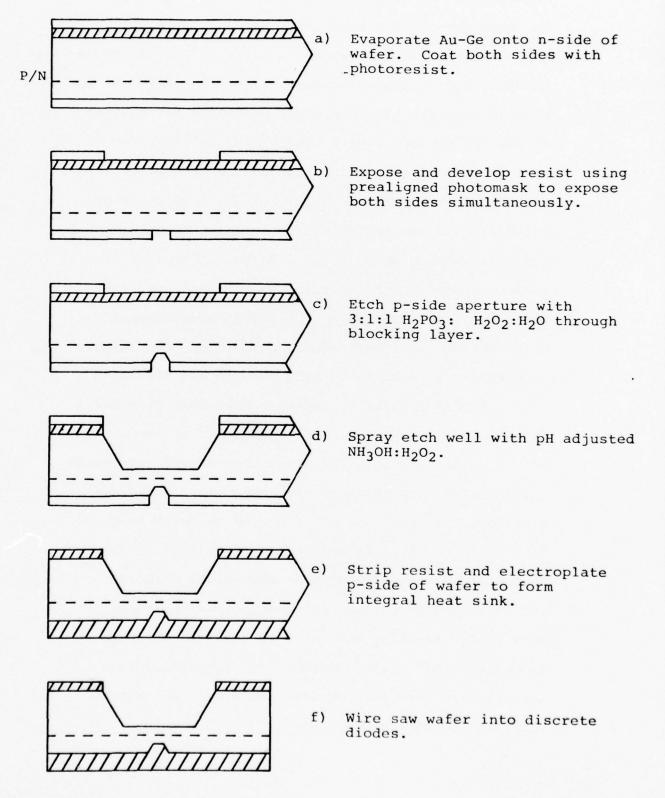


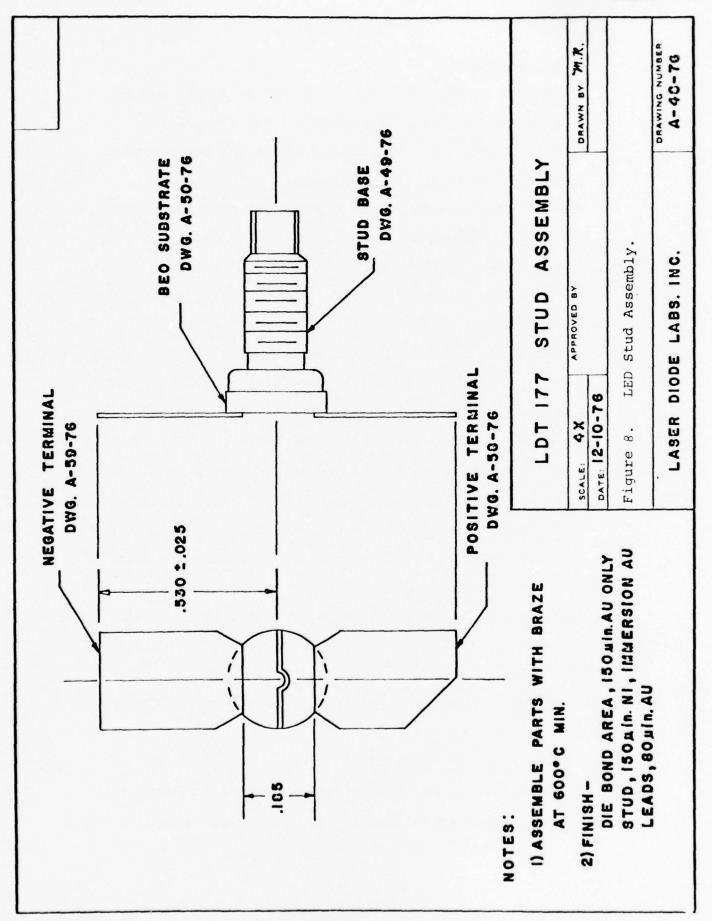
Figure 5. Etched Well.

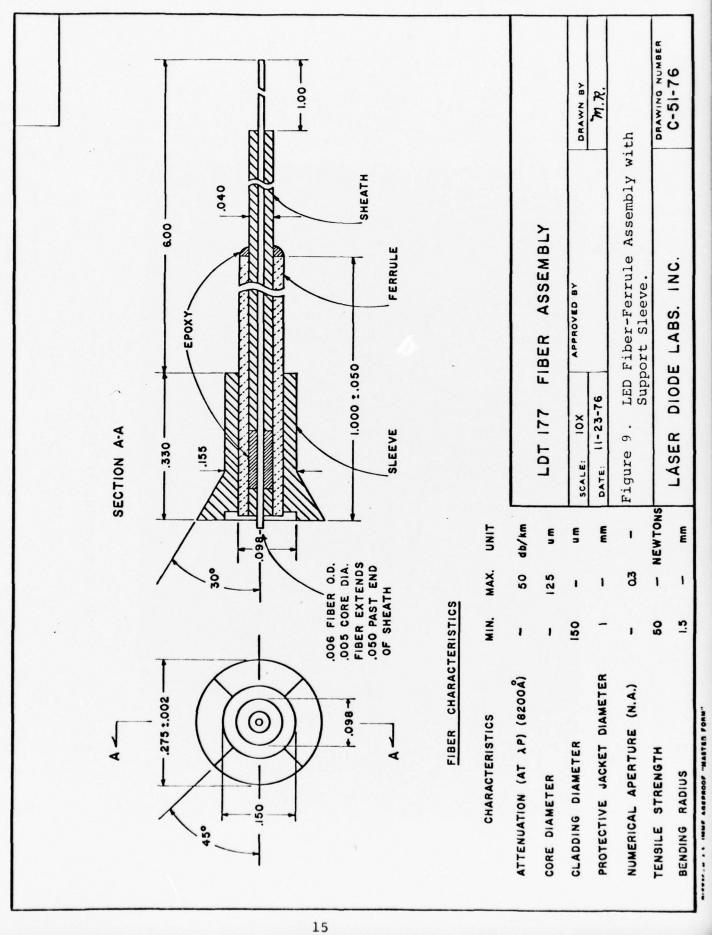
Figure 6. Spray Etch Equipment.

the 'n' side. Figure 3 depicts the alignment of the contact and the well. The'p'side contact is etched by immersing the wafer in 3:1:1 (H2PO3:H2O2:H2O). This etch removes only the exposed GaAs at a rate of .09 μ m/sec. An etch time of approximately 15 sec. is sufficient to etch through the blocking layer and about one-quarter of the 'p' contact layer. The'p'side of the wafer is next waxed to a glass slide to provide protection from the well-etch solution. A pH controlled solution of NH₃OH:H₂O₂ is sprayed on the wafer in 5 minute intervals, after which time, a depth measurement is taken, and the pH of the solution adjusted. It has been determined that a pH of 8.3 must be maintained in order to obtain a controllable etch rate. Approximately 20 minutes is required to etch through 3.5 mils of GaAs. Figure 4 shows a typical etched well with a 9.5 mil diameter at the h-surface, and 6 mil at the bottom of the well. Figure 5 shows the pressurized spray-etch apparatus and the pH measuring equipment. After demounting, stripping and cleaning the wafer, a thick Au film (~10 μ m) is electroplated on the p-side of the wafer. This plating serves to provide mechanical support for the thin active region, and functions as an integral heat sink. Finally, the wafer is wire-saw cut into diodes of .020" x .020" dimensions. The processes described in this section are summerized in Figure 6. Packaging Technology.

12

2.2


2.2.1 Package Design.


The stud assembly shown in Figure 7 is a modified RF transistor package (JEDC MT-90). The processed .020" x .020" LED chip is mounted on the semicircular area, which is on the center lines of the assembly. Early samples were indium soldered to the BEO. Because the P-N junction is close to the bottom of the pellet, many diodes were shorted due to indium "wick up" the pellet sides. The current process uses silver filled epoxy as the mounting medium. This is a two part epoxy and can be formulated to reduce the capillary action. The'n-side pellet connection to the corresponding area on the BEO is made with a 1 mil gold wire, indium soldered at each end. An ultrasonic wire bonding fixture for this stud assembly has been fabricated and will be used on all subsequently manufactured units. The fiber assembly is shown in Figure 8. The ferrule is free to move within the sleeve, providing an axial degree of motion necessary for fiber to diode alignment. Due to the unique characteristics required by SCS-511 manufacturing of the ferrule assembly has been further delayed. Substitute fibers are being investigated. Figure 9 shows the separate package components along with a completed unit.

2.3

Diode Assembly Technique.

Figures 10, 11 and 12 show the alignment fixture along with associated equipment. The measuring equipment

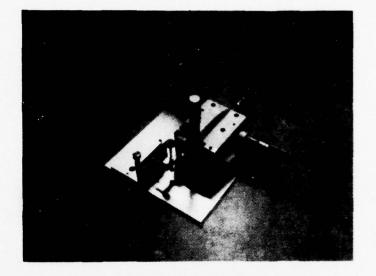


Figure 11. Alignment Fixture.

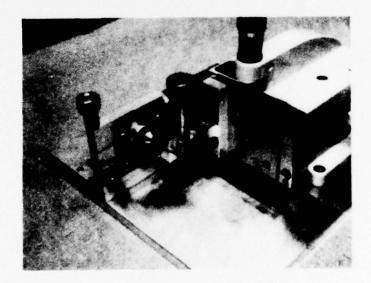


Figure 12. Alignment Fixture (Close-Up).

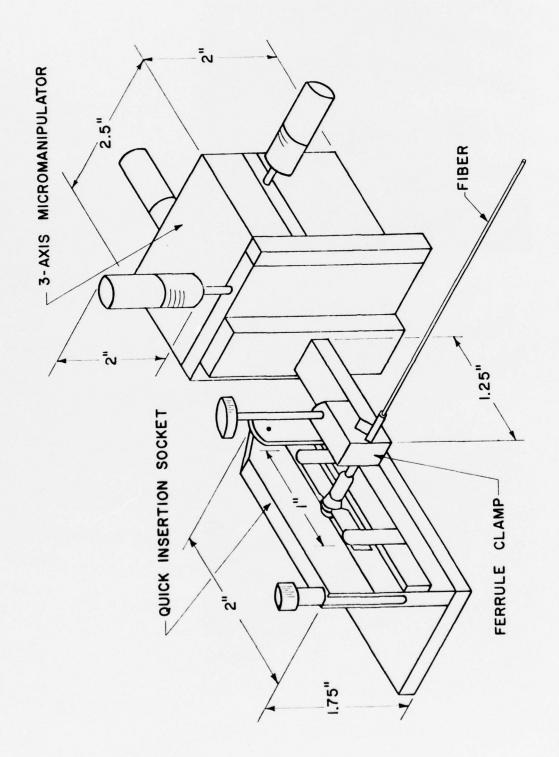


Figure 13. Sketch of Alignment Fixture.

Figure 14. Alignment Fixture and Power Measuring Instrument.

consists of an EG & G 460-1 laser power meter and the 460-2 silicon detector. The detector features high sensitivity, long term stability, excellent linearity of response over a wide dynamic range, and ultra-low noise levels. The alignment fixture incorporates a quick insertion diode socket which minimizes damage to the stud and leads. At the same time the socket clamp applies sufficient pressure to keep the diode in position during fiber alignment. The 3-axis micromanipulator has attached to its platform the ferrule-sleeve quick release clamp. In practice, the ferrule is placed in the micromanipulator clamp in such a manner that the sleeve may be slid back to expose the fiber protruding from the front of the ferrule. The fiber pigtail is positioned in front of the detector. Under microscopic examination, the fiber is maneuvered in the diode well, while oberving the laser power meter for a maximum reading with the diode forward biased. By rotating the sleeve on the ferrule, epoxy can be applied to the supporting faces of the sleeve. The sleeve can now be slid forward and placed in contact with the BEO mounting surface. The joint between the sleeve and the ferrule is epoxied. After curing the assembly becomes a rigid structure and can be removed from the fixture.

2.4 Device Evaluation and Testing.

2.4.1 Device Evaluation.

Table 2 is data recorded on samples from lots 16 and 19.

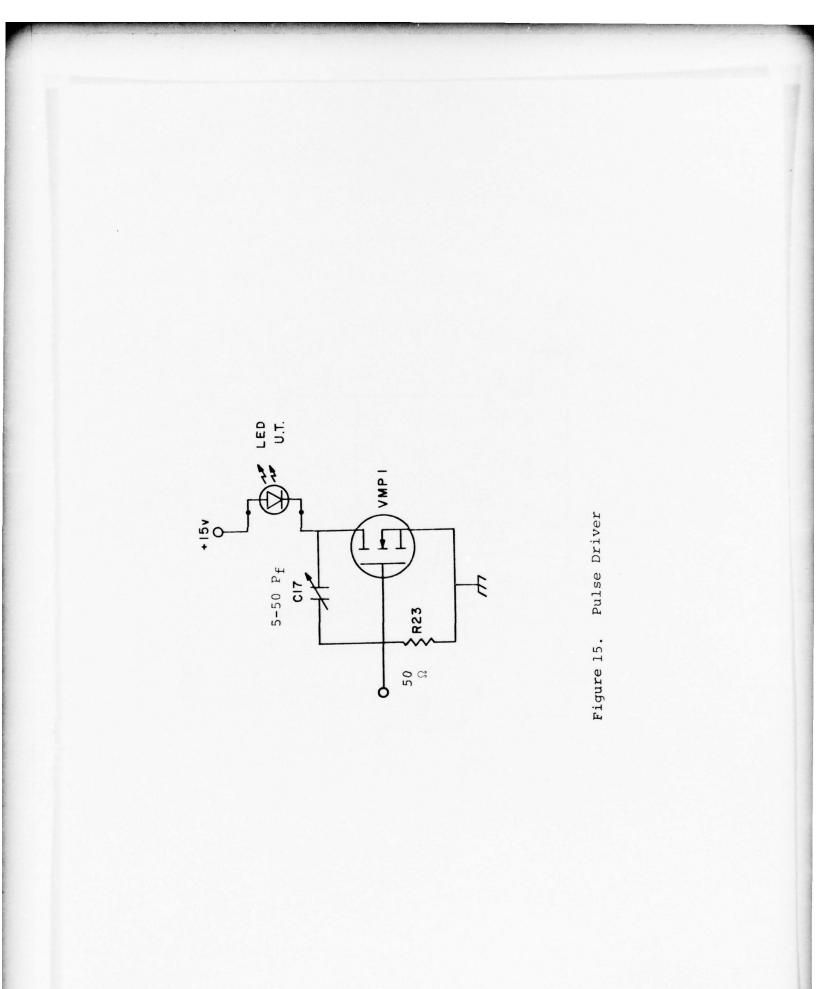
TABLE 2.

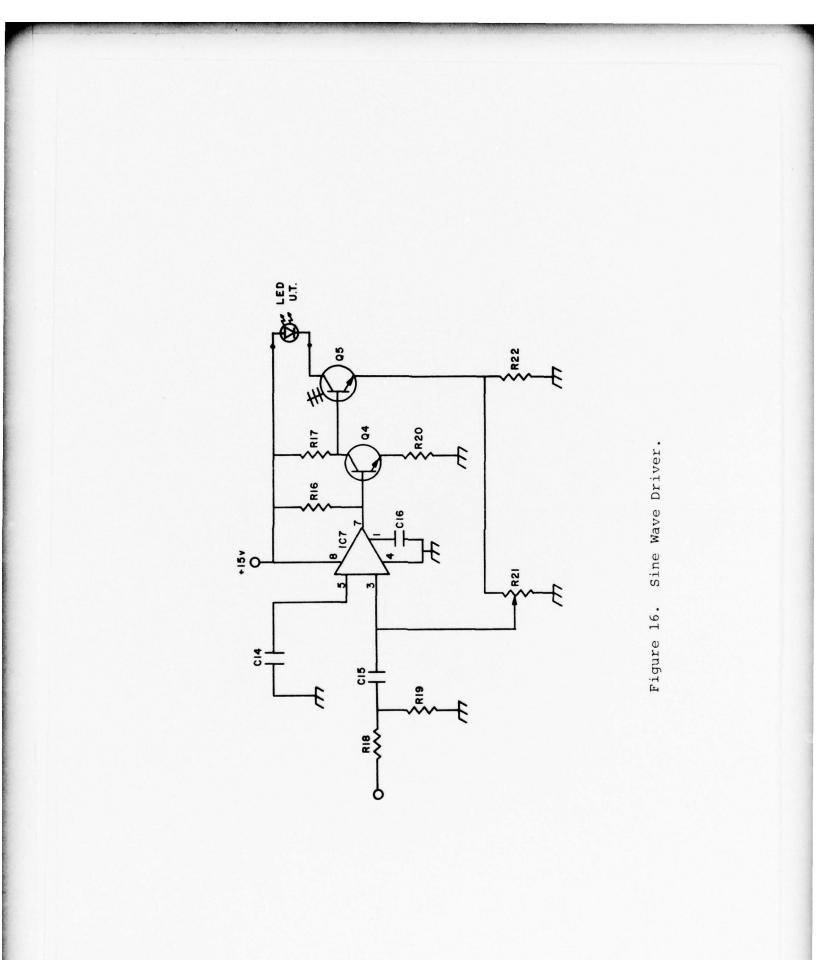
	Drive Curren	t 100 mA		
Sample	P _O (mW)	λ peak V_F	(20 mA) V _R	(10 µA)
16-1	.377	839	2.6	1.7
16-2	.490	839	1.6	1.1
19-1	.320	792	1.8	1.8
19-2	.352	782	1.9	2.8
19-3	.345	783	1.8	4.5
19-4	.335	784	1.9	6.4

Etched-Well LED Data.

 $I_{\rm F} = 100 \, {\rm mA.}$

 $\rm P_{O}$ measured into 0.3 N.A.


The spread in peak wavelength between the lots is indicitive of the adjustment of the aluminum content of the active layer needed to bring the λ peak within the 800 to 830 nm specification. The P_o radiant intensity is a bare diode measurement where the detector is placed 1.58 cm from the diode, with an exposed detection area of 1 cm. diameter and $\theta \approx 34^\circ$ cone. The low reverse voltages indicate excessive leakage due to the epoxy wetting the sides of the pellet and degrading the junction. Test Equipment.


Figure 13 is the circuit for a fast pulse driver. This circuit has been designed to be used with an HP 8082A pulse generator to measure pulse time and thermal impedances.

Selection of specific commercial equipment to implement specification testing is being narrowed. The signal source for bandwidth testing which will feed the wide band driver may be a Boonton Radio Model 103, a Genrad Model 1211, or an HP Model 606B. The spectrum analyzer may be a Tektronix 7612/7603, or HP 8553B/8552B/140T or a Polrad 632. The wideband detector may be a B & H 0C3002, or some equivalent unit. Figure 14 is the circuit for a wide band sine wave driver for use with the signal sources mentioned previously. A transient suppressor for use with any constant voltage-constant current supply is shown in Figure 15. This circuit is currently in use for all D.C. testing.

2.5

---- Equipment

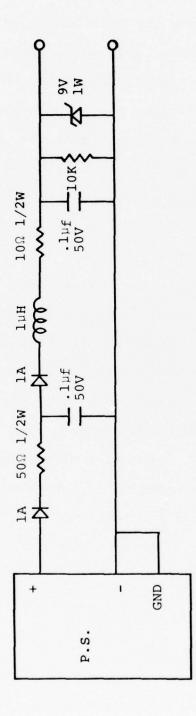


Figure 17. Transient Suppressor.

A new goniometer has been designed, built and tested. Figures 16 and 17 show two views of the apparatus. The head is turned manually and the self contained circuitry allows scale adjustment and control of a chart recorder. The head section is interchangeable for various device considerations. A block diagram of the internal circuitry is shown in Figure 18. Figures 19 and 20 illustrate a quick insertion and removal socket which, in various forms, is being used for all testing.

2.5.1 Life Testing and Burn-In.

A combination life rack and burn-in rack has been designed. The circuitry is shown in Figure 21. Components have been selected to operate the diode at 100 mA forward current. An individual 6 position section can be inserted into or removed from the main rack without shutting down the entire rack. Each section is configured to fit within the main rack with diodes in a vertical position and pigtails protected from accidental damage. The total capacity of the rack will be 150 units. Provisions have been made to allow adequate air flow by utilizing several high capacity fans.

SECTION III

SUMMARY AND CONCLUSION

During the second quarter of the program, bare diodes were made which exhibited the essential characteristics required by SCS-511. Epitaxial and well etching processes

have produced material and devices of the proper conformation. The lack of a suitable fiber or fiber assembly has delayed the testing of finished engineering samples.

Plans for the next quarter include fabrication, testing, and delivery of the second engineering samples. In addition, it is expected that test and evaluation facilities will be available to fully characterize the devices. Life test and burn-in racks should be completed and available for use during this period.

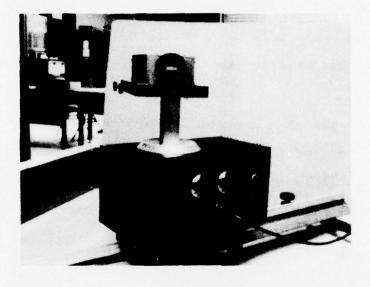


Figure 18. Photograph of Goniometer Showing Rotatable Head.

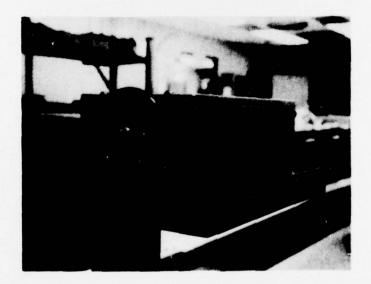


Figure 19. Photograph of Goniometer Showing Close-Up of Mounting Fixture.

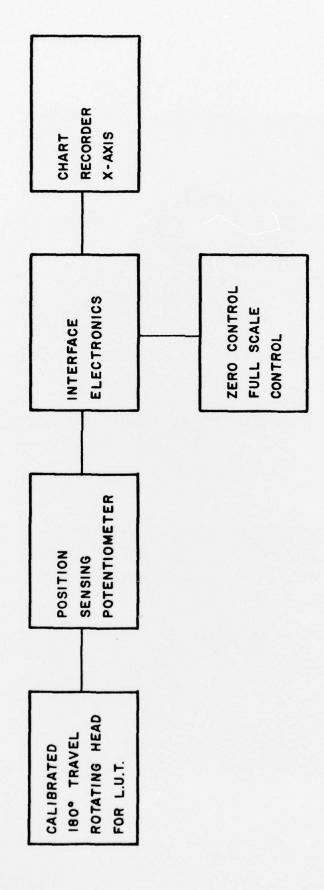


Figure 20. Goniometer Block Diagram.

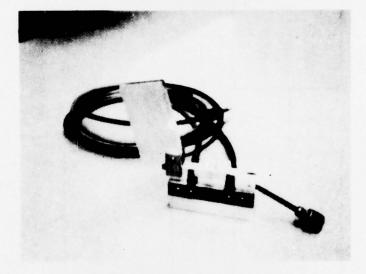


Figure 21. Test Socket in Open Position.

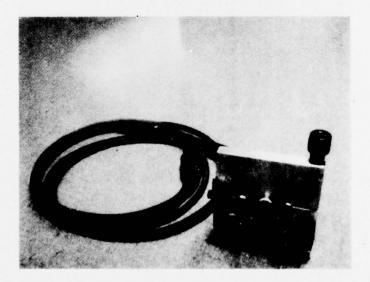
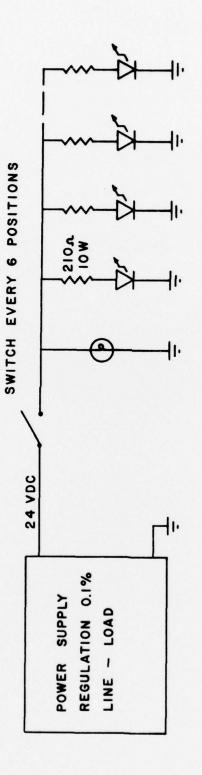



Figure 22. Test Socket in Closed and Clamped Position.

Figure 23. Burn-In and Life Rack Circuitry.

31

APPENDIX A

Engineering Man-Hour Utilization for the Second Quarter of the Program.

	2nd Qtr.	Cumulative
T. E. Stockton	108 Hrs.	284 Hrs.
R. E. Albano	96 Hrs.	216 Hrs.
A. Gennaro	116 Hrs.	181 Hrs.
R. B. Gill		88 Hrs.
S. Klunk		16 Hrs.
Manufacturing Personnel	636 Hrs	1160 Hrs.

APPENDIX B

DISTRIBUTION LIST

Contract DAAB07-76-C-8135

	Copies
Defense Documentation Center ATTN: DDC-TCA Cameron Station (Building 5) Alexandria, Virginia 22314	5
Director of Defense R & E ATTN: Technical Library Room 9E-1039, The Pentagon Washington, D. C. 20301	1
Defense Communications Agency ATTN: Code 340 Washington, D.C. 20305	1
The University of Michigan Institute of Science and Technology ATTN: IRIA Library PO Box 618 Ann Arbor, Michigan 48107	1
Director, Defense Atomic Support Agency ATTN: Technical Library Washington, D. C. 20305	1
Chief,of Naval Research ATTN: Code 427 Department of the Navy Washington, D. C. 20325	1
Naval Ships Systems Command ATTN: Code 20526 (Technical Library) Main Navy Building, Room 1528 Washington, D. C. 20325	1
Naval Ships Engineering Center ATTN: Section 6171 Department of the Navy Washington, D. C. 20360	1
Air Force Avionics Lab. ATTN: TEA-4 (Mr. James Skalski) Wright-Patterson Air Force Base, OH 45433	1
Commander Naval Research Laboratories ATTN: Dr. A. Fenner Milton (Code 5504.2) Washington, D. C. 20375	1

	Copies
Commander Naval Electronic System Command ATTN: Mr. L. Sumney Washington, D. C. 20360	1
Commander Naval Electronics Laboratory Center ATTN: Dr. H. Wieder (Code 2600) 271 Catalina Boulevard San Diego, CA 92152	1
Commander Naval Electronics Laboratory Center ATTN: D. Williams (Code 2500) 271 Catalina Boulevard San Diego, CA 92152	1
Commander Naval Electronics Laboratory Center ATTN: D.J. Albares (Code 2600) 271 Catalina Boulevard San Diego, CA 92152	1
Commander Naval Electronics Laboratory Center ATTN: R. Leduska (Code 4400) 271 Catalina Boulevard San Diego, CA 92152	1
Commander Naval Electronics Laboratory Center ATTN: S. Miller (Code 2600) 271 Catalina Boulevard San Diego, CA 92152	1
Texas Instruments Inc. ATTN: W. Shaunfield Box 5012 Dallas, TX 75222	1
Commander US Army Electronics Command ATTN: DRSEL-NL-MI (Dr. L. Dworkin) Fort Monmouth, N.J. 07703	2
Commander US Army Electronics Command ATTN: DRSEL-TL-M (M. Pomerantz) Fort Monmouth, N.J. 07703	1
Reliability Analysis Center RBRAC/I.L. Krulac Griffiss AFB NY 13441	1

	Copies
Air Force Armanent Lab AFATL/DLMI/Mr. Lynn Deibler Eglin AFB, FL 32542	1
US Naval Avionics Facility ATTN: Mr. Rod Katz (Code 813) 6000 E. 21st Street Indianapolis, IN 42618	1
Navy Air Systems Command ATTN: L. H. Conaway (Code 533D) Washington, D. C. 20361	1
Commander US Army Electronics Command ATTN: DRSEL-CT (R. Buser) Fort Monmouth, N.J. 07703	1
Commander US Army Electronics Command Night Vision Laboratory ATTN: DRSEL-NV-SD (Mr. Steve Gibson) Fort Belvoir, VA 22050	1
Division of Non-Ionizing Radiation Lttterman Army Institute of Research Presidio of San Francisco San Francisco, CA 94129	1
Commander Harry Diamond Laboratory ATTN: AMSDC-RCB (Mr. R. G. Humphrey) Washington, D. C. 20438	1
Commander US Army Electronics Command ATTN: DRSEL-CT-LD (V. Rosati) Fort Monmouth, New Jersey 07703	4
Commander US Army Materials Research Agency ATTN: AMDME-ED (Mr. Raymond L. Farrow) Watertown, Massachusetts 02172	1
Director US Army Production Equipment Agency ATTN: AMIPE-MT (Mr. C. E. McBurney) Rock Island Arsenal Rock Island, IL 61201	1

35

	Copies
Air Force Avionics Laboratory ATTN: Mr. William Schoonover ATTN: AFAL (AVRO) Wright-Patterson Air Force Base, OH 45433	1
NASA Manned Spacecraft Center ATTN: TF4, Mr. Ray R. Glemence Houston, TX 77058	1
Naval Ships Engineer Center ATTN: Section 6171 Department of the Navy Washington, D.C. 20360	1
Dr. Fred W. Quelle Office of Naval Research 495 Summer Street Boston, Massachusetts 02210	1
Department of the Navy Naval Electronics Systems Command ATTN: Code 05143 (Mr. Carl A. Rigdon) Washington, D.C. 20360	1
Bell Telephone Laboratories, Inc. ATTN: Technical Reports Center WH2A-160 Whippany Road Whippany, N.J. 07981	1
Kenneth R. Hutchinson AFAL/DHO-2 (Vincent Rosati) Wright-Patterson Air Force Base, OH 45433	1
Commander AFML/LTE ATTN: Capt George Boyd Wright-Patterson Air Force Base, OH 45433	1
Commander Hq, AFSC/DLCAA ATTN: Major D. C. Luke Andrews Air Force Base Washington, D. C. 20331	1
Commander Air Force Weapons Lab (AFWL/ELP) ATTN: CPT. J. Tucker Kirtland Air Force Base, NM 87117	1

Copies

	copie
Commander US Army Missile Command ATTN: AMSMI-ILS (Mr. W. Tharp) Building 4488 Redstone Arsenal, Alabama 35809	1
Naval Weapons Center Code 3353 ATTN: Mr. R. Swenson China Lake, CA 93555	1
Director National Security Agency ATTN: R-4, Mr. P. S. Szozepanek Fort George G. Meade, MD 20755	1
Advisory Group on Electron Devices ATTN: Secretary, SPGR on Optical Masers 201 Varick Street New York, N.Y. 10014	2
Institute Defense Analysis ATTN: Mr. Lucien M. Biberman 400 Army - Navy Drive Arlington, Virginia 22202	1
Commander US Army Electronics Command ATTN: DRSEL-CT-DT (Mr. Bernard Louis) Fort Monmouth, N.J. 07703	1
Commander US Army Electronics Command ATTN: DRSEL-CT-L-C (Mrs. C. Burke) Fort Monmouth, N.J. 07703	1
Commander US Army Electronics Command ATTN: DRSEL-PP-I-PI-1 (Mr. J. Sanders) Fort Monmouth, N.J. 07703	3
Harry Diamond Lab ATTN: J. Blackburn Branch 230 2800 Powder Mill Rd Adelphi, MD 20783	1
Commander, RADAC ATTN: EMEDA (Mr. M. Kesselman) Griffis Air Force Base, N.Y. 13440	1

Copies

Air Force Materials Laboratory ATTN: AMSL (LTE) Mrs. Tarrants Wright-Patterson Air Force Base, Ohio 45433	1
Commander US Naval Ordinance Laboratory ATTN: Technical Library White Oak, Silver Spring, MD 20910	1
Rome Air Development Center (EMTLD) ATTN: Documents Library Ghiffiss Air Force Base, N.Y. 13440	1
Electronic Systems Division (ESTI) L. G. Hanscom Field Bedford, Massachusetts 01730	1
Air Force Weapons Laboratory ATTN: WLIL Kirtland Air Force Base, New Mexico 07117	1
OFC, Assistant Secretary of the Army (R&D) ATTN: Assistant for Research Room 3-E-379, The Pentagon Washington, D. C. 20310	1
Chief of Research and Development Department of the Army ATTN: Mr. R. B. Watson Army Research Office Washington, D. C. 20310	1
Commander US Army Materiel Development & Readiness Command ATTN: DRCMT 5001 Eisenhower Avenue Alexandria, VA 22333	1
RCA Electronic Components ATTN: Mr. N. R. Hangen New Holland Avenue Lancaster, PA 17604	1
ITT Electro-Optical Products Division Box 7065 Roanoke, VA 24019 ATTN: R. Williams	1
Spectronics Inc. 830 E. Arapalo Road Richardson, TX 78080 ATTN: W. Kolander	1

Copies Bell Northern Research Ltd 1 P. O. Box 3511 Station C Ottawa, Canada KIY4H7 ATTN: B. C. Kirk RCA Laboratories 1 Princeton, N.J. 08540 ATTN: Henry Kressel Hughes Aircraft Company 1 ATTN: Company Technical Document Center 6/E110 Centinela at Teale Culver City, CA 90230 Hewlett Packard Laboratories 1 1501 Page Mill Road Palo Alto, CA 94304 ATTN: Mr. George Kaposhilih Hughes Research Laboratories 1 ATTN: M. Barnaski 3011 Malibu Canyon Road Malibu, CA 90265 Bell Telephone Laboratories 1 ATTN: Dr. T. Winternitz Military Design Support Laboratory Whippany, N.J. 07981 1 **Vorning Glass Work** ATTN: Dr. Roy Love Corning, N.Y. 14830 Harris Industries 1 Electro-Optics Operation ATTN: John Williams, Sales Mgr P.O. Box 37, Melbourne, FL 32901 Varo Texas Division 1 ATTN: R. Laughlin 2201 W. Walnut St. P.O. Box 401267 Garland, TX 75040 1 Communications Systems Procurement Branch Procurement & Production Directorate Attn: Gordon McMain U. S. Army Electronics Command Fort Monmouth, N.J. 07703