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SENSITIVITY OF THE "SHOE-BOX" APPROACH
IN POOT ANALYSIS

I. INTRODUCTION
One technique currently being widely used to assess the
survivability of aircraft against artillery threats is the Anti-
Aircraft Artillery Simulation Computer Program, AFATL Program PO01
(reference (1)). POO01 computes the single shot and cumulative
probability of kill of a target aircraft flying a predefined flight
path against a specific artillery threat. This is accomplished
by computation of an aim point with consideration given to aiming
errors, simulation of the firing process and its sources of error,

combination of all the effects of random errors into one total

trajectory distribution, location of the aircraft vulnerable area

within this trajectory distribution, and, finally, computation of
the praobability of kill.

The aircraft vulnerable area data are calculated by other programs
and entered into POOT in the form of a three-dimensional array as a 1
function of relative projectile direction and relative striking
velocity. In formulating vulnerable area tables, the aircraft's

components that are vulnerable to a specific threat are established

and their vulnerable areas are calculated. These component vulnerable
areas are usually pooled in a "shoe-box" approach and assumed to be
centrally located on the aircraft, even though some of the

components may be located near the aircraft's extremities. This

pooling of components introduces very small errors into the results
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of P00l when the aircraft is small or the intercept range is long.

However, when large aircraft or short ranges are involved, the
probability of kill of a component (and the aircraft) can change
significantly due to the component being located near tha

extremity rather than at the centroid. This change in probability
of kill is actually due to a change in the probability of hit. Tnese
changes in probability of hit at different points on the aircraft

can be quantitatively expressed using the bivariate normal
distribution of projectile trajectories. The purpose of this report
is to show these probability relationships and to suggest a cnange

to POQ1 which will indicate when the shoe-box approach is not valid

and when the distributed vulnerable area version of P00l should be used.

II. POO1 CONCEPTS

The P001 Program methodology uses the concept of projectile
dispersion about an aimpoint of the weapon. The distribution of
projectiles is caused by random error, gun jitter, ballistic
dispersion, atmospheric disturbance, flight roughness and muzzle
velocity uncertainty. Systematic errors (bias), such as tracking ]
lag, result in the projectile distribution being centered at an |
actual aimpoint of the weapon which does not coincide with the aircraft's
center of gravity (centroid). (Note: The weapon is actually aimed
at a point where the centroid is predicted to be at the time of intercept).

The combination of all sources of random error considered in POO1 is

&




assumed to result in a bivariate normal distribution of projectile

trajectories. Terms used to describe this distribution are shown
in Figure 1.

The orthogonal axes, f1 and f2, form a geometric plane which is
the final coordinate system where the total projectile errors are
axially independent. The coordinates of the position of the aircraft
(considered as a point) with respect to the f1 and f2 axis are fl
bias and f2 bias. For the purposes of this analysis, the point (f1
bjas, f2 bias) is considered to be the location of the centroid of
the aircraft.

The standard deviations of the total projectile errors along

the f1 and f2 axes are called Sfl and 5f2’ respectively.

For ease of illustration, these two standard deviations were assumed

equal in Figure 1. They will not generally be equal.

The geometric plane, f1-f2, is perpendicular to a line from the
weapon to the point, (f1=0, f2=0). This point is the center of the
projectile distribution. The ordinate, g(fl, f2), of the bivariate
normal at the point (f1, f2) is found using the following equation.

2 &
g(f1, f2) = (exp (-l/2)[(f1/sfl) + (f2/sf2) ])/Z“szsfg

The aircraft's centroid is located at (fl1 bias, f2 bias) and
g(f1 bias, f2 bias) is the ordinate of the bivariate normal at the
centroid. P0O1 gives output values of f1 bias, f2 bias, Sfl
and Sf? as a function of time. It also provides an output value

for exposed vulnerable area (A ) as a function of time. This value

is calculated by linear interpolation from a 26-view table of vulnerable

3
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FIGURE 1

BIVARIATE NORMAL DISTRIBUTION OF PROJECTILES
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areas for the appropriate geometric relation between projectile and
aircraft. If presented areas (Ap) are used in the 26-view table
instead of Ay, the computer output value labeled A, will be the
"exposed" presented area for each set of geometric positions, and

the value labeled Px is the probability of hit.

ITI. PROBABILITY OF HIT AT CENTROID

A mathematical approach was taken to determine the sensitivity
of PO01 to the shoe-box assumption. The parameters of the bivariate
normal distribution (f1 bias, f2 bias, S£Ls sfg) and the presented
area were obtained from P0OO1 computer runs. Those parameters were
then used to determine the probability of hit at an extremity point
relative to the probability of hit at the centroid (see Figure 2).
If the probability of hit at an extremity is significantly different
from the probability of hit at the centroid, each vulnerable component
that is located at an extremity should be analyzed separately using
the techniques shown in reference (2). If there are no significant
probability differences, the methodology which assumes equally
likely hits throughout the presented area of the aircraft, i.e., the
shoe-box approach, is accentable.

To calculate the probability of hit, it is convenient to define
an arbitrarily small area, aA, which is small enough to consider

g(f1, f2) constant for all points (fl1, f2) contained in aA. Consider

AA as much smaller than Av.
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P(hit on aA) = g(f1, f2) df1 df2
located at

fl,; f2
LA

= aA-g(f1, f2) This represents the volume of a cylinder
whose base has an area of 2A and whose height is g(f1, f2).
Based on the above equation, the ratio of the probabilities of
hit at the centroid and an extremity is expressed as follows:

P(Hit on aA at Centroid) _ nA-g(centroid)
P(Hit on aA at Extremity) sA-g(extremity)

- g?centroid}
g(extremity

To conduct this analysis, some simplifying assumptions were

Ratio =

made regarding the locations of the extremities of an aircraft

relative to its centroid. The presented area was considered to be

a rectangle, with the centroid in the center and the extremities

located at the midpoints of the four sides. The rectangle was defined

as shown below.

Ap exposed = 1' x h', where

A, exposed = exposed presented area of the aircraft,
1' = apparent length of the aircraft, and

h' = apparent height of the aircraft.

The apparent length (1') of the aircraft was computed as follows:

1' = true lengtﬁ\/(offset)2 + (altitude)Z/Qintercept range)




The apparent height (h') was then calculated by dividing
the "exposed" presented area by the apparent length. The geometry

of the apparent length is shown in Figure 3

Z axis

__—w : : ;
.\/ (offset)2+(altitude) apparent rue lengt
length

NOTES: (1) cosa = \/(offset)2 + (altitude)?/(intercept range)

(2) apparent length = (true length) cosu
= (true 1ength)\v/(offset)2 + (altitude)?/(intercept range)

FIGURE 3

GEOMETRY OF APPARENT LENGTH OF AIRCRAFT




The five ordinates of the bivariate normal distribution

(representing the centroid and four extremities) which were used
in this analysis are shown below.
g(centroid) = g(f1 bias, f2 bias)
For the extermities, as pictured in Figure 4, the ordinates

are as follows:

g(extermity 1) = g(f1 bias + .5(1'), f2 bias)

il

g(extremity 2) = g(f1 bias - .5(1'), f2 bias)

1

g(extremity 3) = g(f1 bias, f2 bias + .5h')

g(extremity 4) = g(f1 bias, f2 bias - .5h')

f2 axis
centroid
Extremity 3 (f1 bias, f2 bias)

e

h' ® o o

| |
|
Extremity 2 : /’ I

]'————"
Extremity 4

& Extremity 1

f1 axis

FIGURE 4

RELATIVE LOCATION OF CENTROID AND FOUR EXTREMITIES
IN f1-f2 COORDINATE SYSTEM
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The maximum of the set of ratios,

g(centroid) g(centroid) g(centroid) g(centroid)
g(extremity 1) glextremity 2)° g(extremity 3)° g(extremity 4)

was used as an indicator of the severity of the problems resulting

from the shoe-box concept for thet set of encounter conditions.

IV. DESCRIPTION OF PARAMETERS

The input parameters of the model were varied to investigate
the sensitivity of the model to the assumption that all vulnerable
components are located at the aircraft's centroid. The ranges of
input values were selected to ensure that examples are shown for
conditions where the assumptions are met and where the assumptions
are not met. The reader can then develop an understanding of the
conditions where the constraints of the assumption are exceeded.

The analysis was performed using two sizes of aircraft, two weapon-
operating mode combinations, two aircraft velocity-altitude combinations,
and various offset distances. Fourteen sets of input data were
defined which were combinations of the above parameters. The parameters
are further described below and the fourteen cases are listed in Table 1.

A. Aircraft Size

1. Small aircraft
The small aircraft used for this analysis was the A-7.
The A-7 presented areas for 26-views are shown in Table A-1 of the

Appendix. These 26-views are defined on page 2-15 of Volume I of

10
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TABLE 1

DEFINITION OF PARAMETERS FOR SCENARIOS
USED IN THE ANALYSIS (14 SETS OF CONDITIONS)

WEAPON AIRCRAFT
CASE TYPE MODE COMMENT  |VELOCITY | ALTITUDE OCFFSET | FIGURE TABLES
1 2 T | Low-Slow 50 75 100 A-1 A-2
2 2 1 | Low-Slow 50 75 200 A-2 A-3
3 2 1 | Low-Slow 50 75 500 A3 A-4
4 2 1 | Fast-Higher| 250 500 100 A-4 A-5
S 2 1 | Fast-Higher| 250 500 200 A-5 A-6
6 2 1 | Fast-Higher| 250 500 500 A-6 A-~7
J: 3A 2 |Low-Slow 50 75 200 A-7 A-8
8 3A 2 |Low-Slow 50 75 500 A-8 A-9
9 3A 2 | Low-Slow 50 75 1000 A-9 A-10
10 3A 2 |Low-Slow 50 25 2500 A-10 A-11
11 3A 2 |Fast-Higher| 250 500 200 A-11 A~12
12 3A 2 | Fast-Higher| 250 500 500 A-12 A-13
13 3A 2 {Fast-Higher| 250 500 1000 A-13 A-14
14 3A 2 |Fast-Higher| 250 500 2500 A-14 A-15

1




reference (1). The langth (13.7 meters) of the A-7 was obtained by
scaling the drawings in reference (3). The left side view of the
drawings is the same aspect as view 16 (270° longitude, 90°

latitude) of the 26-view set. From Table A-1 of the Appendix the
presented area from view 16 is 31.55 square meters. Therefore,

the A-7 from this aspect is considered to be a rectangle with a length
of 13.7 meters and a height of 2.3 meters.

The A-7 dimensions are close enough to the A-10 dimensions so
that any conclusions reached relative to the A-7 as a small aircraft
would also be applicable to the A-10.

2. Large Aircraft

The large aircraft for this analysis was defined as a
transport aircraft whose dimensions were approximately twice 2s
long and twice as high as those of the A-7. The C-130 (see reference
(3)) and YC-14 transports fit into this size category.
B. Aircraft Velocity - Altitude

Two combinations of aircraft velocity and altitude were
used in the analysis. The low and slow combination of 50 meters/sec
velocity and an altitude of 75 meters was used to represent operations
involving the A-10 and large transport aircraft. The combination of
250 meters/sec at an altitude of 500 meters was used since this is

typical of A-7 and some transport operations.

12




C. Weapon Types and Modes

The threat weapons and operating modes in this analysis were
weapon type 2 operating in mode 1 and weapon type 3A operating
in mode 2. The definitions of these codes can be found in reference (4).
These weapon threats are realistic for operations involving the A-7
A-10, and the tactical transport aircraft.
D. Offset Distance

The offset distance is defined as the distance from the

weapon to the point of closest approach on the aircraft's ground
track. Three values of offset distance were used for weapon 2 mode 1.
These values were 100, 200 and 500 meters. Due to the inherent
limitations of mode 1 operation, offset distances greater than 500
meters were not used for fast aircraft because very few projectiles
can be fired for this si-uation. '

Four values of offset distance were used for weapon 3A mode 2.
These values were 200, 500, 1000, and 2500 meters. The projectile
flight time Timit for weapon 3A mode 2 is 7.5 seconds, which limits
intercept range to roughly 3000 meters. Offset distances larger than

2500 meters and less than 3000 meters would allow very little firing data.

13




V. CALCULATION EXAMPLE

An example of the calculation of the probability of hit at the
centroid versus the probability of hit at an extremity will be shown
in this section. This example uses the small aircraft (A-7 size) at
the conditions of Case 7 of Table 1. The input values for the

POO1 computer runs for this example are shown in Table 2 below.

TABLE 2
PARAMETERS OF THE EXAMPLE
Parameter Value Assigned
Threat Weapon Weapon 3A, Mode 2*
Aircraft Altitude 75 Meters
Aircraft Velocity 50 Meters/Second

Offset (distance from weapon to 200 Meters

point of closest approach of

ground track of the aircraft)

Presented Areas (26 views) See Appendix A
Aircraft Flight Path Straight and Level

* Refer to reference (4) for description

The values used for this probability example (see Table 3)

were taken from a typical line of POO1 output (one firing time step).

14




TABLE 3
POO1 OUTPUT PARAMETERS FOR THE EXAMPLE

Parameter Value
Intercept Range 505 meters
Sf1 3.6 meters
Sfg 3.5 meters
f1 bias 0.1 meters
f2 bias 0.4 meters
"Exposed" Presented Area 19.85 square meters

(print-out label -
vulnerable area)

The true length from reference (3), of the A-7 is 13.7 meters. The

apparent length (1') is calculated below.

(true 1engtthQ6ffset)2 + (a]titude)z/(Intercept Range)

(13.7V2002 + 752/505

5.8 meters

‘I ]

Since the exposed presented area of this rectangle in space is the i
product of its apparent length and apparent height (h'),
h

"exposed" presented area/apparent length

19.85/5.8

3.4 meters
Using these values of apparent length and height, the extremities

are shown in Figure 5.
15




f2 axis

b )
(0.1, 2.1)
dfr;jz.s, 0.4) df?571, 0.4) «ffZZTO, 0.4)

f1 axis

FIGURE 5 - LOCATIONS OF CENTROID AND EXTREMITIES FOR THE EXAMPLE

The values for calculating the ratios of probability of hit are
shown below. (The equation for the ordinate, g(f1, f2), of the

bivariate normal was given in Section II.)

g (centroid) = g(0.1, 0.4) = .0125
Extremities

(3.0, 0.4) = .0089

g(-2.8, 0.4) = .0093
g(0.1, 2.1) = .0105
g(0.1, -1.3) = .0118

Maximum Ratio = .0125 = 1.4
.0089

This value of 1.4 shows that the centroid (0.1, 0.4) is 40% more
likely to be hit than the extremity, (3.0, 0.4).

16




VI. DISCUSSION OF RESULTS

The results from the 14 cases described in Table 1 are graphically
shown in appendix as Figures A-1 through A-14. The specific data points
for these graphs are shown in the appendix as Tables A-2 through A-15.
Figure A-1 of the appendix is also presented as Figure 6 of the report
body for explanation of concepts and terms.

The minimum possible intercept range shown in the graphs is computed

as shown below (Figure 3 shows the geometry for this distance).

Minimum Intercept Range = W/(offset)*+ (altitude)?

For Figure 6, the minimum intercept range is 125 meters, i.e.,

V(1002 + 752).

, — r

The maximum intercept range is restricted by the projectile flight
time 1imit, which is 2.2 seconds for weapon 2 mode 1 and 7.5 seconds
for weapon 3A mode 2, as shown in reference (1), Volume I. For Figure
6, the maximum intercept range is 1450 meters, which was shown in the
PO01 computer output for that case.

On each graph a plot of the probability of hit ratio versus intercept
range is presented for the small aircraft and for the large aircraft.
The plotted probability of hit ratio is the maximum value of the ratios
of the probability of hit at the centroid of the aircraft to the
probability of hit at each of the four extremities (see the earlier
discussion in Section III). The ratios forthe large aircraft are

always larger than the ratios for the small aircraft since

17
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the extremities of the large aircraft extend further into the tails

of the bivariate normal distribution.

In Figure 6, a ratio of 3.0 occurs at a range of approximately 450
meters for the large aircraft and 250 meters for the small aircraft.
As the ranges decrease from these points the ratios increase rapidly.
Even though the curves are relatively flat for intercept ranges
greater than 800 meters, the large aircraft's ratio remains above 1.4
for all ranges. Figure 6 also shows a divergence between the curves
as intercept range decreases, with the slope of the large aircraft's
curve being steeper. Since it is also true that the ratio is higher
for the large aircraft than for the small over all ranges, the large
aircraft is more sensitive than the small aircraft to the shoe-box
assumption.

One of the data points selected for discussion from Figure 6
shows a ratio of 1.5 for the large aircraft at an intercept range of
800 meters. A ratio of 1.5 means that the probability of hit at the
centroid is 50% greater than the probability of hit at the extremity.
The small aircraft has a ratio of 1.5 at an intercept range of 420
meters. Thus, the small aircraft does not reach the 50% greater
probability of hit point until the intercept range decreases to 420
meters.

In order to summarize the results shown graphically is Figures A-1

through A-14, the following categories of effects of the shoe-




box approach were established:

(1) Category A - Over some interval of intercept ranges, the
ratio exceeds 3.0.

(2) Category B - The maximum ratio for any intercept range is
less than 3.0 but greater than 1.5.

(3) Category C - For all intercept ranges, the ratio does not
exceed 1.5.

Tne placement of the various cases into these three categories is
shown in Table 4.

In general, the most sensitive (Category A) cases were those in
which the aircraft was flying low and slow and/or at small offset distances.
For weapon type 2, this included all cases in which the aircraft
was flying Tow and slow, except the small aircraft at the maximum
offset distance used (500 meters). For weapon type 3A, Category A
cases included the fast and higher aircraft at close range (200 meters
offset), as well as the low and slow aircraft for all offset distances
except 2500 meters. Seven of the fourteen sets of conditions for
the large aircraft and five of fourteen for the small aircraft were in

Category A.

VIII. CONCLUSIONS
Since the analysis has shown that situations can exist in which

the results are sensitive to the shoe-box assumption, it is recommended

20
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TABLE 4
CLASSIFICATION OF THE VARIOUS CASES
INTO CATEGORIES OF SENSITIVITY

Weapon Aircraft
Category Case Type | Offset Dist.{] Vel.| Alt.; Large or Small
A 1 2 100 50 75 L.S
2 2 200 50 75 L,S
3 2 500 50 75 [
7 3A 200 50 75 LS '
8 3A 500 50 75 LaS {
9 3A 1000 50 75 L
11 3A 200 250 | 500 L,S
B 3 2 500 50 75 S
9 3A 1000 50 75 S
12 3A 500 250 | 500 i
13 3A 1000 250 | 500 L
C 4 2 100 250 | 500 EaS
5 2 200 250 | 500 LsS
6 g 500 250 | 500 I£2S
10 3A 2500 50 75 LS
12 3A 500 250 | 500 S
13 3A 1000 250 | 500 S
14 3A 2500 250 | 500 LS
21




that PO01 be modified to identify each computer run as sensitive

or insensitive to the shoe-box assumption. The decision regarding
sensitivity would be based on the prcbability of hit ratios between
the centroid and extremities. Only the front and rear extremities
need to be considered since, in all the cases investigated in

this study, the maximum ratio occurred at one of the extremities
along the longitudinal axis.

This modification would involve describing the positions of the
front and rear extremities relative to the centroid, projecting
those locations onto the f1-f2 plane at each time step (as shown
in reference (2)), and computing ratios of probabilities of hit for
the centroid and extremities by using the ordinates of the
bivariate normal at the three points (as described in Section II).
Each 1ine of the shot history output of P00l would contain an
additional parameter, which would be the maximum of the two ratios,

g(centroid)
g(front extremity)

g(centroid)
g(rear extremity)"

and

The analyst would then decide whether the value of this parameter varies

enough from the expected value of 1.0 over the course of the shot
history to warrant the use of more lengthy procedures which require
the specific location of each vulnerable component (described in
reference (2)).

In this recommended modification, presented area tables would not

be required in the computation. The presented area tables were used

in this report to approximate possible extreme locations for vulnerable

components.

22




The technique for determining the exact position of a vulnerable

component (not at the centroid) in the f1-f2 geometric plane as shown

in reference (2) is summarized in Appendix B.
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APPENDIX A

FIGURES A-1 through A-14

Probability of Hit Ratio versus Intercept Range for each of
14 Scenario Conditions

TABLE A-1 Presented areas for the A-7 (26-views)
TABLES A-2 through A-15

Tables of Data; Sprs Sans fl bias, f2 bias, 1'/h', "Exposed"

Presented Areas for La?ge and Small Aircraft, and Probability

of Hit Ratios Versus Intercept Range for Each of 14 Scenario
Conditions

A-1
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] TABLE A-1
A-7 Presented Areas - 26 Views
View Presented Area* (6p, sq. m.) Aircraft View
1 55.76 0° Longitude, 0” Latitude
2 41.86 0° Longitude, 45° Latitude
3 46.97 45° Longitude, 45° Latitude
4 48.82 90° Longitude, 45° Latitude
5 45 .35 135° Longitude, 45° Latitude
6 39.19 180° Longitude, 45° Latitude
7 45,35 225° Longitude, 45° Latitude
8 48.85 270° Longitude, 45° Latitude
9 46.91 315° Longitude, 45° Latitude
10 7.04 0° Longitude, 90° Latitude
11 23,28 45° Longitude, 90° Latitude
12 31255 90° Longitude, 90° Latitude
13 23.28 135° Longitude, 90° Latitude
14 7.04 180° Longitude, 90° Latitude
15 23.28 225° Longitude, 90° Latitude
16 3155 270° Longitude, 90° Latitude
17 23,28 315° Longitude, 90° Latitude
18 39.19 0° Longitude, 135° Latitude
19 45.35 45° Longitude, 135° Latitude
20 48.85 90° Longitude, 135° Latitude
21 46.91 135% Longitude, 135° Latitude
22 41.86 180° Longitude, 135° Latitude
23 46 .97 225° Longitude, 135° Latitude
24 43.82 270° Longitude, 135° Latitude
25 45.35 315° Longitude, 135° Latitude
26 8976 0° Longitude, 180” Latitude

* Same for all velocities
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APPENDIX B

Determination of f1-f2 coordinates for vulnerable components

not at the aircraft's centroid.
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METHODOLOGY FOR
EXACT POSITION OF VULNERABLE COMPONENT

The technique for determining the exact position of a
vulnerable component (not at the aircraft's centroid) in the
f1-f2 geometric plane as shown in reference (2) is summarized
below.

1. The coordinates (VCX, VCY, VCZ) of the vulnerable
component are defined in the Aircraft Coordinate System. This
coordinate system is shown in Figure B-1. In this system the
centroid has the coordinates (0, 0, 0).

2. The coordinates of the vulnerable component are then
transformed into the gun-centered system. The M inverse matrix (M_1)
is needed to transform the aircraft system vectors into the gun-
centered system. The M matrix which is used for the reverse transfor-
mation is defined in equation 2.187 on page 2-43 of reference (1),

Volume I and is shown below.

(cosa cos?) (cosa sin¥) (sina)
(-cosy sing-siny sini cosg) (cosy cosi-siny sina sind) (siny cosa)
(sing siny-cosy sina cos:) (-siny cosg-cosy sina sing)  (cosy cosa)

The M matrix is also listed on page 33 of reference (2), where
the elements are shown as B(1,1) through B(3,3).

The M inverse (M']) is used to transform the position vector of
the vulnerable component from the aircraft coordinate system into a
gun-centered correction vector which will be added to the position of

the centroid in the gun-centered system.
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FIGURE B-1

AIRCRAFT COORDINATE SYSTEM RELATIVE
TO THE GUN-CENTERED COORDINATE SYSTEMS
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Distances in x, y, 2 Distances in a, b, c
from aim point from aim point
VCXM (X) VCX (a)
VoYM (v) | = M) VeY (b)
VeZM (2 lvez (c
( 1J L (c)

Coordinates of the centroid are (XA, YA, ZA). Therefore, coordinates

of the vulnerable component in the gun-centered coordinate system
are (XA + VCXM, YA + VCYM, ZA + VCZIM).
3. The coordinates of the vulnerable component are then

transformed into the aim system.

The gun centered coordinates are transformed into aim system
coordinates by equation 2.177, page 2-39 of reference (1), Volume I,

as shown below.

X' siné -cosé 0 XA + VCXM
v -singcosé -singsing cos¢ YA + VCYM
ZA + VCZM
Aim system Gun Centered
Coordinates Cocrdinates

4. Then the coordinates of the vulnerable component are
transformed into the Final System.
The aim system coordinates (X', Y') are transformed into the
final system coordinates (f1 bias, f2 bias) by equation 2.178,

page 2-39 of Volume I of reference (1) as shown below.

B-4
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f1 bias cosn sinn )

f2 bias -sinn cosn Xit
Final System Gun-Centered
Coordinates Coordinates

Thus, the final system coordinates of the vulnerable component

(not at the centroid) are (f1 bias, f2 bias).
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