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ABSTRAC T

This paper examines several image segmentation algorithms which have
been explored in the development of the VISIONS system . Each of these
algorithms can be viewed as a variation on a basic theme: the clustering
of activi ty in feature space via histogram analysis, mapp ing these clu sters
back on to the image , and then isolating reg ions by analysis of the spatial
relationships of the cluster labels. It is shown that the interaction
between these two representations of data (global feature information and
spatial information) provides a view that is lacking in either .

The scene segmentation algorithms contain the following stages:

(1) PLAN : reduce the amount of detail in the scene to a bare
minimum by performing a fast simple segmentation into
primary areas using spatial and/or quantization
compression.

(2) REFINE: reseginent the scene with careful attention directed to
the tex tural comp lexities of each region.

The primitive transformations which are used include histogram
clustering, reg ion growing, da ta redu ct ion by narrowing the quan t iza tion
range , and /or da ta reduc t ion by spa tially collapsing the da ta while
extracting features. These algorithms have been implemented using a
pa rallel , hierarchical computational structure . Comparisons of per-
fo rman ce on severa l ima ges ar e g iv en .

1This research was supported by the Office of Naval Research under Grant

N00014—75—C— 0459.
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Outdoor scenes con tain many d i f fe ren t types of visually comp lex

objects. These objects appear in an image as a set of regions and our

goal is to decompose di gi tized images by exploiting various features of

these regions. In the design of VISIONS [1,21 an assumption was made

that semantic information would not be available at least in the initial stages

0f processing. Although the desirability and e f f ec tiveness of such an

assumption is currently under debate in the literature [3,4,5,6], we

believe that a segmentation system initially should be data—directed

and then later receive feedback from in terpre ta tion proc esses .

The isolation of objects is not the goal of this work. A region may

contain or be contained within an object. The relevance of such relation-

ships -is a function of the goal or “focus” of the visual analysis. There

is no “correc t” segmentation in general —— it is dependent on the goals of

the system. For instance , one could ask which of the following sets of

objects is the appropriate level of description for Figure 1:

(1) Outdoor scene

(2) House + trees + sky + grass

(3) Windows + doors + roof + leaves + clouds + blades of grass +

clearly, each of the above descriptions is appropriate , g iven par ticular

goals. Under our assumptions it is certainly not the responsibility of

a general (non~ cemantically directed) low—level system to choose between

them.

We propose, then , to provide a multi—level_descri pt ion of the scene

based on reg ion proper ties. Regions can be extracted using the invariance

of gross features of “macro—texture ” and then be r e f i n ed in to subreg ions

on the basis of features which provide a more detailed representation of the data. 

.- -~~~ -- ~~~~- -
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A region at any stage can be related to the parent reg ion derived f r om

a coarser degree of segmentation or to descendant subreg ions us ing f i n er

degrees of segmentation . These results m i  ~ht be stored in a tree structure

[71 in which relationships between the nodes represent descriptive

properties of the structure of the visual elements. For example , a textured

region might have descendant arcs to large subregions representing macro—

texture elements, such as large dark shadow areas or light leafy

branch clumps, which often appear in images of trees. This approach leaves

responsibility to a high—level system to sort out the correct level of

description by fitting in terpre tations to d i f f e r e n t level s, or extrac ting

useful levels depending on size and properties of regions. Although

there are many interes ting possibilities , the details have not been worked

out yet and will not be addressed further in this paper .

We employ (simulate) a hierarchical parallel data structure called

a processing cone [8} to facilitate the segmentation process. The higher ,

more spatially compressed layers of the cone are used to effect a global

view of regions of the scene. Values of features can be extracted by

applying a programmable function in parallel to local windows and col-

lecting their results (in parallel) into cells whose effective receptive fie’d

increases from level to level. The impor tance of using this operation of data reduction

lies in its ability to effectively collapse textural areas —— via the

extrac tion of some feature —— so that they tend to be more homogeneous

in feature space.

The re Is a second kind of global view of the  da ta  which is also

exp loi ted . The spat ia l  info rmation can be ignored and instead we can

simply focus on the statist ical  distribution of features of the data.
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standard representations for global feature analysis are 1— or 2—d imensional

histograms of features. Using this representation , clusters of activity

(i.e., clearly defined modes of the distribution) might be extracted .

Various descriptors which arise from the spatial and statistical

techniques used in scene segmenta t ion  can be assigned to the  reg ions.

For instance, the texture of a region may be describable as any of the

f ollowing :

(1) homogeneous; or

(2) smooth gradient; or

(3) speckled (gra~ nv , blobby ) , etc.

In a la ter sec t ion , we will show that it is possible to extract these

desscrip tors using a spatial adjacency (co—occurrence) matrix [11,121.

For a given fea ture of a reg ion , the adjacency matrix indicates the

number of times that feature value i has occurred spatially ad jacent to feature

value j. A large diagonal entry indicates a homogeneous region of activity

in the image . Conversely, an off—diagonal entry indicates frequent adjacency

0f two values which might be a meaningful textural pattern.

our contribution to the growing body of segmentat ion algorithms lies

in the interactions which we develop between the two types of global views

described above . Neither view alone is adequate to deal with natural

scenes. A simple region grower , which merges points based on local spatial

information cannot , in g eral. deal with textural variation . Likewise ,

histograms of multi—object scenes suffer from amb i guities due to overlapping

distributions which obscure the feature activi ty of individual regions.

A system Is need ed to exploit the strengths of both representations. 

-- -— - — ; ~~~~~~~~~~
- --
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The algor i thms which we have designed are executed in two s t ages :

(1) PLAN — coarsely segment; and

(2) REFINE — carefully segment .

Crudely stated , the purpose of the planning stage [9,10] is to reduce

the amount of detail in the scene to a bare minimum . This wi l l  have  the

effect of decompasin g the scene into grossly similar regions (primary

areas), thereby easing the problem of histogram overlap mentioned above.

Once we have found these large regions , the segmentation can be refined ,

using a subset of a larger pool of features and more sophisticated pro—

cesses for clustering and region growing . In the next stage of development

of the VISIONS system , this pool of features could provide the basis for

careful object verification .

The next section of the paper examines a series of problems inherent

i~ 
the- histogram clustering analysis. Following this is a detailed p r e s e n t a—

tion of the segmentation strategies proposed here . Finally, we present

several res ults of applying the algorithm to real data (Figures 1 and 2 ) .

_________________________
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II .  REGION FORMATION VIA CLUSTER ANALYSIS OF HiSTOGRAMS

This section outlines some of the problems inherent in h i s t o g r a m

clus te r ing .  For expository reasons , these problems are presented us ing

extremely idealized examples; their real world counterparts are much

less well—defined .

Histograms provide a global statistical view of the data which is

independent of the (global) spatial relationshi ps in that same data.

While the goal of processing in the spatial domain is to isolate regions ,

the goal here is to label clusters (or modes) of feature ac t ivity.

Ideally, if each cluster of some histogram corresponded to a particular

reg ion in space , then it would be simple to assign to each point in the

image the label of the cluster to which it belongs. Subsequent application

of a simple reg ion growing al gorithm can then be used to merge all con-

tiguous points with the same cluster label into a distinct symbolic

region [13). The two stages of transformations —— assigning cluster

labels and region growing — —  may he expressed functionally as follows :

CLUSTER and REGION CROW : P . —-÷ C - - - - -
~~ R

i A a

where:

P = {pixels in an image and their corresponding feature value)

C = ~Icluster labels corresponding to clusters which have been
found in the histogram of an image}

R = ~reg ion labels found in the follow ing manner: Pixels P .
and P~ will be given the same reg ion label R , i f :

(1) they have been assi gned the same cluster label ,
and

(2) they are spatially connected }

- -

~

•.— - -~~~~~~
-

-
..--

~~~~~~~~~~~~ -~~~~~~~~ • .~~~~~~~~~•
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At the most general level it is clear that such a histogram would ,

of necessity, be multi—dimensional. That is, there is no single feature

of the input data which can be expected to discriminate all regions of

a typ ical image. We have rejected the use of N—dimensional histograms

(where N > 2, or possibly 3) because of the difficulty humans encounter in

trying to understand the feature distribution in N—space; the algorithms can-

not be easily evaluated because distributions in N—space cannol be examined

in a straightforward manner. One— , two— , and three—dimensional histograms

can be displayed graphically, require relatively modest storage, and can

be clustered reasonably f a s t .  On the other hand , c lus t e r ing  in N—space ,

in addition to being costly, leads to fragmentation of the scene since

differences in additional fea tures will cause regions to split into sub-

regions.

The following examples in this section will serve to illustrate the

c l u s t e r i n g  process and i ts problems . For convenience , all the examp les

will be presented in terms of histograms of a single feature —— let us say

intensity or brightness —— without any loss of generality in the conclusions

that are drawn . The cluster labelling algorithms proceed as follows :

I — form the histogram;

11(a) — smooth the histogram;

11(b) — set 0 equal to the deepest valley which occurs between the
highest peaks;

11(c) — label all points in the histogram which are to the
left of () as C

A 
and those to the right as CR 

(denoting clusters
A and B);

T T T ( a )  — ~ssl gn to each point in the image the label of the corresponding
c l u s t e r  to w h i c h  i t  belongs:

111(h) — grow regions across adjacent points which bear the same cluster
labe l~ and
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IV — clean up by merging small regions into a larger surround ing
region .

Note that in the description of this algorithm it is implied that there

are only two clusters and one division point. It is possible , of course ,

to generalize to as many clusters as are reasonably defIned in the data;

we will return to this point later .

The key ef fec t of the clus ter labelling process is to allow all points

within a cluster to be considered equally similar. Consider the following

case. Two adjacent points in th~ image (x1,y1) and (x2,v2) have 
feat ure

values f ( x 1,y 1
) and f ( x 2 1y 2 ) which  f a l l  in the same c lus te r  

~~~ 
Depending

upon whether they are near each other in the  c lu s t e r  or on opposi te  sides

of the  c lus te r , t h e i r  d is tance

d = ~ f(x 1,y 1) — f (x 2 ,y
2
) fl

will be relatively large or small. In order for a spatial region grow ing process

to put them in the same reg ion , it must  use th re sho ld  0 where ~ > d .  But

then all spatially adjacent points whose difference is less thanOwill be grouped .

This can cause severe problems when two distinct clusters are less than d

apar t. This condition is not unusual since clusters may be l a r g e w h i l e

their boundaries are no t far apar t.

The cluster labelling process deals with this probl em quite nicely.

All poin ts of a cluster are provided a label which in effect says that

they are equivalent or zero distance apart in labelled feature space .

Now points on the opposite sides of clusters can be considered “clos er”

than points in the next cluster , no matter how close that next cluster is.
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11.1 Segmentat ion b y Rec urs ive Clus  ter A n a l y s i s

A very simple segmentation problem is illustrated in Figure  3a. An

• intensity image is presented which contains a dark and a bright region .

The histogram of the image (Stage 1) is clearly hi—modal and can be seen

as a composite of two normal distributions. The goal now is to isolate

the two clusters (Stage II) by determining the minimum 0 which lies between

the two modes. Having labelled the two clusters , we are now in a posit~~ n

to re—examine the  image . The c lus te r ing  process has e f f ec t ive ly  compressed

the fea tu re scale to two values , and by mapping these back to the correspond-

ing image points (Stage I I I)  we obtain a much s impler  p icture ; one in

which all local textural variations have been ignored . Finally, since it

is possible that one cluster label may generate many spatially distinct

reg ions (although this does not occur in the examp le) , it is necessary to

region grow. In this context , the region grower would be defined so as to

link all image points which are spatially adjacent and bear the same cluster

label.

Figure 3b shows an example of the technique shown in Figure 3a using

real data. The regions under consideration are the sky and gra ss areas

from Figure 1. The example is somewha t artificial in that these two regions

do not comprise the entire image : we have contrived to show an easy segmen-

tation case , i.e., one in which the distributions of the objects are quite

separable. In the examples that follow it will he evident that the situation

presented here is an exception. Most histograms of comp lex scenes are quite

messy since the distributions of the individ ual objects tend to overlap

one anothe r lead ing to di fficu lties in clu ster separation . 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~ •_ ~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _
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Simple Segmentation Algorithm

Stage I: Histogram

~~~~~~~~~

in tens i ty  —4-

~~~ ge I I :  Cluster  and Label

set 0 here

Stage III: Map Labels Back to the Image
and Region Grow the Labels 

-
S

L~iii~1
Fl gu re 3a

I
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Figure 4 indicates the e f f e c t  of overlapping d i s t r i bu t i ons  in a pa rt i cu l a r

feature. Two of the regions would be separable as in Figure 3a , but the

introduction of the thi rd  region obscures the other disbr ibut ions, leaving

only one discernable cluster . The mapping of the c luster  label back onto

the image allows the spatial relationships of feature activity to be

integrated into the process. In this case , growing regions in the image

space provides information which allows us to discriminate the two dis-

connec ted regions H a from R~ . The proper segmentation is acc omplished

by repeating the clustering process on via the sequence of operations

shown -in Figure 3a. This recursive partitioning of a region was employed

by Ohlander [131 and Price [10] quite effectively. The recursive segmen-

tation stops when a region is found to he unimodal in all fea tures under

consideration . In practice , of course , we might  not know a pr ior i  which ,

if any , regions would need to be reprocessed ; all would have to be examined .

This is very disconcer ting in that it can lead to a p r o l i f e r a t i o n  of

histogramming opeations .

Figure 5 indicates that even a recursive analysis might not succeed .

In general , the par t icu la r  loca t ion  of a reg ion is quite arbitrary ; this

example d i f f e r s  only slightl y from the previous cases: a small change in the

spatial arrangements of regions . The algor ithm fa ils because the mapp ing

of the cluster label to the image does not lead to sn-~tia1 splitting of

distinct subregions. This examp le i s par ticularly annoying (and realistic)

in tha t Region 3 mig ht  be joined to Reg ion 2 at  on ly  a few points .  H e u r i s t i c s

can be defined to deal w ith each such problem , but , in general , one wishes to

avoid a proliferation of heuristics for a variety of specia l prob l ems. 

~~~~~-—-~~~~~~~-S- -- - --~~~~~~~~~ — - - -- --—~~~~~~~ - . - - -S --——— - - ~~~ ~~ .- - —
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Recursive Segmentation

Im~ g~

Stage I: Histogram Stage IV: Re-Histogram

~~~~~~~~~~~ft _  _
region R region R~

Stage II: Cluster and Label Stage V : Re—Cluster  and Re—Label

~~ LR~jc~ H/Zt
Stage III: Map Labels to the Stage VI: ~~~~~~~~~~~ 

to Image
Image and Reg ion Grow

and recurse , if
necessary

Fi gure 4

-~~~~~~~ 
- S . _ - S

~~~~~~ — - — — — -- -—-~~~~~~~~~ 
- S -

~~~~~~~~~~~~
-
-—--- - --
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Recursive Segmentation — —  Failure

Image 

~~~~~~~~~~~~~~

Stage I: Histogram Stage IV: Re—Histogram 

LB~R
Cluster and Label Stage V: Re—Cluster  and Label

~~~~~~ II I :  Map Labels to Stage VI :  Re—Map to Image
the Ima~~

~~~~~I1 
__
no segmentat ion
has occurred

Figur e 5
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For example , in this case , a reg ion could be snipped in two at narrow points;

one way to do this is by shrinking the region in from i t s  perimeter fo r

a few layers of pixels and detecting those isolated subregions which may have

been formed .

11.2 Reducing the Errors by Conservative Cluster Formation

Let us now look more carefully at the cluster ing process. So fa r ,

the illustrations have shown distributions which were either highly over-

lapping or quite distinct. More difficult situations are created as the

distributions increasingly overlap at their tails. The area of significant

overlap involves points whose cluster identity is most uncertain .

The clustering algorithm discussed previously makes use of “liberal”

clustering; i.e., a liberal policy of defining clusters. This leads to

expectations that the cluster will include points which cannot be reliably

associated with that mode. As a result , upon mapping the cluster label

and growing reg ions, it is expected that regions or parts of regions will

he erroneously labelled .

The errors which have been introduced by the liberal clustering process

can be minimized by analyzing their effect in the spatial domain . A simple

error reducing heuristic would involve suppressing the outer layer of all

regions, i.e., those which are “all boundary ” will he comp letely suppressed .

This is desirable in that it will have a tendency to clean u p  noisy areas

since regions of size no less than 9 points are needed in order to have

a non—empty core. Second , weakly adjacent regions that

are spa tially linked by a very thi n t ra il of pixels will be

separated . Finally, it is observed that there are instances in which
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the points lying along the spatial per i phery of a region also lie at

the tail of the d i s t r ibu t ion .  In these cases the peripheral points

are those which have a low probabi l i ty  of being re l iab ly  a f f i l i a t e d  wi th

the reg ion and oug ht to be suppressed un t i l  a f u r t h e r  analysis can decide

where they should belong .

The analysis jus t  described does not fully explain the problem -—

it  focusses only upon the spatial re la t ionship between the p ixel and the

reg ion. However, the relationship of the histogram point to the cluster

(the feature values of the pixel and the region) should also be used .

A more effec tive analysis of the problem of liberal clus tering might

involve assigning a confidence value that a point in the histogram belongs

to a particular cluster. A straightforward conf idence measure for a point

j 5 some function of the distance of the point from the clustermean (e.g., the

number of standard deviations). The suppression pass could then be

qualified so that only low confidence peripheral points would be suppressed .

As an alternative to the liberal formation of clusters , it could be

argued that it is better to leave ambiguous portions of the distribution

unlabelled rather than have to undo their effects at a later time ; errors

can be reduced by demanding confidence in decisions until they are more

certain, a standard technique in pattern classification . To this end , we

propose a “conservat ive clustering” anal ysis as depic ted  in Figures 6a and

6b. The original clus tering algorithm at S tage TI would be amended

as follows :

rI(a) — smooth the histogram :

11(h)  — set 0 equal to the deepest v a l l e y  which  occurs between the
hi ghest peaks; H

-5

~

- - - -~~~ - - - S - - — - - .
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Conservative Cluster Formation

Image

HoJ
Stage [:

Stage II : Normal Cluster Stage II ’: Conservative Clus ter

Stage -ITT: Map Labels to Stage III’ : Map Labels Back
C r age

ARAB BBA 1 A A A B B
AAA~~BBB A A B  B
MBA 

B
B J A

~~A 
B

erroneous
labels

~~~ g~~ lV ’: G’ow Out from Cores

AAA BBB
AAA BBB
AM BBB

Figure  ôa

_ _ _ _  ~~~~~--~~~~~~—., ~~~~
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11(c) — set 0
L 

= 1) — K and

set 0R 
= 0 + K where K is some cons tan t  or a func t i on  of t he

clus ter wid ths;

11(d) — label all points to the left of 0
L 
as C

A 
and all points to

the right of °R as C
B
.

When the cluster labels are mapped back to the image, we will have

labelled only those points whi~~- have a high probability of being parts

of regions; these we call the region cores. Note that the region core

is not necessarily spatially internal to the region . It maps onto the

reg ion leaving missing po in ts or “holes” at various places i n the region.

The points of the region which are not in the core have a lower pro-

bability of be ing in the re gion , but often they will be adjacent to

(possibly several) high probability points of the region .

It is at this point that the global feature information can be brought

together with the spatial information in the image. The low probability

points could be added onto the core by reg ion growing in the context of

high probability points —— rather than making the decision in the absence

of such information .5 The global feature analysis can be expressed in terms

of the mean and standard deviation of the region core , as well as the distance

of a point not in the core to the mean of the core. The spatial information

is available as the neighboring points around a given point which is not

in the core; the number of neighbo r:~ which are in  t he core , as well as

thei r confidence , can be used to decide whether to add the given point

in a region growing process. There are many l iberal or conservative

reg ion growing strategies which can emp loy th is rich interface of local

and g lobal analysis. In Fi gure 6a ,we have depicted Stage 5 as a region

growing  process of a few iterations to retri eve those points which have

a relatively high likelihood of being part of the region . 

—--- --—~~~~~~~~~~~~~ - - .-S~~~ ~~~~-S—--~~~- — — — —  ~~~~~~~~~~~~ 
- - -- -- _ _



20

I I I .  PLANS

One—dimensional histograms of scenes containing multiple objects

cannot be expected to reveal dis t inct  d i s t r ibu t ions  for  each of the i nd iv idua l

objects. The fea ture  d is t r ibut ions  of ob jec ts  of t en  overlap , and the  histo-

gram analysis leads to erroneous region labelling . In order to deal with

this situation wi thout semantic s , the low—level system will perform a

segmentation in two stages.

The f i r s t  stage of segmentat ion is called 
~~~~~~~ 

generation.  The goal

of the planning stage is to p a r t i t i o n  coarsely w it h  respect to c a p t u r i n g

de tail in the picture. It is expected that the planning algorithms

will make mistakes such as the overmerg ing of reg ions and suppression of

fine detail. The reason for using the planning stage is that its output ,

al though coarse , will tremendously reduce the comp lexity of the scene ; 
S

it will generatt’ a set of subscenes where some of the major regions may

contain as few a. - ne or two “objects”.

Once the plan has been generated , each region can be carefully

segmented into subregions. Hopefully it is at this stage——called refine-

ment——that the system will generate a set of regions which are closer to

a one— to—one correspondence with the parts cf objects in the scene .

Of course , the problem of focus of attention will persist——does the scene

contain , say, 10 leafy regions or one tree region? The goal here is to

generate regions which are reliable; that is, g iven a par ticu lar foc us ,

the refined segmentation sh ould provide , as of ten as possible , h i gh

confidenc e regions in correspondence with objects or parts of oblects.

The refinement algorithms will use two—d imensional histograms

to break up overunerged regions. The presence of texture can cause clusters

-S —--S-S
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in a histogram of any dimensionality to become wide , to smear , or to 
S

become mul t i—modal . When dea l ing  w i t h  many d i f f e r e n t l y t ex tu red  areas ,

two—dimensional clustering becomes difficul t , and even under human direction

the cluster labelling and mapping process becomes quite error—prone . The

strategy of reducing cluster interference by problem decomposi tion becomes

quite useful . By using the sub—scenes provided by the regions of the

p lan reg ions , two—dimensional histograms become manageable tools for

exploiting pairwise feature dependencies.

It is a further goal of the refinement algorithms to associate a

texture descriptor witi. each region. This descriptor will be used as

an aid to object recognition during the semantic interpretation phase

of analysis. We desire measures of the structural and/or statistical

characteristics of the micro—regions of a region . Adjacency matrices [14]

have been mentioned as a possibility; if there are N types of subregions ,

one can form an N x N adjacency matrix where the entry a .. is a count of

the number of times subregion type i is ad jacen t  to subreg ion type j .

For examp le, measurements across the tree region could result in the formation

of regions with different hue valuec and an adjacency matrixmight showalarge

off—diagonal entry, ind ica ting blue (sky) adjacent to green (leaves).

Simple functions of the adjacency matrix , such as angular second moment

d i fference (ASMD) , might indicate relative heterogeneity of the underlying

spatial distribution . This type of feature has been used effectively by

Haralick [ill in classification of texture in ERTS images. Other

measures of texture such as variance and edge per unit area can also be

computed over features of the p lan regions [ I, IS ] .

- - -- -. -
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To summarize , the plan and refinement stages provide a h ierarchical

decomposition of the scene into reg ion s which will correspond to j ec t s

at some level of description or focus of attention . The final output

of the low—level system will be a set of segmentations , each one of

which will provide a more microscop ic view of the scene . Each further

par tit ion will carry various feature descr iptors of the regions involved .

111.1 Histogram—Guided Quantization Compression or Gross Clus ter ing

A standard data compression technique in image processing is that

of gray—sacle transformation by histogram clustering. Our use of this

technique (which we shall refer to as compression) involves reducing

the number of bits per pixel from , say ,  6 to 2 prod ucing an ex treme ly

coarse resolution in the values of the feature involved . The compres-

sion can be performed without global analysis by linear scaling, but

this results in many erroneous contours being formed in the image .

In Figure 7 , linear scaling to 8 buckets causes undesirable breaks in

the clusters of the distribution . A region grower applied to the

transformed image often would produce a set of regions which have been

artificially fragmented .

F i g u r e  7 — Linear  c ompression to 8 bucke t s .
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As an alternative to blind scaling, a more sophisticated quantization

compression could be app l ied to the statistical distribution of the feature

under consideration. Instead of defining buckets at predefined linear

or non—linear intervals , the histogram could be used to guide the a lgor i thm

so that the designation of the intervals would be def ined by the gross

cluster points (minima and maxima) of the distribution. This is , of

course , a generalization of the clustering algorithm presented in the

previous section.

A simple measure of the r e l i ab i l i t y  of a bucket designat ion ( r e f e r

to Figure 8) is how well the peaks (A
1 

— A 4 ) wi th in  buckets

are d istinguished from the value of the distribution at the breakpoints

(B
0 

— B
4
) of the buckets. For the breakpoin t B2 

this could be the

MIN[A 2/B 2 ,A3/B2
]. The effectiveness of the breakpoint set (or cluster

boundaries) will be some measure of the sequence of ratios , such as average

or maximum .

Fm 1) B 1 B2 B3 B4

FIgure 8 — Example of compression quantization scale tha t has been linearly
def ined .

- -S . --- - - . -—~~~~~~~~-S .-- - -S - - - - -  - -  ~~~~- -S
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In this example , B1 and B
3 
would not be considered reliable because the

ratios A
1/B1, A2/B1, and A

3
/B3, A4/B3 

are small. By the same criterion ,

B ’
0 in Figure 9 wou ld be considered a reliable break point since A ’

1/B ’
0

- and A ’
2/B ’

0 
are large.

Figure 9 — Setting of intervals that more reliably reflect the grossest
level of cluster structure .

Rather than deal with N—dimensional (N > 1) his togram analysis  in

the first developmen t of plans (where mistakes are expected), the features

initially will be examined independently. The kind of compression indicated

above will be performed separately on each of , say , 2 (or 3) features followed

by a simple intersection of the 2 (or 3) r e s u l t i n g  images.  One way to t h i n k

of the resulting image is as an image of symbolic labels. Let us assume

for the moment that onl y one break point will be used to compress each

feature into two buckets. This would form two (or three) binary images.

The intersection of these is equivalent to encoding each point with one of

a very few lah&-Ls (4 or 8) of the compressed feature scales , where ~ach

- -S -S - -S __- 
_
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label represents a hypervolume in N—space)’ A reg ion grower could now

be applied which would l ink s p a t i a l l y  ad jacen t  p o i n t s  which carried the

same label. These regions then would form the plan .

Examples of Quantization Compression

The above procedure is demonstrated in the following set of figures

(10 — 13). The three features used are Y , I, and Q (see appendix )

which are the standard color representations of the television industry.

These features are a linear transformation of the red , green , and blue

input data into a second color space. Designed as color opponents they

measure , respectively, intensity, cyan—orange , and green—maroon. The
I-i

histogrammed fea tu res  have been compressed by hand us ing  the criterion

demonstrated in Figures 7— 9. In most cases , the setting of the threshold

is obv ious and we are currently developing algorithms to automate this

process. Note that the “I” feature often does not produce the well—defined

himodalitY of the other two features ; in such cases the feature is not

used .

The photograph accompany ing each figure demonstrates the technique

mentioned above ; that is , intersecting binary images which have been formed

after thresholding the histograms of the features involved . The images

used were selected from among the set used by Ohlind er.

1
0f course , if the data cal led for it , each feature could be broken into
more than two buckets allowing finer resolution for the feature scale ,
and therefore more posa i hi e labels for each pixel. We believe that it
is only useful to thi n k ui the values as labels in the coarsest resolu—
t ions. (V ine ther - arc a lew values per feature , t h e  textural variations
will begin to fragment the image into many di f f ’ r ~ nt subreg ions. There
will he so rn -m y possible lahel.s that the set of L i t  ore s  ough t to he
t hou gh t  of as a vec t or of features i n  the  ~ sua 1 sense.
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111.2 Planning Al gorithms II : Spatial Compr ession

A second method of data reduction involves the spatial. compression

of an image . This transformation is carried out in the processing cone,

Briefly stated , the cone is a simula t ion of a parallel computational da ta

structure which facilitates the transformation and reduction of large

amounts of data in a layered fashion . Features of the input data can be

e x t r a c t e d  du r ing  the  reduc tion process so that each cell in a higher layer

ot the cone w i l l  contain features with a more global view of the data

(see Figure  14) .  Here , the goal of the processing cone structure is to

aid in the segmentation of scenes by allowing ex trac tion of fea tures

tha t effectively collapse the textural variation in regions.

As an example of the utili ty of the cone , let us consider a textured

region where the distribution is strongly bimodal (“sal t and pepper”).

A simple region grower applied here would probably be ineffective due to

the  local variations in the data and would generate a severely fragmented

segmentation . Further , the histogram—guided algorithm would find two

cluster types for the pixels; the region would be fragmented by this

approach also . On the other hand , by averaging the information over a

local w indow , the data can be smoothed so that internal variations of the

region are greatly reduced . Now the histogram—guided algorithm will find

one cluster type for the pixels and the region can be effectively labelled .

Not ice that other features can be extracted over local areas while reducing

the total amount of information . Since the higher levels of the cone

do not contain much data , the extraction of features and coarse labelling

of regions can be done at a great time savings.

—-S- .
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Now we will examine a somewhat d i f f e r e n t  use of the cone —— the label—

ling wi th  the same symbolic label of spat ial ly d i s j o i n t  regions which have

the . ame visual features. This involves the reduc t ion of the symbol ic

information in the plans formed by the histogram compression a l g o r i t h m .

The plan labels themselves can be “reduced” by passing upward the most

frequent ly  occurring label in a 2x2 area. The labels which reside at

the top layers of the cone would represent the largest regions of the

image.

By maintaining a hierarchy of possible segmentations , a “correct ”

segmentation may be assembled by a knowledge direc ted system as a function

of the goal of the system or degree of effort to be expended . A knowledge—

directed system may determine the correct level of desc r ip t ion  by fitting

interpretations to d i f f e r e n t  levels in the hierarchy or by extracting useful

levels depending on the size and proper ties of regions.

There are problems encountered in the reduct ion process which  should

be pointed out. First, each region of the data will be best collapsed

at some corresponding cone level. However , it is not obvious a prior i

what level that will turn out to be. For fine grass tex ture a r e l a t i v e l y

low (unreduced) level of the  cone might  allow a reasonable s t a t i s t i c a l

sample of the textural feature , while a higher level of the cone w ill be

needed in order to encompass a number of the macro—texture elements for

the gross shadow and highlight areas of the tree w ithin the recep tive field

of a single cell. Of course , the opt imum level is also a func t ion of the

size of the object in the image.

The implication of this discussion is that , at any given cone level ,

some cells will  represen t data at the proper level of reduct ion for produc ing

- .~~~~~~~~~~~~~~~~ _ _  
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t ’ l l  ~~ I ’ -
~ ~ 1 - 1 0 I

I r . 14 ) 0 7 1 1  W )  - , fl II - S - - 
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This  f i gur e d c  irl v illIIs t i - ;its ”-: t i t i  :,~‘ H i i l . ,w p r o b l e m  - e i n t  l on e ’ 1 earli e r.

A~
; t h e  window s i ? I ’  i n :  r i ses  (t- s s rt - s i l l i n I l i s I g  i i  h i : , s i ’ t  i - o ~~ ’ l e v e l s ) , we

see smal l  r eg ions  m l )  gj n : ’  i n S  s l , i r ; : s ’ r  e - l ’ - r n r t i - :i l u g  rc’ p j ssn~ ( e . g . , t r i m  a r o u n d

wj n d o w ~ ) a n. i l a r ge  r e g i o n ’- bcs - ,s n s l  ‘ i 7 u V  I t  t i R ’ i r  b o u n d a r i e s .  I - ’~ t i I r a 1

v a r i a t i o n s  sir e  g re a t i  s.’ elm-c i t u i - i l  s a y s -  r , I l ov i ng  a s-ann ii set o relativel y

h omogeneous reg ions  a t  level -~i o l  t h e  i - o T t o ( I  ‘~s ~: 16 p ixels) • The poor q s i a l i t ’ :

of the  seg m e n t a t i o n  1-ìt level  2 w .-ss T i m  - s lu r S t  r e s u l t  in a l  l the  e x p e r i m e n t s

r u n .  O b v i o u s l y ,  very l i t t l e  h i s  h o t  i s  go 1si ~’;i iv t h i s plan ; the low— levc- 1

sys tem s-an r e o’ er f r o m  this , t liough, i f :  r i n g  :0 r e f i n e m e n t  s t a g e  where

:i more d e t a i l e d  and c- ar t. , iii analysis 1 1 1  he performed

~\ , i t l C 1~ t o  it  t i l t - s:O n rSef ls ’Ss o f  t h e  CJ:’ i[~~ I ’ s - a  i t  - RI : - - I - - f a lse  , : o n t s i l : r s

in  t h e  inagl s pre:ss’: led . Tli t~ is - he ’a ,n str ,i r . ’ ,h l i i  ‘ h i ’  ,15 s - I  ) 1 I i c  r u - s i t

t r t ’ l - , fo r  I?. amIlI(’ , v i u ’ r e  t u u ’  ob iect has P p  s p l i t  l i t  0 tS.,’(I - - , s ’ i 5 n r , - : te

r eg ions .  M t  - o u r e c - , f r o m  Of l O S t i e r pol es j s i  v , ’w ¶ 1 s  sy s t em  is distingu i shing

t e x t u r e d  L r M e  w i t h  sky showing t h r si , t - ’! I r c a  ‘ ‘ -x tu it ’d t ree  w i t h  roof

showing t h r o u g h . iii gene ra l  , TI l e - - ’ l U l l  s~ - . ’n i - - t 1 t  s t  S O I l S  ii lustr ;i t r’ t h e

obs erva t ion made by ‘~osen fc ’ l [ i i]

‘‘ I n a .5 1 1 ’ - : ] V C f~~n~ i s ~ I S I - ‘1’ 5 i s  i ‘ p a r t  l S I  t o  have f i ne
(p i a n t  i :- ’ ; it  sun , b i j t  f e  5,- I m p s  i l l ?  ‘1 I I ’ I ’ ’ ’ s r ’ S d , while in a S~~ene
w i t h a I at - :T ’ - 

- 
i i  i i ’  t 0’ I s k ’ f l ’  I . I t -~ 1 I - - ~

‘ v t O s s , ’t n i l c fine I y
hu t  q l t a n t  I - ‘ i t  iu f l  I .tfl 1 co ar s e . ’

A more i i e ~~- t  il - in s iv: ~ is  elso ~ sa n : - - ‘ s i r - ’ I~ ’ s , :  s’h s I I - m o n st l , i t e s  t h e

-st  r ; i t  egy of q i i a ’ I t l -‘ at  ion  - ‘ nlp r . ’ss i o n  lot I c-i’s , l  f ’S~~I 5{ , (  at rs ’ ,l i s c t  ion .

I ’ i j i ’  f o i  t o w i n g  step s- - el i’ - pI ’ I’f , ;r il

(1) ‘o:’ p I I c’ ‘i
’
, j~ , 1 f r i l l - - r i  i : ~ i t _ n ( r 1 : 1  , 5 ’’ , - i i  , fa I l i e )  SI

level ~ ( 1 5 5 1 . l 0) 
~ 

u s )

( T I )  c l i ’ -stt. ’r I , sc ’ h I I I  i l l _ I ~~~~~ (
~ i l ~

’,,f 1 7 1 1 fl i S t ’ l l S T I S S L O t l  t o  lorm 1

hi t j,i rv l I l a  a-

f t  I )  I n ;  s ’ l ’ i-ieC I 
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(IV) reduce the plan from level 0 through level 4 by passing
upward the symbolic rngion label which is the majority in the
2 x 2 windows.

Figure 16 presents a set of plans which are more desirable than

those in Figure 15. The plan from which these are derived (Figure 10)

was general ly  good h~j t  henef lt t e i - 1  b y some c lean ing  ~ip In t h e  t r ee  r e g I o n .

By selecting for large regions, the reduc tion of the plan ignores small

local subpatterns while maintaining the most important information of the

ori g inal plan; namel y that the picture consists of five malor regions, cor-

responding to sky, grass, house, and the two trees. This is shown in Figure 16d.

Distinct region labels formed by region growth on the small amount of

data a high level can be projected down to level 0. Then disconnected

portions of the tree will be given the same label. This can be done with-

out the necessity of a complex and time—consuming process performed on

the mass of data of the original image .

111.3 Refinement of Plans

The coarseness of the planning stage will yield , in most cases , a

segmentation which contains grossly overmerged regions. In order to

effect an accurate segmentation , the system will have the ability to

recursively apply the histogram—guided compression technique to a region

0f the plan at - ‘wh lower level of resolution in the cone. This may not

have to be performed on all regions since these algorithms are eventually

to be embedded in a process with feedback from semantic high—level pro-

cesses. For example , the refinement process may be guided by object

verification strategies so that some portions of the hierarchical plan

representation are analyzed to a greater level of detail .

.v
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One region of the plan can be analyzed with a 2D histogram based

on d i f f e r e n t  fea tures .  However this recursive histogramming of regions

and subreg ions can lead to serious computational problems , beca use the

number of regions in textured scenes can Increase exponentiall y as f iner

textural detail is extracted.

Once the texture components have been assigned unique labels, the

actual texture is difficult to describe , particularly j i  statistical

descriptors are desired . On the other hand , structura l propert ies of

the texture elements can be extracted . It is possible to :i~~’~~-~~~. frag-

mentation of textured regions in those cases where many small disconnected

regions are nearby and ought to have the same region i~ enti fic- r. Here

the cone can be employed be extracting the ma jority region label from

a local area and forming a labelled image at a coarser level of resolu—

tion (at a higher level in the cone) . Then , a reg ion in the coarser

resolution plan could represent a set of disconnected areas at levels

below. It is an inexpensive process to map this particular label to

many regions at finer levels of resolution . In the processing cone ,

simulated parallel hardware performs such operations. However , it is

even more important to avoid histogramming regions of micro—texture.

Thus , Price E IO J used planning to reduce his data and the impact of the

problem. This leads to a need for hierarchical region description

and some way of determining that the system has moved down to the level

of “micro— texture” (which of course is a relative term).

It is hoped that the use of the higher d imens ional segmen tation will

limi t this po tentially rec urs ive analysis to just one refinement step.

We outlined in a previous paper Ll2] a technique for two—dimensional

clustering. Br iefly, the algorithm involves placing the histogram into

the cone and treating it as a pseudo—Image . The histogram is blurred

up the cone by averaging, and it is scaled so that valleys between clusters 

---- ~~~~--- -~ - .-~~~~~~~~~~~~~~~~~~~~~~~~
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disappear . Thus, clustering becomes a r iolem analogous to region isola-

tion except that front a textural point ot view the histogram data is

usuall y much simpler than t i c n r Is~iI;a i m , i , ~t -  I ot a .  It i$ highly unlikely,

therefore , to see a ‘salt and peppe r dis i ihution ;” rather , a more pr obable

description for a two—dimensiona l p i o t would be a ‘ , - ln t i n u o ! zs  gradient ”

in the histogram (not necessar~~i ’. ‘orc-ot’tte d at all to spatial gradients

in the image). A gradient detector [Ih j could he used to isolate cluster

cen ters, and reg ion growing ‘-oul.d he used to add on peripheral layers to

the degree desired (refer to conservative labelling in Section 11.2).

Figures 17 and 18 il1u~ trate Che r e f i n e mer l t process using two—

dimensional histograms. Here , for convenience , chi stersing was done by

hand s imply by thresholding th e histogram so that the very low magnitudes

which link the cluster centers were turned o t t . This was not automated

because we wanted to see the limit in effectiver”ss of this process

without errors introduced via unsophisticated clustering methods. Region

growing was then applied to the isolated cluster centers to yield the

results shown.

Fi gures 17a and 17h show the Y and Q distributions for the grass/shrub

region of Figure 1. These histograms would be considered uni—modal

(i.e., no threshold point is apparent) by the cloistering algorithm Out-

lined In Figures 7— 9 and thus would not offer mv new segmentation infor—

nation for this region . On the other hand , the two—dimensional histogram

shown in Figure 17c rc ’veat s two distinct subctusters (corresponding to the

(1) grass and (2) shadow regions). These clusters are isolated and labelled

as shown in Figure 17d . N i t . ’ that clu stering w.:s di ne interactively by the

following steps:

_ _ _ _ _ _ _ _  ~~~~~~~~~~~~ ‘ -~~~~~~~~-~~~~~~
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(1) place the histogram into the cone at level 2 (64 x 64 pixels);

(2) suppress (i.e., set to 0) all points below a user—suppl ied
threshold ;

(3) region grow ( jo in  ad jacent  non—zero  po in t s )  to label all
connected points  in a c lu s t e r  with  a un ique  symbol ic label.

Figure 17e shows the region cores which resulted from mapping the

clusters which were labelled (Fi gure 17d) to the  corresponding pixels in

the image. The holes which appear in these regions result from the use of

the conservative clustering algorithm which labels only the very well—

defined cluster centers. In most cases , these holes can be filled in

with a reasonable heuristic; namely,  a hole which is mos tly surrounded

by a core region takes on the label of that region .

Figures 18a and 18b show the Y and Q distribution for the grass/

shrub and lef t tree “reg ion ” (the image at level 4 of Figure 16 indicates

how this large area of the image could be labelled as a single region).

The two—dimensional histogram in Figure lSc and c luster  labels in Fi gure 18d

serve as a further illustration of the power of this higher—level representa-

tion — —  clusters which would have required a recursive c lus te r ing  anal ysis

in the one—dimensional case are found in one step here.

111.4 Second Order Analysis of Texture

Finally,  we would like to out l ine a second order analysis of texture

through the use of spatial adjacency matrices. We wish to characterize

the various levels of textural  detail of a reg ion by analyzing d i s t r i b u —

tions of lo’ al feature activity of adjacen t  cells . Informat ion  which

c lus ters  around the main diagonal indicates re la t ively  small d i f f e rences

in activity. Conversely , informat ion  on which is o f f  the  main diagonal

indicates relative he te rogene i ty  of the image data.
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F i g u r e  18: R e f i n e m e n t  of Gra s s/Tree PLAN—Reg ion by 2—1) Histogram
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For our purposes , the usefulness of this representation lies in its

a b i l i t y  to r e f i n e  overmerg ed PLAN r e g i o n s . The h I n  I c r . -~n1 ,’ I l l ; i l v sj s  i S

i n s e n s i t i v e  to the s t r uct u r e  of t he  t e x t u r a l  p r o p e r t  i rs  of  the data ,

and therefore the following type of situation is like ly to l~~~~’rmI r. Suppose

that a portion of an image contains a relative I y I u i i n o p l n & o t Is  d .-irk reg ion

which is adjacent to a speckled texture region ( F i gu re  19). The histogram

ana l y s i s  will  assign one region label to all connected (8—adjacent) dark

pixels and a different label to all connected bright pixels (shown in

Stages I and II). These regions can then be symbolically reduced in the

cone in order to retain only the coarsest amount of detail in the image ,

e.g., the most frequently occurring labels (Stage Ill). B y co l laps ing

~ lI t e x t u r a l,  v a r i a t i o n s, a reg ion mask can be produced from a set o~ adjacent

identic al labels that have been brought up from below . However , each label

in a particular mask could have been produced by many different variants

of the data , i.e., there is a many—one mapping and t h e underly ing data may

not he as uniform as the plan suggests. Now the hi gh—level mask (‘an he

u sed as a guide to further analysis . The adjacency matrix of the da ta

w h i c h  I ies within t h e receptive field of the mask conta ins two clusters ,

(I ’lrr &~spond ing to  dark vs. dark and dark vs. br i ght (Stage IV~ . Finally ,

a c i  us t & ’ y  label I i n c  a l g o r i t h m  can be a p p l i ed  and t h ’ or re spend i ng region—

I t h ~’ll ing will yield a segmentation (Stage V).

Notice that once the high—leve l mask has been created , the adjacency

matrix can be measured across either the full—resolution , full—quantization

image data or the quantizat ion compressed plan da ta. In I R~ I I t t e r  case the

adjacency analysis would take i n t o  account  tli t ’ f i r s t  — o r d e r  (pointwise 

~~~~ -~~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~-‘ 
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fea ture)  clustering of the data as obtained from the in i t ia l  analysis.

By using the PLAN region labels as input to the adjacency mat r ix , this

representation wil l  be much clearer in that  i t  w i l l  not be obscured by

very small (noise) differences.

In addition to tex tu re discr imina t ion, the adjacency matrix can be

used for texture description . Features such as angular second moment

d i f fe rence  (heterogeneity) and entropy (information) have been used by

Haralick [11] for c lass i f ica t ion .  ilowever , t ex ture  descript ion is more

difficult. Scalar features of the adjacency matrix can be computed

and used in a descriptor list which could be associated with each region.

We expec t though , that this representation will not be su f f i c i en t

because much of the informat ion is being thrown away. Research into

this problem is now in progress .
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APPENDIX - PREPROCESSING

IV .l— Removing Mixed Pixels and Use of Conditional Blur~~~ ,’g

The images used by the low—level system are 256 x 256 arrays of

pixels di gi t ized to 6 b i ts  per pixel. There are three planes of data

obtained by scanning the image through red , green , and blue filters.

The total amount of data which must be processed is approximatel y

1.2 mi l l ion b i t s .

The input da ta  is preprocessed in two s tages.  F i r s t , an ope ra to r  in

app lied which will remove gradients (introduced by digitization effec ts)

at boundaries . In the init ial  scanning process the bean wi l l  somet imes

measure a li ght intensity which falls across a boundary and there fore will

record an average brightness value between the values on either side of the

boundary . T u e  data  which results  fr om this proce ss are called mixed p ixels

and can be i den t i f i ed  with a local detector [17J . The algorithm w il l

unmix when exactly a two—p ixel gradient is de tec ted  in all  three  i n p u t

planes (red , green , and b lue) . Onc e fo und , a mixed pixe l can he assi gned

the value of the adjacent p ixel which is closest to it in the three t t ’atures

and lies along the gradient. In the samp le w indow of da ta shown below ,

the center point would be detected and unmixed as indicated .

rIII :~4~ - Ti~ IL~1i07i2~4TI~II1
I1

(2O ,3O

~

5)

~ 

- - - 
~ 35 ,4~~ 2O)~ 

(2 ,10 ,9) I j ( 2~~lO ,9) 
—‘— — .—— - - — ‘ ‘- —  L~~~~~~ .

Ti I X E I )  L I N M I X E I )

T w o — p i x e l grad l e n t  ;ir oi i i id l ) e — b l u r  ( ‘en t er  [H Sri L I ’ p o i n t
( ‘ t n t  or  p i x e l  . P i x e l s  shown it ~5 c l o s e st  to  in r i - I l  •

is red , gre en , and b l u e  arid liliR plat1 $ ’3~.
tri p les .
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A second preprocess ing  s tage is emp loyed whereby da ta  is averaged

o n ly  i f  the  t o t a l  amoun t ol l o c a l  p a i r w i se d i l l  i r e o r l -  over  a window is

smal l .  This cond i t iona l  b lu r r i ,~~ operation [12], wlii - Ii is similar to at)

al gori thm presented in [191, wi l l  have the e f f e c t  of smoothing finely

t e x t u r e d  areas while  leaving s t r o n g  boundar ies  i n t a c t .  The algorithm can

be described as fol lows :

- 1o ii n , n = - - -  a.1 2 3 0 n 
~~~

- -4-- - _ s n~~. S
n 4 n0 n 5 

— - - - - 1-- - - - - I
11

6 
n
7 

where :

n o o u t p u t  val tie for fl
()

S {n .~ I n . —n I 
- T i

1

= prese t  th resho ld

/1 elements in s
5

IV .2 Color Trans format ion

Resea r c he r s in co m p u t e r  vi~s ion are  faced with a bewildering set aT

a I t ( ’rna t ive c o l o r  spaces which  ( ‘an he used fo r  t h e i r  many  p u r p o s es .

Var ious considerations have led us to adopt  t l i t ’  Y [Q color space for m i t  lal

segment at ion. The c o m p r i  t a t  ion of Y 1 Q 1 s l i n e a r  and I r appears to he a

s i i n p l  e approx  [mat  ion c s f  t h e  opponent co lor pro ’ ’cs wh l i - l i  some theorists

be I I c  vi~ t a kes  p 1 aia ’  in  t li i’  I ’ VI’ 120 . ‘l’he V c om p o n e n t  essen t jail v mean’i r i’ ~

in tensity, wh ile t h e I and U o p p o n e n t s , which rospect i v e l v  measu re  cyan—

o ran g e  and magent  i —~, i’een , transform the image in ~ uch a ~~iv as to heig hten

t•~~lor contrast. ili is is a p a r t i c u l  an v d e s i r a b l e  e f f e c t  f or  hi st o g r a m—

~1i i i d ed Isp t-~r ;r t  ions in t h a t  t h e r e  i s  a t onden c ’  to f or c e  h i — m o d a l  i t v  In

r l ie d i s t r  i b t i t  i o n s .

‘-‘ - .--

~

. - -

~

-

~

- --—----
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The f o r m u l a  f o r  YIQ is as f o l l o w s :

‘
~
‘ 

~.5O9 1.000 .194 
- 

~R1
1.000 — .460 — .540 *

Q Li~o~ —1.000 .597 - LB

S I ri(’L’ t h e  I and () o p p o n e n t s  can take on nega t i ye va I ties , t h e n s -  f :51 I I  r I ’s

may oct- si to be ,s liii t (‘(I t o t  a a p o s i t  iv  e r an go. I n add i t ion , wi i cii work in c

w ith integer data , it has been found to he us-eful to spread t h e  d i s t r i —

hution by some small linear scale ( i . e . ,  multipl y by 1 . 5  b e f o r e  t r i r s i c a —

i i on )  . The ri s c oss i t  v f o r  sca I l og  at i ses I rein lie t a t ’ I t h a t  i n s t  a ra I

s-cones tend to have low saturation (white—washed) and thus the r in g i if

1 and 0 is quite compressed . Much of t he  in format  ion w h i c h  would ho l ist

j O  the  process of integer truncation can he recovered by scalinc t he

di stribution beforehand .

Note that in the histograms presented in this paper  we have changed

the sign of the Q component. This is done so that it will niore or less

correspond to the green gun of our color monitor disp lay.

A full dis cussion of the behavior of YIQ,  as well as other color

t ransformations , is given in a recen t paper by Kender [21]. tIe shows

that non—linear transformations such as hue and normalized red , green ,

and blue , are unreliable as features due to the essential singularities

in their distributions , i .e. small perturbations of th e input data can

cause a r b i t r a r i ly large changes in the output of these features. 

— --“‘-~~~~~~ -- -~~~~~~‘ -- ‘- - -~~~~~~~~~~~~~~ ‘-- ---- .- --~~~~~~~~~~~~~~~ -- -——--- ~~~~~~~~~~~~~~~~~~~
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20 .Abstract, continued.
Information and spatial information) provides a view that is lacking In
either .

The scene segmentation algori thms contain the following stages :
(I,) PLAN: reduce the amount of detail in the scene to a bare

minimum by performing a fast simple segmentation into
primary areas using spatial and/or quantization
compression.

(2) REFINE: resegtaent the scene wi th  carefu l  at tention directed
to the textural complexities of each region.

The primitive transformations which are used includ e histogram
clustering, region growing, data reduction by narrowing the quantization
range, and/or data reduction by spatially collapsing the data while
extracting features. These algorithms have been implemented using a
parallel , hierarchical computational structure. Comparisons of
performance on several images are given.
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