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ABSTRACT

Four natural notions of observability are compared
in the case of systems described by polynomial
'ifference equations. The main result states that,
for a system having the standard property of
(multiple-experiment initial-state) observability,
the response to almost any (long-enough) input

sequence is sufficient for final-state determination.




1. DEFINITIONS AND PROBLEM STATFMENT

We deal in this paper with discrete-time finite-dimensional nonlinear
systems whose next-stite and output maps are polynomial functions of previous

states and inputs:

x(t+1) = P(x(t),u(t))
v(t) = h(x(t)), k= 0.1.2....,

where u(t), x(t), y(t) belong to algebraic sets U, X, Y over an arbitrary
fixed infinite field k, and where P:XxU X and h:X —»Y are polynomial

maps. (An algebraic set is a set, in some affine space kn, defined by polynomial
equations ;.i(x], AL xn) 0}.) We assume that U is irreducible, i.e. U
cannot be expressed as a union of two proper algebraic subsets. (This last
restriction is made purely for teghnical convenience; note that, in particular,

any affine space U = k" is irreducible.)

Such 5 were o@1lled polynomial systems in SONTAG and ROUCHALEAU[ 19751, where

various properties were studied using elementary algebraic-geometric tools;
all the algebraic-geometric concepts needed for this paper are summarized in

that reference.

Denoting the extension of P to input sequences also by P:XxU* - X,[for

the empty sequence e, P(x, e) = x,] we can give the following

(1.1) DEFINITIONS. A polynomial system % is:
(a) observable iff for each pair of distinct states x, z in X there

exists an input sequence w 1in U¥ such that
h(P(x,w)) # h(P(z,w)).

(One says that w distinguishes between x and z.)

(b) single-experiment observable iff there is some r > O and some

(fixed) input sequence w = (ul. vy ur) such that for any x # z in X,

h(P(x,ul,...,ut)) # h(P(z,ul....,ut))

for some O < t < r.

(c) final-state determinable iff there is some r > O and some (fixed)

input sequence w = (u], sy uT) such that




(¥) for eve~: pair of states x, z in X, either
h(P(x,ul.....ut)) + h(P(z,ul,...,ut)) for some
<t <r or P(x,w) = P(z,w).

(d)»ginquﬁpqtf_ﬁgﬁq{minable by generic inputs iff there is some r > 0

s L 'S y . :
and a proper algebraic set F C U such that (¥) holds for each w not in F.

We wish to prove that the following are precisely the implications that hold:
| (1.2) (b) =>(a) & (d) =(c).

We show below, via counterexamples (1.3),(1.4) and (1.5) respectively,
that (a)#(b). (d)#(a) and (c)#(d), while Theorem (2.5) shows that (a)=d(d).
o 2
(1.%) EXAMPIE. %. has X:= k°, U=Y:= k and equations
xl(t+1) - q
%, (£41) = 2 (£)(u(t) - x,(+))
v(6) = x,(t).

is not difficult to verify that 21 is observable, in fact even algebraically

servable in the sense of SONTAG and ROUCHALFAU!1975]. But no single sequence

w serves to distinguish every pair of initial states: let w = (u,w'), with

u in U If w =0 "thep 2 and <j’ are not distinguished by w, while

0 0
if u # 0 then <g> is indistinguishable from (8) ;
(1.h) BYAMPLE. 2, has X =Y :=k, U arbitrary, and equations
x(t+1) = ©
y(t) =0 .
Clearly 7., 1is not observable, although (d) holds trivially with F =empty, r = 1.

(1.5) EXAMPLE. %, has X = U =Y := k and equations

x(t+1) = x(t)u(t)
y(t) =0 .

The sequence (of length one) w = O solves the final-state determination
problem. Comparing any nonzero state x with the zero state shows that
any sequence solving the final-state determination problem must have at

least one nonzero component, so no proper set F as in (d) can exist.




(1.6) DISCUSSTON. (i) Note that (a) is the definition of observability standard

in system theory, and that. trivially, (b) implies (a) and (4) implies (e¢).

Property (e) assures the existence of an input sequence w such that, independently
of the initial state x(0), the final state x(r) can be determined from the

output data y(0), .... y(r). On the other hand, (1) gpuarantees that such a
determination is theoretically possible with essentially any long-enough input
sequence, i.e. in real-time system operation. !Of course, this determination

is only insured in principle, and effective algorithms inverting the map

(v(0), ..., y(r))r> x(r) must still be developed prior to practical applications
to nonlinear filtering problems.'

(ii) For linear systems, (a) is equivalent to (b) and (c¢) is equivalent
to (d); see KAIMAN, FALB and ARRIB[ 1969, Chapters 2 and 10!,

(iii) The notions corresponding to (a).(b) and (e¢) have been studied in
great detail for finite automata, beginning with MOORE! 19 ¢ |: see GILL' 19
or CONWAY[19711. 1In the automata'literature one calls (a) a "diagnosing" and
(c) a "homing" problem, and one has precisely the implications (b)=(a)s®(c).

[ The automata case takes care of polynomial systems over a finite
field k: this allows us to restrict attention to infinite Xk, with the
notational advantage of allowing identification of polynomials and polynomial
functions.! Finiteness of the state set is erucial in the arpuments involved
in the automata results, but there appears to be no way of generalizing such
arguments through a replacement of finiteness by finite-dimensionality: it

can be shown, for instance, that in the context of systems defined by analytic
(rather than polynmmial) equations, (a) does no longer imply (c). say over

k = reals. Thus, one needs to develop completely new arpguments here.

(iv) For continuous-time systems, time-reversibility of differential
equations implies that (b) is equivalent to (c¢); this helps perhaps to understand
intuitively why (a),(b),(c) may be equivalent in that context, as shown recently
by GRASSELLI and ISIDORI!1977! for the case of iaternally-bilinear continuous-time

systems.




PROOEF OF THE MATN KESULT

(2.1) 1EMMA. For any polynomial cystem 7 there exists an integer r 0

ani a proper algebraic set FCU such that, for every w - (ul. el

g e ot ——— & S ————

not in F, and for any X, 2 in X,

h(l’(x.u].....n')) ~}|(I’(z.1|'.....vl')). b Divinny

P(x,w) is indistinguishable from P(z,w).

PROOF . - Since ¥ C kp for some integer p and since a union of proper

algebraic subsets of U igs again a proper algebraic subset, it is sufficient

to prove the lemma with Y = k.
et s -0 be such that any pair of distinguishable states is already
distingmuiched by inputs of length -~ s (SONTAG and ROUCHATFAU| 1975, Corollary 7.31).

For any algebraic set 7. glet A(Z) denote the algebra of polynomial

functions on 7 [ett 1 be the direct limit of the sequence of k-algebras

1

ALE) = v o BE0TY s BlE"H

) = aey

where

A(U) >/\(11""')-~:A(ut)qp/\(u): forfO@l.

ILet K be the quotient field of D (which is an integral domain because
U is irreducible).

Since Y = k, a polynomial map Xx.Xx.Ut —Y 1is an element of
AXyX)m A(Ut): in particular the functions ht defined by

ht(x,z,u ...,\lt)::‘ h(P(x,ul,...,ut)) - h(P(z,ul,...,ut))

1’
are in A(X#X)®K. The latter is a finitely generated algebra over the field K,
hence Noetherian. Thus there is some integer r such that all ht are in

the ideal of A(XxX)@ K generated by ho,..., hr' In particular, there are

therefore equations

—




with all a '+ in A(X<X)a»D and e = nonzero element of D. Since D
; . 5 t - ’
iz the union of the A(U'), there is some integer q such thet all a]t
” a el - %
ave in A(Xy X)nA(UY) and ¢ is in A(U?). Without loss of renerality, we

shall assume that q M T

Define the proper algebraic set

F:= ; (u1,...,ur) in U such that c(ul,...,ur,...,uq)zo for all (ur+l,...,uq) }.

Claim: F satisTies the reauirements of the lemma. Indeed, assume that

w = (nl""'”r) is not in T

h(P(z,u

. Take x, z in X such that h(P(x,ul,...,ut)) =

1v-°"“+)) foreadll = Qg et

(2.3) h

t(x,z,n],...,ut) Lol R e S

Denote x:= P(x,w), z:=P(z,w). It must be proved that x, z are indistinguishable.

Assume that x, z are distinguished by an input sequence v, which can

be taken of length j, 0 < j ;‘s.' by definition of s. ILet

Foo= { w in UJ

1 such that hr+J(x’Z'E'W)*O } 3

this is an algebraic set, proper because v 1is not in F]. Let

s

F, = { w in U’ such that c(w,w,w')=0 for all w' in yd-r-d } 3

this is also an algebraic set, and it is proper because w was taken not in F,.

[

It follows that F.UF, is also a proper algebraic set. Let then w

1
be in neither Fl nor FQ. Then c(w,w,w') # O for some w', so
{(2.] ' 5
(2.1) c(w,w,w )l]r_hi(x,z._v_g,w) 4 0
Put (2.2), (2.%3) and (2.4) taken together are contralictory. M

(2.7) THEOREM. Observability implies, for polynomial systems, final-state

determinability with generic inputs.

PROOF. TImmediate from the lemma. )

(2.€) REMARK. As shown in SONTAGI 19761, canonical realizations Ty of polynomial

response maps are not, in general, polynomial systems. o the Theorem above is not

applicable directly (A(Xr) is not Noetherian). However, if f admits a polynomial




realization I, then the reachable states of form a set which is a

quotient of the reachable states of

implying that the reachable part of

©
ive

%
PS

f
Then lemma (2.1) can be applied to

does satisfy (2.2).
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